WO2016058229A1 - 制备三维石墨烯包覆单粒子纳米金刚石材料的配方及方法 - Google Patents

制备三维石墨烯包覆单粒子纳米金刚石材料的配方及方法 Download PDF

Info

Publication number
WO2016058229A1
WO2016058229A1 PCT/CN2014/090361 CN2014090361W WO2016058229A1 WO 2016058229 A1 WO2016058229 A1 WO 2016058229A1 CN 2014090361 W CN2014090361 W CN 2014090361W WO 2016058229 A1 WO2016058229 A1 WO 2016058229A1
Authority
WO
WIPO (PCT)
Prior art keywords
energetic material
dimensional graphene
energetic
particle
formulation
Prior art date
Application number
PCT/CN2014/090361
Other languages
English (en)
French (fr)
Inventor
彭雁
杜桂香
Original Assignee
彭碳科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410538313.2A external-priority patent/CN105566019A/zh
Priority claimed from CN201410538248.3A external-priority patent/CN105481621B/zh
Application filed by 彭碳科技有限公司 filed Critical 彭碳科技有限公司
Publication of WO2016058229A1 publication Critical patent/WO2016058229A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30

Definitions

  • the invention relates to the technical field of chemical processes, in particular to a formula and a method for preparing a three-dimensional graphene-coated single-particle nano-diamond material.
  • Graphene is a hexagonal lattice honeycomb two-dimensional structure composed of a single layer of SP 2 hybridized carbon atoms. It has stable structure, excellent electrical and thermal conductivity and good mechanical properties, and has been extensively studied. Graphene has been prepared and used in energy storage, transparent electrodes, mechanical drives and the like. In order to further develop the potential applications of graphene, especially in energy storage conversion, in addition to two-dimensional graphene films, three-dimensional graphene structures have also been able to be prepared, and in recent years, three-dimensional graphene coated oxides, carbon materials, etc.
  • the materials have been extensively studied, especially the three-dimensional graphene-coated single-particle nano-diamonds, which have significantly improved the electrical conductivity of the coated nano-diamond materials due to the coating of three-dimensional graphene, and combined with the excellent properties of graphene.
  • the conductivity of the material is significantly increased, and it also exhibits excellent performance in catalysis, capacitors, and energy storage. It has become one of the international frontiers and hotspots in the field of physics and semiconductor electronics research.
  • the preparation of single-particle nano-diamonds adopts methods such as thermal expansion method and energetic material reaction method; single-particle nano-diamonds prepared by the energetic material reaction method have the advantages of simple process and low cost, and thus are widely used in actual production.
  • the energetic material reaction method has not been applied to the process of preparing three-dimensional graphene-coated single-particle nano-diamond materials. Therefore, how to utilize the advantages of the energetic material reaction method to prepare a three-dimensional graphene-coated single-particle nano-diamond material makes the preparation cost low and the yield high is very meaningful.
  • the present invention aims to provide a three-dimensional graphene-coated single-particle nano-diamond material formulation and preparation method, thereby achieving the purpose of low cost and high yield.
  • the invention provides a formulation for preparing a three-dimensional graphene-coated single-particle nano-diamond material, which comprises the following raw materials: trinitrotoluene; black gold or oktokin; metal.
  • the raw material comprises: 20-80% by weight of trinitrotoluene; and 5-60% by weight of black gold.
  • the raw material comprises: 20-80% by weight of trinitrotoluene; and 10-40% by weight of Octogold.
  • the metal is one or more, and the weight percentage of each of the metals is 0.5-10%.
  • the metal is selected from one or more metals of Group VIII, Group IB Group IIB, Group IIIB, Group IIIA.
  • the metal is selected from one or more of Co, Ni, Fe, Cu, Zn, Al, Ga, In, Tl, Ti, Cr.
  • the energetic material prepared by the formulation is compressed into a sphere having a density greater than 1.8 T/M 2 .
  • the invention also provides a preparation method of a three-dimensional graphene-coated single-particle nano-diamond material, which adopts the above formula, and comprises the following steps:
  • Step 01 preparing an energetic material according to the formula
  • Step 02 loading the energetic material into the reaction chamber
  • Step 03 reacting the energetic material to synthesize a product containing a three-dimensional graphene-coated single-particle nano-diamond material
  • Step 04 The product is purified to obtain a pure three-dimensional graphene-coated single-particle nanodiamond material.
  • the step 01 specifically includes:
  • Step 011 mixing raw materials according to the formula to form an energetic material
  • Step 012 Press molding the energetic material; and shaping the shape of the energetic material to conform to the shape of the reaction chamber.
  • the step 02 specifically includes:
  • Step 023 immersing the shaped energetic material in a container filled with water
  • Step 024 Place the container filled with water in a reaction vessel.
  • the energetic material is pressed into a sphere having a density greater than 1.8 T/M 2 .
  • the ratio of the shape of the shaped energetic material to the shape of the reaction chamber is 1: (50-100).
  • the specific process of the purification comprises sequentially undergoing magnetic separation, acidification, oxidation, alkalization and heavy liquid separation processes; or sequentially undergoing magnetic separation, acidification, oxidation, alkalization, re-acidification and heavy Liquid separation process.
  • Formulation and method for preparing three-dimensional graphene coated single-particle nano-diamond material of the invention Trinitrotoluene, black gold or octokol, and metal as a raw material of the formulation, and preparing the raw material into an energetic material, thereby utilizing high energy to synthesize a three-dimensional graphene-coated single-particle nano-diamond material;
  • the formulation, applied to the energetic material reaction process does not result in a substantial increase in cost relative to the process of preparing the nanodiamond material, and can provide sufficient high energy for the formation of the three-dimensional graphene-coated single-particle nanodiamond material; and, further
  • the purification step according to the present invention includes sequentially undergoing magnetic separation, acidification, oxidation, alkalization, and heavy liquid separation processes; or sequentially undergoing magnetic separation, acidification, oxidation, alkalization, re-acidification, and heavy liquid separation processes to obtain purity.
  • the preparation of the three-dimensional graphene-coated single-particle nano-diamond material of the invention comprises the following raw materials: trinitrotoluene; black gold or oktokin; metal.
  • the materials constituting the formulation comprise: 20-80% by weight of trinitrotoluene; 5-60% by weight of black gold; in another preferred embodiment
  • the raw materials constituting the formulation include: 20-80% by weight of trinitrotoluene; 10-40% by weight of Octogold; the metal may be one or more, and the weight percentage per metal It can be 0.5-10%.
  • the metal may be selected from one or more metals of Group VIII, Group IB IIB, Group IIIB, Group IIIA; or may be selected from the group consisting of Co, Ni, Fe, Cu, Zn, Al, Ga, In, Tl, Ti One or more of Cr.
  • the energetic material is prepared using the formulation, the energetic material prepared by the formulation is pressed into a spherical shape, and the density of the spherical energetic material may be greater than 1.8 T/M 2 .
  • the formulation of the three-dimensional graphene-coated single-particle nano-diamond material of the first embodiment includes the following materials: trinitrotoluene; black gold; metal.
  • a formulation for preparing a three-dimensional graphene-coated single-particle nanodiamond material includes the following materials:
  • Each of Al and Ga is 10% by weight.
  • a method for preparing a three-dimensional graphene-coated single-particle nano-diamond material according to the above formula comprises the following steps:
  • Step 01 preparing an energetic material according to the formula
  • the reaction chamber may be spherical, and the energetic material may also be pressed into a sphere, and the density of the sphere may be greater than 1.8 T/M 2 , for example 2.0 T/M 2 .
  • the energetic material may be an explosive, an ignition powder, a primer, or the like.
  • Step 02 loading the energetic material into the reaction chamber
  • the reaction chamber herein may be a reaction vessel containing energetic materials.
  • the energetic material should be placed in an oxygen-deficient environment, and an aqueous environment or an inert gas atmosphere may be used.
  • the process may specifically include: first, placing the above-described spherically energetic material into a container filled with water; and then placing the container in a reaction vessel containing energetic materials.
  • the container may be one or more, and the material of the container may be a plastic material or the like, and the shape of the container may be the same as the shape of the shaped energetic material.
  • Step 03 triggering the energetic material to synthesize a product containing the three-dimensional graphene-coated nanodiamond material
  • the triggering device may be a detonator.
  • the high temperature and high pressure environment generated by the energetic material of the present invention can instantaneously convert the free carbon generated by the reaction into a three-dimensional graphene-coated single-particle nano-diamond material.
  • Step 04 The product is purified to obtain a pure three-dimensional graphene-coated single-particle nanodiamond material.
  • the removal process may include: sequentially undergoing magnetic separation, acidification, oxidation, alkalization, and heavy liquid separation processes.
  • the acidification process is carried out at normal temperature and pressure, and dilute hydrochloric acid having a concentration of less than 25% can be used, for example, between 5 and 25%, and the acidification time is 1-5 hours under normal temperature and normal pressure conditions;
  • the method further comprises: filtering and cleaning the acidified mixed solution.
  • the oxidation process is carried out at normal temperature and pressure, and sulfuric acid having a concentration of less than 30%, potassium permanganate having a concentration of less than 30%, and hydrogen peroxide having a concentration of less than 40% may be used, and the oxidation time is 1-5 hours under normal temperature and normal pressure conditions. In the oxidation process It also includes filtering and cleaning the mixed solution after oxidation.
  • the alkalization process is carried out under normal temperature and normal pressure, and sodium hydroxide having a concentration of less than 40% can be used, for example, 5-40%, and the alkalization time is 1-5 hours under normal temperature and normal pressure conditions; after the alkalization process It also includes filtering and washing the alkalized mixed solution.
  • the heavy liquid separation process can be carried out under normal temperature and normal pressure conditions, using a high-speed centrifugal device h, such as a self-unloading high-speed centrifuge.
  • the rotation speed can be 10,000-30,000 rpm, and the time can be 30-300 seconds, thereby extracting the three-dimensional graphene-coated single-particle nano-diamond material.
  • a formulation of a three-dimensional graphene-coated single-particle nano-diamond material including the following materials:
  • Tl, Ti, and Fe are 5% by weight.
  • a method for preparing a three-dimensional graphene-coated single-particle nano-diamond material according to the above formula comprises the following steps:
  • Step 11 preparing an energetic material according to the formula
  • the reaction chamber may be spherical, and the energetic material may also be pressed into a sphere, and the density of the sphere may be greater than 1.8 T/M 2 , for example 3.0 T/M 2 .
  • the energetic materials may include explosives, ignition materials, primers, and the like.
  • Step 12 loading the energetic material into the reaction chamber
  • the reaction chamber herein may be a reaction vessel containing energetic materials.
  • the energetic material should be placed in an oxygen-deficient environment, and an aqueous environment or an inert gas atmosphere may be used;
  • water is injected into the reaction chamber to immerse the energetic material in the water of the reaction chamber.
  • Step 13 synthesizing an energetic material to synthesize a product containing a three-dimensional graphene-coated nanodiamond material
  • the trigger device may be a detonator, and the energetic material of the present invention is generated during the reaction.
  • the free carbon produced by the reaction can be instantaneously converted into a three-dimensional graphene-coated single-particle nano-diamond material.
  • Step 14 Purification of the product to yield a pure three-dimensional graphene coated single particle nanodiamond material.
  • the reaction in addition to the three-dimensional graphene-coated single-particle nano-diamond, there are single-particle nano-diamonds, a small amount of amorphous carbon, metal impurities, etc., which need to be removed; It may include: sequentially undergoing magnetic separation, acidification, oxidation, alkalization, re-acidification, and heavy liquid separation processes.
  • the acidification, oxidation, alkalization and re-acidification processes herein may include one or more acidification treatments, oxidation treatments, alkalization treatments, and re-acidification treatments, respectively.
  • the process of acidification, oxidation, alkalization and heavy liquid separation can be referred to the above step 04; in the re-acidification process, dilute hydrochloric acid having a concentration of less than 15% can be used at normal temperature and pressure, and the acidification time is 1- at normal temperature and pressure. 5 hours; after the acidification process, the filtration cleaning process can also be carried out.
  • a formulation for preparing a three-dimensional graphene-coated single-particle nano-diamond material includes the following materials:
  • Each of Co, Ni, Fe, Cu, Zn, Al, Ga, In, Tl, Ti, and Cr is 0.5% by weight.
  • a method for preparing a three-dimensional graphene-coated single-particle nano-diamond material according to the above formula comprises the following steps:
  • Step 21 preparing an energetic material according to the formula
  • the shape of the energetic material is consistent with the shape of the reaction chamber of the reaction apparatus; the ratio of the shape of the shaped energetic material to the shape of the reaction chamber may be 1: (50-100), for example, may be 1:100.
  • the reaction chamber may be spherical, and the energetic material may also be pressed into a sphere, and the density of the sphere may be greater than 1.8 T/M 2 , for example 5.0 T/M 2 .
  • the energetic materials may include explosives, ignition materials, primers, and the like.
  • Step 22 loading the energetic material into the energetic reaction vessel
  • the energy-containing reaction container herein may be a closed container.
  • the energetic material should be placed in an oxygen-deficient environment, and an aqueous environment or an inert gas environment may be used.
  • the process may specifically include: first, placing the above-described spherically energetic material in a container filled with water; and then placing the container in the energy-containing reaction container.
  • the container may be one or more, and the material of the container may be a plastic material or the like, and the shape of the container may be the same as the shape of the shaped energetic material.
  • the process may specifically include: injecting water into the plastic bag, and immersing the energetic material in the water of the plastic bag.
  • Step 23 trigger the energetic material to react to synthesize a product containing three-dimensional graphene-coated single-particle nano-diamond;
  • the trigger may be a detonator.
  • the high temperature and high pressure environment generated by the energetic material of the present invention can instantaneously convert the free carbon generated by the reaction into three-dimensional graphene-coated single-particle nano-diamond.
  • Step 24 The product is purified to obtain pure three-dimensional graphene-coated single-particle nanodiamonds.
  • the method may include: sequentially undergoing magnetic separation, acidification, oxidation, alkalization, and heavy liquid separation processes; or sequentially undergoing magnetic separation, acidification, oxidation, alkalization, re-acidification, and heavy liquid separation processes.
  • the acidification, oxidation, alkalization and re-acidification processes herein may include one or more acidification treatments, oxidation treatments, alkalization treatments, and re-acidification treatments, respectively.
  • the process of acidification, oxidation, alkalization, re-acidification and heavy liquid separation can be referred to the aforementioned step 04 or step 14, and details are not described herein again.
  • the formulation of the three-dimensional graphene-coated single-particle nano-diamond material of the second embodiment includes the following raw materials: trinitrotoluene; oktokin; metal.
  • a three-dimensional graphene-coated single-particle nanodiamond formulation is prepared, including the following materials:
  • Each of Al, Ga, Cu, and Zn is 10% by weight.
  • a method for preparing a three-dimensional graphene-coated single-particle nano-diamond according to the above formula comprises the following steps:
  • Step 31 preparing an energetic material according to the formula
  • the raw materials are mixed together for uniform mixing.
  • the kneading machine can be used for kneading to form an energetic material; then, the energetic material is press-formed; and the shape of the shaped energetic material is related to the shape of the reaction chamber of the reaction apparatus. Consistent; the ratio of the shape of the shaped energetic material to the shape of the reaction chamber may be 1: (50-100), for example, may be 1:70.
  • the reaction chamber may be spherical, and the energetic material may also be pressed into a sphere, and the density of the sphere may be greater than 1.8 T/M 2 , for example 2.0 T/M 2 .
  • the energetic materials may include explosives, ignition materials, primers, and the like.
  • Step 32 loading the energetic material into the reaction chamber of the reaction vessel
  • the reaction chamber herein may be a reactor containing energetic materials.
  • the energetic material should be placed in an oxygen-deficient environment, and an aqueous environment or an inert gas environment may be used; Specifically, it may include: first, placing the above-mentioned spherical energetic material into a container filled with water; and then placing the container in a reactor containing energetic materials.
  • the container may be one or more, and the material of the container may be a plastic material or the like, and the shape of the container may be the same as the shape of the shaped energetic material.
  • Step 33 triggering the energetic material to synthesize a product containing the three-dimensional graphene-coated nanodiamond material
  • the triggering device may be a detonator.
  • the high temperature and high pressure environment generated by the energetic material of the present invention can instantaneously convert the free carbon generated by the reaction into a three-dimensional graphene-coated single-particle nano-diamond material.
  • Step 34 The product is purified to obtain a pure three-dimensional graphene-coated single-particle nanodiamond material.
  • the removal process may include: sequentially undergoing magnetic separation, acidification, oxidation, alkalization, and heavy liquid separation processes.
  • the acidification process is carried out at normal temperature and pressure, and dilute hydrochloric acid having a concentration of less than 25% can be used, for example, between 5 and 25%, and the acidification time is 1-5 hours under normal temperature and normal pressure conditions;
  • the method further comprises: filtering and cleaning the acidified mixed solution.
  • the oxidation process is carried out at normal temperature and pressure, and sulfuric acid having a concentration of less than 30%, potassium permanganate having a concentration of less than 30%, and hydrogen peroxide having a concentration of less than 40% may be used, and the oxidation time is 1-5 hours under normal temperature and normal pressure conditions. In the oxidation process It also includes filtering and cleaning the mixed solution after oxidation.
  • the alkalization process is carried out under normal temperature and normal pressure, and sodium hydroxide having a concentration of less than 40% can be used, for example, 5-40%, and the alkalization time is 1-5 hours under normal temperature and normal pressure conditions; after the alkalization process It also includes filtering and washing the alkalized mixed solution.
  • the heavy liquid separation process can be carried out under normal temperature and normal pressure conditions, using a high-speed centrifugal device h, such as a self-unloading high-speed centrifuge.
  • the rotation speed can be 10,000-30,000 rpm, and the time can be 30-300 seconds, thereby extracting the three-dimensional graphene-coated single-particle nano-diamond material.
  • a formulation of a three-dimensional graphene-coated single-particle nano-diamond material including the following materials:
  • the weight percentages are each 5% of Ti and Ga.
  • a method for preparing a three-dimensional graphene-coated single-particle nano-diamond material according to the above formula comprises the following steps:
  • Step 41 preparing an energetic material according to the formula
  • Performing uniform stirring and mixing may be performed by a kneader to form an energetic material; then, the energetic material is press-formed; and the shape of the shaped energetic material is consistent with the shape of the reaction chamber of the reaction apparatus;
  • the ratio of the shape of the energetic material to the shape of the reaction chamber may be 1: (50-100), for example, may be 1:50.
  • the reaction chamber may be spherical, and the energetic material may also be pressed into a sphere, and the density of the sphere may be greater than 1.8 T/M 2 , for example 3.0 T/M 2 .
  • the energetic materials may include explosives, ignition materials, primers, and the like.
  • Step 42 loading the energetic material into the reaction chamber of the reaction vessel
  • the reaction chamber herein may be a reactor containing energetic materials.
  • the energetic material should be placed in an oxygen-deficient environment, and an aqueous environment or an inert gas environment may be used;
  • water is injected into the reaction chamber to immerse the energetic material in the water of the reaction chamber.
  • Step 43 triggering the energetic material to synthesize a product containing the three-dimensional graphene-coated nanodiamond material
  • the trigger device may be a detonator, and the energetic material of the present invention is generated during the reaction.
  • the free carbon produced by the reaction can be instantaneously converted into a three-dimensional graphene-coated single-particle nano-diamond material.
  • Step 44 The product is purified to obtain a pure three-dimensional graphene-coated single-particle nanodiamond material.
  • the removal process may include: sequentially undergoing magnetic separation, acidification, oxidation, alkalization, re-acidification, and heavy liquid separation.
  • the acidification, oxidation, alkalization and re-acidification processes herein may include one or more acidification treatments, oxidation treatments, alkalization treatments, and re-acidification treatments, respectively.
  • the process of acidification, oxidation, alkalization and heavy liquid separation can be referred to the aforementioned step 34; in the re-acidification process, dilute hydrochloric acid having a concentration of less than 15% can be used at normal temperature and pressure, and the acidification time is 1-5 under normal temperature and normal pressure conditions. Hours; the filtration cleaning process can also be carried out after the acidification process.
  • a formulation for preparing a three-dimensional graphene-coated single-particle nano-diamond material includes the following materials:
  • Each of Co, Ni, Fe, Cu, Zn, Al, Ga, In, Tl, Ti, and Cr is 0.5% by weight.
  • a method for preparing a three-dimensional graphene-coated single-particle nano-diamond material according to the above formula comprises the following steps:
  • Step 51 preparing an energetic material according to the formula
  • the weight percentage is 69.5% of trinitrotoluene; the weight percentage is 20% of octetol; Co, Ni, Fe, Cu, Zn, Al, Ga, In, Tl, Ti, Cr
  • the weight percentage is 69.5% of trinitrotoluene; the weight percentage is 20% of octetol; Co, Ni, Fe, Cu, Zn, Al, Ga, In, Tl, Ti, Cr
  • Each of the above-mentioned ingredients is mixed and uniformly stirred and mixed, for example, may be kneaded by a kneader to form an energetic material; then, the energetic material is press-formed; and molded
  • the shape of the energetic material is consistent with the shape of the reaction chamber of the reaction apparatus; the ratio of the shape of the shaped energetic material to the shape of the reaction chamber may be 1: (50-100), for example, may be 1:100.
  • the reaction chamber may be spherical, and the energetic material may also be pressed into a sphere, and the density of the sphere may be greater than 1.8 T/M 2 , for example 5.0 T/M 2 .
  • the energetic materials may include explosives, ignition materials, primers, and the like.
  • Step 52 loading the energetic material into the reaction chamber of the reaction vessel
  • the reaction chamber herein may be a reactor containing energetic materials.
  • the energetic material should be placed in an oxygen-deficient environment, and an aqueous environment or an inert gas environment may be used;
  • the process may include first: placing the above-described spherically energetic material in a container filled with water; then, placing the container in a reactor containing energetic materials.
  • the container may be one or more, and the material of the container may be a plastic material or the like, and the shape of the container may be the same as the shape of the shaped energetic material.
  • the process may include injecting water into the reaction chamber to immerse the energetic material in the water of the reaction chamber.
  • Step 53 triggering the energetic material to synthesize a product containing the three-dimensional graphene-coated nanodiamond material
  • the triggering device may be a detonator.
  • the high temperature and high pressure environment generated by the energetic material of the present invention can instantaneously convert the free carbon generated by the reaction into a three-dimensional graphene-coated single-particle nano-diamond material.
  • Step 54 The product is purified to obtain a pure three-dimensional graphene-coated single-particle nanodiamond material.
  • the removal process may include: sequentially undergoing magnetic separation, acidification, oxidation, alkalization, and heavy liquid separation processes; or sequentially undergoing magnetic separation, acidification, oxidation, alkalization, re-acidification, and heavy liquid separation processes.
  • the acidification, oxidation, alkalization and re-acidification processes herein may include one or more acidification treatments, oxidation treatments, alkalization treatments, and re-acidification treatments, respectively.
  • the process of acidification, oxidation, alkalization, re-acidification and heavy liquid separation can be referred to the aforementioned step 34 or step 44, and details are not described herein again.
  • the preparation method and method for preparing three-dimensional graphene-coated single-particle nano-diamond of the invention adopts trinitrotoluene, black gold or octetol, and metal as a formula raw material, and prepares the raw materials of the formula.
  • Energy-containing materials to utilize high energy to synthesize three-dimensional graphene-coated single-particle nano-diamonds; the formulation of the present invention is applied to an energetic material reaction method, which does not cause a substantial increase in cost compared to the conventional preparation process, and can be three-dimensional
  • the formation of graphene single-particle nanodiamonds provides sufficient high energy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

提供了制备三维石墨烯包覆单粒子纳米金刚石材料的配方及方法;采用三硝基甲苯、黑索金或奥克托金、以及金属作为配方原料,并将配方原料制备成含能材料,从而利用高能量来合成三维石墨烯包覆单粒子纳米金刚石材料;配方应用于含能材料反应法,相对于传统制备过程没有导致成本的大幅度增加,并且可以为三维石墨烯包覆单粒子纳米金刚石材料的形成提供足够的高能量,得到纯度较高的三维石墨烯包覆单粒子纳米金刚石材料。

Description

制备三维石墨烯包覆单粒子纳米金刚石材料的配方及方法 技术领域
本发明涉及化工工艺技术领域,具体涉及一种制备三维石墨烯包覆单粒子纳米金刚石材料的配方及方法。
背景技术
石墨烯是由单层SP2杂化碳原子组成的六方点阵蜂窝状二维结构,其结构稳定,具有优良的导电导热特性、良好的机械特性,因而得到了广泛的研究。石墨烯已经被制备出来并应用在能源存储、透明电极、机械驱动器等领域。为了能够进一步开发石墨烯的潜在应用,尤其在能量存储转化方面,除了二维石墨烯薄膜外,三维石墨烯结构也已经能够制备出来,并且,近年来三维石墨烯包覆氧化物、碳材料等材料开始得到广泛研究,特别是三维石墨烯包覆单粒子纳米金刚石,由于三维石墨烯的包覆,显著提高了被包覆的纳米金刚石材料的导电率,并且结合了石墨烯的优良特性,这些材料的导电性能会显著增加,在催化、电容器、和储能方面也表现出优良的性能,已成为物理和半导体电子研究领域的国际前沿和热点之一。
通常,单粒子纳米金刚石的制备采用热膨胀法、含能材料反应法等方法;由于含能材料反应法制备的单粒子纳米金刚石具有工艺简单和成本低等优点,因此被广泛应用于实际生产中。而含能材料反应法还没有被应用于制备三维石墨烯包覆单粒子纳米金刚石材料的工艺中。因此,如何利用含能材料反应法的优点来制备三维石墨烯包覆单粒子纳米金刚石材料从而使得制备成本低且产量高是十分有意义的。
发明内容
为了克服以上问题,本发明旨在提供一种三维石墨烯包覆单粒子纳米金刚石材料的配方及制备方法,从而达到低成本和高产量的目的。
为了实现上述目的,本发明的技术方案如下:
本发明提供了一种制备三维石墨烯包覆单粒子纳米金刚石材料的配方,其包括以下原料:三硝基甲苯;黑索金或奥克托金;金属。
优选地,所述原料包括:重量百分比为20-80%的三硝基甲苯;重量百分比为5-60%的黑索金。
优选地,所述原料包括:重量百分比为20-80%的三硝基甲苯;重量百分比为10-40%的奥克托金。
优选地,所述金属为一种或多种,每种所述金属的重量百分比为0.5-10%。
优选地,所述金属选自VIII族、IB族IIB族、IIIB族、IIIA族中的一种或多种金属。
优选地,所述金属选自Co、Ni、Fe、Cu、Zn、Al、Ga、In、Tl、Ti、Cr中的一种或多种。
优选地,所述配方所制备的含能材料被压制成球形,所述球形含能材料的密度大于1.8T/M2
本发明还提供了一种三维石墨烯包覆单粒子纳米金刚石材料的制备方法,其采用上述配方,包括以下步骤:
步骤01:根据所述配方制备出含能材料;
步骤02:将含能材料装入反应腔中;
步骤03:反应所述含能材料合成含有三维石墨烯包覆单粒子纳米金刚石材料的产物;
步骤04:对所述产物进行纯化,从而得到纯三维石墨烯包覆单粒子纳米金刚石材料。
优选地,所述步骤01具体包括:
步骤011:根据所述配方将原料混合均匀而形成含能材料;
步骤012:将含能材料压制成型;且成型的所述含能材料的形状与所述反应腔的形状相一致。
所述步骤02具体包括:
步骤023:将成型的含能材料浸入盛满水的容器中;
步骤024:将所述盛满水的容器置于反应容器中。
优选地,将所述含能材料压制成球形,所述球形的密度大于1.8T/M2
优选地,成型的所述含能材料的形状与所述反应腔的形状的比例为1:(50-100)。
优选地,所述步骤04中,所述纯化的具体过程包括依次经历磁分离、酸化、氧化、碱化和重液分离过程;或依次经历磁分离、酸化、氧化、碱化、再酸化和重液分离过程。
本发明的制备三维石墨烯包覆单粒子纳米金刚石材料的配方及方法;采用 三硝基甲苯、黑索金或奥克托金、以及金属作为配方原料,并将配方原料制备成含能材料,从而利用高能量来合成三维石墨烯包覆单粒子纳米金刚石材料;本发明的配方,应用于含能材料反应法,相对于制备纳米金刚石材料的过程没有导致成本的大幅度增加,并且可以为三维石墨烯包覆单粒子纳米金刚石材料的形成提供足够的高能量;并且,进一步根据本发明的提纯步骤,包括依次经历磁分离、酸化、氧化、碱化和重液分离过程;或依次经历磁分离、酸化、氧化、碱化、再酸化和重液分离过程,能够得到纯度较高的三维石墨烯包覆单粒子纳米金刚石材料。
具体实施方式
为使本发明的内容更加清楚易懂,以下结合说明书附图,对本发明的内容作进一步说明。当然本发明并不局限于该具体实施例,本领域内的技术人员所熟知的一般替换也涵盖在本发明的保护范围内。
本发明的制备三维石墨烯包覆单粒子纳米金刚石材料的配方,包括以下原料:三硝基甲苯;黑索金或奥克托金;金属。在一个较佳实施例中,组成所说的配方的原料包括:重量百分比为20-80%的三硝基甲苯;重量百分比为5-60%的黑索金;在另一个较佳实施例中,组成所说的配方的原料包括:重量百分比为20-80%的三硝基甲苯;重量百分比为10-40%的奥克托金;金属可以为一种或多种,每金属的重量百分比可以为0.5-10%。金属可以选自VIII族、IB族IIB族、IIIB族、IIIA族中的一种或多种金属;也可以是选自Co、Ni、Fe、Cu、Zn、Al、Ga、In、Tl、Ti、Cr中的一种或多种。并且,在使用该配方制备含能材料时,配方所制备的含能材料被压制成球形,球形含能材料的密度可以大于1.8T/M2
以下将结合具体实施例对本发明的制备三维石墨烯包覆单粒子纳米金刚石材料的配方和方法作进一步详细说明。
实施例一
本实施例一的制备三维石墨烯包覆单粒子纳米金刚石材料的配方,包括以下原料:三硝基甲苯;黑索金;金属。
例如,制备三维石墨烯包覆单粒子纳米金刚石材料的配方,包括以下原料:
重量百分比为20%的三硝基甲苯;
重量百分比为60%的黑索金;
Al、Ga的各为重量百分比10%。
根据上述配方来制备三维石墨烯包覆单粒子纳米金刚石材料的方法,包括以下步骤:
步骤01:根据配方制备出含能材料;
具体的,首先,取重量百分比为20%的三硝基甲苯;重量百分比为60%的黑索金;Al、Ga的各为重量百分比10%;然后,将上述配好的原料混合在一起进行均匀搅拌混合,例如,可以采用混炼机进行混炼而形成含能材料;接着,将含能材料压制成型;且成型的含能材料的形状与反应设备的反应腔的形状相一致;成型的含能材料的形状与反应腔的形状的比例可以为1:(50-100),例如,可以为1:70。反应腔可以为球形,可以将含能材料也压制成球形,且球形的密度可以大于1.8T/M2,例如为2.0T/M2。这里需要说明的是,含能材料可以为炸药、点火药、起爆药等。
步骤02:将含能材料装入反应腔中;
具体的,这里的反应腔可以为含能材料反应容器,为了使含能材料反应产生的游离碳尽量避免氧化,应当将含能材料置于缺氧的环境下,可以采用水环境或惰性气体环境;该过程具体可以包括:首先,将上述压制成球形的含能材料置于盛满水的容器中;然后,将该容器置于含能材料反应容器中。这里需要说明的是,所说的容器可以为一个也可以为多个,容器的材质可以为塑料材质等,容器的形状可以与成型的含能材料的形状相同。
步骤03:触发含能材料合成含有三维石墨烯包覆纳米金刚石材料的产物;
具体的,触发装置可以为雷管,在反应的过程中,本发明的含能材料产生的高温高压环境,可以将反应产生的游离碳在瞬间转化为三维石墨烯包覆单粒子纳米金刚石材料。
步骤04:对产物进行纯化,从而得到纯三维石墨烯包覆单粒子纳米金刚石材料。
具体的,反应后,得到的产物中除了三维石墨烯包覆单粒子纳米金刚石材料之外,还有单粒子纳米金刚石,以及少量的不定形碳,金属杂质等,需要将其去除;去除的过程具体可以包括:依次经历磁分离、酸化、氧化、碱化和重液分离过程。例如,酸化过程在常温常压下进行,可以采用浓度小于25%的稀盐酸,例如,在5-25%之间,在常温常压条件下,酸化时间为1-5个小时;进行酸化过程之后,还包括:对酸化后的混合溶液进行过滤清洗。氧化过程在常温常压下进行,可以采用浓度小于30%的硫酸、浓度小于30%的高锰酸钾、浓度小于40%的双氧水,在常温常压条件下,氧化时间为1-5个小时;在氧化过程之 后还包括对氧化后的混合溶液进行过滤清洗。碱化过程在常温常压下进行,可以采用浓度小于40%的氢氧化钠,例如,5-40%,在常温常压条件下,碱化时间为1-5个小时;在碱化过程之后还包括对碱化后的混合溶液进行过滤清洗。重液分离过程可以在常温常压条件下进行,采用高转速离心设备h,比如,自卸式高转速离心机。转速可以为10000-30000转/分钟,时间可以为30-300秒,从而将三维石墨烯包覆单粒子纳米金刚石材料提取出来。
经纯化之后,还可以进行室温红外干燥等过程,最后得到纯度较高的三维石墨烯包覆单粒子纳米金刚石材料。
再例如,制备三维石墨烯包覆单粒子纳米金刚石材料的配方,包括以下原料:
重量百分比为80%的三硝基甲苯;
重量百分比为5%的黑索金;
Tl、Ti、Fe的各为重量百分比5%。
根据上述配方来制备三维石墨烯包覆单粒子纳米金刚石材料的方法,包括以下步骤:
步骤11:根据配方制备出含能材料;
具体的,首先,取重量百分比为80%的三硝基甲苯;重量百分比为5%的黑索金;Tl、Ti的各为重量百分比5%;然后,将上述配好的原料混合在一起进行均匀搅拌混合,例如,可以采用混炼机进行混炼而形成含能材料;接着,将含能材料压制成型;且成型的含能材料的形状与反应设备的反应腔的形状相一致;成型的含能材料的形状与反应腔的形状的比例可以为1:(50-100),例如,可以为1:50。反应腔可以为球形,可以将含能材料也压制成球形,且球形的密度可以大于1.8T/M2,例如为3.0T/M2。这里需要说明的是,含能材料可以包括炸药、点火药、起爆药等。
步骤12:将含能材料装入反应腔中;
具体的,这里的反应腔可以为含能材料反应容器,为了使反应产生的游离碳尽量避免氧化,应当将含能材料置于缺氧的环境下,可以采用水环境或惰性气体环境;
例如,在反应腔中注入水,将含能材料浸没于反应腔的水中。
步骤13:反应含能材料合成含有三维石墨烯包覆纳米金刚石材料的产物;
具体的,触发装置可以为雷管,在反应的过程中,本发明的含能材料产生 的高温高压环境,可以将反应产生的游离碳在瞬间转化为三维石墨烯包覆单粒子纳米金刚石材料。
步骤14:对产物进行纯化,从而得到纯三维石墨烯包覆单粒子纳米金刚石材料。
具体的,反应后,得到的产物中除了三维石墨烯包覆单粒子纳米金刚石之外,还有单粒子纳米金刚石,以及少量的不定形碳,金属杂质等,需要将其去除;去除的过程具体可以包括:依次经历磁分离、酸化、氧化、碱化、再酸化和重液分离过程。这里的酸化、氧化、碱化和再酸化过程可以分别包括一次或多次酸化处理、氧化处理、碱化处理和再酸化处理。酸化、氧化、碱化和重液分离的过程可以参阅前述步骤04;再酸化过程在常温常压下,可以采用浓度小于15%的稀盐酸,在常温常压条件下,再酸化时间为1-5个小时;再酸化过程后还可以进行过滤清洗过程。
经纯化之后,还可以进行室温红外干燥等过程,最后得到纯度较高的三维石墨烯包覆单粒子纳米金刚石材料。
又例如,制备三维石墨烯包覆单粒子纳米金刚石材料的配方,包括以下原料:
重量百分比为50%的三硝基甲苯;
重量百分比为39.5%的黑索金;
Co、Ni、Fe、Cu、Zn、Al、Ga、In、Tl、Ti、Cr的各为重量百分比0.5%。
根据上述配方来制备三维石墨烯包覆单粒子纳米金刚石材料的方法,包括以下步骤:
步骤21:根据配方制备出含能材料;
具体的,首先,取重量百分比为50%的三硝基甲苯;重量百分比为39.5%的黑索金;Co、Ni、Fe、Cu、Zn、Al、Ga、In、Tl、Ti、Cr的各为重量百分比0.5%;然后,将上述配好的原料混合在一起进行均匀搅拌混合,例如,可以采用混炼机进行混炼而形成含能材料;接着,将含能材料压制成型;且成型的含能材料的形状与反应设备的反应腔的形状相一致;成型的含能材料的形状与反应腔的形状的比例可以为1:(50-100),例如,可以为1:100。反应腔可以为球形,可以将含能材料也压制成球形,且球形的密度可以大于1.8T/M2,例如为5.0T/M2。这里需要说明的是,含能材料可以包括炸药、点火药、起爆药等。
步骤22:将含能材料装入含能反应容器中;
具体的,这里的含能反应容器可以为密闭容器,为了使反应产生的游离碳尽量避免氧化,应当将含能材料置于缺氧的环境下,可以采用水环境或惰性气体环境。
该过程具体可以包括:首先,将上述压制成球形的含能材料置于盛满水的容器中;然后,将该容器置于含能反应容器中。这里需要说明的是,所说的容器可以为一个也可以为多个,容器的材质可以为塑料材质等,容器的形状可以与成型的含能材料的形状相同。
或者该过程具体可以包括:在塑料袋中注入水,将含能材料浸没于塑料袋的水中。
步骤23:触发含能材料进行反应,合成含有三维石墨烯包覆单粒子纳米金刚石的产物;
具体的,触发器可以为雷管,在反应的过程中,本发明的含能材料产生的高温高压环境,可以将反应产生的游离碳在瞬间转化为三维石墨烯包覆单粒子纳米金刚石。
步骤24:对产物进行提纯,从而得到纯三维石墨烯包覆单粒子纳米金刚石。
具体的,反应后,得到的产物中除了三维石墨烯包覆单粒子纳米金刚石之外,还有单粒子纳米金刚石,以及少量的不定形碳,金属杂质等,需要将其去除;去除的过程具体可以包括:依次经历磁分离、酸化、氧化、碱化和重液分离过程;或依次经历磁分离、酸化、氧化、碱化、再酸化和重液分离过程。这里的酸化、氧化、碱化和再酸化过程可以分别包括一次或多次酸化处理、氧化处理、碱化处理和再酸化处理。酸化、氧化、碱化、再酸化和重液分离的过程可以参阅前述步骤04或步骤14,这里不再赘述。
经提纯之后,还可以进行室温红外干燥等过程,最后得到纯度较高的三维石墨烯包覆单粒子纳米金刚石材料。
实施例二
本实施例二的制备三维石墨烯包覆单粒子纳米金刚石材料的配方,包括以下原料:三硝基甲苯;奥克托金;金属。
例如,制备三维石墨烯包覆单粒子纳米金刚石的配方,包括以下原料:
重量百分比为20%的三硝基甲苯;
重量百分比为40%的奥克托金;
Al、Ga、Cu、Zn的各为重量百分比10%。
根据上述配方来制备三维石墨烯包覆单粒子纳米金刚石的方法,包括以下步骤:
步骤31:根据配方制备出含能材料;
具体的,首先,取重量百分比为20%的三硝基甲苯;重量百分比为40%的奥克托金;Al、Ga、Cu、Zn的各为重量百分比10%;然后,将上述配好的原料混合在一起进行均匀混合,例如,可以采用混炼机进行混炼而形成含能材料;接着,将含能材料压制成型;且成型的含能材料的形状与反应设备的反应腔的形状相一致;成型的含能材料的形状与反应腔的形状的比例可以为1:(50-100),例如,可以为1:70。反应腔可以为球形,可以将含能材料也压制成球形,且球形的密度可以大于1.8T/M2,例如为2.0T/M2。这里需要说明的是,含能材料可以包括炸药、点火药、起爆药等。
步骤32:将含能材料装入反应容器的反应腔中;
具体的,这里的反应腔可以为含能材料反应器,为了使反应产生的游离碳尽量避免氧化,应当将含能材料置于缺氧的环境下,可以采用水环境或惰性气体环境;该过程具体可以包括:首先,将上述压制成球形的含能材料置于盛满水的容器中;然后,将该容器置于含能材料反应器中。这里需要说明的是,所说的容器可以为一个也可以为多个,容器的材质可以为塑料材质等,容器的形状可以与成型的含能材料的形状相同。
步骤33:触发含能材料合成含有三维石墨烯包覆纳米金刚石材料的产物;
具体的,触发装置可以为雷管,在反应的过程中,本发明的含能材料产生的高温高压环境,可以将反应产生的游离碳在瞬间转化为三维石墨烯包覆单粒子纳米金刚石材料。
步骤34:对产物进行纯化,从而得到纯三维石墨烯包覆单粒子纳米金刚石材料。
具体的,反应后,得到的产物中除了三维石墨烯包覆单粒子纳米金刚石材料之外,还有单粒子纳米金刚石,以及少量的不定形碳,金属杂质等,需要将其去除;去除的过程具体可以包括:依次经历磁分离、酸化、氧化、碱化和重液分离过程。例如,酸化过程在常温常压下进行,可以采用浓度小于25%的稀盐酸,例如,在5-25%之间,在常温常压条件下,酸化时间为1-5个小时;进行酸化过程之后,还包括:对酸化后的混合溶液进行过滤清洗。氧化过程在常温常压下进行,可以采用浓度小于30%的硫酸、浓度小于30%的高锰酸钾、浓度小于40%的双氧水,在常温常压条件下,氧化时间为1-5个小时;在氧化过程之 后还包括对氧化后的混合溶液进行过滤清洗。碱化过程在常温常压下进行,可以采用浓度小于40%的氢氧化钠,例如,5-40%,在常温常压条件下,碱化时间为1-5个小时;在碱化过程之后还包括对碱化后的混合溶液进行过滤清洗。重液分离过程可以在常温常压条件下进行,采用高转速离心设备h,比如,自卸式高转速离心机。转速可以为10000-30000转/分钟,时间可以为30-300秒,从而将三维石墨烯包覆单粒子纳米金刚石材料提取出来。
经提纯之后,还可以进行室温红外干燥等过程,最后得到纯度较高的三维石墨烯包覆单粒子纳米金刚石材料。
再例如,制备三维石墨烯包覆单粒子纳米金刚石材料的配方,包括以下原料:
重量百分比为80%的三硝基甲苯;
重量百分比为10%的奥克托金;
重量百分比各为5%的Ti和Ga。
根据上述配方来制备三维石墨烯包覆单粒子纳米金刚石材料的方法,包括以下步骤:
步骤41:根据配方制备出含能材料;
具体的,首先,取重量百分比为80%的三硝基甲苯;重量百分比为10%的奥克托金;重量百分比各为5%的Ti和Ga;然后,将上述配好的原料混合在一起进行均匀搅拌混合,例如,可以采用混炼机进行混炼而形成含能材料;接着,将含能材料压制成型;且成型的含能材料的形状与反应设备的反应腔的形状相一致;成型的含能材料的形状与反应腔的形状的比例可以为1:(50-100),例如,可以为1:50。反应腔可以为球形,可以将含能材料也压制成球形,且球形的密度可以大于1.8T/M2,例如为3.0T/M2。这里需要说明的是,含能材料可以包括炸药、点火药、起爆药等。
步骤42:将含能材料装入反应容器的反应腔中;
具体的,这里的反应腔可以为含能材料反应器,为了使反应产生的游离碳尽量避免氧化,应当将含能材料置于缺氧的环境下,可以采用水环境或惰性气体环境;
例如,在反应腔中注入水,将含能材料浸没于反应腔的水中。
步骤43:触发含能材料合成含有三维石墨烯包覆纳米金刚石材料的产物;
具体的,触发装置可以为雷管,在反应的过程中,本发明的含能材料产生 的高温高压环境,可以将反应产生的游离碳在瞬间转化为三维石墨烯包覆单粒子纳米金刚石材料。
步骤44:对产物进行纯化,从而得到纯三维石墨烯包覆单粒子纳米金刚石材料。
具体的,反应后,得到的产物中除了三维石墨烯包覆单粒子纳米金刚石材料之外,还有单粒子纳米金刚石,以及少量的不定形碳,金属杂质等,需要将其去除;去除的过程具体可以包括:依次经历磁分离、酸化、氧化、碱化、再酸化和重液分离过程。这里的酸化、氧化、碱化和再酸化过程可以分别包括一次或多次酸化处理、氧化处理、碱化处理和再酸化处理。酸化、氧化、碱化和重液分离的过程可以参阅前述步骤34;再酸化过程在常温常压下,可以采用浓度小于15%的稀盐酸,在常温常压条件下,酸化时间为1-5个小时;再酸化过程后还可以进行过滤清洗过程。
经纯化之后,还可以进行室温红外干燥等过程,最后得到纯度较高的三维石墨烯包覆单粒子纳米金刚石材料。
又例如,制备三维石墨烯包覆单粒子纳米金刚石材料的配方,包括以下原料:
重量百分比为69.5%的三硝基甲苯;
重量百分比为20%的奥克托金;
Co、Ni、Fe、Cu、Zn、Al、Ga、In、Tl、Ti、Cr的各为重量百分比0.5%。
根据上述配方来制备三维石墨烯包覆单粒子纳米金刚石材料的方法,包括以下步骤:
步骤51:根据配方制备出含能材料;
具体的,首先,取重量百分比为69.5%的三硝基甲苯;重量百分比为20%的奥克托金;Co、Ni、Fe、Cu、Zn、Al、Ga、In、Tl、Ti、Cr的各为重量百分比0.5%;然后,将上述配好的原料混合在一起进行均匀搅拌混合,例如,可以采用混炼机进行混炼而形成含能材料;接着,将含能材料压制成型;且成型的含能材料的形状与反应设备的反应腔的形状相一致;成型的含能材料的形状与反应腔的形状的比例可以为1:(50-100),例如,可以为1:100。反应腔可以为球形,可以将含能材料也压制成球形,且球形的密度可以大于1.8T/M2,例如为5.0T/M2。这里需要说明的是,含能材料可以包括炸药、点火药、起爆药等。
步骤52:将含能材料装入反应容器的反应腔中;
具体的,这里的反应腔可以为含能材料反应器,为了使反应产生的游离碳尽量避免氧化,应当将含能材料置于缺氧的环境下,可以采用水环境或惰性气体环境;
该过程可以包括:首先,将上述压制成球形的含能材料置于盛满水的容器中;然后,将该容器置于含能材料反应器中。这里需要说明的是,所说的容器可以为一个也可以为多个,容器的材质可以为塑料材质等,容器的形状可以与成型的含能材料的形状相同。
或者该过程可以包括:在反应腔中注入水,将含能材料浸没于反应腔的水中。
步骤53:触发含能材料合成含有三维石墨烯包覆纳米金刚石材料的产物;
具体的,触发装置可以为雷管,在反应的过程中,本发明的含能材料产生的高温高压环境,可以将反应产生的游离碳在瞬间转化为三维石墨烯包覆单粒子纳米金刚石材料。
步骤54:对产物进行提纯,从而得到纯三维石墨烯包覆单粒子纳米金刚石材料。
具体的,反应后,得到的产物中除了三维石墨烯包覆单粒子纳米金刚石材料之外,还有单粒子纳米金刚石,以及少量的不定形碳,金属杂质等,需要将其去除;去除的过程具体可以包括:依次经历磁分离、酸化、氧化、碱化和重液分离过程;或依次经历磁分离、酸化、氧化、碱化、再酸化和重液分离过程。这里的酸化、氧化、碱化和再酸化过程可以分别包括一次或多次酸化处理、氧化处理、碱化处理和再酸化处理。酸化、氧化、碱化、再酸化和重液分离的过程可以参阅前述步骤34或步骤44,这里不再赘述。
经提纯之后,还可以进行室温红外干燥等过程,最后得到纯度较高的三维石墨烯包覆单粒子纳米金刚石材料。
综上所述,本发明的制备三维石墨烯包覆单粒子纳米金刚石的配方及方法,采用三硝基甲苯、黑索金或奥克托金、以及金属作为配方原料,并将配方原料制备成含能材料,从而利用高能量来合成三维石墨烯包覆单粒子纳米金刚石;本发明的配方,应用于含能材料反应法,相对于传统制备过程没有导致成本的大幅度增加,并且可以为三维石墨烯单粒子纳米金刚石的形成提供足够的高能量。
虽然本发明已以较佳实施例揭示如上,然所述实施例仅为了便于说明而举 例而已,并非用以限定本发明,本领域的技术人员在不脱离本发明精神和范围的前提下可作若干的更动与润饰,本发明所主张的保护范围应以权利要求书所述为准。

Claims (12)

  1. 一种制备三维石墨烯包覆单粒子纳米金刚石材料的配方,其特征在于,其包括以下原料:三硝基甲苯;黑索金或奥克托金;金属。
  2. 根据权利要求1所述的配方,其特征在于,所述原料包括:重量百分比为20-80%的三硝基甲苯;重量百分比为5-60%的黑索金。
  3. 根据权利要求1所述的配方,其特征在于,所述原料包括:重量百分比为20-80%的三硝基甲苯;重量百分比为10-40%的奥克托金。
  4. 根据权利要求1所述的配方,其特征在于,所述金属为一种或多种,每种所述金属的重量百分比为0.5-10%。
  5. 根据权利要求1所述的配方,其特征在于,所述金属选自VIII族、IB族IIB族、IIIB族、IIIA族中的一种或多种金属。
  6. 根据权利要求1所述的配方,其特征在于,所述金属选自Co、Ni、Fe、Cu、Zn、Al、Ga、In、Tl、Ti、Cr中的一种或多种。
  7. 根据权利要求1所述的配方,其特征在于,所述配方所制备的含能材料被压制成球形,所述球形含能材料的密度大于1.8T/M2
  8. 一种三维石墨烯包覆单粒子纳米金刚石材料的制备方法,其特征在于,采用权利要求1所述的配方,包括以下步骤:
    步骤01:根据所述配方制备出含能材料;
    步骤02:将含能材料装入反应腔中;
    步骤03:反应所述含能材料合成含有三维石墨烯包覆单粒子纳米金刚石材料的产物;
    步骤04:对所述产物进行纯化,从而得到纯三维石墨烯包覆单粒子纳米金刚石材料。
  9. 根据权利要求8所述的制备方法,其特征在于,
    所述步骤01具体包括:
    步骤011:根据所述配方将原料混合均匀而形成含能材料;
    步骤012:将含能材料压制成型;且成型的所述含能材料的形状与所述反应腔的形状相一致。
    所述步骤02具体包括:
    步骤023:将成型的含能材料浸入盛满水的容器中;
    步骤024:将所述盛满水的容器置于反应容器中。
  10. 根据权利要求9所述的制备方法,其特征在于,将所述含能材料压制成球形,所述球形的密度大于1.8T/M2
  11. 根据权利要求9所述的制备方法,其特征在于,成型的所述含能材料的形状与所述反应腔的形状的比例为1:(50-100)。
  12. 根据权利要求8所述的制备方法,其特征在于,所述步骤04中,所述纯化的具体过程包括依次经历磁分离、酸化、氧化、碱化和重液分离过程;或依次经历磁分离、酸化、氧化、碱化、再酸化和重液分离过程。
PCT/CN2014/090361 2014-10-13 2014-11-05 制备三维石墨烯包覆单粒子纳米金刚石材料的配方及方法 WO2016058229A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410538248.3 2014-10-13
CN201410538313.2A CN105566019A (zh) 2014-10-13 2014-10-13 制备三维石墨烯包覆单粒子纳米金刚石材料的配方及方法
CN201410538313.2 2014-10-13
CN201410538248.3A CN105481621B (zh) 2014-10-13 2014-10-13 制备三维石墨烯包覆单粒子纳米金刚石材料的配方及方法

Publications (1)

Publication Number Publication Date
WO2016058229A1 true WO2016058229A1 (zh) 2016-04-21

Family

ID=55746006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090361 WO2016058229A1 (zh) 2014-10-13 2014-11-05 制备三维石墨烯包覆单粒子纳米金刚石材料的配方及方法

Country Status (1)

Country Link
WO (1) WO2016058229A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1385365A (zh) * 2001-05-10 2002-12-18 浣石 用炸药爆轰合成纳米金刚石的方法
CN1866002A (zh) * 2006-05-12 2006-11-22 中国科学院上海微系统与信息技术研究所 一种用于爆炸物检测的自组装单分子层敏感膜及制备方法
CN101306967A (zh) * 2008-01-11 2008-11-19 卫丕昌 高能含氧燃料的应用
CN101445235A (zh) * 2008-12-29 2009-06-03 郑鲁生 一种爆炸发电并制备金刚石的方法
US20090194744A1 (en) * 2007-08-14 2009-08-06 Adebimpe David O B A Methods for making scent simulants of chemical explosives, and compositions thereof
CN101708837A (zh) * 2009-12-07 2010-05-19 中国科学院山西煤炭化学研究所 一种氮掺杂石墨烯的制备方法
CN102091569A (zh) * 2010-12-10 2011-06-15 解立峰 人造金刚石及其制备方法
CN102910626A (zh) * 2012-11-07 2013-02-06 成都天成鑫钻纳米科技股份有限公司 一种爆轰制备纳米金刚石黑粉的工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1385365A (zh) * 2001-05-10 2002-12-18 浣石 用炸药爆轰合成纳米金刚石的方法
CN1866002A (zh) * 2006-05-12 2006-11-22 中国科学院上海微系统与信息技术研究所 一种用于爆炸物检测的自组装单分子层敏感膜及制备方法
US20090194744A1 (en) * 2007-08-14 2009-08-06 Adebimpe David O B A Methods for making scent simulants of chemical explosives, and compositions thereof
CN101306967A (zh) * 2008-01-11 2008-11-19 卫丕昌 高能含氧燃料的应用
CN101445235A (zh) * 2008-12-29 2009-06-03 郑鲁生 一种爆炸发电并制备金刚石的方法
CN101708837A (zh) * 2009-12-07 2010-05-19 中国科学院山西煤炭化学研究所 一种氮掺杂石墨烯的制备方法
CN102091569A (zh) * 2010-12-10 2011-06-15 解立峰 人造金刚石及其制备方法
CN102910626A (zh) * 2012-11-07 2013-02-06 成都天成鑫钻纳米科技股份有限公司 一种爆轰制备纳米金刚石黑粉的工艺

Similar Documents

Publication Publication Date Title
CA2951787C (en) Method and apparatus for producing sodium borohydride
CN106029270A (zh) 镍粉的制造方法
CN106587035A (zh) 一种基于绿色安全还原剂的石墨烯及制备和应用
JP2016060661A (ja) 窒化硼素粉末及びその製造方法
CN107001049B (zh) 爆轰纳米金刚石的分离方法
JP5678437B2 (ja) ナノ結晶状合金の合成法
CN105562704A (zh) 水热合成法制备钴纳米磁性材料的方法
JP2017171523A (ja) 還元型酸化黒鉛の製造方法
CN105481621A (zh) 制备三维石墨烯包覆单粒子纳米金刚石材料的配方及方法
WO2016058229A1 (zh) 制备三维石墨烯包覆单粒子纳米金刚石材料的配方及方法
CN109702219B (zh) 一种硼砂辅助制备空心结构颗粒的方法
US3711594A (en) Process for making boron nitride bodies
Zhiliang et al. Synthesis of Fe 3 O 4 nanowires and their catalytic activity towards thermal decomposition of ammonium perchlorate
JP6152052B2 (ja) 水分散性に優れたダイヤモンド微粒子の製造方法、及びダイヤモンド微粒子水分散体
Bilen et al. Conversion of KCl into KBH 4 by mechano-chemical reaction and its catalytic decomposition
CN104130305B (zh) 一种合成黄体酮中间体孕烯醇醋酸酯的方法
CN105566019A (zh) 制备三维石墨烯包覆单粒子纳米金刚石材料的配方及方法
CN109704315A (zh) 一种石墨烯的制备方法
CN205133153U (zh) 一种生产氮化硅的系统
CN105565291B (zh) 三维石墨烯包覆单粒子纳米金刚石材料的纯化过程中的氧化方法
CN108275692A (zh) 一种采用Pb助熔剂合成Ti3B2N的方法
JP7007650B2 (ja) ニッケル粉の製造方法
JP7469108B2 (ja) フッ化無機化合物粒子の製造方法
RU2728133C1 (ru) Способ получения диазодинитрофенола
RU2372285C1 (ru) Способ обработки детонационного углерода (варианты)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903900

Country of ref document: EP

Kind code of ref document: A1