WO2016056396A1 - 固体撮像装置、及び、電子機器 - Google Patents

固体撮像装置、及び、電子機器 Download PDF

Info

Publication number
WO2016056396A1
WO2016056396A1 PCT/JP2015/077010 JP2015077010W WO2016056396A1 WO 2016056396 A1 WO2016056396 A1 WO 2016056396A1 JP 2015077010 W JP2015077010 W JP 2015077010W WO 2016056396 A1 WO2016056396 A1 WO 2016056396A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sensor
narrowband
filter
visible light
Prior art date
Application number
PCT/JP2015/077010
Other languages
English (en)
French (fr)
Inventor
杉崎 太郎
功 広田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2016553043A priority Critical patent/JP6729381B2/ja
Priority to US15/512,398 priority patent/US11309284B2/en
Priority to CN201580052456.5A priority patent/CN107078138B/zh
Publication of WO2016056396A1 publication Critical patent/WO2016056396A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/204Filters in which spectral selection is performed by means of a conductive grid or array, e.g. frequency selective surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/288Interference filters comprising deposited thin solid films comprising at least one thin film resonant cavity, e.g. in bandpass filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02966Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe including ternary compounds, e.g. HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present technology relates to a solid-state imaging device and an electronic device, and more particularly, to a solid-state imaging device and an electronic device that can simultaneously acquire a normal image and a narrowband image, for example.
  • the multispectral sensor it is possible to simultaneously sense (photograph) light in a plurality of wavelength bands.
  • the hyperspectral sensor light from visible light to infrared light is divided into several hundred wavelength bands. Sensing (photographing) is possible.
  • Narrow band optical sensor has low sensitivity because the band of light to be sensed (photographed) is narrow. Furthermore, when the narrowband optical sensor uses a plasmon filter using surface plasmons, the conversion efficiency of photoelectric conversion in the narrowband optical sensor is lowered.
  • the narrow band optical sensor has a narrow band of light to be sensed (photographed), and it is difficult to cover the entire visible light range, so it can be obtained by sensing light (photographing) with the narrowband optical sensor. It is difficult to obtain a high-quality spectrum (image) (hereinafter also referred to as a normal image) obtained by synthesizing spectrum data of the obtained light and sensing (photographing) visible light.
  • image hereinafter also referred to as a normal image
  • a visible light sensor that senses (photographs) visible light can sense (capture) normal images, but it can sense (capture) narrowband images corresponding to specific narrowband light or multiple narrowband lights. ) Is difficult to do.
  • the present technology has been made in view of such a situation, and makes it possible to simultaneously acquire a high-quality normal image and a narrow-band image with high wavelength resolution.
  • the solid-state imaging device of the present technology includes a plurality of substrates stacked in two or more layers, and two or more of the plurality of substrates are substrates having pixels that perform photoelectric conversion, and have the pixels At least one of the substrates is a visible light sensor that receives visible light, and at least another substrate of the substrate having the pixels is an optical filter that transmits light in a narrow wavelength band. It is a solid-state imaging device which is a narrowband optical sensor which has a bandpass filter and receives narrowband light which is the narrowband light.
  • An electronic apparatus of the present technology includes an optical system that collects light and a solid-state imaging device that receives light and captures an image
  • the solid-state imaging device includes a plurality of substrates stacked in two or more layers. Two or more of the plurality of substrates are substrates having pixels that perform photoelectric conversion, and at least one of the substrates having the pixels is a visible light sensor that receives visible light, At least one other substrate having the pixels has a narrowband filter that is an optical filter that transmits light in a narrowband wavelength band, and receives a narrowband light that is the narrowband light.
  • a plurality of substrates are stacked in two or more layers, and two or more of the plurality of substrates have a pixel that performs photoelectric conversion. It has become.
  • At least one substrate having the pixels is a visible light sensor that receives visible light.
  • At least one other substrate having the pixels has a narrowband filter that is an optical filter that transmits light in a narrowband wavelength band, and receives the narrowband light that is the narrowband light. It is a narrow band optical sensor.
  • solid-state imaging device may be an independent device or may be an internal block constituting one device.
  • a high-quality normal image and a narrow-band image with high wavelength resolution can be acquired simultaneously.
  • FIG. 1 is a block diagram illustrating a configuration example of an embodiment of a digital camera 10 to which the present technology is applied.
  • 2 is a diagram illustrating a first usage example of the digital camera 10.
  • FIG. 2 is a diagram illustrating a second usage example of the digital camera 10.
  • FIG. It is a figure which shows the 3rd usage example of the digital camera.
  • 2 is a cross-sectional view illustrating a first configuration example of an image sensor 2.
  • FIG. 2 is a perspective view illustrating an outline of a first configuration example of an image sensor 2.
  • FIG. It is a figure which shows the example of the wavelength of the pass band of the narrow-band filter. It is a figure which shows the simulation result by an optical simulator.
  • 3 is a flowchart illustrating an outline of a method for manufacturing the image sensor 2.
  • FIG. 3 is a cross-sectional view illustrating a second configuration example of the image sensor 2.
  • FIG. FIG. 6 is a cross-sectional view illustrating a third configuration example of the image sensor 2.
  • 6 is a perspective view illustrating an outline of a third configuration example of the image sensor 2.
  • FIG. It is a perspective view which shows the outline of the 4th structural example of the image sensor 2.
  • FIG. FIG. 10 is a perspective view illustrating an outline of a fifth configuration example of the image sensor 2. It is a perspective view which shows the outline of the 6th structural example of the image sensor 2.
  • FIG. It is sectional drawing which shows the 7th structural example of the image sensor. It is a perspective view which shows the outline of the 7th structural example of the image sensor 2.
  • FIG. 8th structural example of the image sensor 2 It is a perspective view which shows the outline of the 8th structural example of the image sensor 2.
  • FIG. 1 shows the example of the existing arrangement
  • FIG. It is a perspective view which shows the outline of the 15th structural example of the image sensor 2.
  • FIG. It is a perspective view which shows the outline of the 16th structural example of the image sensor 2.
  • FIG. It is a figure which shows typically the example of the light-receiving surface of the narrowband optical sensor 12 divided
  • FIG. It is a perspective view which shows the outline of the 18th structural example of the image sensor 2.
  • FIG. It is a figure which shows Quadra arrangement
  • FIG. 1 It is a perspective view which shows the outline of the 19th structural example of the image sensor 2.
  • FIG. 2 is a perspective view which shows the outline of the 20th structural example of the image sensor 2.
  • FIG. 2 is a perspective view which shows the outline of the 21st structural example of the image sensor 2.
  • FIG. 1 is a block diagram illustrating a configuration example of an embodiment of a digital camera 10 to which the present technology is applied.
  • the digital camera 10 can capture both still images and moving images.
  • the digital camera 10 includes an optical system 1, an image sensor 2, a memory 3, a signal processing unit 4, an output unit 5, and a control unit 6.
  • the optical system 1 has, for example, a zoom lens, a focus lens, a diaphragm, and the like (not shown), and makes light from the outside enter the image sensor 2.
  • the image sensor 2 is, for example, a CMOS image sensor, receives incident light from the optical system 1, performs photoelectric conversion, and outputs image data corresponding to the incident light from the optical system 1.
  • the image sensor 2 is configured by stacking a plurality of substrates in two or more layers. Two or more of the plurality of substrates are substrates having pixels that perform photoelectric conversion, and at least one of the substrates having pixels is a visible light sensor that receives visible light. ing. Furthermore, at least one other substrate having pixels has a narrowband filter that is an optical filter that transmits light in a narrowband wavelength band and receives narrowband light that is narrowband light. It is a band light sensor.
  • the image sensor 2 receives visible light and performs photoelectric conversion (sensing (photographing)) to sense (photograph) a normal image corresponding to the visible light, and at the same time, the image sensor 2 has one or more narrowbands.
  • photoelectric conversion sensing (photographing)
  • the image sensor 2 has one or more narrowbands.
  • a normal image and a narrowband image can be acquired simultaneously.
  • the narrowband optical sensor has a narrowband filter as described above. Therefore, by adopting various narrowbands as the narrowband (wavelength band) of light transmitted through the narrowband filter, As a narrow band image, various items obtained from narrow band light can be measured.
  • the narrowband light sensor for example, various items obtained from chlorophyll, moisture, heat, oleic acid, sugar (sugar content), and other narrowband light are measured (detected) as narrowband images. be able to.
  • the memory 3 temporarily stores image data (normal image or narrowband image) output from the image sensor 2.
  • the signal processing unit 4 performs processing such as noise removal and white balance adjustment as signal processing using the image data stored in the memory 3 and supplies the processed signal to the output unit 5.
  • the output unit 5 outputs the image data from the signal processing unit 4.
  • the output unit 5 has a display (not shown) made of, for example, liquid crystal, and displays a spectrum (image) corresponding to the image data from the signal processing unit 4 as a so-called through image.
  • the output unit 5 includes a driver (not shown) that drives a recording medium such as a semiconductor memory, a magnetic disk, or an optical disk, and records the image data from the signal processing unit 4 on the recording medium.
  • a driver (not shown) that drives a recording medium such as a semiconductor memory, a magnetic disk, or an optical disk, and records the image data from the signal processing unit 4 on the recording medium.
  • the output unit 5 functions as a communication interface that performs communication with an external device (not shown), and transmits image data from the signal processing unit 4 to the external device wirelessly or by wire.
  • the control unit 6 controls each block constituting the digital camera 10 in accordance with a user operation or the like.
  • the image sensor 2 receives incident light from the optical system 1 and photoelectrically converts the incident light, thereby simultaneously sensing a normal image and a narrowband image (photographing). And output the image data of the normal image and the narrowband image.
  • the image data output from the image sensor 2 is supplied to and stored in the memory 3.
  • the image data stored in the memory 3 is subjected to signal processing by the signal processing unit 4 as necessary, and the resulting image data is supplied to the output unit 5 and output.
  • FIG. 2 is a diagram illustrating a first usage example of the digital camera 10.
  • a normal image is sensed (photographed), and various items obtained from narrowband light can be detected as a narrowband image. It can be used in various cases where normal image sensing (photographing) and detection of various items obtained from narrowband light are desired simultaneously.
  • FIG. 2 shows a usage example in which the digital camera 10 is used as a surveillance camera in a lettuce factory.
  • the digital camera 10 senses (captures) a normal image and a narrow-band image on which a line processing lettuce is reflected.
  • a normal image obtained by sensing (photographing) with the digital camera 10 for example, an employee working on a line processing lettuce is working according to the manual, and the number of employees is Employees can be monitored to see if they are ready. Furthermore, according to the normal image, for example, it is possible to monitor the intrusion of a suspicious person during a break time when no employee is present, at night, on a holiday, or the like.
  • lettuce chlorophyll and moisture can be detected and the freshness of lettuce can be monitored (managed).
  • infrared rays can be detected to monitor (manage) whether the employee is generating heat.
  • FIG. 3 is a diagram illustrating a second usage example of the digital camera 10.
  • FIG. 3 shows a usage example in which the digital camera 10 is used as a surveillance camera for a meat factory.
  • the digital camera 10 simultaneously senses (captures) a normal image and a narrow-band image showing a line processing meat.
  • a normal image obtained by sensing (photographing) with the digital camera 10 for example, an employee working on a line processing meat is working according to the manual, and the number of employees is Employees can be monitored to see if they are ready. Furthermore, according to the normal image, for example, it is possible to monitor the intrusion of a suspicious person during a break time when no employee is present, at night, on a holiday, or the like.
  • oleic acid which is a meat umami component
  • infrared rays can be detected to monitor whether the employee is generating heat.
  • FIG. 4 is a diagram illustrating a third usage example of the digital camera 10.
  • FIG. 4 shows a usage example in which the digital camera 10 is used as a surveillance camera for a tomato field.
  • the digital camera 10 senses (captures) a normal image showing a tomato field and a narrow-band image at the same time.
  • an external enemy such as a crow
  • an intrusion of a suspicious person and other abnormalities can be monitored.
  • the sugar content of tomato can be detected and the growth degree (ripening degree) of tomato can be monitored.
  • FIG. 5 is a cross-sectional view (in the horizontal direction or the vertical direction) showing a first configuration example of the image sensor 2.
  • the image sensor 2 is configured by stacking three semiconductor substrates of a first layer substrate, a second layer substrate, and a third layer substrate as a plurality of substrates.
  • the direction in which light enters the image sensor 2 (upward in the present embodiment) is also referred to as an upper layer, and the opposite to the direction in which light is incident is also referred to as a lower layer.
  • the substrate laminated on the upper layer is also referred to as the upper layer substrate
  • the substrate laminated on the lower layer is also called the lower layer substrate.
  • the first layer substrate, the second layer substrate and the third layer substrate are lower layer substrates, and with respect to the third layer substrate, the first layer substrate and the second layer substrate are upper layer substrates.
  • two or more substrates are substrates having pixels that perform photoelectric conversion. And at least one substrate of the substrate having pixels is the visible light sensor 11 that receives visible light, and at least one other substrate of the substrate having pixels has a narrow band filter 42, The narrow-band optical sensor 12 receives the narrow-band light.
  • the first layer substrate and the second layer substrate of the three first layer substrates to the third layer substrate are visible as substrates having pixels that perform photoelectric conversion, respectively.
  • An optical sensor 11 and a narrowband optical sensor 12 are employed.
  • a circuit board 13 having a memory, a logic circuit, etc. is employed as the third layer board.
  • vias are provided in regions that are not effective pixel regions of the image sensor 2, and the visible light sensor 11, the narrow-band photosensor 12, and the circuit board 13 are electrically connected via the vias. Connected to.
  • the visible light sensor 11 as the first layer substrate is configured by laminating a semiconductor layer 34, a poly layer 36, and a wiring layer 37 from the upper layer.
  • a plurality of PDs (photodiodes) 35 as pixels are formed.
  • An OCL (On Chip Lenz) 31 and an OCCF (On Chip Color Filter) 32 are provided for the PD 35 as a pixel. That is, in FIG. 5, the insulating film 33 is formed on the back surface side (upper layer side) that is the light incident surface of the semiconductor layer 34, and the OCCF 32 and OCL 31 are formed thereon.
  • the OCL 31 condenses the light incident thereon on the PD 35 as a corresponding pixel via the corresponding OCCF 32 and the insulating film 33.
  • the OCCF 32 transmits light of a predetermined color among the light from the corresponding OCL 31.
  • a Bayer arrangement or other existing arrangements can be adopted.
  • an arrangement obtained by modifying a part of an existing arrangement such as a Bayer arrangement can be adopted.
  • PD 35 receives light incident through OCL 31, OCCF 32, and insulating film 33 and photoelectrically converts it.
  • the thickness (film thickness) of the semiconductor layer 34 having the PD 35 for example, about 2.7 ⁇ m (micrometer) can be adopted.
  • Si PD (PD made of Si) can be adopted.
  • a poly layer 36 and a wiring layer 37 are formed on the surface side (lower layer side) facing the light incident surface of the semiconductor layer 34.
  • a transfer transistor (gate) for transferring a signal (charge) photoelectrically converted by the PD 35 as a pixel is formed.
  • the wiring layer 37 is provided with a wiring 38 made of metal such as Cu or Al.
  • the wiring layer 37 of FIG. 5 is provided with four layers of wiring 38, the number of wirings 38 provided in the wiring layer 37 is not limited to four layers.
  • the lowermost layer wiring 38 blocks part of the light incident on the narrowband optical sensor 12 below the visible light sensor 11. It also functions as a light shielding film.
  • a light-shielding film that shields part of the light incident on the narrow-band optical sensor 12 below the visible light sensor 11 can be provided separately from the wiring 38.
  • the narrowband optical sensor 12 as a second layer substrate is provided on the lower layer side of the wiring layer 37 of the visible light sensor 11.
  • the narrow-band optical sensor 12 is configured by laminating a filter layer 41, a wiring layer 43, a poly layer 45, and a semiconductor layer 46 from the upper layer side.
  • the filter layer 41 has at least one narrow band filter 42 that is an optical filter that transmits light in a narrow band wavelength band.
  • the narrow band filter 42 is provided for a PD 47, which will be described later, as a pixel.
  • the narrow band is, for example, a band of visible light wavelength (for example, about 380 nm (nanometer) to about 780 nm), and one band obtained by dividing the wavelength band of visible light by 10 or more. Means.
  • the pass band as the narrow band of the light transmitted through the narrow band filter 42 is determined by the item to be detected from the narrow band image. For example, as described in FIG. 2, when detecting chlorophyll from a narrow band image, a narrow band including 435 nm and 680 nm is determined as the pass band of the narrow band filter 42.
  • the narrow band filter 42 is configured by mixing, for example, an organic material used in OCCF with a pigment that transmits light of a desired narrow band (or absorbs light that is not a desired narrow band light). be able to.
  • the narrow band filter 42 a plasmon filter using surface plasmons, a Fabry-Perot interferometer, or the like can be used.
  • a plasmon filter is employed as the narrow band filter 42, various pass bands can be realized simply by changing the hole diameter and period of holes formed in the metal thin film constituting the plasmon filter.
  • a wiring layer 43 is provided on the lower layer side of the filter layer 41.
  • the wiring layer 43 is provided with four layers of wiring 44, similarly to the wiring layer 37. Note that the number of wirings 44 provided in the wiring layer 43 is not limited to four layers, like the wiring layer 37.
  • a poly layer 45 and a semiconductor layer 46 are provided on the lower layer side of the wiring layer 43.
  • a transfer transistor (gate) for transferring a signal (charge) photoelectrically converted by the PD 47 as a pixel formed in the semiconductor layer 46 is formed.
  • a plurality of PDs 47 as pixels are formed.
  • the PD 47 is, for example, a Si PD, like the PD 35, and receives and photoelectrically converts light that has passed through the visible light sensor 11 and further passed through the narrow band filter 42 for the PD 47.
  • the distance from the semiconductor layer 34 (lower part) of the visible light sensor 11 as the first layer substrate to the semiconductor layer 46 (upper part) of the narrowband optical sensor 12 as the second layer substrate is 10 ⁇ m to 10 ⁇ m.
  • About 13um can be used.
  • the distance from the semiconductor layer 34 to the semiconductor layer 46 is not limited to a range of about 10 ⁇ m to 13 ⁇ m.
  • the relationship between the PD 35 as the pixel of the visible light sensor 11 and the PD 47 as the pixel of the narrow band optical sensor 12 is not particularly limited.
  • one PD 47 as one pixel of the narrow-band optical sensor 12 can be provided for one PD 35 as one pixel of the visible light sensor 11.
  • one PD 47 as one pixel of the narrow-band optical sensor 12 can be provided for a plurality of PDs 35 as a plurality of pixels of the visible light sensor 11.
  • a plurality of PDs 47 as a plurality of pixels of the narrow-band photosensor 12 can be provided for a single PD 35 as a pixel of the visible light sensor 11.
  • one PD 47 as one pixel of the narrow-band optical sensor 12 is provided for one PD 35 as one pixel of the visible light sensor 11.
  • the PD 47 as a pixel of the narrow-band optical sensor 12 can be provided only for a part of the pixels, not for all the pixels of the visible light sensor 11.
  • the PD 47 as a pixel of the narrow-band optical sensor 12 can be provided for every predetermined number of PDs 35 as a predetermined number of pixels.
  • the PD 47 as a pixel of the narrow-band optical sensor 12 is provided for every other pixel PD 35 (every other PD 35) in each of the horizontal direction and the vertical direction of the visible light sensor 11.
  • the PD 47 as the pixel of the narrow band optical sensor 12 can be provided at a position where the PD 35 as the pixel of the visible light sensor 11 is not provided.
  • the PD 47 as the pixel of the narrow-band optical sensor 12 and the PD 35 as the pixel of the visible light sensor 11 are arranged so as to form a check pattern (alternately in each of the horizontal direction and the vertical direction). Can do.
  • the PD 47 as a pixel of the narrow-band optical sensor 12 can be provided only in a part of the effective pixel area where the PD 35 as a pixel of the visible light sensor 11 is provided.
  • a circuit board 13 as a third layer substrate is provided on the lower layer side of the semiconductor layer 46 of the narrow-band optical sensor 12.
  • the PD 47 as the narrow-band optical sensor 12 can be the same size as the PD 35 as the pixel of the visible light sensor 11 or can have a different size (large or small).
  • the circuit board 13 includes a support board that supports the visible light sensor 11 and the narrow band light sensor 12, and a circuit such as a memory or a logic circuit.
  • the semiconductor layer 34 and the like of the visible light sensor 11 is a so-called column parallel AD that performs A / D conversion on a signal (PLL) for generating a clock or a signal obtained by photoelectric conversion in the PD 35.
  • a circuit necessary for sensing (photographing) a spectrum (image) with the visible light sensor 11 such as a DAC (Digital-to-Analog-Converter) that generates a reference signal used for conversion can be provided.
  • a circuit that can be provided on a substrate separate from the visible light sensor 11 can be provided not on the visible light sensor 11 but on the circuit board 13. The same applies to a circuit necessary for sensing (photographing) a spectrum (image) with the narrowband optical sensor 12.
  • the visible light sensor 11 and the narrow-band light sensor 12 can be reduced in size by the area of the circuit.
  • circuit board 13 can be provided with a circuit for performing additional signal processing on the spectrum (image) sensed (photographed) by the visible light sensor 11 or the narrowband light sensor 12.
  • the light incident on the PD 35 as the pixel of the visible light sensor 11 is not photoelectrically converted in the PD 35, passes through the PD 35, and passes through (passes through) the Poly layer 36 and the wiring layer 37.
  • the light enters the narrow band filter 42 of the layer 41.
  • the narrow band filter 42 transmits a predetermined narrow band light (narrow band light) out of the light incident thereon.
  • Narrow band light transmitted through the narrow band filter 42 is incident on the semiconductor layer 46 via the wiring layer 43 and the Poly layer 45.
  • the narrow band light incident on the semiconductor layer 46 is received and photoelectrically converted by the PD 47 as a pixel of the narrow band optical sensor 12.
  • the light L11 and L12 are received and photoelectrically converted by the PD 35 as the pixel of the visible light sensor 11. Further, part of the light L11 and L12 passes through the PD 35 and further passes through the narrow band filter 42, thereby becoming narrow band light and entering the PD 47 as a pixel of the narrow band optical sensor 12. The narrowband light is received and photoelectrically converted by the PD 47 as a pixel of the narrowband optical sensor 12.
  • the wiring 38 and the wiring 44 in the wiring layer 37 and the wiring layer 43 are arranged so that an optical path of the light transmitted through the PD 35 to the PD 47 and the narrow band filter 42 corresponding to the PD 47 is secured.
  • the wiring 38 and the wiring 44 can be disposed in a portion other than the upper portion of the PD 47 (and the narrow band filter 42), for example.
  • the Poly layers 36 and 45 are also configured to ensure an optical path of light transmitted through the PD 35 to the PD 47 and the narrow band filter 42 corresponding to the PD 47.
  • FIG. 5 the same applies to FIGS. 10, 11, and 16 described later
  • the lines representing the boundaries between the layers are shown, the Poly layer 36, the wiring layer 37, the filter layer 41, the wiring layer 43, and the Poly layer 45 are formed of the same transparent material such as SiO 2 , for example. In an actual device, the boundary between layers does not necessarily exist.
  • the visible light sensor 11 that receives visible light and the narrowband optical sensor 12 that has the narrowband filter 42 that transmits narrowband light and receives narrowband light are stacked.
  • visible light and narrowband light are simultaneously received, and a normal image corresponding to visible light and a narrowband image corresponding to narrowband light viewed from the same angle are acquired simultaneously.
  • the necessary image quality can be obtained by providing the necessary number of pixels in each of the visible light sensor 11 and the narrowband light sensor 12.
  • a normal image with (resolution) and a narrowband image with a required image quality can be acquired simultaneously.
  • timing at which the visible light sensor 11 senses (captures) a normal image and the timing at which the narrowband optical sensor 12 senses (captures) a narrowband image can be the same timing or different timings. You can also The same applies to the exposure time in each of the visible light sensor 11 and the narrow band light sensor 12.
  • the timing and exposure time for sensing (photographing) a normal image in the visible light sensor 11 and the timing and exposure time for sensing (photographing) a narrowband image in the narrowband light sensor 12 are transfer transistors (not shown) constituting the pixel. It can be controlled by the on / off timing of the transistors.
  • the normal image sensed (captured) by the visible light sensor 11 can be corrected to a higher-quality normal image using the narrowband image sensed (captured) by the narrowband optical sensor 12.
  • FIG. 6 is a perspective view schematically showing a first configuration example of the image sensor 2 of FIG.
  • the image sensor 2 is configured by stacking three first-layer substrates or third-layer substrates.
  • the first layer substrate is a visible light sensor 11
  • the second layer substrate is a narrow-band optical sensor 12
  • the third layer substrate is a circuit substrate 13.
  • the OCCF 32 is a 2 ⁇ 2 (horizontal ⁇ vertical) pixel in which the upper left is red (R (red)), the lower right is blue (B (blue)), and the lower left and upper right are green (G (green)).
  • the basic units are repeatedly arranged in the horizontal (horizontal) direction and the vertical (vertical) direction.
  • a PD 47 as one pixel of the narrowband optical sensor 12 is formed with respect to the PD 35 every 4 ⁇ 4 pixels of the visible light sensor 11.
  • the PD 47 as a pixel of the narrow-band photosensor 12 is provided for every other pixel PD35 in the horizontal direction and the vertical direction of the visible light sensor 11, but in FIG. 6.
  • a PD 47 as one pixel of the narrow-band photosensor 12 is provided for every PD of every 4 ⁇ 4 pixels of the visible light sensor 11. The same applies to a perspective view described later.
  • the PD 47 formed as one pixel of the narrowband optical sensor 12 formed for the PD 35 every 4 ⁇ 4 pixels of the visible light sensor 11 is one pixel of the 4 ⁇ 4 pixels of the visible light sensor 11.
  • the pixels in the third row from the top and the pixels in the second column from the left and the light transmitted through the narrow band filter 42 are arranged to be received.
  • the pixels in the third row from the top and the second column from the left are light that has passed through the green color filter (that transmits light).
  • G pixels that receive light are light that receive light.
  • the PD 47 as the pixel of the narrow-band photosensor 12 constitutes the light that has passed through the G pixel, that is, the light that has passed through the green color filter. And narrow band light which is light transmitted through the narrow band filter 42).
  • the pass band as the narrow band of the light transmitted through the narrow band filter 42 is determined by an item to be detected from the narrow band image (hereinafter also referred to as a detection item).
  • FIG. 7 is a diagram illustrating an example of wavelengths in the passband of the narrowband filter 42 when various detection items are detected.
  • a narrow band centered on a wavelength of 435 nm or 680 nm is determined as the pass band of the narrow band filter 42.
  • FIG. 8 shows the thickness of the semiconductor layer 34 having the PD 35 of the visible light sensor 11 as the first layer substrate, the light intensity of the light received by the PD 35, and the semiconductor of the narrowband optical sensor 12 as the second layer substrate. It is a figure which shows the simulation result by an optical simulator which shows the relationship with each light intensity of the light received by PD47 of the layer.
  • the upper Si film thickness on the horizontal axis represents the thickness of the semiconductor layer 34 of the visible light sensor 11 as the first layer substrate, and the vertical axis represents the light intensity.
  • the light intensity (1st-Si) at the PD 35 of the visible light sensor 11 as the first layer substrate is equal to that of the upper layer Si film thickness for light having wavelengths of 550 nm, 610 nm, and 700 nm. It can be confirmed that it increases as the number increases.
  • the light intensity (2nd-Si) at the PD 47 of the narrow-band photosensor 12 as the second layer substrate is the upper layer Si for any of light with wavelengths of 550 nm, 610 nm, and 700 nm. It can be confirmed that the thickness decreases as the film thickness increases.
  • the PD 47 of the narrow-band optical sensor 12 as the second layer substrate absorbs the light transmitted through Si as the PD 35 (having the semiconductor substrate 34) of the visible light sensor 11 as the first layer substrate, ie, Si as the PD 35. Receive the light that was not.
  • the PD 47 of the narrow-band photosensor 12 as the second layer substrate receives light that has passed through Si as PD 35. Is relatively suitable for receiving narrowband light on the longer wavelength side in the narrowband optical sensor 12.
  • the visible light sensor 11 when the visible light sensor 11 is disposed in the upper layer and the narrow-band light sensor 12 is disposed in the lower layer, for example, for the light having a wavelength of 610 nm, the upper visible light sensor 11.
  • the lower-band narrow-band photosensor 12 receives light having an intensity of about 10 to 15% or more of the light incident on the lower-band narrow-band photosensor 12, the light is transmitted until it reaches the lower-layer narrow-band photosensor 12
  • the total thickness of the Si layer is preferably about 3 ⁇ m or less.
  • the thickness of the Si layer constituting the PD is generally about 3 ⁇ m. Therefore, for example, assuming that the thickness of one Si layer stacked on the image sensor 2 is 3 ⁇ m, in order to realize the above specifications, the Si layer ( It is desirable that the Si layer through which light received by the narrow-band optical sensor 12 is transmitted be approximately one layer.
  • the thickness of one Si layer can be made extremely thin, for example, less than 1 ⁇ m, the number of Si layers exceeding about one layer is set as the upper layer of the narrow-band optical sensor 12. Can be arranged. Even in that case, in order to realize the above-mentioned specifications, it is desirable that the total thickness of the Si layer disposed on the upper layer of the narrow-band photosensor 12 is about 3 ⁇ m or less.
  • FIG. 9 is a flowchart for explaining the outline of the manufacturing method of the image sensor 2 of FIG. 5 (and FIG. 6).
  • the visible light sensor 11 has (substantially) the same configuration as the back-illuminated CMOS image sensor, and the narrow-band optical sensor 12 differs from the front-illuminated CMOS image sensor (almost). ) It has the same configuration.
  • the image sensor 2 of FIG. 5 can be manufactured by using a backside illumination type CMOS image sensor or a method for producing a frontside illumination type CMOS image sensor.
  • a manufacturing apparatus (not shown) that manufactures the image sensor 2 of FIG. 5 manufactures a back-illuminated CMOS image sensor as the visible light sensor 11 in step S11.
  • step S12 the manufacturing apparatus manufactures a surface irradiation type CMOS image sensor as the narrow-band optical sensor 12.
  • the manufacturing apparatus stacks the back-illuminated visible light sensor 11 manufactured in step S11, the front-illuminated narrowband optical sensor 12 manufactured in step S12, and the circuit board 13 to form vias. Then, necessary electrical connections are made, the OCL 31 and the OCCF 32 are formed, and the image sensor 2 of FIG. 5 is completed.
  • CMOS image sensor As the configuration of the visible light sensor 11, a configuration of a front-illuminated CMOS image sensor can be adopted instead of a back-illuminated CMOS image sensor.
  • CMOS image sensor As the configuration of the narrow-band optical sensor 12, a configuration of a back-illuminated CMOS image sensor can be adopted instead of a front-illuminated CMOS image sensor.
  • FIG. 10 is a cross-sectional view showing a second configuration example of the image sensor 2.
  • the visible light sensor 11 and the narrowband light sensor 12 are a first layer substrate and a second layer substrate, respectively. Therefore, the visible light sensor 11 is an upper layer substrate and the narrowband light sensor 12 is a lower layer substrate. In FIG. 10, the visible light sensor 11 is a lower layer substrate, and the narrow-band light sensor 12 is an upper layer substrate.
  • the narrow-band optical sensor 12 is employed as the first layer substrate among the three first layer substrates to the third layer substrate, and the visible light sensor is employed as the second layer substrate. 11 is adopted.
  • the narrowband optical sensor 12 as the first layer substrate is configured by laminating a filter layer 41, a semiconductor layer 34, a poly layer 36, and a wiring layer 37 from the upper layer.
  • the semiconductor layer 34 is formed with the PD 35 as a pixel, or a transparent material 61 having high transmittance, for example, SiO 2 instead of the PD 35. That is, a part of the semiconductor layer 34 where the PD 35 is to be formed is opened, and the opening is filled with SiO 2 that is the transparent material 61.
  • a filter layer 41 having a narrow band filter 42 is formed on the upper layer side of the semiconductor layer 34.
  • a narrow band filter 42 is provided for the PD 35 as a pixel in the semiconductor layer 34.
  • an insulating film 33, an OCCF 32, and an OCL 31 are provided in this order toward the upper layer direction.
  • the OCCF 32 is provided immediately after the OCL 31.
  • the OCCF 32 can be provided between the wiring layer 37 and the wiring layer 43, for example.
  • the OCL 31 and the OCCF 32 are formed with respect to the PD 35 and the transparent material 61 as pixels.
  • the visible light sensor 11 as the second layer substrate is provided on the lower layer side of the wiring layer 37 of the narrowband optical sensor 12.
  • the visible light sensor 11 is configured by laminating a wiring layer 43, a poly layer 45, and a semiconductor layer 46 from the upper layer side.
  • the PD 47 as the pixel is formed in the semiconductor layer 46, but SiO 2 that is the transparent material 61 of the narrowband optical sensor 12 is the pixel of the visible light sensor 11. And is formed at a position where light received by the PD 47 is transmitted.
  • the wiring 38 and the wiring 44 in the wiring layer 37 and the wiring layer 43 are arranged so that an optical path of light from the transparent material 61 SiO 2 to the PD 47 is secured. That is, in FIG. 10, the wiring 38 and the wiring 44 are disposed, for example, in a portion other than the upper portion of the PD 47.
  • the Poly layers 36 and 45 are also configured to ensure an optical path of light from the transparent material 61, SiO 2, to the PD 47.
  • the narrow band light incident through the OCL 31, the OCCF 32, the insulating film 33, and the narrow band filter 42 of the filter layer 41. Is received and photoelectrically converted.
  • SiO 2 which is a transparent material 61 as a pixel of the narrow band optical sensor 12 transmits light incident through the OCL 31, the OCCF 32, the insulating film 33, and the portion of the filter layer 41 where the narrow band filter 42 is absent. .
  • the light incident on the semiconductor layer 46 is received and photoelectrically converted by the PD 47 as a pixel of the visible light sensor 11.
  • light L21 and L22 are transmitted through OCL31, OCCF32, insulating film 33, filter layer 41, SiO 2 which is the transparent material 61 of the semiconductor layer 34, wiring layers 38 and 44, and Poly layer 45.
  • the light passes through and enters the PD 47 as a pixel of the visible light sensor 11.
  • Light incident on the PD 47, that is, visible light transmitted through the OCCF 32 is received by the PD 47 and subjected to photoelectric conversion.
  • the light L23 enters the narrowband filter 42 of the filter layer 41 through the OCL 31, the OCCF 32, and the insulating film 33.
  • the narrow band filter 42 Of the light incident on the narrow band filter 42, only a narrow band light of a predetermined narrow band is transmitted through the narrow band filter 42, and is received and photoelectrically converted by the PD 35 as a pixel of the narrow band optical sensor 12.
  • the narrow band light sensor 12 and the visible light sensor 11 are laminated, so that the visible light and the narrow band light are generated as in the case of FIGS. 5 and 6. It is possible to simultaneously receive a normal image corresponding to visible light and a narrow band image corresponding to narrow band light.
  • FIG. 11 is a cross-sectional view illustrating a third configuration example of the image sensor 2.
  • the image sensor 2 of FIG. 11 is provided with two PDs 47 as two pixels of the narrow-band photosensor 12 in contrast to one PD 35 as one pixel of the visible light sensor 11 in each of the horizontal direction and the vertical direction. 5 is different from the image sensor 2 in FIG. 5 in which one PD 47 as one pixel of the narrow-band optical sensor 12 is provided for one PD 35 as one pixel of the visible light sensor 11. To do.
  • one PD 47 as one pixel of the narrow-band optical sensor 12 is provided with respect to one PD 35 as one pixel of the visible light sensor 11.
  • An individual narrow band filter 42 is provided in the filter layer 41 for each PD 47.
  • the PD 47 as a pixel of the narrow-band light sensor 12 is incident with light that has been transmitted through a narrow-band filter 42 provided for the PD 47 and has become narrow-band light.
  • FIG. 12 is a perspective view showing an outline of a third configuration example of the image sensor 2 of FIG.
  • Two PDs 47 are provided as two pixels.
  • the light transmitted through one PD 35 as one pixel of the visible light sensor 11 is received by four PDs 47 as 2 ⁇ 2 pixels of the narrow-band photosensor 12 provided for the one pixel. Is done.
  • An individual narrow band filter 42 is provided for each of the four PDs 47 as 2 ⁇ 2 pixels of the narrow band optical sensor 12 provided for one PD 35 as one pixel of the visible light sensor 11. It has been.
  • the narrow band filter 42 provided for each of the four PDs 47 as 2 ⁇ 2 pixels of the narrow band optical sensor 12 may be a filter having a pass band in a narrow band different from each other, and two or more are the same narrow A filter having a band as a pass band may be used.
  • the passband of the narrowband filter 42 provided for each of the four PDs 47 as 2 ⁇ 2 pixels of the narrowband optical sensor 12 is determined by the detection item to be detected from the narrowband image.
  • narrow band filters 42 Moreover, sufficient sensitivity (light intensity) can be obtained with only one narrow band filter 42 of the narrow band filters 42 provided for each of the four PDs 47 as 2 ⁇ 2 pixels of the narrow band optical sensor 12.
  • a plurality of narrowband filters 42 can be employed as narrowband filters that transmit the narrowband light.
  • the light that has passed through one PD 35 as one pixel of the visible light sensor 11 becomes narrowband light via the narrowband filter 42, and serves as one pixel of the visible light sensor 11.
  • Light is received and photoelectrically converted by each of four PDs 47 as 2 ⁇ 2 pixels of the narrow-band optical sensor 12 provided for one PD 35.
  • the PD 35 is configured as a G pixel that receives the light transmitted through the green color filter (transmits light) of the visible light sensor 11.
  • the light that has passed through Si passes through the narrow band filter 42 to become narrow band light, and is received by the PD 47 as a pixel of the narrow band optical sensor 12.
  • each of the four PDs 47 as 2 ⁇ 2 pixels of the narrowband optical sensor 12 is provided with an individual narrowband filter 42, so that it receives narrowband light of different narrowbands (wavelengths). can do.
  • 2 ⁇ 2 pixels for each pixel of the visible light sensor 11, other than the 2 ⁇ 2 pixels of the narrowband light sensor 12, for example, 3 ⁇ 3 pixels,
  • a plurality of pixels such as 4 ⁇ 4 pixels and 2 ⁇ 4 pixels, and individual (plurality) narrowband filters 42 can be provided for the plurality of pixels.
  • FIG. 13 is a perspective view showing an outline of a fourth configuration example of the image sensor 2.
  • the plurality of visible light sensors 11, for example, four PDs 35 as 2 ⁇ 2 pixels, and the plurality of narrowband light sensors 12 as 4 ⁇ 4 Sixteen PDs 47 as pixels are provided.
  • the light transmitted through the four PDs 35 as the 2 ⁇ 2 pixels of the visible light sensor 11 is 16 pixels as the 4 ⁇ 4 pixels of the narrowband photosensor 12 provided for the 2 ⁇ 2 pixels.
  • the PD 47 receives light collectively.
  • the narrowband filter 42 provided for each of the 16 PDs 47 as the 4 ⁇ 4 pixels of the narrowband optical sensor 12 may be a filter having different narrowbands as passbands. Two or more filters may have the same narrow band as the pass band.
  • the light that has passed through the four PDs 35 as 2 ⁇ 2 pixels of the visible light sensor 11 becomes narrowband light via the narrowband filter 42, and 2 ⁇ of the visible light sensor 11.
  • Light is received and photoelectrically converted by each of the 16 PDs 47 as 4 ⁇ 4 pixels of the narrowband optical sensor 12 provided for the four PDs 35 as two pixels.
  • 16 PDs 47 as the 4 ⁇ 4 pixels of the narrow-band photosensor 12 are provided for the four PDs 35 as the 2 ⁇ 2 pixels of the visible light sensor 11. Therefore, it is possible to acquire multispectral data as narrowband images corresponding to 16 types of narrowband narrowband light at the maximum.
  • the 2 ⁇ 2 pixels of the visible light sensor 11 with respect to the 4 ⁇ 4 pixels of the narrowband light sensor 12 are green color filters (hereinafter also referred to as G filters) of the visible light sensor 11.
  • G filters green color filters
  • R filter red color filter
  • B blue color filter
  • the light transmitted through each of the two G pixels, one R pixel, and the PD 35 serving as one B pixel are collectively transmitted through the narrowband filter 42.
  • the narrowband light obtained as a result is received by the 4 ⁇ 4 pixels of the narrowband optical sensor 12.
  • the narrowband light sensor 12 targets a group of light that has passed through each of the R pixel, G pixel, and B pixel of the visible light sensor 11, and transmits through the narrowband filter 42 out of the group of light.
  • the narrow band light to be selected can be selected and received.
  • FIG. 14 is a perspective view showing an outline of a fifth configuration example of the image sensor 2.
  • the image sensor 2 is configured by stacking three first-layer substrates or third-layer substrates, as in FIG. 6.
  • the first layer substrate is the visible light sensor 11
  • the second layer substrate is the narrowband optical sensor 12
  • the third layer substrate is the circuit substrate 13
  • the first layer is a visible light sensor 11
  • the second layer is a circuit board 13
  • the third layer is a narrowband optical sensor 12.
  • the narrowband photosensor 12 is a 16 ⁇ 4 ⁇ 4 pixel as a plurality of PDs 35 as one pixel of the visible light sensor 11.
  • One PD 47 is provided.
  • 16 PDs 47 as 4 ⁇ 4 pixels of the narrowband photosensor 12 provided for one PD 35 as one pixel of the visible light sensor 11.
  • a separate narrow band filter 42 is provided for each.
  • the light that has passed through one PD 35 as one pixel of the visible light sensor 11 becomes narrowband light via the narrowband filter 42, and serves as one pixel of the visible light sensor 11.
  • Light is received and photoelectrically converted by each of 16 PDs 47 as 4 ⁇ 4 pixels of the narrow-band photosensor 12 provided for one PD 35.
  • the light that has passed through one PD 35 as one pixel of the visible light sensor 11 passes through the circuit board 13, and then passes through the narrowband filter 42 to 4 ⁇ of the narrowband optical sensor 12.
  • Light is received by 16 PDs 47 as four pixels.
  • the circuit board 13 is made of, for example, Si. Of the circuit board 13 made of Si, the circuit board 13 passes through one PD 35 as one pixel of the visible light sensor 11 and passes through the PD 35 of the narrowband light sensor 12. A portion which becomes an intersection with an optical path of light received by 16 PDs 47 as 4 ⁇ 4 pixels is made of a transparent material 101, for example, SiO 2 .
  • the light that has passed through one PD 35 as one pixel of the visible light sensor 11 passes through the circuit board 13 and the SiO 2 that is the transparent material 101, so that the circuit board 13 is (substantially) attenuated. Without being transmitted, it is received by the narrowband optical sensor 12.
  • the narrow band sensor 12 receives light (narrow band light) transmitted through Si constituting the PD 35 as a pixel of the visible light sensor 11 and SiO 2 which is the transparent material 101 of the circuit board 13. Is done. Therefore, in FIG. 14, the Si layer through which the light received by the narrow-band optical sensor 12 is transmitted is a single Si layer that constitutes the PD 35 as a pixel of the visible light sensor 11.
  • 16 PDs 47 as 4 ⁇ 4 pixels of the narrowband optical sensor 12 are provided for one PD 35 as one pixel of the visible light sensor 11. Multispectral data as narrowband images corresponding to 16 types of narrowband light can be acquired.
  • one pixel of the visible light sensor 11 with respect to 4 ⁇ 4 pixels of the narrow-band light sensor 12 receives light that has passed through the green color filter of the visible light sensor 11 1. G pixels.
  • the PD 47 as the pixel of the narrowband optical sensor 12 transmits light that has passed through the G pixel, that is, light that has passed through the green color filter (and further, as the pixel of the visible light sensor 11. Si constituting the PD 35 and narrow band light which is light transmitted through the narrow band filter 42).
  • FIG. 15 is a perspective view showing an outline of a sixth configuration example of the image sensor 2.
  • the first layer substrate is the visible light sensor 11
  • the second layer is the circuit substrate 13
  • the third layer substrate is the narrowband optical sensor 12, as in FIG. 14. .
  • the narrowband photosensor 12 has a plurality of 4 ⁇ 4 pixels 16 as compared to one pixel of the visible light sensor 11.
  • One PD 47 is provided.
  • one pixel of the visible light sensor 11 with respect to 16 PDs 47 as 4 ⁇ 4 pixels of the narrow-band optical sensor 12 is not the PD 35 but the transparent material 112, for example, SiO 2 . .
  • the color filter for one pixel of the visible light sensor 11 made of SiO 2 which is the transparent material 112 is white (transmits light) which is not any of the R filter, G filter and B filter constituting the Bayer array.
  • Color filter hereinafter also referred to as W (White) filter
  • the color filter of one pixel of the visible light sensor 11 with respect to 16 PDs 47 as 4 ⁇ 4 pixels of the narrow-band photosensor 12 is originally a Bayer array G filter.
  • the portion is processed into a W filter 111.
  • the intersection of the circuit board 13 and the optical path of light (indicated by an arrow in the figure) received by the narrowband optical sensor 12 is made of SiO 2 that is the transparent material 101. but in FIG. 15, not being in SiO 2 structure is a transparent material 101 composed of Si.
  • the light that has passed through the W filter 111 of the OCCF 32 passes through the SiO 2 that is the transparent material 112 as the pixel of the visible light sensor 11 and enters the circuit board 13.
  • the light incident on the circuit board 13 passes through the Si constituting the circuit board 13 and becomes narrowband light via the narrowband filter 42, so that 16 pieces of 4 ⁇ 4 pixels of the narrowband photosensor 12 are obtained.
  • Each of the PDs 47 receives light.
  • the narrowband sensor 12 receives light (narrowband light) transmitted through SiO 2 that is the transparent material 112 as the pixel of the visible light sensor 11 and Si constituting the circuit board 13. . Therefore, in FIG. 15, the Si layer through which the light received by the narrow-band optical sensor 12 is transmitted is one layer of Si constituting the circuit board 13.
  • SiO 2 that is a transparent material 112 as one pixel of the visible light sensor 11 with respect to 4 ⁇ 4 pixels of the narrow-band optical sensor 12 transmits light transmitted through the W filter 111 of the OCCF 32. To Penetrate.
  • the PD 47 as the pixel of the narrowband optical sensor 12 transmits the light transmitted through the W filter 111 (in addition, SiO 2 which is the transparent material 112 as the pixel of the visible light sensor 11, a circuit). Si constituting the substrate 13 and narrow band light which is light transmitted through the narrow band filter 42 are received.
  • FIG. 16 is a cross-sectional view showing a seventh configuration example of the image sensor 2.
  • the semiconductor layer 34 of the visible light sensor 11 is formed with the PD 35 as a pixel, or a transparent material 121 having a high transmittance, for example, SiO 2 instead of the PD 35.
  • the pixel portion of the visible light sensor 11 corresponding to the PD 47 as the pixel of the narrow band sensor 12 is opened, and the opening is filled with SiO 2 that is the transparent material 121.
  • a portion of the OCCF 32 corresponding to SiO 2 that is the transparent material 121 as the pixel of the visible light sensor 11 is a W filter 122 instead of the original color filter of the Bayer array. ing.
  • light L11 and L12 that have passed through the W filter 122 are incident on and transmitted through SiO 2 that is the transparent material 121 as one pixel of the visible light sensor 11.
  • Light L11 and L12 is transmitted through the SiO 2 which is a transparent material 121 are each transmitted distinct narrowband filter 42, and is received by a PD47 as separate pixels of the narrow-band light sensor 12.
  • the light incident on the narrow band filter 42 is, for example, light transmitted through Si constituting the PD 35 as one pixel of the visible light sensor 11.
  • Light that is not long wavelength is absorbed.
  • the narrow-band light that can be received by the PD 47 as the pixel of the narrow-band optical sensor 12 falls within the range of long-wavelength light that was not absorbed by the Si that constitutes the PD 35 as one pixel of the visible light sensor 11. Limited.
  • the light incident on the narrowband filter 42 is light that has passed through the W filter 122 and SiO 2 that is the transparent material 121.
  • the narrowband light that can be received by the PD 47 as the pixel of the narrowband optical sensor 12 is light that enters the narrowband filter 42, that is, for example, broadband light from ultraviolet light to infrared light. You can choose from.
  • the light incident on the narrowband filter 42 is light transmitted through Si.
  • the image sensor 2 in FIG. It can be said that it is a long wavelength compatible image sensor that can be selected.
  • FIG. 17 is a perspective view schematically showing a seventh configuration example of the image sensor 2 of FIG.
  • a part of the pixels of the visible light sensor 11 is not the PD 35 but the SiO 2 that is the transparent material 121, and the Bayer array OCCF 32 color filter is applied to the pixel.
  • the W filter 122 is used instead of the original color filter of the Bayer array.
  • two PDs 47 as two pixels of the narrow-band optical sensor 12 are provided with respect to SiO 2 which is the transparent material 121 as one pixel of the visible light sensor 11. .
  • the light transmitted through SiO 2 which is the transparent material 121 as one pixel of the visible light sensor 11 is provided as four pixels as 2 ⁇ 2 pixels of the narrow-band photosensor 12 provided for the one pixel.
  • Light is received by PD47.
  • An individual narrow band filter 42 is provided for each of the four PDs 47 as 2 ⁇ 2 pixels of the narrow band optical sensor 12 provided for one PD 35 as one pixel of the visible light sensor 11. It has been.
  • the light transmitted through the W filter 122 is incident on and transmitted through SiO 2 that is the transparent material 121 as the pixel of the visible light sensor 11.
  • the light that has passed through the SiO 2 that is the transparent material 121 becomes narrow-band light through the narrow-band filter 42, and the narrow-band light that is provided for the SiO 2 that is the transparent material 121 as the pixel of the visible light sensor 11.
  • Light is received by each of the four PDs 47 as 2 ⁇ 2 pixels of the optical sensor 12.
  • the light transmitted through the W filter 122 and the SiO 2 that is the transparent material 121 is broadband light, that is, light having the same spectral component as the light incident on the image sensor 2. From such broadband light, narrowband light transmitted through the narrowband filter 42 can be selected and received.
  • FIG. 18 is a perspective view schematically showing an eighth configuration example of the image sensor 2.
  • the visible light sensor 11 is a first layer substrate
  • the narrowband light sensor 12 is a second layer substrate
  • the circuit substrate 13 is a third layer substrate. Further, in the following, the circuit board 13 of the third layer board is not shown.
  • 16 PDs 47 as a plurality of 4 ⁇ 4 pixels of the narrowband optical sensor 12 are provided for one PD 35 as the R pixel of the visible light sensor 11. Is provided.
  • the light transmitted through one PD 35 as the R pixel of the visible light sensor 11 is received by 16 PDs 47 as the 4 ⁇ 4 pixels of the narrowband optical sensor 12 provided for the R pixel. Is done.
  • An individual narrow band filter 42 is provided for each of 16 PDs 47 as 4 ⁇ 4 pixels of the narrow band optical sensor 12 provided for one PD 35 as the R pixel of the visible light sensor 11. It has been.
  • the light that has passed through one PD 35 serving as the R pixel of the visible light sensor 11 becomes narrowband light via the narrowband filter 42, and serves as the R pixel of the visible light sensor 11.
  • Light is received by each of 16 PDs 47 as 4 ⁇ 4 pixels of the narrow-band photosensor 12 provided for one PD 35.
  • the light transmitted through the PD 35 as the R pixel transmits the narrowband filter 42, and the resulting narrowband light is 4 ⁇ 4 of the narrowband optical sensor 12. Light is received by the pixel.
  • the narrowband optical sensor 12 selects and receives the narrowband light transmitted through the narrowband filter 42 from the light transmitted through the PD 35 as the R pixel of the visible light sensor 11. Can do.
  • the narrowband optical sensor 12 transmits light that has passed through the PD 35 as the R pixel of the visible light sensor 11, that is, light that has passed through the R filter of the OCCF 32. Narrow band light transmitted through the narrow band filter 42 is received.
  • the narrowband light received by the narrowband optical sensor 12 can be selected from light transmitted through the R filter of the OCCF 32.
  • light having a wavelength of about 600 nm or more It is effective when receiving narrow-band light in the range from infrared light to infrared light.
  • the narrowband optical sensor 12 transmits the light transmitted through the PD 35 as the G pixel of the visible light sensor 11, that is, the G of the OCCF 32. Of the light transmitted through the filter, the narrowband light transmitted through the narrowband filter 42 is received.
  • the narrowband light received by the narrowband optical sensor 12 can be selected from the light that has passed through the G filter of the OCCF 32, so that among the detection items shown in FIG. For example, it is effective when receiving narrow-band light for detecting chlorophyll, beta-carotene, hemoglobin, and the like.
  • the narrowband light sensor 12 transmits the narrowband light transmitted through the narrowband filter 42 out of the light transmitted through the PD 35 as the B pixel of the visible light sensor 11.
  • An image sensor that receives light (hereinafter also referred to as a B pixel target sensor) can be configured.
  • the light transmitted through the PD 35 as the B pixel of the visible light sensor 11 passes through the B filter of the OCCF 32 before entering the PD 35 as the B pixel. It does not contain (almost) long-wavelength light that can pass through the Si constituting the PD35.
  • FIG. 19 is a perspective view showing an outline of a ninth configuration example of the image sensor 2.
  • a part of the color filters of the OCCF 32 in the Bayer array is not a color filter of the original color in the Bayer array but a W filter 131.
  • the light transmitted through the PD 35 as the W pixel of the visible light sensor 11 is received by the four PDs 47 as the 2 ⁇ 2 pixels of the narrowband optical sensor 12 provided for the W pixel.
  • An individual narrowband filter 42 is provided for each of the four PDs 47 as 2 ⁇ 2 pixels of the narrowband optical sensor 12 provided for the PD35 as the W pixel of the visible light sensor 11. .
  • the PD 35 as the R pixel, G pixel, or B pixel of the visible light sensor 11 transmits the R filter, G filter, or B filter of the OCCF 32. Incident light is received and received.
  • the light transmitted through the W filter 131 is incident on the PD 35 as the W pixel of the visible light sensor 11 and received.
  • the PD 35 as the W pixel of the visible light sensor 11, a part of the light transmitted through the W filter 131 is transmitted.
  • the light that has passed through the PD 35 (the Si constituting the W pixel of the visible light sensor 11) becomes narrow band light via the narrow band filter 42, and is provided to the PD 35 as the W pixel of the visible light sensor 11.
  • the light is received by each of the four PDs 47 as 2 ⁇ 2 pixels of the narrowband optical sensor 12.
  • the narrow-band optical sensor 12 compared to the case of receiving light transmitted through the PD 35 as the R filter and R pixel, the PD 35 as the G filter and G pixel, or the PD 35 as the B filter and B pixel, It is possible to receive narrowband light with little attenuation, that is, to receive narrowband light with high sensitivity.
  • the narrowband light received by the narrowband optical sensor 12 can be selected from the light transmitted through the Si constituting the PD 35 as the W filter 131 and the W pixel. Although it depends on the thickness of the Si constituting the PD 35 as the W pixel, it is effective, for example, when narrow-band light in the range from light having a wavelength of about 550 nm or more to infrared light is received.
  • FIG. 20 is a perspective view schematically showing a tenth configuration example of the image sensor 2.
  • pixels of the visible light sensor 11 are not the PD 35 but the transparent material 141, for example, SiO 2 .
  • the transparent material 141 for example, SiO 2 .
  • pixels (G pixels) for a part of the G filters of the OCCF 32 in the Bayer array are the transparent material 141.
  • the light transmitted through the SiO 2 which is the transparent material 141 as the pixel of the visible light sensor 11 is transmitted to the four PDs 47 as 2 ⁇ 2 pixels of the narrow-band optical sensor 12 provided for the pixel. Received light.
  • a separate narrow band filter 42 is provided for each of the four PDs 47 as 2 ⁇ 2 pixels of the narrow band optical sensor 12 provided for the PD 35 as the pixel of the visible light sensor 11.
  • the SiO 2 that is the transparent material 141 as the pixel of the visible light sensor 11 the light transmitted through the G filter for the pixel is incident and transmitted.
  • the light that has passed through the SiO 2 that is the transparent material 141 becomes narrow-band light via the narrow-band filter 42, and the narrow-band light provided to the SiO 2 that is the transparent material 141 as the pixel of the visible light sensor 11.
  • Light is received by each of the four PDs 47 as 2 ⁇ 2 pixels of the optical sensor 12.
  • the narrowband light received by the narrowband optical sensor 12 can be selected from the light that has passed through the G filter of the OCCF 32, so that among the detection items shown in FIG. For example, it is effective when receiving narrow-band light for detecting chlorophyll, beta-carotene, hemoglobin, and the like.
  • the narrowband light received by the narrowband optical sensor 12 is light that has passed through the G filter and then transmitted through SiO 2 that is the transparent material 141 as a pixel of the visible light sensor 11, the narrowband optical sensor 12.
  • the narrow-band light is not absorbed by the Si. Highly sensitive light reception.
  • FIG. 21 is a perspective view schematically showing an eleventh configuration example of the image sensor 2.
  • a part of the pixels of the visible light sensor 11 is not the PD 35 but the transparent material 151, for example, SiO 2 .
  • the transparent material 151 for example, SiO 2 .
  • pixels (R pixels) for a part of the R filters of the OCCF 32 in the Bayer array are the transparent material 151.
  • the light transmitted through SiO 2 which is the transparent material 151 as the pixel of the visible light sensor 11 is transmitted to the 16 PDs 47 as the 4 ⁇ 4 pixels of the narrow-band optical sensor 12 provided for the pixel. Received light.
  • an individual narrow band filter 42 is provided for each of the 16 PDs 47 as 4 ⁇ 4 pixels of the narrow band optical sensor 12 provided for SiO 2 which is the transparent material 151 as the pixel of the visible light sensor 11. Is provided.
  • SiO 2 that is a transparent material 151 as a pixel of the visible light sensor 11 light transmitted through the R filter for the pixel is incident and transmitted.
  • the light transmitted through the SiO 2 that is the transparent material 151 becomes narrow band light via the narrow band filter 42, and the narrow band provided for the SiO 2 that is the transparent material 151 as the pixel of the visible light sensor 11.
  • Light is received by each of the 16 PDs 47 as 4 ⁇ 4 pixels of the optical sensor 12.
  • the narrowband light received by the narrowband optical sensor 12 can be selected from the light that has passed through the R filter of the OCCF 32.
  • the light having a wavelength of about 600 nm or more. It is effective when receiving narrow-band light in the range from infrared light to infrared light.
  • the narrowband light received by the narrowband optical sensor 12 is light that has passed through the R filter and then transmitted through SiO 2 that is the transparent material 151 as the pixel of the visible light sensor 11, the narrowband optical sensor 12.
  • the light transmitted through the Si constituting the PD 35 as the pixel of the optical sensor 11 is received after passing through the R filter, the light is not absorbed by the Si, so that the narrowband light. Highly sensitive light reception.
  • FIG. 22 is a perspective view schematically showing a twelfth configuration example of the image sensor 2.
  • a part of the pixels of the visible light sensor 11 is not the PD 35 but the transparent material 161, for example, SiO 2 .
  • pixels (B pixels) for a part of the B filters of the OCCF 32 in the Bayer array are the transparent material 161.
  • the light transmitted through the SiO 2 which is the transparent material 161 as the pixel of the visible light sensor 11 is transmitted to the four PDs 47 as the 2 ⁇ 2 pixels of the narrow-band optical sensor 12 provided for the pixel. Received light.
  • an individual narrowband filter 42 is provided for each of the four PDs 47 as 2 ⁇ 2 pixels of the narrowband optical sensor 12 provided for SiO 2 which is the transparent material 161 as the pixel of the visible light sensor 11, an individual narrowband filter 42 is provided. Is provided.
  • light transmitted through the B filter for the pixel is incident on and transmitted through SiO 2 that is the transparent material 161 as the pixel of the visible light sensor 11.
  • the light transmitted through the SiO 2 that is the transparent material 161 becomes narrow-band light through the narrow-band filter 42, and the narrow band provided for the SiO 2 that is the transparent material 161 as the pixel of the visible light sensor 11.
  • Light is received by each of the four PDs 47 as 2 ⁇ 2 pixels of the optical sensor 12.
  • the narrowband light received by the narrowband optical sensor 12 can be selected from the light transmitted through the B filter of the OCCF 32.
  • the wavelength is 500 nm from ultraviolet light.
  • receiving narrow-band light in a range up to less than or equal to light that is, for example, beta carotene, chlorophyll, human skin-related epidermis, pores, etc. are detected (observed) among the detection items shown in FIG. Therefore, it is effective when receiving narrow band light.
  • FIG. 23 is a perspective view showing an outline of a thirteenth configuration example of the image sensor 2.
  • the OCCF 32 of the Bayer array is adopted, and a part of the color filters of the OCCF 32 of the Bayer array is not a color filter of the original color of the Bayer array, but a W filter. It has become.
  • an OCCF 32 having an W filter is originally employed.
  • the pixel for the W filter of the visible light sensor 11, that is, the PD 35 as the W pixel that receives the light transmitted through the W filter, is 2 ⁇ 2 pixels of the narrowband optical sensor 12.
  • the four PDs 47 are provided.
  • an individual narrow band filter 42 is provided for each of the four PDs 47 as 2 ⁇ 2 pixels of the narrow band optical sensor 12 provided for the PD 35 as the W pixel of the visible light sensor 11. ing.
  • the R pixel, the G pixel, the B pixel, or the W pixel of the visible light sensor 11 has an OCCF 32 R filter, G filter, B filter, Alternatively, light that has passed through the W filter is incident and received.
  • the PD 35 as a W pixel (a part or all) of the visible light sensor 11, a part of the light transmitted through the W filter is transmitted.
  • the light that has passed through the PD 35 (the Si constituting the W pixel of the visible light sensor 11) becomes narrow band light via the narrow band filter 42, and is provided to the PD 35 as the W pixel of the visible light sensor 11.
  • the light is received by each of the four PDs 47 as 2 ⁇ 2 pixels of the narrowband optical sensor 12.
  • the narrowband light sensor 12 receives the narrowband light obtained from the light transmitted through the W filter, so that it is obtained from the light transmitted through the R filter, the G filter, or the B filter. Compared to the case of receiving narrowband light, narrowband light received by the narrowband optical sensor 12 can be selected from broadband light.
  • the visible light sensor 11 includes the PD 35 that receives the light transmitted through the W filter.
  • the transparent material 121 is used instead of the PD 35 that receives the light transmitted through the W filter 122. Compared with the image sensor 2 of FIG. 17 provided with SiO 2 , a high-quality normal image can be obtained.
  • the OCCF 32 having the W filter arrangement it is possible to select the narrowband light received by the narrowband optical sensor 12 from the broadband light, and to achieve high image quality. Since a normal image can be obtained, the OCCF 32 having an array of W filters has good consistency (compatibility) with the image sensor 2 in which the visible light sensor 11 and the narrowband light sensor 12 are stacked.
  • FIG. 24 is a diagram showing an example of an existing array (CFA (Color filter array)) of OCCF having a W filter.
  • CFA Color filter array
  • OCCF 32 not only the OCCF having the W filter shown in FIG. 24 but also any other OCCF having the W filter can be adopted.
  • FIG. 25 is a perspective view showing an outline of a fourteenth configuration example of the image sensor 2.
  • the image sensor 2 in FIG. 17 employs the OCCF 32 having a Bayer array, and some of the color filters of the OCCF 32 having the Bayer array are not the original color filters of the Bayer array, but the W filter. It has become.
  • the OCCF 32 having an array having a W filter is originally employed.
  • the pixels of the visible light sensor 11 with respect to the (part or all) W filter of the OCCF 32 are not the PD 35 but the SiO 2 which is the transparent material 121.
  • the SiO 2 that is the transparent material 171 as the W pixel for the W filter of the visible light sensor 11 four PDs 47 as 2 ⁇ 2 pixels of the narrowband optical sensor 12 are provided. ing.
  • the R pixel, the G pixel, the B pixel, or the W pixel of the visible light sensor 11 has an OCCF 32 R filter, G filter, B filter, Alternatively, light that has passed through the W filter is incident and received.
  • the SiO 2 that is the transparent material 171 as the W pixel of the visible light sensor 11 the light transmitted through the W filter is transmitted.
  • the light that has passed through the SiO 2 that is the transparent material 171 as the W pixel of the visible light sensor 11 becomes narrow band light through the narrow band filter 42, and the SiO that is the transparent material 171 as the W pixel of the visible light sensor 11.
  • Each of the four PDs 47 as 2 ⁇ 2 pixels of the narrow-band optical sensor 12 provided for 2 receives light.
  • the image quality of the normal image obtained by the visible light sensor 11 is deteriorated by the amount of SiO 2 that is the transparent material 171 as the W pixel of the visible light sensor 11.
  • the narrow-band optical sensor 12 in the narrow-band optical sensor 12, it is obtained not from the light transmitted through Si constituting the PD 35 as the pixel of the visible light sensor 11 but from the light transmitted through SiO 2 which is the transparent material 171. Therefore, the narrow-band light can be received with high sensitivity as much as there is no attenuation due to the light passing through Si.
  • FIG. 26 is a perspective view showing an outline of a fifteenth configuration example of the image sensor 2.
  • pixels of the visible light sensor 11 are not the PD 35 but the transparent material 181, for example, SiO 2 .
  • the transparent material 181 for example, SiO 2 .
  • FIG. 26 for example, as in the case of FIG. 20, pixels (G pixels) for some G filters of the Bayer array OCCF 32 are transparent materials 181.
  • the light transmitted through the SiO 2 which is the transparent material 181 as the pixel of the visible light sensor 11 is transmitted to the 16 PDs 47 as the 4 ⁇ 4 pixels of the narrowband optical sensor 12 provided for the pixel. Received light.
  • an individual narrow band filter 42 is provided for each of the 16 PDs 47 as 4 ⁇ 4 pixels of the narrow band optical sensor 12 provided for SiO 2 which is the transparent material 181 as the pixel of the visible light sensor 11, an individual narrow band filter 42 is provided. Is provided.
  • the light transmitted through the G filter for the pixel is incident on and transmitted through SiO 2 that is the transparent material 181 as the pixel of the visible light sensor 11.
  • the light that has passed through the SiO 2 that is the transparent material 181 becomes narrow-band light via the narrow-band filter 42, and the narrow-band light provided to the SiO 2 that is the transparent material 181 as the pixel of the visible light sensor 11.
  • Light is received by each of the 16 PDs 47 as 4 ⁇ 4 pixels of the optical sensor 12.
  • the image sensor 2 in FIG. The area of the light to be transmitted is larger than the area when the light passes through the visible light sensor 12.
  • the light transmitted through the SiO 2 that is the transparent material 181 as one pixel of the visible light sensor 11 is transmitted to each of the 16 PDs 47 as 4 ⁇ 4 pixels of the narrowband optical sensor 12. Since the pixels of the visible light sensor 11 and the pixels of the narrowband light sensor 12 are pixels of the same size, the area of the light received by the narrowband light sensor 12 is the light. Becomes 4 ⁇ 4 times (or more) the area when the visible light sensor 12 is transmitted.
  • the transparent material 181 as one pixel of the visible light sensor 11 is transmitted through SiO 2 .
  • the area of the light received by the narrowband optical sensor 12 is that the light passes through the visible light sensor 12. The area should be 4x4 (or more).
  • the visible light sensor 11 has an area of light received by the narrowband optical sensor 12 that is at least 4 ⁇ 4 times the area when the light passes through the visible light sensor 12.
  • the distance between the transparent material 181 as the pixel and the PD 47 as the pixel of the narrowband optical sensor 12 and other positional relationships are set.
  • the narrowband optical sensor 12 When the area of the light received by the narrowband optical sensor 12 is larger than the area when the light is transmitted through the visible light sensor 12, it is (almost) parallel to the optical axis of the image sensor 2. In addition to the light incident from the direction, the light incident from an oblique direction inclined to some extent with respect to the optical axis of the image sensor 2 can be received by the narrowband optical sensor 12 on the lower layer side. High sensitivity light reception can be performed.
  • the number of pixels of the narrowband optical sensor 12 provided for SiO 2 which is the transparent material 181 as one pixel of the visible light sensor 11 is not limited to 4 ⁇ 4 pixels. Any number can be adopted based on the item or the like.
  • FIG. 27 is a perspective view showing an outline of a sixteenth configuration example of the image sensor 2.
  • some G pixels of the visible light sensor 11 are not the PD 35 but the transparent material 191, for example, SiO 2 .
  • PDs 47 as 2 ⁇ 2 pixels of the narrow band optical sensor 12 are provided for SiO 2 which is the transparent material 191 as one pixel of the visible light sensor 11.
  • a separate narrow band filter 42 is provided for each of the four PDs 47 as ⁇ 2 pixels.
  • one G pixel in the 4 ⁇ 4 pixels of the visible light sensor 11 is made of SiO 2 that is the transparent material 191, and one G pixel is Four PDs 47 as 2 ⁇ 2 pixels of the narrowband optical sensor 12 are provided.
  • the G pixel made of SiO 2 which is the transparent material 191 when the G pixel made of SiO 2 which is the transparent material 191 is described as the G pixel 191, the narrowband light provided for the G pixel 191 at a certain position P.
  • the narrowband light band received by the four PDs 47 as 2 ⁇ 2 pixels of the sensor 12 and the 2 ⁇ 2 pixels of the narrowband optical sensor 12 provided for the G pixel 191 at the other position P ′.
  • the narrow band light received by the four PDs 47 may be the same band or different bands.
  • Bands b1 to b4 for position P can be made identical to bands b1 'to b4' for other positions P ', respectively. Further, each of one or more of the bands b1 to b4 for the position P may be different from each of one or more of the bands b1 ′ to b4 ′ for the other positions P ′.
  • each of one or more of the bands b1 to b4 for the position P is different from each of one or more of the bands b1 ′ to b4 ′ for the other positions P ′. .
  • the narrow band filter 42 differs depending on the position. That is, the narrowband filter 42 for each of the four PDs 47 as 2 ⁇ 2 pixels of the narrowband photosensor 12 provided for the G pixel 191 at the position P and the G pixel at the other position P ′.
  • the narrowband filter 42 (combination thereof) for each of the four PDs 47 as 2 ⁇ 2 pixels of the narrowband optical sensor 12 provided for 191 has a different passband (combination thereof).
  • narrowband light (spectrum (image)) in a different band is received depending on the position of the narrowband optical sensor 12 (position of a narrowband image sensed (captured) by the narrowband sensor 12). can do.
  • the light receiving surface of the narrowband optical sensor 12 is divided into a plurality of areas, and different bands are provided for each area. Narrow band light can be received.
  • FIG. 28 is a diagram schematically showing an example of the light receiving surface of the narrow-band photosensor 12 divided into a plurality of regions.
  • the light receiving surface of the narrow-band optical sensor 12 is divided into two equal parts in each of the horizontal direction and the vertical direction, and is divided into four areas of upper left, lower left, upper right, and lower right.
  • the upper left area is a chlorophyll detection area for receiving narrow band light for detecting chlorophyll
  • the lower left area is an oleic acid detection area for receiving narrow band light for detecting oleic acid.
  • the upper right region is a moisture detection region that receives narrow-band light that detects moisture
  • the lower right region is a sugar detection region that receives narrow-band light that detects sugar.
  • the light-receiving surface of the narrow-band optical sensor 12 is divided into a plurality of four regions shown in FIG. 28 and receives the narrow-band light, so that a plurality of detection items, that is, chlorophyll and oleic acid in FIG. , Moisture and sugar can be detected simultaneously.
  • the digital camera 10 in which the light-receiving surface of the narrow-band optical sensor 12 is divided into the four regions shown in FIG. 28 is used as a monitoring camera for tomato fields, for example, as described in FIG. In some cases, chlorophyll, oleic acid, moisture, and sugar can be monitored simultaneously for tomatoes.
  • FIG. 29 is a diagram schematically showing another example of the light receiving surface of the narrow-band optical sensor 12 divided into a plurality of regions.
  • the light-receiving surface of the narrow-band optical sensor 12 is divided into two regions, a region inside the circle with the predetermined radius and a region outside the circle, by a circle with a predetermined radius centered on the center of gravity of the rectangle as the light-receiving surface. It is divided into areas.
  • the area inside the circle is an oleic acid detection area that receives narrow-band light that detects oleic acid, and the area outside the circle is a chlorophyll detection area that receives narrow-band light that detects chlorophyll. Yes.
  • the method of dividing the light receiving surface of the narrow band optical sensor 12 is not particularly limited, and the light receiving surface of the narrow band optical sensor 12 is divided into arbitrary regions according to, for example, the use of the digital camera 10. be able to.
  • FIG. 30 is a perspective view showing an outline of a seventeenth configuration example of the image sensor 2.
  • the OCCF 32 color array is a Bayer array
  • the OCCF 32 color array is not a Bayer array but a Quadra array. It has become.
  • R, G, and B color filters are arranged in units of 2 x 2 pixels.
  • the 2 ⁇ 2 pixels of the visible light sensor 11 with respect to the 4 ⁇ 4 pixels of the narrow-band light sensor 12 are the G pixels (2 ⁇ 2 pixels of the visible light sensor 11 (light transmitted through the G filter). Pixel).
  • the light transmitted through each of the PDs 35 as G pixels of 2 ⁇ 2 pixels is gathered so as to pass through the narrow band filter 42, and the narrow band light obtained as a result is narrow.
  • Light is received by 4 ⁇ 4 pixels of the band light sensor 12.
  • the narrow-band optical sensor 12 targets a group of light that has passed through each of the 2 ⁇ 2 G pixels of the visible light sensor 11, and transmits the narrow-band filter 42 through the narrow-band filter 42. Band light can be selected and received.
  • the narrowband light sensor 12 receives the narrowband light obtained from the group of lights transmitted through each of the 2 ⁇ 2 G pixels of the visible light sensor 11, the narrowband light sensor 12 transmits one pixel of the visible light sensor 11.
  • the narrow band light can be received with higher sensitivity than when the narrow band light obtained from the light is received.
  • FIG. 31 is a perspective view schematically showing an eighteenth configuration example of the image sensor 2.
  • the OCCF 32 color array is a quadra array
  • the OCCF 32 color array is a quadra-white array
  • the color filters for each of the four colors R, G, B, and W are arranged in units of 2 ⁇ 2 pixels.
  • FIG. 31 as in FIG. 30, 16 PDs as a plurality of 4 ⁇ 4 pixels of the narrow-band photosensor 12 with respect to four PDs 35 as a plurality of 2 ⁇ 2 pixels of the visible light sensor 11.
  • One PD 47 is provided.
  • the 2 ⁇ 2 pixels of the visible light sensor 11 with respect to the 4 ⁇ 4 pixels of the narrowband optical sensor 12 are the W pixels (2 ⁇ 2 pixels of the visible light sensor 11 (light transmitted through the W filter). Pixel).
  • the light transmitted through each PD 35 as a W pixel of 2 ⁇ 2 pixels is collected and transmitted through the narrow band filter 42, and the resulting narrow band light is narrow band light.
  • Light is received by 4 ⁇ 4 pixels of the sensor 12.
  • the narrow-band optical sensor 12 targets a group of light that has passed through each of the 2 ⁇ 2 W pixels of the visible light sensor 11 and transmits the narrow-band filter 42 through the narrow-band filter 42. Band light can be selected and received.
  • the narrowband light sensor 12 receives the narrowband light obtained from the group of lights transmitted through each of the 2 ⁇ 2 W pixels of the visible light sensor 11, the narrowband light sensor 12 transmits one pixel of the visible light sensor 11.
  • the narrow band light can be received with higher sensitivity than when the narrow band light obtained from the light is received.
  • the image sensor 2 adopting the OCCF 32 of the Bayer arrangement one or a plurality of places of the OCCF 32 are selected, and the 2 ⁇ 2 pixel Bayer arrangement of the selected place is selected. It is possible to change the basic unit (a 2 ⁇ 2 pixel color filter in which the upper left is red, the lower right is blue, and the lower left and upper right are green) into a 2 ⁇ 2 pixel W filter.
  • narrow band light that passes through the narrow band filter 42 is selected from a group of lights that have passed through each of the 2 ⁇ 2 W pixels of the visible light sensor 11. It is possible to select and receive light, or to receive light with narrow band light with high sensitivity.
  • the image sensor 2 adopting the OCCF 32 of the Bayer array when the basic unit of 2 ⁇ 2 pixels of the Bayer array of the OCCF 32 is changed to a W filter of 2 ⁇ 2 pixels, the visible light sensor 11 is used. In the 2 ⁇ 2 pixels changed to the W filter, it is impossible to receive R, G, and B lights obtained in a Bayer array, so that the adjacent R pixels, G pixels, or Therefore, it is necessary to interpolate from the B pixel.
  • the image sensor 2 of FIG. 31 that originally employs the Quadra-White array OCCF 32 having a W filter does not require such interpolation.
  • FIG. 32 is a diagram showing a Quadra array and a Quadra-White array.
  • the Quadra array has a 2 ⁇ 2 pixel G filter on the upper left, a 2 ⁇ 2 pixel B filter on the lower left, a 2 ⁇ 2 pixel R filter on the upper right, and a 2 ⁇ 2 pixel G filter on the lower right.
  • the basic unit is a 4 ⁇ 4 pixel color filter in which the filters are arranged.
  • the Quadra-White array has a 2 ⁇ 2 pixel W filter at the upper left, a 2 ⁇ 2 pixel B filter at the lower left, a 2 ⁇ 2 pixel R filter at the upper right, and a 2 ⁇ 2 pixel at the lower right.
  • the basic unit is a 4 ⁇ 4 pixel color filter in which the G filters are arranged.
  • FIG. 33 is a perspective view showing an outline of a nineteenth configuration example of the image sensor 2.
  • the PD 47 (including the semiconductor layer 46) as the pixel of the narrow-band optical sensor 12 is made of an InGaAs-based material.
  • the PD 47 is made of Si. And different.
  • the PD 47 as the pixel of the narrow-band photosensor 12 is made of an InGaAs-based material. Therefore, when the PD 47 is made of Si, the detection sensitivity decreases by about 700 nm or more. For example, it is possible to detect (receive) a long-wavelength narrow-band light of about 0.9 to 2.6 ⁇ m with high sensitivity.
  • the narrow-band light received by the PD 47 is adjusted by adjusting the composition ratio of In and Ga in the InGaAs-based material.
  • the wavelength can be adjusted, for example, in the range of about 1.5 to 3.0 um. In general, as the In composition ratio of an InGaAs-based material increases, detection (light reception) to a longer wavelength side becomes possible. When long-wavelength narrow-band light can be received, moisture or the like can be detected.
  • FIG. 34 is a perspective view showing an outline of a twentieth configuration example of the image sensor 2.
  • the image sensor 2 in FIG. 34 is configured in the same manner as in FIG.
  • the PD 47 as the pixel of the narrow-band optical sensor 12 is composed of a PbS-based, PbSe-based, Ge-based, InAs-based, InSb-based, or HgCdTe-based material. This is different from the case of FIG. 18 in which the PD 47 is made of Si.
  • the PD 47 as the pixel of the narrow-band photosensor 12 is composed of a PbS-based, PbSe-based, Ge-based, InAs-based, InSb-based, or HgCdTe-based material. Therefore, narrowband light having a wavelength different from that when the PD 47 is made of Si can be detected with high sensitivity.
  • Whether the PD 47 is composed of a PbS-based, PbSe-based, Ge-based, InAs-based, InSb-based, or HgCdTe-based material is the wavelength of the narrowband light that the narrowband optical sensor 12 wants to detect (receive) Determined by.
  • the PD 47 when it is desired to detect narrowband light having a wavelength of about 1.0 to 1.6 ⁇ m, the PD 47 is made of a PbS-based, PbSe-based, or Ge-based material, for example, a wavelength having a wavelength of about 1.0 to 5.5 ⁇ m.
  • the PD 47 can be made of an InAs-based or InSb-based material.
  • FIG. 35 is a perspective view showing an outline of a twenty-first configuration example of the image sensor 2.
  • the PD 47 as a pixel of the narrow-band optical sensor 12 is composed of a GaN-based, InGaN-based, or AlGaN-based material. It is different from the case of.
  • the PD 47 as the pixel of the narrow-band optical sensor 12 is made of a GaN-based, InGaN-based, or AlGaN-based material, so the PD 47 is made of Si. Narrow band light with a wavelength different from the case can be detected with high sensitivity.
  • the narrow-band optical sensor 12 has a short wavelength from ultraviolet light to light having a wavelength of about 400 nm (about 0.2 to 0.4 um). Narrow band light with a wavelength can be detected.
  • the narrowband light sensor 12 detects (receives) short-wavelength narrowband light
  • the shortwavelength narrowband light is sufficient for the PD 47 as a pixel of the narrowband light sensor 12.
  • the pixel of the visible light sensor 11 corresponding to the PD 47 is made of SiO 2 which is a transparent material 121 so as to reach the light intensity (a certain light intensity), and the OCCF 32 color filter for the pixel of the visible light sensor 11 is It is desirable to use a W filter.
  • a yellow (light transmitting) color filter Y (Yellow) filter
  • Y yellow (light transmitting) color filter
  • the image sensor 2 is composed of three substrates, a first layer substrate to a third layer substrate.
  • the image sensor 2 includes two substrates, or 4 It can be configured by stacking four or more substrates such as one or five.
  • one of the plurality of substrates constituting the image sensor 2 is used as a visible light sensor 11 that receives visible light, and the other substrate is used as narrowband light.
  • the image sensor 2 can be provided with two or more visible light sensors or two or more narrow band light sensors.
  • the image sensor 2 includes, for example, from the upper layer to the lower layer, the first visible light sensor, the second visible light sensor, the first narrowband light sensor, and the second narrowband light. It can be composed of four or more layers in which sensors are stacked. In this case, for example, a pixel that performs photoelectric conversion in the first visible light sensor, the second visible light sensor, the first narrowband light sensor, and the second narrowband light sensor, for example.
  • the first visible light sensor in the uppermost layer, the second visible light sensor in the lower layer, and the first narrowband are transmitted by shifting the position of the first visible light sensor from the upper layer to the lower layer.
  • the light sensor and the second narrowband light sensor can also receive the necessary light.
  • this technique can take the following structures.
  • a plurality of substrates laminated in two or more layers Two or more of the plurality of substrates are substrates having pixels that perform photoelectric conversion, At least one of the substrates having the pixels is a visible light sensor that receives visible light, At least one other substrate having the pixels has a narrowband filter that is an optical filter that transmits light in a narrowband wavelength band, and receives a narrowband light that is the narrowband light.
  • a solid-state imaging device that is a band light sensor.
  • ⁇ 3> The solid-state imaging device according to ⁇ 1> or ⁇ 2>, wherein the visible light sensor is stacked on an upper layer on which light is incident than the narrowband light sensor.
  • the narrowband light sensor includes a plurality of pixels that receive the visible light sensor and light transmitted through the narrowband filter.
  • a substrate in an upper layer than a lower layer substrate in the lower layer opposite to the direction where light enters is made of Si, The lower layer substrate receives light transmitted through the Si.
  • a substrate in an upper layer than a lower layer substrate in the lower layer opposite to the direction in which light enters is composed of SiO 2
  • a color filter that is an optical filter that transmits light of a predetermined color is laminated on an upper layer on which light is incident,
  • the solid-state imaging device according to ⁇ 5> wherein the visible light sensor and the narrowband light sensor receive light that has passed through a color filter that transmits green, red, or white light.
  • ⁇ 8> More than the visible light sensor and the narrow-band light sensor, a color filter that is an optical filter that transmits light of a predetermined color is laminated on an upper layer on which light is incident, The solid-state imaging device according to ⁇ 6>, wherein the visible light sensor and the narrow-band light sensor receive light transmitted through a color filter that transmits green, red, blue, or white light.
  • ⁇ 9> More than the visible light sensor and the narrowband light sensor, a color filter having a predetermined arrangement is laminated on an upper layer on which light is incident, The solid-state imaging device according to any one of ⁇ 1> to ⁇ 8>, wherein the color filter in the predetermined array includes a white filter that transmits white light.
  • the area of light received by the narrowband optical sensor below the visible light sensor is larger than the area when the light passes through the visible light sensor on the upper layer ⁇ 3> or ⁇ 4>
  • ⁇ 13> The solid-state imaging device according to any one of ⁇ 1> to ⁇ 12>, wherein the pixels of the narrowband photosensor are made of an InGaAs-based material.
  • ⁇ 14> The solid-state imaging according to any one of ⁇ 1> to ⁇ 12>, wherein the pixel of the narrowband photosensor is made of a PbS-based, PbSe-based, Ge-based, InAs-based, InSb-based, or HgCdTe-based material. apparatus.
  • ⁇ 15> The solid-state imaging device according to any one of ⁇ 1> to ⁇ 12>, wherein the pixel of the narrowband photosensor is configured of a GaN-based, InGaN-based, or AlGaN-based material.
  • An optical system that collects the light;
  • a solid-state imaging device that receives light and captures an image,
  • the solid-state imaging device A plurality of substrates laminated in two or more layers, Two or more of the plurality of substrates are substrates having pixels that perform photoelectric conversion, At least one of the substrates having the pixels is a visible light sensor that receives visible light, At least one other substrate having the pixels has a narrowband filter that is an optical filter that transmits light in a narrowband wavelength band, and receives a narrowband light that is the narrowband light.
  • Electronic equipment that is a band light sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Optical Filters (AREA)
  • Color Television Image Signal Generators (AREA)
  • Light Receiving Elements (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

 本技術は、通常画像と狭帯域画像等とを、同時に取得することができるようにする固体撮像装置、及び、電子機器に関する。 固体撮像装置は、2層以上に積層された複数の基板を備え、その複数の基板のうちの2個以上の基板は、光電変換を行う画素を有する基板になっている。画素を有する基板の少なくとも1個の基板は、可視光を受光する可視光センサになっており、画素を有する基板の少なくとも他の1個の基板は、狭帯域の波長帯の光を透過する光学フィルタである狭帯域フィルタを有し、狭帯域の光である狭帯域光を受光する狭帯域光センサになっている。

Description

固体撮像装置、及び、電子機器
 本技術は、固体撮像装置、及び、電子機器に関し、特に、例えば、通常画像と狭帯域画像とを、同時に取得することができるようにする固体撮像装置、及び、電子機器に関する。
 狭帯域の波長帯の光をセンシング(撮影)する狭帯域光センサとしては、例えば、マルチスペクトルセンサや、ハイパースペクトルセンサがある。
 マルチスペクトルセンサによれば、複数の波長帯の光を同時にセンシング(撮影)することができ、ハイパースペクトルセンサによれば、可視光から赤外光までの光を、数百の波長帯に分けてセンシング(撮影)することができる。
 狭帯域光センサは、センシング(撮影)の対象とする光の帯域が狭いので、感度が低くなる。さらに、狭帯域光センサが、表面プラズモンを利用したプラズモンフィルタを利用する場合には、狭帯域光センサでの光電変換の変換効率が低くなる。
 また、狭帯域光センサは、センシング(撮影)の対象とする光の帯域が狭く、可視光の全域をカバーすることは困難であるため、狭帯域光センサでの光のセンシング(撮影)により得られる光のスペクトルデータを合成して、可視光をセンシング(撮影)して得られる高画質なスペクトル(画像)(以下、通常画像ともいう)を得ることは難しい。
 なお、本件出願人は、光電変換を行う2つの層が積層されたCMOSイメージセンサを先に提案している(例えば、特許文献1を参照)。
特開2013-070030号公報
 可視光をセンシング(撮影)する可視光センサでは、通常画像をセンシング(撮影)することができるが、特定の狭帯域の光や、複数の狭帯域の光に対応する狭帯域画像をセンシング(撮影)することは困難である。
 一方、狭帯域光センサでは、狭帯域の光に対応する狭帯域画像をセンシング(撮影)することはできるが、可視光に対応する通常画像を、可視光センサと同等の画質で得ることは困難である。
 本技術は、このような状況に鑑みてなされたものであり、高画質の通常画像と波長分解能の高い狭帯域画像とを、同時に取得することができるようにするものである。
 本技術の固体撮像装置は、2層以上に積層された複数の基板を備え、前記複数の基板のうちの2個以上の基板は、光電変換を行う画素を有する基板であり、前記画素を有する基板の少なくとも1個の基板は、可視光を受光する可視光センサであり、前記画素を有する基板の少なくとも他の1個の基板は、狭帯域の波長帯の光を透過する光学フィルタである狭帯域フィルタを有し、前記狭帯域の光である狭帯域光を受光する狭帯域光センサである固体撮像装置である。
 本技術の電子機器は、光を集光する光学系と、光を受光し、画像を撮像する固体撮像装置とを備え、前記固体撮像装置は、2層以上に積層された複数の基板を備え、前記複数の基板のうちの2個以上の基板は、光電変換を行う画素を有する基板であり、前記画素を有する基板の少なくとも1個の基板は、可視光を受光する可視光センサであり、前記画素を有する基板の少なくとも他の1個の基板は、狭帯域の波長帯の光を透過する光学フィルタである狭帯域フィルタを有し、前記狭帯域の光である狭帯域光を受光する狭帯域光センサである電子機器である。
 本技術の固体撮像装置、及び、電子機器においては、複数の基板が、2層以上に積層されており、前記複数の基板のうちの2個以上の基板は、光電変換を行う画素を有する基板になっている。前記画素を有する基板の少なくとも1個の基板は、可視光を受光する可視光センサになっている。そして、前記画素を有する基板の少なくとも他の1個の基板は、狭帯域の波長帯の光を透過する光学フィルタである狭帯域フィルタを有し、前記狭帯域の光である狭帯域光を受光する狭帯域光センサになっている。
 なお、固体撮像装置は、独立した装置であっても良いし、1つの装置を構成している内部ブロックであっても良い。
 本技術によれば、高画質の通常画像と波長分解能の高い狭帯域画像とを、同時に取得することができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術を適用したディジタルカメラ10の一実施の形態の構成例を示すブロック図である。 ディジタルカメラ10の第1の使用例を示す図である。 ディジタルカメラ10の第2の使用例を示す図である。 ディジタルカメラ10の第3の使用例を示す図である。 イメージセンサ2の第1の構成例を示す断面図である。 イメージセンサ2の第1の構成例の概略を示す斜視図である。 狭帯域フィルタ42の通過帯域の波長の例を示す図である。 光学シミュレータによるシミュレーション結果を示す図である。 イメージセンサ2の製造方法の概要を説明するフローチャートである。 イメージセンサ2の第2の構成例を示す断面図である。 イメージセンサ2の第3の構成例を示す断面図である。 イメージセンサ2の第3の構成例の概略を示す斜視図である。 イメージセンサ2の第4の構成例の概略を示す斜視図である。 イメージセンサ2の第5の構成例の概略を示す斜視図である。 イメージセンサ2の第6の構成例の概略を示す斜視図である。 イメージセンサ2の第7の構成例を示す断面図である。 イメージセンサ2の第7の構成例の概略を示す斜視図である。 イメージセンサ2の第8の構成例の概略を示す斜視図である。 イメージセンサ2の第9の構成例の概略を示す斜視図である。 イメージセンサ2の第10の構成例の概略を示す斜視図である。 イメージセンサ2の第11の構成例の概略を示す斜視図である。 イメージセンサ2の第12の構成例の概略を示す斜視図である。 イメージセンサ2の第13の構成例の概略を示す斜視図である。 Wフィルタを有するOCCFの既存の配列の例を示す図である。 イメージセンサ2の第14の構成例の概略を示す斜視図である。 イメージセンサ2の第15の構成例の概略を示す斜視図である。 イメージセンサ2の第16の構成例の概略を示す斜視図である。 複数の領域に分けられた狭帯域光センサ12の受光面の例を模式的に示す図である。 複数の領域に分けられた狭帯域光センサ12の受光面の他の例を模式的に示す図である。 イメージセンサ2の第17の構成例の概略を示す斜視図である。 イメージセンサ2の第18の構成例の概略を示す斜視図である。 Quadra配列と、Quadra-White配列とを示す図である。 イメージセンサ2の第19の構成例の概略を示す斜視図である。 イメージセンサ2の第20の構成例の概略を示す斜視図である。 イメージセンサ2の第21の構成例の概略を示す斜視図である。
 <本技術を適用したディジタルカメラの一実施の形態>
 図1は、本技術を適用したディジタルカメラ10の一実施の形態の構成例を示すブロック図である。
 なお、ディジタルカメラ10は、静止画、及び、動画のいずれも撮像することができる。
 図1において、ディジタルカメラ10は、光学系1、イメージセンサ2、メモリ3、信号処理部4、出力部5、及び、制御部6を有する。
 光学系1は、例えば、図示せぬズームレンズや、フォーカスレンズ、絞り等を有し、外部からの光を、イメージセンサ2に入射させる。
 イメージセンサ2は、例えば、CMOSイメージセンサであり、光学系1からの入射光を受光し、光電変換を行って、光学系1からの入射光に対応する画像データを出力する。
 なお、イメージセンサ2の詳細については、後述するが、簡単に説明すると、イメージセンサ2は、複数の基板が、2層以上に積層されて構成される。複数の基板のうちの2個以上の基板は、光電変換を行う画素を有する基板になっており、その、画素を有する基板の少なくとも1個の基板は、可視光を受光する可視光センサになっている。さらに、画素を有する基板の少なくとも他の1個の基板は、狭帯域の波長帯の光を透過する光学フィルタである狭帯域フィルタを有し、狭帯域の光である狭帯域光を受光する狭帯域光センサになっている。
 したがって、イメージセンサ2は、可視光を受光して光電変換する(センシング(撮影)する)ことにより、その可視光に対応する通常画像をセンシング(撮影)するのと同時に、1以上の狭帯域の光(以下、狭帯域光ともいう)を受光して光電変換することにより、その狭帯域光に対応する狭帯域画像をセンシング(撮影)することができる。
 すなわち、イメージセンサ2によれば、通常画像と狭帯域画像とを、同時に取得することができる。
 イメージセンサ2において、狭帯域光センサは、上述したように、狭帯域フィルタを有するので、その狭帯域フィルタを透過させる光の狭帯域(波長帯)として、様々な狭帯域を採用することにより、狭帯域画像として、狭帯域光から得られる様々な項目を測定することができる。
 すなわち、狭帯域光センサによれば、例えば、葉緑素や、水分、熱、オレイン酸、糖分(糖度)、その他の狭帯域光から得られる様々な項目を、狭帯域画像として、測定(検出)することができる。
 メモリ3は、イメージセンサ2が出力する画像データ(通常画像や狭帯域画像)を一時記憶する。
 信号処理部4は、メモリ3に記憶された画像データを用いた信号処理としての、例えば、ノイズの除去や、ホワイトバランスの調整等の処理を行い、出力部5に供給する。
 出力部5は、信号処理部4からの画像データを出力する。
 すなわち、出力部5は、例えば、液晶等で構成されるディスプレイ(図示せず)を有し、信号処理部4からの画像データに対応するスペクトル(画像)を、いわゆるスルー画として表示する。
 また、出力部5は、例えば、半導体メモリや、磁気ディスク、光ディスク等の記録媒体を駆動するドライバ(図示せず)を有し、信号処理部4からの画像データを記録媒体に記録する。
 さらに、出力部5は、図示せぬ外部の装置との通信を行う通信インターフェースとして機能し、信号処理部4からの画像データを、外部の装置に、無線又は有線で送信する。
 制御部6は、ユーザの操作等に従い、ディジタルカメラ10を構成する各ブロックを制御する。
 以上のように構成されるディジタルカメラ10では、イメージセンサ2が、光学系1からの入射光を受光し、その入射光を光電変換することにより、通常画像と狭帯域画像とを同時にセンシング(撮影)し、その通常画像及び狭帯域画像の画像データを出力する。
 イメージセンサ2が出力する画像データは、メモリ3に供給されて記憶される。メモリ3に記憶された画像データについては、信号処理部4による信号処理が必要に応じて施され、その結果得られる画像データが、出力部5に供給されて出力される。
 <ディジタルカメラ10の使用例>
 図2は、ディジタルカメラ10の第1の使用例を示す図である。
 ディジタルカメラ10(のイメージセンサ2)によれば、通常画像をセンシング(撮影)するとともに、狭帯域光から得られる様々な項目を、狭帯域画像として検出することができるので、ディジタルカメラ10は、通常画像のセンシング(撮影)と、狭帯域光から得られる様々な項目の検出とを同時に行いたい種々のケースに利用することができる。
 図2は、ディジタルカメラ10を、レタス工場の監視カメラとして使用する使用例を示している。
 図2では、ディジタルカメラ10において、レタスを処理しているラインが映った通常画像と狭帯域画像とが同時にセンシング(撮影)されている。
 ディジタルカメラ10でのセンシング(撮影)により得られる通常画像によれば、例えば、レタスを処理しているラインで働いている従業員が、マニュアル通りの作業をしているかや、従業員の人数が揃っているか等の従業員の監視を行うことができる。さらに、通常画像によれば、例えば、従業員がいない休憩時間や、夜間、休日等における不審者の侵入を監視することができる。
 また、狭帯域画像によれば、例えば、レタスの葉緑素や水分を検出して、レタスの鮮度を監視(管理)することができる。さらに、狭帯域画像によれば、例えば、赤外線を検出して、従業者が発熱しているかどうかの監視(管理)を行うことができる。
 図3は、ディジタルカメラ10の第2の使用例を示す図である。
 すなわち、図3は、ディジタルカメラ10を、食肉工場の監視カメラとして使用する使用例を示している。
 図3では、ディジタルカメラ10において、肉を処理しているラインが映った通常画像と狭帯域画像とが同時にセンシング(撮影)されている。
 ディジタルカメラ10でのセンシング(撮影)により得られる通常画像によれば、例えば、肉を処理しているラインで働いている従業員が、マニュアル通りの作業をしているかや、従業員の人数が揃っているか等の従業員の監視を行うことができる。さらに、通常画像によれば、例えば、従業員がいない休憩時間や、夜間、休日等における不審者の侵入を監視することができる。
 また、狭帯域画像によれば、例えば、肉のうまみ成分であるオレイン酸を検出して、肉の鮮度を監視することができる。さらに、狭帯域画像によれば、例えば、赤外線を検出して、従業者が発熱しているかどうかの監視を行うことができる。
 図4は、ディジタルカメラ10の第3の使用例を示す図である。
 すなわち、図4は、ディジタルカメラ10を、トマト畑の監視カメラとして使用する使用例を示している。
 図4では、ディジタルカメラ10において、トマト畑が映った通常画像と狭帯域画像とが同時にセンシング(撮影)されている。
 ディジタルカメラ10でのセンシング(撮影)により得られる通常画像によれば、例えば、カラス等の外敵や不審者の侵入、その他の異常を監視することができる。
 また、狭帯域画像によれば、トマトの糖度を検出して、トマトの成長度(熟成度)を監視することができる。
 <イメージセンサ2の第1の構成例>
 図5は、イメージセンサ2の第1の構成例を示す(水平方向又は垂直方向の)断面図である。
 図5において、イメージセンサ2は、複数の基板としての第1層基板、第2層基板、及び、第3層基板の3個の半導体基板が積層されて構成される。
 ここで、本実施の形態では、イメージセンサ2に光が入射してくる方(本実施の形態では、上方)を、上層ともいい、光が入射してくる方と反対を、下層ともいう。
 また、上層に積層された基板を、上層基板ともいい、下層に積層された基板を、下層基板ともいう。第1層基板に対して、第2層基板や第3層基板は、下層基板であり、第3層基板に対して、第1層基板や第2層基板は、上層基板である。
 イメージセンサ2を構成する3個の第1層基板ないし第3層基板のうちの、2個以上の基板は、光電変換を行う画素を有する基板になっている。そして、画素を有する基板の少なくとも1個の基板は、可視光を受光する可視光センサ11になっており、画素を有する基板の少なくとも他の1個の基板は、狭帯域フィルタ42を有し、狭帯域光を受光する狭帯域光センサ12になっている。
 すなわち、図5のイメージセンサ2では、3個の第1層基板ないし第3層基板のうちの、第1層基板及び第2層基板として、それぞれ、光電変換を行う画素を有する基板としての可視光センサ11及び狭帯域光センサ12が採用されている。
 また、図5のイメージセンサ2では、第3層基板として、メモリやロジック回路等を有する回路基板13が採用されている。
 ここで、イメージセンサ2の有効画素領域でない領域には、図示せぬビアが設けられており、可視光センサ11、狭帯域光センサ12、及び、回路基板13は、ビアを介して、電気的に接続される。
 図5において、第1層基板としての可視光センサ11は、上層から、半導体層34、Poly層36、及び、配線層37が積層されて構成される。
 半導体層34には、画素としての複数のPD(Photo Diode)35が形成されている。画素としてのPD35に対しては、OCL(On Chip Lenz)31及びOCCF(On Chip Color Filter)32が設けられている。すなわち、図5では、半導体層34の光入射面である裏面側(上層側)に、絶縁膜33が形成され、その上に、OCCF32及びOCL31が形成されている。
 OCL31は、そこに入射する光を、対応するOCCF32、及び、絶縁膜33を介して、対応する画素としてのPD35に集光する。
 OCCF32は、対応するOCL31からの光のうちの、所定の色の光を透過する。OCCF32の色の配列としては、ベイヤ配列その他の既存の配列を採用することができる。また、OCCF32の色の配列としては、ベイヤ配列等の既存の配列の一部を改変した配列を採用することができる。
 PD35は、OCL31、OCCF32、及び、絶縁膜33を介して入射する光を受光して光電変換する。
 ここで、PD35を有する半導体層34の厚さ(膜厚)は、例えば、2.7um(micro meter)程度を採用することができる。
 また、PD35としては、例えば、SiのPD(Siを材料とするPD)を採用することができる。
 半導体層34の光入射面に対向する表面側(下層側)には、Poly層36、及び、配線層37が形成されている。
 Poly層36には、画素としてのPD35で光電変換された信号(電荷)を転送する転送トランジスタ(のゲート)等が形成されている。
 配線層37には、例えば、CuやAl等のメタルによる配線38が設けられている。
 なお、図5の配線層37には、4層の配線38が設けられているが、配線層37に設ける配線38の層数は、4層に限定されるものではない。
 また、図5において、配線層37に設けられた4層の配線38のうちの、最下層の配線38は、可視光センサ11の下層の狭帯域光センサ12に入射する一部の光を遮光する遮光膜としても機能する。但し、可視光センサ11の下層の狭帯域光センサ12に入射する一部の光を遮光する遮光膜は、配線38とは別に設けることができる。
 図5では、可視光センサ11の配線層37の下層側に、第2層基板としての狭帯域光センサ12が設けられている。
 狭帯域光センサ12は、上層側から、フィルタ層41、配線層43、Poly層45、及び、半導体層46が積層されて構成される。
 フィルタ層41は、狭帯域の波長帯の光を透過する光学フィルタである狭帯域フィルタ42を1個以上有する。フィルタ層41において、狭帯域フィルタ42は、画素としての後述するPD47に対して設けられている。
 ここで、狭帯域とは、例えば、可視光の波長の帯域(例えば、380nm(nano meter)ないし780nm程度)で言えば、その可視光の波長の帯域を10等分以上したときの1つの帯域を意味する。
 狭帯域フィルタ42が透過する光の狭帯域としての通過帯域は、狭帯域画像から検出しようとする項目によって決定される。例えば、図2で説明したように、狭帯域画像から、葉緑素を検出する場合には、435nmや680nmを含む狭帯域が、狭帯域フィルタ42の通過帯域に決定される。
 狭帯域フィルタ42は、例えば、OCCFで用いられているような有機系材料に、所望の狭帯域の光を透過(又は、所望の狭帯域の光でない光を吸収)する顔料を混ぜて構成することができる。
 また、狭帯域フィルタ42としては、表面プラズモンを利用したプラズモンフィルタや、ファブリペロー干渉計等を採用することができる。狭帯域フィルタ42として、プラズモンフィルタを採用する場合には、プラズモンフィルタを構成する金属薄膜に形成するホールのホール径と周期を変えるだけで、様々な通過帯域を実現することができる。
 フィルタ層41の下層側には、配線層43が設けられている。図5では、配線層43には、配線層37と同様に、4層の配線44が設けられている。なお、配線層43に設ける配線44の層数は、配線層37と同様に、4層に限定されるものではない。
 配線層43の下層側には、Poly層45、及び、半導体層46が設けられている。
 Poly層45には、半導体層46に形成された画素としてのPD47で光電変換された信号(電荷)を転送する転送トランジスタ(のゲート)等が形成されている。
 半導体層46には、半導体層34と同様に、画素としての複数のPD47が形成されている。
 PD47は、例えば、PD35と同様に、SiのPDであり、可視光センサ11を透過し、さらに、そのPD47に対する狭帯域フィルタ42を透過した光を受光して光電変換する。
 ここで、第1層基板としての可視光センサ11の半導体層34(の下部)から、第2層基板としての狭帯域光センサ12の半導体層46(の上部)までの距離としては、10umないし13um程度を採用することができる。但し、半導体層34から、半導体層46までの距離は、10umないし13um程度の範囲に限定されるものではない。
 また、可視光センサ11の画素としてのPD35と、狭帯域光センサ12の画素としてのPD47との関係は、特に限定されるものではない。
 すなわち、例えば、狭帯域光センサ12の1画素としての1個のPD47は、可視光センサ11の1画素としての1個のPD35に対して設けることができる。
 また、例えば、狭帯域光センサ12の1画素としての1個のPD47は、可視光センサ11の複数の画素としての複数個のPD35に対して設けることができる。
 さらに、例えば、狭帯域光センサ12の複数画素としての複数個のPD47は、可視光センサ11の1画素としての1個のPD35に対して設けることができる。
 図5では、狭帯域光センサ12の1画素としての1個のPD47が、可視光センサ11の1画素としての1個のPD35に対して設けられている。
 また、例えば、狭帯域光センサ12の画素としてのPD47は、可視光センサ11のすべての画素に対してではなく、一部の画素に対してだけ設けることができる。
 例えば、狭帯域光センサ12の画素としてのPD47は、所定数の画素としての所定数個数おきのPD35に対して設けることができる。
 図5では、狭帯域光センサ12の画素としてのPD47は、可視光センサ11の水平方向及び垂直方向のそれぞれについて、1画素おきのPD35(1個おきのPD35)に対して設けられている。
 なお、その他、狭帯域光センサ12の画素としてのPD47は、可視光センサ11の画素としてのPD35が設けられていない位置に対して設けることができる。
 すなわち、例えば、狭帯域光センサ12の画素としてのPD47と、可視光センサ11の画素としてのPD35とは、チェック模様を構成するように(水平方向と垂直方向のそれぞれに交互に)配置することができる。
 また、例えば、狭帯域光センサ12の画素としてのPD47は、可視光センサ11の画素としてのPD35が設けられた有効画素領域の一部の領域にだけ設けることができる。
 図5において、狭帯域光センサ12の半導体層46の下層側には、第3層基板としての回路基板13が設けられている。
 さらに、狭帯域光センサ12としてのPD47は、可視光センサ11の画素としてのPD35と同一のサイズにすることもできるし、異なるサイズ(大きい、又は、小さい)サイズとすることもできる。
 回路基板13は、可視光センサ11及び狭帯域光センサ12を支持する支持基板と、メモリやロジック回路等の回路とから構成される。
 なお、可視光センサ11の半導体層34等には、クロックを生成するためのPLL(Phase Lock Loop)や、PD35での光電変換により得られた信号をA/D変換する、いわゆる列並列型AD変換で用いる参照信号を生成するDAC(Digital to Analog Converter)等の、可視光センサ11でのスペクトル(画像)のセンシング(撮影)に必要な回路を設けることができるが、そのような必要な回路の中で、可視光センサ11とは別個の基板に設けることが可能な回路は、可視光センサ11ではなく、回路基板13に設けることができる。狭帯域光センサ12でのスペクトル(画像)のセンシング(撮影)に必要な回路についても、同様である。
 以上のように、可視光センサ11でのスペクトル(画像)のセンシング(撮影)に必要な回路や、狭帯域光センサ12でのスペクトル(画像)のセンシング(撮影)に必要な回路の中で、別個の基板に設けることが可能な回路を、回路基板13に設ける場合には、その回路の面積の分だけ、可視光センサ11や狭帯域光センサ12を小型に構成することが可能となる。
 また、回路基板13には、可視光センサ11や狭帯域光センサ12でセンシング(撮影)されたスペクトル(画像)に、付加的な信号処理を施す回路を設けることができる。
 以上のように構成されるイメージセンサ2では、可視光センサ11の画素としてのPD35において、OCL31、OCCF32、及び、絶縁膜33を介して入射した光が受光されて光電変換される。
 可視光センサ11の画素としてのPD35に入射した光の一部は、PD35において光電変換されずに、PD35を透過し、Poly層36、及び、配線層37を介して(通過して)、フィルタ層41の狭帯域フィルタ42に入射する。狭帯域フィルタ42では、そこに入射した光のうちの所定の狭帯域の光(狭帯域光)が透過する。
 狭帯域フィルタ42を透過した狭帯域光は、配線層43、及び、Poly層45を介して、半導体層46に入射する。半導体層46に入射した狭帯域光は、狭帯域光センサ12の画素としてのPD47で受光されて光電変換される。
 したがって、例えば、図5において、光L11やL12は、可視光センサ11の画素としてのPD35で受光されて光電変換される。また、光L11やL12の一部は、PD35を透過し、さらに、狭帯域フィルタ42を透過することで、狭帯域光となって、狭帯域光センサ12の画素としてのPD47に入射する。そして、その狭帯域光は、狭帯域光センサ12の画素としてのPD47で受光されて光電変換される。
 ここで、配線層37及び配線層43それぞれにおける配線38及び配線44は、PD47と、そのPD47に対応する狭帯域フィルタ42とへの、PD35を透過した光の光路が確保されるように配置される。すなわち、配線38及び配線44は、例えば、PD47(及び狭帯域フィルタ42)の上部以外の部分に配置することができる。
 Poly層36及び45も、配線層37及び43と同様に、PD47と、そのPD47に対応する狭帯域フィルタ42とへの、PD35を透過した光の光路が確保されるように構成されている。なお、図5では(後述する図10、図11、及び、図16も同様)、Poly層36、配線層37、フィルタ層41、配線層43、及び、Poly層45の区別を分かりやすくするために、各層の境界を表す線を図示してあるが、Poly層36、配線層37、フィルタ層41、配線層43、及び、Poly層45は、例えば、SiO2等の同一の透明材料で形成され、実際のデバイスでは、各層の境界は、必ずしも存在するものではない。
 以上のように、イメージセンサ2においては、可視光を受光する可視光センサ11と、狭帯域光を透過する狭帯域フィルタ42を有し、狭帯域光を受光する狭帯域光センサ12とが積層されているので、可視光と狭帯域光とを、同時に受光し、同一のアングルから見た、可視光に対応する通常画像と、狭帯域光に対応する狭帯域画像とを、同時に取得することができる。
 また、可視光センサ11と狭帯域光センサ12とは、積層されているので、可視光センサ11と狭帯域光センサ12とのそれぞれにおいて、必要な数だけの画素を設けることにより、必要な画質(解像度)の通常画像と、必要な画質の狭帯域画像とを、同時に取得することができる。
 なお、可視光センサ11において通常画像をセンシング(撮影)するタイミングと、狭帯域光センサ12において狭帯域画像をセンシング(撮影)するタイミングとは、同一のタイミングとすることもできるし、異なるタイミングとすることもできる。可視光センサ11及び狭帯域光センサ12それぞれにおける露出時間についても同様である。
 可視光センサ11において通常画像をセンシング(撮影)するタイミングや露光時間、並びに、狭帯域光センサ12において狭帯域画像をセンシング(撮影)するタイミングや露光時間は、画素を構成する図示せぬ転送トランジスタ等のトランジスタのオン/オフのタイミング等によって制御することができる。
 また、可視光センサ11でセンシング(撮影)された通常画像は、狭帯域光センサ12でセンシング(撮影)された狭帯域画像を用いて、より高画質の通常画像に補正することができる。
 図6は、図5のイメージセンサ2の第1の構成例の概略を示す斜視図である。
 図6において、イメージセンサ2は、3個の第1層基板ないし第3層基板が積層されて構成されている。
 そして、第1層基板は可視光センサ11に、第2層基板は狭帯域光センサ12に、第3層基板は回路基板13に、それぞれなっている。
 図6のイメージセンサ2において、OCCF32の色の配列としては、ベイヤ配列が採用されている。すなわち、OCCF32は、左上が赤(R(red))、右下が青(B(blue))、左下と右上が緑(G(green))になっている2×2(横×縦)画素のカラーフィルタを、ベイヤ配列の基本単位として、その基本単位が、水平(横)方向及び垂直(縦)方向に繰り返し配置された構成になっている。
 図6では、可視光センサ11の4×4画素おきのPD35に対して、狭帯域光センサ12の1画素としてのPD47が形成されている。
 ここで、図5では、狭帯域光センサ12の画素としてのPD47が、可視光センサ11の水平方向及び垂直方向のそれぞれについて、1画素おきのPD35に対して設けられているが、図6では、図が煩雑になるのを避けるため、可視光センサ11の4×4画素おき(ごと)のPD35に対して、狭帯域光センサ12の1画素としてのPD47を設けてある。後述する斜視図についても、同様である。
 図6では、可視光センサ11の4×4画素おきのPD35に対して形成された、狭帯域光センサ12の1画素としてのPD47は、可視光センサ11の4×4画素のうちの1画素である、上から3行目で、左から2列目の画素、及び、狭帯域フィルタ42を透過した光を受光するように配置されている。
 ここで、図6において、可視光センサ11の4×4画素のうちの、上から3行目で、左から2列目の画素は、緑色の(光を透過する)カラーフィルタを透過した光を受光するG画素である。
 したがって、図6では、狭帯域光センサ12の画素としてのPD47は、G画素を透過した光、すなわち、緑色のカラーフィルタを透過した光(さらには、可視光センサ11の画素としてのPD35を構成するSi、及び、狭帯域フィルタ42を透過した光である狭帯域光)を受光する。
 狭帯域フィルタ42が透過する光の狭帯域としての通過帯域は、狭帯域画像から検出しようとする項目(以下、検出項目ともいう)によって決定される。
 図7は、各種の検出項目を検出するときの狭帯域フィルタ42の通過帯域の波長の例を示す図である。
 図7によれば、例えば、葉緑素を検出項目として検出する場合には、435nmや680nmの波長を中心とする狭帯域が、狭帯域フィルタ42の通過帯域に決定される。
 図8は、第1層基板としての可視光センサ11のPD35を有する半導体層34の厚さと、PD35で受光される光の光強度、及び、第2層基板としての狭帯域光センサ12の半導体層46のPD47で受光される光の光強度それぞれとの関係を示す、光学シミュレータによるシミュレーション結果を示す図である。
 図8において、横軸の上層Si膜厚は、第1層基板としての可視光センサ11の半導体層34の厚さを表し、縦軸は、光強度を表す。
 光学シミュレータによるシミュレーションでは、波長が550nm,610nm、及び、700nmの光それぞれを入射光として、イメージセンサ2に入射し、第1層基板としての可視光センサ11のPD35で受光される光の光強度、及び、第2層基板としての狭帯域光センサ12のPD47で受光される光の光強度を算出した。
 シミュレーション結果によれば、波長が550nm,610nm、及び、700nmの光のいずれについても、第1層基板としての可視光センサ11のPD35での光強度(1st-Si)は、上層Si膜厚の増加に伴って大になることを確認することができる。
 また、シミュレーション結果によれば、波長が550nm,610nm、及び、700nmの光のいずれについても、第2層基板としての狭帯域光センサ12のPD47での光強度(2nd-Si)は、上層Si膜厚の増加に伴って小になることを確認することができる。
 第2層基板としての狭帯域光センサ12のPD47は、第1層基板としての可視光センサ11のPD35(を有する半導体基板34)としてのSiを透過した光、すなわち、PD35としてのSiで吸収されなかった光を受光する。
 PD35としてのSiを透過する光は、侵入長が長い長波長側の光であるので、第2層基板としての狭帯域光センサ12のPD47が、PD35としてのSiを透過した光を受光する構成は、狭帯域光センサ12において、比較的、長波長側の狭帯域光を受光するのに適している。
 なお、図8のシミュレーション結果に示すように、どの波長の光が、どの程度、PD35としてのSiを透過するか、すなわち、PD47に到達するかは、PD35としてのSiの厚み(上層Si膜厚)に依存する。
 図8のシミュレーション結果によれば、例えば、上層Si膜厚が、2.7umである場合には、波長が610nmの光(赤色の光)(淡い影を付した矩形の印)については、PD35としてのSiに入射する光のうちの約15%が、第2層基板としての狭帯域光センサ12のPD47に到達することを確認することができる。
 さらに、図8のシミュレーション結果によれば、可視光センサ11が上層に配置され、狭帯域光センサ12が下層に配置される場合において、例えば、波長が610nmの光について、上層の可視光センサ11に入射する光の10~15%程度以上の光強度の光を、下層の狭帯域光センサ12で受光する仕様を実現するには、下層の狭帯域光センサ12に到達するまでに光が透過するSi層のトータルの厚さは、3um程度以下とすることが望ましい。
 ここで、CMOSイメージセンサにおいて、PDが構成されるSi層の厚みは、一般に、約3um程度とされる。そこで、例えば、イメージセンサ2に積層されるSi層の1層の厚さを、3umと仮定すると、上述の仕様の実現のためには、狭帯域光センサ12の上層に配置されるSi層(狭帯域光センサ12で受光される光が透過するSi層)は、1層程度にすることが望ましい。
 但し、Si層の1層の厚さを、例えば、1um未満等の極めて薄い厚さにすることができる場合には、1層程度を超える層数のSi層を、狭帯域光センサ12の上層に配置することができる。その場合でも、上述の仕様の実現のためには、狭帯域光センサ12の上層に配置するSi層のトータルの厚さは、3um程度以下とすることが望ましい。
 図9は、図5(及び図6)のイメージセンサ2の製造方法の概要を説明するフローチャートである。
 図5のイメージセンサ2は、可視光センサ11が、裏面照射型のCMOSイメージセンサと(ほぼ)同様の構成になっており、狭帯域光センサ12が、表面照射型のCMOSイメージセンサと(ほぼ)同様の構成になっている。
 そのため、図5のイメージセンサ2は、裏面照射型のCMOSイメージセンサや、表面照射型のCMOSイメージセンサの製造方法を利用して製造することができる。
 すなわち、図5のイメージセンサ2を製造する図示せぬ製造装置は、ステップS11において、可視光センサ11としての裏面照射型のCMOSイメージセンサを製造する。
 さらに、製造装置は、ステップS12において、狭帯域光センサ12としての表面照射型のCMOSイメージセンサを製造する。
 そして、製造装置は、ステップS11で製造された裏面照射型の可視光センサ11、ステップS12で製造された表面照射型の狭帯域光センサ12、及び、回路基板13を積層し、ビアを形成して必要な電気的接続を行い、OCL31及びOCCF32の形成等を行って、図5のイメージセンサ2を完成させる。
 なお、可視光センサ11の構成としては、裏面照射型のCMOSイメージセンサではなく、表面照射型のCMOSイメージセンサの構成を採用することができる。
 狭帯域光センサ12の構成としても、表面照射型のCMOSイメージセンサではなく、裏面照射型のCMOSイメージセンサの構成を採用することができる。
 <イメージセンサ2の第2の構成例>
 図10は、イメージセンサ2の第2の構成例を示す断面図である。
 なお、図中、図5の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 図5では、可視光センサ11及び狭帯域光センサ12が、それぞれ、第1層基板及び第2層基板になっており、したがって、可視光センサ11が上層基板で、狭帯域光センサ12が下層基板になっていたが、図10では、可視光センサ11が下層基板で、狭帯域光センサ12が上層基板になっている。
 すなわち、図10のイメージセンサ2では、3個の第1層基板ないし第3層基板のうちの、第1層基板として、狭帯域光センサ12が採用され、第2層基板として、可視光センサ11が採用されている。
 そして、図10では、第1層基板としての狭帯域光センサ12は、上層から、フィルタ層41、半導体層34、Poly層36、及び、配線層37が積層されて構成される。
 さらに、図10では、半導体層34には、画素としてのPD35か、又は、PD35に代えて、透過率が高い透明材料61である、例えば、SiO2が形成されている。すなわち、半導体層34において、PD35が形成される予定の一部分が開口され、その開口が、透明材料61であるSiO2で埋められている。
 半導体層34の上層側には、狭帯域フィルタ42を有するフィルタ層41が形成されている。
 フィルタ層41では、半導体層34における画素としてのPD35に対して、狭帯域フィルタ42が設けられている。
 フィルタ層41の上層側には、絶縁膜33、OCCF32、及び、OCL31が、その順で、上層方向に向かって設けられている。なお、図10では、OCCF32は、OCL31の直後に設けられているが、OCCF32は、その他、例えば、配線層37と配線層43との間に設けることができる。
 OCL31及びOCCF32は、画素としてのPD35及び透明材料61に対して形成されている。
 図10では、狭帯域光センサ12の配線層37の下層側に、第2層基板としての可視光センサ11が設けられている。
 可視光センサ11は、上層側から、配線層43、Poly層45、及び、半導体層46が積層されて構成される。
 図10において、半導体層46には、図5で説明したように、画素としてのPD47が形成されているが、狭帯域光センサ12の透明材料61であるSiO2は、可視光センサ11の画素としてのPD47に対して設けられており、そのPD47で受光される光を透過する位置に形成されている。
 そして、図10では、配線層37及び配線層43それぞれにおける配線38及び配線44は、透明材料61であるSiO2からPD47への光の光路が確保されるように配置されている。すなわち、図10では、配線38及び配線44は、例えば、PD47の上部以外の部分に配置されている。
 Poly層36及び45も、配線層37及び43と同様に、透明材料61であるSiO2からPD47への光の光路が確保されるように構成されている。
 以上のように構成されるイメージセンサ2では、狭帯域光センサ12の画素としてのPD35において、OCL31、OCCF32、絶縁膜33、及び、フィルタ層41の狭帯域フィルタ42を介して入射した狭帯域光が受光されて光電変換される。
 また、狭帯域光センサ12の画素としての透明材料61であるSiO2では、OCL31、OCCF32、絶縁膜33、及び、フィルタ層41の狭帯域フィルタ42がない部分を介して入射した光が透過する。
 透明材料61であるSiO2を透過した光は、さらに、Poly層36、配線層37及び43、並びに、Poly層45を介して、半導体層46に入射する。半導体層46に入射した光は、可視光センサ11の画素としてのPD47で受光されて光電変換される。
 すなわち、図10において、例えば、光L21やL22は、OCL31、OCCF32、絶縁膜33、フィルタ層41、半導体層34の透明材料61であるSiO2、配線層38及び44、並びに、Poly層45を透過し、可視光センサ11の画素としてのPD47に入射する。PD47に入射した光、すなわち、OCCF32を透過した可視光は、PD47で受光されて光電変換される。
 また、図10において、例えば、光L23は、OCL31、OCCF32、及び、絶縁膜33を介して、フィルタ層41の狭帯域フィルタ42に入射する。狭帯域フィルタ42に入射した光は、所定の狭帯域の狭帯域光だけが、狭帯域フィルタ42を透過し、狭帯域光センサ12の画素としてのPD35で受光されて光電変換される。
 以上のように、図10のイメージセンサ2では、狭帯域光センサ12と可視光センサ11とが積層されているので、図5及び図6の場合と同様に、可視光と狭帯域光とを、同時に受光し、可視光に対応する通常画像と、狭帯域光に対応する狭帯域画像とを、同時に取得することができる。
 <イメージセンサ2の第3の構成例>
 図11は、イメージセンサ2の第3の構成例を示す断面図である。
 なお、図中、図5の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 図11のイメージセンサ2は、水平方向及び垂直方向のそれぞれについて、可視光センサ11の1画素としての1個のPD35に対して、狭帯域光センサ12の2画素としての2個のPD47が設けられている点で、可視光センサ11の1画素としての1個のPD35に対して、狭帯域光センサ12の1画素としての1個のPD47が設けられている図5のイメージセンサ2と相違する。
 すなわち、図5のイメージセンサ2では、可視光センサ11の1画素としての1個のPD35に対して、狭帯域光センサ12の1画素としての1個のPD47が設けられている。
 これに対して、図11のイメージセンサ2では、水平方向及び垂直方向のそれぞれについて、可視光センサ11の1画素としての1個のPD35に対して、狭帯域光センサ12の2画素としての2個のPD47が設けられている。
 そして、図11では、可視光センサ11の1画素としての1個のPD35に入射した、ある光L11(の一部)が、その可視光センサ11の1画素としてのPD35を透過し、その1画素としてのPD35に対する狭帯域光センサ12の2画素のうちの、一方の1画素としてのPD47で受光されるとともに、可視光センサ11の1画素としての1個のPD35に入射した、他の光L12(の一部)が、その可視光センサ11の1画素としてのPD35を透過し、その1画素としてのPD35に対する狭帯域光センサ12の2画素のうちの、他方の1画素としてのPD47で受光されるように、例えば、可視光センサ11のPD35と、狭帯域光センサ12のPD47との間の距離、その他の位置関係、画素としてのPD35や47のサイズ等が設定されている。
 また、図11のイメージセンサでは、水平方向及び垂直方向のそれぞれについて、可視光センサ11の1画素としての1個のPD35に対して設けられている、狭帯域光センサ12の2画素としての2個のPD47に対しては、それぞれ個別の狭帯域フィルタ42が、フィルタ層41に設けられている。
 狭帯域光センサ12の画素としてのPD47には、そのPD47に対して設けられた狭帯域フィルタ42を透過して狭帯域光となった光が入射される。
 図12は、図11のイメージセンサ2の第3の構成例の概略を示す斜視図である。
 なお、図中、図6の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 イメージセンサ2の第3の構成例では、図11で説明したように、水平方向及び垂直方向のそれぞれについて、可視光センサ11の1画素としての1個のPD35に対して、狭帯域光センサ12の2画素としての2個のPD47が設けられている。
 したがって、イメージセンサ2の第3の構成例では、図12に示すように、可視光センサ11の1画素としての1個のPD35に対して、狭帯域光センサ12の2×2画素としての4個のPD47が設けられている。
 これにより、可視光センサ11の1画素としての1個のPD35を透過した光は、その1画素に対して設けられた、狭帯域光センサ12の2×2画素としての4個のPD47で受光される。
 可視光センサ11の1画素としての1個のPD35に対して設けられた、狭帯域光センサ12の2×2画素としての4個のPD47それぞれに対しては、個別の狭帯域フィルタ42が設けられている。
 狭帯域光センサ12の2×2画素としての4個のPD47それぞれに対して設ける狭帯域フィルタ42は、互いに異なる狭帯域を通過帯域とするフィルタであっても良いし、2以上が同一の狭帯域を通過帯域とするフィルタであっても良い。
 狭帯域光センサ12の2×2画素としての4個のPD47それぞれに対して設ける狭帯域フィルタ42の通過帯域は、狭帯域画像から検出しようとする検出項目によって決定される。
 また、狭帯域光センサ12の2×2画素としての4個のPD47それぞれに対して設ける狭帯域フィルタ42のうちの1個の狭帯域フィルタ42だけでは、十分な感度(光強度)が得られない狭帯域光については、その狭帯域光を透過する狭帯域フィルタとして、複数の狭帯域フィルタ42を採用することができる。
 図12のイメージセンサ2では、可視光センサ11の1画素としての1個のPD35を通過した光は、狭帯域フィルタ42を介して、狭帯域光となり、その可視光センサ11の1画素としての1個のPD35に対して設けられた、狭帯域光センサ12の2×2画素としての4個のPD47それぞれで受光されて光電変換される。
 以上のように、図12のイメージセンサ2では、可視光センサ11の1画素としての1個のPD35に対して、狭帯域光センサ12の2×2画素としての4個のPD47が設けられているので、最大で、4種類の狭帯域の狭帯域光に対応する狭帯域画像としてのマルチスペクトルデータを取得することができる。
 ここで、図12のイメージセンサ2では、図6の場合と同様に、可視光センサ11の、緑色の(光を透過する)カラーフィルタを透過した光を受光するG画素としてのPD35を構成するSiを透過した光が、狭帯域フィルタ42を透過することにより、狭帯域光とされ、狭帯域光センサ12の画素としてのPD47で受光される。
 以上のように、図12のイメージセンサ2では、可視光センサ11の1画素としての1個のPD35に対して、狭帯域光センサ12の2×2画素としての4個のPD47が設けられており、その狭帯域光センサ12の2×2画素としての4個のPD47それぞれに対しては、個別の狭帯域フィルタ42が設けられているので、異なる狭帯域(波長)の狭帯域光を受光することができる。
 なお、図12では、可視光センサ11の1画素(としての1個のPD35)に対して、狭帯域光センサ12の2×2画素(としての4個のPD47)と、その2×2画素に対して個別の狭帯域フィルタ42を設けることとしたが、可視光センサ11の1画素に対しては、狭帯域光センサ12の、2×2画素以外の、例えば、3×3画素や、4×4画素、2×4画素等の複数の画素と、その複数の画素に対して個別の(複数の)狭帯域フィルタ42を設けることができる。
 <イメージセンサ2の第4の構成例>
 図13は、イメージセンサ2の第4の構成例の概略を示す斜視図である。
 なお、図中、図12の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 イメージセンサ2の第4の構成例では、可視光センサ11の、複数としての、例えば、2×2画素としての4個のPD35に対して、狭帯域光センサ12の、複数としての4×4画素としての16個のPD47が設けられている。
 これにより、可視光センサ11の2×2画素としての4個のPD35を透過した光は、その2×2画素に対して設けられた、狭帯域光センサ12の4×4画素としての16個のPD47で、いわばまとめて受光される。
 可視光センサ11の2×2画素としての4個のPD35に対して設けられた、狭帯域光センサ12の4×4画素としての16個のPD47それぞれに対しては、個別の狭帯域フィルタ42が設けられている。
 図12の場合と同様に、狭帯域光センサ12の4×4画素としての16個のPD47それぞれに対して設ける狭帯域フィルタ42は、互いに異なる狭帯域を通過帯域とするフィルタであっても良いし、2以上が同一の狭帯域を通過帯域とするフィルタであっても良い。
 図13のイメージセンサ2では、可視光センサ11の2×2画素としての4個のPD35を通過した光は、狭帯域フィルタ42を介して、狭帯域光となり、その可視光センサ11の2×2画素としての4個のPD35に対して設けられた、狭帯域光センサ12の4×4画素としての16個のPD47それぞれで受光されて光電変換される。
 以上のように、図13のイメージセンサ2では、可視光センサ11の2×2画素としての4個のPD35に対して、狭帯域光センサ12の4×4画素としての16個のPD47が設けられているので、最大で、16種類の狭帯域の狭帯域光に対応する狭帯域画像としてのマルチスペクトルデータを取得することができる。
 ここで、図13のイメージセンサ2において、狭帯域光センサ12の4×4画素に対する、可視光センサ11の2×2画素は、可視光センサ11の、緑色のカラーフィルタ(以下、Gフィルタともいう)を透過した光を受光する2個のG画素、赤色のカラーフィルタ(以下、Rフィルタともいう)を透過した光を受光する1個のR画素、及び、青色のカラーフィルタ(以下、Bフィルタともいう)を透過した光を受光する1個のB画素である。
 したがって、図13のイメージセンサ2では、2個のG画素、1個のR画素、及び、1個のB画素としてのPD35のそれぞれを透過した光が、いわばまとめて、狭帯域フィルタ42を透過し、その結果得られる狭帯域光が、狭帯域光センサ12の4×4画素で受光される。
 そのため、狭帯域光センサ12では、可視光センサ11のR画素、G画素、及び、B画素のそれぞれを透過した光のまとまりを対象として、その光のまとまりの中から、狭帯域フィルタ42を透過させる狭帯域光を選択して受光することができる。
 <イメージセンサ2の第5の構成例>
 図14は、イメージセンサ2の第5の構成例の概略を示す斜視図である。
 なお、図中、図6の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 図14において、イメージセンサ2は、図6と同様に、3個の第1層基板ないし第3層基板が積層されて構成されている。
 但し、図6では、第1層基板は可視光センサ11に、第2層基板は狭帯域光センサ12に、第3層基板は回路基板13に、それぞれなっているが、図14では、第1層基板は可視光センサ11に、第2層は回路基板13に、第3層基板は狭帯域光センサ12に、それぞれなっている。
 また、図14のイメージセンサ2の第5の構成例では、可視光センサ11の1画素としての1個のPD35に対して、狭帯域光センサ12の、複数としての4×4画素としての16個のPD47が設けられている。
 これにより、可視光センサ11の1画素としての1個のPD35を透過した光は、その1画素に対して設けられた、狭帯域光センサ12の4×4画素としての16個のPD47で受光される。
 また、図14では、図13の場合と同様に、可視光センサ11の1画素としての1個のPD35に対して設けられた、狭帯域光センサ12の4×4画素としての16個のPD47それぞれに対して、個別の狭帯域フィルタ42が設けられている。
 図14のイメージセンサ2では、可視光センサ11の1画素としての1個のPD35を通過した光は、狭帯域フィルタ42を介して、狭帯域光となり、その可視光センサ11の1画素としての1個のPD35に対して設けられた、狭帯域光センサ12の4×4画素としての16個のPD47それぞれで受光されて光電変換される。
 ここで、図14では、可視光センサ11の1画素としての1個のPD35を通過した光は、回路基板13を透過した後に、狭帯域フィルタ42を介して、狭帯域光センサ12の4×4画素としての16個のPD47で受光される。
 回路基板13は、例えば、Siで構成されるが、そのSiで構成される回路基板13のうちの、可視光センサ11の1画素としての1個のPD35を通過して狭帯域光センサ12の4×4画素としての16個のPD47で受光される光の光路との交点となる部分は、透明材料101である、例えば、SiO2で構成されている。
 したがって、可視光センサ11の1画素としての1個のPD35を通過した光は、回路基板13を透過するときに、透明材料101であるSiO2を透過するので、回路基板13を(ほぼ)減衰せずに透過して、狭帯域光センサ12で受光される。
 なお、図14において、狭帯域センサ12では、可視光センサ11の画素としてのPD35を構成するSi、及び、回路基板13の透明材料101であるSiO2を透過した光(狭帯域光)が受光される。したがって、図14において、狭帯域光センサ12で受光される光が透過するSi層は、可視光センサ11の画素としてのPD35を構成するSiの1層である。
 図14のイメージセンサ2では、可視光センサ11の1画素としての1個のPD35に対して、狭帯域光センサ12の4×4画素としての16個のPD47が設けられているので、最大で、16種類の狭帯域の狭帯域光に対応する狭帯域画像としてのマルチスペクトルデータを取得することができる。
 ここで、図14のイメージセンサ2において、狭帯域光センサ12の4×4画素に対する、可視光センサ11の1画素は、可視光センサ11の、緑色のカラーフィルタを透過した光を受光する1個のG画素である。
 したがって、図14のイメージセンサ2では、狭帯域光センサ12の画素としてのPD47は、G画素を透過した光、すなわち、緑色のカラーフィルタを透過した光(さらには、可視光センサ11の画素としてのPD35を構成するSi、及び、狭帯域フィルタ42を透過した光である狭帯域光)を受光する。
 <イメージセンサ2の第6の構成例>
 図15は、イメージセンサ2の第6の構成例の概略を示す斜視図である。
 なお、図中、図14の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 図15のイメージセンサ2では、図14と同様に、第1層基板は可視光センサ11に、第2層は回路基板13に、第3層基板は狭帯域光センサ12に、それぞれなっている。
 また、図15のイメージセンサ2の第6の構成例では、図14と同様に、可視光センサ11の1画素に対して、狭帯域光センサ12の、複数としての4×4画素としての16個のPD47が設けられている。
 但し、図15では、狭帯域光センサ12の4×4画素としての16個のPD47に対する可視光センサ11の1画素は、PD35ではなく、透明材料112である、例えば、SiO2になっている。
 さらに、透明材料112であるSiO2になっている可視光センサ11の1画素に対するカラーフィルタは、ベイヤ配列を構成するRフィルタ、Gフィルタ、Bフィルタのいずれでもない、白色の(光を透過する)カラーフィルタ(以下、W(White)フィルタともいう)111になっている。
 すなわち、図15において、狭帯域光センサ12の4×4画素としての16個のPD47に対する可視光センサ11の1画素のカラーフィルタは、本来、ベイヤ配列のGフィルタであるが、そのGフィルタの部分が、Wフィルタ111に加工されている。
 また、図14では、回路基板13の、狭帯域光センサ12で受光される光(図中、矢印で示す)の光路との交点の部分が、透明材料101であるSiO2で構成されているが、図15では、透明材料101であるSiO2では構成されておらず、Siで構成される。
 以上のように構成される図15のイメージセンサ2では、OCCF32のRフィルタ、Gフィルタ、又は、Bフィルタを透過した光は、可視光センサ11の画素としてのPD35で受光される。
 また、OCCF32のWフィルタ111を透過した光は、可視光センサ11の画素としての透明材料112であるSiO2を透過し、回路基板13に入射する。
 回路基板13に入射した光は、その回路基板13を構成するSiを透過し、狭帯域フィルタ42を介して、狭帯域光となって、狭帯域光センサ12の4×4画素としての16個のPD47それぞれで受光される。
 図15のイメージセンサ2では、可視光センサ11の1画素としての透明材料112であるSiO2に対して、狭帯域光センサ12の4×4画素としての16個のPD47が設けられているので、図14の場合と同様に、最大で、16種類の狭帯域の狭帯域光に対応する狭帯域画像としてのマルチスペクトルデータを取得することができる。
 なお、図15において、狭帯域センサ12では、可視光センサ11の画素としての透明材料112であるSiO2、及び、回路基板13を構成するSiを透過した光(狭帯域光)が受光される。したがって、図15において、狭帯域光センサ12で受光される光が透過するSi層は、回路基板13を構成するSiの1層である。
 また、図15のイメージセンサ2において、狭帯域光センサ12の4×4画素に対する、可視光センサ11の1画素としての透明材料112であるSiO2は、OCCF32のWフィルタ111を透過した光を透過する。
 したがって、図15のイメージセンサ2では、狭帯域光センサ12の画素としてのPD47は、Wフィルタ111を透過した光(さらには、可視光センサ11の画素としての透明材料112であるSiO2、回路基板13を構成するSi、及び、狭帯域フィルタ42を透過した光である狭帯域光)を受光する。
 <イメージセンサ2の第7の構成例>
 図16は、イメージセンサ2の第7の構成例を示す断面図である。
 なお、図中、図11の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 図16では、可視光センサ11の半導体層34には、画素としてのPD35か、又は、PD35に代えて、透過率が高い透明材料121である、例えば、SiO2が形成されている。すなわち、半導体層34において、狭帯域センサ12の画素としてのPD47に対応する可視光センサ11の画素の部分が開口され、その開口が透明材料121であるSiO2で埋められている。
 さらに、図16では、OCCF32のうちの、可視光センサ11の画素としての透明材料121であるSiO2に対応する部分は、ベイヤ配列の本来の色のカラーフィルタに代えて、Wフィルタ122になっている。
 以上のように構成される図16のイメージセンサ2では、可視光センサ11の1画素としてのPD35には、OCCF32のRフィルタ、Gフィルタ、又は、Bフィルタを透過した光が入射して受光される。
 また、可視光センサ11の1画素としての透明材料121であるSiO2には、Wフィルタ122を透過した光L11やL12が入射して透過する。透明材料121であるSiO2を透過した光L11及びL12は、それぞれ別個の狭帯域フィルタ42を透過して、狭帯域光センサ12の別個の画素としてのPD47で受光される。
 ここで、例えば、図5のイメージセンサ2では、狭帯域フィルタ42に入射する光は、例えば、可視光センサ11の1画素としてのPD35を構成するSiを透過した光であるので、そのSiにおいて、長波長でない光は吸収される。その結果、狭帯域光センサ12の画素としてのPD47で受光することができる狭帯域光は、可視光センサ11の1画素としてのPD35を構成するSiで吸収されなかった長波長の光の範囲に制限される。
 一方、図16のイメージセンサ2では、狭帯域フィルタ42に入射する光は、Wフィルタ122、及び、透明材料121であるSiO2を透過した光であり、例えば、図5の場合のように、Siで吸収される光はない。その結果、狭帯域光センサ12の画素としてのPD47で受光することができる狭帯域光は、狭帯域フィルタ42に入射する光、すなわち、例えば、紫外光から赤外光までの広帯域の光の中から選択することができる。
 したがって、狭帯域フィルタ42に入射する光が、Siを透過した光である、例えば、図5のイメージセンサ2は、長波長の光の中から、狭帯域光センサ12で受光する狭帯域光の選択が可能な、長波長対応型のイメージセンサである、ということができる。
 一方、狭帯域フィルタ42に入射する光が、Wフィルタ122、及び、透明材料121であるSiO2を透過した光である図16のイメージセンサ2は、広帯域の光の中から、狭帯域光センサ12で受光する狭帯域光の選択が可能な、全波長対応型のイメージセンサである、ということができる。
 図17は、図16のイメージセンサ2の第7の構成例の概略を示す斜視図である。
 なお、図中、図12の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 イメージセンサ2の第7の構成例では、可視光センサ11の画素の一部が、PD35ではなく、透明材料121であるSiO2になっており、その画素に対する、ベイヤ配列のOCCF32のカラーフィルタが、ベイヤ配列の本来の色のカラーフィルタではなく、Wフィルタ122になっている。
 そして、水平方向及び垂直方向のそれぞれについて、可視光センサ11の1画素としての透明材料121であるSiO2に対して、狭帯域光センサ12の2画素としての2個のPD47が設けられている。
 したがって、イメージセンサ2の第7の構成例では、図17に示すように、可視光センサ11の1画素としての透明材料121であるSiO2に対して、狭帯域光センサ12の2×2画素としての4個のPD47が設けられている。
 これにより、可視光センサ11の1画素としての透明材料121であるSiO2を透過した光は、その1画素に対して設けられた、狭帯域光センサ12の2×2画素としての4個のPD47で受光される。
 可視光センサ11の1画素としての1個のPD35に対して設けられた、狭帯域光センサ12の2×2画素としての4個のPD47それぞれに対しては、個別の狭帯域フィルタ42が設けられている。
 以上のように構成される図17のイメージセンサ2では、可視光センサ11の画素としてのPD35には、OCCF32のRフィルタ、Gフィルタ、又は、Bフィルタを透過した光が入射して受光される。
 また、可視光センサ11の画素としての透明材料121であるSiO2には、Wフィルタ122を透過した光が入射して透過する。透明材料121であるSiO2を透過した光は、狭帯域フィルタ42を介して、狭帯域光となり、可視光センサ11の画素としての透明材料121であるSiO2に対して設けられた、狭帯域光センサ12の2×2画素としての4個のPD47それぞれで受光される。
 Wフィルタ122、及び、透明材料121であるSiO2を透過した光は、広帯域の光、すなわち、イメージセンサ2に入射する光と同様のスペクトル成分を有する光であるので、狭帯域光センサ12では、そのような広帯域の光の中から、狭帯域フィルタ42を透過させる狭帯域光を選択して受光することができる。
 <イメージセンサ2の第8の構成例>
 図18は、イメージセンサ2の第8の構成例の概略を示す斜視図である。
 なお、図中、図13の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 また、以下では、説明を簡単にするため、可視光センサ11を第1層基板とし、狭帯域光センサ12を第2層基板とし、回路基板13を第3層基板とすることとする。さらに、以下では、第3層基板の回路基板13については、図示を省略する。
 イメージセンサ2の第8の構成例では、可視光センサ11の、R画素としての1個のPD35に対して、狭帯域光センサ12の、複数としての4×4画素としての16個のPD47が設けられている。
 これにより、可視光センサ11のR画素としての1個のPD35を透過した光は、そのR画素に対して設けられた、狭帯域光センサ12の4×4画素としての16個のPD47で受光される。
 可視光センサ11のR画素としての1個のPD35に対して設けられた、狭帯域光センサ12の4×4画素としての16個のPD47それぞれに対しては、個別の狭帯域フィルタ42が設けられている。
 図18のイメージセンサ2では、可視光センサ11のR画素としての1個のPD35を通過した光は、狭帯域フィルタ42を介して、狭帯域光となり、その可視光センサ11のR画素としての1個のPD35に対して設けられた、狭帯域光センサ12の4×4画素としての16個のPD47それぞれで受光される。
 以上のように、図18のイメージセンサ2では、R画素としてのPD35を透過した光が、狭帯域フィルタ42を透過し、その結果得られる狭帯域光が、狭帯域光センサ12の4×4画素で受光される。
 そのため、狭帯域光センサ12では、可視光センサ11のR画素としてのPD35を透過した光を対象として、その光の中から、狭帯域フィルタ42を透過させる狭帯域光を選択して受光することができる。
 ここで、図18のイメージセンサ2の第8の構成例では、狭帯域光センサ12は、可視光センサ11のR画素としてのPD35を透過した光、すなわち、OCCF32のRフィルタを透過した光のうちの狭帯域フィルタ42を透過した狭帯域光を受光する。
 したがって、図18のイメージセンサ2では、狭帯域光センサ12が受光する狭帯域光は、OCCF32のRフィルタを透過した光の中から選択することができるので、例えば、波長が600nm程度以上の光から赤外光までの範囲の狭帯域光を受光する場合に有効である。
 また、例えば、図6のイメージセンサ2の第1の構成例では、上述したように、狭帯域光センサ12は、可視光センサ11のG画素としてのPD35を透過した光、すなわち、OCCF32のGフィルタを透過した光のうちの狭帯域フィルタ42を透過した狭帯域光を受光する。
 したがって、図6のイメージセンサ2では、狭帯域光センサ12が受光する狭帯域光は、OCCF32のGフィルタを透過した光の中から選択することができるので、図7に示した検出項目のうちの、例えば、葉緑素や、ベータカロチン、ヘモグロビン等を検出するための狭帯域光を受光する場合に有効である。
 なお、図6や図18のイメージセンサ2と同様にして、狭帯域光センサ12が、可視光センサ11のB画素としてのPD35を透過した光のうちの狭帯域フィルタ42を透過した狭帯域光を受光するイメージセンサ(以下、B画素対象センサともいう)を構成することができる。
 但し、B画素対象センサでは、可視光センサ11のB画素としてのPD35を透過した光は、そのB画素としてのPD35に入射する前に、OCCF32のBフィルタを透過しているので、B画素としてのPD35を構成するSiを透過することができる長波長の光を(ほとんど)含んでいない。
 したがって、B画素対象センサでは、PD35を構成するSiを透過する光がほとんどないため、狭帯域光センサ12において、十分な強度の光を受光することは難しい。
 <イメージセンサ2の第9の構成例>
 図19は、イメージセンサ2の第9の構成例の概略を示す斜視図である。
 なお、図中、図17の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 イメージセンサ2の第9の構成例では、ベイヤ配列のOCCF32の一部のカラーフィルタが、ベイヤ配列の本来の色のカラーフィルタではなく、Wフィルタ131になっている。
 そして、可視光センサ11の、Wフィルタ131に対する画素、すなわち、Wフィルタ131を透過した光を受光するW画素としてのPD35に対して、狭帯域光センサ12の2×2画素としての4個のPD47が設けられている。
 これにより、可視光センサ11のW画素としてのPD35を透過した光は、そのW画素に対して設けられた、狭帯域光センサ12の2×2画素としての4個のPD47で受光される。
 可視光センサ11のW画素としてのPD35に対して設けられた、狭帯域光センサ12の2×2画素としての4個のPD47それぞれに対しては、個別の狭帯域フィルタ42が設けられている。
 以上のように構成される図19のイメージセンサ2では、可視光センサ11のR画素、G画素、又は、B画素としてのPD35には、OCCF32のRフィルタ、Gフィルタ、又は、Bフィルタを透過した光が入射して受光される。
 また、可視光センサ11のW画素としてのPD35には、Wフィルタ131を透過した光が入射して受光される。
 また、可視光センサ11のW画素としてのPD35では、Wフィルタ131を透過した光の一部が透過する。可視光センサ11のW画素としてのPD35(を構成するSi)を透過した光は、狭帯域フィルタ42を介して、狭帯域光となり、可視光センサ11のW画素としてのPD35に対して設けられた、狭帯域光センサ12の2×2画素としての4個のPD47それぞれで受光される。
 以上のように、図19のイメージセンサ2では、狭帯域光センサ12において、Wフィルタ131、及び、W画素としてのPD35を構成するSi(さらには、狭帯域フィルタ42)を透過した光が受光される。
 したがって、狭帯域光センサ12において、RフィルタとR画素としてのPD35、GフィルタとG画素としてのPD35、又は、BフィルタとB画素としてのPD35を透過した光を受光する場合に比較して、減衰の少ない狭帯域光を受光すること、すなわち、狭帯域光の高感度の受光を行うことができる。
 なお、図19のイメージセンサ2では、狭帯域光センサ12が受光する狭帯域光は、Wフィルタ131、及び、W画素としてのPD35を構成するSiを透過した光から選択することができるので、W画素としてのPD35を構成するSiの厚さにもよるが、例えば、波長が550nm程度以上の光から赤外光までの範囲の狭帯域光を受光する場合に有効である。
 <イメージセンサ2の第10の構成例>
 図20は、イメージセンサ2の第10の構成例の概略を示す斜視図である。
 なお、図中、図17の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 イメージセンサ2の第10の構成例では、可視光センサ11の画素の一部が、PD35ではなく、透明材料141である、例えば、SiO2になっている。図20では、ベイヤ配列のOCCF32の、例えば、一部のGフィルタに対する画素(G画素)が、透明材料141になっている。
 そして、可視光センサ11の1画素としての透明材料141であるSiO2に対して、狭帯域光センサ12の2×2画素としての4個のPD47が設けられている。
 これにより、可視光センサ11の画素としての透明材料141であるSiO2を透過した光は、その画素に対して設けられた、狭帯域光センサ12の2×2画素としての4個のPD47で受光される。
 可視光センサ11の画素としてのPD35に対して設けられた、狭帯域光センサ12の2×2画素としての4個のPD47それぞれに対しては、個別の狭帯域フィルタ42が設けられている。
 以上のように構成される図20のイメージセンサ2では、可視光センサ11の画素としてのPD35には、OCCF32のRフィルタ、Gフィルタ、又は、Bフィルタを透過した光が入射して受光される。
 また、可視光センサ11の画素としての透明材料141であるSiO2では、その画素に対するGフィルタを透過した光が入射して透過する。透明材料141であるSiO2を透過した光は、狭帯域フィルタ42を介して、狭帯域光となり、可視光センサ11の画素としての透明材料141であるSiO2に対して設けられた、狭帯域光センサ12の2×2画素としての4個のPD47それぞれで受光される。
 したがって、図20のイメージセンサ2では、狭帯域光センサ12が受光する狭帯域光は、OCCF32のGフィルタを透過した光の中から選択することができるので、図7に示した検出項目のうちの、例えば、葉緑素や、ベータカロチン、ヘモグロビン等を検出するための狭帯域光を受光する場合に有効である。
 さらに、狭帯域光センサ12が受光する狭帯域光は、Gフィルタを透過した後に、可視光センサ11の画素としての透明材料141であるSiO2を透過した光であるので、狭帯域光センサ12が、Gフィルタを透過した後に、光センサ11の画素としてのPD35を構成するSiを透過した光を受光する図6の場合に比較して、そのSiによる光の吸収がない分、狭帯域光の高感度の受光を行うことができる。
 <イメージセンサ2の第11の構成例>
 図21は、イメージセンサ2の第11の構成例の概略を示す斜視図である。
 なお、図中、図20の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 イメージセンサ2の第11の構成例では、可視光センサ11の画素の一部が、PD35ではなく、透明材料151である、例えば、SiO2になっている。図21では、ベイヤ配列のOCCF32の、例えば、一部のRフィルタに対する画素(R画素)が、透明材料151になっている。
 そして、可視光センサ11の1画素としての透明材料151であるSiO2に対して、狭帯域光センサ12の4×4画素としての16個のPD47が設けられている。
 これにより、可視光センサ11の画素としての透明材料151であるSiO2を透過した光は、その画素に対して設けられた、狭帯域光センサ12の4×4画素としての16個のPD47で受光される。
 可視光センサ11の画素としての透明材料151であるSiO2に対して設けられた、狭帯域光センサ12の4×4画素としての16個のPD47それぞれに対しては、個別の狭帯域フィルタ42が設けられている。
 以上のように構成される図21のイメージセンサ2では、可視光センサ11の画素としてのPD35には、OCCF32のRフィルタ、Gフィルタ、又は、Bフィルタを透過した光が入射して受光される。
 また、可視光センサ11の画素としての透明材料151であるSiO2では、その画素に対するRフィルタを透過した光が入射して透過する。透明材料151であるSiO2を透過した光は、狭帯域フィルタ42を介して、狭帯域光となり、可視光センサ11の画素としての透明材料151であるSiO2に対して設けられた、狭帯域光センサ12の4×4画素としての16個のPD47それぞれで受光される。
 したがって、図21のイメージセンサ2では、狭帯域光センサ12が受光する狭帯域光は、OCCF32のRフィルタを透過した光の中から選択することができるので、例えば、波長が600nm程度以上の光から赤外光までの範囲の狭帯域光を受光する場合に有効である。
 さらに、狭帯域光センサ12が受光する狭帯域光は、Rフィルタを透過した後に、可視光センサ11の画素としての透明材料151であるSiO2を透過した光であるので、狭帯域光センサ12が、Rフィルタを透過した後に、光センサ11の画素としてのPD35を構成するSiを透過した光を受光する図18の場合に比較して、そのSiによる光の吸収がない分、狭帯域光の高感度の受光を行うことができる。
 <イメージセンサ2の第12の構成例>
 図22は、イメージセンサ2の第12の構成例の概略を示す斜視図である。
 なお、図中、図20の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 イメージセンサ2の第12の構成例では、可視光センサ11の画素の一部が、PD35ではなく、透明材料161である、例えば、SiO2になっている。図22では、ベイヤ配列のOCCF32の、例えば、一部のBフィルタに対する画素(B画素)が、透明材料161になっている。
 そして、可視光センサ11の1画素としての透明材料161であるSiO2に対して、狭帯域光センサ12の2×2画素としての4個のPD47が設けられている。
 これにより、可視光センサ11の画素としての透明材料161であるSiO2を透過した光は、その画素に対して設けられた、狭帯域光センサ12の2×2画素としての4個のPD47で受光される。
 可視光センサ11の画素としての透明材料161であるSiO2に対して設けられた、狭帯域光センサ12の2×2画素としての4個のPD47それぞれに対しては、個別の狭帯域フィルタ42が設けられている。
 以上のように構成される図22のイメージセンサ2では、可視光センサ11の画素としてのPD35には、OCCF32のRフィルタ、Gフィルタ、又は、Bフィルタを透過した光が入射して受光される。
 また、可視光センサ11の画素としての透明材料161であるSiO2には、その画素に対するBフィルタを透過した光が入射して透過する。透明材料161であるSiO2を透過した光は、狭帯域フィルタ42を介して、狭帯域光となり、可視光センサ11の画素としての透明材料161であるSiO2に対して設けられた、狭帯域光センサ12の2×2画素としての4個のPD47それぞれで受光される。
 したがって、図22のイメージセンサ2では、狭帯域光センサ12が受光する狭帯域光は、OCCF32のBフィルタを透過した光の中から選択することができるので、例えば、紫外光から、波長が500nm程度以下の光までの範囲の狭帯域光を受光する場合、すなわち、図7に示した検出項目のうちの、例えば、ベータカロチン、葉緑素、人肌関連の表皮、毛穴等を検出(観察)するための狭帯域光を受光する場合に有効である。
 <イメージセンサ2の第13の構成例>
 図23は、イメージセンサ2の第13の構成例の概略を示す斜視図である。
 なお、図中、図19の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 図23のイメージセンサ2は、図19のイメージセンサ2と同様に構成される。
 但し、図19のイメージセンサ2では、上述したように、ベイヤ配列のOCCF32が採用され、そのベイヤ配列のOCCF32の一部のカラーフィルタが、ベイヤ配列の本来の色のカラーフィルタではなく、Wフィルタになっている。
 これに対して、図23のイメージセンサ2では、元々、Wフィルタを有する配列のOCCF32が採用されている。
 したがって、図19のイメージセンサ2では、ベイヤ配列のOCCF32の一部を、Wフィルタに変更する加工を行う必要があるが、図23のイメージセンサ2では、元々、Wフィルタを有する配列のOCCF32が採用されているので、OCCF32を加工する必要はない。
 図23のイメージセンサ23では、可視光センサ11の、Wフィルタに対する画素、すなわち、Wフィルタを透過した光を受光するW画素としてのPD35に対して、狭帯域光センサ12の2×2画素としての4個のPD47が設けられている。
 さらに、可視光センサ11のW画素としてのPD35に対して設けられた、狭帯域光センサ12の2×2画素としての4個のPD47それぞれに対しては、個別の狭帯域フィルタ42が設けられている。
 以上のように構成される図23のイメージセンサ2では、可視光センサ11のR画素、G画素、B画素、又は、W画素としてのPD35には、OCCF32のRフィルタ、Gフィルタ、Bフィルタ、又は、Wフィルタを透過した光が入射して受光される。
 また、可視光センサ11の(一部又は全部の)W画素としてのPD35では、Wフィルタを透過した光の一部が透過する。可視光センサ11のW画素としてのPD35(を構成するSi)を透過した光は、狭帯域フィルタ42を介して、狭帯域光となり、可視光センサ11のW画素としてのPD35に対して設けられた、狭帯域光センサ12の2×2画素としての4個のPD47それぞれで受光される。
 図23のイメージセンサ2では、狭帯域光センサ12において、Wフィルタを透過した光から得られる狭帯域光が受光されるので、Rフィルタ、Gフィルタ、又は、Bフィルタを透過した光から得られる狭帯域光を受光する場合に比較して、広帯域の光から、狭帯域光センサ12で受光する狭帯域光を選択することができる。
 さらに、図23のイメージセンサ2では、可視光センサ11が、Wフィルタを透過した光を受光するPD35を有するので、例えば、Wフィルタ122を透過した光を受光するPD35に代えて、透明材料121であるSiO2が設けられている図17のイメージセンサ2に比較して、高画質の通常画像を得ることができる。
 以上のように、Wフィルタを有する配列のOCCF32を採用する図23のイメージセンサ2では、広帯域の光から、狭帯域光センサ12で受光する狭帯域光を選択することができるとともに、高画質の通常画像を得ることができるので、Wフィルタを有する配列のOCCF32は、可視光センサ11と狭帯域光センサ12とが積層されたイメージセンサ2と整合性(相性)が良い。
 図24は、Wフィルタを有するOCCFの既存の配列(CFA(Color filter Array))の例を示す図である。
 OCCF32としては、図24に示したWフィルタを有する配列のOCCFは勿論、その他の、Wフィルタを有する任意の配列のOCCFを採用することができる。
 <イメージセンサ2の第14の構成例>
 図25は、イメージセンサ2の第14の構成例の概略を示す斜視図である。
 なお、図中、図17又は図23の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 図25のイメージセンサ2は、図17のイメージセンサ2と同様に構成される。
 但し、図17のイメージセンサ2では、上述したように、ベイヤ配列のOCCF32が採用され、そのベイヤ配列のOCCF32の一部のカラーフィルタが、ベイヤ配列の本来の色のカラーフィルタではなく、Wフィルタになっている。
 これに対して、図25のイメージセンサ2では、図23の場合と同様に、元々、Wフィルタを有する配列のOCCF32が採用されている。
 したがって、図17のイメージセンサ2では、ベイヤ配列のOCCF32の一部を、Wフィルタに加工する必要があるが、図25のイメージセンサ2では、元々、Wフィルタを有する配列のOCCF32が採用されているので、OCCF32を加工する必要はない。
 また、図25のイメージセンサ2では、図17の場合と同様に、OCCF32の(一部又は全部の)Wフィルタに対する可視光センサ11の画素が、PD35ではなく、透明材料121であるSiO2になっており、その可視光センサ11の、Wフィルタに対するW画素としての透明材料171である、例えばSiO2に対して、狭帯域光センサ12の2×2画素としての4個のPD47が設けられている。
 以上のように構成される図25のイメージセンサ2では、可視光センサ11のR画素、G画素、B画素、又は、W画素としてのPD35には、OCCF32のRフィルタ、Gフィルタ、Bフィルタ、又は、Wフィルタを透過した光が入射して受光される。
 また、可視光センサ11のW画素としての透明材料171であるSiO2では、Wフィルタを透過した光が透過する。可視光センサ11のW画素としての透明材料171であるSiO2を透過した光は、狭帯域フィルタ42を介して、狭帯域光となり、可視光センサ11のW画素としての透明材料171であるSiO2に対して設けられた、狭帯域光センサ12の2×2画素としての4個のPD47それぞれで受光される。
 したがって、図25のイメージセンサ2では、可視光センサ11のW画素としての透明材料171であるSiO2の分だけ、可視光センサ11で得られる通常画像の画質が劣化する。
 しかしながら、図25のイメージセンサ2では、狭帯域光センサ12において、可視光センサ11の画素としてのPD35を構成するSiを透過した光ではなく、透明材料171であるSiO2を透過した光から得られる狭帯域光が受光されるので、光がSiを透過することによる減衰がない分だけ、狭帯域光の高感度の受光を行うことができる。
 <イメージセンサ2の第15の構成例>
 図26は、イメージセンサ2の第15の構成例の概略を示す斜視図である。
 なお、図中、図20の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 イメージセンサ2の第15の構成例では、可視光センサ11の画素の一部が、PD35ではなく、透明材料181である、例えば、SiO2になっている。図26では、例えば、図20の場合と同様に、ベイヤ配列のOCCF32の一部のGフィルタに対する画素(G画素)が、透明材料181になっている。
 そして、可視光センサ11の1画素としての透明材料181であるSiO2に対して、狭帯域光センサ12の4×4画素としての16個のPD47が設けられている。
 これにより、可視光センサ11の画素としての透明材料181であるSiO2を透過した光は、その画素に対して設けられた、狭帯域光センサ12の4×4画素としての16個のPD47で受光される。
 可視光センサ11の画素としての透明材料181であるSiO2に対して設けられた、狭帯域光センサ12の4×4画素としての16個のPD47それぞれに対しては、個別の狭帯域フィルタ42が設けられている。
 以上のように構成される図26のイメージセンサ2では、可視光センサ11の画素としてのPD35には、OCCF32のRフィルタ、Gフィルタ、又は、Bフィルタを透過した光が入射して受光される。
 また、可視光センサ11の画素としての透明材料181であるSiO2には、その画素に対するGフィルタを透過した光が入射して透過する。透明材料181であるSiO2を透過した光は、狭帯域フィルタ42を介して、狭帯域光となり、可視光センサ11の画素としての透明材料181であるSiO2に対して設けられた、狭帯域光センサ12の4×4画素としての16個のPD47それぞれで受光される。
 ここで、可視光センサ11の画素と、狭帯域光センサ12の画素とが、例えば、同一のサイズの画素であることとすると、図26のイメージセンサ2では、狭帯域光センサ12で受光される光の面積は、その光が可視光センサ12を透過したときの面積よりも大になる。
 すなわち、図26のイメージセンサ2では、可視光センサ11の1画素としての透明材料181であるSiO2を透過した光が、狭帯域光センサ12の4×4画素としての16個のPD47それぞれで受光されるので、可視光センサ11の画素と、狭帯域光センサ12の画素とが、同一のサイズの画素である場合には、狭帯域光センサ12で受光される光の面積は、その光が可視光センサ12を透過したときの面積の4×4倍(以上)になる。
 言い換えれば、可視光センサ11の画素と、狭帯域光センサ12の画素とが、同一のサイズの画素である場合において、可視光センサ11の1画素としての透明材料181であるSiO2を透過した光が、狭帯域光センサ12の4×4画素としての16個のPD47それぞれで受光されるには、狭帯域光センサ12で受光される光の面積は、その光が可視光センサ12を透過したときの面積の4×4倍(以上)になっている必要がある。
 図26のイメージセンサ2では、狭帯域光センサ12で受光される光の面積が、その光が可視光センサ12を透過したときの面積の少なくとも4×4倍になるように、可視光センサ11の画素としての透明材料181と、狭帯域光センサ12の画素としてのPD47との間の距離、その他の位置関係が設定されている。
 狭帯域光センサ12で受光される光の面積が、その光が可視光センサ12を透過したときの面積よりも大である場合には、イメージセンサ2の光軸に対して(ほぼ)平行な方向から入射する光の他、イメージセンサ2の光軸に対してある程度傾いた斜め方向から入射する光を、下層側の狭帯域光センサ12で受光することが可能となるので、狭帯域光の高感度の受光を行うことが可能になる。
 なお、可視光センサ11の1画素としての透明材料181であるSiO2に対して設ける狭帯域光センサ12の画素の数は、4×4画素に限定されるものではなく、例えば、必要な検出項目等に基づいて、任意の数を採用することができる。
 <イメージセンサ2の第16の構成例>
 図27は、イメージセンサ2の第16の構成例の概略を示す斜視図である。
 なお、図中、図20の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 図27のイメージセンサ2は、図20と同様に構成される。
 すなわち、図27のイメージセンサ2では、可視光センサ11の一部のG画素が、PD35ではなく、透明材料191である、例えば、SiO2になっている。
 さらに、可視光センサ11の1画素としての透明材料191であるSiO2に対して、狭帯域光センサ12の2×2画素としての4個のPD47が設けられ、その狭帯域光センサ12の2×2画素としての4個のPD47それぞれに対しては、個別の狭帯域フィルタ42が設けられている。
 図27では(図20でも同様)、可視光センサ11の4×4画素の中の1個のG画素が、透明材料191であるSiO2になっており、その1個のG画素に対して、狭帯域光センサ12の2×2画素としての4個のPD47が設けられている。
 ここで、可視光センサ11において、透明材料191であるSiO2になっているG画素を、G画素191と記載することとすると、ある位置PのG画素191に対して設けられた狭帯域光センサ12の2×2画素としての4個のPD47が受光する狭帯域光の帯域と、他の位置P'のG画素191に対して設けられた狭帯域光センサ12の2×2画素としての4個のPD47が受光する狭帯域光の帯域とは、同一の帯域とすることもできるし、異なる帯域とすることもできる。
 すなわち、位置PのG画素191に対して設けられた狭帯域光センサ12の2×2画素としての4個のPD47が受光する4つの狭帯域光の帯域を、それぞれb1,b2,b3,b4と表すとともに、他の位置P'のG画素191に対して設けられた狭帯域光センサ12の2×2画素としての4個のPD47が受光する4つの狭帯域光の帯域を、それぞれ、b1',b2',b3',b4'と表すこととする。
 位置Pについての帯域b1ないしb4は、他の位置P'についての帯域b1'ないしb4'とそれぞれ同一にすることができる。また、位置Pについての帯域b1ないしb4のうちの1以上の帯域それぞれは、他の位置P'についての帯域b1'ないしb4'のうちの1以上の帯域それぞれと異なる帯域とすることができる。
 図27では、位置Pについての帯域b1ないしb4のうちの1以上の帯域それぞれは、他の位置P'についての帯域b1'ないしb4'のうちの1以上の帯域それぞれと異なる帯域になっている。
 そのため、図27では、狭帯域フィルタ42は、位置によって異なっている。すなわち、位置PのG画素191に対して設けられた狭帯域光センサ12の2×2画素としての4個のPD47それぞれに対する狭帯域フィルタ42(の組み合わせ)と、他の位置P'のG画素191に対して設けられた狭帯域光センサ12の2×2画素としての4個のPD47それぞれに対する狭帯域フィルタ42(の組み合わせ)とは、通過帯域(の組み合わせ)が異なっている。
 図27のイメージセンサ2によれば、狭帯域光センサ12の位置(狭帯域センサ12でセンシング(撮影)される狭帯域画像の位置)によって異なる帯域の狭帯域光(スペクトル(画像))を受光することができる。
 以上のように、狭帯域光センサ12の位置によって異なる帯域の狭帯域光を受光する場合には、狭帯域光センサ12の受光面を、複数の領域に分け、その領域ごとに、異なる帯域の狭帯域光を受光することができる。
 図28は、複数の領域に分けられた狭帯域光センサ12の受光面の例を模式的に示す図である。
 図28では、狭帯域光センサ12の受光面は、水平方向及び垂直方向のそれぞれに2等分され、左上、左下、右上、及び、右下の4個の領域に分けられている。
 そして、左上の領域は、葉緑素を検出する狭帯域光を受光する葉緑素検出領域になっており、左下の領域は、オレイン酸を検出する狭帯域光を受光するオレイン酸検出領域になっている。また、右上の領域は、水分を検出する狭帯域光を受光する水分検出領域になっており、右下の領域は、糖分を検出する狭帯域光を受光する糖分検出領域になっている。
 狭帯域光センサ12の受光面を、図28に示した複数としての4個の領域に分けて、狭帯域光を受光することにより、複数の検出項目、すなわち、図28では、葉緑素、オレイン酸、水分、及び、糖分を、同時に検出することができる。
 以上のように、狭帯域光センサ12の受光面を、図28に示した4個の領域に分けたディジタルカメラ10を、例えば、図4で説明したように、トマト畑の監視カメラとして使用した場合には、トマトについて、葉緑素、オレイン酸、水分、及び、糖分を、同時に監視することができる。
 図29は、複数の領域に分けられた狭帯域光センサ12の受光面の他の例を模式的に示す図である。
 図29では、狭帯域光センサ12の受光面は、その受光面としての矩形の重心を中心とする所定半径の円によって、その所定半径の円内の領域と、円外の領域との2個の領域に分けられている。
 そして、円内の領域は、オレイン酸を検出する狭帯域光を受光するオレイン酸検出領域になっており、円外の領域は、葉緑素を検出する狭帯域光を受光する葉緑素検出領域になっている。
 なお、狭帯域光センサ12の受光面の分け方は、特に限定されるものではなく、狭帯域光センサ12の受光面は、例えば、ディジタルカメラ10の用途その他に応じて、任意の領域に分けることができる。
 <イメージセンサ2の第17の構成例>
 図30は、イメージセンサ2の第17の構成例の概略を示す斜視図である。
 なお、図中、図13の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 図30のイメージセンサ2は、図13の場合と同様に構成される。
 但し、図13のイメージセンサ2では、OCCF32の色の配列が、ベイヤ配列になっているのに対して、図30のイメージセンサ2では、OCCF32の色の配列が、ベイヤ配列ではなく、Quadra配列になっている。
 Quadra配列では、R,G,Bの3色の各色のカラーフィルタが、2×2画素の単位で並んでいる。
 図30では、図13の場合と同様に、可視光センサ11の、複数としての2×2画素としての4個のPD35に対して、狭帯域光センサ12の、複数としての4×4画素としての16個のPD47が設けられている。
 また、図30では、狭帯域光センサ12の4×4画素に対する、可視光センサ11の2×2画素は、可視光センサ11の、2×2画素のG画素(Gフィルタを透過した光を受光する画素)になっている。
 したがって、図30のイメージセンサ2では、2×2画素のG画素としてのPD35のそれぞれを透過した光が、いわばまとまって、狭帯域フィルタ42を透過し、その結果得られる狭帯域光が、狭帯域光センサ12の4×4画素で受光される。
 その結果、狭帯域光センサ12では、可視光センサ11の2×2画素のG画素のそれぞれを透過した光のまとまりを対象として、その光のまとまりの中から、狭帯域フィルタ42を透過させる狭帯域光を選択して受光することができる。
 また、狭帯域光センサ12では、可視光センサ11の2×2画素のG画素のそれぞれを透過した光のまとまりから得られる狭帯域光を受光するので、可視光センサ11の1画素を透過した光から得られる狭帯域光を受光する場合よりも、狭帯域光の高感度の受光を行うことができる。
 <イメージセンサ2の第18の構成例>
 図31は、イメージセンサ2の第18の構成例の概略を示す斜視図である。
 なお、図中、図30の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 図31のイメージセンサ2は、図30の場合と同様に構成される。
 但し、図30のイメージセンサ2では、OCCF32の色の配列が、Quadra配列になっているのに対して、図31のイメージセンサ2では、OCCF32の色の配列が、Quadra-White配列になっている。
 Quadra-White配列では、R,G,B,W(White)の4色の各色のカラーフィルタが、2×2画素の単位で並んでいる。
 図31では、図30と同様に、可視光センサ11の、複数としての2×2画素としての4個のPD35に対して、狭帯域光センサ12の、複数としての4×4画素としての16個のPD47が設けられている。
 また、図31では、狭帯域光センサ12の4×4画素に対する、可視光センサ11の2×2画素は、可視光センサ11の、2×2画素のW画素(Wフィルタを透過した光を受光する画素)になっている。
 したがって、図31のイメージセンサ2では、2×2画素のW画素としてのPD35のそれぞれを透過した光がまとまって、狭帯域フィルタ42を透過し、その結果得られる狭帯域光が、狭帯域光センサ12の4×4画素で受光される。
 その結果、狭帯域光センサ12では、可視光センサ11の2×2画素のW画素のそれぞれを透過した光のまとまりを対象として、その光のまとまりの中から、狭帯域フィルタ42を透過させる狭帯域光を選択して受光することができる。
 また、狭帯域光センサ12では、可視光センサ11の2×2画素のW画素のそれぞれを透過した光のまとまりから得られる狭帯域光を受光するので、可視光センサ11の1画素を透過した光から得られる狭帯域光を受光する場合よりも、狭帯域光の高感度の受光を行うことができる。
 ここで、例えば、図13に示したような、ベイヤ配列のOCCF32を採用したイメージセンサ2について、そのOCCF32の1箇所又は複数箇所を選択し、その選択した箇所の2×2画素のベイヤ配列の基本単位(左上が赤、右下が青、左下と右上が緑になっている2×2画素のカラーフィルタ)を、2×2画素のWフィルタに変更する加工を行うことでも、図31のイメージセンサ2と同様に、可視光センサ11の2×2画素のW画素のそれぞれを透過した光のまとまりを対象として、その光のまとまりの中から、狭帯域フィルタ42を透過させる狭帯域光を選択して受光することや、狭帯域光の高感度の受光を行うことができる。
 しかしながら、ベイヤ配列のOCCF32を採用したイメージセンサ2において、そのOCCF32のベイヤ配列の2×2画素の基本単位を、2×2画素のWフィルタに変更する加工を行う場合には、可視光センサ11において、Wフィルタに変更した2×2画素については、ベイヤ配列であれば得られるR,G、及び、Bそれぞれの光を受光することができなくなり、そのため、近接するR画素、G画素、又は、B画素から補間する必要が生じる。
 これに対して、元々、Wフィルタを有するQuadra-White配列のOCCF32を採用する図31のイメージセンサ2では、そのような補間を行う必要はない。
 図32は、Quadra配列と、Quadra-White配列とを示す図である。
 Quadra配列は、左上に、2×2画素のGフィルタを、左下に、2×2画素のBフィルタを、右上に、2×2画素のRフィルタを、右下に、2×2画素のGフィルタを、それぞれ配置した4×4画素のカラーフィルタを基本単位とする。
 Quadra-White配列は、左上に、2×2画素のWフィルタを、左下に、2×2画素のBフィルタを、右上に、2×2画素のRフィルタを、右下に、2×2画素のGフィルタを、それぞれ配置した4×4画素のカラーフィルタを基本単位とする。
 <イメージセンサ2の第19の構成例>
 図33は、イメージセンサ2の第19の構成例の概略を示す斜視図である。
 なお、図中、図18の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 図33のイメージセンサ2は、図18の場合と同様に構成される。
 但し、図33のイメージセンサ2は、狭帯域光センサ12の画素としてのPD47(を含む半導体層46)がInGaAs系の材料で構成される点で、PD47がSiで構成される図18の場合と異なる。
 以上のように、図33のイメージセンサ2では、狭帯域光センサ12の画素としてのPD47がInGaAs系の材料で構成されるので、PD47がSiで構成される場合に検出感度が下がる700nm程度以上の、例えば、0.9ないし2.6um程度の長波長の狭帯域光を、高感度で検出(受光)することができる。
 なお、狭帯域光センサ12の画素としてのPD47をInGaAs系の材料で構成する場合には、InGaAs系の材料のInとGaとの組成比を調整することで、PD47で受光する狭帯域光の波長を、例えば、1.5ないし3.0um程度の範囲で調整することができる。一般に、InGaAs系の材料のInの組成比を大にするほど、より長波長側までの検出(受光)が可能になる。長波長の狭帯域光を受光することができる場合には、水分等の検出が可能になる。
 <イメージセンサ2の第20の構成例>
 図34は、イメージセンサ2の第20の構成例の概略を示す斜視図である。
 なお、図中、図18の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 図34のイメージセンサ2は、図18の場合と同様に構成される。
 但し、図34のイメージセンサ2は、狭帯域光センサ12の画素としてのPD47が、PbS系、PbSe系、Ge系、 InAs系、InSb系、又は、HgCdTe系の材料で構成される点で、PD47がSiで構成される図18の場合と異なる。
 以上のように、図34のイメージセンサ2では、狭帯域光センサ12の画素としてのPD47が、PbS系、PbSe系、Ge系、InAs系、InSb系、又は、HgCdTe系の材料で構成されるので、PD47がSiで構成される場合と異なる波長の狭帯域光を、高感度で検出することができる。
 PD47を、PbS系、PbSe系、Ge系、InAs系、InSb系、及び、HgCdTe系の材料のうちのいずれで構成するかは、狭帯域光センサ12で検出(受光)したい狭帯域光の波長によって決定される。
 例えば、波長が1.0ないし1.6um程度の狭帯域光を検出したい場合には、PD47を、PbS系、PbSe系、又は、Ge系の材料で構成し、例えば、波長が1.0ないし5.5um程度の狭帯域光を検出したい場合には、PD47を、InAs系、又は、InSb系の材料で構成することができる。
 <イメージセンサ2の第21の構成例>
 図35は、イメージセンサ2の第21の構成例の概略を示す斜視図である。
 なお、図中、図17の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 図35のイメージセンサ2は、図17の場合と同様に構成される。
 但し、図35のイメージセンサ2は、狭帯域光センサ12の画素としてのPD47が、GaN系、InGaN系、又は、AlGaN系の材料で構成される点で、PD47がSiで構成される図17の場合と異なる。
 以上のように、図35のイメージセンサ2では、狭帯域光センサ12の画素としてのPD47が、GaN系、InGaN系、又は、AlGaN系の材料で構成されるので、PD47がSiで構成される場合と異なる波長の狭帯域光を、高感度で検出することができる。
 すなわち、PD47を、GaN系、InGaN系、又は、AlGaN系の材料で構成する場合には、狭帯域光センサ12において、紫外光から波長が400nm程度(0.2ないし0.4um程度)の光までの短波長の狭帯域光を検出することができる。
 以上のように、狭帯域光センサ12において、短波長の狭帯域光を検出(受光)する場合には、その短波長の狭帯域光が、狭帯域光センサ12の画素としてのPD47に十分な光強度(ある程度の光強度)で到達するように、そのPD47に対する可視光センサ11の画素は、透明材料121であるSiO2で構成し、その可視光センサ11の画素に対するOCCF32のカラーフィルタは、Wフィルタとすることが望ましい。
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。例えば、本実施の形態におけるWフィルタについては、Wフィルタに代えて、分光特性がWフィルタに比較的近い、黄色の(光を透過する)カラーフィルタ(Y(Yellow)フィルタ)を採用することができる。
 さらに、例えば、本実施の形態では、イメージセンサ2を、第1層基板ないし第3層基板の3個の基板で構成することとしたが、イメージセンサ2は、2個の基板、又は、4個や5個等の4個以上の基板を積層して構成することができる。
 また、本実施の形態では、イメージセンサ2を構成する複数の基板のうちの1個の基板を、可視光を受光する可視光センサ11とするとともに、他の1個の基板を、狭帯域光を受光する狭帯域光センサ12としたが、イメージセンサ2には、2個以上の可視光センサや、2個以上の狭帯域光センサを設けることができる。
 すなわち、イメージセンサ2は、例えば、上層から下層に向かって、1個目の可視光センサ、2個目の可視光センサ、1個目の狭帯域光センサ、及び、2個目の狭帯域光センサを積層した4層以上で構成することができる。この場合、例えば、単純に、1個目の可視光センサ、2個目の可視光センサ、1個目の狭帯域光センサ、及び、2個目の狭帯域光センサにおいて、光電変換を行う画素の位置をずらし、上層から下層に、必要な光を透過させることで、最上層の1個目の可視光センサの他、それより下層の2個目の可視光センサ、1個目の狭帯域光センサ、及び、2個目の狭帯域光センサでも、必要な光を受光することができる。
 また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
 なお、本技術は、以下の構成をとることができる。
 <1>
 2層以上に積層された複数の基板を備え、
 前記複数の基板のうちの2個以上の基板は、光電変換を行う画素を有する基板であり、
 前記画素を有する基板の少なくとも1個の基板は、可視光を受光する可視光センサであり、
 前記画素を有する基板の少なくとも他の1個の基板は、狭帯域の波長帯の光を透過する光学フィルタである狭帯域フィルタを有し、前記狭帯域の光である狭帯域光を受光する狭帯域光センサである
 固体撮像装置。
 <2>
 前記狭帯域光センサは、異なる波長帯の光を透過する複数の前記狭帯域フィルタを有する
 <1>に記載の固体撮像装置。
 <3>
 前記可視光センサは、前記狭帯域光センサよりも、光が入射してくる方の上層に積層されている
 <1>又は<2>に記載の固体撮像装置。
 <4>
 前記狭帯域光センサは、前記可視光センサ、及び、前記狭帯域フィルタを透過した光を受光する複数の画素を有する
 <3>に記載の固体撮像装置。
 <5>
 前記可視光センサ、及び、前記狭帯域光センサのうちの、光が入射してくる方と反対の下層にある下層基板より上層の基板は、Siで構成され、
 前記下層基板は、前記Siを透過した光を受光する
 <1>ないし<4>のいずれかに記載の固体撮像装置。
 <6>
 前記可視光センサ、及び、前記狭帯域光センサのうちの、光が入射してくる方と反対の下層にある下層基板より上層の基板は、SiO2で構成され、
 前記下層基板は、前記SiO2を透過した光を受光する
 <1>ないし<4>のいずれかに記載の固体撮像装置。
 <7>
 前記可視光センサ、及び、前記狭帯域光センサよりも、光が入射してくる方の上層には、所定の色の光を透過する光学フィルタであるカラーフィルタが積層され、
 前記可視光センサ、及び、前記狭帯域光センサは、緑色、赤色、又は、白色の光を透過するカラーフィルタを透過した光を受光する
 <5>に記載の固体撮像装置。
 <8>
 前記可視光センサ、及び、前記狭帯域光センサよりも、光が入射してくる方の上層には、所定の色の光を透過する光学フィルタであるカラーフィルタが積層され、
 前記可視光センサ、及び、前記狭帯域光センサは、緑色、赤色、青色、又は、白色の光を透過するカラーフィルタを透過した光を受光する
 <6>に記載の固体撮像装置。
 <9>
 前記可視光センサ、及び、前記狭帯域光センサよりも、光が入射してくる方の上層には、所定の配列のカラーフィルタが積層され、
 前記所定の配列のカラーフィルタは、白色の光を透過する白色フィルタを有する
 <1>ないし<8>のいずれかに記載の固体撮像装置。
 <10>
 前記可視光センサより下層の前記狭帯域光センサで受光される光の面積は、その光が前記上層の前記可視光センサを透過したときの面積よりも大である
 <3>又は<4>に記載の固体撮像装置。
 <11>
 前記上層の前記可視光センサを透過した光が透過する前記狭帯域フィルタは、位置によって異なる
 <3>又は<4>に記載の固体撮像装置。
 <12>
 前記可視光センサより下層の前記狭帯域光センサは、前記上層の前記可視光センサの複数の画素それぞれを透過した光をまとめて受光する
 <3>又は<4>に記載の固体撮像装置。
 <13>
 前記狭帯域光センサの前記画素は、InGaAs系の材料で構成される
 <1>ないし<12>のいずれかに記載の固体撮像装置。
 <14>
 前記狭帯域光センサの前記画素は、PbS系、PbSe系、Ge系、InAs系、InSb系、又は、HgCdTe系の材料で構成される
 <1>ないし<12>のいずれかに記載の固体撮像装置。
 <15>
 前記狭帯域光センサの前記画素は、GaN系、InGaN系、又は、AlGaN系の材料で構成される
 <1>ないし<12>のいずれかに記載の固体撮像装置。
 <16>
 光を集光する光学系と、
 光を受光し、画像を撮像する固体撮像装置と
 を備え、
 前記固体撮像装置は、
  2層以上に積層された複数の基板を備え、
  前記複数の基板のうちの2個以上の基板は、光電変換を行う画素を有する基板であり、
  前記画素を有する基板の少なくとも1個の基板は、可視光を受光する可視光センサであり、
  前記画素を有する基板の少なくとも他の1個の基板は、狭帯域の波長帯の光を透過する光学フィルタである狭帯域フィルタを有し、前記狭帯域の光である狭帯域光を受光する狭帯域光センサである
 電子機器。
 1 光学系, 2 イメージセンサ, 3 メモリ, 4 信号処理部, 5 出力部, 6 制御部, 10 ディジタルカメラ, 11 可視光センサ, 12 狭帯域光センサ, 13 回路基板, 31 OCL, 32 OCCF, 33 絶縁膜, 34 半導体層, 35 PD, 36 Poly層, 37 配線層, 38 配線, 41 フィルタ層, 42 狭帯域フィルタ, 43 配線層, 44 配線, 45 Poly層, 46 半導体層, 47 PD, 48 支持基板/回路, 61,101 透明材料, 111 Wフィルタ, 112,121, 透明材料, 122,131 Wフィルタ, 141,151,161,171,181,191 透明材料

Claims (16)

  1.  2層以上に積層された複数の基板を備え、
     前記複数の基板のうちの2個以上の基板は、光電変換を行う画素を有する基板であり、
     前記画素を有する基板の少なくとも1個の基板は、可視光を受光する可視光センサであり、
     前記画素を有する基板の少なくとも他の1個の基板は、狭帯域の波長帯の光を透過する光学フィルタである狭帯域フィルタを有し、前記狭帯域の光である狭帯域光を受光する狭帯域光センサである
     固体撮像装置。
  2.  前記狭帯域光センサは、異なる波長帯の光を透過する複数の前記狭帯域フィルタを有する
     請求項1に記載の固体撮像装置。
  3.  前記可視光センサは、前記狭帯域光センサよりも、光が入射してくる方の上層に積層されている
     請求項2に記載の固体撮像装置。
  4.  前記狭帯域光センサは、前記可視光センサ、及び、前記狭帯域フィルタを透過した光を受光する複数の画素を有する
     請求項3に記載の固体撮像装置。
  5.  前記可視光センサ、及び、前記狭帯域光センサのうちの、光が入射してくる方と反対の下層にある下層基板より上層の基板は、Siで構成され、
     前記下層基板は、前記Siを透過した光を受光する
     請求項4に記載の固体撮像装置。
  6.  前記可視光センサ、及び、前記狭帯域光センサのうちの、光が入射してくる方と反対の下層にある下層基板より上層の基板は、SiO2で構成され、
     前記下層基板は、前記SiO2を透過した光を受光する
     請求項4に記載の固体撮像装置。
  7.  前記可視光センサ、及び、前記狭帯域光センサよりも、光が入射してくる方の上層には、所定の色の光を透過する光学フィルタであるカラーフィルタが積層され、
     前記可視光センサ、及び、前記狭帯域光センサは、緑色、赤色、又は、白色の光を透過するカラーフィルタを透過した光を受光する
     請求項5に記載の固体撮像装置。
  8.  前記可視光センサ、及び、前記狭帯域光センサよりも、光が入射してくる方の上層には、所定の色の光を透過する光学フィルタであるカラーフィルタが積層され、
     前記可視光センサ、及び、前記狭帯域光センサは、緑色、赤色、青色、又は、白色の光を透過するカラーフィルタを透過した光を受光する
     請求項6に記載の固体撮像装置。
  9.  前記可視光センサ、及び、前記狭帯域光センサよりも、光が入射してくる方の上層には、所定の配列のカラーフィルタが積層され、
     前記所定の配列のカラーフィルタは、白色の光を透過する白色フィルタを有する
     請求項4に記載の固体撮像装置。
  10.  前記可視光センサより下層の前記狭帯域光センサで受光される光の面積は、その光が前記上層の前記可視光センサを透過したときの面積よりも大である
     請求項4に記載の固体撮像装置。
  11.  前記上層の前記可視光センサを透過した光が透過する前記狭帯域フィルタは、位置によって異なる
     請求項4に記載の固体撮像装置。
  12.  前記可視光センサより下層の前記狭帯域光センサは、前記上層の前記可視光センサの複数の画素それぞれを透過した光をまとめて受光する
     請求項4に記載の固体撮像装置。
  13.  前記狭帯域光センサの前記画素は、InGaAs系の材料で構成される
     請求項4に記載の固体撮像装置。
  14.  前記狭帯域光センサの前記画素は、PbS系、PbSe系、Ge系、InAs系、InSb系、又は、HgCdTe系の材料で構成される
     請求項4に記載の固体撮像装置。
  15.  前記狭帯域光センサの前記画素は、GaN系、InGaN系、又は、AlGaN系の材料で構成される
     請求項4に記載の固体撮像装置。
  16.  光を集光する光学系と、
     光を受光し、画像を撮像する固体撮像装置と
     を備え、
     前記固体撮像装置は、
      2層以上に積層された複数の基板を備え、
      前記複数の基板のうちの2個以上の基板は、光電変換を行う画素を有する基板であり、
      前記画素を有する基板の少なくとも1個の基板は、可視光を受光する可視光センサであり、
      前記画素を有する基板の少なくとも他の1個の基板は、狭帯域の波長帯の光を透過する光学フィルタである狭帯域フィルタを有し、前記狭帯域の光である狭帯域光を受光する狭帯域光センサである
     電子機器。
PCT/JP2015/077010 2014-10-06 2015-09-25 固体撮像装置、及び、電子機器 WO2016056396A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016553043A JP6729381B2 (ja) 2014-10-06 2015-09-25 固体撮像装置、及び、電子機器
US15/512,398 US11309284B2 (en) 2014-10-06 2015-09-25 Solid-state image capturing apparatus and electronic device for acquiring a normal image and a narrow band image
CN201580052456.5A CN107078138B (zh) 2014-10-06 2015-09-25 固态摄像装置和电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-205677 2014-10-06
JP2014205677 2014-10-06

Publications (1)

Publication Number Publication Date
WO2016056396A1 true WO2016056396A1 (ja) 2016-04-14

Family

ID=55653014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077010 WO2016056396A1 (ja) 2014-10-06 2015-09-25 固体撮像装置、及び、電子機器

Country Status (4)

Country Link
US (1) US11309284B2 (ja)
JP (1) JP6729381B2 (ja)
CN (1) CN107078138B (ja)
WO (1) WO2016056396A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018098341A (ja) * 2016-12-13 2018-06-21 ソニーセミコンダクタソリューションズ株式会社 撮像素子、電子機器
WO2018110572A1 (ja) * 2016-12-13 2018-06-21 ソニーセミコンダクタソリューションズ株式会社 撮像素子及び電子機器
JP2018098345A (ja) * 2016-12-13 2018-06-21 ソニーセミコンダクタソリューションズ株式会社 撮像素子及び電子機器
WO2019116441A1 (ja) * 2017-12-12 2019-06-20 オリンパス株式会社 撮像装置
WO2019155709A1 (ja) * 2018-02-09 2019-08-15 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、電子装置、および、電子装置の製造方法
WO2020070887A1 (ja) * 2018-10-05 2020-04-09 オリンパス株式会社 固体撮像装置
WO2021157250A1 (ja) * 2020-02-06 2021-08-12 ソニーセミコンダクタソリューションズ株式会社 受光素子、固体撮像装置及び電子機器
US20230058418A1 (en) * 2017-09-20 2023-02-23 Look Dynamics, Inc. Sensor-display device
US11600645B2 (en) 2018-06-21 2023-03-07 Semiconductor Energy Laboratory Co., Ltd. Imaging device, operation method thereof, and electronic device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102549621B1 (ko) 2016-09-02 2023-06-28 삼성전자주식회사 반도체 장치
US10153320B2 (en) * 2016-11-29 2018-12-11 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device and method of forming the same
JP6910704B2 (ja) 2016-12-13 2021-07-28 ソニーセミコンダクタソリューションズ株式会社 撮像素子、撮像素子の製造方法、プラズモンフィルタ、及び、電子機器
CN107768394A (zh) * 2017-10-30 2018-03-06 上海集成电路研发中心有限公司 一种图像传感器及其制作方法
US10468448B2 (en) * 2017-11-30 2019-11-05 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor image sensor and method for forming the same
FR3075462B1 (fr) 2017-12-19 2020-03-27 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif d'acquisition d'une image 2d et d'une image de profondeur d'une scene
JP2019149713A (ja) * 2018-02-27 2019-09-05 ソニーセミコンダクタソリューションズ株式会社 センサ素子および電子機器
JP2019175912A (ja) * 2018-03-27 2019-10-10 ソニーセミコンダクタソリューションズ株式会社 撮像装置、及び、画像処理システム
WO2020237591A1 (zh) * 2019-05-30 2020-12-03 深圳市大疆创新科技有限公司 一种色彩滤镜阵列、图像传感器和拍摄装置
TWI688088B (zh) * 2019-07-24 2020-03-11 晶相光電股份有限公司 影像感測裝置及影像感測系統
KR20210029466A (ko) * 2019-09-06 2021-03-16 에스케이하이닉스 주식회사 이미지 센싱 장치
US11942491B2 (en) 2021-03-18 2024-03-26 Enkris Semiconductor, Inc. Light sensing unit and GaN-based image sensor and display apparatus thereof
WO2022261979A1 (zh) * 2021-06-18 2022-12-22 苏州晶湛半导体有限公司 前照式图像传感器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204445A (ja) * 1993-01-01 1994-07-22 Canon Inc 光センサ及びそれを有する画像情報処理装置
JP2013070030A (ja) * 2011-09-06 2013-04-18 Sony Corp 撮像素子、電子機器、並びに、情報処理装置
JP2014130890A (ja) * 2012-12-28 2014-07-10 Canon Inc 光電変換装置
JP2014135535A (ja) * 2013-01-08 2014-07-24 Olympus Corp 撮像装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010040506A (ko) * 1998-02-02 2001-05-15 유니액스 코포레이션 유기 반도체로부터 제조한 영상 센서
KR20100120875A (ko) * 2009-05-07 2010-11-17 삼성전자주식회사 투과도가 향상된 반사 방지막을 갖는 후면 수광 시모스 이미지 센서 및 그 제조 방법
CN106158895B9 (zh) * 2011-03-10 2019-12-20 西奥尼克斯公司 三维传感器、系统和相关的方法
JP5760811B2 (ja) * 2011-07-28 2015-08-12 ソニー株式会社 固体撮像素子および撮像システム
US8581307B1 (en) * 2012-07-06 2013-11-12 Omnivision Technologies, Inc. Large CMOS image sensor pixel with improved performance
CN105518437A (zh) * 2013-06-10 2016-04-20 莱乐温特处理有限公司 用于红外检测的系统和方法
US9749553B2 (en) * 2013-08-23 2017-08-29 Semiconductor Components Industries, Llc Imaging systems with stacked image sensors
WO2015057922A1 (en) * 2013-10-16 2015-04-23 The Arizona Board Of Regents On Behalf Of The University Of Arizona Multispectral imaging based on computational imaging and a narrow-band absorptive filter array
US9437633B2 (en) * 2014-11-06 2016-09-06 Taiwan Semiconductor Manufacturing Company, Ltd. Depth sensing pixel, composite pixel image sensor and method of making the composite pixel image sensor
US9978791B2 (en) * 2015-07-31 2018-05-22 Taiwan Semiconductor Manufacturing Co., Ltd Image sensor and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204445A (ja) * 1993-01-01 1994-07-22 Canon Inc 光センサ及びそれを有する画像情報処理装置
JP2013070030A (ja) * 2011-09-06 2013-04-18 Sony Corp 撮像素子、電子機器、並びに、情報処理装置
JP2014130890A (ja) * 2012-12-28 2014-07-10 Canon Inc 光電変換装置
JP2014135535A (ja) * 2013-01-08 2014-07-24 Olympus Corp 撮像装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11483525B2 (en) 2016-12-13 2022-10-25 Sony Semiconductor Solutions Corporation Imaging device and electronic apparatus
WO2018110572A1 (ja) * 2016-12-13 2018-06-21 ソニーセミコンダクタソリューションズ株式会社 撮像素子及び電子機器
US11044446B2 (en) 2016-12-13 2021-06-22 Sony Semiconductor Solutions Corporation Imaging device and electronic apparatus
US11181672B2 (en) 2016-12-13 2021-11-23 Sony Semiconductor Solutions Corporation Imaging device and electronic apparatus
WO2018110569A1 (ja) * 2016-12-13 2018-06-21 ソニーセミコンダクタソリューションズ株式会社 撮像素子、電子機器
JP2018098341A (ja) * 2016-12-13 2018-06-21 ソニーセミコンダクタソリューションズ株式会社 撮像素子、電子機器
EP3557627A4 (en) * 2016-12-13 2019-11-27 Sony Semiconductor Solutions Corporation IMAGE RECORDING ELEMENT AND ELECTRONIC DEVICE
JP7066316B2 (ja) 2016-12-13 2022-05-13 ソニーセミコンダクタソリューションズ株式会社 撮像素子及び電子機器
JP2018098345A (ja) * 2016-12-13 2018-06-21 ソニーセミコンダクタソリューションズ株式会社 撮像素子及び電子機器
US20230058418A1 (en) * 2017-09-20 2023-02-23 Look Dynamics, Inc. Sensor-display device
WO2019116441A1 (ja) * 2017-12-12 2019-06-20 オリンパス株式会社 撮像装置
US11961858B2 (en) 2018-02-09 2024-04-16 Sony Semiconductor Solutions Corporation Solid-state imaging element, electronic device, and method of manufacturing electronic device
WO2019155709A1 (ja) * 2018-02-09 2019-08-15 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、電子装置、および、電子装置の製造方法
US11600645B2 (en) 2018-06-21 2023-03-07 Semiconductor Energy Laboratory Co., Ltd. Imaging device, operation method thereof, and electronic device
US11862649B2 (en) 2018-06-21 2024-01-02 Semiconductor Energy Laboratory Co., Ltd. Imaging device, operation method thereof, and electronic device
WO2020070887A1 (ja) * 2018-10-05 2020-04-09 オリンパス株式会社 固体撮像装置
JP7437957B2 (ja) 2020-02-06 2024-02-26 ソニーセミコンダクタソリューションズ株式会社 受光素子、固体撮像装置及び電子機器
WO2021157250A1 (ja) * 2020-02-06 2021-08-12 ソニーセミコンダクタソリューションズ株式会社 受光素子、固体撮像装置及び電子機器

Also Published As

Publication number Publication date
US11309284B2 (en) 2022-04-19
CN107078138A (zh) 2017-08-18
JPWO2016056396A1 (ja) 2017-08-03
JP6729381B2 (ja) 2020-07-22
CN107078138B (zh) 2020-12-18
US20170278826A1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
WO2016056396A1 (ja) 固体撮像装置、及び、電子機器
EP2442555B1 (en) Visible and infrared dual mode imaging system
JP6161007B2 (ja) 固体撮像装置及びカメラモジュール
US8227883B2 (en) Solid-state imaging device and camera
CN204887163U (zh) 图像像素阵列和照相机模块
CN208970511U (zh) 像素阵列及用于图像传感器的滤色器层
KR101475464B1 (ko) 적층형 이미지 센서
JP7375852B2 (ja) 固体撮像素子およびその製造方法、並びに電子機器
US9535197B2 (en) Color filter array, image sensor including the same, and infrared data acquisition method using the same
JP5070742B2 (ja) 情報取得方法、情報取得装置、半導体装置、信号処理装置
JP2009505577A (ja) 適応可能なソリッド・ステート・イメージ・センサ
CN108426639A (zh) 多光谱传感系统和方法
JP6027832B2 (ja) 撮像装置
JP4867448B2 (ja) 物理情報取得方法および物理情報取得装置
JP2005294825A (ja) 改良型カラーフォトディテクタアレイ及びその製造方法
JP5263373B2 (ja) 半導体装置および撮像装置
Takemoto et al. Multi-storied photodiode CMOS image sensor for multiband imaging with 3D technology
EP3450938B1 (en) An image sensor and an imaging apparatus
WO2018207817A1 (ja) 固体撮像装置、撮像システム及び物体識別システム
WO2016194620A1 (ja) 固体撮像装置および電子機器
JP5018125B2 (ja) 固体撮像装置および撮像装置
KR102318758B1 (ko) 이미지 센서 및 이를 구비하는 전자장치
JP5234165B2 (ja) 固体撮像装置および撮像装置
WO2016194577A1 (ja) 撮像素子、撮像方法、プログラム、並びに電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15849382

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016553043

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15512398

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15849382

Country of ref document: EP

Kind code of ref document: A1