WO2016052705A1 - タイヤ骨格体およびタイヤ - Google Patents

タイヤ骨格体およびタイヤ Download PDF

Info

Publication number
WO2016052705A1
WO2016052705A1 PCT/JP2015/077965 JP2015077965W WO2016052705A1 WO 2016052705 A1 WO2016052705 A1 WO 2016052705A1 JP 2015077965 W JP2015077965 W JP 2015077965W WO 2016052705 A1 WO2016052705 A1 WO 2016052705A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
tire
polyamide
soft segment
forms
Prior art date
Application number
PCT/JP2015/077965
Other languages
English (en)
French (fr)
Inventor
泰典 樽谷
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN201580052997.8A priority Critical patent/CN107075248B/zh
Priority to US15/515,138 priority patent/US10059808B2/en
Priority to JP2016514790A priority patent/JP5989279B1/ja
Priority to EP15845816.6A priority patent/EP3202852B1/en
Publication of WO2016052705A1 publication Critical patent/WO2016052705A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/36Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino acids, polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0041Compositions of the carcass layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/40Polyamides containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2380/00Tyres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterized by the type of post-polymerisation functionalisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/50Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing nitrogen, e.g. polyetheramines or Jeffamines(r)

Definitions

  • the present invention relates to a tire mounted on a rim and a tire frame used in the tire, and more particularly to a tire in which at least a part of the tire frame (tire case) is formed of a resin material.
  • pneumatic tires made of rubber, organic fiber materials, steel members, and the like are used for vehicles such as passenger cars.
  • Conventional rubber materials conventionally used for tire skeletons of pneumatic tires have no problem in heat resistance.
  • a plurality of processes such as kneading, sheeting, molding, and vulcanization are usually performed, and improvement in productivity has been demanded.
  • thermoplastic resins have many advantages from the viewpoint of improving productivity, such as being capable of injection molding.
  • JP 2012-46030 A proposes a tire using a polyamide-based thermoplastic elastomer as the thermoplastic polymer material.
  • a tire using a thermoplastic polymer material is easier to manufacture and lower in cost than a conventional rubber tire.
  • it is possible to assemble a rim even in a tire using a thermoplastic polymer material and it is required to ensure excellent rim assembling properties so that internal air does not leak when the rim is assembled.
  • a method for adjusting the hard segment / soft segment ratio in the thermoplastic elastomer is a method for obtaining low loss while maintaining the rim assembly.
  • rim assembly elastic modulus
  • an object of the present invention is to provide a tire frame body that is formed by using a resin material and has both excellent rim assemblability and excellent low loss.
  • polyamide-based thermoplastic elastomer is a polymer (HS) that forms a hard segment, a polymer that forms a soft segment, and three or more functional groups
  • An annular tire skeleton which is a copolymer obtained by polymerizing at least a polymer having a group (3SS).
  • a tire skeleton body that is formed using a resin material and has both excellent rim assemblability and excellent low-loss properties.
  • FIG. 1 is a perspective view showing a partial cross section of a tire according to an embodiment of the present invention. It is sectional drawing of the bead part with which the rim
  • the tire skeleton of the present invention is a tubular tire skeleton formed of a resin material containing a polyamide-based thermoplastic elastomer (that is, formed of at least a resin material).
  • the polyamide-based thermoplastic elastomer includes a polymer (HS) that forms part or all of a hard segment, and a polymer that forms part or all of a soft segment and has three or more functional groups (3SS). ) And are at least polymerized copolymers.
  • polyamide-based thermoplastic elastomer means a polymer that forms part or all of a crystalline hard segment with a high melting point, and part or all of a soft segment that is amorphous and has a low glass transition temperature. And a copolymer thermoplastic resin material having an amide bond (—CONH—) in the main chain of the polymer constituting part or all of the hard segment.
  • the polyamide-based thermoplastic elastomer may be simply referred to as “TPA” (ThermoPlastic Amid elastomer).
  • the polymer that forms part or all of the soft segment has at least three or more functional groups.
  • a tire skeleton body having both loss properties can be obtained.
  • the reason why this effect is achieved is not necessarily clear, but by using a trifunctional or higher functional polymer for the soft segment, a branched structure of the soft segment is introduced into the polyamide-based thermoplastic elastomer. This is considered to increase the entanglement of the soft segment portion in the amorphous portion in the thermoplastic elastomer.
  • the elastic modulus can be improved and excellent rim assembly can be achieved.
  • an effect of lowering the loss base tan ⁇ can also be obtained.
  • the polymer forming part or all of the soft segment has at least three functional groups, so that an excellent strength against tension can be obtained. This is more conspicuous when forming a tire skeleton. The reason why this effect is achieved is not necessarily clear, but when the soft segment does not have a branch, it is considered that the elastomer tends to be oriented in the injection direction, for example, during injection molding. It is considered that the strength against tension decreases with respect to the direction of stretching. On the other hand, in the present invention, it is assumed that the orientation in the injection direction is suppressed by having a branch in the soft segment, and that the entanglement of the soft segment portion in the amorphous portion in the thermoplastic elastomer is increased by the branch. As a result, it is considered that excellent strength against tension can be obtained in the direction perpendicular to the injection direction.
  • the tire frame of the present invention is a tubular tire frame formed of a resin material containing a polyamide-based thermoplastic elastomer (TPA) (that is, formed using at least a resin material).
  • the polyamide-based thermoplastic elastomer includes a polymer (HS) that forms part or all of the hard segment, and part of the soft segment or It is a copolymer obtained by polymerizing at least a polymer (3SS) that forms all of the polymer and has three or more functional groups.
  • the resin material may contain a thermoplastic elastomer other than the polyamide-based thermoplastic elastomer or an arbitrary component.
  • content of the polyamide-type thermoplastic elastomer in this invention with respect to the total amount of the said resin material is 30 mass% or more, It is further more preferable that it is 50 mass% or more, It is especially 70 mass% or more. preferable.
  • resin is a concept including a thermoplastic resin and a thermosetting resin, but does not include natural rubber.
  • polyamide thermoplastic elastomer As described above, as the polyamide-based thermoplastic elastomer (TPA) in the present invention, at least part of the polyamide is crystalline and has a high melting point, and other polymers (for example, polyester or polyether) are used. Is a material that constitutes a part or the whole of a soft segment that is amorphous and has a low glass transition temperature.
  • the polyamide-based thermoplastic elastomer may use a chain extender such as dicarboxylic acid as a bonding part between the hard segment and the soft segment.
  • R 1 represents a hydrocarbon molecular chain having 2 to 20 carbon atoms (for example, an alkylene group having 2 to 20 carbon atoms).
  • R 2 represents a molecular chain of a hydrocarbon having 3 to 20 carbon atoms (for example, an alkylene group having 3 to 20 carbon atoms).
  • R 1 is preferably a hydrocarbon molecular chain having 3 to 18 carbon atoms (for example, an alkylene group having 3 to 18 carbon atoms), and a hydrocarbon molecular chain having 4 to 15 carbon atoms (for example, (Alkylene group having 4 to 15 carbon atoms) is more preferable, and a molecular chain of a hydrocarbon having 10 to 15 carbon atoms (for example, an alkylene group having 10 to 15 carbon atoms) is particularly preferable.
  • R 2 is preferably a hydrocarbon molecular chain having 3 to 18 carbon atoms (eg, an alkylene group having 3 to 18 carbon atoms), and a hydrocarbon molecular chain having 4 to 15 carbon atoms.
  • an alkylene group having 4 to 15 carbon atoms is more preferable, and a molecular chain of a hydrocarbon having 10 to 15 carbon atoms (for example, an alkylene group having 10 to 15 carbon atoms) is particularly preferable.
  • the monomer represented by the general formula (1) or the general formula (2) include ⁇ -aminocarboxylic acid and lactam.
  • the polyamide forming part or all of the hard segment include polycondensates of these ⁇ -aminocarboxylic acids and lactams, and co-condensation polymers of diamines and dicarboxylic acids.
  • Examples of the ⁇ -aminocarboxylic acid include 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 10-aminocapric acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid.
  • Examples of the lactam include aliphatic lactams having 5 to 20 carbon atoms such as lauryl lactam, ⁇ -caprolactam, undecane lactam, ⁇ -enantolactam, and 2-pyrrolidone.
  • diamine examples include ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2, Examples thereof include diamine compounds such as aliphatic diamines having 2 to 20 carbon atoms such as 4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 3-methylpentamethylenediamine, or metaxylenediamine.
  • the dicarboxylic acid can be represented by HOOC- (R 3 ) m —COOH (R 3 : a hydrocarbon molecular chain having 3 to 20 carbon atoms, m: 0 or 1).
  • R 3 a hydrocarbon molecular chain having 3 to 20 carbon atoms, m: 0 or 1.
  • oxalic acid, succinic acid And aliphatic dicarboxylic acids having 2 to 22 carbon atoms such as glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, or dodecanedioic acid.
  • Polyamides that form part or all of the hard segment include polyamides obtained by ring-opening polycondensation of ⁇ -caprolactam (polyamide 6), polyamides obtained by ring-opening polycondensation of undecane lactam (polyamide 11), and lauryl lactams.
  • Condensed polyamide (polyamide 12), polycondensed polyamide of 12-aminododecanoic acid (polyamide 12), polycondensed polyamide of diamine and dibasic acid (for example, polycondensed polyamide of hexamethylenediamine and adipic acid (polyamide 66)) Or a polycondensation polyamide (polyamide 612) of hexamethylenediamine and dodecanedioic acid) or a polyamide (amide MX) having meta-xylenediamine as a structural unit.
  • polyamide 6, polyamide 12, and polyamide 612 are preferable in terms of the balance of injection moldability, rim assembly, low loss, crack resistance, and weather resistance.
  • the polyamide 6 can be represented by, for example, ⁇ CO— (CH 2 ) 5 —NH ⁇ n (n represents an arbitrary number of repeating units). For example, n is preferably 2 to 100, and 3 to 50 Is more preferable.
  • the polyamide 11 can be represented by, for example, ⁇ CO— (CH 2 ) 10 —NH ⁇ n (n represents an arbitrary number of repeating units). For example, n is preferably 2 to 100, and 3 to 50 Is more preferable.
  • the polyamide 12 can be represented by, for example, ⁇ CO— (CH 2 ) 11 —NH ⁇ n (n represents an arbitrary number of repeating units). For example, n is preferably 2 to 100, and 3 to 50 Is more preferable.
  • the polyamide 66 can be represented by, for example, ⁇ CO (CH 2 ) 4 CONH (CH 2 ) 6 NH ⁇ n (n represents an arbitrary number of repeating units). For example, n is preferably 2 to 100 3 to 50 are more preferable.
  • the polyamide 612 can be represented by, for example, ⁇ CO (CH 2 ) 10 CONH (CH 2 ) 6 NH ⁇ n (n represents an arbitrary number of repeating units). For example, n is preferably 2 to 100 3 to 50 are more preferable.
  • the amide MX having meta-xylenediamine as a structural unit can be represented, for example, by the following structural unit (A-1) [in (A-1), n represents an arbitrary number of repeating units], for example, 2 to 100 is preferable, and 3 to 50 is more preferable.
  • the polyamide-based thermoplastic elastomer has, as a hard segment, polyamide (polyamide 6) having a unit structure represented by — [CO— (CH 2 ) 5 —NH] —, or — [CO— (CH 2 ) 11 —. It is preferable to have a polyamide (polyamide 12) having a unit structure represented by NH] —.
  • Soft segment polymer having 3 or more functional groups (3SS) As the polymer that forms part or all of the soft segment, at least a polymer having three or more functional groups (3SS) is used.
  • a functional group which the said polymer (3SS) has if it is a functional group which contributes to superposition
  • polyethers such as polyethylene polyol, polypropylene polyol, polytetramethylene ether polyol, or polyester polyol, and polyester can be used, and these can be used alone or in combination of two or more.
  • polymer (3SS) polyether amine which has a trifunctional or more functional amino group obtained by making animonia or carboxylic acid etc. react with the terminal of polyether, polyether carboxyl which has a trifunctional or more carboxy group
  • An acid or a polyether polyol having a tri- or higher functional hydroxyl group can be used.
  • polyether amine having a trifunctional amino group examples include a trifunctional polyether amine obtained by reacting ammonia at the end of polypropylene triol.
  • the polyether amine is represented by the following general formula (SS3-1).
  • polyether amines are examples of the polyether amine having a trifunctional amino group.
  • R represents a linear alkyl group or a hydrogen atom (preferably a linear alkyl group or hydrogen atom having 1 to 2 carbon atoms, more preferably C 2 H 5 or a hydrogen atom).
  • n is 0 or 1
  • x, y, and z are integers in which x + y + z is 5 or more and 85 or less.
  • polyether amine having a trifunctional amino group examples include, for example, JEFFAMINE (registered trademark) T-403, T-3000, or T-5000 manufactured by HUNTSMAN.
  • examples of the polyetheramine having a tetrafunctional or higher functional amino group include XTJ-616 manufactured by HUNTSMAN.
  • polyether polyol having a trifunctional or higher functional hydroxyl group examples include, for example, Placel 300 series manufactured by Daicel, Exenol manufactured by Asahi Glass, or preminol.
  • the functional group possessed by the trifunctional or higher functional polymer (3SS) is more preferably an amino group or a carboxy group from the viewpoint of excellent weather resistance (hydrolysis resistance).
  • the polyamide thermoplastic elastomer in the present invention may contain a polymer (2SS) having two functional groups as a soft segment.
  • the ratio of the trifunctional or higher functional soft segment polymer (3SS) to the total amount of the trifunctional or higher functional soft segment polymer (3SS) and the bifunctional soft segment polymer (2SS) in the polyamide-based thermoplastic elastomer is It is preferably 1 mol% or more and 30 mol% or less, more preferably 5 mol% or more and 25 mol% or less, and further preferably 10 mol% or more and 20 mol% or less.
  • the ratio of the trifunctional or higher functional segment polymer (3SS) is 1 mol% or more, it is possible to more effectively achieve both excellent rim assembly and excellent low loss.
  • it is 30 mol% or less the viscosity does not become too high, and the injection moldability is particularly excellent.
  • Soft segment polymer (2SS) having two functional groups examples include bifunctional polyesters and polyethers. Examples thereof include polyethers and polyesters such as polyethylene glycol, polypropylene glycol (PPG), polytetramethylene ether glycol (PTMG), or polyester polyol, or ABA type triblock polyether diol. These may be used alone or in combination of two or more. Moreover, polyether diamine etc. which are obtained by reacting an anionia etc. with the terminal of polyether can be used, for example, ABA type
  • examples of the “ABA type triblock polyether diol” include polyethers represented by the following general formula (3).
  • x and z each independently represents an integer of 1 to 20.
  • y represents an integer of 4 to 50.
  • each of x and z is preferably an integer of 1 to 18, more preferably an integer of 1 to 16, particularly preferably an integer of 1 to 14, and most preferably an integer of 1 to 12.
  • y is preferably an integer of 5 to 45, more preferably an integer of 6 to 40, particularly preferably an integer of 7 to 35, and most preferably an integer of 8 to 30.
  • examples of the “ABA type triblock polyether diamine” include polyether diamines represented by the following general formula (N).
  • X N and Z N each independently represent an integer of 1 to 20.
  • Y N represents an integer of 4 to 50.
  • X N and Z N are each preferably an integer of 1 to 18, more preferably an integer of 1 to 16, particularly preferably an integer of 1 to 14, and an integer of 1 to 12 Most preferred.
  • Y N is preferably an integer of 5 to 45, more preferably an integer of 6 to 40, particularly preferably an integer of 7 to 35, and most preferably an integer of 8 to 30.
  • Examples of the combination of the hard segment and the soft segment include the combinations of the hard segment and the soft segment mentioned above.
  • ⁇ -caprolactam ring-opening polycondensate / polypropylene glycol / polypropylene polyol or ⁇ -caprolactam ring-opening polycondensate / ABA type triblock polyether diol / polypropylene polyol is particularly preferable.
  • the polymer that forms part or all of the soft segment contains, as a monomer unit, a branched saturated diamine having 6 to 22 carbon atoms, a branched alicyclic diamine having 6 to 16 carbon atoms, or a diamine such as norbornane diamine. May be.
  • These branched saturated diamines having 6 to 22 carbon atoms, branched alicyclic diamines having 6 to 16 carbon atoms, or norbornane diamines may be used alone or in combination. . However, it is preferably used in combination with the above-mentioned ABA type triblock polyether diol.
  • Examples of the branched saturated diamine having 6 to 22 carbon atoms include 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, and 1,2- Examples include diaminopropane, 1,3-diaminopentane, 2-methyl-1,5-diaminopentane, and 2-methyl-1,8-diaminooctane.
  • Examples of the branched alicyclic diamine having 6 to 16 carbon atoms include 5-amino-2,2,4-trimethyl-1-cyclopentanemethylamine and 5-amino-1,3,3-trimethylcyclohexanemethyl.
  • An amine etc. can be mentioned.
  • These diamines may be either cis isomers or trans isomers, or may be a mixture of these isomers.
  • Examples of the norbornane diamine include 2,5-norbonane dimethylamine, 2,6-norbonane dimethylamine, and mixtures thereof.
  • the polymer which comprises a part or all of the said soft segment may contain other diamine compounds other than the above as a monomer unit.
  • diamine compounds include ethylene diamine, trimethylene diamine, tetramethylene diamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine, nonamethylene diamine, decamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 2, Aliphatic diamines such as 2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, or 3-methylpentanemethylenediamine, bis (4-aminocyclohexyl) methane, bis (4-aminocyclohexyl) propane Alicyclic diamines such as 1,3-bisaminomethylcyclohexane or 1,4-bisaminomethylcyclohexane, metaxylylenediamine, paraxylylenediamine, etc. And aromatic diamines.
  • the polyamide-based thermoplastic elastomer may use a chain extender such as dicarboxylic acid in addition to the hard segment and the soft segment.
  • a chain extender such as dicarboxylic acid
  • dicarboxylic acid at least 1 type chosen from aliphatic, alicyclic, and aromatic dicarboxylic acid, or these derivatives can be used, for example.
  • dicarboxylic acid examples include adipic acid, decanedicarboxylic acid, oxalic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedioic acid.
  • Chain aliphatic dicarboxylic acids dimerized aliphatic dicarboxylic acids having 14 to 48 carbon atoms obtained by dimerization of unsaturated fatty acids obtained by fractionation of triglycerides, and aliphatic dicarboxylic acids such as hydrogenated products thereof, 1,4-cyclohexane Mention may be made of alicyclic dicarboxylic acids such as dicarboxylic acids and aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid.
  • the polyamide thermoplastic elastomer in the present invention preferably has a mass ratio (HS / SS) of 45/55 to 80/20 of the hard segment and the soft segment of the polyamide thermoplastic elastomer.
  • HS mass ratio is not less than the lower limit, the elastic modulus is increased, shape retention is obtained, and rim assembly is obtained. Further, when the HS mass ratio is less than or equal to the upper limit value, the elastic modulus does not become too high, and rim assembly is obtained.
  • the HS mass ratio can be adjusted to a desired range by setting the charge amount of the raw material constituting the hard segment and the raw material constituting the soft segment.
  • the HS mass ratio can be measured by using 1 H-NMR and 13 C-NMR for polyamide-based thermoplastic elastomers.
  • the content of the hard segment and the soft segment in the polyamide-based thermoplastic elastomer is preferably set as appropriate so that the HS mass ratio is in the above range.
  • the content is preferably set so that the hydroxyl group or amino group of the monomer that is the raw material of the soft segment and the carboxyl group of the chain extender are approximately equimolar.
  • the content of the hard segment, the soft segment and the chain extender used as necessary in the polyamide-based thermoplastic elastomer is appropriately selected so that the HS mass ratio is within the above range. For example, it can be set as desired content by setting each charging amount.
  • the weight average molecular weight of the polyamide-based thermoplastic elastomer contained in the resin material is not particularly limited, but is preferably 10,000 to 700,000. By setting it as 700,000 or less, it is easy to maintain suitable injection moldability, and by setting it as 10,000 or more, sufficient pressure resistance can be secured.
  • the weight average molecular weight of the polyamide-based thermoplastic elastomer is preferably 15, from the viewpoint of further improving the rim assembly property and improving the pressure resistance against the internal pressure of the tire. 700 to 300,000 is more preferable, and 22,000 to 200,000 is particularly preferable.
  • the ratio (Mw80 / Mw20) of the weight cumulative 20% molecular weight (Mw20) and the weight cumulative 80% molecular weight (Mw80) in the polyamide-based thermoplastic elastomer is preferably 3 or more and 20 or less, more preferably 4 or more and 15 or less. 5 or more and 12 or less are more preferable.
  • the ratio (Mw80 / Mw20) is equal to or higher than the lower limit value, an effect that it is more excellent in low loss and crack resistance can be obtained.
  • the effect that it is excellent in injection moldability is acquired by being below the said upper limit.
  • the weight average molecular weight of the polyamide-based thermoplastic elastomer can be measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • HLC-8320GPC EcoSEC manufactured by Tosoh Corporation
  • the weight cumulative 20% molecular weight (Mw20) indicates the molecular weight accumulated from the bottom and corresponds to 20% by weight
  • the weight cumulative 80% molecular weight (Mw80) is the cumulative weight from the bottom. Refers to a molecular weight of 80%.
  • the number average molecular weight of the polymer (polyamide) constituting part or all of the hard segment is preferably 300 to 15000 from the viewpoint of melt moldability.
  • the number average molecular weight of the polymer constituting part or all of the soft segment is preferably 200 to 6000 from the viewpoint of toughness and low temperature flexibility.
  • the polyamide-based thermoplastic elastomer can be synthesized by copolymerizing a polymer that forms part or all of the hard segment and a polymer that forms part or all of the soft segment by a known method.
  • the polyamide-based thermoplastic elastomer includes a monomer that is a raw material for a hard segment (for example, an ⁇ -aminocarboxylic acid such as 12-aminododecanoic acid or a lactam such as lauryl lactam), a raw material for a trifunctional soft segment, A monomer (for example, trifunctional polyetheramine), a monomer (for example, the ABA triblock polyetheramine) used as a raw material for the bifunctional soft segment, and a chain extender (for example, adipic acid or decanedicarboxylic acid) Acid) can be obtained by polymerization in a container.
  • a monomer that is a raw material for a hard segment for example, an ⁇ -aminocarbox
  • ⁇ -aminocarboxylic acid when used as a monomer that is a raw material for the hard segment, it can be synthesized by performing a normal pressure melt polymerization or a normal pressure melt polymerization followed by a low pressure melt polymerization.
  • lactam When used as a monomer as a raw material for the hard segment, an appropriate amount of water can coexist, melt polymerization under a pressure of 0.1 to 5 MPa, followed by normal pressure melt polymerization and / or reduced pressure melt polymerization. It can manufacture by the method which has this.
  • These synthesis reactions can be carried out either batchwise or continuously. In the above synthesis reaction, a batch type reaction vessel, a single tank type or multi-tank type continuous reaction apparatus, a tubular continuous reaction apparatus or the like may be used alone or in appropriate combination.
  • the polymerization temperature is preferably 150 to 300 ° C, more preferably 160 to 280 ° C.
  • the polymerization time can be appropriately determined depending on the relationship between the polymerization average molecular weight of the polyamide-based thermoplastic elastomer to be synthesized and the polymerization temperature. For example, it is preferably 0.5 to 30 hours, and more preferably 0.5 to 20 hours.
  • monoamines such as laurylamine, stearylamine, hexamethylenediamine, and metaxylylenediamine or the like for the purpose of adjusting the molecular weight and stabilizing the melt viscosity at the time of molding as necessary.
  • Additives such as monocarboxylic acids such as diamine, acetic acid, benzoic acid, stearic acid, adipic acid, sebacic acid, and dodecanedioic acid, or dicarboxylic acids may be added.
  • a catalyst can be used as necessary.
  • the catalyst includes at least one selected from the group consisting of P, Ti, Ge, Zn, Fe, Sn, Mn, Co, Zr, V, Ir, La, Ce, Li, Ca, and Hf.
  • Compounds include inorganic phosphorus compounds, organic titanium compounds, organic zirconium compounds, and organic tin compounds.
  • examples of the inorganic phosphorus compound include phosphorus-containing acids such as phosphoric acid, pyrophosphoric acid, polyphosphoric acid, phosphorous acid, and hypophosphorous acid, alkali metal salts of phosphorus-containing acids, or alkalis of phosphorus-containing acids.
  • examples include earth metal salts.
  • examples of the organic titanium compound include titanium alkoxide [titanium tetrabutoxide, titanium tetraisopropoxide, or the like].
  • examples of the organic zirconium compound include zirconium alkoxide (zirconium tetrabutoxide (also referred to as “Zr (OBu) 4 ” or “Zr (OC 4 H 8 ) 4 )”).
  • organotin compounds include distannoxane compounds [1-hydroxy-3-isothiocyanate-1,1,3,3-tetrabutyldistanoxane, etc.], tin acetate, dibutyltin dilaurate, or butyltin hydroxide oxide hydrate, etc. Is mentioned.
  • the catalyst addition amount and the catalyst addition timing are not particularly limited as long as the target product can be obtained quickly.
  • various additives such as rubber, various fillers (for example, silica, calcium carbonate, clay), anti-aging agent, oil, plasticizer, colorant, weathering agent, and reinforcing material may be used as desired. May be included.
  • the content of the additive in the resin material (tire frame) is not particularly limited, and can be appropriately used as long as the effects of the present invention are not impaired.
  • the content of the resin component in the resin material is preferably 50% by mass or more, and more preferably 90% by mass or more based on the total amount of the resin material.
  • the content of the resin component in the resin material is the balance obtained by subtracting the total content of various additives from the total amount of the resin component.
  • the melting point (or softening point) of the resin material (tire frame) itself is usually 100 ° C. to 350 ° C., preferably about 100 ° C. to 250 ° C., but from the viewpoint of tire productivity, 120 ° C. to 250 ° C. The degree is preferable, and 120 ° C. to 200 ° C. is more preferable.
  • a resin material having a melting point of 120 ° C. to 250 ° C. for example, when a tire skeleton is formed by fusing the divided bodies (frame pieces), the periphery of 120 ° C. to 250 ° C. Even if the frame body is fused in the temperature range, the bonding strength between the tire frame pieces is sufficient.
  • the heating temperature is preferably 10 ° C. to 150 ° C. higher than the melting point (or softening point) of the resin material forming part or all of the tire frame piece, and more preferably 10 ° C. to 100 ° C.
  • the resin material can be obtained by adding various additives as necessary and mixing them appropriately by a known method (for example, melt mixing).
  • the resin material obtained by melt mixing can be used in the form of pellets if necessary.
  • the tensile yield strength defined in JIS K7113: 1995 of the resin material (tire frame) itself is preferably 5 MPa or more, preferably 5 MPa to 20 MPa, and more preferably 5 MPa to 17 MPa.
  • the resin material can withstand deformation against a load applied to the tire during traveling.
  • the tensile yield elongation defined by JIS K7113: 1995 of the resin material (tire frame) itself is preferably 10% or more, preferably 10% to 70%, and more preferably 15% to 60%.
  • the tensile yield elongation of the resin material is 10% or more, the elastic region is large, and the rim assembly property can be improved.
  • the tensile elongation at break specified in JIS K7113: 1995 of the resin material (tire frame) itself is preferably 50% or more, preferably 100% or more, more preferably 150% or more, and particularly preferably 200% or more.
  • the rim assembly property is good and it is possible to make it difficult to break against a collision.
  • the deflection temperature under load (when loaded with 0.45 MPa) as defined in ISO 75-2 or ASTM D648 of the resin material (tire frame) itself is preferably 50 ° C. or more, preferably 50 ° C. to 150 ° C., and preferably 50 ° C. to 50 ° C. 130 ° C. is more preferable.
  • the deflection temperature under load of the resin material is 50 ° C. or higher, deformation of the tire skeleton can be suppressed even when vulcanization is performed in the manufacture of the tire.
  • FIG. 1A is a perspective view showing a partial cross section of a tire according to an embodiment of the present invention.
  • FIG. 1B is a cross-sectional view of a bead portion attached to a rim.
  • the tire 10 of the present embodiment has a cross-sectional shape substantially similar to that of a conventional general rubber pneumatic tire.
  • the tire 10 includes a pair of bead portions 12 that contact the bead seat 21 and the rim flange 22 of the rim 20 shown in FIG. 1B, and side portions 14 that extend outward from the bead portion 12 in the tire radial direction.
  • a tire case 17 having a crown portion 16 (outer peripheral portion) for connecting a tire radial direction outer end of one side portion 14 and a tire radial direction outer end of the other side portion 14 is provided.
  • a resin material for example, a polymer (HS) that forms a hard segment and a polymer that forms a soft segment and has three or more functional groups (3SS) ) And at least a polyamide-based thermoplastic elastomer that is a polymerized copolymer.
  • the tire case 17 is formed of only a single resin material, but the present invention is not limited to this configuration, and each tire case 17 is similar to a conventional general rubber pneumatic tire. You may use the thermoplastic resin material which has a different characteristic for every site
  • the tire case 17 of the present embodiment is obtained by joining a pair of tire case halves (tire frame pieces) 17A formed only of a resin material.
  • the tire case half 17A is formed by injection molding or the like so that one bead portion 12, one side portion 14, and a half-width crown portion 16 are integrated with each other so as to face each other. It is formed by joining at the tire equator part.
  • the tire case 17 is not limited to the one formed by joining two members, and may be formed by joining three or more members.
  • the tire case half 17A formed using at least the resin material can be formed by, for example, vacuum forming, pressure forming, injection forming, melt casting, or the like. For this reason, it is not necessary to perform vulcanization compared to the case where the tire case is molded with rubber as in the prior art, the manufacturing process can be greatly simplified, and the molding time can be omitted.
  • the tire case half body 17A has a symmetrical shape, that is, the one tire case half body 17A and the other tire case half body 17A have the same shape. There is also an advantage that only one type of mold is required.
  • an annular bead core 18 made of only a steel cord is embedded in the bead portion 12 as in a conventional general pneumatic tire.
  • the present invention is not limited to this configuration, and the bead core 18 can be omitted if the rigidity of the bead portion 12 is ensured and there is no problem in fitting with the rim 20.
  • an organic fiber cord, a resin-coated organic fiber cord, or a hard resin may be used.
  • the portion that contacts the rim 20 of the bead portion 12 and at least the portion that contacts the rim flange 22 of the rim 20 are more excellent in sealing performance than the resin material that forms part or all of the tire case 17.
  • An annular sealing layer 24 made of only a material such as rubber is formed.
  • the seal layer 24 may also be formed at a portion where the tire case 17 (bead portion 12) and the bead sheet 21 are in contact with each other.
  • a material having a better sealing property than a resin material constituting part or all of the tire case 17 a softer material can be used than a resin material constituting part or all of the tire case 17.
  • thermoplastic resin thermoplastic elastomer
  • examples of such other thermoplastic resins include polyurethane resins, polyolefin resins, polystyrene thermoplastic resins, resins such as polyester resins, blends of these resins with rubbers or elastomers, and the like.
  • Thermoplastic elastomers can also be used, for example, polyester-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, polystyrene-based thermoplastic elastomers, polyolefin-based thermoplastic elastomers, combinations of these elastomers, and blends with rubber. Thing etc. are mentioned.
  • a reinforcing cord 26 having higher rigidity than a resin material constituting part or all of the tire case 17 is wound in the circumferential direction of the tire case 17.
  • the reinforcing cord 26 is wound spirally in a state in which at least a part thereof is embedded in the crown portion 16 in a cross-sectional view along the axial direction of the tire case 17, thereby forming a reinforcing cord layer 28.
  • a crown 30 made of a material having higher wear resistance than a resin material constituting part or all of the tire case 17, for example, rubber alone, is disposed.
  • FIG. 2 is a cross-sectional view along the tire rotation axis showing a state where a reinforcing cord is embedded in the crown portion of the tire case of the tire of the first embodiment.
  • the reinforcing cord 26 is spirally wound in a state in which at least a part is embedded in the crown portion 16 in a sectional view along the axial direction of the tire case 17.
  • a reinforcing cord layer 28 indicated by a broken line portion in FIG. 2 is formed together with a part of the outer peripheral portion 17.
  • the portion embedded in the crown portion 16 of the reinforcing cord 26 is in a state of being in close contact with a resin material that constitutes a part or all of the crown portion 16 (tire case 17).
  • a monofilament (single wire) such as a metal fiber or an organic fiber, or a multifilament (twisted wire) obtained by twisting these fibers such as a steel cord twisted with a steel fiber can be used.
  • a steel cord is used as the reinforcing cord 26.
  • the burying amount L indicates the burying amount of the reinforcing cord 26 in the tire rotation axis direction with respect to the tire case 17 (crown portion 16).
  • the embedding amount L of the reinforcing cord 26 in the crown portion 16 is preferably 1/5 or more of the diameter D of the reinforcing cord 26, and more preferably more than 1/2. Most preferably, the entire reinforcing cord 26 is embedded in the crown portion 16. When the embedment amount L of the reinforcing cord 26 exceeds 1/2 of the diameter D of the reinforcing cord 26, it is difficult to jump out of the embedded portion due to the size of the reinforcing cord 26.
  • the reinforcing cord layer 28 corresponds to a belt disposed on the outer peripheral surface of the carcass of a conventional rubber pneumatic tire.
  • the crown 30 is disposed on the outer peripheral side of the reinforcing cord layer 28 in the tire radial direction.
  • the rubber used for the crown 30 is preferably the same type of rubber used in conventional rubber pneumatic tires.
  • a crown formed of another type of resin material that is more excellent in wear resistance than a resin material that constitutes part or all of the tire case 17 may be used.
  • the crown 30 is formed with a crown pattern including a plurality of grooves on the ground contact surface with the road surface in the same manner as a conventional rubber pneumatic tire.
  • the manufacturing method of the tire of this embodiment is explained.
  • a tire case half is formed using a resin material containing the polyamide-based thermoplastic elastomer. These tire cases are preferably formed by injection molding.
  • the tire case halves supported by the thin metal support ring face each other.
  • a joining mold (not shown) is installed so as to be in contact with the outer peripheral surface of the abutting portion of the tire case half.
  • die is comprised so that the periphery of the junction part (butting part) of the tire case half body 17A may be pressed with a predetermined pressure.
  • the periphery of the joint portion of the tire case half is pressed at a temperature equal to or higher than the melting point (or softening point) of the resin material constituting part or all of the tire case.
  • the joint portion of the tire case half is heated and pressed by the joining mold, the joint portion is melted and the tire case halves are fused together, and the tire case 17 is formed by integrating these members.
  • the joining portion of the tire case half is heated using a joining mold, but the present invention is not limited to this.
  • the joining portion is heated by a separately provided high-frequency heater or the like.
  • the tire case halves may be joined by softening or melting in advance by irradiation with hot air, infrared rays, or the like, and pressurizing with a joining mold.
  • FIG. 3 is an explanatory diagram for explaining an operation of embedding a reinforcing cord in a crown portion of a tire case using a cord heating device and rollers.
  • the cord supply device 56 is disposed on the reel 58 around which the reinforcing cord 26 is wound, the cord heating device 59 disposed on the downstream side of the reel 58 in the cord transport direction, and the downstream side of the reinforcing cord 26 in the transport direction.
  • the first roller 60, the first cylinder device 62 that moves the first roller 60 in the direction of contacting and separating from the outer peripheral surface of the tire, and the downstream side in the conveying direction of the reinforcing cord 26 of the first roller 60 A second roller 64, and a second cylinder device 66 that moves the second roller 64 in a direction in which the second roller 64 comes into contact with and separates from the tire outer peripheral surface.
  • the second roller 64 can be used as a metal cooling roller.
  • the surfaces of the first roller 60 and the second roller 64 are made of fluororesin (in this embodiment, Teflon (registered trademark)) in order to suppress adhesion of a molten or softened resin material. It is coated.
  • the cord supply device 56 has two rollers, ie, the first roller 60 and the second roller 64, but the present invention is not limited to this configuration, and either one of the rollers. It is also possible to have only one (that is, one roller).
  • the cord heating device 59 includes a heater 70 and a fan 72 that generate hot air. Further, the cord heating device 59 includes a heating box 74 through which the reinforcing cord 26 passes through an internal space in which hot air is supplied, and a discharge port 76 for discharging the heated reinforcing cord 26.
  • the temperature of the heater 70 of the cord heating device 59 is raised, and the ambient air heated by the heater 70 is sent to the heating box 74 by the wind generated by the rotation of the fan 72.
  • the reinforcing cord 26 unwound from the reel 58 is fed into a heating box 74 in which the internal space is heated with hot air (for example, the temperature of the reinforcing cord 26 is heated to about 100 to 200 ° C.).
  • the heated reinforcing cord 26 passes through the discharge port 76 and is wound spirally around the outer peripheral surface of the crown portion 16 of the tire case 17 rotating in the direction of arrow R in FIG.
  • the resin material at the contact portion melts or softens, and at least a part of the heated reinforcing cord 26 is embedded in the outer peripheral surface of the crown portion 16. Is done. At this time, since the heated reinforcing cord 26 is embedded in the molten or softened resin material, there is no gap between the resin material and the reinforcing cord 26, that is, a tight contact state. Thereby, the air entering to the portion where the reinforcing cord 26 is embedded is suppressed.
  • the burying amount L of the reinforcing cord 26 can be adjusted by the heating temperature of the reinforcing cord 26, the tension applied to the reinforcing cord 26, the pressing force by the first roller 60, and the like.
  • the embedding amount L of the reinforcing cord 26 is set to be 1/5 or more of the diameter D of the reinforcing cord 26.
  • the burying amount L of the reinforcing cord 26 is more preferably more than 1/2 of the diameter D, and most preferably the entire reinforcing cord 26 is embedded.
  • the reinforcing cord layer 28 is formed on the outer peripheral side of the crown portion 16 of the tire case 17 by winding the heated reinforcing cord 26 while being embedded in the outer peripheral surface of the crown portion 16.
  • the vulcanized belt-shaped crown 30 is wound around the outer peripheral surface of the tire case 17 by one turn, and the crown 30 is bonded to the outer peripheral surface of the tire case 17 using an adhesive or the like.
  • the crown 30 may be, for example, a precure crown that is used in conventionally known retreaded tires. This step is the same step as the step of bonding the precure crown to the outer peripheral surface of the base tire of the retreaded tire.
  • the seal layer 24 made of only vulcanized rubber is bonded to the bead portion 12 of the tire case 17 using an adhesive or the like, the tire 10 is completed.
  • the reinforcing cord 26 is heated, and the surface of the tire case 17 at the portion where the heated reinforcing cord 26 contacts is melted or softened.
  • the present invention is not limited to this configuration.
  • the reinforcing cord 26 may be embedded in the crown portion 16 after the outer peripheral surface of the crown portion 16 in which the reinforcing cord 26 is embedded is heated using a hot air generator without heating the reinforcing cord 26.
  • the heat source of the cord heating device 59 is a heater and a fan.
  • the present invention is not limited to this configuration, and the reinforcement cord 26 may be directly heated by radiant heat (for example, infrared rays). Good.
  • the portion in which the resin material in which the reinforcing cord 26 is embedded is melted or softened is forcibly cooled by the metal second roller 64, but the present invention is not limited to this configuration. .
  • the reinforcing cord 26 is heated.
  • the outer periphery of the reinforcing cord 26 may be covered with the same resin material as the tire case 17.
  • the resin material covered together with the reinforcing cord 26 is also heated, thereby effectively suppressing air entry when embedded in the crown portion 16. can do.
  • the tire 10 of the first embodiment is a so-called tubeless tire in which an air chamber is formed between the tire 10 and the rim 20 by attaching the bead portion 12 to the rim 20, but the present invention is limited to this configuration. It may be a complete tube shape.
  • the tire of the present invention is an embodiment using a reinforcing cord member in which the cord member is coated with a resin material as shown in the second embodiment (FIGS. 4 and 5) of JP 2012-46030 A. Also good.
  • Example 1 Hard segment: Synthesis of PA12 (nylon (registered trademark) 12) In a reaction vessel having a volume of 2 liters equipped with a stirrer, a nitrogen gas inlet, and a condensed water outlet, 39 g of Aldrich 12-aminododecanoic acid, aminododecano 530 g of lactam and 108 g of dodecanedioic acid were added, and after the inside of the container was sufficiently substituted with nitrogen, the temperature was raised to 280 ° C. and reacted for 4 hours under a pressure of 0.6 MPa. After releasing the pressure, the mixture was further reacted for 1 hour under a nitrogen stream to obtain a white solid which was a PA12 polymer having a desired number average molecular weight of about 1,200.
  • Example 2 Each type of polymer that forms a hard segment (HS), a polymer that forms a soft segment and has three or more functional groups (3SS), and a polymer that forms a soft segment and has two functional groups (2SS), 2SS /
  • the 3SS ratio [molar ratio] and the hard segment HS / soft segment SS ratio [mass ratio] are shown in Table 1 below.
  • Polyamides were charged in the same manner as in Example 1 except that PA12 (HS) having a molecular weight of 1200 was changed to 200 g, T-403 (3SS) was changed to 7.0 g, and PPG diamine (2SS) was changed to 57 g. An elastomer was obtained.
  • Example 3 Each type of polymer that forms a hard segment (HS), a polymer that forms a soft segment and has three or more functional groups (3SS), and a polymer that forms a soft segment and has two functional groups (2SS), 2SS /
  • the 3SS ratio [molar ratio] and the hard segment HS / soft segment SS ratio [mass ratio] were as shown in Table 1 below.
  • HS was changed to PA12 having a molecular weight of 820, and charged amounts were changed except that PA12 (HS) having a molecular weight of 820 was changed to 200 g, T-403 (3SS) was changed to 10 g, and RT-1000 (2SS) was changed to 209 g.
  • a polyamide elastomer was obtained.
  • Example 4 Each type of polymer that forms a hard segment (HS), a polymer that forms a soft segment and has three or more functional groups (3SS), and a polymer that forms a soft segment and has two functional groups (2SS), 2SS /
  • the 3SS ratio [molar ratio] and the hard segment HS / soft segment SS ratio [mass ratio] are shown in Table 1 below.
  • HS was changed to PA6 having a molecular weight of 810, and charged amounts were changed except that PA6 (HS) having a molecular weight of 810 was changed to 200 g, T-403 (3SS) was changed to 10 g, and D-400 (2SS) was changed to 84 g.
  • a polyamide elastomer was obtained.
  • Example 5 Each type of polymer that forms a hard segment (HS), a polymer that forms a soft segment and has three or more functional groups (3SS), and a polymer that forms a soft segment and has two functional groups (2SS), 2SS /
  • the 3SS ratio [molar ratio] and the hard segment HS / soft segment SS ratio [mass ratio] are shown in Table 1 below.
  • HS was changed to PA6 having a molecular weight of 1860, and the charging amounts were changed to 200 g for PA6 (HS) having a molecular weight of 1860, 2.3 g for T-403 (3SS), and 100 g for RT-1000 (2SS), respectively.
  • a polyamide elastomer was obtained in the same manner as in Example 1.
  • Example 6 Each type of polymer that forms a hard segment (HS), a polymer that forms a soft segment and has three or more functional groups (3SS), and a polymer that forms a soft segment and has two functional groups (2SS), 2SS /
  • the 3SS ratio [molar ratio] and the hard segment HS / soft segment SS ratio [mass ratio] are shown in Table 1 below.
  • HS was changed to PA6 with a molecular weight of 1860, and the charge amounts were changed to 200 g for PA6 (HS) with a molecular weight of 1860, 4.5 g for T-403 (3SS), and 92 g for RT-1000 (2SS), respectively. Except for the above, a polyamide elastomer was obtained in the same manner as in Example 1.
  • Example 7 Each type of polymer that forms a hard segment (HS), a polymer that forms a soft segment and has three or more functional groups (3SS), and a polymer that forms a soft segment and has two functional groups (2SS), 2SS /
  • the 3SS ratio [molar ratio] and the hard segment HS / soft segment SS ratio [mass ratio] are shown in Table 1 below.
  • HS was changed to PA6 having a molecular weight of 1860, and the charging amounts were changed to PA6 (HS) having a molecular weight of 1860 to 200 g, T-403 (3SS) to 8.6 g, and RT-1000 (2SS) to 78 g, respectively. Except for the above, a polyamide elastomer was obtained in the same manner as in Example 1.
  • Example 8 Each type of polymer that forms a hard segment (HS), a polymer that forms a soft segment and has three or more functional groups (3SS), and a polymer that forms a soft segment and has two functional groups (2SS), 2SS /
  • the 3SS ratio [molar ratio] and the hard segment HS / soft segment SS ratio [mass ratio] are shown in Table 1 below.
  • HS was changed to PA6 having a molecular weight of 820, and the amounts charged were changed to PA6 (HS) having a molecular weight of 820 to 200 g, T-403 (3SS) to 4.5 g, and RT-1000 (2SS) to 92 g, respectively. Except for the above, a polyamide elastomer was obtained in the same manner as in Example 1.
  • Example 9 Each type of polymer that forms a hard segment (HS), a polymer that forms a soft segment and has three or more functional groups (3SS), and a polymer that forms a soft segment and has two functional groups (2SS), 2SS /
  • the 3SS ratio [molar ratio] and the hard segment HS / soft segment SS ratio [mass ratio] are shown in Table 2 below.
  • HS was changed to PA6 having a molecular weight of 1860, and charged amounts were changed except that PA6 (HS) having a molecular weight of 1860 was changed to 200 g, T-3000 (3SS) was changed to 31 g, and RT-1000 (2SS) was changed to 92 g.
  • a polyamide elastomer was obtained.
  • Example 10 Each type of polymer that forms a hard segment (HS), a polymer that forms a soft segment and has three or more functional groups (3SS), and a polymer that forms a soft segment and has two functional groups (2SS), 2SS /
  • the 3SS ratio [molar ratio] and the hard segment HS / soft segment SS ratio [mass ratio] are shown in Table 2 below.
  • HS was changed to PA6 having a molecular weight of 1860, and charging amounts were changed except that PA6 (HS) having a molecular weight of 1860 was changed to 200 g, T-5000 (3SS) was changed to 51 g, and RT-1000 (2SS) was changed to 92 g.
  • a polyamide elastomer was obtained.
  • Example 11 Each type of polymer that forms a hard segment (HS), a polymer that forms a soft segment and has three or more functional groups (3SS), and a polymer that forms a soft segment and has two functional groups (2SS), 2SS /
  • the 3SS ratio [molar ratio] and the hard segment HS / soft segment SS ratio [mass ratio] are shown in Table 2 below.
  • HS was changed to PA6 having a molecular weight of 4000, and the charged amounts were changed except that PA6 (HS) having a molecular weight of 4000 was changed to 200 g, T-5000 (3SS) was changed to 24 g, and RT-1000 (2SS) was changed to 43 g.
  • a polyamide elastomer was obtained.
  • Example 12 Each type of polymer that forms a hard segment (HS), a polymer that forms a soft segment and has three or more functional groups (3SS), and a polymer that forms a soft segment and has two functional groups (2SS), 2SS /
  • the 3SS ratio [molar ratio] and the hard segment HS / soft segment SS ratio [mass ratio] are shown in Table 2 below.
  • HS was changed to PA6 having a molecular weight of 1860, and charged amounts were changed except that PA6 (HS) having a molecular weight of 1860 was changed to 200 g, T-403 (3SS) was changed to 13 g, and RT-1000 (2SS) was changed to 63 g.
  • a polyamide elastomer was obtained.
  • Example 13 Each type of polymer that forms a hard segment (HS), a polymer that forms a soft segment and has three or more functional groups (3SS), and a polymer that forms a soft segment and has two functional groups (2SS), 2SS /
  • the 3SS ratio [molar ratio] and the hard segment HS / soft segment SS ratio [mass ratio] are shown in Table 2 below.
  • HS is changed to PA6 having a molecular weight of 810, and the charged amounts are respectively set to 200 g of PA6 (HS) having a molecular weight of 810, 10 g of Exenol 430 (3SS) manufactured by Asahi Glass Co., Ltd., and 84 g of Exenol 420 (2SS) manufactured by Asahi Glass Co., Ltd.
  • a polyamide elastomer was obtained in the same manner as in Example 1 except that 1.5 g of Zr (OBu) 4 manufactured by Kanto Chemical was added as a polymerization catalyst.
  • Example 14 Each type of polymer that forms a hard segment (HS), a polymer that forms a soft segment and has three or more functional groups (3SS), and a polymer that forms a soft segment and has two functional groups (2SS), 2SS /
  • the 3SS ratio [molar ratio] and the hard segment HS / soft segment SS ratio [mass ratio] are shown in Table 3 below.
  • HS is changed to PA12 having a molecular weight of 820, and the charging amount is set to 200 g of PA12 (HS) having a molecular weight of 820, 50 g of T-403 (3SS), and 75 g of RT-1000 (2SS), respectively.
  • a polyamide elastomer was obtained in the same manner as in Example 1 except that the time was changed to 4 hours.
  • Example 15 Each type of polymer that forms a hard segment (HS), a polymer that forms a soft segment and has three or more functional groups (3SS), and a polymer that forms a soft segment and has two functional groups (2SS), 2SS /
  • the 3SS ratio [molar ratio] and the hard segment HS / soft segment SS ratio [mass ratio] are shown in Table 3 below.
  • HS is changed to PA6 having a molecular weight of 1500, and charged amounts are respectively set to 200 g of PA6 (HS) having a molecular weight of 1500, 23 g of T-403 (3SS), 53 g of RT-1000 (2SS), and polymerization time.
  • a polyamide elastomer was obtained in the same manner as in Example 1 except that the time was changed to 3.5 hours.
  • Example 16 Each type of polymer that forms a hard segment (HS), a polymer that forms a soft segment and has three or more functional groups (3SS), and a polymer that forms a soft segment and has two functional groups (2SS), 2SS /
  • the 3SS ratio [molar ratio] and the hard segment HS / soft segment SS ratio [mass ratio] are shown in Table 3 below.
  • HS was synthesized by the following method to make PA612 with a molecular weight of 1500, and charged amounts were respectively PA612 (HS) with a molecular weight of 1500 to 200 g, T-403 (3SS) to 5.6 g, and RT-1000 (2SS) to 114 g.
  • a polyamide elastomer was obtained in the same manner as in Example 1 except that the polymerization temperature was changed to 240 ° C. In Example 16 using PA612, the balance between crack growth resistance, water absorption and heat resistance was excellent.
  • Example 17 Each type of polymer that forms a hard segment (HS), a polymer that forms a soft segment and has three or more functional groups (3SS), and a polymer that forms a soft segment and has two functional groups (2SS), 2SS /
  • the 3SS ratio [molar ratio] and the hard segment HS / soft segment SS ratio [mass ratio] are shown in Table 3 below.
  • PA6 which is a hard segment (HS)
  • HS hard segment
  • 3SS soft segment
  • a polyamide elastomer was produced by mixing and polymerizing the segments (3SS and 2SS).
  • caprolactam manufactured by Aldrich which is a raw material of hard segment PA6, 12 g of dodecanedioic acid, 26 g of aminohexanoic acid, 2.9 g of T-403 (3SS), and 124 g of RT-1000 (2SS) Were mixed together and then polymerized under the same conditions as in the production of the polyamide elastomer of Example 1 to obtain a polyamide elastomer.
  • -Bifunctional polymer for soft segment- PPG diamine manufactured by HUNTSMAN, product name: JEFFAMINE (registered trademark) D-400 PPG / PTMG / PPG diamine (a terpolymer containing a structural unit derived from polytetramethylene ether glycol (PTMG) and a structural unit derived from polypropylene glycol (PPG)): manufactured by HUNTSMAN, trade name: JEFFAMINE (registered trademark) RT-1000 -PPG diol: Asahi Glass Co., Ltd., trade name: Exenol 420
  • PPG triamine manufactured by HUNTSMAN, JEFFAMINE (registered trademark) T-403, average molecular weight 440 T-3000: PPG triamine, manufactured by HUNTSMAN, JEFFAMINE (registered trademark) T-3000, average molecular weight 3000 T-5000: PPG triamine, manufactured by HUNTSMAN, JEFFAMINE (registered trademark) T-5000, average molecular weight 5000
  • Exenol 430 PPG triol, manufactured by Asahi Glass Co., Ltd., average molecular weight 400
  • PA12 PA12 synthesized in Example 1 (Nylon (registered trademark) 12)
  • PA6 PA6 synthesized by the following method (nylon (registered trademark) 6) (Hard segment: Synthesis of PA6 (nylon (registered trademark) 6)) 540 g of Aldrich caprolactam, 109 g of dodecanedioic acid, and 42 g of aminohexanoic acid were placed in a reaction vessel having a volume of 2 liters equipped with a stirrer, a nitrogen gas inlet, and a condensed water outlet, and the inside of the vessel was sufficiently purged with nitrogen. The temperature was raised to 0 ° C.
  • PA612 PA612 synthesized in Example 16 (nylon (registered trademark) 612)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyamides (AREA)

Abstract

 ポリアミド系熱可塑性エラストマーを含む樹脂材料で形成され、前記ポリアミド系熱可塑性エラストマーは、ハードセグメントを形成するポリマー(HS)と、ソフトセグメントを形成するポリマーであって且つ3つ以上の官能基を有するポリマー(3SS)と、が少なくとも重合された共重合体である環状のタイヤ骨格体。

Description

タイヤ骨格体およびタイヤ
 本発明は、リムに装着されるタイヤおよび該タイヤに用いられるタイヤ骨格体にかかり、特に、タイヤ骨格体(タイヤケース)の少なくとも一部が樹脂材料で形成されたタイヤに関する。
 従来、乗用車等の車両には、ゴム、有機繊維材料、スチール部材などから構成された空気入りタイヤが用いられている。従来空気入りタイヤのタイヤ骨格体に用いられている一般的なゴム材料は、耐熱性などには問題はない。しかし、タイヤ製造工程において、混練、シーティング、成形及び加硫といった複数の工程を経るのが通常であり、生産性の向上が求められていた。
 これに対し、近年では、軽量化や、成形の容易さ、リサイクルのしやすさから、樹脂材料、特に熱可塑性樹脂や熱可塑性エラストマーなどをタイヤ材料として用いることが検討されている。これら熱可塑性の高分子材料(熱可塑性樹脂)は、射出成形が可能であるなど、生産性の向上の観点から有利な点が多い。
 また、特開2012-46030号公報には、前記熱可塑性の高分子材料としてポリアミド系熱可塑性エラストマーを用いたタイヤが提案されている。
 熱可塑性の高分子材料を用いたタイヤは、ゴム製の従来タイヤと比べて、製造が容易で且つ低コストである。特に、熱可塑性の高分子材料を用いたタイヤにおいてもリム組みが可能であるとともに、リム組みをした際に内部の空気が漏れないように優れたリム組み性を確保することが求められ、またそれに加えて低転がり抵抗性(低ロス性)の実現が求められている。
 尚、リム組性を維持しつつ低ロス性を得るための方法としては、熱可塑性エラストマー中のハードセグメント/ソフトセグメント比を調整する方法が挙げられる。しかし、一方を高めると他方が低下するというように、リム組性(弾性率)と低ロス性とは二律背反の関係にあり、この両者をともに向上させることは容易でなかった。
 本発明は、前記事情を踏まえ、樹脂材料を用いて形成され、優れたリム組性と優れた低ロス性とを両立したタイヤ骨格体を提供することを目的とする。
[1]ポリアミド系熱可塑性エラストマーを含む樹脂材料で形成され、前記ポリアミド系熱可塑性エラストマーは、ハードセグメントを形成するポリマー(HS)と、ソフトセグメントを形成するポリマーであって且つ3つ以上の官能基を有するポリマー(3SS)と、が少なくとも重合された共重合体である環状のタイヤ骨格体。
 本発明によれば、樹脂材料を用いて形成され、優れたリム組性と優れた低ロス性とを両立したタイヤ骨格体を提供することができる。
本発明の一実施形態に係るタイヤの一部の断面を示す斜視図である。 本発明の一実施形態に係るタイヤにおける、リムに装着したビード部の断面図である。 第1実施形態のタイヤのタイヤケースのクラウン部に補強コードが埋設された状態を示すタイヤ回転軸に沿った断面図である。 コード加熱装置、及びローラ類を用いてタイヤケースのクラウン部に補強コードを埋設する動作を説明するための説明図である。
 本発明のタイヤ骨格体は、ポリアミド系熱可塑性エラストマーを含む樹脂材料で形成される(つまり少なくとも樹脂材料を用いて形成される)管状のタイヤ骨格体である。前記ポリアミド系熱可塑性エラストマーは、ハードセグメントの一部又は全部を形成するポリマー(HS)と、ソフトセグメントの一部又は全部を形成するポリマーであって且つ3つ以上の官能基を有するポリマー(3SS)と、が少なくとも重合された共重合体である。
 ここで、「ポリアミド系熱可塑性エラストマー」とは、結晶性で融点の高いハードセグメントの一部又は全部を構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントの一部又は全部を構成するポリマーと、を有する共重合体の熱可塑性樹脂材料であって、ハードセグメントの一部又は全部を構成するポリマーの主鎖にアミド結合(-CONH-)を有するものを意味する。ポリアミド系熱可塑性エラストマーを、単に「TPA」(ThermoPlastic Amid elastomer)と称することもある。
 本発明における前記ポリアミド系熱可塑性エラストマー(TPA)においてソフトセグメントの一部又は全部を形成するポリマーは、3つ以上の官能基を少なくとも有してなり、これにより優れたリム組性と優れた低ロス性とを両立したタイヤ骨格体が得られる。
 この効果が奏される理由は必ずしも明確ではないが、ソフトセグメントに三官能以上のポリマーを用いることでソフトセグメントの分岐構造がポリアミド系熱可塑性エラストマーに導入される。そして、これによって熱可塑性エラストマー中の非晶部分におけるソフトセグメント部分の絡み合いが増すものと考えられる。その結果、優れた低ロス性を維持しつつ、且つ弾性率を向上させられ優れたリム組性をも達成できるものと推察される。
 また、熱可塑性エラストマー中の非晶部分におけるソフトセグメント部分の絡み合いが増えることにより、ロスのベースtanδを下げる効果も得られる。
 また、本発明では前記ソフトセグメントの一部又は全部を形成するポリマーが3つ以上の官能基を少なくとも有してなることにより、引張りに対し優れた強度が得られ、この効果は特に射出成形にてタイヤ骨格体を形成する場合により顕著である。
 この効果が奏される理由は必ずしも明確ではないが、ソフトセグメントに分岐を有していない場合、例えば射出成形の際にエラストマーが射出方向に配向する傾向にあるものと考えられ、射出方向と直行する方向に対しては、引張りに対する強度が低下すると考えられる。一方本発明では、ソフトセグメントに分岐を有することでこの射出方向への配向が抑制され、また分岐によって熱可塑性エラストマー中の非晶部分におけるソフトセグメント部分の絡み合いも増すと推察される。その結果、射出方向と直行する方向に対しても引張りに対し優れた強度が得られるものと考えられる。
《樹脂材料》
 本発明のタイヤ骨格体は、ポリアミド系熱可塑性エラストマー(TPA)を含む樹脂材料で形成される(つまり少なくとも樹脂材料を用いて形成される)管状のタイヤ骨格体である。前記ポリアミド系熱可塑性エラストマー(以下、単に「本発明におけるポリアミド系熱可塑性エラストマー」と称することがある)は、ハードセグメントの一部又は全部を形成するポリマー(HS)と、ソフトセグメントの一部又は全部を形成するポリマーであって且つ3つ以上の官能基を有するポリマー(3SS)と、が少なくとも重合された共重合体である。
 前記樹脂材料は、ポリアミド系熱可塑性エラストマー以外の熱可塑性エラストマーや任意の成分を含んでいてもよい。なお、前記樹脂材料の総量に対する本発明におけるポリアミド系熱可塑性エラストマーの含有量が30質量%以上であることが好ましく、50質量%以上であることが更に好ましく、70質量%以上であることが特に好ましい。また、本明細書において「樹脂」とは、熱可塑性樹脂及び熱硬化性樹脂を含む概念であるが、天然ゴムは含まない。
(ポリアミド系熱可塑性エラストマー)
 上述のように本発明におけるポリアミド系熱可塑性エラストマー(TPA)としては、少なくともポリアミドが結晶性で融点の高いハードセグメントの一部又は全部を構成し、他のポリマー(例えば、ポリエステル又はポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントの一部又は全部を構成している材料が挙げられる。また、ポリアミド系熱可塑性エラストマーはハードセグメント及びソフトセグメントの結合部として、ジカルボン酸等の鎖長延長剤を用いてもよい。
-ハードセグメント-
 前記ハードセグメントの一部又は全部を形成するポリアミドとしては、例えば、下記一般式(1)又は一般式(2)で表されるモノマーを用いて合成されるポリアミドを挙げることができる。
Figure JPOXMLDOC01-appb-C000001

 
 一般式(1)中、Rは、炭素数2~20の炭化水素の分子鎖(例えば炭素数2~20のアルキレン基)を表す。
Figure JPOXMLDOC01-appb-C000002

 
 一般式(2)中、Rは、炭素数3~20の炭化水素の分子鎖(例えば炭素数3~20のアルキレン基)を表す。
 一般式(1)中、Rとしては、炭素数3~18の炭化水素の分子鎖(例えば炭素数3~18のアルキレン基)が好ましく、炭素数4~15の炭化水素の分子鎖(例えば炭素数4~15のアルキレン基)が更に好ましく、炭素数10~15の炭化水素の分子鎖(例えば炭素数10~15のアルキレン基)が特に好ましい。また、一般式(2)中、Rとしては、炭素数3~18の炭化水素の分子鎖(例えば炭素数3~18のアルキレン基)が好ましく、炭素数4~15の炭化水素の分子鎖(例えば炭素数4~15のアルキレン基)が更に好ましく、炭素数10~15の炭化水素の分子鎖(例えば炭素数10~15のアルキレン基)が特に好ましい。
 前記一般式(1)又は一般式(2)で表されるモノマーとしては、ω-アミノカルボン酸やラクタムが挙げられる。また、前記ハードセグメントの一部又は全部を形成するポリアミドとしては、これらω-アミノカルボン酸やラクタムの重縮合体や、ジアミンとジカルボン酸との共縮重合体等が挙げられる。
 前記ω-アミノカルボン酸としては、6-アミノカプロン酸、7-アミノヘプタン酸、8-アミノオクタン酸、10-アミノカプリン酸、11-アミノウンデカン酸、又は12-アミノドデカン酸などの炭素数5~20の脂肪族ω-アミノカルボン酸等を挙げることができる。また、ラクタムとしては、ラウリルラクタム、ε-カプロラクタム、ウンデカンラクタム、ω-エナントラクタム、又は2-ピロリドンなどの炭素数5~20の脂肪族ラクタムなどを挙げることができる。
 前記ジアミンとしては、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、3-メチルペンタメチレンジアミン、又はメタキシレンジアミンなどの炭素数2~20の脂肪族ジアミンなどのジアミン化合物を挙げることができる。また、ジカルボン酸は、HOOC-(R-COOH(R:炭素数3~20の炭化水素の分子鎖、m:0又は1)で表すことができ、例えば、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、又はドデカン二酸などの炭素数2~22の脂肪族ジカルボン酸を挙げることができる。
 前記ハードセグメントの一部又は全部を形成するポリアミドとしては、ε-カプロラクタムを開環重縮合したポリアミド(ポリアミド6)、ウンデカンラクタムを開環重縮合したポリアミド(ポリアミド11)、ラウリルラクタムを開環重縮合したポリアミド(ポリアミド12)、12-アミノドデカン酸を重縮合したポリアミド(ポリアミド12)、ジアミンと二塩基酸との重縮合ポリアミド(例えばヘキサメチレンジアミンとアジピン酸との重縮合ポリアミド(ポリアミド66)、又はヘキサメチレンジアミンとドデカン二酸との重縮合ポリアミド(ポリアミド612))或いはメタキシレンジアミンを構成単位として有するポリアミド(アミドMX)等を挙げることができる。
 特に、射出成型性、リム組性、低ロス性、耐亀裂進展性、耐候性のバランスの面で、ポリアミド6、ポリアミド12、及びポリアミド612が好ましい。
 前記ポリアミド6は、例えば、{CO-(CH-NH}(nは任意の繰り返し単位数を表す)で表すことができ、例えば、nとしては2~100が好ましく、3~50が更に好ましい。
 前記ポリアミド11は、例えば、{CO-(CH10-NH}(nは任意の繰り返し単位数を表す)で表すことができ、例えば、nとしては2~100が好ましく、3~50が更に好ましい。
 前記ポリアミド12は、例えば、{CO-(CH11-NH}(nは任意の繰り返し単位数を表す)で表すことができ、例えば、nとしては2~100が好ましく、3~50が更に好ましい。
 前記ポリアミド66は、例えば、{CO(CHCONH(CHNH}(nは任意の繰り返し単位数を表す)で表すことができ、例えば、nとしては2~100が好ましく、3~50が更に好ましい。
 前記ポリアミド612は、例えば、{CO(CH10CONH(CHNH}(nは任意の繰り返し単位数を表す)で表すことができ、例えば、nとしては2~100が好ましく、3~50が更に好ましい。
 また、メタキシレンジアミンを構成単位として有するアミドMXは、例えば、下記構成単位(A-1)〔(A-1)中、nは任意の繰り返し単位数を表す〕で表わすことができ、例えば、2~100が好ましく、3~50が更に好ましい。
Figure JPOXMLDOC01-appb-C000003

 
 前記ポリアミド系熱可塑性エラストマーは、ハードセグメントとして、-[CO-(CH-NH]-で表される単位構造を有するポリアミド(ポリアミド6)、又は-[CO-(CH11-NH]-で表される単位構造を有するポリアミド(ポリアミド12)を有することが好ましい。
-ソフトセグメント-
 (3つ以上の官能基を有するソフトセグメント用ポリマー(3SS))
 前記ソフトセグメントの一部又は全部を形成するポリマーとして、3つ以上の官能基を有するポリマー(3SS)が少なくとも用いられる。
 尚、上記ポリマー(3SS)が有する官能基としては、ポリアミド系熱可塑性エラストマー中で重合に寄与する官能基であれば、特に限定されずに用い得る。具体的には、アミノ基、カルボキシ基、又はヒドロキシル基等が挙げられる。
 3つ以上の官能基を有するポリマー(3SS)としては、例えば、三官能以上のポリエステルや、ポリエーテルが挙げられる。更に、例えば、ポリエチレンポリオール、ポリプロピレンポリオール、ポリテトラメチレンエーテルポリオール、又はポリエステルポリオール等のポリエーテル及びポリエステル等が挙げられ、これらを単独で又は2種以上を用いることができる。
 また上記ポリマー(3SS)としては、ポリエーテルの末端にアニモニア、又はカルボン酸等を反応させることによって得られる三官能以上のアミノ基を有するポリエーテルアミン、三官能以上のカルボキシ基を有するポリエーテルカルボン酸、又は三官能以上のヒドロキシル基を有するポリエーテルポリオール等を用いることができる。
 三官能のアミノ基を有するポリエーテルアミンとしては、ポリプロピレントリオールの末端にアンモニアを反応させて得られる三官能のポリエーテルアミンが挙げられ、具体的には、下記一般式(SS3-1)で示されるポリエーテルアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000004

 
(一般式(SS3-1)中、Rは直鎖のアルキル基または水素原子(好ましくは炭素数1~2の直鎖のアルキル基または水素原子、より好ましくはCまたは水素原子)を表し、nは0または1を、x、y、及びzはx+y+zが5以上85以下の整数を表す。)
 三官能のアミノ基を有するポリエーテルアミンの具体例としては、例えばHUNTSMAN社製のJEFFAMINE(登録商標)T-403、T-3000、又はT-5000等が挙げられる。
 また、四官能以上のアミノ基を有するポリエーテルアミンとしては、例えばHUNTSMAN社製のXTJ-616等が挙げられる。
 また、三官能以上のヒドロキシル基を有するポリエーテルポリオールの具体例としては、例えばダイセル社製のプラクセル300シリーズ、旭硝子社製のエクセノール、又はプレミノール等が挙げられる。
 尚、三官能以上のソフトセグメント用ポリマー(3SS)が有する官能基としては、耐候性(耐加水分解性)に優れるとの観点で、アミノ基もしくはカルボキシ基がより好ましい。
 本発明におけるポリアミド系熱可塑性エラストマーには、ソフトセグメントとして、2つの官能基を有するポリマー(2SS)を含んでいてもよい。ポリアミド系熱可塑性エラストマー中の三官能以上のソフトセグメント用ポリマー(3SS)と二官能のソフトセグメント用ポリマー(2SS)との合計量に対する、前記三官能以上のソフトセグメント用ポリマー(3SS)の比率は、1モル%以上30モル%以下であることが好ましく、更には5モル%以上25モル%以下がより好ましく、10モル%以上20モル%以下が更に好ましい。
 三官能以上のソフトセグメント用ポリマー(3SS)の比率が1モル%以上であることで、優れたリム組性と優れた低ロス性との両立がより効果的に達成される。一方、30モル%以下であることで、粘度が高くなり過ぎず特に射出成形性に優れる。
 (2つの官能基を有するソフトセグメント用ポリマー(2SS))
 前記ソフトセグメントの一部を形成し且つ2つの官能基を有するポリマー(2SS)としては、例えば、二官能のポリエステルや、ポリエーテルが挙げられる。例えば、ポリエチレングリコール、ポリプロピレングリコール(PPG)、ポリテトラメチレンエーテルグリコール(PTMG)、又はポリエステルポリオール等のポリエーテル及びポリエステル、あるいはABA型トリブロックポリエーテルジオール等が挙げられる。これらを単独で又は2種以上を用いることができる。また、ポリエーテルの末端にアニモニア等を反応させることによって得られるポリエーテルジアミン等を用いることができ、例えば、ABA型トリブロックポリエーテルジアミンを用いることができる。
 ここで、「ABA型トリブロックポリエーテルジオール」とは、下記一般式(3)に示されるポリエーテルを挙げることができる。
Figure JPOXMLDOC01-appb-C000005

 
 一般式(3)中、x及びzは、それぞれ独立に1~20の整数を表す。yは、4~50の整数を表す。
 前記一般式(3)において、x及びzとしては、それぞれ、1~18の整数が好ましく、1~16の整数が更に好ましく、1~14の整数が特に好ましく、1~12の整数が最も好ましい。また、前記一般式(3)において、yとしては、5~45の整数が好ましく、6~40の整数が更に好ましく、7~35の整数が特に好ましく、8~30の整数が最も好ましい。
 また、「ABA型トリブロックポリエーテルジアミン」とは、下記一般式(N)に示されるポリエーテルジアミンを挙げることができる。
Figure JPOXMLDOC01-appb-C000006

 
 一般式(N)中、X及びZは、それぞれ独立に1~20の整数を表す。Yは、4~50の整数を表す。
 前記一般式(N)において、X及びZとしては、それぞれ、1~18の整数が好ましく、1~16の整数が更に好ましく、1~14の整数が特に好ましく、1~12の整数が最も好ましい。また、前記一般式(N)において、Yとしては、5~45の整数が好ましく、6~40の整数が更に好ましく、7~35の整数が特に好ましく、8~30の整数が最も好ましい。
 前記ハードセグメントと前記ソフトセグメント(二官能のポリマー、および三官能以上のポリマー)との組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。この中でも、ラウリルラクタムの開環重縮合体/ポリエチレングリコール/ポリエチレンポリオールの組合せ、ラウリルラクタムの開環重縮合体/ポリプロピレングリコール/ポリプロピレンポリオールの組合せ、ラウリルラクタムの開環重縮合体/ポリテトラメチレンエーテルグリコール/ポリテトラメチレンエーテルポリオールの組合せ、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルジオール/ポリプロピレンポリオールの組合せ、アミノドデカン酸の重縮合体/ポリエチレングリコール/ポリエチレンポリオールの組合せ、アミノドデカン酸の重縮合体/ポリプロピレングリコール/ポリプロピレンポリオールの組合せ、アミノドデカン酸の重縮合体/ポリテトラメチレンエーテルグリコール/ポリテトラメチレンエーテルポリオールの組合せ、又はアミノドデカン酸の重縮合体/ABA型トリブロックポリエーテルジオール/ポリプロピレンポリオールの組合せ、が好ましい。
 更には、ε-カプロラクタムの開環重縮合体/ポリプロピレングリコール/ポリプロピレンポリオールの組合せ、又はε-カプロラクタムの開環重縮合体/ABA型トリブロックポリエーテルジオール/ポリプロピレンポリオールの組合せ、が特に好ましい。
 前記ソフトセグメントの一部又は全部を形成するポリマーは、炭素数6~22の分岐型飽和ジアミン、炭素数6~16の分岐脂環式ジアミン、又は、ノルボルナンジアミン等のジアミンをモノマー単位として含んでいてもよい。また、これら、炭素数6~22の分岐型飽和ジアミン、炭素数6~16の分岐脂環式ジアミン、又は、ノルボルナンジアミンは、それぞれ単独で用いてもよいし、これらを組み合わせて用いてもよい。ただし、上述の、ABA型トリブロックポリエーテルジオールと組み合わせて用いることが好ましい。
 前記炭素数6~22の分岐型飽和ジアミンとしては、例えば、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン、1,2-ジアミノプロパン、1,3-ジアミノペンタン、2-メチル-1,5-ジアミノペンタン及び2-メチル-1,8-ジアミノオクタンなどが挙げられる。
 前記炭素数6~16の分岐脂環式ジアミンとしては、例えば、5-アミノ-2,2,4-トリメチル-1-シクロペンタンメチルアミン、及び5-アミノ-1,3,3-トリメチルシクロヘキサンメチルアミン等を挙げることができる。これらのジアミンはシス体及びトランス体のいずれであってもよく、これら異性体の混合物であってもよい。
 前記ノルボルナンジアミンとしては、例えば、2,5-ノルボナンジメチルアミン、2,6-ノルボナンジメチルアミンあるいはこれらの混合物などが挙げられる。
 更に、前記ソフトセグメントの一部又は全部を構成するポリマーは、上述以外の他のジアミン化合物をモノマー単位として含んでいてもよい。他のジアミン化合物としては、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、又は3-メチルペンタンメチレンジアミンなどの脂肪族ジアミン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)プロパン、1,3-ビスアミノメチルシクロヘキサン、又は1,4-ビスアミノメチルシクロヘキサンなどの脂環式ジアミン、或いは、メタキシリレンジアミン、又はパラキシリレンジアミンなどの芳香族ジアミンなどが挙げられる。
 上述のジアミンは単独で使用してもよいし、2種類以上を適宜組合せて使用してもよい。
-鎖長延長剤-
 上述のように、ポリアミド系熱可塑性エラストマーはハードセグメント及びソフトセグメントの他に、ジカルボン酸等の鎖長延長剤を用いてもよい。前記ジカルボン酸としては、例えば、脂肪族、脂環式及び芳香族ジカルボン酸から選ばれる少なくとも一種又はこれらの誘導体を用いることができる。
 前記ジカルボン酸の具体例としては、アジピン酸、デカンジカルボン酸、シュウ酸、コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、又はドデカン二酸等の炭素数2~25の直鎖脂肪族ジカルボン酸;トリグリセリドの分留により得られる不飽和脂肪酸を二量化した炭素数14~48の二量化脂肪族ジカルボン酸及びこれらの水素添加物等の脂肪族ジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸、及びテレフタル酸、イソフタル酸などの芳香族ジカルボン酸を挙げることができる。
(HS質量比)
 本発明におけるポリアミド系熱可塑性エラストマーは、前記ポリアミド系熱可塑性エラストマーのハードセグメントとソフトセグメントとの質量比(HS/SS)が45/55~80/20であることが好ましい。前記HS質量比が下限値以上であると、弾性率が高くなり、形状保持性が得られ、リム組み性が得られる。また、前記HS質量比が上限値以下であると、弾性率が高くなり過ぎず、リム組性が得られる。前記HS質量比は、ハードセグメントを構成する原料及びソフトセグメントを構成する原料の仕込み量を設定することで所望の範囲に調整することができる。また、前記HS質量比は、ポリアミド系熱可塑性エラストマーはH-NMR及び13C-NMRを用いることで、測定することができる。
 前記ポリアミド系熱可塑性エラストマー中のハードセグメント及びソフトセグメントの含有量は、前記HS質量比が上述の範囲になるように適宜設定されることが好ましい。
 前記鎖長延長剤を用いる場合、その含有量は前記ソフトセグメントの原料となるモノマーの水酸基又はアミノ基と、鎖長延長剤のカルボキシル基とがほぼ等モルになるように設定されることが好ましい。
 前記ポリアミド系熱可塑性エラストマー中のハードセグメント、ソフトセグメント及び必要に応じて用いられる鎖長延長剤の含有量は、HS質量比が上述の範囲内になるように適宜選定される。例えば各々の仕込み量を設定することで各々所望の含有量とすることができる。
-分子量-
 本発明において、樹脂材料に含まれるポリアミド系熱可塑性エラストマーの重量平均分子量は、特に限定はないが、10,000~700,000であることが好ましい。700,000以下とすることで好適な射出成型性を維持しやすくなり、10,000以上とすることで耐圧性を十分確保することが出来る。また、10,000~400,000であることがより好ましく、リム組み性の更なる向上やタイヤの内圧に対する耐圧性を向上させる観点からは、前記ポリアミド系熱可塑性エラストマーの重量平均分子量が15,700~300,000が更に好ましく、22,000~200,000が特に好ましい。
 また、前記ポリアミド系熱可塑性エラストマーにおける重量累積20%分子量(Mw20)と重量累積80%分子量(Mw80)との比(Mw80/Mw20)は、3以上20以下が好ましく、4以上15以下がより好ましく、5以上12以下が更に好ましい。
 比(Mw80/Mw20)が上記下限値以上であることで、低ロス性及び耐亀裂進展性により優れるとの効果が得られる。一方、上記上限値以下であることで、射出成形性に優れるとの効果が得られる。
 前記ポリアミド系熱可塑性エラストマーの重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定することができ、例えば、東ソー株式会社製の「HLC-8320GPC EcoSEC」等のGPC(ゲル浸透クロマトグラフィー)を用いることができる。また、上記GPCで測定された値に対し、重量累積20%分子量(Mw20)は下から累積して重量で20%にあたる分子量を指し、重量累積80%分子量(Mw80)は下から累積して重量で80%にあたる分子量を指す。
 また、前記ハードセグメントの一部又は全部を構成するポリマー(ポリアミド)の数平均分子量としては、溶融成形性の観点から、300~15000が好ましい。また、前記ソフトセグメントの一部又は全部を構成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、200~6000が好ましい。
 前記ポリアミド系熱可塑性エラストマーは、前記ハードセグメントの一部又は全部を形成するポリマー及びソフトセグメントの一部又は全部を形成するポリマーを公知の方法によって共重合することで合成することができる。例えば、前記ポリアミド系熱可塑性エラストマーは、ハードセグメントの原料となるモノマー(例えば、12-アミノドデカン酸などのω-アミノカルボン酸や、ラウリルラクタムなどのラクタム)と、三官能のソフトセグメントの原料となるモノマー(例えば、三官能のポリエーテルアミン)と、二官能のソフトセグメントの原料となるモノマー(例えば、前記ABA型トリブロックポリエーテルアミン)と、鎖長延長剤(例えば、アジピン酸又はデカンジカルボン酸)とを容器内で重合させることで得ることができる。特に、ハードセグメントの原料となるモノマーとしてω-アミノカルボン酸を使用する場合、常圧溶融重合又は常圧溶融重合に、更に減圧溶融重合を行って合成することができる。ハードセグメントの原料となるモノマーとしてラクタムを用いる場合には、適量の水を共存させることができ、0.1~5MPaの加圧下での溶融重合とそれに続く常圧溶融重合及び/又は減圧溶融重合を有する方法で製造することができる。また、これら合成反応は、回分式及び連続式のいずれでも実施することができる。また、上述の合成反応には、バッチ式反応釜、一槽式若しくは多槽式の連続反応装置、管状連続反応装置などを単独であるいは適宜組み合わせて用いてもよい。
 前記ポリアミド系熱可塑性エラストマーの製造において、重合温度は、150~300℃が好ましく、160~280℃が更に好ましい。また、重合時間は、合成するポリアミド系熱可塑性エラストマーの重合平均分子量及び重合温度との関係で適宜決定できるが、例えば、0.5~30時間が好ましく、0.5~20時間が更に好ましい。
 前記ポリアミド系熱可塑性エラストマーの製造においては、必要に応じて分子量の調整や成形加工時の溶融粘度安定化を目的として、ラウリルアミン、ステアリルアミン、ヘキサメチレンジアミン、及びメタキシリレンジアミンなどのモノアミン若しくはジアミン、酢酸、安息香酸、ステアリン酸、アジピン酸、セバシン酸、及びドデカン二酸などのモノカルボン酸、或いはジカルボン酸などの添加剤を添加してもよい。これら添加剤は、本発明の効果に悪い影響を与えない範囲で、得られるポリアミド系熱可塑性エラストマーの分子量や粘度等の関係で適宜選定することができる。
 また、前記ポリアミド系熱可塑性エラストマーの製造においては、必要に応じて触媒を用いることができる。前記触媒としては、P、Ti、Ge、Zn、Fe、Sn、Mn、Co、Zr、V、Ir、La、Ce、Li、Ca、及び、Hfからなる群より選択される少なくとも1種を含む化合物が挙げられる。
 例えば、無機系リン化合物、有機チタン化合物、有機ジルコニウム化合物、及び有機スズ化合物等が挙げられる。
 具体的には、無機系リン化合物としては、リン酸、ピロリン酸、ポリリン酸、亜リン酸、及び次亜リン酸等のリン含有酸、リン含有酸のアルカリ金属塩、又はリン含有酸のアルカリ土類金属塩等が挙げられる。
 有機チタン化合物としては、チタンアルコキシド〔チタンテトラブトキシド、又はチタンテトライソプロポキシド等〕等が挙げられる。
 有機ジルコニウム化合物としては、ジルコニウムアルコキシド〔ジルコニウムテトラブトキシド(「Zr(OBu)」または「Zr(OC」とも称される)等〕等が挙げられる。
 有機スズ化合物としては、ジスタノキサン化合物〔1-ヒドロキシ-3-イソチオシアネート-1,1,3,3-テトラブチルジスタノキサン等〕、酢酸スズ、ジラウリン酸ジブチルスズ、又はブチルチンヒドロキシドオキシドヒドレート等が挙げられる。
 触媒添加量及び触媒添加時期は、目的物を速やかに得られる条件であれば特に制限されない。
 前記樹脂材料には、所望に応じて、ゴム、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ)、老化防止剤、オイル、可塑剤、着色剤、耐候剤、及び補強材等の各種添加剤を含有させてもよい。前記添加剤の樹脂材料(タイヤ骨格体)中の含有量は特に限定はなく、本発明の効果を損なわない範囲で適宜用いることができる。前記樹脂材料に添加剤など樹脂以外の成分を加える場合、前記樹脂材料中の樹脂成分の含有量は、樹脂材料の総量に対して、50質量%以上が好ましく、90質量%以上が更に好ましい。尚、樹脂材料中の樹脂成分の含有量は、前記樹脂成分の総量から各種添加剤の総含有量を差し引いた残部となる。
(樹脂材料の物性)
 次に、タイヤ骨格体の一部又は全部を構成する樹脂材料の好ましい物性について説明する。本発明におけるタイヤ骨格体は、上述の樹脂材料を用いるものである。
 前記樹脂材料(タイヤ骨格体)自体の融点(又は軟化点)としては、通常100℃~350℃、好ましくは100℃~250℃程度であるが、タイヤの生産性の観点から120℃~250℃程度が好ましく、120℃~200℃が更に好ましい。
 このように、融点が120℃~250℃の樹脂材料を用いることで、例えばタイヤの骨格体を、その分割体(骨格片)を融着して形成する場合に、120℃~250℃の周辺温度範囲で融着された骨格体であってもタイヤ骨格片同士の接着強度が十分である。このため、本発明のタイヤは耐パンク性や耐摩耗性など走行時における耐久性に優れる。尚、前記加熱温度は、タイヤ骨格片の一部又は全部を形成する樹脂材料の融点(又は軟化点)よりも10℃~150℃高い温度が好ましく、10℃~100℃高い温度が更に好ましい。
 前記樹脂材料は、必要に応じて各種添加剤を添加して、公知の方法(例えば、溶融混合)で適宜混合することにより得ることができる。
 溶融混合して得られた樹脂材料は、必要に応じてペレット状にして用いることができる。
 前記樹脂材料(タイヤ骨格体)自体のJIS K7113:1995に規定される引張降伏強さは、5MPa以上が好ましく、5MPa~20MPaが好ましく、5MPa~17MPaがさらに好ましい。樹脂材料の引張降伏強さが、5MPa以上であると、走行時などにタイヤにかかる荷重に対する変形に耐えることができる。
 前記樹脂材料(タイヤ骨格体)自体のJIS K7113:1995に規定される引張降伏伸びは、10%以上が好ましく、10%~70%が好ましく、15%~60%がさらに好ましい。樹脂材料の引張降伏伸びが、10%以上であると、弾性領域が大きく、リム組み性をよくすることができる。
 前記樹脂材料(タイヤ骨格体)自体のJIS K7113:1995に規定される引張破断伸びとしては、50%以上が好ましく、100%以上が好ましく、150%以上がさらに好ましく、200%以上が特に好ましい。樹脂材料の引張破断伸びが、50%以上であると、リム組み性がよく、衝突に対して破壊しにくくすることができる。
 前記樹脂材料(タイヤ骨格体)自体のISO75-2又はASTM D648に規定される荷重たわみ温度(0.45MPa荷重時)としては、50℃以上が好ましく、50℃~150℃が好ましく、50℃~130℃がさらに好ましい。樹脂材料の荷重たわみ温度が、50℃以上であると、タイヤの製造において加硫を行う場合であってもタイヤ骨格体の変形を抑制することができる。
[第1の実施形態]
 以下に、図面に従って本発明のタイヤの第1の実施形態に係るタイヤを説明する。
 本実施形態のタイヤ10について説明する。図1Aは、本発明の一実施形態に係るタイヤの一部の断面を示す斜視図である。図1Bは、リムに装着したビード部の断面図である。図1に示すように、本実施形態のタイヤ10は、従来一般のゴム製の空気入りタイヤと略同様の断面形状を呈している。
 図1Aに示すように、タイヤ10は、図1Bに示すリム20のビードシート21及びリムフランジ22に接触する1対のビード部12と、ビード部12からタイヤ径方向外側に延びるサイド部14と、一方のサイド部14のタイヤ径方向外側端と他方のサイド部14のタイヤ径方向外側端とを連結するクラウン部16(外周部)と、を有するタイヤケース17を備えている。
 ここで、本実施形態のタイヤケース17は、樹脂材料として、例えば、ハードセグメントを形成するポリマー(HS)と、ソフトセグメントを形成するポリマーであって且つ3つ以上の官能基を有するポリマー(3SS)と、が少なくとも重合された共重合体であるポリアミド系熱可塑性エラストマーを含むものを用いることができる。
 本実施形態においてタイヤケース17は、単一の樹脂材料のみで形成されているが、本発明はこの構成に限定されず、従来一般のゴム製の空気入りタイヤと同様に、タイヤケース17の各部位毎(サイド部14、クラウン部16、及びビード部12など)に異なる特徴を有する熱可塑性樹脂材料を用いてもよい。また、タイヤケース17(例えば、ビード部12、サイド部14、及びクラウン部16等)に、補強材(高分子材料や金属製の繊維、コード、不織布、及び織布等)を埋設配置し、補強材でタイヤケース17を補強してもよい。
 本実施形態のタイヤケース17は、樹脂材料のみで形成された一対のタイヤケース半体(タイヤ骨格片)17A同士を接合させたものである。タイヤケース半体17Aは、一つのビード部12と一つのサイド部14と半幅のクラウン部16とを一体として射出成形等で成形された同一形状の円環状のタイヤケース半体17Aを互いに向かい合わせてタイヤ赤道面部分で接合することで形成されている。なお、タイヤケース17は、2つの部材を接合して形成するものに限らず、3以上の部材を接合して形成してもよい。
 前記樹脂材料を少なくとも用いて形成されるタイヤケース半体17Aは、例えば、真空成形、圧空成形、インジェクション成形、及びメルトキャスティング等で成形することができる。このため、従来のようにゴムでタイヤケースを成形する場合に比較して、加硫を行う必要がなく、製造工程を大幅に簡略化でき、成形時間を省略することができる。
 また、本実施形態では、タイヤケース半体17Aは左右対称形状、即ち、一方のタイヤケース半体17Aと他方のタイヤケース半体17Aとが同一形状とされているので、タイヤケース半体17Aを成形する金型が1種類で済むメリットもある。
 本実施形態において、図1Bに示すようにビード部12には、従来一般の空気入りタイヤと同様の、スチールコードのみからなる円環状のビードコア18が埋設されている。しかし、本発明はこの構成に限定されず、ビード部12の剛性が確保され、リム20との嵌合に問題なければ、ビードコア18を省略することもできる。なお、スチールコード以外に、有機繊維コード、樹脂被覆した有機繊維コード、又は硬質樹脂などを用いて形成されていてもよい。
 本実施形態では、ビード部12のリム20と接触する部分や、少なくともリム20のリムフランジ22と接触する部分に、タイヤケース17の一部又は全部を構成する樹脂材料よりもシール性に優れた材料、例えば、ゴムのみからなる円環状のシール層24が形成されている。このシール層24はタイヤケース17(ビード部12)とビードシート21とが接触する部分にも形成されていてもよい。タイヤケース17の一部又は全部を構成する樹脂材料よりもシール性に優れた材料としては、タイヤケース17の一部又は全部を構成する樹脂材料に比して軟質な材料を用いることができる。シール層24に用いることのできるゴムとしては、従来一般のゴム製の空気入りタイヤのビード部外面に用いられているゴムと同種のゴムを用いることが好ましい。また、前記樹脂材料よりもシール性に優れる他の熱可塑性樹脂(熱可塑性エラストマー)を用いてもよい。このような他の熱可塑性樹脂としては、ポリウレタン系樹脂、ポリオレフィン系樹脂、ポリスチレン系熱可塑性樹脂、又はポリエステル樹脂等の樹脂やこれら樹脂とゴム若しくはエラストマーとのブレンド物等が挙げられる。また、熱可塑性エラストマーを用いることもでき、例えば、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、或いは、これらエラストマー同士の組み合わせや、ゴムとのブレンド物等が挙げられる。
 図1に示すように、クラウン部16には、タイヤケース17の一部又は全部を構成する樹脂材料よりも剛性が高い補強コード26がタイヤケース17の周方向に巻回されている。補強コード26は、タイヤケース17の軸方向に沿った断面視で、少なくとも一部がクラウン部16に埋設された状態で螺旋状に巻回されており、補強コード層28を形成している。補強コード層28のタイヤ径方向外周側には、タイヤケース17の一部又は全部を構成する樹脂材料よりも耐摩耗性に優れた材料、例えばゴムのみからなるクラウン30が配置されている。
 図2を用いて補強コード26によって形成される補強コード層28について説明する。図2は、第1実施形態のタイヤのタイヤケースのクラウン部に補強コードが埋設された状態を示すタイヤ回転軸に沿った断面図である。図2に示されるように、補強コード26は、タイヤケース17の軸方向に沿った断面視で、少なくとも一部がクラウン部16に埋設された状態で螺旋状に巻回されており、タイヤケース17の外周部の一部と共に図2において破線部で示される補強コード層28を形成している。補強コード26のクラウン部16に埋設された部分は、クラウン部16(タイヤケース17)の一部又は全部を構成する樹脂材料と密着した状態となっている。補強コード26としては、金属繊維や有機繊維等のモノフィラメント(単線)、又は、スチール繊維を撚ったスチールコードなどこれら繊維を撚ったマルチフィラメント(撚り線)などを用いることができる。なお、本実施形態において補強コード26としては、スチールコードが用いられている。
 また、図2において埋設量Lは、タイヤケース17(クラウン部16)に対する補強コード26のタイヤ回転軸方向への埋設量を示す。補強コード26のクラウン部16に対する埋設量Lは、補強コード26の直径Dの1/5以上であれば好ましく、1/2を超えることがさらに好ましい。そして、補強コード26全体がクラウン部16に埋設されることが最も好ましい。補強コード26の埋設量Lが、補強コード26の直径Dの1/2を超えると、補強コード26の寸法上、埋設部から飛び出し難くなる。また、補強コード26全体がクラウン部16に埋設されると、表面(外周面)がフラットになり、補強コード26が埋設されたクラウン部16上に部材が載置されても補強コード周辺部に空気が入るのを抑制することができる。なお、補強コード層28は、従来のゴム製の空気入りタイヤのカーカスの外周面に配置されるベルトに相当するものである。
 上述のように補強コード層28のタイヤ径方向外周側にはクラウン30が配置されている。このクラウン30に用いるゴムは、従来のゴム製の空気入りタイヤに用いられているゴムと同種のゴムを用いることが好ましい。なお、クラウン30の代わりに、タイヤケース17の一部又は全部を構成する樹脂材料よりも耐摩耗性に優れる他の種類の樹脂材料で形成したクラウンを用いてもよい。また、クラウン30には、従来のゴム製の空気入りタイヤと同様に、路面との接地面に複数の溝からなるクラウンパターンが形成されている。
 以下、本実施形態のタイヤの製造方法について説明する。
(タイヤケース成形工程)
 まず、上述のように前記ポリアミド系熱可塑性エラストマーを含む樹脂材料を用いて、タイヤケース半体を形成する。これらタイヤケースの形成は、射出成形で行うことが好ましい。次に、薄い金属の支持リングに支持されたタイヤケース半体同士を互いに向かい合わせる。次いで、タイヤケース半体の突き当て部分の外周面と接するように図を省略する接合金型を設置する。ここで、前記接合金型はタイヤケース半体17Aの接合部(突き当て部分)周辺を所定の圧力で押圧するように構成されている。次いで、タイヤケース半体の接合部周辺を、タイヤケースの一部又は全部を構成する樹脂材料の融点(又は軟化点)以上で押圧する。タイヤケース半体の接合部が接合金型によって加熱及び加圧されると、前記接合部が溶融しタイヤケース半体同士が融着しこれら部材が一体となってタイヤケース17が形成される。尚、本実施形態においては接合金型を用いてタイヤケース半体の接合部を加熱したが、本発明はこれに限定されず、例えば、別に設けた高周波加熱機等によって前記接合部を加熱したり、予め熱風、赤外線の照射等によって軟化又は溶融させ、接合金型によって加圧して、タイヤケース半体を接合させてもよい。
(補強コード部材巻回工程)
 次に、補強コード巻回工程について図3を用いて説明する。図3は、コード加熱装置、及びローラ類を用いてタイヤケースのクラウン部に補強コードを埋設する動作を説明するための説明図である。図3において、コード供給装置56は、補強コード26を巻き付けたリール58と、リール58のコード搬送方向下流側に配置されたコード加熱装置59と、補強コード26の搬送方向下流側に配置された第1のローラ60と、第1のローラ60をタイヤ外周面に対して接離する方向に移動する第1のシリンダ装置62と、第1のローラ60の補強コード26の搬送方向下流側に配置される第2のローラ64と、第2のローラ64をタイヤ外周面に対して接離する方向に移動する第2のシリンダ装置66と、を備えている。第2のローラ64は、金属製の冷却用ローラとして利用することができる。また、本実施形態において、第1のローラ60及び第2のローラ64の表面は、溶融又は軟化した樹脂材料の付着を抑制するためにフッ素樹脂(本実施形態では、テフロン(登録商標))でコーティングされている。なお、本実施形態では、コード供給装置56は、第1のローラ60及び第2のローラ64の2つのローラを有する構成としているが、本発明はこの構成に限定されず、何れか一方のローラのみ(即ち、ローラ1個)を有している構成でもよい。
 また、コード加熱装置59は、熱風を生じさせるヒーター70及びファン72を備えている。また、コード加熱装置59は、内部に熱風が供給される、内部空間を補強コード26が通過する加熱ボックス74と、加熱された補強コード26を排出する排出口76とを備えている。
 本工程においては、まず、コード加熱装置59のヒーター70の温度を上昇させ、ヒーター70で加熱された周囲の空気をファン72の回転によって生じる風で加熱ボックス74へ送る。次に、リール58から巻き出した補強コード26を、熱風で内部空間が加熱された加熱ボックス74内へ送り加熱(例えば、補強コード26の温度を100~200℃程度に加熱)する。加熱された補強コード26は、排出口76を通り、図3の矢印R方向に回転するタイヤケース17のクラウン部16の外周面に一定のテンションをもって螺旋状に巻きつけられる。ここで、加熱された補強コード26がクラウン部16の外周面に接触すると、接触部分の樹脂材料が溶融又は軟化し、加熱された補強コード26の少なくとも一部がクラウン部16の外周面に埋設される。このとき、溶融又は軟化した樹脂材料に加熱された補強コード26が埋設されるため、樹脂材料と補強コード26とが隙間がない状態、つまり密着した状態となる。これにより、補強コード26を埋設した部分へのエア入りが抑制される。なお、補強コード26をタイヤケース17の樹脂材料の融点(又は軟化点)よりも高温に加熱することで、補強コード26が接触した部分の樹脂材料の溶融又は軟化が促進される。このようにすることで、クラウン部16の外周面に補強コード26を埋設しやすくなると共に、効果的にエア入りを抑制することができる。
 また、補強コード26の埋設量Lは、補強コード26の加熱温度、補強コード26に作用させるテンション、及び第1のローラ60による押圧力等によって調整することができる。そして、本実施形態では、補強コード26の埋設量Lが、補強コード26の直径Dの1/5以上となるように設定されている。なお、補強コード26の埋設量Lとしては、直径Dの1/2を超えることがさらに好ましく、補強コード26全体が埋設されることが最も好ましい。
 このようにして、加熱した補強コード26をクラウン部16の外周面に埋設しながら巻き付けることで、タイヤケース17のクラウン部16の外周側に補強コード層28が形成される。
 次に、タイヤケース17の外周面に加硫済みの帯状のクラウン30を1周分巻き付けてタイヤケース17の外周面にクラウン30を、接着剤などを用いて接着する。なお、クラウン30は、例えば、従来知られている更生タイヤに用いられるプレキュアクラウンを用いることができる。本工程は、更生タイヤの台タイヤの外周面にプレキュアクラウンを接着する工程と同様の工程である。
 そして、タイヤケース17のビード部12に、加硫済みのゴムのみからなるシール層24を、接着剤等を用いて接着すれば、タイヤ10の完成となる。
 上述の実施形態では、補強コード26を加熱し、加熱した補強コード26が接触する部分のタイヤケース17の表面を溶融又は軟化させる構成としたが、本発明はこの構成に限定されない。例えば、補強コード26を加熱せずに熱風生成装置を用い、補強コード26が埋設されるクラウン部16の外周面を加熱した後、補強コード26をクラウン部16に埋設するようにしてもよい。
 また、第1実施形態では、コード加熱装置59の熱源をヒーター及びファンとしているが、本発明はこの構成に限定されず、補強コード26を輻射熱(例えば、赤外線など)で直接加熱する構成としてもよい。
 さらに、第1実施形態では、補強コード26を埋設した樹脂材料が溶融又は軟化した部分を金属製の第2のローラ64で強制的に冷却する構成としたが、本発明はこの構成に限定されない。例えば、樹脂材料が溶融又は軟化した部分に冷風を直接吹きかけて、樹脂材料の溶融又は軟化した部分を強制的に冷却固化する構成としてもよい。
 また、第1実施形態では、補強コード26を加熱する構成としたが、例えば、補強コード26の外周をタイヤケース17と同じ樹脂材料で被覆する構成としてもよい。この場合には、被覆補強コードをタイヤケース17のクラウン部16に巻き付ける際に、補強コード26と共に被覆した樹脂材料も加熱することで、クラウン部16への埋設時におけるエア入りを効果的に抑制することができる。
 また、補強コード26は螺旋巻きするのが製造上は容易だが、幅方向で補強コード26を不連続とする方法等も考えられる。
 第1実施形態のタイヤ10は、ビード部12をリム20に装着することで、タイヤ10とリム20との間で空気室を形成する、所謂チューブレスタイヤであるが、本発明はこの構成に限定されず、完全なチューブ形状であってもよい。また、本発明のタイヤは、特開2012-46030号公報の第2実施形態(図4及び5)に示すようにコード部材が樹脂材料で被覆されている補強コード部材を用いた態様であってもよい。
 以上、実施形態を挙げて本発明の実施の形態を説明したが、これらの実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施できる。また、本発明の権利範囲がこれらの実施形態に限定されないことは言うまでもない。
 以下、本発明について実施例を用いてより具体的に説明する。ただし、本発明はこれに限定されるものではない。
[実施例1]
 ・ハードセグメント:PA12(ナイロン(登録商標)12)の合成
 攪拌機、窒素ガス導入口、及び縮合水排出口を備えた容積2リットルの反応容器に、アルドリッチ製12-アミノドデカン酸39g、アミノドデカノラクタム530g、ドデカン二酸108gを入れ、容器内を十分窒素置換した後、280℃まで昇温し、0.6MPaの加圧下で4時間反応させた。圧力を解放したあと、窒素気流下でさらに1時間反応させ、所望の数平均分子量約1,200のPA12重合物である白色固体を得た。
 ・ポリアミドエラストマーの製造
 前記PA12(ハードセグメントを形成するポリマー(HS))200gと、PPGトリアミン(ソフトセグメントを形成し3つ以上の官能基を有するポリマー(3SS)、HUNTSMAN社製、JEFFAMINE(登録商標)T-403、重量平均分子量440)3.6gと、PPGジアミン(ソフトセグメントを形成し2つの官能基を有するポリマー(2SS)、HUNTSMAN社製、商品名:JEFFAMINE(登録商標)D-400)62gと、を混合した。
 この混合物を窒素気流下、230℃6時間撹拌を行い、その後Irganox1010(BASF社製)を1g加え、白色のポリアミドエラストマーを得た。
 得られたポリアミドエラストマーはペレット化し、220℃で射出成形し、サンプル片を得た。各種測定は、このサンプル片から試験片を打ち抜いたサンプルを用いて実施した。
[実施例2]
 ハードセグメントを形成するポリマー(HS)、ソフトセグメントを形成し3つ以上の官能基を有するポリマー(3SS)、及びソフトセグメントを形成し2つの官能基を有するポリマー(2SS)の各種類、2SS/3SS比[モル比]、並びにハードセグメントHS/ソフトセグメントSS比[質量比]を、下記表1に記載のものとした。仕込み量についてはそれぞれ、分子量1200のPA12(HS)を200gに、T-403(3SS)を7.0gに、PPGジアミン(2SS)を57gに変更した以外は、実施例1と同様にしてポリアミドエラストマーを得た。
[実施例3]
 ハードセグメントを形成するポリマー(HS)、ソフトセグメントを形成し3つ以上の官能基を有するポリマー(3SS)、及びソフトセグメントを形成し2つの官能基を有するポリマー(2SS)の各種類、2SS/3SS比[モル比]、並びにハードセグメントHS/ソフトセグメントSS比[質量比]を、下記表1に記載のものとた。また、HSを分子量820のPA12にし、仕込み量についてはそれぞれ、分子量820のPA12(HS)を200gに、T-403(3SS)を10gに、RT-1000(2SS)を209gに変更した以外は、実施例1と同様にしてポリアミドエラストマーを得た。
[実施例4]
 ハードセグメントを形成するポリマー(HS)、ソフトセグメントを形成し3つ以上の官能基を有するポリマー(3SS)、及びソフトセグメントを形成し2つの官能基を有するポリマー(2SS)の各種類、2SS/3SS比[モル比]、並びにハードセグメントHS/ソフトセグメントSS比[質量比]を、下記表1に記載のものとした。また、HSを分子量810のPA6にし、仕込み量についてはそれぞれ、分子量810のPA6(HS)を200gに、T-403(3SS)を10gに、D-400(2SS)を84gに変更した以外は、実施例1と同様にしてポリアミドエラストマーを得た。
[実施例5]
 ハードセグメントを形成するポリマー(HS)、ソフトセグメントを形成し3つ以上の官能基を有するポリマー(3SS)、及びソフトセグメントを形成し2つの官能基を有するポリマー(2SS)の各種類、2SS/3SS比[モル比]、並びにハードセグメントHS/ソフトセグメントSS比[質量比]を、下記表1に記載のものとした。また、HSを分子量1860のPA6にし、仕込み量についてはそれぞれ、分子量1860のPA6(HS)を200gに、T-403(3SS)を2.3gに、RT-1000(2SS)を100gに変更した以外は、実施例1と同様にしてポリアミドエラストマーを得た。
[実施例6]
 ハードセグメントを形成するポリマー(HS)、ソフトセグメントを形成し3つ以上の官能基を有するポリマー(3SS)、及びソフトセグメントを形成し2つの官能基を有するポリマー(2SS)の各種類、2SS/3SS比[モル比]、並びにハードセグメントHS/ソフトセグメントSS比[質量比]を、下記表1に記載のものとした。また、HSを分子量1860のPA6にし、仕込み量についてはそれぞれ、分子量1860のPA6(HS)を200gに、T-403(3SS)を4.5gに、RT-1000(2SS)を92gに変更した以外は、実施例1と同様にしてポリアミドエラストマーを得た。
[実施例7]
 ハードセグメントを形成するポリマー(HS)、ソフトセグメントを形成し3つ以上の官能基を有するポリマー(3SS)、及びソフトセグメントを形成し2つの官能基を有するポリマー(2SS)の各種類、2SS/3SS比[モル比]、並びにハードセグメントHS/ソフトセグメントSS比[質量比]を、下記表1に記載のものとした。また、HSを分子量1860のPA6にし、仕込み量についてはそれぞれ、分子量1860のPA6(HS)を200gに、T-403(3SS)を8.6gに、RT-1000(2SS)を78gに変更した以外は、実施例1と同様にしてポリアミドエラストマーを得た。
[実施例8]
 ハードセグメントを形成するポリマー(HS)、ソフトセグメントを形成し3つ以上の官能基を有するポリマー(3SS)、及びソフトセグメントを形成し2つの官能基を有するポリマー(2SS)の各種類、2SS/3SS比[モル比]、並びにハードセグメントHS/ソフトセグメントSS比[質量比]を、下記表1に記載のものとした。また、HSを分子量820のPA6にし、仕込み量についてはそれぞれ、分子量820のPA6(HS)を200gに、T-403(3SS)を4.5gに、RT-1000(2SS)を92gに変更した以外は、実施例1と同様にしてポリアミドエラストマーを得た。
[実施例9]
 ハードセグメントを形成するポリマー(HS)、ソフトセグメントを形成し3つ以上の官能基を有するポリマー(3SS)、及びソフトセグメントを形成し2つの官能基を有するポリマー(2SS)の各種類、2SS/3SS比[モル比]、並びにハードセグメントHS/ソフトセグメントSS比[質量比]を、下記表2に記載のものとした。また、HSを分子量1860のPA6にし、仕込み量についてはそれぞれ、分子量1860のPA6(HS)を200gに、T-3000(3SS)を31gに、RT-1000(2SS)を92gに変更した以外は、実施例1と同様にしてポリアミドエラストマーを得た。
[実施例10]
 ハードセグメントを形成するポリマー(HS)、ソフトセグメントを形成し3つ以上の官能基を有するポリマー(3SS)、及びソフトセグメントを形成し2つの官能基を有するポリマー(2SS)の各種類、2SS/3SS比[モル比]、並びにハードセグメントHS/ソフトセグメントSS比[質量比]を、下記表2に記載のものとした。また、HSを分子量1860のPA6にし、仕込み量についてはそれぞれ、分子量1860のPA6(HS)を200gに、T-5000(3SS)を51gに、RT-1000(2SS)を92gに変更した以外は、実施例1と同様にしてポリアミドエラストマーを得た。
[実施例11]
 ハードセグメントを形成するポリマー(HS)、ソフトセグメントを形成し3つ以上の官能基を有するポリマー(3SS)、及びソフトセグメントを形成し2つの官能基を有するポリマー(2SS)の各種類、2SS/3SS比[モル比]、並びにハードセグメントHS/ソフトセグメントSS比[質量比]を、下記表2に記載のものとした。また、HSを分子量4000のPA6にし、仕込み量についてはそれぞれ、分子量4000のPA6(HS)を200gに、T-5000(3SS)を24gに、RT-1000(2SS)を43gに変更した以外は、実施例1と同様にしてポリアミドエラストマーを得た。
[実施例12]
 ハードセグメントを形成するポリマー(HS)、ソフトセグメントを形成し3つ以上の官能基を有するポリマー(3SS)、及びソフトセグメントを形成し2つの官能基を有するポリマー(2SS)の各種類、2SS/3SS比[モル比]、並びにハードセグメントHS/ソフトセグメントSS比[質量比]を、下記表2に記載のものとした。また、HSを分子量1860のPA6にし、仕込み量についてはそれぞれ、分子量1860のPA6(HS)を200gに、T-403(3SS)を13gに、RT-1000(2SS)を63gに変更した以外は、実施例1と同様にしてポリアミドエラストマーを得た。
[実施例13]
 ハードセグメントを形成するポリマー(HS)、ソフトセグメントを形成し3つ以上の官能基を有するポリマー(3SS)、及びソフトセグメントを形成し2つの官能基を有するポリマー(2SS)の各種類、2SS/3SS比[モル比]、並びにハードセグメントHS/ソフトセグメントSS比[質量比]を、下記表2に記載のものとした。また、HSを分子量810のPA6にし、仕込み量についてはそれぞれ、分子量810のPA6(HS)を200gに、旭硝子社製エクセノール430(3SS)を10gに、旭硝子社製エクセノール420(2SS)を84gに変更し、且つ重合触媒として関東化学製Zr(OBu)を1.5g添加した以外は、実施例1と同様にしてポリアミドエラストマーを得た。
[実施例14]
 ハードセグメントを形成するポリマー(HS)、ソフトセグメントを形成し3つ以上の官能基を有するポリマー(3SS)、及びソフトセグメントを形成し2つの官能基を有するポリマー(2SS)の各種類、2SS/3SS比[モル比]、並びにハードセグメントHS/ソフトセグメントSS比[質量比]を、下記表3に記載のものとした。また、HSを分子量820のPA12にし、仕込み量についてはそれぞれ、分子量820のPA12(HS)を200gに、T-403(3SS)を50gに、RT-1000(2SS)を75gにし、重合時間を4時間に変更した以外は、実施例1と同様にしてポリアミドエラストマーを得た。
[実施例15]
 ハードセグメントを形成するポリマー(HS)、ソフトセグメントを形成し3つ以上の官能基を有するポリマー(3SS)、及びソフトセグメントを形成し2つの官能基を有するポリマー(2SS)の各種類、2SS/3SS比[モル比]、並びにハードセグメントHS/ソフトセグメントSS比[質量比]を、下記表3に記載のものとした。また、HSを分子量1500のPA6にし、仕込み量についてはそれぞれ、分子量1500のPA6(HS)を200gに、T-403(3SS)を23gに、RT-1000(2SS)を53gにし、重合時間を3.5時間に変更した以外は、実施例1と同様にしてポリアミドエラストマーを得た。
[実施例16]
 ハードセグメントを形成するポリマー(HS)、ソフトセグメントを形成し3つ以上の官能基を有するポリマー(3SS)、及びソフトセグメントを形成し2つの官能基を有するポリマー(2SS)の各種類、2SS/3SS比[モル比]、並びにハードセグメントHS/ソフトセグメントSS比[質量比]を、下記表3に記載のものとした。HSを下記方法で合成した分子量1500のPA612にし、仕込み量についてはそれぞれ、分子量1500のPA612(HS)を200gに、T-403(3SS)を5.6gに、RT-1000(2SS)を114gにし、重合温度を240℃に変更した以外は、実施例1と同様にしてポリアミドエラストマーを得た。
 なお、PA612を用いた実施例16では、耐亀裂進展性と吸水性と耐熱性とのバランスに優れていた。
 (ハードセグメント:PA612(ナイロン(登録商標)612)の合成)
 攪拌機、窒素ガス導入口、及び縮合水排出口を備えた容積2リットルの反応容器に、ドデカン二酸213g、ヘキサメチレンジアミン87g、精製水100gを入れ、容器内を十分窒素置換した後、280℃まで昇温し、0.6MPaの加圧下で4時間反応させた。圧力を解放したあと、窒素気流下でさらに1時間反応させ、容器から取り出し、エタノールにて24時間ソックスレー抽出することで、所望の数平均分子量約1,500のPA612重合物である白色固体を得た。
[実施例17]
 ハードセグメントを形成するポリマー(HS)、ソフトセグメントを形成し3つ以上の官能基を有するポリマー(3SS)、及びソフトセグメントを形成し2つの官能基を有するポリマー(2SS)の各種類、2SS/3SS比[モル比]、並びにハードセグメントHS/ソフトセグメントSS比[質量比]を、下記表3に記載のものとした。
 ただし、ハードセグメント(HS)であるPA6を予め重合しこのPA6(HS)とソフトセグメント(3SS及び2SS)とを混合してポリアミドエラストマーを重合する方法ではなく、ハードセグメントの原料となるモノマーとソフトセグメント(3SS及び2SS)とを混合し重合する方法によりポリアミドエラストマーを製造した。
 具体的には、ハードセグメントPA6の原料となるモノマーであるアルドリッチ製カプロラクタム160g、ドデカン二酸12g、及びアミノヘキサン酸26g、並びにT-403(3SS)2.9g、及びRT-1000(2SS)124gを一括で混合し、その後実施例1のポリアミドエラストマーの製造と同じ条件で重合してポリアミドエラストマーを得た。
[比較例1~3]
 ソフトセグメントを形成し3つ以上の官能基を有するポリマー(3SS)を用いず、ハードセグメントを形成するポリマー(HS)、及びソフトセグメントを形成し2つの官能基を有するポリマー(2SS)の各種類、2SS/3SS比[モル比]、ハードセグメントHS/ソフトセグメントSS比[質量比]、重量平均分子量、並びにMw80/Mw20比を、下記表2に記載のものとした以外は、実施例1と同様にしてポリアミドエラストマーを得た。
-評価-
[射出成形性]
 前記射出成形の際、15t射出成形機で平板が成形できれば「A」、Aよりもハンドリングが劣る(計量不良)ものを「B」、充填不良(粘度が高い)が見られるものを「C」とした。
[リム組み性]
 各実施例及び比較例で得られた重合体を用いて、それぞれ上述の第1の実施形態を参照し、タイヤを形成した。次いで、タイヤをリムに装着し、エアシール性が確保できた場合を「A」、リム組みの際に、硬くてハンドリング性に劣る場合を「B」、割れの発生や、エアシール性が確保できなかった場合を「C」とした。
[低ロス性]
 2mm厚のサンプル片から、φ8mmの円盤状に打ち抜いた試験片を測定に用いた。粘弾性測定装置(TAインスツルメンツ社製)を使用し、温度30℃、歪み1%、周波数20Hzで損失正接(tanδ)を、23℃50RH%の環境下で調湿後に測定した。該tanδが0.08以下の場合を「A」、0.08より大きく0.12以下の場合を「B」、0.12より大きい場合を「C」として評価した。また、全実施例および比較例中で、最もロスが低いものを(100)とし、一方最もロスが高いものを(0)として、インデックス表記した。
[耐亀裂進展性]
 得られたサンプルをJIS-3のダンベル形状に打ち抜き、予めサンプル中心部に亀裂起点を入れた試験サンプルを作製した。試験サンプルを島津製作所社のサーボパルサーの装置を用いて繰り返し引っ張り(17Hz定歪11%)を行い、亀裂が進展してサンプルが破断するまでの回数を記録し、以下の基準で評価した。
 A:1,000,000回より多い回数で破断
 B:100,000回より多く、1,000,000以下で破断
 C:10,000回より多く、100,000回以下で破断
 D:10,000回以下で破断
[耐候性(耐加水分解性)]
 得られた射出成形サンプルを、80℃95RH%の恒温恒湿槽に放置し、1000時間経過後にサンプルの分子量を測定した。該分子量が試験前対比90%より高い値を維持している場合を「A」、80%より大きく90%以下の場合を「B」、80%以下の場合を「C」として評価した。
Figure JPOXMLDOC01-appb-T000007

 
Figure JPOXMLDOC01-appb-T000008

 
Figure JPOXMLDOC01-appb-T000009
 
 尚、上記表1~表3に示される成分は、それぞれ以下の通りである。
 -二官能のソフトセグメント用ポリマー-
・PPGジアミン:HUNTSMAN社製、商品名:JEFFAMINE(登録商標)D-400
・PPG/PTMG/PPGジアミン(ポリテトラメチレンエーテルグリコール(PTMG)由来の構成単位及びポリプロピレングリコール(PPG)由来の構成単位を含む三元共重合体):HUNTSMAN社製、商品名:JEFFAMINE(登録商標)RT-1000
・PPGジオール:旭硝子株式会社製、商品名:エクセノール420
 -三官能以上のソフトセグメント用ポリマー-
・T-403:PPGトリアミン、HUNTSMAN社製、JEFFAMINE(登録商標)T-403、平均分子量440
・T-3000:PPGトリアミン、HUNTSMAN社製、JEFFAMINE(登録商標)T-3000、平均分子量3000
・T-5000:PPGトリアミン、HUNTSMAN社製、JEFFAMINE(登録商標)T-5000、平均分子量5000
・エクセノール430:PPGトリオール、旭硝子株式会社製、平均分子量400
 -ハードセグメント用ポリマー-
・PA12:前記実施例1で合成したPA12(ナイロン(登録商標)12)
・PA6:下記方法で合成したPA6(ナイロン(登録商標)6)
 (ハードセグメント:PA6(ナイロン(登録商標)6)の合成)
 攪拌機、窒素ガス導入口、及び縮合水排出口を備えた容積2リットルの反応容器に、アルドリッチ製カプロラクタム540g、ドデカン二酸109g、アミノヘキサン酸42gを入れ、容器内を十分窒素置換した後、280℃まで昇温し、0.6MPaの加圧下で4時間反応させた。圧力を解放したあと、窒素気流下でさらに1時間反応させ、水洗工程を経て所望の数平均分子量約810のPA6重合物である白色固体を得た。
・PA612:前記実施例16で合成したPA612(ナイロン(登録商標)612)
 なお、日本出願2014-203500の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
10 タイヤ、12 ビード部、16 クラウン部(外周部)、17 タイヤケース(タイヤ骨格体)、18 ビードコア、20 リム、21 ビードシート、22 リムフランジ、24 シール層(シール部)、26 補強コード(補強コード部材)、28 補強コード層、30 クラウン、D 補強コードの直径(補強コード部材の直径)、L 補強コードの埋設量(補強コード部材の埋設量)

Claims (5)

  1.  ポリアミド系熱可塑性エラストマーを含む樹脂材料で形成され、
     前記ポリアミド系熱可塑性エラストマーは、ハードセグメントを形成するポリマー(HS)と、ソフトセグメントを形成するポリマーであって且つ3つ以上の官能基を有するポリマー(3SS)と、が少なくとも重合された共重合体である環状のタイヤ骨格体。
  2.  前記ポリアミド系熱可塑性エラストマーは、更にソフトセグメントを形成するポリマーであって且つ2つの官能基を有するポリマー(2SS)が少なくとも重合された共重合体であり、
     前記ポリマー(3SS)とポリマー(2SS)との合計量に対する、前記ポリマー(3SS)の比率が1モル%以上30モル%以下である請求項1に記載のタイヤ骨格体。
  3.  前記ポリマー(3SS)が有する前記官能基がアミノ基である請求項1または請求項2に記載のタイヤ骨格体。
  4.  前記ポリアミド系熱可塑性エラストマーにおける重量累積20%分子量(Mw20)と重量累積80%分子量(Mw80)との比(Mw80/Mw20)が、3以上20以下である請求項1~請求項3のいずれか一項に記載のタイヤ骨格体。
  5.  請求項1~請求項4のいずれか一項に記載のタイヤ骨格体を有するタイヤ。
PCT/JP2015/077965 2014-10-01 2015-10-01 タイヤ骨格体およびタイヤ WO2016052705A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580052997.8A CN107075248B (zh) 2014-10-01 2015-10-01 轮胎骨架体和轮胎
US15/515,138 US10059808B2 (en) 2014-10-01 2015-10-01 Tire skeleton and tire
JP2016514790A JP5989279B1 (ja) 2014-10-01 2015-10-01 タイヤ骨格体およびタイヤ
EP15845816.6A EP3202852B1 (en) 2014-10-01 2015-10-01 Tire skeleton and tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-203500 2014-10-01
JP2014203500 2014-10-01

Publications (1)

Publication Number Publication Date
WO2016052705A1 true WO2016052705A1 (ja) 2016-04-07

Family

ID=55630726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077965 WO2016052705A1 (ja) 2014-10-01 2015-10-01 タイヤ骨格体およびタイヤ

Country Status (5)

Country Link
US (1) US10059808B2 (ja)
EP (1) EP3202852B1 (ja)
JP (1) JP5989279B1 (ja)
CN (1) CN107075248B (ja)
WO (1) WO2016052705A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118797A (en) * 1974-06-24 1976-02-14 Monsanto Co Taahorimaanoseiho
JPS57137321A (en) * 1981-02-17 1982-08-24 Kuraray Co Ltd Preparation of aromatic polyester amide
JPS61123631A (ja) * 1984-11-19 1986-06-11 Teijin Ltd 芳香族ポリアミド共重合体の製造法
WO2010047315A1 (ja) * 2008-10-21 2010-04-29 宇部興産株式会社 ゴム組成物及びポリアミド積層体
JP2011042774A (ja) * 2008-10-16 2011-03-03 Ube Industries Ltd ゴム組成物及びその製造方法
WO2011027703A1 (ja) * 2009-09-04 2011-03-10 宇部興産株式会社 ポリエーテルポリアミドエラストマー及びポリアミド積層体
JP2013528666A (ja) * 2010-03-31 2013-07-11 コーロン インダストリーズ インク タイヤインナーライナ用フィルムおよびその製造方法
JP2014037642A (ja) * 2012-08-14 2014-02-27 Mitsubishi Gas Chemical Co Inc ポリエーテルポリアミド繊維

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017557A (en) * 1974-11-13 1977-04-12 E. I. Du Pont De Nemours And Company Novel elastomeric graft copolymers
JPS62285920A (ja) 1986-06-04 1987-12-11 Mitsui Petrochem Ind Ltd 改質されたポリアミド系エラストマ−および製法
US5254668A (en) * 1992-06-29 1993-10-19 Texaco Chemical Company Polyamidopolyfunctional amine from lactam and ether amine
JPWO2009093695A1 (ja) * 2008-01-23 2011-05-26 宇部興産株式会社 ゴム組成物、ベーストレッド用ゴム組成物、チェーファー用ゴム組成物、及びサイドウォール用ゴム組成物、並びにそれらを用いたタイヤ
JP5993545B2 (ja) 2010-08-25 2016-09-14 株式会社ブリヂストン タイヤ
EP2610072B1 (en) 2010-08-25 2017-11-01 Bridgestone Corporation Tire, and tire manufacturing method
US20150218731A1 (en) 2012-08-14 2015-08-06 c/o Mitsubishi Gas Chemical Company, Inc. Polyether polyamide fiber

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118797A (en) * 1974-06-24 1976-02-14 Monsanto Co Taahorimaanoseiho
JPS57137321A (en) * 1981-02-17 1982-08-24 Kuraray Co Ltd Preparation of aromatic polyester amide
JPS61123631A (ja) * 1984-11-19 1986-06-11 Teijin Ltd 芳香族ポリアミド共重合体の製造法
JP2011042774A (ja) * 2008-10-16 2011-03-03 Ube Industries Ltd ゴム組成物及びその製造方法
WO2010047315A1 (ja) * 2008-10-21 2010-04-29 宇部興産株式会社 ゴム組成物及びポリアミド積層体
WO2011027703A1 (ja) * 2009-09-04 2011-03-10 宇部興産株式会社 ポリエーテルポリアミドエラストマー及びポリアミド積層体
JP2013528666A (ja) * 2010-03-31 2013-07-11 コーロン インダストリーズ インク タイヤインナーライナ用フィルムおよびその製造方法
JP2014037642A (ja) * 2012-08-14 2014-02-27 Mitsubishi Gas Chemical Co Inc ポリエーテルポリアミド繊維

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3202852A4 *

Also Published As

Publication number Publication date
EP3202852A1 (en) 2017-08-09
CN107075248A (zh) 2017-08-18
CN107075248B (zh) 2020-03-24
JP5989279B1 (ja) 2016-09-07
EP3202852A4 (en) 2017-08-16
US10059808B2 (en) 2018-08-28
JPWO2016052705A1 (ja) 2017-04-27
EP3202852B1 (en) 2018-12-12
US20170210858A1 (en) 2017-07-27

Similar Documents

Publication Publication Date Title
JP6333806B2 (ja) タイヤ
JP6086782B2 (ja) タイヤ
JP6001488B2 (ja) タイヤ
JP6560973B2 (ja) タイヤ
JP6723157B2 (ja) タイヤ
WO2016047710A1 (ja) タイヤ
US10017007B2 (en) Tire
JPWO2016047707A1 (ja) タイヤ
JP6001812B2 (ja) タイヤ
JP6001813B2 (ja) タイヤ
JP5989280B1 (ja) タイヤ骨格体およびタイヤ
JP5989279B1 (ja) タイヤ骨格体およびタイヤ
WO2016195112A1 (ja) タイヤ
JP6474273B2 (ja) タイヤ
JP2017002270A (ja) タイヤ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016514790

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845816

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15515138

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015845816

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015845816

Country of ref document: EP