WO2016052619A1 - 核酸の増幅方法 - Google Patents

核酸の増幅方法 Download PDF

Info

Publication number
WO2016052619A1
WO2016052619A1 PCT/JP2015/077745 JP2015077745W WO2016052619A1 WO 2016052619 A1 WO2016052619 A1 WO 2016052619A1 JP 2015077745 W JP2015077745 W JP 2015077745W WO 2016052619 A1 WO2016052619 A1 WO 2016052619A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
strand
rna
nucleic acid
degrading enzyme
Prior art date
Application number
PCT/JP2015/077745
Other languages
English (en)
French (fr)
Inventor
哲太郎 林
洋平 笹川
愛 二階堂
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Priority to JP2016552118A priority Critical patent/JP6583796B2/ja
Priority to US15/514,931 priority patent/US10457982B2/en
Priority to EP15846028.7A priority patent/EP3202901B1/en
Priority to ES15846028T priority patent/ES2866026T3/es
Publication of WO2016052619A1 publication Critical patent/WO2016052619A1/ja
Priority to US16/568,860 priority patent/US20200048693A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof

Definitions

  • the present invention relates to a nucleic acid amplification method using DNA strand-specific RNA: DNA hybrid strand degrading enzyme and strand displacement activity. More specifically, the present invention relates to a method for amplifying a nucleic acid using RNA as a template and using a DNA strand-specific RNA: DNA hybrid strand-degrading enzyme and RNase H-minus reverse transcriptase. Furthermore, the present invention relates to a kit for performing the nucleic acid amplification method described above.
  • Non-patent Document 1 Polymerase Chain Reaction (PCR) (Non-patent Document 1), Strand Displacement Amplification (SDA) (Non-patent Document 2), Multiple Displacement Amplification (MDA) (Non-patent Document 3), Rolling-Circle Amplification (RCA) Patent Document 4), Loop-Mediated Isothermal Amplification (LAMP) (Non-Patent Document 5), Smart Amplification Process mp (SmartAmp) (Non-Patent Document 6), Helicase-Dependent Amplification (HDA) (Non-Patent Document 7), Ligase Chain Reaction (LCR) (Non-patent Document 8).
  • PCR Polymerase Chain Reaction
  • SDA Strand Displacement Amplification
  • MDA Multiple Displacement Amplification
  • RCA Rolling-Circle Amplification
  • LAMP Loop-Mediated Isothermal Amplification
  • SmartAmp SmartAmp
  • HDA Helicase-Dependent Amplification
  • LCR Ligase Chain Reaction
  • SDA Non-patent Document 2
  • SDA a double-stranded DNA is cleaved with a restriction enzyme or the like on one side strand (nick). Starting from this nick, the 3'-side DNA strand is peeled off by the strand displacement activity of DNA polymerase, and a new complementary strand DNA is synthesized.
  • SDA is a technique for amplifying complementary strand DNA by continuously causing this reaction.
  • Non-patent Document 3 In order to amplify an RNA sequence using these amplification methods using DNA as a template, it is necessary to undergo a reverse transcription reaction for converting RNA into DNA. In addition, since SDA needs to insert a nick into the template DNA using a restriction enzyme, it is necessary to add a restriction enzyme recognition sequence, deoxyinosine or the like to the template. LAMP and SmartAmp require 4 to 5 sequence-specific primers for one target.
  • Non-patent Documents 9 and 10 Non-patent Documents 9 and 10
  • MDA amplification technique using RNA as a template
  • a method using a special DNA hairpin primer having a restriction enzyme recognition sequence has been proposed.
  • a breakpoint is generated in a DNA hairpin primer bound to RNA serving as a template, and complementary strand DNA is amplified by causing a strand displacement reaction.
  • this method requires a pretreatment for ligating a DNA hairpin primer to the 3 ′ end of the template RNA, and may cause molecules that cannot be captured depending on the ligation conditions.
  • amplification is performed from the 3 ′ end of the template RNA, it is considered difficult to amplify uniformly over the entire length.
  • Oligonucleotide-oligospermine conjugates zip nucleic acids: a convenient means of finely tuning hybridization temperatures.
  • Noir R et al., J Am Chem Soc. 2008 Oct 8; 130 (40): 13500-5.
  • Zip Nucleic Acids new high affinity oligonucleotides as potent primers for PCR and reverse transcription. Moreau V, Other, Nucleic Acids Res. 2009 Oc; 37 (19) DNA melting proteins.
  • IV Fluorescence measurements of binding parameters for bacteriophage T4 gene 32-protein to mono-, oligo-, and polynucleotides.
  • Kelly RC Other, J Biol Chem. 1976 Nov 25; 251 (22): 7240- 50.
  • RT Reverse Transcriptase Inhibition of PCR at Low Concentrations of Template and Its Implications for Quantitative RT-PCR.
  • Chandler DP , Appl Environ Microbiol. 1998 Feb; 64 (2): 669-77. Increased Yield of PCR Products by Addition of T4 Gene 32 Protein to the SMART-PCR cDNA Synthesis System.
  • Villalva C et al., Biotechniques. 2001; Jul; 31 (1): 81-3, 86.
  • RNA complementary DNA
  • An object of the present invention is to provide a method for amplifying a nucleic acid using RNA as a template instead of an existing amplification method using DNA as a template.
  • the present invention can not only simplify the operation, but also eliminate the risk of non-specific amplification caused by contaminated DNA from the reagent / work environment, increase the detection sensitivity of trace RNA, and reduce the amplification bias.
  • An object of the present invention is to provide a method for amplifying a nucleic acid using RNA as a template.
  • RNA sequencing As a result of intensive studies to solve the above-mentioned problems, the present inventors have invented an amplification reverse transcription method (also referred to as RT-RamDA method or RamDA method) in which cDNA is amplified using RNA as a template.
  • RT-RamDA method the yield of cDNA can be increased 10 to 100 times that of a commercially available kit, and it is possible to capture low expression genes and expand the number of detected genes in gene expression analysis from a small amount of RNA.
  • cDNA amplified by the RamDA method can be applied to various gene analyzes such as RNA sequencing, and is expected to be widely used as a basic technique of molecular biology.
  • RNA is used as a template, which not only simplifies the operation, but also eliminates the risk of nonspecific amplification caused by contaminated DNA from reagents and working environments. Reduction of the amplification bias can be realized.
  • the present invention has been completed based on these findings.
  • Template RNA, primer, DNA strand-specific RNA Incubating a mixture containing DNA hybrid strand-degrading enzyme, RNase H minus reverse transcriptase, and substrate, DNA strand-specific RNA: DNA hybrid strand degradation
  • the enzyme is an enzyme having an activity of cleaving a DNA strand of a hybrid strand of RNA and DNA.
  • the complementary strand DNA (cDNA) of the template RNA is synthesized by the RNA-dependent DNA polymerase activity of RNase H minus type reverse transcriptase, and the hybrid strand of RNA and cDNA is synthesized by a DNA strand-specific RNA: DNA hybrid strand degrading enzyme.
  • a DNA strand-specific RNA DNA hybrid strand degrading enzyme.
  • the mixture contains a double strand-specific DNA-degrading enzyme as a DNA strand-specific RNA: DNA hybrid strand-degrading enzyme, and the double-strand-specific DNA degrading enzyme contains a DNA strand of a hybrid strand of RNA and DNA.
  • (1) or (2) is an enzyme having an activity of cleaving and having substantially no activity of cleaving RNA strand, single-stranded DNA and single-stranded RNA of a hybrid strand of RNA and DNA A method for amplifying the nucleic acid as described.
  • the mixture contains a non-specific DNA degrading enzyme as a DNA strand-specific RNA: DNA hybrid strand degrading enzyme, and the non-specific DNA degrading enzyme has an activity of cleaving the DNA strand of the hybrid strand of RNA and DNA.
  • ZNA Zip Nucleic Acid
  • nucleic acid amplification method of the present invention since nucleic acid can be amplified using RNA as a template, not only simplification of operations, but also non-specific amplification risk caused by contaminated DNA from reagents and working environments can be eliminated, Reduction of the amplification bias can be realized. Furthermore, according to the nucleic acid amplification method of the present invention, a yield of 10 times or more can be obtained as compared with existing reverse transcription cDNA synthesis kits, and amplification of 100 times or more is possible depending on conditions.
  • FIG. 1 shows a schematic diagram of the RT-RamDA (RamDA) method.
  • FIG. 2 shows that double-strand-specific DNA-degrading enzyme (dsDNase) and non-specific DNA-degrading enzyme (DNase I) cleave not only double-stranded DNA but also DNA in RNA: DNA hybrid strands. Nuclease characteristics of dsDNase and DNase I under reverse transcription buffer conditions were verified by FRET analysis using fluorescent oligonucleotides. In addition to dsDNase and DNase I, the nuclease activity over time was measured under four conditions: HL-dsDNase having heat-unstable properties, and buffer control not containing DNase.
  • dsDNase double-strand-specific DNA-degrading enzyme
  • DNase I non-specific DNA-degrading enzyme
  • a and C are DNA in double-stranded DNA
  • B is DNA in RNA: DNA hybrid strand
  • D is activity in RNA in hybrid strand
  • FIG. 3 shows that the fragmentation and amplification of cDNA occur due to the activity of dsDNase.
  • FIG. 4 shows that the RT-RamDA method works with thermolabile dsDNase and RNase H minus reverse transcriptase.
  • 20 ng Millennium RNA-Markers 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 9 kb
  • Agarose gel electrophoresis pattern is shown.
  • aj matches aj in the graph of C.
  • the band forming the RNA: DNA hybrid chain is stained brighter than the single-stranded cDNA (Non-patent Document 21).
  • the extension reaction was performed at 42 ° C. for 2.5 minutes.
  • C the detected amount of cDNA using 10 pg total RNA derived from mouse ES cells as a template is shown as a relative quantitative value using qPCR.
  • “ ⁇ ” indicates RamDA ( ⁇ )
  • “+” indicates RamDA (+)
  • RamDA-B, -C shows a very high amplification factor in a specific gene.
  • FIG. 6 shows that the nuclease activity of DNase I decreases depending on the Tris-HCl and KCl concentrations. DNase I nuclease activity was measured by FRET analysis using fluorescent oligonucleotides. As for the fluorescent oligonucleotide, the amount of fluorescence was measured every minute under the condition of 37 ° C. using one color of the FAM label probe.
  • RT-RamDA method (RamDA-D) using DNase I is not limited to a specific reaction solution composition.
  • DNase I buffer 10 pg total RNA derived from mouse ES cells as a template
  • the yield of cDNA by RT-RamDA method using DNase I was quantified using qPCR.
  • # I the same reaction solution composition as DNase I buffer.
  • ## is the same Tris-HCl, KCl concentration as a general reverse transcription reaction solution.
  • ### has the same composition as a general reverse transcription reaction solution such as: FirstStrand buffer.
  • FS First-Strand Buffer.
  • PS PrimeScript Buffer (for Real Time).
  • FIG. 8 shows that T4 gene 32 protein suppresses cDNA fragmentation by DNase I.
  • Thr RNA 5 ng Thr RNA (2,052b) was used as a template, a standard reverse transcription sample without addition, T4 gene 32 protein added alone, DNaseDI, or dsDNase alone added, DNase I, or dsDNase and T4
  • the cDNA distribution patterns were compared under the condition where Gene 32 protein was added simultaneously.
  • the reverse transcription reaction was carried out using only oligo dT primer in a reaction volume of 6 ⁇ l, which is twice the usual volume.
  • the distribution pattern of cDNA was examined by 2% agarose gel electrophoresis.
  • B shows the result of analyzing 1/20 amount of cDNA in A using BioAnalyzer RNA6000 pico kit (Agilent Biotechnology).
  • T4GP32 T4 Gene 32 protein.
  • FIG. 9 shows that T4 gene 32 protein contributes to cDNA amplification and its stability. The amount of cDNA of 100 fg artificially synthesized RNA, Dap RNA (96,725 copies) and Thr RNA (89,991 copies) added to 10 pg of Universal Human Reference RNA (UHRR) is shown. Reverse transcription reaction was performed with oligo dT primer only, and cDNA yield was quantified using qPCR. DNase I and dsDNase used 0.2 U and 0.4 U, respectively, and T4 gene 32 protein used 100 ng in one reaction. qPCR was performed using 1/50 amount of reverse transcript.
  • the qPCR primers for detection were designed with 12 regions of Dap and Thr from 5 'to 3', respectively.
  • A shows the detection amount (copy number) of cDNA in each region. The horizontal axis indicates the distance from the 3 'end.
  • (-): Control (standard reverse transcription sample without addition), error bars indicate standard deviation (N 3).
  • B shows the relative value when the detection amount in each region of the non-added control sample (*) is 1.
  • C shows the fluctuation
  • T4GP32 T4 Gene 32 protein.
  • FIG. 10 shows the effect on the nuclease activity of T4 gene 32 protein in the reverse transcription reaction solution by FRET analysis using a fluorescent oligonucleotide.
  • B shows the degradation activity ratio of single-stranded DNA to the DNA-degrading activity or double-stranded DNA-degrading activity in the RNA: DNA hybrid strand under each reaction condition.
  • FIG. 11 shows the reaction time-dependent increase in cDNA yield of RamDA-D using 1 cell lysate of mouse ES cells.
  • the reaction time at 37 ° C. was extended to 30 minutes, 60 minutes, and 120 minutes, and the influence on the amplification factor was investigated.
  • FIG. 11 shows the reaction time-dependent increase in cDNA yield of RamDA-D using 1 cell lysate of mouse ES cells.
  • RamDA-D does not limit the reverse transcriptase and can amplify even a template RNA equivalent to 100 cells.
  • the relative values are shown when the PrimeScript RamDA (-) condition is the control (*) and the amount of cDNA detected for each gene by qPCR is 1.
  • As the template RNA total RNA (10 pg, 200 pg, 1 ng) derived from mouse ES cells was used.
  • PS PrimeScript RT Enzyme
  • SSII SuperScript II RT Enzyme
  • SSIII SuperScript III RT Enzyme
  • the nucleic acid amplification method according to the present invention is a method performed by incubating a mixture containing a template RNA, a primer, a DNA strand-specific RNA: DNA hybrid strand degrading enzyme, an RNase H minus reverse transcriptase, and a substrate, Also called Transcription with Ramdom Displacement Amplification (RT-RamDA) method.
  • the nucleic acid amplification method of the present invention is an amplification reverse transcription method using RNA as a template directly utilizing strand displacement reaction, and can be performed in vitro.
  • the method of the present invention is a DNA strand-specific RNA: DNA hybrid strand such as double-strand specific DNase (dsDNase) or non-specific DNA-degrading enzyme (DNase I), which is an endonuclease.
  • dsDNase double-strand specific DNase
  • DNase I non-specific DNA-degrading enzyme
  • amplification refers to increasing the number of copies (replicas) of nucleic acid sequences.
  • examples of amplification forms include linear amplification, real-time amplification, quantitative amplification, semi-quantitative amplification, and competitive amplification, but are not particularly limited.
  • the mixture used in the present invention is a mixture containing template RNA, primer, DNA strand specific RNA: DNA hybrid strand degrading enzyme, RNase H-minus reverse transcriptase, and substrate, preferably an aqueous solution, preferably An aqueous buffer containing salt.
  • FIG. 1 An outline of one embodiment of the RT-RamDA method of the present invention is described below (FIG. 1).
  • the complementary strand DNA (cDNA) of the template RNA is synthesized by the RNA-dependent DNA polymerase activity of RNase H minus reverse transcriptase.
  • DNA strand-specific RNA such as double-strand-specific DNA-degrading enzyme (dsDNase) or non-specific DNA-degrading enzyme (DNase I): cDNA of the hybrid strand of RNA and cDNA due to the nuclease activity of the DNA hybrid strand-degrading enzyme Break points (nicks) are randomly placed in the chain.
  • dsDNase double-strand-specific DNA-degrading enzyme
  • DNase I non-specific DNA-degrading enzyme
  • the 3′-side cDNA strand is peeled off by the strand displacement activity of RNase H minus reverse transcriptase.
  • New cDNA is synthesized by reverse transcriptase in the peeled portion.
  • the stripped cDNA is protected from nuclease activity by T4 gene 32 protein (T4GP32), a single-stranded DNA binding protein. When this occurs continuously, it is possible to increase the yield of cDNA by 10 times or more.
  • the nucleic acid amplification method of the present invention is used because the hybrid strand of RNA and DNA becomes the target of a DNA strand-specific RNA: DNA hybrid strand degrading enzyme, and the template for the strand displacement amplification reaction is RNA.
  • the possible reverse transcriptases are limited to those without RNase H activity.
  • the RNase H activity is ribonuclease activity that randomly cleaves only the RNA strand in the RNA: DNA hybrid strand.
  • RNase H is a non-specific endonuclease that catalyzes RNA cleavage by hydrolysis.
  • the RNase H minus type reverse transcriptase used in the present invention has a strand displacement activity. Due to the strand displacement activity of RNase H minus type reverse transcriptase, the 3′-side cDNA strand is peeled from the RNA, and a new cDNA strand is synthesized at the peeled portion.
  • Reverse transcription is a process in which reverse transcriptase (RNA-dependent DNA polymerase) catalyzes the formation of complementary strand DNA (cDNA) of template RNA.
  • reverse transcriptases RNA-dependent DNA polymerase
  • a number of enzymes have been identified as reverse transcriptases, such as HIV reverse transcriptase, AMV reverse transcriptase, M-MLV reverse transcriptase, C therm.
  • RNase H minus type reverse transcriptase is used.
  • DNA strand-specific RNA DNA hybrid strand degrading enzyme
  • DNA strand-specific RNA DNA hybrid strand degrading enzyme
  • RNA DNA hybrid strand degrading enzyme
  • a double strand specific DNA degrading enzyme or a non-specific DNA degrading enzyme can be used.
  • double-strand-specific DNA degrading enzymes crab-derived double-strand specific DNA-degrading enzymes (double-strand specific nucleases; DSN) are known.
  • This enzyme cuts not only double-stranded DNA but also only the DNA strand in the RNA: DNA hybrid strand.
  • a method has been devised that utilizes this activity to cleave the cDNA side of the RNA: cDNA hybrid strand formed during reverse transcription and to cause strand displacement amplification using RNA as a template.
  • the activation temperature of crab-derived DSN is very high at 60 ° C. or higher and is not suitable for general reverse transcription reaction (Non-patent Document 11). Therefore, the use of shrimp-derived thermolabile dsDNase that is active even at low temperatures enables both reverse transcription and cleavage by DNase (Non-patent Document 12).
  • the degradation activity of the single-stranded DNA can be suppressed, and cDNA synthesis and amplification by a strand displacement reaction of reverse transcriptase can proceed.
  • the single-stranded DNA binding protein any protein that binds to single-stranded DNA and increases the efficiency of nucleic acid amplification by the method of the present invention can be used.
  • T4 gene 32 protein derived from any source RecA, SSB (Single-Stranded DNA Binding Binding Protein) or a modified form thereof can be used. This makes it possible to increase the amplification factor rather than the method using dsDNase.
  • Non-Patent Documents 2 to 6 There have been many reports on DNA amplification methods using strand displacement reactions as in the RT-RamDA method (eg, Non-Patent Documents 2 to 6).
  • SDA a restriction enzyme or a combination of a plurality of sequence-specific primers in order to insert a nick into the template DNA. Therefore, it is essential to add a restriction enzyme recognition sequence or deoxyinosine to the template DNA and to design and synthesize a sequence-specific primer.
  • the target gene is also limited.
  • most of the existing amplification methods use DNA as a template, in order to amplify an RNA sequence, it is necessary to undergo a reverse transcription reaction for converting RNA into DNA.
  • Non-Patent Documents 9 and 10 In particular, in MDA, since the primer anneals randomly to DNA, there is a high risk of increasing non-specific products derived from contaminating DNA.
  • the RT-RamDA method of the present invention uses a sequence-independent strand displacement reaction, which not only requires the design and synthesis of sequence-specific primers and special primers, but also targets all genes. can do.
  • RNA directly as a template reverse transcription to amplification can be completed in only one step, and since DNA is difficult to serve as a template, amplification of non-specific products by contaminating DNA can be reduced.
  • the double-strand specific DNA-degrading enzyme used in the present invention preferably has an activity of cleaving a DNA strand of a hybrid strand of RNA and DNA, and an RNA strand of a hybrid strand of RNA and DNA, one Mention may be made of enzymes having substantially no activity of cleaving strand DNA and single strand RNA.
  • the double-strand specific DNA-degrading enzyme is preferably an enzyme having DNA-decomposing activity even at a temperature lower than 60 ° C.
  • the double-strand-specific DNA-degrading enzyme an enzyme derived from a prokaryote or a eukaryote can be used.
  • a double-strand-specific DNA-degrading enzyme derived from a crustacean or a modification thereof is used. be able to.
  • double-strand-specific DNA degrading enzyme double-strand-specific nuclease; also referred to as DSN
  • DSN double-strand-specific nuclease
  • Solenocera melantho DNase Penaeus japiconicus (Kuruma prawn) DNase (3) Paralithodes camtchaticus (king crab) DSN (4) Pandalus borealis dsDNase (5) Chioneecets opilio (snow crab) DSN (6)
  • Other DSN homologs Among the above, king crab DSN and snow crab DSN have heat resistance at an optimum activity temperature of around 60 ° C, while pink shrimp dsDNase is a heat-resistant enzyme with an optimum temperature of 37 ° C. .
  • shrimp-derived double-strand specific DNA-degrading enzyme or a modified product thereof is more preferable.
  • the modified substance means an enzyme obtained by modifying the amino acid sequence of a naturally-occurring double-strand-specific DNA degrading enzyme. Specifically, it consists of an amino acid sequence having 80% or more (preferably 90% or more, more preferably 95% or more) of amino acid sequence of a naturally-occurring double-strand-specific DNA-degrading enzyme.
  • One or several amino acids (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 1) in the amino acid sequence of an enzyme having strand-specific DNA-degrading activity and a naturally-occurring double-strand-specific DNA-degrading enzyme 3) an amino acid sequence having a deletion, substitution and / or addition of amino acids and having double-strand specific DNA degradation activity.
  • dsDNase® Alignment-dsDNase
  • Hl-dsDNase Alignment-dsDNase
  • dsDNase Thermo scientific
  • Micromp DNase Recombinant (affymetrix)
  • Atlantis dsDNase Zymo Research
  • Thermolabile RoRoche dsDNase® (ArcticZymes), Hl-dsDNase (ArcticZymes), dsDNase (Thermo scientific), Schmp DNase, Recombinant (affymetrix), Atlantis dsDNase (Zymo Research), and Thermolabile RoRoche.
  • the non-specific DNA-degrading enzyme used in the present invention has an activity of cleaving a DNA strand of a hybrid strand of RNA and DNA, and cleaves an RNA strand and a single-stranded RNA of a hybrid strand of RNA and DNA.
  • An enzyme that has substantially no activity and preferably has a lower activity of cleaving single-stranded DNA than that of cleaving a DNA strand of a hybrid strand of RNA and DNA can be mentioned.
  • the non-specific DNA degrading enzyme is preferably an enzyme having DNA degrading activity even at a temperature lower than 60 ° C.
  • non-specific DNA degrading enzyme an enzyme derived from a prokaryotic organism or a eukaryotic organism can be used, but preferably a non-specific DNA degrading enzyme derived from mammals or a modified form thereof can be used.
  • a non-specific DNA-degrading enzyme derived from bovine or a modified product thereof it is more preferable to use a non-specific DNA-degrading enzyme derived from bovine or a modified product thereof.
  • the modified substance means an enzyme obtained by modifying the amino acid sequence of a non-specific DNA-degrading enzyme derived from nature. Specifically, it comprises an amino acid sequence having a sequence identity of 80% or more (preferably 90% or more, more preferably 95% or more) with the amino acid sequence of a non-specific DNA-degrading enzyme derived from nature. 1 or several (for example, 1 to 10, preferably 1 to 5, more preferably 1 to 3) amino acids in the amino acid sequence of an enzyme having a degrading activity and a naturally-occurring non-specific DNA degrading enzyme It is an enzyme consisting of an amino acid sequence having a deletion, substitution and / or addition and having non-specific DNA degradation activity.
  • the primer used in the present invention is composed of deoxynucleotides and / or ribonucleotides, and has a chain length that allows base pairing with a target nucleic acid under given conditions.
  • the primer chain length is not particularly limited, but is preferably 5 to 50 bases, more preferably 5 to 30 bases.
  • a random primer, oligo dT primer or sequence-specific primer can be preferably used.
  • its length is preferably about 5 to 10 bases, more preferably about 6 to 8 bases.
  • an oligo dT primer is used, its length is preferably 10 to 50 bases, more preferably 15 to 30 bases.
  • a sequence-specific primer is used, its length is preferably 5 to 30 bases, more preferably 7 to 20 bases.
  • Primers can be synthesized by any method that can be used for oligonucleotide synthesis, such as the phosphate triester method, the H-phosphonate method, the thiophosphonate method, and the like.
  • the primer according to the present invention can be synthesized, for example, by the phosphoramidite method using a DNA synthesizer type 394 manufactured by ABI (Applied Biosystems Inc.).
  • a primer having an increased Tm value due to modification of the cation unit can be used.
  • a Zip Nucleic Acid (ZNA) primer can be used.
  • ZNA has the effect of increasing the Tm value of an oligonucleotide by a cation unit (Non-Patent Documents 14 to 16).
  • Amplification efficiency can be increased by using a primer whose Tm value is increased by modification of a cation unit such as a ZNA primer.
  • a random hexamer primer modified with ZNA the primer can anneal to the template RNA even at the reaction temperature during reverse transcription, and more efficient strand displacement amplification becomes possible.
  • the substrate referred to herein is a substrate of RNase H minus reverse transcriptase, and a mixture of four types of deoxyribonucleotides (dATP, dCTP, dGTP, dTTP) can be used.
  • the substrate is not limited to a mixture of dATP, dCTP, dGTP, and dTTP.
  • a dideoxynucleotide triphosphate may be added, or a modified deoxyribonucleotide may be used.
  • a single-stranded DNA binding protein such as T4 gene 32 protein may be included in the mixture for the reaction.
  • T4 Gene 32 protein can be used as a cofactor to increase the homogeneity of amplification. It is known that T4 gene 32 protein, which is a single-stranded DNA binding protein, acts not only on single-stranded DNA but also on RNA (Non-patent Documents 17 to 20).
  • T4 gene 32 protein acts not only on single-stranded DNA but also on RNA (Non-patent Documents 17 to 20).
  • the higher order structure of the template RNA can be relaxed, and a more uniform strand displacement reaction can be performed over the entire length of the template. Further, in the reaction using a non-specific DNA degrading enzyme, degradation of the amplified cDNA can be prevented.
  • the nucleic acid amplification reaction according to the present invention may be performed under isothermal conditions or under heat cycle conditions.
  • a predetermined temperature between 25 ° C. and 50 ° C., preferably a predetermined temperature between 30 ° C. and 45 ° C., more preferably a predetermined temperature between 35 ° C. and 40 ° C.
  • it can be performed at 37 ° C. for a certain period of time (for example, within 5 minutes to 3 hours, preferably 10 minutes to 150 minutes).
  • the reaction solution is incubated, for example, at 25 ° C. for a predetermined time (eg, 5 minutes to 15 minutes) and then at 30 ° C. for a predetermined time (eg, 5 minutes to 15 minutes).
  • reaction can be carried out at 37 ° C. Further, after incubation at 37 ° C., incubation may be performed at 50 ° C. for a predetermined time (for example, 5 minutes to 15 minutes) and then at 85 ° C. for a predetermined time (for example, 5 minutes to 15 minutes).
  • a predetermined temperature T1 for example, 25 ° C.
  • a predetermined temperature T2 for example, 37 ° C.
  • a predetermined time (for example, 1 to 3 minutes, for example, 2 minutes) at T1 and a predetermined time (for example, 1 to 3 minutes, for example, 2 minutes) at T2 are set as one cycle, which is preferably 10
  • the reaction can be carried out by repeating the cycle to 40 cycles, more preferably 15 cycles to 35 cycles.
  • a predetermined time for example, 5 minutes to 15 minutes
  • a predetermined time for example, 5 minutes to 15 minutes
  • a predetermined time for example, 5 minutes to 15 minutes
  • a predetermined time for example, 5 minutes to 15 minutes
  • a predetermined time for example, 5 minutes to 15 minutes
  • a predetermined time for example, 5 minutes to 15 minutes
  • a predetermined time for example, 37 ° C.
  • incubation may be performed at 50 ° C. for a predetermined time (for example, 5 minutes to 15 minutes) and then at 85 ° C. for a predetermined time (for example, 5 minutes to 15 minutes).
  • the method for amplifying a nucleic acid according to the present invention can be used as part of an RT-qPCR method using a minute amount of RNA (for example, a minute amount of RNA corresponding to one to several hundred cells).
  • the method for amplifying a nucleic acid according to the present invention can be used for an RNA sequencing method using a minute amount of RNA (for example, a minute amount of RNA corresponding to one to several hundred cells).
  • RNA sequencing method using a minute amount of RNA (for example, a minute amount of RNA corresponding to one to several hundred cells).
  • the present invention further relates to a kit for performing the nucleic acid amplification method according to the present invention described above.
  • the kit of the present invention includes at least a DNA strand-specific RNA: DNA hybrid strand-degrading enzyme such as a double-strand-specific DNA-degrading enzyme or a non-specific DNA-degrading enzyme, and an RNase H minus type reverse transcriptase.
  • the kit of the present invention further comprises a single-stranded DNA binding protein (eg, T4 gene 32 protein).
  • the kit of the present invention may further contain other reagents and buffers necessary for carrying out the nucleic acid amplification reaction. Examples of other reagents include primers and deoxyribonucleotide triphosphates.
  • the present invention is illustrated by the following examples, but the present invention is not limited to the examples.
  • the RT-RamDA method refers to a template RNA, a primer, a DNA strand-specific RNA such as a double-strand-specific DNA-degrading enzyme or a non-specific DNA-degrading enzyme: a DNA hybrid strand-degrading enzyme, an RNase H minus reverse transcriptase, and A method for amplifying a nucleic acid, comprising a step of incubating a mixture containing a substrate.
  • complementary strand DNA (cDNA) of template RNA is synthesized by RNA-dependent DNA polymerase activity of RNase H minus type reverse transcriptase, and RNA and cDNA are synthesized by DNA strand specific RNA: DNA hybrid strand degrading enzyme.
  • the cDNA strand of the hybrid strand is cleaved at random, the above-mentioned cleavage site is the starting point, and the 3′-side cDNA strand is peeled from the RNA by the strand displacement activity of the RNase H minus type reverse transcriptase, and the RNase H A new cDNA strand is synthesized at the part peeled off by the minus type reverse transcriptase.
  • RamDA-A is an embodiment in which the RT-RamDA method is performed using a double-strand specific DNA-degrading enzyme and T4 gene 32 protein.
  • RamDA-B is an embodiment in which the RT-RamDA method is performed using a double-strand-specific DNA-degrading enzyme without T4 gene 32 protein.
  • RamDA-C is an RT-RamDA thermal cycle method, in which the reaction temperature composition is modified with the same reaction solution composition as RamDA-B, and the reaction is performed by repeating the annealing process and the extension reaction process in small increments.
  • RamDA-D is an embodiment in which the RT-RamDA method is performed using a non-specific DNA degrading enzyme and T4 gene 32 protein.
  • 5G6GR mouse ES cells were used for the extraction of cell culture total RNA. This cell line was prepared by randomly incorporating a linearized Gata6-GR-IRES-Puro vector into EB5 ES cells (Non-patent Document 20).
  • GMEM fetal calf serum Glasgow minimal essential medium
  • ESGRO U / mlleukemia inhibitory factor
  • 100 ⁇ mol / l 2-mercaptoethanol Nacalai Tesque Inc., Kyoto, Japan
  • 1 ⁇ non-essential amino acids Life Technologies Corp., Carlsbad, CA, USA
  • 1 mmol / l pyruvic acid Culture was performed under the conditions of sodium (Life Technologies), 2 mmol / l L-glutamine (Nacalai Tesque), 0.5 ⁇ penicillin / streptomycin (Life Technologies), and 10 ⁇ g / ml blasticidin (Life Technologies).
  • mice ES cell 1 cell lysate The cultured cells were reacted at 37C for 3 minutes using TrypLE Express (Life Technologies) and dissociated into 1 cell. Immediately after the dissociation, the reaction was stopped by replacing with PBS (-). In order to accurately sort only the cells using a cell sorter, the live cell nuclei of dissociated cells were stained and labeled using Vybrant Dye Cycle (Life Technologies). The staining conditions followed the method attached to the reagent.
  • FRET assay FRET analysis was performed by modifying the method of Inge W. Nilsen et al (Non-patent Document 12). Prepare 0.6 ⁇ l of oligonucleotide probe mix (6 pmol oligo DNA or RNA (Sigma-Aldrich), 1 ⁇ First-Strand buffer (Life Technologies), RNase free water (TaKaRa)), denature at 70 ° C. for 5 minutes, and slowly It returned to room temperature. The combinations of oligonucleotides used for the analysis are as follows (SEQ ID NOs: 1 to 10).
  • DNA hybrids FAM-CGCCATCGGAGGTTC-BHQ1 HEX-rGrArArCrCrUrCrCrGrArUrGrGrCrG-BHQ1
  • T4 gene 32 protein was added to the enzyme solution.
  • RNase free water was added instead of the enzyme. The measurement was performed 50 times at a rate of once every 90 seconds. The enzyme activity was calculated using the fluorescence amplification factor at the beginning of the reaction (1.5 to 9 minutes).
  • oligonucleotide probe mix (6 pmol oligo DNA or RNA (Sigma-Aldrich), 1xDNase I reaction Buffer (Life Technologies) ), RNase free water) and 5.4 ⁇ l of enzyme solution (self-adjusted reaction solution, 0.12 U DNase I Amplification Grade, RNase free water) were prepared.
  • the self-adjusted reaction solution was adjusted to the final concentration in FIG. 6 according to the conditions. The measurement was performed 50 times at a rate of once every 60 seconds. The enzyme activity was calculated using the fluorescence amplification factor at the beginning of the reaction (5 to 10 minutes).
  • the combinations of oligonucleotides used for the analysis are as follows (SEQ ID NOs: 11 to 16).
  • RNA Single probe for DNA hybrid: FAM-CGCCATCGGAGGTTC-BHQ1 rGrArArCrCrUrCrCrGrArUrGrGrCrG-BHQ1
  • Reverse transcription reaction RT-RamDA method (RamDA-A): The template RNA is diluted in 1 ⁇ l Lysis buffer (1 U RNasein plus (Promega), 10% Roche lysis buffer (Roche), 0.3% NP40 (Thermo Fisher), RNase free water) and denatured at 65 ° C. for 2 minutes. And stored on ice until use.
  • the reverse transcriptase reaction solution was modified from ReverTra Ace qPCR RT KIT (TOYOBO Co. Ltd., Osaka, Japan).
  • RT-RamDA method without T4 Gene 32 protein (RamDA-B): Template RNA was diluted in 1 ⁇ l lysis buffer (1 U RNasein plus, 0.3% NP40, RNase free water) and subjected to denaturation treatment at 70 ° C. for 90 seconds.
  • RT-RamDA thermal cycle method (RamDA-C): A reverse transcription reaction was carried out under the same reaction solution composition as RamDA-B but under different temperature conditions. The reaction conditions are as follows. 29 cycles of 25 ° C. for 10 minutes, 30 ° C. for 10 minutes and 37 ° C. for 2 minutes, followed by 25 ° C. for 2 minutes and 37 ° C. for 2 minutes were performed. Thereafter, treatment was performed at 50 ° C. for 5 minutes and at 85 ° C. for 5 minutes.
  • RT-RamDA non-specific DNA degrading enzyme (DNase I) method (RamDA-D): Template RNA was diluted in 1 ⁇ l Lysis buffer (1 U RNasein plus, 10% Roche lysis buffer, 0.3% NP40, RNase free water), denatured at 70 ° C. for 90 seconds, and stored on ice until use.
  • the reverse transcriptase reaction solution was modified from PrimeScript RT reagent Kit (Perfect Real Time) (TaKaRa).
  • the nuclease was 0.2 U 43 kDads DNase (ArcticZymes), 0.2 U 47 kDa dsDNase (Affymetrix Inc., Santa Clara, CA, USA), 0.2 U duplex specific nuclease (DSN; Evrogen JSC, Moscow) under the reaction conditions of RamDA-A. , Russia). Reaction temperature conditions were set according to RamDA-A, and the amplification factor of cDNA was quantified by qPCR.
  • Reverse transcriptase comparison 10 RT PCR kits, Maxima H Minus First Strand cDNA Synthesis Kit (Thermo Fisher), ReverTra Ace qPCR RT Kit (TOYOBO), PrimeScript RT reagent Kit (TaKaRa), AffinityScript QPCR cDNA Synthesis Kit (Agilent Biotechnology), QuantiTect Rev Transcription Kit (Qiagen), GoScript Reverse Transcription System (Promega), iScript Select cDNA Synthesis Kit (Bio-Rad), ProtoScript II First Strand cDNA Synthesis Kit (New England Biolabs, MA, UK), SuperScript III (Life Technologies), Comparison was made using Transcriptor First Strand cDNA Synthesis Kit (Roche).
  • RNA-primer mix (20 ng Millennium RNA Markers, 25 pmol oligo (dT) 18 primer, lysis buffer (RamDA-A condition)
  • RNA-primer mix (20 ng Millennium RNA Markers, 25 pmol oligo (dT) 18 primer, lysis buffer (RamDA-A condition)
  • reverse transcription reaction was performed using 10 pg total RNA derived from mouse ES cells.
  • the reagent supplied in each kit was used, and the formulation was downscaled to 3 ⁇ l of the reaction system using the conditions recommended by the kit.
  • the reverse transcription primer is 0.6 pmol oligo (dT) 18 primer, 7.8 pmol random hexamer primer under RamDA ( ⁇ ) condition, 0.6 pmol oligo (dT) 18 primer under RamDA (+) condition, 7 .8 pmol ZNA-random hexamer primer was used.
  • Quantitative polymerase chain reaction In the system of artificially synthesized RNA (DAP, THR), the reverse transcription reaction solution was diluted with nuclease free water (Qiagen), and 1/50 amount was used for the qPCR reaction solution.
  • the mouse ES cell-derived 10 pg total RNA system was diluted with nuclease free water, and 1/6, 1/8, or 1/10 amount was used in the qPCR reaction solution.
  • qPCR was performed using LightCyclar 480 (Roche) or ABI 7900HT (Life Technologies) under the following conditions.
  • a 5-fold dilution series (31250, 6250, 1250, 250, 50, 10, 0 copies) of a DAP and THR dsDNA mixed solution for artificially synthesized RNA
  • total RNA Mouse genomic DNA (clonetech) 5-fold dilution series (31250, 6250, 1250, 250, 50, 10 and 0 copies) were used respectively. Since cDNA is ssDNA, the quantitative value was calculated by the detection value (dsDNA copy) x 2.
  • Each primer sequence is listed in Table 2. Data analysis was performed using LightCycler 480 Software, Version 1.5 (Roche) or SDS Software 2.1 (Life Technologies).
  • Each gel electrophoresis reverse transcription reaction solution was diluted to 20 ⁇ l with RNase-free TE buffer (Life Technologies) and immediately cooled on ice after denaturation treatment at 70 ° C. for 10 minutes.
  • RNase-free TE buffer Life Technologies
  • 1 ⁇ l of E-Gel 1 Kb Plus DNA Ladder (Life Technologies) is diluted to 20 ⁇ l with RNase-free TE buffer, heat-denatured is ssDNA ladder, and non-heat-denatured is dsDNA ladder. Used as. However, in the system using Millennium RNA Markers, the heat denaturation treatment after dilution was excluded.
  • the reverse transcription reaction solution and the ladder marker were loaded into E-Gel EX Agarose Gels, 2% (Life Technologies), and then electrophoresed for 10 minutes using the E-Gel iBase Power System (Life Technologies). Electrophoresis images were taken with FAS-Digi (NIPPON Genetics Co. Ltd, Tokyo, Japan).
  • RNA DNA hybrid strands
  • dsDNase and DNase I selectively cleave DNA in RNA: DNA hybrid strands under standard reverse transcription buffer conditions I confirmed that it has activity to do.
  • Crab-derived double-strand-specific nucleases are known to have the activity of cleaving RNA: DNA hybrid strand DNA (Non-patent Document 11). However, this enzyme has little activity at the temperature during reverse transcription (Non-patent Document 11). Therefore, attention was paid to shrimp-derived dsDNase, which is known for thermal instability (Non-patent Document 12). This enzyme has an activity at around 37 ° C.
  • RNA hybrid strand had almost no activity against the RNA strand, single-stranded DNA, and single-stranded RNA (FIGS. 2D to F). Similar results were obtained with heat-labile double-strand specific DNase (HL-dsDNase) in which dsDNase was further made thermally unstable, but it was found that the nuclease activity was lower than that of dsDNase (FIGS. 2A to 2C). On the other hand, when DNase I, which is a non-specific DNA degrading enzyme, was used, it showed the activity of selectively cleaving DNA in the RNA: DNA hybrid strand as with dsDNase, but the activity against single-stranded DNA was also low. (FIG. 2B, E). For this reason, it was first decided to verify the RT-RamDA method using dsDNase that does not exhibit degradation activity on single-stranded DNA.
  • HL-dsDNase heat-labile double-strand specific DNase
  • RNAs Dap (1,910b) and Thr (2,052b) were each 100 fg (Dap: 96,725 copies, Thr: 89,991 copies) of 10 pg total RNA derived from mouse ES cells ( 1 cell equivalent amount) and reverse transcription was performed.
  • qPCR primers were designed in 12 regions from the 3 ′ end to the 5 ′ end for each artificially synthesized RNA, and the detection amount in each region was measured.
  • the RamDA ( ⁇ ) control condition showed an almost constant detection amount in all regions under both the oligo dT primer and the random hexamer primer (FIG. 3B).
  • dsDNase enzyme and reverse transcriptase that can be used for RT-RamDA method are investigated for dsDNase enzyme and reverse transcriptase that can be used for RT-RamDA method, can amplification effect be obtained even under conditions using other dsDNase and various reverse transcriptases? I confirmed.
  • dsDNase was compared with three enzymes, dsDNase (43 kDa) sold by ArcticZymes, dsDNase (47 kDa) from affymetrix, and duplex spesific nuclease (DSN) from Evrogen.
  • RT-RamDA component dsDNase, T4 gene 32 protein, ZNA-random hexamer primer
  • dsDNase dsDNase
  • T4 gene 32 protein dsDNase
  • ZNA-random hexamer primer dsDNase, T4 gene 32 protein, ZNA-random hexamer primer
  • the present inventors have derived a derivative method focusing on the improvement of the amplification factor, the RT-RamDA method without T4 Gene 32 protein (RamDA-B) and the RT-RamDA thermal cycle method ( RamDA-C) was developed.
  • the RT-RamDA method without T4 Gene 32 protein RamDA-B
  • the RT-RamDA thermal cycle method RamDA-C
  • RamDA-C was tested, in which only the reaction temperature conditions were modified in RamDA-B, and the annealing process and the extension reaction process were repeated in small steps. Then, it was found that the detection amount of Gnb2l1 and Oct3 / 4 was 100 times or more in RamDA-C compared with the standard reverse transcription method (FIG. 5B, RamDA (+) cycle). On the other hand, in the standard reverse transcription method, the effect of thermal cycling was not observed (FIG. 5B, RamDA ( ⁇ ) cycle). In addition, RamDA-A did not show the effect of thermal cycling (not shown). From these results, it was suggested that primer reannealing is very effective for cDNA amplification in the RamDA-B method.
  • the ZNA-random hexamer primer has two cationic units added and is designed to have a Tm value of about 26 ° C. higher than that of a normal random hexamer primer (Non-patent Document 14). For this reason, even during the reaction at 37 ° C., it is possible to efficiently anneal, and it is considered that the annealing is further promoted by thermal cycling.
  • dsDNase does not have nuclease activity for amplified cDNA, which is a single-stranded DNA, and reverse transcription primer.
  • DNase I itself, which is a non-specific DNA-degrading enzyme, also has a low nuclease activity against single-stranded DNA compared to double-stranded DNA (Non-patent Document 12), and monovalent cations such as K + and Na +. It is known that the nuclease activity decreases depending on the non-patent documents 23 and 24.
  • the general reaction composition used for reverse transcription ((First-Strand buffer (Life Technologies), PrimeScript Buffer (for cDNA synthesis) (TaKaRa), Maxima H Minus First Strand cDNA Synthesis RT-Buffer (Thermo Fisher ), M-MuLV Reverse Transcriptase Reaction Buffer (New England Biolabs), AffinityScript RT Buffer (Agilent Biotechnology) , etc.), a high concentration of 50 mM Tris-HCl, 75 mM KCl, 3 mM MgCl 2 and Tris-HCl and KCl
  • a high concentration of 50 mM Tris-HCl 75 mM KCl, 3 mM MgCl 2 and Tris-HCl and KCl
  • Tris-HCl 20 mM Tris-HCl, 50 mM KCl, 2 mM MgCl was used as a reference to increase the concentration of Tris-HCl and KCl, and the nuclease activity was measured. Both Tris-HCl and KCl were high. Dark Under the conditions, it was found that the nuclease activity of DNase I was significantly inhibited not only in double-stranded DNA but also in single-stranded DNA and RNA: DNA hybrid strands (FIG. 6). In the Tris-HCl and KCl concentrations, the activity was suppressed to 43%, 16%, and 14%, respectively, as compared with the DNase I reaction buffer conditions (FIG. 6, ##).
  • the effectiveness of the RT-RamDA method using a nonspecific DNA-degrading enzyme particularly, the relationship between the salt concentration in the reaction solution and the amplification factor was examined.
  • the salt concentration was changed from the composition of DNase I reaction Buffer to the composition of the reverse transcription reaction solution, and the RT-RamDA method was verified using qPCR, surprisingly, the nuclease activity against single-stranded DNA It was found that a sufficient amount of amplification by the RT-RamDA method occurred even under the high DNase reaction Buffer conditions (Fig. 7). Furthermore, changing the concentrations of KCl and Tris-HCl did not significantly affect the amplification rate (FIG. 7, ai).
  • the amplification factor greatly affects the NaCl concentration in the composition condition of the reverse transcription reaction solution (FIG. 7, j-l). For this reason, it is estimated that the reaction liquid composition which does not contain NaCl is desirable. Moreover, even when the self-adjusted reaction solution was used, the amplification rate was comparable to that of commercially available First-Strand buffer (Life Technologies) and PrimeScript Buffer (for Real Time) (TaKaRa) (FIG. 7, j, FS, PS). Therefore, the RT-RamDA method reaction solution is not limited to a specific reaction solution composition, and the RT-RamDA method can function independently of the salt concentration-dependent nuclease activity. I understood. From these facts, it was suggested that factors other than the salt concentration in the reaction solution may suppress the degradation of cDNA.
  • T4 gene 32 protein contributes to protection of cDNA and stabilization of amplification T4 gene 32 protein has been reported to protect single-stranded DNA from nucleases by binding to single-stranded DNA (non-) Patent Document 25).
  • Non- Patent Document 25 the state of cDNA fragmentation by RT-RamDA method using only oligo-dT primers was verified using poly-A added artificial synthetic RNA as a template, with and without T4 gene 32 protein (FIG. 8).
  • FIG. 8 shows that when both DNase I and dsDNase were combined with T4 gene 32 protein, it was found from the migration pattern that the fragmentation of cDNA was suppressed more than the condition of DNase alone (FIG. 8, A).
  • the T4 gene 32 protein is used for the RT-RamDA method using DNase I, which has the effect of improving the ratio of the nuclease activity to the DNA in the RNA: DNA hybrid strand and the activity to the single-stranded DNA .
  • the amount of degradation is smaller than the amount of strand displacement amplification due to nick formation on the RNA: cDNA strand, that is, the nuclease activity for single-stranded DNA is sufficiently smaller than the activity for DNA in the RNA: DNA hybrid strand. It can be said that it is important. From experiments on the fragmentation and amplification rate of cDNA (FIGS. 8 and 9), it was speculated that T4 gene 32 protein contributed to this.
  • the dsDNase is remarkably inhibited in nuclease activity in the reverse transcription reaction solution, particularly in the presence of T4 gene 32 protein, and the nuclease activity to DNA in the RNA: DNA hybrid strand is only about 6% compared to DNase I. (FIG. 10, A). This may be a difference in amplification factor when DNase I and dsDNase are used.
  • RamDA-D was confirmed to function without problems even in crude samples containing impurities such as cell lysates.
  • nuclease activity against double-stranded DNA during reverse transcription reaction is higher when DNase I is used than with dsDNase, RamDA-D is effective not only for amplification rate but also for contamination removal ability. (FIG. 10, A).
  • RamDA-D is not limited to a specific RNase H-minus reverse transcriptase.
  • the SuperScript series (Life Technologies) is used to confirm whether RamDA-D, which functions even for RNA equivalent to 100 cells, is limited to specific RNase H minus reverse transcriptase. ) was used for the verification (FIG. 12).
  • cDNA amplification was confirmed by SuperScript II and III.
  • SuperScript II showed an amplification rate comparable to PrimeScript RT Enzyme Mix I (FIG. 12, SSII).
  • RamDA-D functions even when Maxima H Minus First Strand cDNA Synthesis Kit (Thermo Fisher) or ReverTra Ace qPCR RT Kit (TOYOBO) is used (data not shown). From these results, it was found that RamDA-D is not limited to a specific RNase H minus type reverse transcriptase. Furthermore, it was found that RamDA-D functions without any problem even when the amount of RNA is larger than 200 pg, 1 ng, and 10 pg total RNA equivalent to 1 cell (FIG. 12, 200 pg, 1 ng). From this, it was suggested that the amplification performance was sufficiently secured even when a template RNA amount equivalent to at least 100 cells was used.
  • the RT-RamDA method can be a very useful means as a technique for amplifying a minute amount of RNA.
  • the amplification rate of RamDA-C is very high in the analysis for detecting a specific target gene. It should be a big advantage.
  • RamDA-C since RamDA-C has a large variation in amplification rate between genes, RamDA-A to which T4 gene 32 protein is added is effective for analysis that requires uniform amplification.
  • RamDA-D using T4 gene 32 protein and DNase I which is a non-specific DNA degrading enzyme, has a high amplification rate, and there is little variation in amplification between genes.
  • RamDA-D is a method that has the advantages of both RamDA-A and -B, and is a very effective and simple method as a reverse transcription method targeting a small amount of RNA.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 本発明の課題は、試薬・作業環境からの混入DNAを起因とする非特異的増幅リスクの排除、微量RNAの検出感度の上昇と増幅バイアスの低減を実現することができるRNAを鋳型とする核酸の増幅方法を提供することである。本発明によれば、鋳型RNA、プライマー、DNA鎖特異的RNA:DNAハイブリッド鎖分解酵素、RNase Hマイナス型逆転写酵素、及び基質を含む混合物をインキュベートする工程を含む、核酸の増幅方法が提供される。

Description

核酸の増幅方法
 本発明は、DNA鎖特異的RNA:DNAハイブリッド鎖分解酵素と鎖置換活性を用いた核酸の増幅方法に関する。より詳細には、本発明は、RNAを鋳型として、DNA鎖特異的RNA:DNAハイブリッド鎖分解酵素、およびRNase Hマイナス型逆転写酵素を用いて核酸を増幅する方法に関する。さらに本発明は、上記の核酸の増幅方法を行うためのキットに関する。
 これまでに多数の核酸増幅方法が報告されている。例えば、Polymerase Chain Reaction (PCR)(非特許文献1)、Strand Displacement Amplification (SDA)( 非特許文献2)、Multiple Displacement Amplification (MDA)( 非特許文献3)、Rolling-Circle Amplification (RCA)( 非特許文献4)、Loop-Mediated Isothermal Amplification (LAMP)( 非特許文献5)、Smart Amplification Process (SmartAmp)( 非特許文献6)、Helicase-Dependent Amplification (HDA)( 非特許文献7)、Ligase Chain Reaction (LCR)( 非特許文献8)などが挙げられる。これらは、DNAを鋳型とした増幅法であり、PCR、HDA、LCRを除けば、全てがDNAポリメラーゼの鎖置換活性を利用したものである。鎖置換反応を利用した増幅系の中核となるのがSDAである(非特許文献2)。SDAは、二本鎖DNAを制限酵素等で片側鎖に切断点(ニック)を入れる。このニックを起点としてDNAポリメラーゼの鎖置換活性で3’ 側のDNA鎖を剥がし、新たな相補鎖DNAを合成する。SDAは、この反応を連続的に起こすことで、相補鎖DNAを増幅させる技術である。また、ランダムヘキサマープライマーを利用したMDAは、鋳型DNA上に無作為かつ複数箇所にプライマーがアニーリングすることで、無作為な鎖置換反応を起こすことができ、非常に増幅率の高い方法となっている(非特許文献3)。しかし、DNAを鋳型とするこれらの増幅法を用いてRNA配列を増幅させるには、RNAをDNAに変換する逆転写反応を経る必要がある。また、SDAは、制限酵素を使って鋳型DNAにニックを挿入する必要があるため、制限酵素認識配列やデオキシイノシンなどを鋳型に付加する必要がある。また、LAMP、SmartAmpは、1ターゲットに対して4~5個の配列特異的なプライマーが必要となる。このため特殊なオリゴプライマーの合成や配列特異的プライマーの設計などが必要となる。さらに、PCRをはじめとするDNAを鋳型とする増幅法では、以前に行ったPCR増幅産物や逆転写産物などのサンプルへのキャリーオーバーによって生じる偽陽性や、試薬中に混入しているDNA、作業環境から混入するDNAなどに由来する非特異的産物が問題となっている(非特許文献9及び10)。特にMDAにおいては、プライマーがDNAに対して無作為にアニーリングするため、混入DNA由来の非特異的産物が増えることが懸念される。RNAを鋳型とする増幅技術として、制限酵素認識配列を持つ特殊なDNAヘアピンプライマーを利用する方法が提案されている。本方式では、鋳型となるRNAに結合させたDNAヘアピンプライマーに切断点を生じさせ、鎖置換反応を起こすことで相補鎖DNAを増幅させる。しかしながら、この方式は、鋳型RNAの3’末端にDNAヘアピンプライマーをライゲーションさせる前処理が必要となり、ライゲーションの条件によって補足できない分子が生じる可能性がある。また鋳型RNAの3’末端から増幅するため、全長にわたって均等に増幅することが方式上難しいと考えられる。
Specific Enzymatic Amplification of DNA In Vitro: The Polymerase Chain Reaction. Mullis K他、Cold Spring Harb Symp Quant Biol. 1986;51 Pt 1:263-73. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Walker GT, 他、Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):392-6. Comprehensive human genome amplification using multiple displacement amplification. Dean FB, 他、Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):5261-6. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Lizardi PM, 他、Nat Genet. 1998 Jul;19(3):225-32. Loop-mediated isothermal amplification of DNA. Notomi T, 他、Nucleic Acids Res. 2000 Jun 15;28(12):E63. Rapid SNP diagnostics using asymmetric isothermal amplification and a new mismatch-suppression technology. Mitani Y, 他、Nat Methods. 2007 Mar;4(3):257-62. Epub 2007 Feb 18. Helicase-dependent isothermal DNA amplification. Myriam Vincent,他、EMBO Rep. 2004 August; 5(8): 795-800. Genetic disease detection and DNA amplification using cloned thermostable ligase. Barany F. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):189-93. An Efficient Multistrategy DNA Decontamination Procedure of PCR Reagents for Hypersensitive PCR Applications. Champlot S, 他、PLoS One. 2010 Sep 28;5(9). Novel Sensitive Real-Time PCR for Quantification of Bacterial 16S rRNA Genes in Plasma of HIV-Infected Patients as a Marker for Microbial Translocation. Kramski M, 他、J Clin Microbiol. 2011 Oct;49(10) A Novel Method for SNP Detection Using a New Duplex-Specific Nuclease From Crab Hepatopancreas. Shagin DA, 他、Genome Res. 2002 Dec;12(12):1935-42 The Enzyme and the cDNA Sequence of a Thermolabile and Double-Strand Specific DNase from Northern Shrimps (Pandalus borealis). Nilsen IW, 他、PLoS One. 2010 Apr 22;5(4):e10295. Experimental Murine Endometriosis Induces DNA Methylation and Altered Gene Expression in Eutopic Endometrium1. Lee B, 他、Biol Reprod. 2009 Jan;80(1):79-85. Versatile synthesis of oligodeoxyribonucleotide-oligospermine conjugates. Voirin E, Behr JP, 他、Nat Protoc. 2007;2(6):1360-7. Oligonucleotide-oligospermine conjugates (zip nucleic acids): a convenient means of finely tuning hybridization temperatures. Noir R, 他、J Am Chem Soc. 2008 Oct 8;130(40):13500-5. Zip Nucleic Acids: new high affinity oligonucleotides as potent primers for PCR and reverse transcription. Moreau V, 他、Nucleic Acids Res. 2009 Oct;37(19) DNA "melting" proteins. IV. Fluorescence measurements of binding parameters for bacteriophage T4 gene 32-protein to mono-, oligo-, and polynucleotides. Kelly RC, 他、J Biol Chem. 1976 Nov 25;251(22):7240-50. Reverse Transcriptase (RT) Inhibition of PCR at Low Concentrations of Template and Its Implications for Quantitative RT-PCR. Chandler DP, 他、Appl Environ Microbiol. 1998 Feb;64(2):669-77. Increased Yield of PCR Products by Addition of T4 Gene 32 Protein to the SMART-PCR cDNA Synthesis System. Villalva C, 他、Biotechniques. 2001 Jul;31(1):81-3, 86. An Optimized Protocol for First Strand cDNA Synthesis from Laser Capture Microdissected Tissue. Boylan S, 他、Lab Invest. 2001 Aug;81(8):1167-9. Extra-embryonic endoderm cells derived from ES cells induced by GATA factors acquire the character of XEN cells. Shimosato D,他、BMC Dev Biol. 2007 Jul 3;7:80. Characterization of SYBR Gold nucleic acid gel stain: a dye optimized for use with 300-nm ultraviolet transilluminators. Tuma RS, 他、Anal Biochem. 1999 Mar 15;268(2):278-88. CRYSTALLINE DESOXYRIBONUCLEASE II. DIGESTION OF THYMUS NUCLEIC ACID (DESOXYRIBONUCLEIC ACID) THE KINETICS OF THE REACTION. Kunitz M, J Gen Physiol. 1950 Mar;33(4):363-77. The effect of divalent cations on the mode of action of DNase I. The initial reaction products produced from covalently closed circular DNA. Campbell VW, 他、J Biol Chem. 1980 Apr 25;255(8):3726-35. Crystal structure of a replication fork single-stranded DNA binding protein (T4 gp32) complexed to DNA. Shamoo Y, 他、Nature. 1995 Jul 27;376(6538):362-6.
 遺伝子発現解析を行うためにはRNAから相補的DNA(cDNA)への変換が必要である。DNAを鋳型とする増幅技術はあるが、特殊な配列を付加するなどの前処理を施さない無処置なRNAを直接鋳型とした増幅技術はない。本発明は、DNAを鋳型とする既存の増幅方法ではなく、RNAを鋳型とする核酸の増幅方法を提供することを解決すべき課題とする。本発明は、操作の簡素化だけでなく、試薬・作業環境からの混入DNAを起因とする非特異的増幅リスクの排除、微量RNAの検出感度の上昇と増幅バイアスの低減を実現することができるRNAを鋳型とする核酸の増幅方法を提供することを解決すべき課題とする。
 本発明者らは、上記課題を解決するために鋭意検討した結果、RNAを鋳型としてcDNAを増幅させる増幅逆転写法(RT-RamDA法またはRamDA法とも称する)を発明した。RT-RamDA法によれば、cDNAの収率を市販のキットよりも10~100倍に増やすことができ、微量RNAからの遺伝子発現解析において低発現遺伝子の捕捉や検出遺伝子数の拡充が可能となることが判明した。またRamDA法により増幅したcDNAはRNAシーケンス法など様々な遺伝子解析に適応させることが可能で、分子生物学の基礎技術として幅広い活用が期待される。また、DNAを鋳型とする既存の増幅系とは異なりRNAを鋳型とすることにより、操作の簡素化だけでなく、試薬・作業環境からの混入DNAを起因とする非特異的増幅リスクの排除、増幅バイアスの低減を実現することができる。本発明はこれらの知見に基づいて完成したものである。
 すなわち、本発明によれば、以下の発明が提供される。
(1) 鋳型RNA、プライマー、DNA鎖特異的RNA:DNAハイブリッド鎖分解酵素、RNase Hマイナス型逆転写酵素、及び基質を含む混合物をインキュベートする工程を含み、DNA鎖特異的RNA:DNAハイブリッド鎖分解酵素が、RNAとDNAとのハイブリッド鎖のDNA鎖を切断する活性を有する酵素である、核酸の増幅方法。
(2) RNase Hマイナス型逆転写酵素のRNA依存性DNAポリメラーゼ活性により鋳型RNAの相補鎖DNA(cDNA)を合成し、DNA鎖特異的RNA:DNAハイブリッド鎖分解酵素によりRNAとcDNAとのハイブリッド鎖のうちのcDNA鎖を無作為に切断し、前記の切断部位が起点となり、RNase Hマイナス型逆転写酵素の鎖置換活性により3’側のcDNA鎖がRNAから剥がされ、RNase Hマイナス型逆転写酵素により剥がされた部分に新たなcDNA鎖が合成される工程を含む、(1)に記載の核酸の増幅方法。
(3) 前記混合物がDNA鎖特異的RNA:DNAハイブリッド鎖分解酵素として二本鎖特異的DNA分解酵素を含み、二本鎖特異的DNA分解酵素が、RNAとDNAとのハイブリッド鎖のDNA鎖を切断する活性を有し、RNAとDNAとのハイブリッド鎖のRNA鎖、一本鎖DNA及び一本鎖RNAを切断する活性を実質的に有さない酵素である、(1)又は(2)に記載の核酸の増幅方法。
(4) 前記混合物がDNA鎖特異的RNA:DNAハイブリッド鎖分解酵素として非特異的DNA分解酵素を含み、非特異的DNA分解酵素が、RNAとDNAとのハイブリッド鎖のDNA鎖を切断する活性を有し、RNAとDNAとのハイブリッド鎖のRNA鎖、及び一本鎖RNAを切断する活性を実質的に有さない酵素である、(1)又は(2)に記載の核酸の増幅方法。
(5) DNA鎖特異的RNA:DNAハイブリッド鎖分解酵素が、60℃未満でもDNA分解活性を有する酵素である、(1)から(4)の何れかに記載の核酸の増幅方法。
(6) 二本鎖特異的DNA分解酵素が、甲殻類由来の二本鎖特異的DNA分解酵素又はその改変体である、(3)に記載の核酸の増幅方法。
(7) 二本鎖特異的DNA分解酵素が、エビ由来の二本鎖特異的DNA分解酵素又はその改変体である、(6)に記載の核酸の増幅方法。
(8) 非特異的DNA分解酵素が、ほ乳類由来の非特異的DNA分解酵素又はその改変体である、(4)に記載の核酸の増幅方法。
(9) 非特異的DNA分解酵素が、ウシ由来の非特異的DNA分解酵素又はその改変体である、(8)に記載の核酸の増幅方法。
(10) プライマーが、ランダムプライマー、オリゴdTプライマー又は配列特異的プライマーの1種以上である、(1)から(9)の何れかに記載の核酸の増幅方法。
(11) プライマーが、カチオンユニットの修飾によってTm値が上昇しているプライマーである、(1)から(10)の何れかに記載の核酸の増幅方法。
(12) プライマーが、Zip Nucleic Acid (ZNA) プライマーである、(1)から(11)の何れかに記載の核酸の増幅方法。
(13) 混合物がさらに、一本鎖DNA結合タンパク質を含む、(1)から(12)の何れかに記載の核酸の増幅方法。
(14) 鋳型RNAが、1細胞から数百細胞相当の微量RNAである、(1)から(13)の何れかに記載の核酸の増幅方法。
(15) DNAシーケンスライブラリ作製に供するcDNAの増幅のために行う、(1)から(14)の何れかに記載の核酸の増幅方法。
(16) DNA鎖特異的RNA:DNAハイブリッド鎖分解酵素、およびRNase Hマイナス型逆転写酵素を少なくとも含む、(1)から(15)の何れかに記載の核酸の増幅方法を行うためのキット。
(17) さらに一本鎖DNA結合タンパク質を含む、(16)に記載のキット。
 本発明の核酸の増幅方法によれば、RNAを鋳型として核酸を増幅できることから、操作の簡素化だけでなく、試薬・作業環境からの混入DNAを起因とする非特異的増幅リスクを排除でき、増幅バイアスの低減を実現することができる。さらに本発明の核酸の増幅方法によれば、既存の逆転写cDNA合成キットと比べて10倍以上の収量を得ることができ、条件によっては100倍以上の増幅も可能である。
図1は、RT-RamDA(RamDA)法の模式図を示す。 図2は、二本鎖特異的DNA分解酵素(dsDNase)と非特異的DNA分解酵素(DNase I)は、二本鎖DNAだけでなくRNA:DNAハイブリッド鎖中のDNAも切断することを示す。蛍光オリゴヌクレオチドを用いたFRET解析により、dsDNase、及びDNase Iの逆転写バッファー条件下でのヌクレアーゼ特性を検証した。dsDNase、DNase Iに加えて、熱不安定な性質をもつ HL-dsDNase、そして、DNaseを含まないバッファーコントロール(buffer)の4条件で、経時的なヌクレアーゼ活性を測定した。A、Cは、二本鎖DNA中のDNA、Bは、RNA:DNAハイブリッド鎖中のDNA、Dは、ハイブリッド鎖中のRNAでの活性を示す。E、Fはそれぞれ、一本鎖のDNAと一本鎖RNAでの結果を示す。測定は、37℃で70秒毎に1回の検出を50回行った。エラーバーは、標準偏差を示す(N=3)。 図3は、dsDNaseの活性により、cDNAの断片化と増幅が起きることを示す。Aでは、5ngの人工合成RNA、Thr RNA(2,052b)を鋳型に用いて、標準の逆転写法(RamDA(-))と、標準の逆転写法にdsDNase、ZNA-ランダムヘキサマープライマー、T4ジーン32プロテインを添加したRamDA(+)とのcDNAパターンをアガロースゲル電気泳動で調べた。ssDNA ladderは、dsDNA ladderを熱変性させたものである。矢印は、それぞれ2kbを示す。図中の「-」は、RamDA(-)、「+」は、RamDA(+)を示す。Bでは、1細胞相当のtotal RNA量であるマウスES細胞由来の10pg total RNAに添加した100fgの人工合成RNA、Dap RNA(96,725コピー)、及びThr RNA(89,991コピー)のcDNA量をqPCRで検出した。qPCRには、逆転写産物の1/50量を用いた。横軸は、3’末端からの距離を示す。検出用のqPCR プライマーは、Dap、Thr、それぞれ、5’から3’にかけての12領域で設計した。dT:オリゴdTプライマー、N6:ランダムヘキサマープライマー、 N6Z:ZNA-ランダムヘキサマープライマー。エラーバーは、標準偏差を示す(N=3)。 図4は、RT-RamDA法は熱不安定性のdsDNaseとRNase Hマイナス型逆転写酵素で作用することを示す。Aでは、マウスES細胞由来の10pg total RNAを鋳型としたcDNAの検出量をqPCRを用いた相対定量値として示す。値は、RamDA(-)条件の各遺伝子における検出cDNA量(コピー数)を基準とした相対値を示す。エラーバーは、標準偏差を示す(N=4)。Bでは、20ngのMillenniumRNA Markers(0.5、1、1.5、2、2.5、3、4、5、6、9kb)を鋳型にし、各種逆転写酵素キットを用いて合成したcDNAのアガロースゲル電気泳動パターンを示す。a-jは、Cのグラフ中のa-jと一致している。RNA:DNAハイブリッド鎖を形成しているバンドは、一本鎖cDNAよりも明るく染色されている(非特許文献21)。伸長反応は、42℃ 2.5分で行った。Cでは、マウスES細胞由来の10pg total RNAを鋳型としたcDNAの検出量をqPCRを用いた相対定量値として示す。図中の「-」は、RamDA(-)、「+」は、RamDA(+)を示し、各酵素のRamDA(-)の値を1とした。a-c、h、iのRamDA(+)で2倍以上の増幅が見られる。エラーバーは、標準偏差を示す(N=4)。 図5は、特定の遺伝子においてRamDA-B、-Cは、非常に高い増幅率を示すことを示す。Aでは、マウスES細胞由来の10pg total RNAを鋳型としたcDNAのqPCRによる検出量(上段)とRamDA(-)を1とした時の相対値(下段)を示す。エラーバーは標準偏差を示す(N=4)。Bでは、熱サイクル化の効果を示す。マウスES細胞由来の10pg total RNAを鋳型としたcDNAのqPCRによる検出量(上段)と等温条件でのRamDA(-)を1とした時の相対値(下段)を示す。エラーバーは標準偏差を示す(N=3)。図中の「RamDA(-)iso」、「RamDA(+)iso」は、等温条件(RamDA-Aと同条件)、「RamDA(-)cycle」、「RamDA(+)cycle」は、熱サイクル条件を示す。 図6は、Tris-HCl及びKCl濃度依存的にDNase Iのヌクレアーゼ活性が落ちることを示す。蛍光オリゴヌクレオチドを用いたFRET解析により、DNase Iのヌクレアーゼ活性を測定した。蛍光オリゴヌクレオチドは、FAMラベルプローブの1色を用いて、37℃の条件下で1分ごとに蛍光量を測定した。ヌクレアーゼ活性は、反応初期(5-10分)の蛍光増加率から算出した。DNase I buffer(50 mM Tris-HCl, 75 mM KCl、 2 mM MgCl2)中での二本鎖DNAに対する活性を1とした相対値。N=3の平均値を元に算出。#は、DNase I buffer。##は、一般的な逆転写bufferと同じTris-HCl,KCl濃度。dsDNA:二本鎖DNA, DNA in RNA:DNA hybrid:RNAとDNAハイブリッド鎖中のDNA、ssDNA:一本鎖DNA、ssRNA:一本鎖RNA。 図7は、DNase Iを用いたRT-RamDA法(RamDA-D)が、特定の反応液組成に限定されないことを示す。マウスES細胞由来の10pg total RNAを鋳型として、DNase Iを用いたRT-RamDA法のcDNAの収量をqPCRを用いて定量した。#は、DNase I bufferと同じ反応液組成。##は、一般的な逆転写反応液と同じTris-HCl,KCl濃度。###は、: FirstStrand buffer等、一般的な逆転写反応液と同じ組成。FS: First-Strand Buffer. PS: PrimeScript Buffer (for Real Time) 。PrimeScript Buffer (for Real Time)を用いたRamDA(-)をコントロール(*)とし、コントロールでの各遺伝子のcDNA検出量を1とした時の相対値を示す。エラーバーは、標準偏差を示す(N=4)。DNase Iの一本鎖DNAに対する活性の高いDNase I bufferと同じ組成(#)であっても増幅は起こる。一本鎖DNAに対する活性の低い条件(##)よりもむしろ増幅率は高い。 図8は、T4ジーン32プロテインが、DNase IによるcDNAの断片化を抑制していることを示す。Aでは、5ngのThr RNA(2,052b)を鋳型に用いて、非添加の標準逆転写サンプル、T4ジーン32プロテイン単独添加、DNase I、または、dsDNase単独添加、DNase I、または、dsDNaseとT4ジーン32プロテインを同時添加した条件でcDNA分布パターンを比較した。逆転写反応は、通常の2倍量にあたる6 μlの反応容量で、オリゴdTプライマーのみを用いて行った。cDNAの分布パターンは2%アガロースゲル電気泳動で調べた。Bは、A中のcDNAの1/20量をBioAnalyzer RNA6000ピコキット(Agilent Biotechnology)を用いて解析した結果を示す。図中の数値は、cDNA濃度の相対値を示す。T4GP32:T4ジーン32プロテイン。 図9は、T4ジーン32プロテインが、cDNAの増幅とその安定性に寄与していることを示す。Universal Human Reference RNA (UHRR)10pgに添加した100fgの人工合成RNA、Dap RNA(96,725コピー)、Thr RNA(89,991コピー)のcDNA量を示す。逆転写反応は、オリゴdTプライマーのみで行い、cDNA収量の定量はqPCRを用いて行った。DNase I、dsDNaseは、それぞれ、0.2U, 0.4Uを、T4ジーン32プロテインは、100ngを1反応に用いた。qPCRは、逆転写産物の1/50量を用いて行った。検出用のqPCRプライマーは、Dap、Thr、それぞれ、5’から3’にかけての12領域で設計した。Aは、各領域でのcDNAの検出量(コピー数)を示す。横軸は、3’末端からの距離を示す。(-):コントロール(非添加の標準逆転写サンプル)、エラーバーは、標準偏差(N=3)を示す。 Bは、非添加コントロールサンプル(*)の各領域での検出量を1とした時の相対値を示す。Cは、同一RNA上での検出量の相対値(増幅率)の変動を示す。T4GP32:T4ジーン32プロテイン。 図10は、蛍光オリゴヌクレオチドを用いたFRET解析により、逆転写反応液中のT4ジーン32プロテインのヌクレアーゼ活性への作用を示す。蛍光オリゴヌクレオチドは、FAMまたは、HEXラベルプローブの二色を使用し、37℃の条件下で1.5分ごとに蛍光量を測定した。ヌクレアーゼ活性は、反応初期(1.5-9分)の蛍光増加率から算出した(N=3の平均値)。逆転写バッファーには、PrimeScript bufferを用いた。Aは、DNase I buffer中でのDNase Iの二本鎖DNAに対する活性を1とした時の相対値を示す。Bは、各反応条件における、RNA:DNAハイブリッド鎖中のDNA分解活性または、二本鎖DNA分解活性に対する、一本鎖DNAの分解活性比を示す。dsDNA:二本鎖DNA, DNA in hybrid:RNAとDNAハイブリッド鎖中のDNA、ssDNA:一本鎖DNA、ssRNA:一本鎖RNA。 図11は、マウスES細胞の1細胞溶解液を用いたRamDA-Dの反応時間依存的なcDNA収量の増大を示す。RamDA-Dの反応温度条件のうち37℃における反応時間を30分、60分、120分と延長し増幅率への影響を調べた。RamDA-D(-)の反応時間30分をコントロール(*)とし、qPCRによる各遺伝子のcDNA検出量を1とした時の相対値を示す。エラーバーは、標準偏差を示す(N=4) 図12は、RamDA-Dは、逆転写酵素を限定せず、100細胞相当量の鋳型RNAでも増幅することを示す。PrimeScriptのRamDA(-)条件をコントロール(*)とし、qPCRによる各遺伝子のcDNA検出量を1とした時の相対値を示す。鋳型RNAには、マウスES細胞由来のtotal RNA(10pg、200pg、1ng)を用いた。PS: PrimeScript RT Enzyme, SSII: SuperScript II RT Enzyme, SSIII: SuperScript III RT Enzyme, SSIV: SuperScript IV RT Enzyme。エラーバーは、標準偏差を示す(N=4)。
 以下、本発明についてさらに具体的に説明する。
 本発明による核酸の増幅方法は、鋳型RNA、プライマー、DNA鎖特異的RNA:DNAハイブリッド鎖分解酵素、RNase Hマイナス型逆転写酵素、及び基質を含む混合物をインキュベートすることによって行う方法であり、Reverse Transcription with Ramdom Displacement Amplification (RT-RamDA)法とも称する。本発明の核酸の増幅方法は、鎖置換反応を利用したRNAを直接鋳型とする増幅逆転写法であり、インビトロで行うことができる。本発明の方法は、エンドヌクレアーゼである二本鎖特異的DNA分解酵素(double-strand specific DNase:dsDNase) 、又は非特異的DNA分解酵素(DNase I)などのDNA鎖特異的RNA:DNAハイブリッド鎖分解酵素のヌクレアーゼ活性を利用してRNA:cDNAハイブリッド鎖のcDNA側を切断し、無作為に鎖置換反応を起こすことによって、逆転写反応中にcDNAを増幅させる技術である。
 本明細書において、増幅とは、核酸の配列のコピー(複製物)の数を増加させることを言う。また、増幅の形態としては、線形増幅、リアルタイム増幅、定量的増幅、半定量的増幅、競合増幅などを挙げることができるが、特に限定されない。
 本発明で使用する混合物は、鋳型RNA、プライマー、DNA鎖特異的RNA:DNAハイブリッド鎖分解酵素、RNase Hマイナス型逆転写酵素、及び基質を含む混合物であるが、好ましくは水溶液であり、好ましくは塩を含む水性緩衝液である。
 本発明のRT-RamDA法の一態様の概要を以下に記載する(図1)。
1.RNase Hマイナス型逆転写酵素のRNA依存性DNAポリメラーゼ活性により鋳型RNAの相補鎖DNA(cDNA)を合成する。
2.二本鎖特異的DNA分解酵素(dsDNase)又は非特異的DNA分解酵素(DNase I)などのDNA鎖特異的RNA:DNAハイブリッド鎖分解酵素のヌクレアーゼ活性によりRNAとcDNAとのハイブリッド鎖のうちのcDNA鎖に無作為に切断点(ニック)が入れられる。
3.ニック部位が起点となり、RNase Hマイナス型逆転写酵素の鎖置換活性により3’側のcDNA鎖が剥がされる。剥がされた部分には逆転写酵素により新たなcDNAが合成される。剥がされたcDNAは一本鎖DNA結合タンパク質であるT4ジーン32プロテイン(T4GP32)によって、ヌクレアーゼ活性から保護される。これが連続的に起きることで、cDNAの収量を10倍以上に増やすことが可能となる。
 本発明の核酸の増幅方法では、RNAとDNAとのハイブリッド鎖がDNA鎖特異的RNA:DNAハイブリッド鎖分解酵素の標的となるため、また、鎖置換増幅反応の鋳型がRNAであることから、使用できる逆転写酵素は、RNase H活性のないものに限定される。RNase H活性とは、RNA:DNAハイブリッド鎖中のRNA鎖のみを無作為に切断するリボヌクレアーゼ活性である。RNase Hは非特異的なエンドヌクレアーゼであり、加水分解によってRNA切断を触媒する。
 また、本発明で使用するRNase Hマイナス型逆転写酵素は、鎖置換活性を有する。RNase Hマイナス型逆転写酵素の鎖置換活性により3'側のcDNA鎖がRNAから剥がされ、剥がされた部分に新たなcDNA鎖が合成される。
 逆転写とは、逆転写酵素(RNA依存性DNAポリメラーゼ)が、鋳型RNAの相補鎖DNA(cDNA)の形成を触媒するプロセスである。逆転写酵素としては、多数の酵素が同定されており、例えば、HIV逆転写酵素、AMV逆転写酵素、M-MLV逆転写酵素、C therm.ポリメラーゼ、及びTthポリメラーゼなどがあるが、本発明においては、RNase Hマイナス型逆転写酵素を使用する。
 本発明では、DNA鎖特異的RNA:DNAハイブリッド鎖分解酵素を使用する。本明細書において用いる「DNA鎖特異的RNA:DNAハイブリッド鎖分解酵素」なる用語は、RNAとDNAとのハイブリッド鎖(RNA:DNAハイブリッド鎖)中のDNA鎖を切断する活性を有する酵素を指す。DNA鎖特異的RNA:DNAハイブリッド鎖分解酵素としては、二本鎖特異的DNA分解酵素又は非特異的DNA分解酵素を使用することができる。二本鎖特異的DNA分解酵素としては、カニ由来の二本鎖特異的DNA分解酵素(二本鎖特異的ヌクレアーゼ;DSN)が知られている。この酵素は二本鎖DNAだけでなく、RNA:DNAハイブリッド鎖中のDNA鎖のみを無作為に切断する。本発明においては、この活性を利用することで、逆転写中に形成されるRNA:cDNAハイブリッド鎖のcDNA側を切断し、RNAを鋳型に鎖置換増幅を起こす方法を考案した。しかしながら、カニ由来DSNの活性化温度は、60℃以上と非常に高温で一般的な逆転写反応には不向きである(非特許文献11)。そこで、低温でも活性のあるエビ由来の熱不安定性dsDNaseを用いることで、逆転写反応とDNaseによる切断の両立を可能とした(非特許文献12)。一方で、DNase Iのような非特異的DNA分解酵素を用いる際は、一本鎖DNA、すなわち鎖置換反応によって剥がされた増幅cDNAや逆転写プライマーが分解されてしまう恐れがある。しかしながら、用いるバッファーの組成などの反応条件によってはたとえ酵素が一本鎖DNAを分解する活性を保持していてもそれが問題とならない可能性がある。使用する酵素や反応条件が適切であるかどうかを本明細書の開示に従って核酸増幅反応を実施することによって確認することができる。また、一本鎖DNA結合タンパク質を添加することで、一本鎖DNAの分解活性を抑制させ、逆転写酵素の鎖置換反応によるcDNA合成と増幅を進行させることができる。一本鎖DNA結合タンパク質としては、一本鎖DNAに結合して本発明の方法による核酸増幅の効率を上昇させる任意のタンパク質を使用することができ、例えば、任意の起源由来のT4ジーン32プロテイン、RecA、SSB(Single-Stranded DNA Binding Protein)又はその改変体を使用することができる。これにより、むしろdsDNaseを用いた方法よりも増幅率を上げることが可能である。また、dsDNaseやDNase Iを用いる利点として、反応液中の混入DNA、例えば、細胞溶解サンプルにおいては、ゲノムDNAなどの除去も平行して行うことができる。これまでもRT-qPCRにおいて、DNase IやdsDNaseによる混入DNAの除去法が報告されているが、その多くはヌクレアーゼの不活性化が必須となっており、RT-RamDA法の様に逆転写反応のみの1ステップで行うことはできなかった(非特許文献13)。
 RT-RamDA法と同様に鎖置換反応を用いたDNAの増幅法は、これまでに多くの報告が為されている(例えば、非特許文献2~6)。しかしながら、SDAに代表されるこれらの増幅法の多くは、鋳型DNAにニックを挿入するために制限酵素を用いたり、複数の配列特異的プライマーを併用する必要がある。このため、鋳型DNAに、制限酵素認識配列やデオキシイノシンの付加、配列特異的プライマーの設計・合成が必須となる。また、ターゲットとなる遺伝子も限定される。さらに既存の増幅法のほとんどが、DNAを鋳型としているため、RNA配列を増幅させるには、RNAをDNAに変換する逆転写反応を経る必要がある。また、以前に行ったPCR増幅産物や逆転写産物などのサンプルへのキャリーオーバーによって生じる偽陽性や、試薬中に混入したDNAや作業環境から混入するDNAなどに由来する非特異的産物が問題となっている(非特許文献9及び10)。特にMDAにおいては、プライマーがDNAに対して無作為にアニーリングするため、混入DNA由来の非特異的産物が増えるリスクが高い。一方、本発明のRT-RamDA法は、配列非依存的な鎖置換反応を用いており、配列特異的なプライマーや特殊なプライマーの設計・合成は不要となるだけでなく、全遺伝子をターゲットとすることができる。さらにRNAを直接鋳型とすることで、逆転写から増幅までがわずか1ステップで終了する上、DNAは鋳型となりにくいため混入DNAによる非特異的産物の増幅も低減することができる。
 本発明で使用する二本鎖特異的DNA分解酵素としては、好ましくは、RNAとDNAとのハイブリッド鎖のDNA鎖を切断する活性を有し、RNAとDNAとのハイブリッド鎖のRNA鎖、一本鎖DNA及び一本鎖RNAを切断する活性を実質的に有さない酵素を挙げることができる。二本鎖特異的DNA分解酵素は、好ましくは、60℃未満でもDNA分解活性を有する酵素である。
 二本鎖特異的DNA分解酵素は、原核生物又は真核生物に由来する酵素を使用することができるが、好ましくは、甲殻類由来の二本鎖特異的DNA分解酵素又はその改変体を使用することができる。
 二本鎖特異的DNA分解酵素(二本鎖特異的ヌクレアーゼ;DSNとも言う)としては、これまでに以下のものが知られている(特開2014-103867号公報)
(1)Solenocera melantho(ナミクダヒゲエビ)DNase
(2)Penaeus japonicus(クルマエビ)DNase
(3)Paralithodes camtschaticus(タラバガニ)DSN
(4)Pandalus borealis(ホッコクアカエビ)dsDNase
(5)Chionoecetes opilio(ズワイガニ)DSN
(6)その他のDSNホモログ
 上記の中でも、タラバガニDSNとズワイガニDSNは至適活性温度が60℃前後で耐熱性があるのに対して、ホッコクアカエビdsDNaseは至適温度が37℃の易熱性酵素である。
 本発明においては、エビ由来の二本鎖特異的DNA分解酵素又はその改変体であることがさらに好ましい。
 本明細書において、改変体とは、天然由来の二本鎖特異的DNA分解酵素のアミノ酸配列を改変することによって得られる酵素を意味する。具体的には、天然由来の二本鎖特異的DNA分解酵素のアミノ酸配列と80%以上(好ましくは90%以上、より好ましくは95%以上)の配列同一性を有するアミノ酸配列からなり、二本鎖特異的DNA分解活性を有する酵素、並びに天然由来の二本鎖特異的DNA分解酵素のアミノ酸配列において1又は数個(例えば、1~10個、好ましくは1~5個、より好ましくは1~3個)のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列からなり、二本鎖特異的DNA分解活性を有する酵素である。
 二本鎖特異的DNA分解酵素としては、市販品を使用することができる。市販品としては、dsDNase (ArcticZymes)、 Hl-dsDNase (ArcticZymes)、 dsDNase (Thermo scientific)、 Shrimp DNase, Recombinant (affymetrix)、Atlantis dsDNase(Zymo Research)、Thermolabile Nuclease (Roche)などを挙げることができる。
 本発明で使用する非特異的DNA分解酵素としては、RNAとDNAとのハイブリッド鎖のDNA鎖を切断する活性を有し、RNAとDNAとのハイブリッド鎖のRNA鎖、一本鎖RNAを切断する活性を実質的に有さず、好ましくは、一本鎖DNAを切断する活性がRNAとDNAとのハイブリッド鎖のDNA鎖を切断する活性に比較して低くなる酵素を挙げることができる。非特異的DNA分解酵素は、好ましくは、60℃未満でもDNA分解活性を有する酵素である。
 非特異的DNA分解酵素は、原核生物又は真核生物に由来する酵素を使用することができるが、好ましくは、ほ乳類由来の非特異的DNA分解酵素又はその改変体を使用することができる。
 本発明においては、ウシ由来の非特異的DNA分解酵素又はその改変体であることがさらに好ましい。
 本明細書において、改変体とは、天然由来の非特異的DNA分解酵素のアミノ酸配列を改変することによって得られる酵素を意味する。具体的には、天然由来の非特異的DNA分解酵素のアミノ酸配列と80%以上(好ましくは90%以上、より好ましくは95%以上)の配列同一性を有するアミノ酸配列からなり、非特異的DNA分解活性を有する酵素、並びに天然由来の非特異的DNA分解酵素のアミノ酸配列において1又は数個(例えば、1~10個、好ましくは1~5個、より好ましくは1~3個)のアミノ酸の欠失、置換及び/又は付加を有するアミノ酸配列からなり、非特異的DNA分解活性を有する酵素である。
 本発明で用いるプライマーは、デオキシヌクレオチドおよび/またはリボヌクレオチドにより構成されており、与えられた条件下で標的核酸との塩基対結合を行うことができる程度の鎖長を有するものである。プライマーの鎖長は特に限定されないが、好ましくは5~50塩基、より好ましくは5~30塩基である。プライマーとしては、好ましくはランダムプライマー、オリゴdTプライマー又は配列特異的プライマーの1種以上を使用することができる。ランダムプライマーを使用する場合、その長さは5~10塩基程度が好ましく、6~8塩基程度がより好ましい。オリゴdTプライマーを使用する場合、その長さは10~50塩基が好ましく、15~30塩基がより好ましい。配列特異的プライマーを使用する場合、その長さは 5~30塩基が好ましく、7~20塩基がより好ましい。
 プライマーは、オリゴヌクレオチドの合成に用いることのできる任意の方法、例えば、リン酸トリエステル法、H-ホスホネート法、チオホスホネート法等により合成できる。本発明によるプライマーは、例えば、ABI社(Applied Biosystem Inc.)のDNAシンセサイザー394型を用いてホスホアミダイト法により合成することができる。
 好ましくは、カチオンユニットの修飾によってTm値が上昇しているプライマーを使用することができ、例えば、Zip Nucleic Acid (ZNA) プライマーを使用することができる。ZNAは、カチオンユニットによってオリゴヌクレオチドのTm値を上昇させる作用を持っている(非特許文献14~16)。ZNAプライマーなどのカチオンユニットの修飾によってTm値が上昇しているプライマーを使用することによって、増幅効率を上げることができる。特に、ZNAで修飾したランダムヘキサマープライマーを使用することによって、逆転写中の反応温度であってもプライマーが鋳型RNAにアニールでき、より効率的な鎖置換増幅が可能となる。
 本明細書で言う基質とは、RNase Hマイナス型逆転写酵素の基質であり、4種のデオキシリボヌクレオチド(dATP,dCTP,dGTP,dTTP)の混合物を使用することができる。但し、基質としては、dATP,dCTP,dGTP,dTTPの混合物に限定されるわけではなく、ジデオキシヌクレオチド三リン酸を添加してもよく、また修飾されたデオキシリボヌクレオチドを使用してもよい。
 本発明においては、反応のための混合物にT4ジーン32プロテインなどの一本鎖DNA結合タンパク質を含めてもよい。T4ジーン32プロテインは、増幅の均一性を上げるための補助因子として使用することができる。一本鎖DNA結合タンパク質であるT4ジーン32プロテインは、一本鎖DNAのみならず、RNAに対しても作用することが知られている(非特許文献17~20)。T4ジーン32プロテインを用いることで、鋳型RNAの高次構造を緩め、鋳型全長に対してより均一な鎖置換反応を行うことができる。また、非特異的DNA分解酵素を用いる反応の際には、増幅cDNAの分解を防ぐことができる。
 本発明による核酸の増幅反応は、等温条件で行ってもよいし、熱サイクル条件で行ってもよい。
 等温条件で行う場合には、例えば、25℃~50℃の間の所定の温度、好ましくは30℃~45℃の間の所定の温度、より好ましくは35℃~40℃の間の所定の温度、例えば37℃において一定時間(例えば5分~3時間以内、好ましくは10分~150分)行うことができる。例えば37℃において反応を行う場合には、反応液を、例えば、25℃で所定の時間(例えば、5分~15分間)、次いで30℃で所定の時間(例えば、5分~15分間)インキュベートしてから、37℃にして反応を行うことができる。また、37℃でインキュベートした後に、50℃で所定の時間(例えば、5分~15分間)、次いで85℃で所定の時間(例えば、5分~15分間)インキュベートしてもよい。
 熱サイクル条件で行う場合には、例えば、20℃以上30℃未満の所定の温度T1(例えば、25℃)と、30℃以上45℃以下の所定の温度T2(例えば、37℃)とを組み合わせて、T1で所定の時間(例えば1分~3分、一例として2分)とT2で所定の時間(例えば1分~3分、一例として2分)とを一サイクルとして、これを好ましくは10サイクル~40サイクル、より好ましくは15サイクル~35サイクル繰り返すことにより反応を行うことができる。なお、上記した熱サイクルに先立って、例えば、25℃で所定の時間(例えば、5分~15分間)、次いで30℃で所定の時間(例えば、5分~15分間)、次いで37℃で所定の時間(例えば、1分~5分間)インキュベートしてもよい。また、上記した熱サイクルの後に、50℃で所定の時間(例えば、5分~15分間)、次いで85℃で所定の時間(例えば、5分~15分間)インキュベートしてもよい。
 本発明による核酸の増幅方法は、微量のRNA(例えば、1細胞から数百細胞相当の微量RNA)を用いたRT-qPCR法の一部として使用することができる。
 本発明による核酸の増幅方法は、微量のRNA(例えば、1細胞から数百細胞相当の微量RNA)を用いたRNAシーケンス法に利用することができる。
 本発明による核酸の増幅方法を利用することによって、大量細胞中の1細胞を検出することが可能である。具体的には、大量細胞中の標的細胞でのみ発現する遺伝子を特異的に増幅することで、大量のRNA中に含まれるわずかな標的細胞遺伝子の検出が可能となり、標的細胞の含有の有無を判定できる。
 本発明はさらに、上記した本発明による核酸の増幅方法を行うためのキットに関する。本発明のキットは、少なくとも、二本鎖特異的DNA分解酵素又は非特異的DNA分解酵素などのDNA鎖特異的RNA:DNAハイブリッド鎖分解酵素、およびRNase Hマイナス型逆転写酵素を含む。好ましくは、本発明のキットはさらに一本鎖DNA結合タンパク質(例えば、T4ジーン32プロテイン)を含む。本発明のキットは、さらに所望により、核酸増幅反応を実施するのに必要な他の試薬、緩衝液など含むものでもよい。他の試薬としては、プライマー、及びデオキシリボヌクレオチド三リン酸などを挙げることができる。
 本発明を以下の実施例により説明するが、本発明は実施例によって限定されるものではない。
 RT-RamDA法とは、鋳型RNA、プライマー、二本鎖特異的DNA分解酵素又は非特異的DNA分解酵素などのDNA鎖特異的RNA:DNAハイブリッド鎖分解酵素、RNase Hマイナス型逆転写酵素、及び基質を含む混合物をインキュベートする工程を含む、核酸の増幅方法である。RT-RamDA法においては、RNase Hマイナス型逆転写酵素のRNA依存性DNAポリメラーゼ活性により鋳型RNAの相補鎖DNA(cDNA)を合成し、DNA鎖特異的RNA:DNAハイブリッド鎖分解酵素によりRNAとcDNAとのハイブリッド鎖のうちのcDNA鎖を無作為に切断し、前記の切断部位が起点となり、RNase Hマイナス型逆転写酵素の鎖置換活性により3’側のcDNA鎖がRNAから剥がされ、RNase Hマイナス型逆転写酵素により剥がされた部分に新たなcDNA鎖が合成される。
 RamDA-Aは、二本鎖特異的DNA分解酵素とT4ジーン32プロテインを用いてRT-RamDA法を行う態様である。
 RamDA-Bは、T4ジーン32プロテインなしで二本鎖特異的DNA分解酵素を用いたRT-RamDA法を行う態様である。
 RamDA-Cは、RT-RamDA熱サイクル法であり、RamDA-Bと同様の反応溶液組成で、反応温度条件を改変し、アニール行程と伸長反応行程を小刻みに繰り返して反応を行った態様である。
 RamDA-Dは、非特異的DNA分解酵素とT4ジーン32プロテインを用いてRT-RamDA法を行う態様である。
(材料および方法)
細胞培養
 Total RNAの抽出用に、5G6GRマウスES細胞を用いた。この細胞株は、直鎖化したGata6-GR-IRES-Puroベクターを EB5 ES細胞にランダムに組み込んで作成したものである(非特許文献20)。細胞は、Feeder-freeなゼラチン被覆ディッシュ上で、10%ウシ胎児血清入りGlasgow minimal essential medium (GMEM; Sigma-Aldrich, St Louis, MO, USA)、 1000U/mlleukemia inhibitory factor (ESGRO; Invitrogen Corp., Carlsbad, CA, USA)、 100μmol/l 2-メルカプトエタノール(Nacalai Tesque Inc., Kyoto, Japan)、 1×non-essential amino acids (Life Technologies Corp., Carlsbad, CA, USA)、 1mmol/l ピルビン酸ナトリウム(Life Technologies)、 2mmol/l L-グルタミン(Nacalai Tesque)、 0.5×ペニシリン/ストレプトマイシン(Life Technologies)、 及び10μg/mlブラスチシジン (Life Technologies)の条件で培養を行った。
RNA抽出
 Total RNAは、RNeasy Mini Kit(Qiagen Inc., Valencia, CA, USA)を用いて精製した。RNAの定量と品質チェックは、Quantus Fluorometer (Promega Corp., Madison, WI, USA)とRNA 6000 Nano Kit (Agilent Biotechnology, Santa Clara, CA, USA)を用いて行った。人工合成RNAは、pGIBS-DAP、pGIBS-THR プラスミド(American Type Culture Collection (ATCC), Manassas, VA, USA)からMEGAscript T3 kit (Life Technologies)を用いて合成した。
マウスES細胞1細胞溶解液の調整
培養細胞は、TrypLE Express (Life Technologies)を用いて37℃で3分間反応させ、1細胞へ解離した。解離後は、直ちにPBS(-)へ置換し反応を止めた。セルソーターを使用して細胞だけを的確に分取するため、解離細胞の生細胞核を、Vybrant Dye Cycle(Life Technologies)を用いて染色標識した。染色条件は、試薬添付の方法を踏襲した。SH800セルソーター(Sony Corp., Tokyo, Japan)を用いてVybrant Dye Cycle(検出フィルター:BP450/50)陽性、死細胞蛍光マーカー色素のPI (検出フィルター:BP585/40)陰性を生細胞分画とし、この分画から50細胞を1μlのLysis buffer (1U RNasein plus (Promega)、 0.3% NP40 (Thermo Fisher Scientific Inc., Waltham, MA USA), RNase free water(TaKaRa Bio Inc., Otsu, Japan))に分取した。分取後は、直ちにスピンダウンと振とう攪拌を行い、-80℃で保存した。逆転写反応に使用する際は、融解後に49μlのLysis bufferを加え50倍希釈した細胞溶解液1μlを1細胞溶解液として用いた。
FRETアッセイ
 FRET解析は、Inge W. Nilsen et al (非特許文献12)の方法を改変して行った。0.6μlの oligonucleotide probe mix (6pmolオリゴDNA 又はRNA(Sigma-Aldrich)、 1xFirst-Strand buffer (Life Technologies)、 RNase free water (TaKaRa))を調整し、70℃5分で変性した後、ゆっくりと室温に戻した。解析に用いたオリゴヌクレオチドの組み合わせは、以下の通りである(配列番号1から10)。
二本鎖DNA用デュアルプローブ:
FAM-CGCCATCGGAGGTTC-BHQ1
HEX-GAACCTCCGATGGCG-BHQ1
RNA:DNAハイブリッド用デュアルプローブ:
FAM-CGCCATCGGAGGTTC-BHQ1
HEX-rGrArArCrCrUrCrCrGrArUrGrGrCrG-BHQ1
一本鎖DNA用シングルプローブ:
HEX-GAACCTCCGATGGCG-BHQ1
一本鎖RNA用シングルプローブ:
HEX-rGrArArCrCrUrCrCrGrArUrGrGrCrG-BHQ1
補正用シングルFAMプローブ:
FAM-CGCCATCGGAGGTTC-BHQ1
GAACCTCCGATGGCG
補正用シングルHEXプローブ:
CGCCATCGGAGGTTC
HEX-GAACCTCCGATGGCG-BHQ1
 次に5.4μlの酵素溶液 (1xFirst-Strand buffer、 0.12U各ヌクレアーゼ、RNase free water)を調整した。各ヌクレアーゼは、それぞれ、DNase I Amplification Grade (Life Technologies)、 dsDNase (ArcticZymes AS, Tromso,  Norway)、 HL-dsDNase (ArcticZymes)を用いた。コントロールには、酵素の代わりにRNase free waterを加えた。室温に戻したoligonucleotide probe mix 0.6μlと酵素溶液5.4μlをPloxiPlate-384F Plus(PerkinElmer Inc., Waltham, MA, USA)上で混合し、 EnVision(PerkinElmer)で測定した。測定は、37℃の条件下でFAM、HEXの蛍光強度を70秒に1回の割合で50回の測定を行った。FAMとHEXの蛍光の漏れ込みは、それぞれの補正用シングルプローブの蛍光量を用いて補正した。
 T4ジーン32プロテインのヌクレアーゼ活性への作用の検証実験(図10)においては、0.6μlの oligonucleotide probe mix (6pmolオリゴDNA 又はRNA(Sigma-Aldrich)、 1xPrimeScript Buffer (for Real Time) (TaKaRa)、 RNase free water )と5.4μlの酵素溶液 (1x PrimeScript Buffer (for Real Time)又は、1x DNase I reaction Buffer(Life Technologies)、 0.12U各ヌクレアーゼ、RNase free water)を調整した。各ヌクレアーゼは、それぞれ、DNase I Amplification Grade、 dsDNaseを用いた。T4ジーン32プロテイン添加サンプルには、180ngのT4ジーン32プロテイン(Roche Applied Science, Indianapolis, IN, USA)を酵素溶液に加えた。コントロールには、酵素の代わりにRNase free waterを加えた。測定は、90秒に1回の割合で50回の測定を行った。酵素活性は、反応初期(1.5分~9分)の蛍光増幅率を用いて算出した。
 KCl、Tris-HCl濃度依存的なDNase Iのヌクレアーゼ活性の測定実験(図6)においては、0.6μlの oligonucleotide probe mix (6pmolオリゴDNA 又はRNA(Sigma-Aldrich)、 1xDNase I reaction Buffer(Life Technologies)、 RNase free water)と5.4μlの酵素溶液 (自家調整反応液、 0.12U DNase I Amplification Grade、RNase free water)を調整した。自家調整反応液は、条件に応じて図6中の終濃度になるように調整した。測定は、60秒に1回の割合で50回の測定を行った。酵素活性は、反応初期(5分~10分)の蛍光増幅率を用いて算出した。解析に用いたオリゴヌクレオチドの組み合わせは、以下の通りである(配列番号11から16)
二本鎖DNA用シングルプローブ:
FAM-CGCCATCGGAGGTTC-BHQ1
GAACCTCCGATGGCG-BHQ1
RNA:DNAハイブリッド用シングルプローブ:
FAM-CGCCATCGGAGGTTC-BHQ1
rGrArArCrCrUrCrCrGrArUrGrGrCrG-BHQ1
ー本鎖DNA用シングルプローブ:
FAM-CGCCATCGGAGGTTC-BHQ1
ー本鎖RNA用シングルプローブ:
FAM-rCrGrCrCrArTrCrGrGrArGrGrTrTrC-BHQ1
逆転写反応
RT-RamDA法(RamDA-A):
 鋳型RNAは、1μl Lysis buffer (1U RNasein plus (Promega)、 10% Roche lysis buffer (Roche)、 0.3% NP40 (Thermo Fisher), RNase free water) に希釈し、65℃で2分間の変性処理を行い、使用まで氷上で保管した。逆転写酵素反応液は、ReverTra Ace qPCR RT KIT (TOYOBO Co. Ltd., Osaka, Japan)を改変して用いた。1μlの変性済み希釈鋳型RNAに2μl RT mix (1.5 x ReverTra Ace RT buffer(TOYOBO)、0.6pmol オリゴ(dT)18プライマー(Thermo Fisher)、 7.8pmol ランダムヘキサマープライマー(TaKaRa)、 1.5 x ReverTra Ace enzyme mix(TOYOBO)、 RNase free water)、または、2μl RamDA-A mix (1.5 x ReverTra Ace RT buffer、0.6pmol オリゴ(dT)18プライマー、 7.8pmol ZNA-ランダムヘキサマープライマー ([Z][Z]NNNNNN; Sigma-Aldrich)、 0.4U dsDNase (ArcticZymes)、 100ng T4ジーン32プロテイン、1.5 x ReverTra Ace enzyme mix、RNase free water)をそれぞれ加え、MixMate(Eppendorf, Westbury, NY, USA)で 2,000rpm、30秒の撹拌後、サーマルサイクラーC1000(Bio-Rad Laboratories, Inc., Hercules, CA, USA))を用いて25℃10分、30℃10分、37℃30分、50℃5分、85℃5分で反応を行った。
T4ジーン32プロテインなしのRT-RamDA法(RamDA-B):
 鋳型RNAを1μl lysis buffer (1U RNasein plus、 0.3% NP40、 RNase free water)に希釈し、70℃で90秒の変性処理を行った。氷上で冷却後、2μl RT mix (1.5xReverTra Ace RT buffer、0.6pmol オリゴ(dT)18プライマー、7.8pmol ランダムヘキサマープライマー、1.5 x ReverTra Ace enzyme mix、RNase free water)、または、2 μl RamDA-B mix (1.5 x ReverTra Ace RT buffer、0.6pmol オリゴ(dT)18プライマー、 7.8pmol ZNA-ランダムヘキサマープライマー([Z][Z]NNNNNN; Sigma-Aldrich)、0.1U dsDNase)をそれぞれ加え、RamDA-Aと同様の操作を行った。
RT-RamDA熱サイクル法(RamDA-C):
 RamDA-Bと同様の反応溶液組成で、温度条件を変えて逆転写反応を行った。反応条件は以下の通りである。25℃10分、30℃10分、37℃2分の後、25℃2分、37℃2分を29サイクル行った。その後50℃5分、85℃5分で処理した。
RT-RamDA非特異的DNA分解酵素(DNase I)法(RamDA-D):
 鋳型RNAは、1μl Lysis buffer (1U RNasein plus、 10% Roche lysis buffer、 0.3% NP40, RNase free water) に希釈し、70℃で90秒間の変性処理を行い、使用まで氷上で保管した。逆転写酵素反応液は、PrimeScript RT reagent Kit(Perfect Real Time) (TaKaRa)を改変して用いた。1μlの変性済み鋳型RNAに2μl RT mix (1.5 x PrimeScript Buffer (for Real Time)、0.6pmol オリゴ(dT)18プライマー、 8pmolランダムヘキサマープライマー、 1.5 x PrimeScript RT Enzyme Mix I、 RNase free water)、または、2μl RamDA-D mix (1.5 x PrimeScript Buffer (for Real Time)、0.6pmol オリゴ(dT)18プライマー、8pmolランダムヘキサマープライマー、 0.2U DNase I, Amplification Grade、 100ng T4ジーン32プロテイン、1.5 x PrimeScript RT Enzyme Mix I、 RNase free water)をそれぞれ加え、25℃10分、30℃10分、37℃60分、50℃5分、85℃5分で反応を行った。
RamDA-Dを用いた逆転写反応液の組成検討実験:
 Tris-HCl, KCl, NaCl, MgCl2の濃度を変更した自家調整逆転写反応液または、First-Strand Bufferを用いる際は、これらをRamDA-D mix 中のPrimeScript Buffer (for Real Time)と置き換え、さらに dNTP Mix (Life Technologies) を終濃度で0.5 mM加えて反応を行った。各bufferの組成は、表1に記載する。
Figure JPOXMLDOC01-appb-T000001
 RamDA-Dを用いた人工合成RNA(DAP,THR)の系:
 RamDA-D mix中の逆転写プライマーを、0.6pmolのオリゴ(dT)18プライマーのみとし、条件に応じてRamDA-D mixの組成を変更した。また逆転写反応の温度条件は、RamDA-Aと同様とした。
 RamDA-Dにおける、逆転写酵素の検討:
SuperScript II、SuperScript III、SuperScript IV条件は、RamDA-D mix中の逆転写酵素をPrimeScript RT Enzyme Mix Iの代わりに、30U SuperScript II(Life Technologies), 30U SuperScript III(Life Technologies), 30U SuperScript IV(Life Technologies)と6UのRNasein plusを加えた。逆転写反応液はPrimeScript Buffer (for Real Time)を共通で使用した。
dsDNaseの比較:
 RamDA-Aの反応液条件で、ヌクレアーゼを0.2U 43kDadsDNase(ArcticZymes)、 0.2U 47kDa dsDNase(Affymetrix Inc., Santa Clara, CA, USA)、 0.2U duplex specific nuclease (DSN; Evrogen JSC, Moscow, Russia)にそれぞれ置き換えて比較した。反応温度条件は、RamDA-Aに準じて行い、qPCRでcDNAの増幅率を定量した。
逆転写酵素の比較:
 10種類のqPCR用RTキット、Maxima H Minus First Strand cDNA Synthesis Kit (Thermo Fisher)、 ReverTra Ace qPCR RT Kit(TOYOBO)、 PrimeScript RT reagent Kit(TaKaRa)、AffinityScript QPCR cDNA Synthesis Kit(Agilent Biotechnology)、QuantiTect Rev. Transcription Kit(Qiagen)、GoScript Reverse Transcription System(Promega)、iScript Select cDNA Synthesis Kit(Bio-Rad)、ProtoScript II First Strand cDNA Synthesis Kit(New England Biolabs, MA, UK)、SuperScript III(Life Technologies)、Transcriptor First Strand cDNA Synthesis Kit(Roche)を用いて比較した。
 伸長活性試験には、poly-A付加された様々な長さのRNA(0.5-9kbase)を含むMillennium RNA Markers(Life Technologies)を用いて逆転写反応を行った。逆転写混合物の調整は、各キットに供給されている試薬を使用し、試薬の配合はキット推奨の条件を用いて10μlの反応系で行った。ただし、逆転写プライマーは、全てのキットでオリゴ(dT)18プライマーを用いた。1.5μlのRNA-primer mix (20ng Millennium RNA Markers、 25pmol オリゴ(dT)18プライマー、 lysis buffer(RamDA-A条件))を65℃2分で変性させ、8.5μlの逆転写mixと混合し、42℃2.5分、85℃5分の条件で反応を行った。反応後はアガロースゲル電気泳動で解析した。
 RamDA法の適応試験には、マウスES細胞由来の10pg total RNAを用いて逆転写反応を行った。逆転写混合物の調整は、それぞれのキットに供給されている試薬を使用し、配合はキット推奨の条件を用いて3μlの反応系にダウンスケールしたものを使用した。ただし、逆転写プライマーは、RamDA(-)条件では、0.6pmol オリゴ(dT)18プライマー、7.8pmol ランダムヘキサマープライマー、RamDA(+)条件では、0.6pmol オリゴ(dT)18プライマー、7.8pmol ZNA-ランダムヘキサマープライマーを用いた。またRamDA(+)では、さらに0.2U dsDNase (ArcticZymes)、 100ng T4ジーン32プロテインを添加した。反応温度条件は、25℃10分、30℃10分、42℃30分、50℃5分、85℃5分で行い、qPCRでcDNAの増幅率を定量した。
 試薬の調整、及び反応は全て、0.2ml Hi-Tube Flat Cap Recovery (TaKaRa)、EU Semi-domed 8-cap strip (BIOplastics BV, Landgraaf, Netherlands) 、または、RP,LF,SEMI Sk,cutable,96 well plate (BIOplastics BV)上で行った。
定量的ポリメラーゼ連鎖反応(qPCR)
 人工合成RNA(DAP,THR)の系では、逆転写反応液をnuclease free water (Qiagen)で希釈し、1/50量をqPCR反応液に用いた。マウスES細胞由来の10pg total RNAの系は、nuclease free waterで希釈し、1/6量、1/8量、または1/10量をqPCR反応液に用いた。qPCRはLightCyclar 480 (Roche)、または、ABI 7900HT (Life Technologies)を用いて、以下の条件で行った。qPCR反応液 10μl(1 x Quantitect SybrGreen master mix (Qiagen)、5pmol フォワードプライマー、 5pmol リバースプライマー、 3μl 希釈cDNA、 nuclease free water)を95℃ 15分で酵素を活性化したのち、95℃15秒の変性、60℃1分の伸長反応を40サイクル行った。融解曲線分析は、95℃15秒、60℃15秒、95℃15秒で行った。絶対定量用の検量線作成には、standard DNAとして、人工合成RNA用にDAP及びTHRのdsDNA混合溶液の5倍希釈シリーズ(31250、6250、1250、250、50、10、0コピー)、total RNA用にmouse genomic DNA (clonetech)の5倍希釈シリーズ(31250、6250、1250、250、50、10、0コピー)をそれぞれ用いた。cDNAはssDNAであるため、定量値の算出には検出値(dsDNAコピー)x 2で算出した。各プライマー配列は、表2に記載する。データ解析は、LightCycler 480 Software, Version 1.5(Roche)、またはSDS Software 2.1(Life Technologies)を用いて行った。
Figure JPOXMLDOC01-appb-T000002
ゲル電気泳動
 逆転写反応液をそれぞれRNase-free TE 緩衝液(Life Technologies)で20μlに希釈し、70℃10分間の変性処理後直ちに氷上で冷却した。DNAラダーマーカーには、1μlのE-Gel 1 Kb Plus DNA Ladder(Life Technologies)をRNase-free TE 緩衝液で20μlに希釈し、熱変性したものをssDNAラダー、熱変性していないものをdsDNAラダーとして用いた。ただし、Millennium RNA Markersを用いた系では、希釈後の熱変性処理を除いた。逆転写反応液とラダーマーカーは、E-Gel EX Agarose Gels、 2%(Life Technologies)に充填後、E-Gel iBase Power System(Life Technologies)で10分間泳動した。泳動像は、FAS-Digi(NIPPON Genetics Co.Ltd, Tokyo, Japan)で撮影した。
(結果)
dsDNase、及びDNase Iは、RNA:DNAハイブリッド鎖中のDNAを選択的に切断する
 最初にdsDNaseやDNase Iが、標準的な逆転写バッファー条件下でRNA:DNAハイブリッド鎖のDNAを選択的に切断する活性をもっているのか確かめた。
 カニ由来の二本鎖特異的ヌクレアーゼは、RNA:DNAハイブリッド鎖のDNAを切断する活性があることが知られている(非特許文献11)。しかしながら、この酵素は逆転写中の温度では活性をほとんど持たない(非特許文献11)。そこで、熱不安定性で知られているエビ由来のdsDNaseに着目した(非特許文献12)。この酵素は、37℃付近で活性を有しており、二本鎖DNAを特異的に切断するため、プライマーやcDNAを消化することなく混入したDNAやゲノムDNAなどを除去する作用がある(非特許文献12及び13)。しかしながら、鎖置換反応を行うために必須なRNA:DNAハイブリッド鎖のDNAを切断する活性についての報告はまだない。そこで、Fluorescence resonance energy transfer (FRET)を用いた解析を行った。すると、二本鎖DNAに対する活性の半分程度であるが、dsDNaseには、RNA:DNAハイブリッド鎖のDNA側を選択的に切断する活性があることがわかった(図2A~C)。また、RNA:DNA ハイブリッド鎖中のRNA鎖、一本鎖DNA、一本鎖RNAに対しては、ほぼ活性を有していないことも確認した(図2D~F)。dsDNaseをさらに熱不安定性にしたHeat-labile double-strand specific DNase (HL-dsDNase)でも同様の結果を得たが、ヌクレアーゼ活性は、dsDNaseよりも低いことがわかった(図2A~C)。一方で、非特異的DNA分解酵素であるDNase Iを用いた場合、dsDNaseと同様にRNA:DNAハイブリッド鎖中のDNAを選択的に切断する活性を示したが、一本鎖DNAに対する活性も低いながら示した(図2B,E)。このため、まずは一本鎖DNAに対して分解活性を示さないdsDNaseを用いたRT-RamDA法の検証を行うことにした。
cDNAの断片化と鎖置換反応により増幅する
 dsDNaseが、実際に逆転写反応で合成されたcDNAに作用し断片化されているのか、また、それにより鎖置換反応が起こりcDNAが増幅されているのか、これらを確かめるために、poly-A付加された約2kbの人工合成RNAを鋳型に用いて逆転写し、ゲル電気泳動によるcDNAの断片化の有無と、RT-qPCRを用いてcDNA量の収量を測定した。その結果、標準の逆転写法(RamDA(-))では、オリゴdTプライマー、 ランダムヘキサマープライマーいずれも、断片化はほとんど起きていないことが分かった。一方で、RamDA(+)では、cDNAが断片化し、スメアーな電気泳動像が得られた(図3A)。これは、dsDNaseによるRNA:cDNAハイブリッド鎖中のcDNA側の切断作用によるもであることが示唆された。次に、鎖置換反応による増幅を定量的に検出するため、qPCRによるcDNAの絶対定量を行った。鋳型RNAには、人工合成RNAのDap(1,910b)とThr(2,052b)をそれぞれ 100fg(Dap: 96,725コピー、Thr:89,991コピー)ずつマウスES細胞由来の10pg total RNA(1細胞相当量)に混ぜて逆転写を行った。qPCRによる定量は、それぞれの人工合成RNAに対して、3’末端から5’末端にかけて12カ所の領域でqPCR プライマーを設計し、各領域における検出量を測定した。その結果、Dap、Thrともに、RamDA(-)コントロール条件では、オリゴdTプライマー及び、ランダムヘキサマープライマー、どちらの条件においても全領域でほぼ一定の検出量を示した(図3B)。一方でRamDA(+)においては、ランダムヘキサマープライマーだけでなく、オリゴdTプライマーを用いた条件であっても、3’側から500nt以上の領域でcDNAの検出量がRamDA(-)コントロールと比べて、安定して10倍近く増加していることが分かった(図3B)。また、増加量は、3’末端付近で相対的に少ないことが分かった(図3B)。これらのことから、RamDA(+)におけるcDNA検出量の増加は、鎖置換反応による増幅であること、さらに、dsDNaseによって形成されたcDNA側のニックが鎖置換反応の起点となっていることが示唆された。
RT-RamDA法に利用できるdsDNase酵素と逆転写酵素
 RT-RamDA法に利用できるdsDNase酵素と逆転写酵素を調べるため、他のdsDNaseや種々の逆転写酵素を用いた条件でも増幅効果が得られるかどうかを確かめた。まず、dsDNaseについては、ArcticZymes社が販売するdsDNase(43kDa)とaffymetrix社のdsDNase(47kDa)、 Evrogen社のduplex spesific nuclease (DSN)の3つの酵素で比較を行った。1細胞相当のtotal RNA量であるマウスES細胞由来の10pg total RNAを用いて逆転写を行ったところ、両dsDNase添加サンプルでcDNAの検出量に大きな増加が見られた(図4A)。活性温度の違いによりDSNの増幅率は僅かであったが、二本鎖特異的DNaseであれば、特定の酵素に限定されないことがわかった。
 次に、市販の逆転写酵素を用いてRT-RamDA法による増幅効果の有無を検証した。最初に酵素の伸長活性を調べるため、poly-A付加されたMillennium RNA Markers(Life Technologies)をオリゴdTプライマーで逆転写を行い性能試験を行った。その結果、わずか2分30秒の伸長時間にも関わらず、ほとんどの酵素で2kb以上の伸長活性があることが分かった(図4B)。また、RNase H活性を持たない逆転写酵素は、明瞭なラダーパターン(図4B、a-c、h、i)を示し、RNase H活性を持つ逆転写酵素では、暗くスメアーなパターン(図4B、e-g、j)を示した。DNA染色色素として使用しているSYBR Gold(Life Technologies)は、一本鎖DNAの場合、蛍光強度が二本鎖DNAと比べておよそ半分となる(非特許文献22)。このことから、泳動パターンの違いは、RNA:DNAハイブリッド鎖の有無を示しているものと推測される。
 次に、それぞれの逆転写酵素について、RT-RamDAコンポーネント(dsDNase、T4ジーン32プロテイン、ZNA-ランダムヘキサマープライマー)の添加あり(+)、なし(-)の条件でマウスES細胞由来の10pg total RNAを用いて逆転写を行いcDNAの収量をqPCRで比較した。その結果、RNase H活性のない全ての逆転写酵素においてRamDA(+)で、検出量の増加がみられた(図4C、a-c、h、i)。一方で、RNase H活性のある逆転写酵素では、検出量の増加が見られないか、もしくは、低下していた(図4C、 e-g、j)。また公称では、RNase H活性について言及されていないが、AffinityScriptも、RamDA(+)で、わずかな増幅を示した(図4B d)。しかしながら、電気泳動像では、スメアーなパターンを示していたことから、弱いながらもRNase H活性を有しているものと推測された(図4B d)。これらの結果から、RT-RamDA法の増幅作用は、特定のdsDNaseや特定の逆転写酵素に限定されるものではなく、37℃付近に活性を持つdsDNase酵素とRNase H活性のない逆転写酵素であれば、広く汎用的に使える技術であることがわかった。また、RNase H活性があると増幅効果が見られないことから、直接RNAを鋳型として鎖置換増幅が起きていることが示された。
RT-RamDA法の反応効率を高める方法について
 本発明者らは、増幅率の向上に着目した派生法、T4ジーン32プロテインなしのRT-RamDA法(RamDA-B)とRT-RamDA熱サイクル法(RamDA-C)を開発した。鎖置換反応において、鋳型の二次構造形成は、増幅の障害となる。本発明者らは、この二次構造を緩める役割としてRT-RamDA法(RamDA-A)にT4ジーン32プロテインを導入した。しかしながら、同時にDNA:RNAハイブリッド鎖の不安定化をもたらし、dsDNaseの活性を抑制していることが推測された。そこで、T4ジーン32プロテインなしのRamDA-Bを試みることにした。マウスES細胞由来の10pg total RNAを鋳型にcDNA合成を行ったところ、RamDA-Bの条件でGnb2l1、Oct3/4の検出量が標準逆転写法(RamDA(-))と比べて40倍以上になることが分かった(図5A)。一方で、Nanog、Sox2、Eef1b2などでは、RamDA-Aと大きな差が見られなかった(図5A)。
 次に、RamDA-Bにおいて、反応温度条件のみを改変し、アニール行程と伸長反応行程を小刻みに繰り返す、RamDA-Cを試した。すると、RamDA-Cでは、標準逆転写法と比べてGnb2l1、Oct3/4の検出量が100倍以上になることがわかった(図5B、RamDA(+)cycle)。一方で、標準逆転写法においては、熱サイクルの効果は見られなかった(図5B、RamDA(-)cycle)。また、RamDA-Aについても熱サイクル化による効果は見られなかった(非掲載)。これらのことから、RamDA-B法において、プライマーの再アニーリングがcDNAの増幅に非常に有効であることが示唆された。特に、ZNA-ランダムヘキサマープライマーは、カチオンユニットを2つ付加したもので、通常のランダムヘキサマープライマーよりTm値が約26℃程高く設計されている(非特許文献14)。このため37℃の反応中においても、効率的にアニーリングすることが可能となり、さらに熱サイクル化することで、アニーリングがより促進されたものと考えられる。
DNase Iを用いたRT-RamDA法について
 RT-RamDA法において、dsDNaseを用いる最大の理由は、dsDNaseが、一本鎖DNAである増幅cDNA,逆転写プライマーに対してヌクレアーゼ活性を持たないためである。しかしながら、非特異的DNA分解酵素であるDNase I自体も、そもそも二本鎖DNAと比べて一本鎖DNAに対するヌクレアーゼ活性が低く(非特許文献12)、さらに、K+、Na+など一価の陽イオン依存的にヌクレアーゼ活性が下がることが知られている(非特許文献23、24)。一方で、逆転写に使用される一般的な反応液組成((First-Strand buffer (Life Technologies)、PrimeScript Buffer (for cDNA synthesis ) (TaKaRa)、Maxima H Minus First Strand cDNA Synthesis RT-Buffer (Thermo Fisher)、 M-MuLV Reverse Transcriptase Reaction Buffer (New England Biolabs), AffinityScript RT Buffer (Agilent Biotechnology)など)は、50 mM Tris-HCl、75 mM KCl、3 mM MgCl2とTris-HClとKClの濃度が高い。つまり、逆転写反応液条件下では、DNase Iの一本鎖DNAに対するヌクレアーゼ活性が低くRT-RamDA法が機能するのではないかと予測された。実際にFRET解析を用いて、DNase I reaction Buffer(Life Technologies)の組成である20 mM Tris-HCl、50 mM KCl、2 mM MgClを基準にTris-HCl、KClの濃度を上げてヌクレアーゼ活性を測定してみたところ、Tris-HCl、KClともに高濃度条件下では、二本鎖DNAだけでなく、一本鎖DNA、RNA:DNAハイブリッド鎖中DNAに対するDNase Iのヌクレアーゼ活性が大きく阻害されることが分かった(図6)。逆転写反応液と同等のTris-HCl,KCl濃度では、DNase I reaction Bufferの条件と比べて、それぞれ、43%、16%、14%と活性が抑制されていた(図6、##)。
 次に、非特異的DNA分解酵素を用いたRT-RamDA法の有効性、取り分け、反応液中の塩濃度と増幅率の関係性を調べた。 DNase I reaction Bufferの組成から逆転写反応液の組成へと塩濃度を変化させ、RT-RamDA法が機能するかqPCRを用いて検証したところ、意外なことに、一本鎖DNAに対するヌクレアーゼ活性が高いDNase I reaction Bufferの条件であっても、RT-RamDA法による増幅が十分量起こることが分かった(図7)。さらに、KCl、Tris-HClの濃度を変更しても増幅率にあまり影響がなかった(図7、a-i)。一方で、逆転写反応液の組成条件におけるNaCl濃度には、増幅率が大きく影響することが分かった(図7, j-l)。このため、NaClを含まない反応液組成が望ましいと推測される。また、自家調整反応液を用いた場合でも、市販のFirst-Strand buffer (Life Technologies)や、PrimeScript Buffer (for Real Time)(TaKaRa)と比較して遜色のない増幅率を示した(図7、j、FS,PS)。このことから、RT-RamDA法の反応液は、特定の反応液組成に限定されることはなく、さらに、塩濃度依存的なヌクレアーゼ活性には非依存的にRT-RamDA法が機能することが分かった。これらのことから、反応液中の塩濃度以外のファクターが、cDNAの分解を抑制している可能性が示唆された。
T4ジーン32プロテインは、cDNAの保護と増幅の安定化に寄与する
 T4ジーン32プロテインは、一本鎖DNAに結合することで、ヌクレアーゼから一本鎖DNAを保護する作用が報告されている(非特許文献25)。そこで、poly-A付加された人工合成RNAを鋳型に、オリゴdTプライマーのみを用いたRT-RamDA法によるcDNAの断片化状態をT4ジーン32プロテインありなしで検証した(図8)。その結果、DNase I、dsDNase共に、T4ジーン32プロテインと組み合わせることで、その泳動パターンから、DNase単独の条件よりもcDNAの断片化が抑制されることが分かった(図8、A)。BioAnalyzerの分析においては、同様の結果を得ただけでなく、DNaseを作用させることで、cDNAの収量が10倍近く増えることが分かった(図8、B)。これは、鎖置換反応によりcDNAがグローバルに増幅されていることを示唆するものと考えられる。次に、qPCRを用いて、鋳型RNAにおける3’末端から5’末端への増幅率を検証した(図9)。その結果、DNase Iを単独で用いた場合、ほとんど増幅は見られなかったが、T4ジーン32プロテインと組み合わた場合、10倍近い増幅が観察された(図9,A、B)。さらに、3’末端側での増幅率が、dsDNaseと比較して改善されていることが分かった(図9,A)。一方、dsDNaseの場合、一本鎖DNAに対する分解活性が元々ないため、単独で作用させるだけでも高い増幅率を示した。しかしながら、同一RNA上での増幅率の変動が大きいという結果となった(図9,A、C)。この条件は、RamDA-Bとほぼ同等の条件であることから、T4ジーン32プロテインがないと、遺伝子間だけでなく、同一遺伝子内での増幅の変動が大きくなることが示唆された。これらのことから、DNase Iを用いたRamDA-Dにおいて、T4ジーン32プロテインは、cDNAの分解を抑制し、遺伝子間、遺伝子内での増幅率の安定化に寄与する2つの役割をもつことが示唆された。
T4ジーン32プロテインは、RNA:DNAハイブリッド鎖中のDNAに対するヌクレアーゼ活性と一本鎖DNAに対する活性の比を改善させる作用をもつ
DNase Iを用いたRT-RamDA法が機能するには、増幅cDNAの分解量が、RNA:cDNA鎖へのニック形成による鎖置換増幅量よりも小さいこと、つまり、一本鎖DNAに対するヌクレアーゼ活性が、RNA:DNAハイブリッド鎖中のDNAに対する活性よりも十分に小さいことが重要と言える。cDNAの断片化と増幅率の実験(図8,9)から、T4ジーン32プロテインがこれに寄与していることが推測された。そこで、FRET解析を用いて逆転写反応液中のT4ジーン32プロテインのヌクレアーゼ活性への作用を検証した(図10)。その結果、逆転写反応液中にT4ジーン32プロテインを加えることで、一本鎖DNAに対する活性が、25%に減少することが分かった。一方、二本鎖DNAに対してはほぼ変動がなく、RNA:DNAハイブリッド鎖中のDNAに対する活性は、60%ぼどであった(図10、A)。次にRNA:DNAハイブリッド鎖中のDNAへのヌクレアーゼ活性に対する一本鎖DNAへの活性の比を検証した。すると、T4ジーン32プロテインを加えることで、40%から14%へと活性比が改善することが分かった(図10、B)。この比の改善が、RT-RamDA法を有効にするためのキーファクターであると推測される。一方でdsDNaseの場合は、T4ジーン32プロテインの非存在下においても活性比は7%程度しかなく、このため、T4ジーン32プロテインなしのRamDA-B,-Cが十分に機能するものと考えられる(図10、B)。
RamDA-Dは、反応時間依存的な増幅率をしめす
 反応時間依存的に増幅率の改善が見込まれるのか、マウスES細胞の1細胞溶解液を鋳型に用いて検証した(図11)。qPCRを用いてcDNAの収量の相対値をみたところ、37℃における反応時間を30、60,120分と増やすことで、収量も約10、20、30倍と増えることが分かった(図11)。この様な現象は、dsDNaseを用いたRamDA-Aでは見られなかった(データ非掲載)。dsDNaseは、逆転写反応液中、特にT4ジーン32プロテイン存在下で、著しくヌクレアーゼ活性が阻害されており、RNA:DNAハイブリッド鎖中のDNAへのヌクレアーゼ活性は、DNase Iと比べて6%程度しかなかった(図10、A)。このことが、DNase I とdsDNaseを用いた際の増幅率の違いとなっているのかもしれない。一方で、RamDA-Dは、細胞溶解液の様な不純物を含むクルードサンプルにおいても問題無く機能することが確認された。さらに逆転写反応中での二本鎖DNAに対するヌクレアーゼ活性についてもdsDNaseと比べてDNase Iを用いた方が高いことから、増幅率だけでなく、コンタミネーション除去能力についてもRamDA-Dが有効であることが示唆された(図10、A)。
RamDA-Dは、特定のRNase Hマイナス型逆転写酵素に限定されない。また,100細胞相当量のRNAに対しても機能する
 RamDA-Dが、特定のRNase Hマイナス型逆転写酵素に限定されるのかどうかを確かめるため、PrimeScript RT Enzyme Mix I 以外にSuperScriptシリーズ(Life Technologies)の逆転写酵素を用いて検証を行った(図12)。その結果、SuperScript II, IIIでcDNAの増幅が確認できた。なかでもSuperScript IIは、PrimeScript RT Enzyme Mix Iに匹敵する増幅率を示した(図12、SSII)。さらにMaxima H Minus First Strand cDNA Synthesis Kit (Thermo Fisher)や ReverTra Ace qPCR RT Kit(TOYOBO)を用いた場合でもRamDA-Dが機能することを確認した(データ非掲載)。これらのことから、RamDA-Dは、特定のRNase Hマイナス型逆転写酵素に限定されないことがわかった。さらに、200pg, 1ngと、1細胞相当量である10pg total RNAよりも多いRNA量からでも問題なくRamDA-Dが機能することが分かった(図12、200 pg, 1ng)。このことから、少なくとも100細胞相当量の鋳型RNA量を用いても十分に増幅性能が担保されていることが示唆された。
 以上のことから、RT-RamDA法は、微量RNAの増幅技術としては、非常に有用な手段となり得るもので、特にRamDA-Cの増幅率は、特定のターゲット遺伝子を検出する解析において、非常に大きなアドバンテージとなるはずである。一方で、RamDA-Cは遺伝子間での増幅率の変動が大きいため、均一な増幅が必要な解析では、T4ジーン32プロテインを加えたRamDA-Aが有効である。さらに、T4ジーン32プロテインと非特異的DNA分解酵素であるDNase Iを用いたRamDA-Dは、増幅率が高く、遺伝子間、遺伝子内の増幅変動も少ない。その上、逆転写反応中の二本鎖DNAに対するヌクレアーゼ活性も二本鎖特異的DNA分解酵素と比べて高い状態で維持されていることから、DNAのコンタミネーションの影響をより低減させる効果が期待される。これらのことから、RamDA-Dは、RamDA-A、-B、両方の優位性を兼ね備えた方法であり、微量なRNAをターゲットとした逆転写法として非常に有効かつ簡便な方法である。
 本願は、特願2014-200258(2014年9月30日出願)に基づく優先権を主張する出願であり、特願2014-200258に記載の内容は全て、引用により本明細書中に取り込むものとする。また、本明細書で引用する特許文献、特許出願及び文献に記載の内容は全て、引用により本明細書中に取り込むものとする。

Claims (17)

  1. 鋳型RNA、プライマー、DNA鎖特異的RNA:DNAハイブリッド鎖分解酵素、RNase Hマイナス型逆転写酵素、及び基質を含む混合物をインキュベートする工程を含み、DNA鎖特異的RNA:DNAハイブリッド鎖分解酵素が、RNAとDNAとのハイブリッド鎖のDNA鎖を切断する活性を有する酵素である、核酸の増幅方法。
  2. RNase Hマイナス型逆転写酵素のRNA依存性DNAポリメラーゼ活性により鋳型RNAの相補鎖DNA(cDNA)を合成し、DNA鎖特異的RNA:DNAハイブリッド鎖分解酵素によりRNAとcDNAとのハイブリッド鎖のうちのcDNA鎖を無作為に切断し、前記の切断部位が起点となり、RNase Hマイナス型逆転写酵素の鎖置換活性により3’側のcDNA鎖がRNAから剥がされ、RNase Hマイナス型逆転写酵素により剥がされた部分に新たなcDNA鎖が合成される工程を含む、請求項1に記載の核酸の増幅方法。
  3. 前記混合物がDNA鎖特異的RNA:DNAハイブリッド鎖分解酵素として二本鎖特異的DNA分解酵素を含み、二本鎖特異的DNA分解酵素が、RNAとDNAとのハイブリッド鎖のDNA鎖を切断する活性を有し、RNAとDNAとのハイブリッド鎖のRNA鎖、一本鎖DNA及び一本鎖RNAを切断する活性を実質的に有さない酵素である、請求項1又は2に記載の核酸の増幅方法。
  4. 前記混合物がDNA鎖特異的RNA:DNAハイブリッド鎖分解酵素として非特異的DNA分解酵素を含み、非特異的DNA分解酵素が、RNAとDNAとのハイブリッド鎖のDNA鎖を切断する活性を有し、RNAとDNAとのハイブリッド鎖のRNA鎖、及び一本鎖RNAを切断する活性を実質的に有さない酵素である、請求項1又は2に記載の核酸の増幅方法。
  5. DNA鎖特異的RNA:DNAハイブリッド鎖分解酵素が、60℃未満でもDNA分解活性を有する酵素である、請求項1から4の何れか1項に記載の核酸の増幅方法。
  6. 二本鎖特異的DNA分解酵素が、甲殻類由来の二本鎖特異的DNA分解酵素又はその改変体である、請求項3に記載の核酸の増幅方法。
  7. 二本鎖特異的DNA分解酵素が、エビ由来の二本鎖特異的DNA分解酵素又はその改変体である、請求項6に記載の核酸の増幅方法。
  8. 非特異的DNA分解酵素が、ほ乳類由来の非特異的DNA分解酵素又はその改変体である、請求項4に記載の核酸の増幅方法。
  9. 非特異的DNA分解酵素が、ウシ由来の非特異的DNA分解酵素又はその改変体である、請求項8に記載の核酸の増幅方法。
  10. プライマーが、ランダムプライマー、オリゴdTプライマー又は配列特異的プライマーの1種以上である、請求項1から9の何れか1項に記載の核酸の増幅方法。
  11. プライマーが、カチオンユニットの修飾によってTm値が上昇しているプライマーである、請求項1から10の何れか1項に記載の核酸の増幅方法。
  12. プライマーが、Zip Nucleic Acid (ZNA) プライマーである、請求項1から11の何れか1項に記載の核酸の増幅方法。
  13. 混合物がさらに、一本鎖DNA結合タンパク質を含む、請求項1から12の何れか1項に記載の核酸の増幅方法。
  14. 鋳型RNAが、1細胞から数百細胞相当の微量RNAである、請求項1から13の何れか1項に記載の核酸の増幅方法。
  15. DNAシーケンスライブラリ作製に供するcDNAの増幅のために行う、請求項1から14の何れか1項に記載の核酸の増幅方法。
  16. DNA鎖特異的RNA:DNAハイブリッド鎖分解酵素、およびRNase Hマイナス型逆転写酵素を少なくとも含む、請求項1から15の何れか1項に記載の核酸の増幅方法を行うためのキット。
  17. さらに一本鎖DNA結合タンパク質を含む、請求項16に記載のキット。
PCT/JP2015/077745 2014-09-30 2015-09-30 核酸の増幅方法 WO2016052619A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016552118A JP6583796B2 (ja) 2014-09-30 2015-09-30 核酸の増幅方法
US15/514,931 US10457982B2 (en) 2014-09-30 2015-09-30 Method for nucleic acid amplification
EP15846028.7A EP3202901B1 (en) 2014-09-30 2015-09-30 Method for nucleic acid amplification
ES15846028T ES2866026T3 (es) 2014-09-30 2015-09-30 Método para amplificar ácido nucleico
US16/568,860 US20200048693A1 (en) 2014-09-30 2019-09-12 Method for nucleic acid amplification

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014200258 2014-09-30
JP2014-200258 2014-09-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/514,931 A-371-Of-International US10457982B2 (en) 2014-09-30 2015-09-30 Method for nucleic acid amplification
US16/568,860 Division US20200048693A1 (en) 2014-09-30 2019-09-12 Method for nucleic acid amplification

Publications (1)

Publication Number Publication Date
WO2016052619A1 true WO2016052619A1 (ja) 2016-04-07

Family

ID=55630644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077745 WO2016052619A1 (ja) 2014-09-30 2015-09-30 核酸の増幅方法

Country Status (5)

Country Link
US (2) US10457982B2 (ja)
EP (1) EP3202901B1 (ja)
JP (1) JP6583796B2 (ja)
ES (1) ES2866026T3 (ja)
WO (1) WO2016052619A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021052598A (ja) * 2019-09-27 2021-04-08 東洋紡株式会社 非特異的な核酸増幅を抑制する方法
WO2021141108A1 (ja) 2020-01-10 2021-07-15 花王株式会社 核酸増幅方法
WO2022172991A1 (ja) 2021-02-12 2022-08-18 花王株式会社 皮膚角層由来の核酸試料の調製方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113557298A (zh) 2019-03-13 2021-10-26 东洋纺株式会社 核酸的生成和扩增
US11597920B2 (en) * 2019-06-25 2023-03-07 Bio-Rad Laboratories, Inc. Compositions and methods for enhancing reverse transcriptase activity and/or reducing the inhibition of reverse transcriptase
WO2023085232A1 (ja) 2021-11-10 2023-05-19 東洋紡株式会社 改良されたライブラリー調製方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103867A (ja) * 2012-11-26 2014-06-09 Nishikawa Rubber Co Ltd 超好熱性二本鎖特異的核酸分解酵素

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050084875A1 (en) * 1997-10-24 2005-04-21 University Of Rochester Molecular markers for the diagnosis of Alzheimer's disease
JP4718453B2 (ja) * 2004-04-12 2011-07-06 武田薬品工業株式会社 Gタンパク質共役型レセプタータンパク質の新規リガンドとその用途
EP1707623A1 (de) * 2005-04-01 2006-10-04 Qiagen GmbH Reverse Transkription und Amplifikation von RNA bei simultaner Degradierung von DNA
GB2474225A (en) * 2009-07-21 2011-04-13 Biotec Pharmacon Asa DNase for decontamination of reverse transcription and amplification reactions
EP2666870A1 (en) * 2012-05-23 2013-11-27 Pathoquest Method for differential treatment of nucleic acid contents of a sample, sample enrichment, kit and uses thereof
US10017761B2 (en) * 2013-01-28 2018-07-10 Yale University Methods for preparing cDNA from low quantities of cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103867A (ja) * 2012-11-26 2014-06-09 Nishikawa Rubber Co Ltd 超好熱性二本鎖特異的核酸分解酵素

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NILSEN, INGE W. ET AL.: "The Enzyme and the cDNA Sequence of a Thermolabile and Double-Strand Specific DNase from Northern Shrimps (Pandalus borealis", PLOS ONE, vol. 5, no. 4, April 2010 (2010-04-01), pages e10295, XP055424068 *
See also references of EP3202901A4 *
YOHEI SASAKAWA ET AL.: "Jisedai Genome Technology no Tojo to sono Mirai 6.1 Saibo RNA- Seq-ho no Saizensen to Kongo no Tenkai", EXPERIMENTAL MEDICINE, vol. 31, no. 15, 10 September 2013 (2013-09-10), pages 2358 - 2364, XP009501514 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021052598A (ja) * 2019-09-27 2021-04-08 東洋紡株式会社 非特異的な核酸増幅を抑制する方法
WO2021141108A1 (ja) 2020-01-10 2021-07-15 花王株式会社 核酸増幅方法
KR20220115996A (ko) 2020-01-10 2022-08-19 카오카부시키가이샤 핵산 증폭 방법
WO2022172991A1 (ja) 2021-02-12 2022-08-18 花王株式会社 皮膚角層由来の核酸試料の調製方法
KR20230145345A (ko) 2021-02-12 2023-10-17 카오카부시키가이샤 피부 각층 유래의 핵산 시료의 조제 방법

Also Published As

Publication number Publication date
JP6583796B2 (ja) 2019-10-02
US20200048693A1 (en) 2020-02-13
ES2866026T3 (es) 2021-10-19
EP3202901A1 (en) 2017-08-09
EP3202901B1 (en) 2021-02-17
US20170275685A1 (en) 2017-09-28
JPWO2016052619A1 (ja) 2017-07-27
US10457982B2 (en) 2019-10-29
EP3202901A4 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
JP6583796B2 (ja) 核酸の増幅方法
US11814655B2 (en) Mutant polymerases and uses thereof
JP2022008577A (ja) 限られたヌクレオチド組成を有するプライマーを用いた増幅
JP2021509587A (ja) シトシン修飾の、亜硫酸水素塩非含有、塩基分解能特定
RU2630999C2 (ru) Композиции для реакции обратной транскрипции с горячим стартом или для полимеразной цепной реакции с обратной транскрипцией с горячим стартом
US10793896B2 (en) Methods for RT-PCR comprising an anionic polymer
US20060240451A1 (en) Compositions and methods employing 5' phosphate-dependent nucleic acid exonucleases
JP2017503521A (ja) 高温核酸合成で使用するための新規な逆転写酵素
WO2008092016A2 (en) Methods, compositions, and kits for detection of micro rna
CA2956853C (en) Thermolabile exonucleases
KR20120058520A (ko) 역전사 및 증폭반응에서 핵산 오염을 제거하는 방법
KR102378346B1 (ko) 환상 dna의 증폭 방법
JP2008526231A (ja) ヘリカーゼを使用するrnaターゲットの同定
US11155857B2 (en) Methods for measuring RNA translation rates
JP2012165755A (ja) サブトラクション・ポリヌクレオチドの取得方法
CN115335536A (zh) 用于即时核酸检测的组合物和方法
Fujiwara et al. Application of a Euryarchaeota-specific helicase from Thermococcus kodakarensis for noise reduction in PCR
CN112534062A (zh) 可切割合作引物和使用所述可切割合作引物扩增核酸序列的方法
WO2009108949A2 (en) Cold shock protein compositions and methods and kits for the use thereof
KR20130062296A (ko) cDNA 의 합성 방법
WO2023085232A1 (ja) 改良されたライブラリー調製方法
JP2024026695A (ja) 非特異的な核酸増幅を抑制する方法
WO2024006552A1 (en) Ambient temperature nucleic acid amplification and detection
WO2023140731A1 (en) Thermostable rna polymerase
JP2008178338A (ja) 断片化核酸が混入する核酸試料中の標的核酸を増幅する核酸増幅方法、及びそのキット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016552118

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015846028

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15514931

Country of ref document: US