WO2016056097A1 - 圧延機 - Google Patents

圧延機 Download PDF

Info

Publication number
WO2016056097A1
WO2016056097A1 PCT/JP2014/077052 JP2014077052W WO2016056097A1 WO 2016056097 A1 WO2016056097 A1 WO 2016056097A1 JP 2014077052 W JP2014077052 W JP 2014077052W WO 2016056097 A1 WO2016056097 A1 WO 2016056097A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling mill
pair
orifice
work roll
hydraulic
Prior art date
Application number
PCT/JP2014/077052
Other languages
English (en)
French (fr)
Inventor
古元 秀昭
林 寛治
佐古 彰
正 日浦
英樹 戸中
金森 信弥
大楽 孫
群 範
福臣 王
国華 徐
Original Assignee
三菱日立製鉄機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立製鉄機械株式会社 filed Critical 三菱日立製鉄機械株式会社
Priority to EP14903624.6A priority Critical patent/EP3205417B1/en
Priority to KR1020177004801A priority patent/KR101908872B1/ko
Priority to CN201480082485.1A priority patent/CN107000002B/zh
Priority to JP2016552761A priority patent/JP6345262B2/ja
Priority to PCT/JP2014/077052 priority patent/WO2016056097A1/ja
Publication of WO2016056097A1 publication Critical patent/WO2016056097A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/02Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with axes of rolls arranged horizontally
    • B21B13/023Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with axes of rolls arranged horizontally the axis of the rolls being other than perpendicular to the direction of movement of the product, e.g. cross-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/02Rolling stand frames or housings; Roll mountings ; Roll chocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/16Adjusting or positioning rolls
    • B21B31/18Adjusting or positioning rolls by moving rolls axially
    • B21B31/185Adjusting or positioning rolls by moving rolls axially and by crossing rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/007Control for preventing or reducing vibration, chatter or chatter marks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/02Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with axes of rolls arranged horizontally
    • B21B2013/025Quarto, four-high stands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2203/00Auxiliary arrangements, devices or methods in combination with rolling mills or rolling methods
    • B21B2203/18Rolls or rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2269/00Roll bending or shifting
    • B21B2269/12Axial shifting the rolls
    • B21B2269/14Work rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/16Adjusting or positioning rolls
    • B21B31/20Adjusting or positioning rolls by moving rolls perpendicularly to roll axis
    • B21B31/32Adjusting or positioning rolls by moving rolls perpendicularly to roll axis by liquid pressure, e.g. hydromechanical adjusting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions

Definitions

  • the present invention relates to an apparatus for suppressing vibration of a rolling mill, particularly a rolling mill generated during rolling of a hot rolling mill.
  • Mill vibration In hot rolling, mill vibration may occur during rolling.
  • Mill vibration means that the upper and lower work rolls (WR) vibrate in the horizontal direction (rolling direction) in reverse phase. Note that the reverse phase means that when the upper WR moves upstream, the lower WR moves downstream, and when the upper WR moves downstream, the lower WR moves upstream.
  • Mill vibration causes fluctuations in sheet thickness, loosening of various fastening bolts of a rolling mill, vibration of pipes, and the like.
  • the diameter of the orifice has been reduced as a means for further increasing the static rigidity (about ⁇ 2.0 mm or less).
  • the orifice diameter is made too small, there is a limit to reducing the orifice diameter due to clogging of dust or lack of a predetermined cylinder operating speed, and in fact, a sufficient vibration suppressing effect can be obtained. There was a problem that it was not possible.
  • an object of the present invention is to provide a rolling mill that can suppress mill vibration without excessively reducing the orifice diameter.
  • the rolling mill according to the first invention for solving the above-mentioned problems is as follows.
  • a pair of upper and lower first support means provided on one side in the rolling direction of the housing and supporting the pair of upper and lower work roll chocks;
  • a pair of upper and lower second support means provided on the other rolling direction in the housing and supporting the pair of upper and lower work roll chocks;
  • the first support means as a hydraulic pressing means
  • the pair of upper and lower work roll chocks can be pressed in the horizontal direction, and a contraction portion and an enlargement portion are provided in the hydraulic supply / discharge pipe on the head side of the hydraulic pressing means.
  • the contracted flow part is disposed closer to the hydraulic pressing means than the enlarged part,
  • the inner diameter of the contracted flow portion
  • a rolling mill according to a second invention that solves the above problems is as follows.
  • the volume of the enlarged portion is 7% to 180% with respect to the volume of the hydraulic pressing means.
  • a rolling mill according to a third invention for solving the above-described problem is In the rolling mill according to the first or second invention, An interval between the contracted flow portion and the hydraulic pressing means in the hydraulic supply / discharge pipe is 7 m or less.
  • a rolling mill according to a fourth invention for solving the above-mentioned problem is as follows.
  • the distance between the enlarged portion and the contracted portion in the hydraulic supply / discharge pipe is 3.5 m or less.
  • the mill according to the present invention can suppress mill vibration without excessively reducing the orifice diameter.
  • the rolling mill according to the present invention has found the characteristic that the damping ratio changes depending on the orifice diameter by providing an appropriate chamber, and paying attention to the dynamic stiffness obtained from the static stiffness and the damping ratio, by providing an appropriate chamber. It has been found that there is an appropriate range for the orifice diameter from the viewpoint of suppressing mill vibration. It has also been found that there is an appropriate range in the chamber capacity.
  • FIG. 1 is a schematic view of a rolling mill according to Embodiment 1 of the present invention.
  • the rolling mill includes a housing 11, a work roll 12, a work roll chock 13, a backup roll 14, a backup roll chock 15, a reduction means 16, a hydraulic cylinder 17 (hydraulic pressure).
  • a pressing means a first support means, a housing liner 18 (second support means), a hydraulic supply / discharge pipe 19, an orifice 20 (constriction portion), a chamber 21 (enlargement portion), and a hydraulic pressure source 22.
  • the pair of upper and lower work roll chocks 13 are supported by the housing 11.
  • the pair of upper and lower work rolls 12 are opposed to each other, and are respectively supported by a pair of upper and lower work roll chocks 13.
  • the pair of upper and lower backup rolls 14 are respectively pivotally supported by the pair of upper and lower backup roll chock 15 and face the pair of upper and lower work rolls 12, respectively.
  • the reduction means 16 applies a predetermined pressure to the work roll 12 through the backup roll 14.
  • the pair of upper and lower hydraulic cylinders 17 are provided on one side in the rolling direction of the housing 11 to support the pair of upper and lower work roll chock 13 and to press the pair of upper and lower work roll chock 13 in the horizontal direction.
  • the pair of upper and lower housing liners 18 are provided on the other side in the rolling direction of the housing 11 and support the pair of upper and lower work roll chocks 13.
  • the orifice 20 and the chamber 21 are provided in the hydraulic supply / discharge pipe 19 on the head side of the hydraulic cylinder 17 so that the orifice 20 is disposed closer to the hydraulic cylinder 17 than the chamber 21.
  • the rolling mill which concerns on Example 1 of this invention may branch piping from the hydraulic supply / exhaust pipe 19 and may arrange
  • the orifice diameter (inner diameter of the orifice 20) will be described.
  • the rolling mill according to Embodiment 1 of the present invention focuses on increasing the horizontal dynamic rigidity of the rolling mill as suppression of mill vibration.
  • This dynamic stiffness (K d ) is expressed by 2 ⁇ static stiffness (K) ⁇ damping ratio ( ⁇ ).
  • FIG. 2 is a graph showing the relationship between static stiffness, damping ratio, dynamic stiffness, and orifice diameter of a conventional rolling mill.
  • FIG. 3 is a graph showing the relationship between the static stiffness, damping ratio, dynamic stiffness, and orifice diameter of the rolling mill according to Example 1 of the present invention.
  • FIG. 2A and FIG. 3A are graphs showing the relationship between static stiffness and orifice diameter.
  • FIG. 2B and FIG. 3B are graphs showing the relationship between the damping ratio and the orifice diameter.
  • FIG. 2C and FIG. 3C are graphs showing the relationship between the dynamic stiffness and the orifice diameter.
  • the damping ratio is improved when the orifice diameter is increased as described above. Therefore, in this embodiment, the chamber 21 is provided, and the orifice diameter and the damping ratio, that is, the dynamic rigidity are focused on, and an appropriate range of the orifice diameter that can further increase the vibration suppression effect has been found.
  • the chamber in the hydraulic supply / discharge pipe 19, the chamber is installed on the outlet side of the orifice 20, thereby generating a pressure difference and flowing oil through the orifice 20.
  • the damping ratio can be improved.
  • the dynamic rigidity of the chamber 21 is particularly improved when the capacity is set within a predetermined range (described later) from the viewpoint of the dynamic rigidity.
  • FIG. 4 is a simulation model diagram of dynamic stiffness.
  • A is the orifice 20
  • B is the hydraulic supply / discharge pipe 19
  • K1 is the spring constant of the housing
  • K is the static rigidity of the entire model
  • c is the damping coefficient of the structure
  • D is the housing 11
  • E is the work roll 12.
  • F is a hydraulic cylinder 17
  • P is a hydraulic pump.
  • the equation of motion of the work roll 12 and the work roll chock 13 and the orifice 20 incorporate the characteristic that the flow rate is determined by the pressure difference.
  • the dynamic stiffness K d gives an excitation force f 0 for each excitation frequency ⁇ , and is expressed as the minimum value of the ratio between the excitation force f 0 and the work roll displacement X, and is a value that determines the movement during vibration.
  • FIG. 7A is a graph showing the relationship between the orifice diameter and the dynamic stiffness ratio
  • FIG. 7B shows the ratio of the orifice diameter to the inner diameter of the hydraulic supply / discharge pipe 19 (ratio of the orifice diameter to the pipe inner diameter); It is a graph which shows the relationship with dynamic rigidity ratio.
  • FIG. 7A shows the case where the inner diameter (pipe inner diameter) of the hydraulic supply / discharge pipe 19 is ⁇ 18 mm.
  • the dynamic stiffness ratio refers to the ratio to the dynamic stiffness when the orifice diameter is 0, that is, when the hydraulic cylinder is completely closed (the same applies to FIGS. 8 to 9).
  • the dynamic stiffness ratio is further improved by designing the orifice diameter, which was conventionally designed to be about ⁇ 2.0 mm or less, on the contrary.
  • the inflection points are present at orifice diameters of 2.5 mm and 15 mm, and the dynamic stiffness ratio increases sharply at 2.5 mm or more and 15 mm or less.
  • the pipe inner diameter ratio has inflection points at 0.15 (15%) and 0.85 (85%), and the dynamic rigidity ratio rises sharply at 15% or more and 85% or less.
  • the orifice diameter is 2.5 mm or more and the pipe inner diameter ratio is 15% to 85%.
  • the dynamic stiffness ratio is improved to 1.2 or more.
  • FIG. 8A is a graph showing the relationship between the capacity of the chamber 21 (chamber volume) and the dynamic stiffness ratio
  • FIG. 8B shows the ratio of the chamber volume to the volume of the hydraulic cylinder 17 (cylinder volume of the chamber volume). Ratio) and the dynamic stiffness ratio.
  • the cylinder volume was defined by the capacity determined by the cylinder diameter and stroke.
  • the hydraulic cylinder size is D250 mm (head diameter) / d230 mm (rod diameter) ⁇ 90 mm stroke
  • the cylinder volume Vc ( ⁇ / 4) ⁇ 25 2 ⁇ 9 (cm 3 ), which is about 4.4.
  • the chamber volume is 0.3 liter to 8.0 liter
  • the cylinder volume ratio of the chamber volume is 0.07 to 1.8.
  • the dynamic stiffness ratio is improved to 1.2 or more and a maximum of about 3.0. That is, as shown in FIG. 8B, when the cylinder volume ratio of the chamber volume is 0.07 or more, the dynamic rigidity ratio is improved to 1.2 or more and about 3.0 at the maximum.
  • the cylinder volume ratio of the chamber volume is set to 0.07 or more and 1.8 or less (that is, 7% or more and 180% or less). At this time, the dynamic stiffness ratio is 1.2 or more.
  • the distance between the cylinder and the orifice is set to 7.0 m or less.
  • the distance between the orifice and the chamber is set to 3.5 m or less.
  • Example 1 of the present invention has been described above.
  • the orifice 20 and the chamber 21 are provided only on the head side of the hydraulic supply / discharge pipe 19 in FIGS. May be. Further, only the orifice may be provided on the rod side of the hydraulic supply / discharge pipe 19 and the chamber may not be provided. In any case, the effect of the orifice 20 and the chamber 21 is not changed.
  • the rolling mill according to Example 1 of the present invention can suppress mill vibration without reducing the orifice diameter by using the above-described configuration.
  • the present invention is suitable as an apparatus for suppressing vibration of a rolling mill, particularly a rolling mill generated during rolling of a hot rolling mill.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

本発明に係る圧延機では、油圧シリンダ(17)(油圧式押圧手段)の油圧給排管(19)にオリフィス(20)(縮流部)及びチャンバ(21)(拡大部)を設け、オリフィス(20)がチャンバ(21)よりも油圧シリンダ(17)側に配置され、オリフィス(20)の内径を、φ2.5mm以上、かつ、油圧給排管(19)の内径に対し15%~85%の大きさとすることにより、ミル振動を抑制することができる。

Description

圧延機
 本発明は、圧延機、特に熱間圧延機の圧延中に発生する圧延機の振動を抑制する装置に関する。
 熱間圧延は、圧延中にミル振動が発生することがある。ミル振動とは、上下のワークロール(WR)が逆相にて水平方向(圧延方向)に振動することを指す。なお、逆相とは、上WRが上流側に動けば下WRは下流側に動き、反対に上WRが下流側に動けば下WRは上流側に動くことである。ミル振動は、板厚の変動や圧延機の各種の締結ボルトの緩みや配管振動などの原因となる。
 従来は、静剛性に着目して振動を抑制していた。すなわち、従来は、圧延機のハウジングとワークロールチョックとの隙間を油圧シリンダで押圧して無くし、水平方向の静剛性を上げるように考えており、さらに、その延長線上で、油圧シリンダの油圧給排管に設けたオリフィス(下記特許文献1参照)の径(オリフィス径)を小さくして静剛性を上げていた。
特開2001-113308号公報
 上述のように、従来は静剛性をより上げる手段としてオリフィス径を小さくしていた(約φ2.0mm又はそれ以下)。しかし、オリフィス径を小さくし過ぎると、ゴミが詰まったり、所定のシリンダ動作速度がでない等のために、オリフィス径を小さくするにも限界があり、実際には十分な振動抑制効果を得ることができないという課題があった。
 そこで本発明では、オリフィス径を小さくし過ぎることなく、ミル振動を抑制することができる、圧延機を提供することを目的とする。
 上記課題を解決する第1の発明に係る圧延機は、
 ハウジングと、
 前記ハウジングに支持された、上下一対のワークロールチョックと、
 前記上下一対のワークロールチョックにそれぞれ軸支された、互いに対向する上下一対のワークロールと、
 前記ワークロールに所定圧力を作用させる圧下手段と、
 前記ハウジングにおける圧延方向一方に設けられて前記上下一対のワークロールチョックを支持する上下一対の第1支持手段と、
 前記ハウジングにおける圧延方向他方に設けられて前記上下一対のワークロールチョックを支持する上下一対の第2支持手段とを備え、
 前記第1支持手段を油圧式押圧手段として、前記上下一対のワークロールチョックを水平方向に押圧可能とすると共に、該油圧式押圧手段のヘッド側の油圧給排管に縮流部及び拡大部を設け、該縮流部が該拡大部よりも該油圧式押圧手段側に配置され、
 前記縮流部の内径を、φ2.5mm以上、かつ、前記油圧給排管の内径に対し15%~85%の大きさとする
 ことを特徴とする。
 上記課題を解決する第2の発明に係る圧延機は、
 上記第1の発明に係る圧延機において、
 前記拡大部の体積を、前記油圧式押圧手段の体積に対し7%~180%とする
 ことを特徴とする。
 上記課題を解決する第3の発明に係る圧延機は、
 上記第1又は2の発明に係る圧延機において、
 前記油圧給排管における前記縮流部と前記油圧式押圧手段との間隔を7m以下とする
 ことを特徴とする。
 上記課題を解決する第4の発明に係る圧延機は、
 上記第1から3のいずれか1つの発明に係る圧延機において、
 前記油圧給排管における前記拡大部と前記縮流部との間隔を3.5m以下とする
 ことを特徴とする。
 本発明に係る圧延機によれば、オリフィス径を小さくし過ぎることなく、ミル振動を抑制することができる。
本発明の実施例1に係る圧延機の概略図である。 従来の圧延機の、オリフィス径と、静剛性、減衰比、動剛性との関係をそれぞれ示すグラフである。 本発明の実施例1に係る圧延機の、オリフィス径と、静剛性、減衰比、動剛性との関係をそれぞれ示すグラフである。 本発明の実施例1に係る圧延機の、動剛性に関する解析モデル図である。 本発明の実施例1に係る圧延機の、加振力及びワークロール変位を示すグラフである。 本発明の実施例1に係る圧延機の、加振周波数と動剛性との関係を示すグラフである。 本発明の実施例1に係る圧延機の、オリフィス径と動剛性比との関係を示すグラフである。 本発明の実施例1に係る圧延機の、チャンバ体積と動剛性比との関係を示すグラフである。 本発明の実施例1に係る圧延機の、シリンダ‐オリフィス間距離と、動剛性比との関係を示すグラフである。 本発明の実施例1に係る圧延機の、オリフィス‐チャンバ間距離と、動剛性比との関係を示すグラフである。
 本発明に係る圧延機は、発明者の鋭意検討により、適正なチャンバを設けることにより、減衰比がオリフィス径により変化する特性を見出し、静剛性及び減衰比から求められる動剛性に着目したところ、ミル振動抑制の観点からオリフィス径に適正な範囲があることを見出したものである。また、チャンバ容量においても、適正な範囲があることも見出したものである。以下、本発明に係る圧延機について、実施例にて図面を用いて説明する。
[実施例1]
 本発明の実施例1に係る圧延機について、まず、図1を用いて説明する。図1は、本発明の実施例1に係る圧延機の概略図である。
 本発明の実施例1に係る圧延機は、図1(a)に示すように、ハウジング11、ワークロール12、ワークロールチョック13、バックアップロール14、バックアップロールチョック15、圧下手段16、油圧シリンダ17(油圧式押圧手段、第1支持手段)、ハウジングライナ18(第2支持手段)、油圧給排管19、オリフィス20(縮流部)、チャンバ21(拡大部)、及び、油圧源22を備える。
 上下一対のワークロールチョック13は、ハウジング11に支持されている。
 上下一対のワークロール12は、互いに対向しており、上下一対のワークロールチョック13にそれぞれ軸支されている。
 上下一対のバックアップロール14は、上下一対のバックアップロールチョック15にそれぞれ軸支されており、上下一対のワークロール12にそれぞれ対向している。
 圧下手段16は、バックアップロール14を介して、ワークロール12に所定圧力を作用させている。
 上下一対の油圧シリンダ17は、ハウジング11における圧延方向一方に設けられて上下一対のワークロールチョック13を支持し、かつ、上下一対のワークロールチョック13を水平方向に押圧可能とする。
 上下一対のハウジングライナ18は、ハウジング11における圧延方向他方に設けられて上下一対のワークロールチョック13を支持している。
 オリフィス20及びチャンバ21は、油圧シリンダ17のヘッド側の油圧給排管19に、オリフィス20がチャンバ21よりも油圧シリンダ17側に配置されるように、設けられている。また、本発明の実施例1に係る圧延機は、図1(b)のように、油圧給排管19から配管を分岐させてチャンバ21を配置してもよい。
 以下、オリフィス径(オリフィス20の内径)について説明する。
 本発明の実施例1に係る圧延機は、ミル振動の抑制として、圧延機の水平方向の動剛性を上げることに着目したものである。この動剛性(Kd)は、2×静剛性(K)×減衰比(ζ)にて表される。
 図2は、従来の圧延機の、静剛性、減衰比、動剛性と、オリフィス径との関係をそれぞれ示すグラフである。図3は、本発明の実施例1に係る圧延機の、静剛性、減衰比、動剛性と、オリフィス径との関係をそれぞれ示すグラフである。図2(a)及び図3(a)は、静剛性とオリフィス径との関係を示すグラフである。図2(b)及び図3(b)は、減衰比とオリフィス径との関係を示すグラフである。図2(c)及び図3(c)は、動剛性とオリフィス径との関係を示すグラフである。
  図2(a)(b)に示すように、従来は、オリフィス径によらず、減衰比は、一定との概念より、静剛性及び動剛性は、オリフィス径を小さくするほど大きくなると考えていた。しかし、発明者の鋭意検討により、図3(b)に示すように適正なチャンバを設けることにより、減衰比がオリフィス径により変化する特性を見出した。
 つまり、図3(a)(b)に示すように、オリフィス径を小さくすると、静剛性は大きくなるが、油圧給排管19内の油がオリフィス20を流れにくくなり減衰比は小さくなる。一方、オリフィス径を大きくすると、静剛性は下がるが、油圧給排管19内の油がオリフィス20を流れやすくなり、減衰比は上がる。
 そして、図3(c)に示すように、所定の範囲のオリフィス径(後述)に設定すると、動剛性が特に向上することがわかった。
 ただし、従来は、油圧給排管19にオリフィス20のみを設けた状態では、図2(a)(b)に示すように、オリフィス径を拡大しても減衰比は一定となるとの概念により、静剛性のみに着目し、オリフィス径を小さく(約φ2.0mm又はそれ以下)していた。
 しかし、チャンバ21を設置することで、上述のようにオリフィス径を拡大すると減衰比が向上することがわかった。よって、本実施例では、チャンバ21を設けた上で、オリフィス径と減衰比、すなわち動剛性に着目し、より振動抑制効果を増大できるオリフィス径の適正な範囲を見出したものである。
 また、油圧シリンダ17からバルブスタンドまで距離があり、さらにオリフィス20により径が絞られているため、オリフィス20だけを設けたとしても、油圧給排管19内の油が流れにくい状況となり、減衰比が上がらなくなる。
 しかし、本発明の実施例1に係る圧延機では、油圧給排管19において、チャンバをオリフィス20の出側に設置していることで、圧力差を発生させ、オリフィス20に油を流すことで、減衰比を向上することができる。
 また、チャンバ21においても、動剛性の観点から、所定の範囲の容量(後述)に設定すると、動剛性が特に向上することが見出された。
 以下、動剛性が特に向上するオリフィス径の範囲を求める。
 図4は、動剛性のシミュレーションモデル図である。図4中のAはオリフィス20、Bは油圧給排管19、K1はハウジングのばね定数、Kはモデル全体における静剛性、cは構造物の減衰係数、Dはハウジング11、Eはワークロール12とワークロールチョック13、Fは油圧シリンダ17、Pは油圧ポンプを、それぞれモデル化したものである。ワークロール12とワークロールチョック13の運動方程式、そして、オリフィス20には圧力差で流量が決まる特性を組み入れた。
 図4より、運動方程式は下記式(1)(2)で表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 さらに、動剛性Kdは下記式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 上記式(1)より、加振力f0とワークロール変位Xとの関係は、図5のグラフに示すようになる。
 そして、加振周波数ωごとのワークロール変位Xを計算し、加振力f0とワークロール変位Xとの比を算出(上記式(3))する。ただし、この比の値は、図6に示すように加振周波数ωの値により変化する。
 そこで、加振周波数ωの値により変化する加振力f0とワークロール変位Xとの比の中の最小値を、動剛性Kdとして求める。すなわち、動剛性Kdは、加振周波数ωごとに加振力f0を与え、加振力f0とワークロール変位Xとの比の最小値として表され、振動時の動きを決める値となる。
 上述のようにしてオリフィス径ごとに動剛性Kdを求めたところ、図7(a)(b)に示す結果となった。
 図7(a)は、オリフィス径と動剛性比との関係を示すグラフであり、図7(b)は、オリフィス径の油圧給排管19内径に対する比(オリフィス径の配管内径比)と、動剛性比との関係を示すグラフである。なお、図7(a)は、油圧給排管19の内径(配管内径)がφ18mmの場合である。また、動剛性比とは、オリフィス径が0、すなわち油圧シリンダ封じきり状態の場合の動剛性に対する比を指す(図8~9も同様)。
 図7(a)(b)に示すように、従来は約φ2.0mm以下に設計していたオリフィス径を、逆に大きく設計することで、動剛性比がより向上することを見出した。特に、図7(a)では、オリフィス径2.5mm及び15mmに変曲点を有し、2.5mm以上15mm以下では、動剛性比が急上昇しており、図7(b)では、オリフィス径の配管内径比が0.15(15%)及び0.85(85%)に変曲点を有し、15%以上85%以下では、動剛性比が急上昇している。
 また、オリフィス径φ2.5mm以上とすれば、従来の問題点であったゴミ詰まりも発生し難くなる。
 したがって、本発明の実施例1に係る圧延機では、オリフィス径を、φ2.5mm以上、かつ、配管内径比15%~85%の大きさとする。なお、このとき、動剛性比は1.2以上に向上する。
 また、チャンバ21の容量についても、動剛性比との関係を求めた結果、図8(a)(b)に示すようになることを見出した。
 図8(a)は、チャンバ21の容量(チャンバ体積)と動剛性比との関係を示すグラフであり、図8(b)は、チャンバ体積の油圧シリンダ17体積に対する比(チャンバ体積のシリンダ体積比)と、動剛性比との関係を示すグラフである。
 ここで、シリンダ体積とは、シリンダ径とストロークで決まる容量で定義した。具体例としては、油圧シリンダサイズがD250mm(ヘッド径)/d230mm(ロッド径)×90mmストロークの場合、シリンダ体積Vc=(π/4)×252×9(cm3)となり、約4.4リットルとなる。したがって、後述の如く、チャンバ体積が0.3リットル~8.0リットルでは、チャンバ体積のシリンダ体積比が0.07~1.8となる。
 図8(a)に示すように、チャンバ体積0.3リットル以上で、動剛性比が1.2以上、最大3.0程度まで向上する。すなわち、図8(b)に示すように、チャンバ体積のシリンダ体積比0.07以上で、動剛性比が1.2以上、最大3.0程度まで向上する。
 なお、図8(a)におけるチャンバ体積が8.0リットルより大きい値、すなわち、図8(b)におけるチャンバ体積のシリンダ体積比が1.8より大きい値については、グラフが飽和状態となり、動剛性比は殆ど向上しなくなるため、それ以上チャンバ体積を大きくしても大幅な効果の増大にはならないことを見出した。
 したがって、本発明の実施例1に係る圧延機では、チャンバ体積のシリンダ体積比を、0.07以上1.8以下(すなわち、7%以上180%以下)とする。なお、このとき、動剛性比は1.2以上となる。
 また、油圧シリンダ17とオリフィス20との間の距離(シリンダ‐オリフィス間距離)についても動剛性比との関係について追究した結果、図9のグラフに示すように、シリンダ‐オリフィス間距離が7.0m以下であると、動剛性比は1.2以上となることを見出した。
 したがって、本発明の実施例1に係る圧延機では、シリンダ‐オリフィス間距離を7.0m以下とする。
 さらに、オリフィス20とチャンバ21との間の距離(オリフィス‐チャンバ間距離)についても動剛性比との関係についても追究した結果、図10のグラフに示すように、オリフィス‐チャンバ間距離が3.5m以下であると、動剛性比は1.2以上となることを見出した。
 したがって、本発明の実施例1に係る圧延機では、オリフィス‐チャンバ間距離を3.5m以下とする。
 以上、本発明の実施例1に係る圧延機について説明した。本発明の実施例1に係る圧延機は、図1,2においてはオリフィス20及びチャンバ21を油圧給排管19のヘッド側のみに設けるようにしたが、さらにロッド側にもオリフィス及びチャンバを設けてもよい。また、油圧給排管19ロッド側には、オリフィスのみを設けてチャンバは設けないようにしてもよい。いずれにしてもオリフィス20及びチャンバ21の効果は変わらない。
 本発明の実施例1に係る圧延機は、上述の構成とすることで、オリフィス径を小さくし過ぎることなく、ミル振動を抑制することができるものである。
 本発明は、圧延機、特に熱間圧延機の圧延中に発生する圧延機の振動を抑制する装置として好適である。
11 ハウジング
12 ワークロール
13 ワークロールチョック
14 バックアップロール
15 バックアップロールチョック
16 圧下手段
17 油圧シリンダ
18 ハウジングライナ
19 油圧給排管
20 オリフィス
21 チャンバ
22 油圧源

Claims (4)

  1.  ハウジングと、
     前記ハウジングに支持された、上下一対のワークロールチョックと、
     前記上下一対のワークロールチョックにそれぞれ軸支された、互いに対向する上下一対のワークロールと、
     前記ワークロールに所定圧力を作用させる圧下手段と、
     前記ハウジングにおける圧延方向一方に設けられて前記上下一対のワークロールチョックを支持する上下一対の第1支持手段と、
     前記ハウジングにおける圧延方向他方に設けられて前記上下一対のワークロールチョックを支持する上下一対の第2支持手段とを備え、
     前記第1支持手段を油圧式押圧手段として、前記上下一対のワークロールチョックを水平方向に押圧可能とすると共に、該油圧式押圧手段のヘッド側の油圧給排管に縮流部及び拡大部を設け、該縮流部が該拡大部よりも該油圧式押圧手段側に配置され、
     前記縮流部の内径を、φ2.5mm以上、かつ、前記油圧給排管の内径に対し15%~85%の大きさとする
     ことを特徴とする圧延機。
  2.  前記拡大部の体積を前記油圧式押圧手段の体積に対し7%~180%とする
     ことを特徴とする、請求項1に記載の圧延機。
  3.  前記油圧給排管における前記縮流部と前記油圧式押圧手段との間隔を7m以下とする
     ことを特徴とする、請求項1又は2に記載の圧延機。
  4.  前記油圧給排管における前記拡大部と前記縮流部との間隔を3.5m以下とする
     ことを特徴とする、請求項1から3のいずれか1項に記載の圧延機。
PCT/JP2014/077052 2014-10-09 2014-10-09 圧延機 WO2016056097A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14903624.6A EP3205417B1 (en) 2014-10-09 2014-10-09 Rolling mill
KR1020177004801A KR101908872B1 (ko) 2014-10-09 2014-10-09 압연기
CN201480082485.1A CN107000002B (zh) 2014-10-09 2014-10-09 轧机
JP2016552761A JP6345262B2 (ja) 2014-10-09 2014-10-09 圧延機
PCT/JP2014/077052 WO2016056097A1 (ja) 2014-10-09 2014-10-09 圧延機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/077052 WO2016056097A1 (ja) 2014-10-09 2014-10-09 圧延機

Publications (1)

Publication Number Publication Date
WO2016056097A1 true WO2016056097A1 (ja) 2016-04-14

Family

ID=55652753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077052 WO2016056097A1 (ja) 2014-10-09 2014-10-09 圧延機

Country Status (5)

Country Link
EP (1) EP3205417B1 (ja)
JP (1) JP6345262B2 (ja)
KR (1) KR101908872B1 (ja)
CN (1) CN107000002B (ja)
WO (1) WO2016056097A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02151310A (ja) * 1988-12-05 1990-06-11 Sumitomo Light Metal Ind Ltd 圧延機における振動防止装置
JP2001113308A (ja) * 1999-08-11 2001-04-24 Mitsubishi Heavy Ind Ltd 圧延機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85101137B (zh) * 1985-04-01 1988-01-06 株式会社日立制作所 轧机
JPS61259810A (ja) * 1985-05-10 1986-11-18 Ishikawajima Harima Heavy Ind Co Ltd 圧延方法及び装置
JPH04190904A (ja) * 1990-11-22 1992-07-09 Ube Ind Ltd 圧延機
JP2004314089A (ja) * 2003-04-11 2004-11-11 Ishikawajima Harima Heavy Ind Co Ltd ロールギャップの調整装置及び調整方法、圧延機及び圧延方法
FR2869819B1 (fr) * 2004-05-07 2006-08-04 Vai Clecim Soc Par Actions Sim Procede et dispositif d'amortissement d'une cage de laminoir
WO2008001466A1 (fr) * 2006-06-30 2008-01-03 Mitsubishi-Hitachi Metals Machinery, Inc. Laminoir
CN202539185U (zh) * 2011-11-23 2012-11-21 西安曼海特工业技术有限公司 一种薄钢板轧机的防震动装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02151310A (ja) * 1988-12-05 1990-06-11 Sumitomo Light Metal Ind Ltd 圧延機における振動防止装置
JP2001113308A (ja) * 1999-08-11 2001-04-24 Mitsubishi Heavy Ind Ltd 圧延機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3205417A4 *

Also Published As

Publication number Publication date
KR101908872B1 (ko) 2018-10-16
KR20170033408A (ko) 2017-03-24
EP3205417B1 (en) 2019-09-04
EP3205417A1 (en) 2017-08-16
CN107000002A (zh) 2017-08-01
EP3205417A4 (en) 2018-06-27
JPWO2016056097A1 (ja) 2017-04-27
CN107000002B (zh) 2019-08-27
JP6345262B2 (ja) 2018-06-20

Similar Documents

Publication Publication Date Title
KR20070042507A (ko) 압연스탠드 충격흡수방법 및 충격흡수장치
US6510721B1 (en) Rolling mill
CA2954502C (en) Rolling mill third octave chatter control by process damping
WO2007035289A3 (en) Machine to produce expanded metal spirally lock-seamed tubing from solid coil stock
Heidari et al. Effect of friction on tandem cold rolling mills chattering
JP6345262B2 (ja) 圧延機
Amabili et al. Vibrations of circular cylindrical shells with nonuniform constraints, elastic bed and added mass. Part III: Steady viscous effects on shells conveying fluid
JP4679642B2 (ja) 圧延機
JP2011050969A (ja) 減衰強化型圧延機
JP2018532597A (ja) ロールスタンド内の振動を減衰させるためのロールスタンド、圧延設備及び方法
TWM574102U (zh) 拆卸裝置
CN105855296A (zh) 一种液压缸非线性刚度约束下的轧机辊系稳定性控制方法
Huang et al. Influence of asymmetric structure parameters on rolling mill stability
JP5527238B2 (ja) 金属板材の厚板圧延機
Lang et al. The effect of the key process parameters in the innovative hydroforming on the formed parts
JP2018065079A (ja) 塗工装置
CN204770028U (zh) 具有降温保油功能的卷板机
Savage Meniscus roll coating: Steady flows and instabilities
CN109578650A (zh) 一种便于进行固定的液压阀
CN202516848U (zh) 四辊冷轧机除油装置
Liu et al. Research on the pipeline influence on the dynamic characteristics of a hydraulic servo system based on Hypneu
Liu et al. Study on the Influence of Dynamic Characteristics of Servo Valve on Coupling Vibration of Cold Rolling Mill
JP2009045635A (ja) 圧延材の張力制御方法及び圧延装置
Kim et al. The Effect of Rolling Speed and Friction on Cold Rolling Mill Stability
JP2014161894A (ja) 差厚鋼板の製造装置および製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016552761

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177004801

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014903624

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014903624

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE