WO2016059755A1 - 低温流体用真空断熱二重管の継手構造 - Google Patents

低温流体用真空断熱二重管の継手構造 Download PDF

Info

Publication number
WO2016059755A1
WO2016059755A1 PCT/JP2015/004935 JP2015004935W WO2016059755A1 WO 2016059755 A1 WO2016059755 A1 WO 2016059755A1 JP 2015004935 W JP2015004935 W JP 2015004935W WO 2016059755 A1 WO2016059755 A1 WO 2016059755A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
pipe
vacuum
pair
diameter
Prior art date
Application number
PCT/JP2015/004935
Other languages
English (en)
French (fr)
Inventor
峻太郎 海野
智教 高瀬
友章 梅村
英司 川越
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2016059755A1 publication Critical patent/WO2016059755A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • F16L23/02Flanged joints the flanges being connected by members tensioned axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • F16L59/141Arrangements for the insulation of pipes or pipe systems in which the temperature of the medium is below that of the ambient temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • F16L59/16Arrangements specially adapted to local requirements at flanges, junctions, valves or the like
    • F16L59/18Arrangements specially adapted to local requirements at flanges, junctions, valves or the like adapted for joints

Definitions

  • the present invention relates to a joint structure of a vacuum insulated double pipe for low-temperature fluid.
  • Bayonet joints are widely used as a joint structure for connecting the above vacuum insulation double pipe and vacuum insulation double pipe.
  • a male-side joint portion having a small diameter is formed by a male-side inner tube and an outer tube, and the inside is made into a vacuum layer, and a female-side inner tube and an outer tube
  • the female joint is inserted into the male joint, and the inside is made into a vacuum layer.
  • the joint flange is provided on the diameter-reduced part of the outer pipe of the male joint, and the joint is attached to the end of the female joint.
  • the male side joint part of the bayonet joint may frequently be inserted with an inclination with respect to the female side joint part.
  • the outer pipe of the male joint part comes into contact, but since the joint flange of the female joint part is a bulk body and has higher rigidity than the male joint part, the male joint part having low rigidity is damaged.
  • the male joint Once the male joint is damaged, the internal vacuum is broken, so it is necessary to replace the pipes to which the male joint is connected in addition to the male joint, and to evacuate the internal. The repair took a long time.
  • An object of the present invention is to provide a joint structure of a vacuum insulated double pipe for low-temperature fluid with a low risk of failure while ensuring heat insulation properties comparable to a bayonet joint.
  • a joint structure of a vacuum heat insulating double pipe for cryogenic fluid includes an inner pipe and an outer pipe fitted with a vacuum layer between the inner pipe and the outer pipe.
  • an inner pipe enlarged diameter part is formed by expanding the inner pipe at each of the predetermined length portions on the connection end side of the pair of vacuum insulated double pipes.
  • An inner pipe member for a joint having a vacuum heat insulating double pipe structure having the same inner diameter as the inner pipe is provided on the inner peripheral side of the pair of inner pipe enlarged diameter portions, and ends of the pair of vacuum heat insulating double pipes.
  • a pair of fastening portions provided in the portion is fastened by a plurality of fastening members.
  • an inner pipe enlarged diameter part is formed in each of the connection end side predetermined length part of a pair of vacuum heat insulation double pipe, and it is on the inner peripheral side of this pair of inner pipe enlarged diameter part. Since the inner tube member for a joint with a vacuum heat insulating double pipe structure is provided, when connecting the joint structure, a part of the inner tube member for the joint was attached to the inner pipe diameter-enlarged portion of one vacuum heat insulating double pipe In the state, it can connect by making the inner pipe enlarged diameter part of the other vacuum heat insulation double pipe fit in the remainder of the inner cylinder member for joints.
  • a filter member that traps foreign matter in the low-temperature fluid may be mounted inside the joint inner cylinder member. According to this configuration, foreign matters (solid nitrogen pieces or the like) in the low temperature fluid can be captured by the filter member mounted inside the joint inner cylinder member.
  • the filter member is formed in a convex cup shape downstream of the flow direction of the low temperature fluid, and the outer periphery of the filter member upstream of the flow direction of the low temperature fluid The end may be fixed to the inner peripheral surface of the joint inner cylinder member. According to this configuration, the filter member is formed in a convex cup shape on the downstream side in the flow direction of the low-temperature fluid, so that the foreign matter can be captured and held while securing a passage area through which the low-temperature fluid flows. .
  • the filter member Since the outer peripheral end of the filter member on the upstream side in the flow direction of the low-temperature fluid is fixed to the inner peripheral surface of the joint inner cylinder member, the filter member is separated together with the joint inner cylinder member by separating the joint structure. Easy to attach and detach.
  • a joint structure of a vacuum insulated double pipe for cryogenic fluid includes an inner pipe and a vacuum for cryogenic fluid having an outer pipe fitted with a vacuum layer between the inner pipe and the outer pipe.
  • an outer pipe reduced diameter portion formed by reducing the diameter of the outer pipe is formed in each of the predetermined length portions on the connection end side of the pair of vacuum heat insulating double pipes, and the outer pipe and the outer pipe
  • a pair of joint flanges joined to the reduced diameter portion are provided, and the outer periphery of the pair of outer pipe reduced diameter portions is provided with a joint flange portion at both ends on the outer peripheral side thereof.
  • a cylindrical member is provided, and the pair of joint flanges are fastened to a corresponding joint flange portion of the joint outer cylinder member by a plurality of fastening members, respectively, and the joint outer cylinder member is a plurality of divided outer cylinder members
  • the plurality of divided outer cylinder members are configured such that each set of connection flanges is fastened by a plurality of fastening members. It is characterized in that it is connected with the.
  • the outer pipe reduced diameter portion is formed in each of the predetermined length portions of the connection end side of the pair of vacuum heat insulating double tubes, and the pair of outer pipe reduced diameter portions are brought into contact with each other.
  • a plurality of divided outer cylinder members are mounted on the outer peripheral side of the outer pipe diameter-reduced portions to form outer cylinder members for joints, and the joint flange portions of the outer cylinder members for joints are used as joint flanges on the vacuum heat insulating double pipe side It fastens with a plurality of fastening members, and the connection flange of each set of a plurality of division outer cylinder members is fastened with a plurality of fastening members.
  • the joint structure when connecting the joint structure of a vacuum insulated double pipe for low-temperature fluid, the joint structure can be connected without performing the work of inserting the cylindrical member into the opposite cylindrical portion. There is no possibility of damaging the members constituting the.
  • the heat transfer distance from the inner pipe that contacts the low temperature fluid to the joint flange via the outer pipe diameter-reduced portion can be increased, and the same heat insulating property as that of the bayonet joint can be secured.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. It is the B section enlarged view of FIG. It is sectional drawing of the joint structure of the vacuum heat insulation double tube for cryogenic fluids concerning Example 3.
  • FIG. It is the VII-VII sectional view taken on the line of FIG. It is sectional drawing of the joint structure of the vacuum heat insulation double pipe
  • the vacuum heat insulating double tube 1 for cryogenic fluid is used for transporting a cryogenic fluid such as liquefied gas (liquefied helium, liquefied hydrogen, liquefied nitrogen, liquefied oxygen, etc.) which is a cryogenic fluid. It is a heavy pipe.
  • a pair of vacuum heat insulating double pipes 1a and 1b connected through the joint structure 10 of the present application are fitted to the inner pipes 2a and 2b and concentrically with a space in the inner pipes 2a and 2b.
  • Internal passages 5a and 5b for transporting liquefied gas are formed inside the inner pipes 2a and 2b.
  • a super insulation for blocking radiant heat is wound around the outer circumference of the inner pipes 2a and 2b.
  • the inner pipes 2a and 2b are made of stainless steel or aluminum alloy, and the outer pipes 3a and 3b are made of ordinary steel or stainless steel, and the outer diameters and plate thicknesses of the inner pipes 2a and 2b and the outer pipes 3a and 3b. Is appropriately set according to the use of the vacuum heat insulating double tube 1.
  • a cylindrical housing space 8 is formed on the inner peripheral side of the pair of inner tube enlarged portions 7a, 7b by the pair of annular wall portions 6a, 6b and the pair of inner tube enlarged portions 7a, 7b. Yes.
  • the dimension in the radial direction on one side of the accommodation space 8 is, for example, about 8 to 16 mm, but is not limited to this value.
  • the length of the accommodating space 8 in the axial center X direction is a predetermined length (for example, 200 to 200) that can secure a necessary heat transfer distance between the annular wall portions 6a, 6b on one side and the enlarged diameter portions 7a, 7b on one side. 300 mm). However, it is not limited to this value.
  • a joint inner cylinder member 9 having a vacuum heat insulation double pipe structure having the same inner diameter as the inner pipes 2a and 2b is disposed, and this joint inner cylinder member 9 has a pair of inner pipe diameter expansions.
  • the portions 7a and 7b and the pair of annular wall portions 6a and 6b are disposed in a non-contact manner.
  • a small cylindrical gap 8a is formed between the outer peripheral surface of the joint inner cylinder member 9 and the pair of inner pipe enlarged diameter portions 7a, 7b.
  • the joint inner cylinder member 9 includes an inner cylinder 9a having the same diameter as the inner tubes 2a and 2b, an outer cylinder 9b concentrically fitted to the inner cylinder 9a, and the inner cylinder 9a and the outer cylinder. And a cylindrical vacuum layer 9c formed between the body 9b.
  • the thickness of the vacuum layer 9c is, for example, about 4 to 10 mm, but is not limited to this value.
  • the inner cylinder 9a and the outer cylinder 9b are made of the same material as the inner tubes 2a and 2b. Although not shown in the figure, a super insulation for blocking radiant heat is wound around the outer peripheral surface of the joint inner cylinder member 9.
  • the member 11 is attached and fixed.
  • a pair of annular seal members 12 that seals between the both ends of the joint inner cylinder member 9 and the pair of annular wall portions 6a and 6b at both ends of the housing space 8 are made of, for example, PTFE.
  • a seal member 12 is mounted and fixed to the annular wall portions 6a and 6b.
  • the annular heat insulating members 11 and 12 may be composed of a synthetic rubber gasket or the like.
  • a pair of annular spacers may be mounted between the both end portions of the outer cylinder member 9b and the inner pipe enlarged diameter portions 7a and 7b.
  • An annular joint flange 13a is joined to the end of the vacuum heat insulating double pipe 1a so as to be orthogonal to the axis X, and an annular joint flange 13b is orthogonal to the axis X of the end of the vacuum heat insulating double pipe 1b.
  • the joint flanges 13a and 13b (each of which corresponds to a fastening portion) are brought into contact with each other in a surface contact state and fastened by a plurality of bolts 14a and nuts 14b (fastening members).
  • a gasket 15 is mounted in an annular seal groove formed at the inner peripheral portion of one joint flange 13b.
  • Inner pipe diameter-expanded portions 7a and 7b are formed in the connection end side predetermined length portions of the pair of vacuum heat insulating double pipes 1a and 1b, and the inner circumferences of the pair of inner pipe diameter-expanded portions 7a and 7b.
  • the inner cylinder member 9 for a joint having a vacuum heat insulating double pipe structure is provided in a non-contact manner on the inner pipe enlarged diameter portions 7a and 7b and the annular wall portions 6a and 6b on the side, when the joint structure 10 is connected, With the left half of the inner cylinder member 9 for use attached to the inner pipe enlarged portion 7a of one vacuum heat insulating double pipe 1a, the right half of the inner cylinder member 9 for joint is placed inside the other vacuum heat insulating double pipe 1b. It can connect by inserting in the pipe enlarged diameter part 7b.
  • the insertability is improved and the joint structure 10 can be easily connected.
  • the joint inner cylinder member 9 can be connected by using the alternative joint inner cylinder member 9 prepared in advance. There is no delay.
  • the inner pipe diameter-expanded portions 7a and 7b that do not come into contact with the low-temperature fluid through the joint inner cylinder member 9 and the seal member 12 can secure a large heat transfer distance, so that the same heat insulating property as that of the bayonet joint is secured. be able to.
  • the plate thickness of the inner cylinder body 9a and the outer cylinder body 9b of the inner cylinder member 9 for coupling is desirably set to be thinner than the plate thickness of the outer tubes 3a and 3b. If set in this way, the inner cylinder member 9 can be reliably broken when the fitting state of the joint structure 10 is poor, so that damage to the vacuum heat insulating double pipes 1a and 1b can be prevented.
  • the vacuum heat insulating double tube 1A for low temperature fluid is used for transporting a low temperature fluid of a liquefied gas (liquefied helium, liquefied hydrogen, liquefied nitrogen, liquefied oxygen, etc.) which is a low temperature fluid. It is a heavy pipe.
  • a pair of vacuum heat insulating double pipes 1a and 1b connected via the joint structure 10A of the present application are fitted to the inner pipes 2a and 2b and concentrically with a space in the inner pipes 2a and 2b.
  • Internal passages 5a and 5b for transporting liquefied gas are formed inside the inner pipes 2a and 2b.
  • a super insulation for blocking radiant heat is wound around the outer circumference of the inner pipes 2a and 2b.
  • the inner pipes 2a and 2b are made of stainless steel or aluminum alloy, and the outer pipes 3a and 3b are made of ordinary steel or stainless steel, and the outer diameters and plate thicknesses of the inner pipes 2a and 2b and the outer pipes 3a and 3b. Is appropriately set according to the use of the vacuum heat insulating double pipe 1A.
  • Thin vacuum layers 41a and 41b are formed on the outer peripheral sides of the inner pipes 2a and 2b in the predetermined length portions of the connection end side of the pair of vacuum heat insulating double pipes 1a and 1b, respectively, and the reduced diameter outer pipes 30a and 30b are removed.
  • the outer pipe diameter-reduced portions 32a and 32b are formed, and annular joint flanges 31a and 31b joined to the outer pipes 3a and 3b and the reduced-diameter outer pipes 30a and 30b are provided.
  • the joint flanges 31a and 31b are arranged orthogonal to the axis X of the vacuum heat insulating double tubes 1a and 1b.
  • a cylindrical outer peripheral space 24 is formed on the outer peripheral side of the pair of outer tube diameter-reduced portions 32a and 32b, and the radial dimension on one side of the outer peripheral space 24 is, for example, 20 to 40 mm.
  • the length in the center X direction is, for example, 200 to 300 mm.
  • the thickness of the vacuum layers 41a and 41b is about 4 to 10 mm, for example.
  • the above numerical values are examples, and are not limited to these numerical values.
  • heat-insulating seal members 25a and 25b made of PTFE are attached and fixed between the inner tubes 2a and 2b and the reduced-diameter outer tubes 30a and 30b.
  • An outer cylinder member 27 is provided.
  • a minute gap 24a is formed between the pair of outer pipe reduced diameter portions 32a and 32b and the joint outer cylinder member 27, and the joint outer cylinder member 27 is connected to the pair of outer pipe reduced diameter portions 32a and 32b. In contrast, they are arranged in a non-contact manner.
  • the joint outer cylinder member 27 includes an inner cylinder 27a made of the same material as the inner pipes 2a and 2b, an outer cylinder 27b made of the same material as the outer pipes 3a and 3b, and joint flanges 26a and 26b joined to both ends. And.
  • a vacuum layer 27 c is formed between the inner cylinder 27 a and the outer cylinder 27 b of the joint outer cylinder member 27.
  • the joint flanges 31a and 31b at the ends of the pair of vacuum heat insulating double tubes 1a and 1b are respectively connected to the corresponding joint flange portions 26a and 26b of the joint outer cylinder member 27 by a plurality of bolts 28a and nuts 28b (fastening members). It is concluded.
  • Gaskets 33a and 33b are mounted in seal grooves formed in the inner peripheral portions of the joint flanges 31a and 31b.
  • the joint outer cylinder member 27 of the present embodiment is a pair of symmetrical split outer cylinders divided by a split surface D including the axis X of the vacuum heat insulating double pipes 1a and 1b.
  • Consists of members 27U and 27L, and a pair of split outer cylinder members 27U and 27L, each set of connection flanges 29 and 29 located on both sides of the split surface D is fastened by a plurality of bolts 30a and nuts 30b (fastening members).
  • the inner cylindrical body 27a is composed of a pair of semi-cylindrical members
  • the outer cylindrical body 27b is composed of a pair of semi-cylindrical members.
  • the pair of joint flange portions 26a and 26b are also divided at the dividing surface.
  • a seal member 29a is mounted in a linear seal groove formed in one of the pair of connecting flanges 29, 29 that are vertically opposed to each other.
  • a pair of split outer cylinder members 27U and 27L that constitute the joint outer cylinder member 27 are arranged to face each other, and two sets of connection flanges 29 and 29 are fastened by a plurality of bolts 30a and nuts 30b (fastening members).
  • the joint flange portion 26a is fastened to the joint flange 31a of the vacuum heat insulating double pipe 1a by a plurality of bolts 28a and nuts 28b (fastening members), and a plurality of joint flange portions 26b are attached to the joint flange 31b of the vacuum heat insulating double pipe 1b.
  • the bolt 28a and the nut 28b (fastening member) are used for fastening.
  • the outer cylinder member 27 for a joint of the present Example was made into the 2 division structure, you may make it the structure divided not only into 2 divisions but into 3 divisions.
  • the joint outer cylinder member 27 is composed of a pair of symmetrical split outer cylinder members 27U and 27L divided by the dividing plane D, a pair of double inner pipes are connected when connecting the joint structure 10A. Since the joint outer cylinder member 27 can be mounted by mounting the pair of split outer cylinder members 27U and 27L on the outer peripheral side in a state where the portions 22a and 22b are butted, the connection of the joint structure 10A can be performed. It can be done easily in a short time.
  • the joint structure 10B of the vacuum heat insulating double pipe 1B for low temperature fluid which is a partial modification of the joint structure 10A of the vacuum heat insulating double pipe for low temperature fluid of the second embodiment, will be described.
  • the same reference numerals are given to the same components as those of the joint structure 10A, and description thereof will be omitted.
  • the joint outer cylinder member 27B is formed as an annular integral member.
  • One outer tube diameter-reduced portion 32bB is formed in a tapered shape (partial conical shape) so that the diameter of the outer diameter-reduced outer tube 30bB becomes smaller toward the tip side, and the outer tube of the inner cylinder body 27aB of the outer cylinder member 27B for joints.
  • the right half portion corresponding to the reduced diameter portion 30bB is formed in a tapered shape (partial conical shape) like the reduced diameter outer tube 30bB.
  • An annular vacuum layer 41bB is formed in the outer tube diameter-reduced portion 32bB.
  • a vacuum layer 27cB is formed inside the joint outer cylinder member 27B.
  • the joint outer cylinder member 27B When connecting the joint structure 10B, the joint outer cylinder member 27B is fitted on the outer pipe reduced diameter portion 22a on the double pipe 1a side, and the joint flange 31a and the joint flange portion 26a are fastened.
  • the outer tube reduced diameter portion 32bB on the double tube 1b side is inserted into the joint outer cylinder member 27B, and the joint flange 31b and the joint flange portion 26bB are fastened by a plurality of bolts 28a and nuts 28b (fastening members).
  • the joint structure 10B of the vacuum heat insulating double pipe for low temperature fluid With the left half of the joint outer cylinder member 27B fitted on the outer pipe reduced diameter part 32a of one vacuum heat insulating double pipe 1a, the outer pipe reduced diameter part 32bB of the other vacuum heat insulating double pipe 1b is used for the joint.
  • the joint structure 10B can be connected by being inserted into the outer cylinder member 27B.
  • the inner diameter of the right half part of the joint outer cylinder member 27B is formed in a tapered shape so as to increase toward the double pipe 1b, the other outer pipe reduced diameter part 32bB is formed on the joint outer cylinder member 27B. Since the insertion length for inserting the joint becomes shorter, the insertability is improved, and the joint structure 10B can be easily connected in a short time.
  • symbol is attached
  • a filter member 50 that captures foreign matter in the low-temperature fluid is mounted inside the joint inner cylinder member 9.
  • the filter member 50 is made of stainless steel or aluminum alloy, and has a large number of fine holes through which a low-temperature fluid can pass.
  • the filter member 50 is formed in a convex cup shape on the downstream side in the flow direction of the low-temperature fluid (the direction of the arrow F in the figure), and the outer peripheral end of the filter member 50 on the upstream side in the flow direction of the low-temperature fluid is a joint. For example, it is fixed to the inner peripheral surface of the inner cylinder member 9 by welding.
  • the inside of the vacuum heat insulating double pipe 1 may be purged with N 2 gas, and solid nitrogen and other foreign matters generated from the N 2 gas remaining after the purge can be captured by the filter member 50.
  • the filter member 50 must be periodically replaced or cleaned, but the filter member 50 can be easily replaced or cleaned by separating the joint structure 10C.
  • joint structure 10 instead of the joint flanges 13a and 13b, a pair of fastening parts including a male screw part and a female screw part may be fastened.
  • the structure of the right half of the joint outer cylinder member 27B of the joint structure 10B may be the same as that of the left half, and the structure of the outer pipe reduced diameter part 32bB may be the same as that of the outer pipe reduced diameter part 32a. .
  • the joint structures 10, 10A, 10B, and 10C have been described by taking a horizontal posture as an example for convenience of explanation, but may be used in a vertical posture in practice. 5) Besides, it goes without saying that those skilled in the art can implement the present invention in a form in which various modifications are added to the joint structure of the above embodiment.
  • the present invention provides a joint structure for a vacuum insulated double pipe for low-temperature fluid that flows liquefied hydrogen or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Quick-Acting Or Multi-Walled Pipe Joints (AREA)
  • Flanged Joints, Insulating Joints, And Other Joints (AREA)

Abstract

 低温流体用真空断熱二重管の継手構造は、内管と、この内管との間に真空層を空けて外嵌された外管とを有する低温流体用真空断熱二重管の継手構造であり、1対の真空断熱二重管の接続端側所定長さ部分の各々に、内管を環状壁部を介して段付き状に拡径した内管拡径部が形成され、前記1対の内管拡径部の内周側に、内管と同内径を有する真空断熱二重管構造の継手用内筒部材が設けられると共に、前記継手用内筒部材が1対の内管拡径部及び内管に対して非接触状に配置され、1対の真空断熱二重管の端部に設けられた1対の継手フランジが複数のボルトとナットにより締結される。

Description

低温流体用真空断熱二重管の継手構造
 本発明は、低温流体用真空断熱二重管の継手構造に関する。
 従来から、種々の低温液化ガス等の低温流体を輸送する為の配管において、断熱性能を確保する為に、内管と、この内管に筒状の真空層をあけて外嵌された外管とで構成された真空断熱二重管は公知である。内管の内部に低温液化ガス(例えば、液化ヘリウム、液化水素、液化窒素、液化酸素等)を流す場合、対流熱伝達を防止する為に内管と外管との間に真空層を形成し、この真空層による断熱効果を利用した真空断熱二重管が実用に供されている。
 上記の真空断熱二重管と真空断熱二重管とを接続する継手構造として、バイヨネット継手が広く実用に供されている。特許文献1に記載のバイヨネット継手では、雄側の内管と外管とで小径の所定長さの雄側継手部を形成してその内部を真空層にし、雌側の内管と外管とで雄側継手部を挿入可能な雌側継手部を形成してその内部を真空層にし、雄側継手部の外管の径縮小部に継手フランジを設け、雌側継手部の端部に継手フランジを設け、雌側継手部に雄側継手部を微小筒状隙間を空けて挿入し、1対の継手フランジを複数のボルトとナットで締結することで、バイヨネット継手を接続状態にする。
特開2010-169185号公報
 作業環境が不安定な状況下では、バイヨネット継手の雄側継手部が雌側継手部に対して傾いて挿入されてしまうことが頻繁に起こり得るが、このとき、雌側継手部の継手フランジと雄側継手部の外管が接触するが、雌側継手部の継手フランジはバルク体であり雄側継手部よりも剛性が高いため、剛性の低い雄側継手部の破損を招いてしまう。一旦雄側継手部が破損すると、内部の真空が破壊されるため、雄側継手部に加えて雄側継手部が接続される配管諸共交換し、さらに内部の真空引きを行うことが必要であり、修理に長時間要していた。
 本発明の目的は、バイヨネット継手と同程度の断熱特性を確保しながらも、故障リスクの低い低温流体用真空断熱二重管の継手構造を提供することである。
 上記の課題を解決するために、本発明の一態様に係る低温流体用真空断熱二重管の継手構造は、内管と、この内管との間に真空層を空けて外嵌された外管とを有する低温流体用真空断熱二重管の継手構造において、1対の真空断熱二重管の接続端側所定長さ部分の各々に、内管を拡径した内管拡径部が形成され、前記1対の内管拡径部の内周側に、内管と同内径を有する真空断熱二重管構造の継手用内筒部材が設けられ、1対の真空断熱二重管の端部に設けられた1対の締結部が複数の締結部材により締結されたことを特徴としている。
 上記の構成によれば、1対の真空断熱二重管の接続端側所定長さ部分の各々に、内管拡径部が形成され、この1対の内管拡径部の内周側に真空断熱二重管構造の継手用内筒部材が設けられるため、継手構造を接続する際には継手用内筒部材の一部を一方の真空断熱二重管の内管拡径部に装着した状態で、他方の真空断熱二重管の内管拡径部を継手用内筒部材の残部に外嵌させることで接続することができる。
 この接続の際、真空断熱二重管が傾いて継手用内筒部に外嵌され、内管拡径部の締結部が継手用内筒部材と接触したとしても、剛性の高い締結部が破損せずに継手用内筒部材が破損することになる。このように継手用内筒部材が破損しても、予め準備しておいた代替用の継手用内筒部材を用いて接続することができる。しかも、1対の内管拡径部と継手用内筒部材を介して、低温流体に接触する内管から締結部までの大きな伝熱距離を確保できるため、バイヨネット継手と同等の断熱特性を確保できる。
 上記の低温流体用真空断熱二重管の継手構造において、前記継手用内筒部材の内部に、低温流体中の異物を捕捉するフィルター部材が装着されてもよい。この構成によれば、前記継手用内筒部材の内部に装着したフィルター部材により、低温流体中の異物(固体窒素片等)を捕捉することができる。
 上記の低温流体用真空断熱二重管の継手構造において、前記フィルター部材は低温流体の流れ方向の下流側に凸形状のカップ状に形成され、前記フィルター部材の低温流体の流れ方向上流側の外周端部が、前記継手用内筒部材の内周面に固着されてもよい。この構成によれば、前記フィルター部材は低温流体の流れ方向の下流側に凸形状のカップ状に形成されるため、低温流体の流れる通路面積を確保しながら、異物を捕捉し保持することができる。前記フィルター部材の低温流体の流れ方向上流側の外周端部が、前記継手用内筒部材の内周面に固着されているため、継手構造を分離することで継手用内筒部材と共にフィルター部材を簡単に着脱することができる。
 本発明の別の態様に係る低温流体用真空断熱二重管の継手構造は、内管と、この内管との間に真空層を空けて外嵌された外管とを有する低温流体用真空断熱二重管の継手構造において、1対の真空断熱二重管の接続端側所定長さ部分の各々に、外管を縮径した外管縮径部が形成されると共に外管と外管縮径部に接合された1対の継手フランジが設けられ、前記1対の外管縮径部の外周側に、両端部に継手フランジ部が設けられた真空断熱二重管構造の継手用外筒部材が設けられ、前記1対の継手フランジが前記継手用外筒部材の対応する継手フランジ部に複数の締結部材により夫々締結されており、前記継手用外筒部材が複数の分割外筒部材で構成され、前記複数の分割外筒部材は、各組の接続フランジが複数の締結部材により締結されることで連結されていることを特徴としている。
 上記の構成によれば、1対の真空断熱二重管の接続端側所定長さ部分の各々に、外管縮径部が形成され、これら1対の外管縮径部を突き合わせた状態にしてから、それら外管縮径部の外周側に複数の分割外筒部材を装着して継手用外筒部材とし、継手用外筒部材の継手フランジ部を真空断熱二重管側の継手フランジに複数の締結部材で締結し、複数の分割外筒部材の各組の接続フランジを複数の締結部材で締結する。
 それ故、低温流体用真空断熱二重管の継手構造を接続する際に、筒状部材を相手側の円筒部に挿入する作業を行うことなく、継手構造を接続することができるため、継手構造を構成している部材が損傷する虞がない。
 しかも、外管縮径部を介して低温流体に接する内管から継手フランジまでの伝熱距離を
大きくし、バイヨネット継手と同等の断熱特性を確保することができる。
 本発明によれば、バイヨネット継手と同程度の断熱特性を確保しながらも、故障リスクの低い低温流体用真空断熱二重管の継手構造を提供することができる。
本発明の実施例1に係る低温流体用真空断熱二重管の継手構造の断面図である。 図1のA部拡大図である。 実施例2に係る低温流体用真空断熱二重管の継手構造の断面図である。 図3のIV-IV線断面図である。 図3のB部拡大図である。 実施例3に係る低温流体用真空断熱二重管の継手構造の断面図である。 図6のVII-VII線断面図である。 実施例4に係る低温流体用真空断熱二重管の継手構造の断面図である。
 以下、本発明の実施の形態について図面に基づいて説明する。
 図1、図2に示すように、低温流体用真空断熱二重管1は、低温流体である液化ガス(液化ヘリウム、液化水素、液化窒素、液化酸素等)の低温流体を輸送する為の二重管である。本願の継手構造10を介して接続される1対の真空断熱二重管1a,1bは、内管2a,2bと、この内管2a,2bに筒状の空間を空けて同心状に外嵌された外管3a,3bと、内管2a,2bと外管3a,3bとの間の筒状空間に形成された真空層4a,4bを有する。内管2a,2bの内部には液化ガスを輸送する内部通路5a,5bが形成されている。尚、図示省略したが、内管2a,2bの外周側には輻射熱遮断用のスーパーインシュレーションが巻装されている。
 内管2a,2bは、ステンレス鋼又はアルミニウム合金等で構成され、外管3a,3bは普通鋼又はステンレス鋼等で構成され、内管2a,2bと外管3a,3bの外径や板厚は、真空断熱二重管1の用途に応じて適宜設定される。
 次に、低温流体用真空断熱二重管1a,1bの端部同士を継手フランジ13a,13bを介してフランジ接続する継手構造10について説明する。
 1対の真空断熱二重管1a,1bの接続端側所定(設定)長さ部分の各々に、環状壁部6a,6bを介して内管2a,2bを段付き状に拡径した内管拡径部7a,7bが形成されている。環状壁部6a,6bは二重管1a,1bの軸心Xと直交状に配設され、その内周端は内管2a,2bの端部に接合され、その外周端は対応する内管拡径部7a,7bの端部(対応する内管2a,2b側の端部)に接合されている。
 前記1対の環状壁部6a,6bと1対の内管拡径部7a,7bにより、1対の内管拡径部7a,7bの内周側に円筒状の収容空間8が形成されている。この収容空間8の片側の径方向の寸法は例えば約8~16mmであるが、この数値に限定されるものではない。
 前記収容空間8の軸心X方向の長さは、片側の環状壁部6a,6bと内管拡径部7a,7bとで必要な伝熱距離を確保できるだけの所定長さ(例えば、200~300mm)に設定されている。但し、この数値に限定されるものではない。
 前記の収容空間8に、内管2a,2bと同内径を有する真空断熱二重管構造の継手用内筒部材9が配設され、この継手用内筒部材9は1対の内管拡径部7a,7b及び1対の環状壁部6a,6bに対して非接触状に配置されている。継手用内筒部材9の外周面と1対の内管拡径部7a,7bとの間には小さな円筒状の隙間8aが形成されている。
 継手用内筒部材9は、内管2a,2bと同径の内側筒体9aと、この内側筒体9aに同心状に外嵌された外側筒体9bと、これら内側筒体9aと外側筒体9bとの間に形成された円筒状の真空層9cとを備えている。この真空層9cの厚さは例えば4~10mm程度であるが、この数値に限定されるものではない。尚、内側筒体9aと外側筒体9bは、内管2a,2bと同材料で構成されている。尚、図示省略したが、継手用内筒部材9の外周面には輻射熱遮断用のスーパーインシュレーションが巻装されている。
 継手用内筒部材9の両方の端部において、内側筒体9aの端部と外側筒体9bの端部との間には、例えばPTFE(4フッ化エチレン)製の断熱機能のある環状シール部材11が装着されて固着されている。また、収容空間8の両端部において、継手用内筒部材9の両端部と1対の環状壁部6a,6bの間をシールする1対の環状のシール部材12であって、例えばPTFE製のシール部材12が装着されて環状壁部6a,6bに固着されている。
 尚、前記の環状断熱部材11,12は合成ゴム製のガスケット等で構成してもよい。また、外筒部材9bの両端部と内管拡径部7a,7bとの間にも1対の環状のスペーサを装着してもよい。
 真空断熱二重管1aの端部には環状の継手フランジ13aが軸心Xと直交状に接合され、真空断熱二重管1bの端部には環状の継手フランジ13bが軸心Xと直交状に接合され、これら継手フランジ13a,13b(これらの各々が締結部に相当する)を面接触状に当接させた状態にして複数のボルト14aとナット14b(締結部材)により締結されている。片方の継手フランジ13bの内周寄り部位に形成された環状のシール溝にはガスケット15が装着されている。
 以上説明した低温流体用真空断熱二重管の継手構造10の作用、効果について説明する。1対の真空断熱二重管1a,1bの接続端側所定長さ部分の各々に、内管拡径部7a,7bが形成され、この1対の内管拡径部7a,7bの内周側に真空断熱二重管構造の継手用内筒部材9が内管拡径部7a,7b及び環状壁部6a,6bに非接触状に設けられるため、継手構造10を接続する際には継手用内筒部材9の左半分を一方の真空断熱二重管1aの内管拡径部7aに装着した状態で、継手用内筒部材9の右半分を他方の真空断熱二重管1bの内管拡径部7bに挿入することで接続することができる。
 この場合、継手用内筒部材9を他方の真空断熱二重管1bに挿入する挿入長さが短くなるため、挿入性が向上して、継手構造10の接続を簡単に行うことができる。
 また、仮に、継手用内筒部材9が破損した場合にも、予め準備しておいた代替用の継手用内筒部材9を使用して接続することができるため、低温流体のアンローディングやローディングが遅延することがない。しかも、継手用内筒部材9とシール部材12を介して低温流体に接触しない内管拡径部7a,7bでもって、大きな伝熱距離を確保できるため、バイヨネット継手と同等の断熱特性を確保することができる。
 継手用内筒部材9の内側筒体9aと外側筒体9bの板厚は、外管3a,3bの板厚よりも薄く設定することが望ましい。このように設定すると、継手構造10の嵌合状態が悪い場合に内筒部材9を確実に破断させることができるため、真空断熱二重管1a,1bの損傷を防止することができる。
 図3~図5に示すように、低温流体用真空断熱二重管1Aは、低温流体である液化ガス(液化ヘリウム、液化水素、液化窒素、液化酸素等)の低温流体を輸送する為の二重管である。本願の継手構造10Aを介して接続される1対の真空断熱二重管1a,1bは、内管2a,2bと、この内管2a,2bに筒状の空間を空けて同心状に外嵌された外管3a,3bと、内管2a,2bと外管3a,3bとの間の筒状空間に形成された真空層4a,4bを有する。内管2a,2bの内部には液化ガスを輸送する内部通路5a,5bが形成されている。尚、図示省略したが、内管2a,2bの外周側には輻射熱遮断用のスーパーインシュレーションが巻装されている。
 内管2a,2bは、ステンレス鋼又はアルミニウム合金等で構成され、外管3a,3bは普通鋼又はステンレス鋼等で構成され、内管2a,2bと外管3a,3bの外径や板厚は、真空断熱二重管1Aの用途に応じて適宜設定される。
 次に、低温流体用真空断熱二重管1a,1bの端部同士を継手フランジを介してフランジ接続する継手構造10Aについて説明する。
 1対の真空断熱二重管1a,1bの接続端側所定長さ部分の各々に、内管2a,2bの外周側に薄い真空層41a,41bを空けて縮径外管30a,30bを外嵌してなる外管縮径部32a,32bが形成される共に、外管3a,3bと縮径外管30a,30bに接合された環状の継手フランジ31a,31bが設けられている。尚、継手フランジ31a,31bは、真空断熱二重管1a,1bの軸心Xと直交状に配設されている。
 前記1対の外管縮径部32a,32bの外周側には円筒状の外周空間24が形成され、この外周空間24の片側の径方向寸法は例えば20~40mmであり、外周空間24の軸心X方向の長さは例えば200~300mmである。前記真空層41a,41bの厚さは例えば4~10mm程度である。但し、上記の数値は例示であり、これらの数値に限定されるものではない。
 1対の外管縮径部32a,32bの先端部において、内管2a,2bと縮径外管30a,30b間にPTFE製の断熱シール部材25a,25bが装着されて固着されている。1対の外管縮径部32a,32bの外周側に、外管3a,3bと同外径を有し且つ両端部に継手フランジ部26a,26bを設けた真空断熱二重管構造の継手用外筒部材27が設けられている。1対の外管縮径部32a,32bと継手用外筒部材27との間には微小な隙間24aが形成され、継手用外筒部材27は1対の外管縮径部32a,32bに対して非接触状に配置されている。
 継手用外筒部材27は、内管2a,2bと同材料の内側筒体27aと、外管3a,3bと同材料の外側筒体27bと、両端部に接合された継手フランジ部26a,26bとを備えている。継手用外筒部材27の内側筒体27aと外側筒体27bの間には真空層27cが形成されている。1対の真空断熱二重管1a,1bの端部の継手フランジ31a,31bが継手用外筒部材27の対応する継手フランジ部26a,26bに複数のボルト28aとナット28b(締結部材)により夫々締結されている。尚、継手フランジ31a,31bの内周寄り部位に形成されたシール溝にはガスケット33a,33bが装着されている。
 但し、図4に示すように、本実施例の継手用外筒部材27は、真空断熱二重管1a,1bの軸心Xを含む分割面Dで分割された対称な1対の分割外筒部材27U,27Lで構成され、1対の分割外筒部材27U,27Lは、分割面Dの両側に位置する各組の接続フランジ29,29が複数のボルト30aとナット30b(締結部材)により締結されることで連結されている。それ故、前記内側筒体27aは1対の半円筒部材からなり、前記外側筒体27bは1対の半円筒部材からなる。前記1対の継手フランジ部26a,26bも分割面で分割されている。尚、上下に対向する1対の接続フランジ29,29の一方に形成された直線状のシール溝にはシール部材29aが装着されている。
 前記真空断熱二重管1a,1bを接続する場合、二重管1a,1bの軸心Xを揃え、外管縮径部32a,32bの先端同士を突き合わせた状態にしてから、外周空間24に継手用外筒部材27を構成する1対の分割外筒部材27U,27Lを対向状に配置し、2組の接続フランジ29,29を複数のボルト30aとナット30b(締結部材)により締結すると共に、継手フランジ部26aを真空断熱二重管1aの継手フランジ31aに複数のボルト28aとナット28b(締結部材)により締結すると共に、継手フランジ部26bを真空断熱二重管1bの継手フランジ31bに複数のボルト28aとナット28b(締結部材)により締結する。尚、本実施例の継手用外筒部材27は、2分割構造としたが2分割に限らず3分割した構造にしてもよい。
 以上説明した低温流体用真空断熱二重管の継手構造10Aの作用、効果について説明する。継手用外筒部材27が分割面Dで分割された対称な1対の分割外筒部材27U,27Lで構成されているため、継手構造10Aの接続の際には、1対の二重内管部22a,22bを突き合せた状態で、その外周側に1対の分割外筒部材27U,27Lを装着することで継手用外筒部材27を装着することができるため、継手構造10Aの接続を短時間で簡単に行うことができる。
 継手構造10Aの接続の際、筒状部材を円筒部に挿入する必要がないので、継手構造10Aの接続作業を簡単に能率的に行うことができるうえ、筒状部材等を損傷する虞もない。但し、万一、継手用外筒部材27が損傷した場合でも、予め準備しておいた代替用の継手用外筒部材27を使用して接続することができるため、低温流体のアンローディングやローディングが遅延することがない。
 前記実施例2の低温流体用真空断熱二重管の継手構造10Aを部分的に変更した低温流体用真空断熱二重管1Bの継手構造10Bについて説明する。継手構造10Aの構成要素と同じ構成要素に同じ符号を付して説明を省略する。
 本実施例では、継手用外筒部材27Bが環状の一体部材に構成されている。
 一方の外管縮径部32bBの縮径外管30bBが先端側ほど小径化するようにテーパ状(部分円錐状)に形成され、継手用外筒部材27Bの内側筒体27aBのうち、外管縮径部30bBに対応する右半部分が、前記縮径外管30bBと同様にテーパ状(部分円錐状)に形成されている。外管縮径部32bBの内部には、径方向の厚さが先端側ほど小さくなる環状の真空層41bBが形成されている。尚、継手用外筒部材27Bの内部には真空層27cBが形成されている。
 この継手構造10Bを接続する際には、継手用外筒部材27Bを二重管1a側の外管縮径部22aに外嵌させて継手フランジ31aと継手フランジ部26aとを締結しておき、その継手用外筒部材27Bに二重管1b側の外管縮径部32bBを挿入し、継手フランジ31bと継手フランジ部26bBとを複数のボルト28aとナット28b(締結部材)とで締結する。
 この低温流体用真空断熱二重管の継手構造10Bの作用、効果について説明する。
 一方の真空断熱二重管1aの外管縮径部32aに継手用外筒部材27Bの左半分を外嵌した状態で、他方の真空断熱二重管1bの外管縮径部32bBを継手用外筒部材27Bに挿入することで、継手構造10Bを接続することができる。この場合、継手用外筒部材27Bの右半部の内径が二重管1b側程大きくなるテーパ状に形成されているため、また、継手用外筒部材27Bに他方の外管縮径部32bBを挿入する挿入長さが短くなるため挿入性が向上して、継手構造10Bの接続を短時間で簡単に行うことができる。
 また、仮に、継手用外筒部材27Bが破損した場合にも、予め準備しておいた代替用の継手用外筒部材27Bを使用して接続することができるため、低温流体のアンローディングやローディングが遅延することがない。しかも、外管縮径部32a,32bBを介して大きな伝熱距離を確保できるため、バイヨネット継手と同等の断熱特性も確保することができる。
 実施例1を部分的に変更した実施例4の低温流体用真空断熱二重管の継手構造10Cについて説明する。尚、実施例1の構成要素と同じ構成要素に同じ符号を付してそれらの説明は省略し、異なる構成についてのみ説明する。
 前記継手用内筒部材9の内部に、低温流体中の異物を捕捉するフィルター部材50が装着されている。このフィルター部材50は、ステンレス又はアルミニウム合金等で構成され、低温流体が通過可能な多数の微細孔が形成されている。
 このフィルター部材50は低温流体の流れ方向(図示の矢印Fの方向)の下流側に凸形状のカップ状に形成され、このフィルター部材50の低温流体の流れ方向上流側の外周端部が、継手用内筒部材9の内周面に例えば溶接にて固着されている。
 真空断熱二重管1内をNガスでパージする場合があり、パージ後に残存したNガスから発生する固体窒素やその他の異物をフィルター部材50で捕捉することできる。このフィルター部材50を定期的に交換したりクリーニングしなければならないが、継手構造10Cを分離することで、フィルター部材50を簡単に交換したりクリーニングしたりすることができる。
 前記実施例を部分的に変更する例について説明する。
 1)継手構造10において、この継手構造10を接続する際に、継手用内筒部材9の右半部を内管拡径部7bに挿入するように構成した場合、次のように構成してもよい。
 外側筒体9bの右半部を右方向にいくにつれ小径化するテーパ状(部分円錐状)に形成し、内管拡径部7bも上記同様のテーパ状(部分円錐状)に形成する。
 2)継手構造10において、継手フランジ13a,13bの代わりに、雄ネジ部と雌ネジ部とからなる1対の締結部を締結する構造にしてもよい。
 3)継手構造10Bの継手用外筒部材27Bの右半部の構造を左半部と同様の構造にし、外管縮径部32bBの構造を外管縮径部32aと同様の構造としてもよい。
 4)前記継手構造10,10A,10B,10Cは、説明の都合上水平姿勢のものを例にして説明したが、実際には縦向き姿勢にして使用されることもある。
 5)その他、当業者であれば、前記実施例の継手構造に種々の変更を付加した形態で実施可能であることは勿論である。
 本願発明は、液化水素等を流す低温流体用真空断熱二重管の継手構造を提供する。
1,1A,1B  真空断熱二重管
2a,2b    内管
3a,3b    外管
4a,4b    真空層
6a,6b    環状壁部
7a,7b    内管拡径部
9        継手用内筒部材
10,10A,10B  継手構造
13a,13b  継手フランジ(締結部)
26a,26b  継手フランジ部
27,27B   継手用外筒部材
27U,27L  分割外筒部材
29       接続フランジ
30a,30b,30bB  縮径外管
32a,32b,32bB  外管縮径部
31a,31b  継手フランジ
41a,41b  真空層
50       フィルター部材

Claims (4)

  1.  内管と、この内管との間に真空層を空けて外嵌された外管とを有する低温流体用真空断熱二重管の継手構造において、
     1対の真空断熱二重管の接続端側所定長さ部分の各々に、内管を拡径した内管拡径部が形成され、
     前記1対の内管拡径部の内周側に、内管と同内径を有する真空断熱二重管構造の継手用内筒部材が設けられ、
     1対の真空断熱二重管の端部に設けられた1対の締結部が複数の締結部材により締結されたことを特徴とする低温流体用真空断熱二重管の継手構造。
  2.  前記継手用内筒部材の内部に、低温流体中の異物を捕捉するフィルター部材が装着されたことを特徴とする請求項1に記載の低温流体用真空断熱二重管の継手構造。
  3.  前記フィルター部材は低温流体の流れ方向の下流側に凸形状のカップ状に形成され、
    前記フィルター部材の低温流体の流れ方向上流側の外周端部が、前記継手用内筒部材の内周面に固着されたことを特徴とする請求項2に記載の低温流体用真空断熱二重管の継手構造。
  4.  内管と、この内管との間に真空層を空けて外嵌された外管とを有する低温流体用真空断熱二重管の継手構造において、
     1対の真空断熱二重管の接続端側所定長さ部分の各々に、外管を縮径した外管縮径部が形成されると共に外管と外管縮径部に接合された1対の継手フランジが設けられ、
     前記1対の外管縮径部の外周側に、両端部に継手フランジ部が設けられた真空断熱二重管構造の継手用外筒部材が設けられ、
     前記1対の継手フランジが前記継手用外筒部材の対応する継手フランジ部に複数の締結部材により夫々締結されており、
     前記継手用外筒部材が複数の分割外筒部材で構成され、
     前記複数の分割外筒部材は、各組の接続フランジが複数の締結部材により締結されることで連結されていることを特徴とする低温流体用真空断熱二重管の継手構造。
PCT/JP2015/004935 2014-10-16 2015-09-29 低温流体用真空断熱二重管の継手構造 WO2016059755A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-211299 2014-10-16
JP2014211299A JP2016080053A (ja) 2014-10-16 2014-10-16 低温流体用真空断熱二重管の継手構造

Publications (1)

Publication Number Publication Date
WO2016059755A1 true WO2016059755A1 (ja) 2016-04-21

Family

ID=55746319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004935 WO2016059755A1 (ja) 2014-10-16 2015-09-29 低温流体用真空断熱二重管の継手構造

Country Status (2)

Country Link
JP (1) JP2016080053A (ja)
WO (1) WO2016059755A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123875A (ja) * 2017-01-31 2018-08-09 トヨタ自動車株式会社 真空断熱管
CN113531252A (zh) * 2021-06-29 2021-10-22 北京航天发射技术研究所 一种真空绝热低温连接器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6690572B2 (ja) 2017-02-08 2020-04-28 トヨタ自動車株式会社 減圧断熱配管構造
CN109668007A (zh) * 2018-12-12 2019-04-23 陕西航天机电环境工程设计院有限责任公司 一种高压真空夹层管道

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091889U (ja) * 1983-11-30 1985-06-22 三菱重工業株式会社 極低温流体二重配管継手
JPH05322094A (ja) * 1992-05-25 1993-12-07 Nippon Sanso Kk 極低温断熱配管用の継手
JPH10231970A (ja) * 1997-02-21 1998-09-02 Mitsubishi Heavy Ind Ltd 真空断熱配管継手
JPH11153290A (ja) * 1997-11-21 1999-06-08 Kazuhiro Oikawa 真空断熱配管
JP2001041390A (ja) * 1999-07-30 2001-02-13 Benkan Corp 流体輸送配管用真空断熱管およびその配管支持方法
JP2010169185A (ja) * 2009-01-22 2010-08-05 Kawasaki Heavy Ind Ltd 低温液化ガス用真空断熱配管

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091889U (ja) * 1983-11-30 1985-06-22 三菱重工業株式会社 極低温流体二重配管継手
JPH05322094A (ja) * 1992-05-25 1993-12-07 Nippon Sanso Kk 極低温断熱配管用の継手
JPH10231970A (ja) * 1997-02-21 1998-09-02 Mitsubishi Heavy Ind Ltd 真空断熱配管継手
JPH11153290A (ja) * 1997-11-21 1999-06-08 Kazuhiro Oikawa 真空断熱配管
JP2001041390A (ja) * 1999-07-30 2001-02-13 Benkan Corp 流体輸送配管用真空断熱管およびその配管支持方法
JP2010169185A (ja) * 2009-01-22 2010-08-05 Kawasaki Heavy Ind Ltd 低温液化ガス用真空断熱配管

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123875A (ja) * 2017-01-31 2018-08-09 トヨタ自動車株式会社 真空断熱管
CN113531252A (zh) * 2021-06-29 2021-10-22 北京航天发射技术研究所 一种真空绝热低温连接器

Also Published As

Publication number Publication date
JP2016080053A (ja) 2016-05-16

Similar Documents

Publication Publication Date Title
WO2016059755A1 (ja) 低温流体用真空断熱二重管の継手構造
US9829124B2 (en) Double wall tube assemblies
JP6699992B2 (ja) 流体継手用ガスケットおよび流体継手
US8888139B2 (en) Metal hose end fitting
CN109477600B (zh) 管接头
US11209117B2 (en) Transportation pipe
US11248724B2 (en) Hybrid hose assembly
TWI381116B (zh) O環及真空裝置用夾固式接頭
KR101915492B1 (ko) 무용접 조립식 배관 플랜지 연결구
JP5915918B2 (ja) 高圧パイプ用継手および継手構造
WO2016051770A1 (ja) 低温流体用真空断熱二重管のバイヨネット継手用ガイド機構
JPWO2015075966A1 (ja) 管継手構造体
US3917324A (en) Pipe joint
KR101689167B1 (ko) 이너스테인레스 신축관
JPWO2008056743A1 (ja) 管継手用oリング付きメタルパッキン
JP6480693B2 (ja) 低温流体用真空断熱二重管の継手構造
US2674471A (en) Joint for tubes
CN210950377U (zh) 膨胀节用密封组件
JP2018179054A (ja) ハウジング管継手を用いた管材の接続構造
JP4625855B2 (ja) 管継手
JP4751920B2 (ja) 樹脂管継手
JP7502150B2 (ja) ハウジング管継手
JP2016180462A (ja) 配管継手、高圧ガス用配管、溶接方法、高圧ガス用装置の製造方法および高圧ガス用装置
RU2044207C1 (ru) Вакуумное соединение трубопроводов
JP6296501B2 (ja) 二重管からなる排ガス管端部の構造、該構造を備えた排ガス管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15851311

Country of ref document: EP

Kind code of ref document: A1