WO2016058554A1 - 一种使用热管的压接式igbt封装结构 - Google Patents

一种使用热管的压接式igbt封装结构 Download PDF

Info

Publication number
WO2016058554A1
WO2016058554A1 PCT/CN2015/092078 CN2015092078W WO2016058554A1 WO 2016058554 A1 WO2016058554 A1 WO 2016058554A1 CN 2015092078 W CN2015092078 W CN 2015092078W WO 2016058554 A1 WO2016058554 A1 WO 2016058554A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pipe
piece
end cover
package structure
chip
Prior art date
Application number
PCT/CN2015/092078
Other languages
English (en)
French (fr)
Inventor
刘文广
韩荣刚
张朋
Original Assignee
国家电网公司
国网智能电网研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 国网智能电网研究院 filed Critical 国家电网公司
Publication of WO2016058554A1 publication Critical patent/WO2016058554A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a package structure, and in particular to a crimp IGBT package structure using a heat pipe.
  • Insulated Gate Bipolar Transistors are widely used in industrial, information, new energy, medical, transportation, military, and aerospace applications due to reduced on-state voltage, large current capacity, high input impedance, fast response, and simple control. .
  • the crimp IGBT has high reliability, is easy to be connected in series, and exhibits a short-circuit failure mode when the device is damaged, so it is widely used in the field of smart grids and the like.
  • the two existing mainstream crimping IGBTs are products of ABB and WESTCODE, respectively, and their internal structures are respectively referred to patents CN1596472A and US6678163B1.
  • the invention patent publication CN1596472A discloses a high-power semiconductor module in which the lower side of the chip is sintered with the substrate, the other side is a crimping structure, and finally the upper end cover is contacted by the disc spring structure, and the disc spring structure is
  • the use of the device has the advantage of protecting the chip, that is, when the pressing force is too large, the excess pressure is borne by the outer casing of the device, and the force of the chip is only related to the length of the disk spring that can be compressed, but also because of the existence of the disc spring. Therefore, the thermal conductivity of the upper side of the chip is very poor, and the heat can only be derived through the lower side, and the overall thermal resistance is large.
  • both sides of the upper and lower sides of the chip are crimped to the upper and lower end caps.
  • the advantage of this structure is that the device can achieve double-sided heat dissipation, and the upper and lower sides of the chip have nearly equal heat transfer, the device The overall thermal resistance is small, but it is also because the vertical direction is all hard crimping structure.
  • the chip is subjected to all pressing force, and when the pressing force is too large, the force of the chip is also increased.
  • the chip may be mechanically damaged due to excessive pressure.
  • the present invention provides a crimping type IGBT package structure using a heat pipe, which has a simple and compact overall structure, and can simultaneously take care of chip protection, has a better heat dissipation path, and realizes a short circuit of a crimped IGBT. Failure, high reliability, etc.
  • the invention provides a crimping type IGBT package structure using a heat pipe, the package structure is composed of a casing and a plurality of subunit structures located inside the casing, and a plurality of subunits are arranged in parallel; the subunit structure comprises an upper end cover and a conductive copper piece a disc spring set, a heat pipe, a base, a silver piece, a molybdenum piece, a chip and a lower end cover; the lower end cover, the chip, the molybdenum piece, the silver piece and the base are arranged in order from bottom to top, and the upper end of the heat pipe is inserted into the upper end cover and worn
  • the disc spring group has a lower end inserted into the base; the upper end of the conductive copper piece is located between the upper end cover and the disc spring set, and the lower end is located between the disc spring set and the base.
  • the heat pipe is closed at both ends, and has a heat-conducting working substance inside.
  • the heat-conducting working medium is water or methanol for transferring heat generated by the chip; and the heat pipe has an operating temperature range of -40 ° C to 200 ° C.
  • the upper end cover is made of a copper material and has a thickness of 3.0 to 6.0 mm.
  • the upper end cover is provided with a hole corresponding to the position of the heat insertion tube, and the gap between the heat pipe and the hole is filled with thermal grease.
  • the conductive copper sheet has a rectangular cross section and a thickness of 0.5 to 1.0 mm.
  • the area of the cross section is determined by the conducted current.
  • the side surface of the conductive copper sheet is polygonal or curved and is freely compressed under pressure.
  • the disc spring set is formed by combining at least one pair of oppositely stacked disc springs, and the compression stroke range is preferably between 30% and 75% of its maximum compression stroke.
  • the base is made of a copper material and has a thickness of 2.0 to 4.0 mm.
  • the shape of the silver sheet and the molybdenum sheet corresponds to the shape of the chip.
  • the silver sheet has a thickness of 0.1 to 0.5 mm, and the molybdenum sheet has a thickness of 1.5 to 3.0 mm.
  • the lower end cover is made of a molybdenum sheet and has a thickness of 1.5 to 5.0 mm.
  • the overall structure can realize the advantages of short-circuit failure and high reliability of the crimp IGBT;
  • the chip can be effectively protected.
  • the heat pipe although the single-sided hard contact, the heat dissipation path is still very good, the function achieves double-sided heat dissipation, and the overall thermal resistance is small, thereby achieving both chip protection and comparison. Small thermal resistance.
  • FIG. 1 is a schematic view showing a structure of a crimp-type IGBT package using a heat pipe in Embodiment 1 of the present invention
  • Figure 2 is a cross-sectional view taken along line A-A of the structure of Figure 1 in the first embodiment of the present invention (without a disc spring);
  • FIG. 3 is an exploded view of a crimp-type IGBT package structure using a heat pipe in Embodiment 1 of the present invention
  • FIG. 4 is a schematic view of a conductive copper sheet structure 1 in Embodiment 1 of the present invention.
  • Figure 5 is a schematic view of a conductive copper sheet structure 2 in Embodiment 1 of the present invention.
  • FIG. 6 is a schematic view showing a structure of a crimp type IGBT package using a heat pipe in Embodiment 2 of the present invention
  • Figure 7 is a cross-sectional view taken along line B-B of the structure of Figure 6 in Embodiment 2 of the present invention.
  • FIG. 8 is a schematic view showing a structure of a crimp-type IGBT package using a heat pipe according to Embodiment 3 of the present invention (without a conductive copper sheet);
  • Figure 9 is a cross-sectional view taken along line C-C of the structure of Figure 8 in the third embodiment of the present invention (without a disc spring);
  • FIG. 10 is a schematic overall view of a crimp-type IGBT package structure using a heat pipe in an embodiment of the present invention
  • 1-upper end cover 2-conductive copper piece, 3-dised spring set, 4-base, 5-silver piece, 6-molybdenum piece, 7-lower end cover, 8-chip, 9-heat pipe, 10-heat grease .
  • the present invention provides a crimp-type IGBT package structure using a heat pipe, the package structure being composed of a casing and a plurality of sub-unit structures located inside the casing, and a plurality of sub-units are arranged in parallel; the sub-unit structure includes an upper end cover 1 and a conductive copper Sheet 2, disc spring set 3, heat pipe, base 4, silver piece 5, molybdenum piece 6, chip 8 and lower end cover 7; said lower end cover 7, chip 8, molybdenum piece 6, silver piece 5 and base 4 from bottom to bottom.
  • the upper end of the heat pipe is inserted into the upper end cover 1, passes through the disc spring group 3, and the lower end thereof is inserted into the base 4; the upper end of the conductive copper sheet 2 is located between the upper end cover 1 and the disc spring group 3, and the lower end thereof is located at the disc spring. Between group 3 and base 4.
  • the heat pipe is closed at both ends, and has a heat conductive medium inside.
  • the heat transfer medium is water or methanol for transferring heat generated by the chip 8; the heat pipe has an operating temperature range of -40 ° C to 200 ° C.
  • the upper end cover 1 is made of a copper material and has a thickness of 3.0 to 6.0 mm.
  • the upper end cover 1 is provided with a hole corresponding to the position where the heat pipe is inserted, and the gap between the heat pipe and the hole is filled with the thermal grease 10 .
  • the conductive copper sheet 2 has a rectangular cross section and a thickness of 0.5 to 1.0 mm.
  • the area of the cross section is determined by the conducted current; the side surface of the conductive copper sheet 2 is polygonal or curved, and is freely pressed under pressure. compression.
  • the disc spring set 3 is formed by combining at least one pair of oppositely stacked disc spring sets 3, and the compression stroke range is preferably between 30% and 75% of its maximum compression stroke.
  • a heat pipe is a heat transfer element that relies on its internal working liquid phase change to achieve heat transfer, and has the following basic characteristics:
  • the inside of the heat pipe mainly transfers heat by the vapor and liquid phases of the working liquid, and the heat resistance is small, so the heat conductivity is high.
  • heat pipes per unit weight can transfer several orders of magnitude more heat.
  • the steam in the inner cavity of the heat pipe is in a saturated state, the pressure of the saturated steam is determined by the saturation temperature, and the pressure drop generated by the saturated steam flowing from the evaporation section to the condensation section is small. According to the equation in thermodynamics, the temperature drop is also small, and thus the heat pipe Has excellent isothermal properties.
  • the base 4 is made of a copper material and has a thickness of 2.0 to 4.0 mm.
  • the shape of the silver sheet 5 and the molybdenum sheet corresponds to the shape of the chip 8.
  • the silver sheet 5 has a thickness of 0.1 to 0.5 mm, and the molybdenum sheet 6 has a thickness of 1.5 to 3.0 mm.
  • the lower end cover 7 is made of a molybdenum sheet 6 and has a thickness of 1.5 to 5.0 mm.
  • one sub-unit is a laminated structure as a whole, and has one or more chips 8 inside.
  • the periphery of the subunit is protected by the tube casing.
  • the upper end surface of the subunit is slightly higher than the upper end surface of the shell, and the typical value is 2 to 3 mm.
  • the IGBT package structure is a lower end cover 7, a chip 8, an upper molybdenum sheet 6, a silver sheet 5 (or an aluminum sheet), a base 4, a conductive copper sheet 2 (lower end), a heat pipe, and a heat pipe, respectively.
  • the disc spring group 3 the conductive copper sheet 2 (upper end), and the upper end cover 1.
  • the chip 8 can be directly pressed with the lower end cover 7 or sintered with the lower end cover 7.
  • the upper end cover 1 has a deep hole corresponding to the position of the heat pipe, and the upper end of the heat pipe is inserted therein, and the gap is filled with a certain amount of high-efficiency thermal grease 10, It is ensured that there is a good heat conduction path between the heat pipe and the upper end cover 1 when the disc spring group 3 is compressed.
  • the upper end cover 1 is compressed downward, thereby compressing the disc spring, and the pressure is finally transmitted to the chip 8, so that the chip 8 can exert its electrical performance under a certain pressure, thereby achieving the original purpose of designing the crimp IGBT, that is, short circuit failure. Mode, better reliability, etc.
  • the upper end surface of the subunit moves downward under the pressure exerted by the heat sink until the upper end surface thereof is flush with the upper end surface of the tube casing, and when the pressure applied by the heat sink to the device is excessive, redundant
  • the pressure will be borne by the device housing, which is to achieve the protection mechanism of the chip 8, and because of the use of the heat pipe, the heat pipe has excellent thermal conductivity, which makes the chip 8 have a good heat dissipation path on both sides, which can be close to It is considered that the double-sided heat dissipation achieves both the protection of the chip 8 and the heat conduction.
  • the lower structure is the same as that of the first embodiment, and a through hole is formed in the corresponding position of the upper end cover 1 and the heat pipe, and the heat pipe is pierced therefrom, and then a corresponding depth is opened in the corresponding position on the heat sink.
  • the high-performance thermal grease 10 is filled therein to ensure that the heat pipe has a good heat conduction path between the heat-conductive grease 10 and the heat sink under working conditions.
  • a plurality of grooves are formed in the bottom of the base 4, and the heat pipe can be embedded therein, and is compressed between the base 4 and the upper molybdenum sheet 6, thereby ensuring that heat can be better transmitted from the molybdenum sheet 6.
  • the heat pipe is bent upward from both sides of the base 4 until the corresponding deep hole of the upper end cover 1, and the same deep hole is filled with the high-performance thermal grease 10.
  • the upper end cover 1 may also be provided with a through hole through which the heat pipe is passed up to a corresponding position on the heat sink, and the deep hole is filled with the high-performance thermal grease 10.
  • the base 4 guide bar can also be a heat pipe as in the first two embodiments.
  • the laminated structure of one chip 8 corresponds to an upper end cover, and a plurality of laminated structures may correspond to one upper end cover.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种使用热管的压接式IGBT封装结构,由外壳和位于外壳内部的多个子单元结构组成,多个子单元并行设置;子单元结构包括上端盖(1)、导电铜片(2)、碟簧组(3)、热管(9)、底座(4)、银片(5)、钼片(6)、芯片(8)和下端盖(7);下端盖、芯片、钼片、银片和底座从下往上依次设置,热管上端插入上端盖、穿过碟簧组,其下端插入底座;导电铜片上端位于上端盖和碟簧组之间,其下端位于碟簧组和底座之间。热管的引入,使散热路径很好,兼顾了芯片保护和较小的热阻,整体结构提高了压接式IGBT的可靠性。

Description

一种使用热管的压接式IGBT封装结构 技术领域
本发明涉及一种封装结构,具体涉及一种使用热管的压接式IGBT封装结构。
背景技术
绝缘栅双极晶体管(IGBT)具有通态压降低、电流容量大、输入阻抗高、响应速度快和控制简单的特点,被广泛用于工业、信息、新能源、医学、交通、军事和航空领域。压接式IGBT具有较高的可靠性,便于串联,并且在器件损坏时表现出短路失效模式,因此其被广泛应用在智能电网等领域。
温度对器件性能的影响至关重要,高温不仅会影响器件的电学特性,更会严重影响其疲劳寿命。在器件运行过程中温度会影响芯片内部的热应力,这可能会导致芯片的损坏,已有多项研究证明电子器件的疲劳寿命随温度的升高呈指数下降,在器件设计过程中就必须同时考虑热设计。
现有的两种主流压接式IGBT分别是ABB公司和WESTCODE公司的产品,其内部结构分别参见专利CN1596472A和US6678163B1。
公开号为CN1596472A的发明专利公开了一种大功率半导体模块,其结构中芯片下侧面与基板烧结在一起,另一侧为压接结构,并最终通过碟簧结构与上端盖接触,碟簧结构的使用使得器件拥有保护芯片的优点,即在压装力过大时多余的压力会由器件的外壳承担,芯片所受力只与碟簧可被压缩长度有关,但也正因为碟簧的存在,使得芯片上侧面的导热能力很差,热量基本上只能通过下侧面导出,整体热阻较大。
公开号为US6678163B1的专利的结构中,芯片上下侧两面均为压接结构,直至上下端盖,这种结构的优点是器件可以实现双面散热,芯片上下两面有近乎相等的热量导出,器件的整体热阻较小,但是也正因为竖直方向上全部为硬压接结构,器件进行压装时芯片承受所有压装力,在压装力过大时芯片所受力亦同等增大,因此芯片就可能因为过大的压力而被机械破坏。
通过以上分析,可知两家公司的产品各有优点,但也各有缺点,芯片保护与导热无法兼顾。
发明内容
为了克服上述现有技术的不足,本发明提供一种使用热管的压接式IGBT封装结构,该封装结构整体结构简单紧凑,且能够兼顾芯片保护,具有较好散热路径,实现压接式IGBT短路失效、高可靠性等。
为了实现上述发明目的,本发明采取如下技术方案:
本发明提供一种使用热管的压接式IGBT封装结构,所述封装结构由外壳和位于外壳内部的多个子单元结构组成,多个子单元并行设置;所述子单元结构包括上端盖、导电铜片、碟簧组、热管、底座、银片、钼片、芯片和下端盖;所述下端盖、芯片、钼片、银片和底座从下往上依次设置,所述热管上端插入上端盖、穿过碟簧组,其下端插入底座;所述导电铜片上端位于上端盖和碟簧组之间,其下端位于碟簧组和底座之间。
所述热管两端封闭,其内部有导热工质,所述导热工质为水或甲醇,用于传输芯片所发出的热量;所述热管的工作温度范围为-40℃~200℃。
所述上端盖采用铜质材料制成,厚度为3.0~6.0mm。
所述上端盖对应插热管的位置设有孔,热管与孔之间的间隙中填充导热脂。
所述导电铜片的截面为矩形,其厚度为0.5~1.0mm,该截面的面积由所导过的电流决定;导电铜片的侧面为多边形或弧形,在压力作用下自由地被压缩。
所述碟簧组由至少一对反向堆叠的碟簧组合而成,其压缩行程范围宜在其最大压缩行程的30%~75%之间。
所述底座采用铜质材料制成,其厚度为2.0~4.0mm。
所述银片和钼片的形状与芯片形状相对应。
所述银片的厚度为0.1~0.5mm,钼片的厚度为1.5~3.0mm。
所述下端盖采用钼片,厚度为1.5~5.0mm。
与现有技术相比,本发明的有益效果在于:
1.整体结构可以实现压接式IGBT短路失效、高可靠性等优点;
2.芯片可被有效保护,同时由于使用了热管,使得虽然单面硬接触,但散热路径依然很好,功能上实现了双面散热,整体热阻较小,从而实现了兼顾芯片保护和较小的热阻。
附图说明
图1是本发明实施例1中使用热管的压接式IGBT封装结构示意图;
图2是本发明实施例1中图1中结构的A-A剖视图(未含碟簧);
图3是本发明实施例1中使用热管的压接式IGBT封装结构爆炸图;
图4是本发明实施例1中导电铜片结构1示意图;
图5是本发明实施例1中导电铜片结构2示意图;
图6是本发明实施例2中使用热管的压接式IGBT封装结构示意图;
图7是本发明实施例2中图6中结构的B-B剖视图;
图8是本发明实施例3中使用热管的压接式IGBT封装结构示意图(未含导电铜片);
图9是本发明实施例3中图8中结构的C-C剖视图(未含碟簧);
图10是本发明实施例中使用热管的压接式IGBT封装结构整体示意图;
其中,1-上端盖,2-导电铜片,3-碟簧组,4-底座,5-银片,6-钼片,7-下端盖,8-芯片,9-热管,10-导热脂。
具体实施方式
下面结合附图对本发明作进一步详细说明。
本发明提供一种使用热管的压接式IGBT封装结构,所述封装结构由外壳和位于外壳内部的多个子单元结构组成,多个子单元并行设置;所述子单元结构包括上端盖1、导电铜片2、碟簧组3、热管、底座4、银片5、钼片6、芯片8和下端盖7;所述下端盖7、芯片8、钼片6、银片5和底座4从下往上依次设置,所述热管上端插入上端盖1、穿过碟簧组3,其下端插入底座4;所述导电铜片2上端位于上端盖1和碟簧组3之间,其下端位于碟簧组3和底座4之间。
所述热管两端封闭,其内部有导热工质,所述导热工质为水或甲醇,用于传输芯片8所发出的热量;所述热管的工作温度范围为-40℃~200℃。
所述上端盖1采用铜质材料制成,厚度为3.0~6.0mm。
所述上端盖1对应插热管的位置设有孔,热管与孔之间的间隙中填充导热脂10。
所述导电铜片2的截面为矩形,其厚度为0.5~1.0mm,该截面的面积由所导过的电流决定;导电铜片2的侧面为多边形或弧形,在压力作用下自由地被压缩。
所述碟簧组3由至少一对反向堆叠的碟簧组3合而成,其压缩行程范围宜在其最大压缩行程的30%~75%之间。
热管是依靠自身内部工作液体相变来实现传热的传热元件,具有以下基本特性:
1、很高的导热性;
热管内部主要靠工作液体的汽、液相变传热,热阻很小,因此具有很高的导热能力。与银、铜、铝等金属相比,单位重量的热管可多传递几个数量级的热量。
2、优良的等温性;
热管内腔的蒸汽是处于饱和状态,饱和蒸汽的压力决定于饱和温度,饱和蒸汽从蒸发段流向冷凝段所产生的压降很小,根据热力学中的方程式可知,温降亦很小,因而热管具有优良的等温性。
所述底座4采用铜质材料制成,其厚度为2.0~4.0mm。
所述银片5和钼片的形状与芯片8形状相对应。
所述银片5的厚度为0.1~0.5mm,钼片6的厚度为1.5~3.0mm。
所述下端盖7采用钼片6,厚度为1.5~5.0mm。
实施例1
器件内部有多个子单元,一个子单元整体为叠层结构,其内部有一个或多个芯片8。子单元外围由管壳保护起来,未工作状态下,子单元的上端面比管壳的上端面略高,典型值为2~3mm。
如图1~5所示,IGBT封装结构从下至上分别是下端盖7、芯片8、上钼片6、银片5(或铝片)、底座4、导电铜片2(下端)、热管、碟簧组3、导电铜片2(上端)、上端盖1。
其中芯片8可与下端盖7直接压接,也可与下端盖7烧结,另外上端盖1对应热管的位置开有深孔,热管上端插入其中,其间间隙填充有一定量的高效导热脂10,可保证碟簧组3被压缩时热管与上端盖1之间有较好的导热路径。在工作时上端盖1被向下压缩,进而压缩碟簧,压力最终传至芯片8,使芯片8在一定压力下可以发挥其电学性能,从而实现设计压接式IGBT的最初目的,即短路失效模式、较好的可靠性等。
另外,在正常工作状态下,子单元上端面在散热器所施加的压力作用下下移,直至其上端面与管壳上端面齐平,当散热器向器件所施加压力过大时,多余的压力会由器件外壳来承担,这就是实现了对芯片8的保护机制,同时因为热管的使用,而热管拥有极佳的导热性能,这使得芯片8两侧都有很好的散热路径,可以近乎认为双面散热,即实现了芯片8保护与导热的兼顾。
实施例2
如图6和图7所示,下部结构与实施例1相同,区别在上端盖1与热管对应位置开有通孔,热管从其中穿出,然后散热器上对应位置开有一定深度的孔,其中填充有高效导热脂10,可以保证在工作状态下热管通过导热脂10与散热器之间有较好的导热路径。
实施例3
如图8和图9所示,在底座4底部开有数个凹槽,热管可以镶嵌其中,同时被压缩在底座4与上钼片6之间,从而保证热量可以从钼片6较好地传至热管,然后热管从底座4的两侧向上折弯,直至上端盖1对应的深孔中,同样深孔中填充有高效导热脂10。图中在底座4两侧均有热管,也可以只在一侧有。同样地类似实施例2,上端盖1也可以开有通孔,热管从其中穿出直至散热器上对应位置的深孔,深孔中填充有高效导热脂10。另外,底座4导杆也可以与前两个实施例一样是热管。
图10中一个芯片8的叠层结构对应一个上端盖,也可以几个叠层结构对应一个上端盖。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,所属领域的普通技术人员参照上述实施例依然可以对本发明的具体实施方式进行修改或者等同替换,这些未脱离本发明精神和范围的任何修改或者等同替换,均在申请待批的本发明的权利要求保护范围之内。

Claims (9)

  1. 一种使用热管的压接式IGBT封装结构,其特征在于:所述封装结构由外壳和位于外壳内部的多个子单元结构组成,多个子单元并行设置;所述子单元结构包括上端盖、导电铜片、碟簧组、热管、底座、银片、钼片、芯片和下端盖;所述下端盖、芯片、钼片、银片和底座从下往上依次设置,所述热管上端插入上端盖、穿过碟簧组,其下端插入底座;所述导电铜片上端位于上端盖和碟簧组之间,其下端位于碟簧组和底座之间;
    所述热管两端封闭,其内部有导热工质,所述导热工质为水或甲醇,用于传输芯片所发出的热量;所述热管的工作温度范围为-40℃~200℃。
  2. 根据权利要求1所述的使用热管的压接式IGBT封装结构,其特征在于:所述上端盖采用铜质材料制成,厚度为3.0~6.0mm。
  3. 根据权利要求1所述的使用热管的压接式IGBT封装结构,其特征在于:所述上端盖对应插热管的位置设有孔,热管与孔之间的间隙中填充导热脂。
  4. 根据权利要求1所述的使用热管的压接式IGBT封装结构,其特征在于:所述导电铜片的截面为矩形,其厚度为0.5~1.0mm,该截面的面积由所导过的电流决定;导电铜片的侧面为多边形或弧形,在压力作用下自由地被压缩。
  5. 根据权利要求1所述的使用热管的压接式IGBT封装结构,其特征在于:所述碟簧组由至少一对反向堆叠的碟簧组合而成,其压缩行程范围宜在其最大压缩行程的30%~75%之间。
  6. 根据权利要求1所述的使用热管的压接式IGBT封装结构,其特征在于:所述底座采用铜质材料制成,其厚度为2.0~4.0mm。
  7. 根据权利要求1所述的使用热管的压接式IGBT封装结构,其特征在于:所述银片和钼片的形状与芯片形状相对应。
  8. 根据权利要求1所述的使用热管的压接式IGBT封装结构,其特征在于:所述银片的厚度为0.1~0.5mm,钼片的厚度为1.5~3.0mm。
  9. 根据权利要求1所述的使用热管的压接式IGBT封装结构,其特征在于:所述下端盖采用钼片,厚度为1.5~5.0mm。
PCT/CN2015/092078 2014-10-17 2015-10-16 一种使用热管的压接式igbt封装结构 WO2016058554A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410551294.7 2014-10-17
CN201410551294.7A CN104282636A (zh) 2014-10-17 2014-10-17 一种使用热管的压接式igbt封装结构

Publications (1)

Publication Number Publication Date
WO2016058554A1 true WO2016058554A1 (zh) 2016-04-21

Family

ID=52257398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092078 WO2016058554A1 (zh) 2014-10-17 2015-10-16 一种使用热管的压接式igbt封装结构

Country Status (2)

Country Link
CN (1) CN104282636A (zh)
WO (1) WO2016058554A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148574A (zh) * 2019-05-21 2019-08-20 全球能源互联网研究院有限公司 一种芯片压接结构及半导体封装结构
CN112992795A (zh) * 2019-12-17 2021-06-18 株洲中车时代半导体有限公司 压接式igbt子模组结构和压接式igbt器件

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104282636A (zh) * 2014-10-17 2015-01-14 国家电网公司 一种使用热管的压接式igbt封装结构
CN106706963B (zh) * 2015-07-28 2024-05-31 国网智能电网研究院 一种大功率压接式igbt封装模块压装测试夹具
CN107305852B (zh) * 2016-04-25 2024-05-10 华北电力大学 一种基于开关特性测量的igbt芯片筛选结构
CN108122897B (zh) * 2016-11-30 2019-11-29 株洲中车时代电气股份有限公司 一种igbt模块
CN108281406B (zh) * 2017-12-11 2020-02-07 全球能源互联网研究院有限公司 一种功率器件封装结构及其制造方法
CN108281405B (zh) * 2017-12-11 2019-08-27 全球能源互联网研究院有限公司 一种功率器件封装结构及方法
CN109671686B (zh) * 2019-01-29 2024-05-10 华北电力大学 一种压接型igbt的封装结构
CN113838810A (zh) * 2020-06-24 2021-12-24 深圳第三代半导体研究院 一种压接式功率模块及其封装方法
CN112636054B (zh) * 2020-11-27 2022-08-05 株洲中车时代半导体有限公司 半导体设备组件、压接式功率半导体模块及制造方法
CN112490724B (zh) * 2020-11-27 2023-02-03 株洲中车时代半导体有限公司 一种碟簧组件及功率半导体模块
CN113834527A (zh) * 2021-09-18 2021-12-24 重庆大学 一种压接型功率半导体结构及其内部压力在线测量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6678163B1 (en) * 2002-12-19 2004-01-13 Westcode Semiconductors Limited Housing for semiconductor chips
CN1596472A (zh) * 2001-06-01 2005-03-16 Abb瑞士有限公司 大功率半导体模块
CN101861075A (zh) * 2009-04-08 2010-10-13 富准精密工业(深圳)有限公司 散热装置
CN104282636A (zh) * 2014-10-17 2015-01-14 国家电网公司 一种使用热管的压接式igbt封装结构
CN204118057U (zh) * 2014-10-17 2015-01-21 国家电网公司 一种使用热管的压接式igbt封装结构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2993286B2 (ja) * 1991-09-13 1999-12-20 富士電機株式会社 半導体装置
US5944093A (en) * 1997-12-30 1999-08-31 Intel Corporation Pickup chuck with an integral heat pipe
DE19903245A1 (de) * 1999-01-27 2000-08-03 Asea Brown Boveri Leistungshalbleitermodul
JP2005101489A (ja) * 2003-08-27 2005-04-14 Fuji Electric Holdings Co Ltd 圧接型半導体装置
EP2560204A3 (en) * 2011-08-17 2016-06-08 ABB Technology AG Power semiconducter module and semiconducter module assembly with multiple power semiconducter modules

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1596472A (zh) * 2001-06-01 2005-03-16 Abb瑞士有限公司 大功率半导体模块
US6678163B1 (en) * 2002-12-19 2004-01-13 Westcode Semiconductors Limited Housing for semiconductor chips
CN101861075A (zh) * 2009-04-08 2010-10-13 富准精密工业(深圳)有限公司 散热装置
CN104282636A (zh) * 2014-10-17 2015-01-14 国家电网公司 一种使用热管的压接式igbt封装结构
CN204118057U (zh) * 2014-10-17 2015-01-21 国家电网公司 一种使用热管的压接式igbt封装结构

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148574A (zh) * 2019-05-21 2019-08-20 全球能源互联网研究院有限公司 一种芯片压接结构及半导体封装结构
CN112992795A (zh) * 2019-12-17 2021-06-18 株洲中车时代半导体有限公司 压接式igbt子模组结构和压接式igbt器件
CN112992795B (zh) * 2019-12-17 2024-04-19 株洲中车时代半导体有限公司 压接式igbt子模组结构和压接式igbt器件

Also Published As

Publication number Publication date
CN104282636A (zh) 2015-01-14

Similar Documents

Publication Publication Date Title
WO2016058554A1 (zh) 一种使用热管的压接式igbt封装结构
US9721869B2 (en) Heat sink structure with heat exchange mechanism
WO2015064232A1 (ja) 半導体モジュール
CN104966704B (zh) 一种低热阻的压接式功率器件封装
US20160088762A1 (en) Electronic device and heat dissipating casing thereof
CN204118057U (zh) 一种使用热管的压接式igbt封装结构
KR101519071B1 (ko) 제습기용 열전모듈 어셈블리
US9915780B2 (en) Optical module with a dual layer PCBA structure
US20170325360A1 (en) Power-Module Device, Power Conversion Device, and Method for Manufacturing Power-Module Device
JP6003624B2 (ja) 半導体モジュール
CN106068684A (zh) 具有改善冷却的电功率器件
WO2020258723A1 (zh) 一种新型压接式igbt内部封装结构
CN108227350B (zh) 数字微型反射投影机
CN102881668A (zh) 一种igbt模块散热结构
JP6528730B2 (ja) 半導体装置
CN203983160U (zh) 一种具有快速热耗散的固态继电器
JP2018082006A (ja) パワーモジュール
JP2017017229A (ja) 半導体装置
JP2016054220A (ja) 半導体装置
JP2017017228A (ja) 半導体装置
TWI417704B (zh) 散熱器結構及其改良方法
CN109003952A (zh) 一种静力平衡的逆变器igbt封装结构
JP2016054223A (ja) 半導体装置
JP2014216543A (ja) 半導体モジュール
KR20130020603A (ko) 전력 반도체 배열체, 다수의 전력 반도체 배열체들을 갖는 전력 반도체 모듈, 및 다수의 전력 반도체 모듈들을 구비하는 모듈 어셈블리

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15851213

Country of ref document: EP

Kind code of ref document: A1