WO2016052541A1 - 作業機械の油圧駆動システム - Google Patents

作業機械の油圧駆動システム Download PDF

Info

Publication number
WO2016052541A1
WO2016052541A1 PCT/JP2015/077581 JP2015077581W WO2016052541A1 WO 2016052541 A1 WO2016052541 A1 WO 2016052541A1 JP 2015077581 W JP2015077581 W JP 2015077581W WO 2016052541 A1 WO2016052541 A1 WO 2016052541A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
hydraulic
regeneration
pressure
control valve
Prior art date
Application number
PCT/JP2015/077581
Other languages
English (en)
French (fr)
Inventor
聖二 土方
石川 広二
井村 進也
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to EP15845887.7A priority Critical patent/EP3203088B1/en
Priority to KR1020177003356A priority patent/KR101887318B1/ko
Priority to CN201580042936.3A priority patent/CN106574646B/zh
Priority to US15/504,993 priority patent/US10436229B2/en
Publication of WO2016052541A1 publication Critical patent/WO2016052541A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2271Actuators and supports therefor and protection therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/044Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/05Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed specially adapted to maintain constant speed, e.g. pressure-compensated, load-responsive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • F15B13/07Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors in distinct sequence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/024Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits
    • F15B2011/0243Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits the regenerative circuit being activated or deactivated automatically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/3058Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve having additional valves for interconnecting the fluid chambers of a double-acting actuator, e.g. for regeneration mode or for floating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/3059Assemblies of multiple valves having multiple valves for multiple output members
    • F15B2211/30595Assemblies of multiple valves having multiple valves for multiple output members with additional valves between the groups of valves for multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40515Flow control characterised by the type of flow control means or valve with variable throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41581Flow control characterised by the connections of the flow control means in the circuit being connected to an output member and a return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/426Flow control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/428Flow control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/455Control of flow in the feed line, i.e. meter-in control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/46Control of flow in the return line, i.e. meter-out control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50518Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5159Pressure control characterised by the connections of the pressure control means in the circuit being connected to an output member and a return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6316Electronic controllers using input signals representing a pressure the pressure being a pilot pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6652Control of the pressure source, e.g. control of the swash plate angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6654Flow rate control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6658Control using different modes, e.g. four-quadrant-operation, working mode and transportation mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/76Control of force or torque of the output member
    • F15B2211/761Control of a negative load, i.e. of a load generating hydraulic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/88Control measures for saving energy

Definitions

  • the present invention relates to a hydraulic drive system for a work machine, and more specifically, pressure oil discharged from a hydraulic actuator due to inertial energy of a driven member, such as falling of a driven member (for example, a boom) by its own weight, is used to drive other actuators.
  • the present invention relates to a hydraulic drive system for a work machine such as a hydraulic excavator provided with a recycling circuit that is reused (regenerated).
  • the present invention has been made on the basis of the above-described matters, and an object of the present invention is to construct a single electromagnetic proportional valve (electric drive device) for the regeneration circuit and to transfer the pressure oil discharged from the hydraulic actuator to another hydraulic pressure. It is an object of the present invention to provide a hydraulic drive system for a work machine that can ensure the same actuator speed depending on whether the actuator is regenerated or not.
  • the first invention provides a hydraulic pump device, a first hydraulic actuator that is supplied with pressure oil from the hydraulic pump device to drive a first driven body, and a pressure from the hydraulic pump device.
  • a second hydraulic actuator that is supplied with oil to drive a second driven body, a first flow rate adjustment device that controls a flow of pressure oil supplied from the hydraulic pump device to the first hydraulic actuator, and the hydraulic pump device
  • a first flow rate adjusting device that controls the flow of pressure oil supplied to the second hydraulic actuator, and an operation signal that commands the operation of the first driven body to switch the first flow rate adjusting device.
  • a hydraulic drive system for a working machine that is a hydraulic cylinder, a regeneration passage that connects a bottom oil chamber of the hydraulic cylinder between the hydraulic pump device and the second hydraulic actuator, and a bottom oil chamber of the hydraulic cylinder
  • a regenerative flow rate adjusting device that supplies at least a part of the discharged pressure oil between the hydraulic pump device and the second hydraulic actuator via the regenerative passage, and a bottom side of the hydraulic cylinder
  • a discharge flow rate adjusting device that adjusts the flow rate of at least part of the pressure oil discharged from the oil chamber and discharges it to the tank, and the regeneration flow rate adjustment device and the discharge flow rate adjustment device
  • a control command is output to the electric drive device so that the falling speed of the first driven body is the same regardless of the regenerative flow rate of the one electric drive device and the regenerative flow rate
  • the same actuator speed can be ensured in the case where the pressure oil discharged from the hydraulic actuator is regenerated to drive other hydraulic actuators, and the electromagnetic proportional valve for the regeneration circuit (electric drive device) ) Can be composed of one piece.
  • the electromagnetic proportional valve for the regeneration circuit (electric drive device)
  • FIG. 1 is a side view showing a hydraulic excavator equipped with a first embodiment of a hydraulic drive system for a work machine according to the present invention. It is a characteristic view which shows the opening area characteristic of the regeneration control valve which comprises 1st Embodiment of the hydraulic drive system of the working machine of this invention. It is a block diagram of the controller which constitutes a 1st embodiment of the hydraulic drive system of the working machine of the present invention. It is the schematic of the control system which shows 2nd Embodiment of the hydraulic drive system of the working machine of this invention.
  • FIG. 1 is a schematic diagram of a control system showing a first embodiment of a hydraulic drive system for a work machine according to the present invention.
  • the hydraulic drive system includes a pump device 50 including a main hydraulic pump 1 and a pilot pump 3, and a hydraulic excavator that is supplied with pressure oil from the hydraulic pump 1 and is a first driven body.
  • the boom cylinder 4 (first hydraulic actuator) that drives the boom 205 (see FIG. 2) and pressure oil is supplied from the hydraulic pump 1 to drive the arm 206 (see FIG. 2) of the hydraulic excavator that is the second driven body.
  • Arm cylinder 8 (second hydraulic actuator) for controlling, control valve 5 (first flow rate adjusting device) for controlling the flow (flow rate and direction) of pressure oil supplied from hydraulic pump 1 to boom cylinder 4, and hydraulic pump 1
  • the control valve 9 (second flow rate adjusting device) for controlling the flow (flow rate and direction) of the pressure oil supplied to the arm cylinder 8 from the output, and the boom operation command is output to switch the control valve 5
  • a first control device 6, and a second operating unit 10 to switch the control valve 9 outputs an operation command of the arm.
  • the hydraulic pump 1 is also connected to a control valve (not shown) so that pressure oil is supplied to other actuators (not shown), but those circuit portions are omitted.
  • the hydraulic pump 1 is a variable displacement type and includes a regulator 1a, and the tilt angle (capacity) of the hydraulic pump 1 is controlled by controlling the regulator 1a by a control signal from a controller 27 (described later), thereby controlling the discharge flow rate. Is done.
  • the regulator 1a is provided with a tilt angle (capacity) of the hydraulic pump 1 so that the discharge pressure of the hydraulic pump 1 is guided and the absorption torque of the hydraulic pump 1 does not exceed a predetermined maximum torque, as is well known. ) Is limited.
  • the hydraulic pump 1 is connected to the control valves 5 and 9 via the pressure oil supply lines 7 a and 11 a, and the discharge oil of the hydraulic pump 1 is supplied to the control valves 5 and 9.
  • Control valves 5 and 9 which are flow rate adjusting devices are respectively connected to the bottom side oil chamber or the rod side oil chamber of the boom cylinder 4 and the arm cylinder 8 via the bottom side pipes 15 and 20 or the rod side pipes 13 and 21.
  • the oil discharged from the hydraulic pump 1 is supplied from the control valves 5 and 9 via the bottom side pipes 15 and 20 or the rod side pipes 13 and 21 and the boom cylinder 4 and It is supplied to the bottom side oil chamber or the rod side oil chamber of the arm cylinder 8.
  • At least a part of the pressure oil discharged from the boom cylinder 4 is circulated from the control valve 5 to the tank via the tank conduit 7b. All of the pressure oil discharged from the arm cylinder 8 is circulated from the control valve 9 to the tank via the tank line 11b.
  • the flow rate adjusting devices for controlling the flow (flow rate and direction) of the pressure oil supplied from the hydraulic pump 1 to the hydraulic actuators 4 and 8 are configured by one control valve 5 and 9 respectively.
  • the flow rate adjusting device may be configured to supply with a plurality of valves, or may be configured to supply and discharge with separate valves.
  • the first and second operating devices 6 and 10 have operating levers 6a and 10a and pilot valves 6b and 10b, respectively.
  • the pilot valves 6b and 10b are respectively pilot lines 6c and 6d and a pilot line 10c. , 10d are connected to the operation parts 5a, 5b of the control valve 5 and the operation parts 9a, 9b of the control valve 9.
  • the pilot valve 6b When the operating lever 6a is operated in the boom raising direction BU (left direction in the figure), the pilot valve 6b generates an operating pilot pressure Pbu corresponding to the operating amount of the operating lever 6a, and this operating pilot pressure Pbu is the pilot line 6c.
  • the control valve 5 is switched to the boom raising direction (right side position in the figure).
  • the pilot valve 6b When the operation lever 6a is operated in the boom lowering direction BD (right direction in the figure), the pilot valve 6b generates an operation pilot pressure Pbd corresponding to the operation amount of the operation lever 6a, and this operation pilot pressure Pbd is the pilot line 6d.
  • the control valve 5 is switched to the boom lowering direction (the left position in the figure).
  • the pilot valve 10b When the operation lever 10a is operated in the arm cloud direction AC (right direction in the figure), the pilot valve 10b generates an operation pilot pressure Pac corresponding to the operation amount of the operation lever 10a, and this operation pilot pressure Pac is the pilot pipe line 10c. Is transmitted to the operation portion 9a of the control valve 9, and the control valve 9 is switched in the arm cloud direction (the left position in the figure).
  • the pilot valve 10b When the operation lever 10a is operated in the arm dump direction AD (left direction in the figure), the pilot valve 10b generates an operation pilot pressure Pad corresponding to the operation amount of the operation lever 10a, and this operation pilot pressure Pad is the pilot pipe line 10d. Is transmitted to the operation portion 9b of the control valve 9, and the operation valve 9 is switched in the arm dump direction (right side position in the figure).
  • the overload relief valve 12 with make-up is provided between the bottom side pipe line 15 and the rod side pipe line 13 of the boom cylinder 4 and between the bottom side pipe line 20 and the rod side pipe line 21 of the arm cylinder 8, respectively. , 19 are connected.
  • the overload relief valves 12 and 19 with make-up have a function of preventing the hydraulic circuit device from being damaged due to excessive pressure in the bottom side pipes 15 and 20 and the rod side pipes 13 and 21, and the bottom side pipe 15 and 20 and the rod side pipes 13 and 21 have a function of reducing the occurrence of cavitation due to negative pressure.
  • the pump device 50 includes one main pump (hydraulic pump 1). However, the pump device 50 includes a plurality of (for example, two) main pumps and includes control valves 5 and 5. A separate main pump may be connected to 9 and pressure oil may be supplied to the boom cylinder 4 and the arm cylinder 8 from separate main pumps.
  • FIG. 2 is a side view showing a hydraulic excavator equipped with the first embodiment of the hydraulic drive system for the working machine of the present invention.
  • the hydraulic excavator includes a lower traveling body 201, an upper swing body 202, and a front work machine 203.
  • the lower traveling body 201 has left and right crawler traveling devices 201a and 201a (only one side is shown), and is driven by left and right traveling motors 201b and 201b (only one side is shown).
  • the upper turning body 202 is mounted on the lower traveling body 201 so as to be turnable, and is turned by a turning motor 202a.
  • the front work machine 203 is attached to the front part of the upper swing body 202 so as to be able to be raised and lowered.
  • the upper swing body 202 is provided with a cabin (operator's cab) 202b, and operating devices such as the first and second operating devices 6 and 10 and a traveling operating pedal device (not shown) are arranged in the cabin 202b. .
  • the front work machine 203 has an articulated structure having a boom 205 (first driven body), an arm 206 (second driven body), and a bucket 207.
  • the boom 205 is expanded and contracted by the boom cylinder 4 with respect to the upper swinging body 202.
  • the arm 206 rotates up and down and back and forth with respect to the boom 205 by the expansion and contraction of the arm cylinder 8, and the bucket 207 moves up and down and front and back with respect to the arm 206 by the expansion and contraction of the bucket cylinder 208. Rotate.
  • circuit portions related to hydraulic actuators such as the left and right traveling motors 201 b and 201 b, the turning motor 202 a, and the bucket cylinder 208 are omitted.
  • the boom cylinder 4 is the weight of the front work machine 203 including the boom 205 when the operation lever 6a of the first operating device 6 is operated in the boom lowering direction (the direction in which the first driven body falls).
  • This is a hydraulic cylinder that discharges pressure oil from the bottom side oil chamber and sucks pressure oil from the rod side oil chamber due to falling by its own weight.
  • the hydraulic drive system of the present invention is disposed in the bottom side conduit 15 of the boom cylinder 4 and the flow rate of the pressure oil discharged from the bottom side oil chamber of the boom cylinder 4.
  • the regeneration control valve 17 and the regeneration control valve 17 which can be distributed and adjusted between the control valve 5 side (tank side) and the pressure oil supply line 11 a side (regeneration passage side) of the arm cylinder 8.
  • One end port is connected to one outlet port and the other end is connected to the pressure oil supply pipe 11a, and the bottom side pipe 15 branches from the bottom side pipe 15 and the rod side pipe 13 of the boom cylinder 4, respectively.
  • a communication passage 14 that connects the passage 15 and the rod side pipe line 13, and is arranged in the communication passage 14, and is opened based on the operation pilot pressure Pbd (operation signal) in the boom lowering direction BD of the first operation device 6,
  • Boom cylinder Part of the oil discharged from the bottom side oil chamber is regenerated and supplied to the rod side oil chamber of the boom cylinder 4, and the bottom side oil chamber of the boom cylinder 4 is communicated with the rod side oil chamber.
  • a communication control valve 16 an electromagnetic proportional valve 22, pressure sensors 23, 24, 25, and 26, and a controller 27.
  • the regeneration control valve 17 has a tank side passage (first throttle) and a regeneration side so that oil discharged from the bottom oil chamber of the boom cylinder 4 can flow to the tank side (control valve 5 side) and the regeneration passage 18 side. And a passage (second throttle).
  • the stroke of the regeneration control valve 17 is controlled by one electromagnetic proportional valve 22 (electric drive device).
  • the other outlet port of the regeneration control valve 17 is connected to the port of the control valve 5.
  • the regeneration control valve 17 transfers at least part of the pressure oil discharged from the bottom side oil chamber of the boom cylinder 4 between the hydraulic pump 1 and the arm cylinder 8 via the regeneration passage 18.
  • a regenerative flow rate adjusting device for adjusting and supplying the flow rate, and a discharge flow rate adjusting device for adjusting at least a part of the pressure oil discharged from the bottom side oil chamber of the boom cylinder 4 and discharging it to the tank.
  • the communication control valve 16 has an operation portion 16a, and is opened when the operation pilot pressure Pbd in the boom lowering direction BD of the first operation device 6 is transmitted to the operation portion 16a.
  • the pressure sensor 23 is connected to the pilot line 6d to detect the operation pilot pressure Pbd in the boom lowering direction BD of the first operating device 6, and the pressure sensor 25 is connected to the bottom line 15 of the boom cylinder 4, 4, the pressure sensor 26 is connected to the pressure oil supply line 11 a on the arm cylinder 8 side and detects the discharge pressure of the hydraulic pump 1.
  • the pressure sensor 24 is connected to the pilot conduit 10d of the second operating device 10, and detects the operating pilot pressure Pad in the arm dump direction of the second operating device 10.
  • the controller 27 inputs the detection signals 123, 124, 125, 126 from the pressure sensors 23, 24, 25, 26, performs a predetermined calculation based on these signals, and controls the electromagnetic proportional valve 22 and the regulator 1a. Is output.
  • the electromagnetic proportional valve 22 as an electric drive device operates according to a control command from the controller 27.
  • the electromagnetic proportional valve 22 converts the primary pressure of the pressure oil supplied from the pilot pump 3 which is a pilot hydraulic power source into a desired pressure (secondary pressure) and outputs it to the operation unit 17a of the regeneration control valve 17 for regeneration.
  • the opening degree (opening area) is controlled by controlling the stroke of the control valve 17.
  • FIG. 3 is a characteristic diagram showing an opening area characteristic of the regeneration control valve constituting the first embodiment of the hydraulic drive system for the working machine of the present invention.
  • the horizontal axis in FIG. 3 indicates the spool stroke of the regeneration control valve 17, and the vertical axis indicates the opening area.
  • the bottom side pipe line 15 of the boom cylinder 4 is connected to the rod side pipe line 13, and the discharged oil in the bottom side oil chamber of the boom cylinder 4 is one. Is supplied to the rod side oil chamber of the boom cylinder 4. As a result, the generation of negative pressure in the rod-side oil chamber is prevented, and the supply of pressure oil from the hydraulic pump 1 to the rod-side oil chamber of the boom cylinder 4 is interrupted by switching the control valve 5. The output of the hydraulic pump 1 is suppressed and fuel consumption can be reduced.
  • the operated pilot pressure Pbd is input to the operation portion 5 b of the control valve 5 and the operation portion 16 a of the communication control valve 16.
  • the control valve 5 is switched to the position on the left side of the figure, and the bottom pipe line 15 communicates with the tank pipe line 7b, whereby the pressure oil is discharged from the bottom side oil chamber of the boom cylinder 4 to the tank.
  • the piston rod performs a reduction operation (boom lowering operation).
  • the operating pilot pressure Pad generated from the pilot valve 10 b of the second operating device 10 is input to the operating unit 9 b of the control valve 9.
  • the control valve 9 is switched, and the bottom line 20 communicates with the tank line 11b and the rod line 21 communicates with the pressure oil supply line 11a, whereby the pressure oil in the bottom side oil chamber of the arm cylinder 8 is obtained.
  • the oil discharged from the hydraulic pump 1 is supplied to the rod side oil chamber of the arm cylinder 8.
  • the piston rod of the arm cylinder 8 is contracted.
  • the controller 27 receives detection signals 123, 124, 125, and 126 from the pressure sensors 23, 24, 25, and 26, and outputs a control command to the electromagnetic proportional valve 22 and the regulator 1a of the hydraulic pump 1 by a control logic described later. To do.
  • the electromagnetic proportional valve 22 generates a control pressure (secondary pressure) according to the control command, and the regeneration control valve 17 is controlled by this control pressure, and a part of the pressure oil discharged from the bottom side oil chamber of the boom cylinder 4. Alternatively, the whole is regenerated and supplied to the arm cylinder 8 via the regeneration control valve 17.
  • the regulator 1a of the hydraulic pump 1 controls the tilt angle of the hydraulic pump 1 based on the control command, and appropriately controls the pump flow rate so as to maintain the target speed of the arm cylinder 8.
  • the controller 27 generally has the following two functions.
  • the controller 27 operates when the first operating device 6 is operated in the boom lowering direction BD, which is the direction in which the boom 205 (first driven body) falls, and the second operating device 10 is operated at the same time.
  • the regeneration control valve 17 By switching the regeneration control valve 17 from the normal position when the pressure in the bottom oil chamber of the cylinder 4 is higher than the pressure in the pressure oil supply line 11a between the hydraulic pump 1 and the arm cylinder 8, the bottom of the boom cylinder 4 The oil discharged from the side oil chamber is regenerated in the rod side oil chamber of the arm cylinder.
  • the stroke of the regeneration control valve 17 is reduced to reduce the opening area of the regeneration side passage, and the opening area of the tank side passage is widened.
  • the opening area of the regeneration side passage is increased and the opening area of the tank side passage is reduced.
  • the opening area of the regeneration side passage is set to the maximum value, and the tank side opening is controlled to be closed.
  • the differential pressure is small at the beginning of movement, and the differential pressure increases with time. Therefore, by gradually opening the opening area of the regeneration side passage according to the differential pressure, the switching shock can be suppressed and good operability can be realized.
  • the speed of the piston rod of the boom cylinder may be slow because the regeneration flow rate is small even if the regeneration side opening is widened. Therefore, when the differential pressure is small, the opening area of the tank side passage is widened to increase the discharge flow rate from the bottom oil chamber and control the speed of the boom cylinder piston rod to the speed desired by the operator. is doing. On the other hand, when the differential pressure is large, the regeneration flow rate is sufficiently high. Therefore, the speed of the piston rod of the boom cylinder is prevented from becoming too high by restricting the opening of the tank side passage.
  • the controller 27 controls the regeneration control valve 17 to supply pressure oil from the bottom side oil chamber of the boom cylinder 4 to the pressure oil supply line 11a between the hydraulic pump 1 and the arm cylinder 8, the boom cylinder Control is performed so that the capacity of the hydraulic pump 1 is reduced by the regenerative flow rate supplied from the bottom oil chamber 4 to the pressure oil supply line 11a.
  • the same actuator speed (piston rod of the boom cylinder 4) can be used regardless of whether or not the pressure oil discharged from the hydraulic actuator is regenerated to drive other hydraulic actuators or regardless of the regenerative flow rate of the pressure oil.
  • Speed the same boom dropping speed can be realized in any case.
  • FIG. 4 is a block diagram of a controller constituting the first embodiment of the hydraulic drive system for the work machine according to the present invention.
  • the controller 27 includes an adder 130, a function generator 131, a function generator 133, a function generator 134, a function generator 135, a multiplier 136, a multiplier 138, a function generator 139, and a multiplier. 140, a multiplier 142, an adder 144, and an output conversion unit 146.
  • a detection signal 123 is a signal (lever operation signal) obtained by detecting the operation pilot pressure Pbd in the boom lowering direction of the operation lever 6a of the first operation device 6 by the pressure sensor 23, and the detection signal 124 is the second operation device.
  • 10 is a signal (lever operation signal) obtained by detecting the operation pilot pressure Pad in the arm dump direction of the 10 operation lever 10a by the pressure sensor 24, and the detection signal 125 is the pressure of the bottom side oil chamber of the boom cylinder 4 (bottom side line 15).
  • the detection signal 126 is a signal (pump pressure) detected by the pressure sensor 26 of the discharge pressure of the hydraulic pump 1 (pressure of the pressure oil supply line 11a). Signal).
  • the adder 130 receives the bottom pressure signal 125 and the pump pressure signal 126, and the deviation between the bottom pressure signal 125 and the pump pressure signal 126 (the difference between the pressure in the bottom side oil chamber of the boom cylinder 4 and the discharge pressure of the hydraulic pump 1).
  • the differential pressure signal is input to the function generator 131 and the function generator 132.
  • the function generator 131 calculates the opening area of the regeneration side passage of the regeneration control valve 17 according to the differential pressure signal obtained by the adder 130, and the opening area characteristic of the regeneration control valve 17 shown in FIG. The characteristics are set based on this. Specifically, when the differential pressure is small, the stroke of the regeneration control valve 17 is reduced to reduce the opening area of the regeneration side passage and widen the opening area of the tank side passage. On the other hand, when the differential pressure is large, the opening area on the regeneration passage side is widened, and when the differential pressure reaches a certain value, the opening area on the regeneration side passage is maximized and the opening on the tank side passage is closed.
  • the function generator 133 calculates a reduced flow rate (hereinafter referred to as a pump reduced flow rate) of the hydraulic pump 1 in accordance with the differential pressure signal obtained by the adder 130. As the differential pressure increases due to the characteristics of the function generator 131, the opening area of the regeneration side passage increases and the regeneration flow rate increases. From this, the pump reduction flow rate is set to increase as the differential pressure increases.
  • the function generator 134 calculates a coefficient used in the multiplier in accordance with the lever operation signal 123 of the first operating device 6, and outputs a minimum value 0 when the lever operation signal 123 is 0. The output is increased as 123 increases, and 1 is output as the maximum value.
  • the multiplier 136 receives the opening area calculated by the function generator 131 and the value calculated by the function generator 134, and outputs the multiplication value as the opening area.
  • the function generator 134 outputs a small value from the range of 0 to 1, and outputs the aperture area calculated by the function generator 131 as a smaller value.
  • the function generator 134 outputs a large value from the range of 0 or more and 1 or less, reduces the reduction amount of the opening area calculated by the function generator 131, and outputs a large opening area value.
  • the multiplier 138 inputs the pump reduced flow rate calculated by the function generator 133 and the value calculated by the function generator 134, and outputs the multiplied value as the pump reduced flow rate.
  • the function generator 134 outputs a small value from the range of 0 or more and 1 or less, and outputs the pump reduction flow rate calculated by the function generator 133 as a smaller value.
  • the function generator 134 outputs a large value from the range of 0 or more and 1 or less, reduces the decrease amount of the pump reduction flow rate calculated by the function generator 133, and outputs a large pump reduction flow rate value.
  • the function generator 135 calculates a coefficient used in the multiplier in accordance with the lever operation signal 124 of the second operating device 10, and outputs a minimum value 0 when the lever operation signal 124 is 0. The output is increased as 124 increases, and 1 is output as the maximum value.
  • the multiplier 140 receives the opening area calculated by the multiplier 136 and the value calculated by the function generator 135, and outputs the multiplication value as the opening area.
  • the function generator 135 outputs a small value from the range of 0 to 1, and outputs the aperture area corrected by the multiplier 136 as a smaller value.
  • the function generator 135 outputs a large value from the range of 0 or more and 1 or less, reduces the reduction amount of the opening area corrected by the multiplier 136, and outputs a large opening area value.
  • the multiplier 142 inputs the pump reduction flow rate calculated by the multiplier 138 and the value calculated by the function generator 135, and outputs the multiplication value as the pump reduction flow rate.
  • the function generator 135 outputs a small value from the range of 0 or more and 1 or less, and outputs the pump reduced flow corrected by the multiplier 138 as a smaller value.
  • the function generator 135 outputs a large value from the range of 0 or more and 1 or less, reduces the decrease amount of the pump reduction flow rate corrected by the multiplier 138, and outputs a large pump reduction flow rate value.
  • the function generator 131 the piston rod speed of the boom cylinder 4 does not change greatly depending on whether the oil discharged from the bottom side oil chamber of the boom cylinder 4 is regenerated in the arm cylinder 8 or not. It is desirable to adjust the setting tables 133, 134, and 135.
  • the operation of regenerating the oil discharged from the bottom side oil chamber of the boom cylinder 4 to the arm cylinder 8 is mainly a horizontal pulling operation
  • the pressure in the rod side oil chamber is a value with a certain tendency. For this reason, if each part pressure at the time of the horizontal pulling operation is collected, the pressure waveform is analyzed, and the setting table of the function generator is adjusted, the opening area of the regeneration control valve 17 can be set to an optimum value.
  • the function generator 139 calculates a pump request flow rate according to the lever operation signal 124 of the second operating device 10.
  • a characteristic is set such that a minimum flow rate is output from the hydraulic pump 1. The purpose of this is to improve the responsiveness when the operation lever 10a of the second operating device 10 is inserted and to prevent seizure of the hydraulic pump 1. Further, as the lever operation signal 124 increases, the discharge flow rate of the hydraulic pump 1 is increased, and the flow rate of the pressure oil flowing into the arm cylinder 8 is increased. Thereby, the piston rod speed of the arm cylinder 8 corresponding to the operation amount is realized.
  • the adder 144 receives the pump reduction flow rate calculated by the multiplier 142 and the pump request flow rate calculated by the function generator 139, and subtracts the pump reduction flow rate, that is, the regeneration flow rate, from the pump request flow rate to obtain the target pump flow rate. Is calculated.
  • the output converter 146 receives the output from the multiplier 140 and the output from the adder 144, and outputs an electromagnetic valve command 222 to the electromagnetic proportional valve 22 and a tilt command 201 to the regulator 1a of the hydraulic pump 1, respectively. Is done.
  • the electromagnetic proportional valve 22 converts the primary pressure of the pressure oil supplied from the pilot pump 3 into a desired pressure (secondary pressure) and outputs it to the operation unit 17a of the regeneration control valve 17 for regeneration control.
  • the opening degree (opening area) is controlled by controlling the stroke of the valve 17.
  • the regulator 1a controls the tilt angle (capacity) of the hydraulic pump 1, whereby the discharge flow rate is controlled.
  • the hydraulic pump 1 is controlled so as to reduce the capacity by the regeneration flow rate supplied from the bottom side of the boom cylinder 4 to the pressure oil supply pipe 11a.
  • the signal of the operating pilot pressure Pbd detected by the pressure sensor 23 is input to the controller 27 as the lever operating signal 123.
  • the signal of the operating pilot pressure Pad detected by the pressure sensor 24 is input to the controller 27 as the lever operating signal 124.
  • the signals of the bottom side oil chamber of the boom cylinder 4 and the discharge pressure of the hydraulic pump 1 detected by the pressure sensors 25 and 26 are input to the controller 27 as a bottom pressure signal 125 and a pump pressure signal 126.
  • the bottom pressure signal 125 and the pump pressure signal 126 are input to the adder 130 to calculate a differential pressure signal.
  • the differential pressure signal is input to the function generator 131 and the function generator 133 to calculate the opening area of the regeneration side passage of the regeneration control valve 17 and the pump reduction flow rate, respectively.
  • the lever operation signal 123 is input to the function generator 134, and the function generator 134 calculates a correction signal corresponding to the lever operation amount and outputs the correction signal to the multiplier 136 and the multiplier 138.
  • the multiplier 136 corrects the opening area of the regeneration side passage output from the function generator 131, and the multiplier 138 corrects the pump reduction flow rate output from the function generator 133.
  • the function generator 135 calculates a correction signal corresponding to the lever operation amount and outputs the correction signal to the multiplier 140 and the multiplier 142.
  • the multiplier 140 further corrects the corrected regeneration-side passage opening area output from the multiplier 136 and outputs it to the output converter 146, and the multiplier 142 corrects the corrected pump reduction flow rate output from the multiplier 138. Is further corrected and output to the adder 144.
  • the output conversion unit 146 converts the corrected opening area of the regeneration-side passage into an electromagnetic valve command 222 and outputs the electromagnetic valve command 222 to the electromagnetic proportional valve 22.
  • the stroke of the regeneration control valve 17 is controlled.
  • the regeneration control valve 17 is set to an opening area corresponding to the pressure difference between the pressure in the bottom side oil chamber of the boom cylinder 4 and the discharge pressure of the hydraulic pump 1, and the discharged oil from the bottom side oil chamber of the boom cylinder 4. Is regenerated to the arm cylinder 8.
  • the lever operation signal 124 is input to the function generator 139, and the function generator 139 calculates a pump request flow rate corresponding to the lever operation amount and outputs it to the adder 144.
  • the calculated pump request flow rate and pump reduction flow rate are input to the adder 144, and the target pump flow rate is calculated by subtracting the pump reduction flow rate, that is, the regeneration flow rate, from the pump request flow rate and output to the output conversion unit 146.
  • the output conversion unit 146 converts this target pump flow rate into the tilt command 201 of the hydraulic pump 1 and outputs it to the regulator 1a.
  • the arm cylinder 8 is controlled to a desired speed according to the operation signal (operation pilot pressure Pad) of the second operating device 10, and the hydraulic pressure is reduced by reducing the discharge flow rate of the hydraulic pump 1 by the regeneration flow rate. It is possible to reduce the fuel consumption of the engine that drives the pump 1 and to save energy.
  • the regeneration control valve 17 gradually increases the opening area of the regeneration side passage in accordance with the pressure difference between the pressure in the bottom side oil chamber of the boom cylinder 4 and the discharge pressure of the hydraulic pump 1. Switching shock is suppressed, and good operability can be realized.
  • the differential pressure, the operation amount of the first operating device 6 and the operation amount of the second operating device 10 are all small, the opening area of the regeneration side passage of the regeneration control valve 17 is set small, and the tank Since the opening area of the side passage is set large, the tank side flow rate increases even if the regeneration flow rate is small. As a result, the piston rod speed of the boom cylinder desired by the operator can be secured.
  • the opening area of the regeneration side passage of the regeneration control valve 17 is set large, and the opening of the tank side passage is set. Since the area is set small, it is possible to suppress the boom rod piston rod speed from becoming too fast, and to secure the boom cylinder piston rod speed desired by the operator. Further, by reducing the discharge flow rate of the hydraulic pump 1 in accordance with the regeneration flow rate, the speed desired by the operator can be secured with respect to the piston rod speed of the arm cylinder 8.
  • the same actuator speed (piston rod of the boom cylinder 4) can be used regardless of whether or not the pressure oil discharged from the hydraulic actuator is regenerated to drive other hydraulic actuators or regardless of the regenerative flow rate of the pressure oil.
  • Speed the same boom dropping speed can be realized in any case.
  • the pressure oil discharged from the hydraulic actuator 4 is the same whether or not it is regenerated to drive another hydraulic actuator 8.
  • the actuator speed can be ensured, and the electromagnetic proportional valve 22 (electric drive device) for the regeneration circuit can be constituted by one. As a result, good operability can be realized, and cost reduction and mountability can be improved.
  • FIG. 5 is a schematic diagram of a control system showing a second embodiment of the hydraulic drive system for the work machine of the present invention
  • FIG. 6 is a tank constituting the second embodiment of the hydraulic drive system for the work machine of the present invention
  • FIG. 7 is a characteristic diagram showing the opening area characteristic of the regeneration side control valve constituting the second embodiment of the hydraulic drive system for the working machine of the present invention. 5 to 7, the same reference numerals as those shown in FIGS. 1 to 4 are the same parts, and the detailed description thereof is omitted.
  • a tank side control valve 41 as a discharge flow rate adjusting device is provided in the bottom side line 15 instead of the regeneration control valve 17 shown in FIG. 18 is different from the first embodiment in that a regeneration side control valve 40 is provided as a regeneration flow rate adjusting device 18.
  • the stroke of the tank side control valve 41 and the stroke of the regeneration side control valve 40 are controlled by one electromagnetic proportional valve 22.
  • the electromagnetic proportional valve 22 as an electric drive device operates according to a control command from the controller 27.
  • the electromagnetic proportional valve 22 converts the primary pressure of the pressure oil supplied from the pilot pump 3 into a desired pressure (secondary pressure) and operates the operation unit 41a of the tank side control valve 41 and the operation unit of the regeneration side control valve 40. 40a and controlling the stroke of the tank side control valve 41 and the stroke of the regeneration side control valve 40 to control the opening degree (opening area) of each valve.
  • FIG. 6 shows the opening area characteristic of the tank side control valve 41
  • FIG. 7 shows the opening area characteristic of the regeneration side control valve 40, respectively.
  • These horizontal axes indicate the spool stroke of each valve, and the vertical axis indicates the opening area.
  • the degree of freedom in designing the opening area of the regeneration side passage and the opening area of the tank side passage is increased, so that finer matching is achieved. Setting is possible. As a result, the fuel consumption reduction effect can be further improved.
  • FIG. 8 is a schematic diagram of a control system showing a third embodiment of a hydraulic drive system for a work machine according to the present invention.
  • FIG. 8 the same reference numerals as those shown in FIG. 1 to FIG.
  • regeneration control valve 42 which consists of an electromagnetic proportional valve provided in the valve part 42B and was equipped with the electromagnetic solenoid part 42A directly controlled from the controller 27 differs from 1st Embodiment.
  • the electric drive device corresponds to the electromagnetic solenoid portion 42A.
  • the regeneration control valve 42 constitutes the regeneration flow rate adjusting device and the exhaust flow rate adjusting device.
  • FIG. 9 is a schematic diagram of a control system showing a fourth embodiment of a hydraulic drive system for a work machine according to the present invention.
  • the same reference numerals as those shown in FIGS. 1 to 8 are the same parts, and detailed description thereof is omitted.
  • the boom cylinder 4 is connected to the bottom pipe line 15 between the regeneration control valve 17 and the bottom oil chamber of the boom cylinder 4 shown in FIG.
  • emit the discharged oil from the bottom side oil chamber to a tank differs from 1st Embodiment.
  • the regeneration flow rate adjusting device is configured by the regeneration control valve 17, and the exhaust flow rate adjusting device is configured by the regeneration control valve 17 and the control valve 43.
  • the control valve 43 includes the operation unit 43a, When the operation pilot pressure Pbd in the boom lowering direction BD of the first operating device 6 is transmitted to the operation unit 43a, the valve is opened, and the discharged oil from the bottom side oil chamber of the boom cylinder 4 is discharged to the tank.
  • the opening area of the control valve 43 is set to be sufficiently smaller than the opening area connected to the tank conduit 7 b of the control valve 5.
  • the regeneration control valve 17 is inadvertently switched due to a failure of the controller 27 or the like, and the bottom side oil chamber Even when there is no longer any discharge location, the control valve 43 can discharge, thus preventing a sudden stop of the boom.
  • control valve for supplying pressure oil during the raising operation of the boom cylinder 4 is usually composed of two or more. For this reason, you may comprise so that the function like the control valve 43 mentioned above may be given to any one of two or more control valves. In this case, it is not necessary to additionally install the control valve 43 on the circuit, and a control valve arranged conventionally can be used.
  • the hydraulic drive system for the work machine can be stably operated. To do.
  • the present invention is not limited to the above-described embodiments, and includes various modifications within the scope not departing from the gist thereof.
  • the present invention can be applied to the first object when the first operating device is operated in the direction in which the first driven body falls.
  • the working machine is equipped with a hydraulic cylinder that discharges pressure oil from the bottom side and sucks pressure oil from the rod side due to its own weight drop, it can be applied to other work machines such as hydraulic cranes and wheel loaders. .
  • 1 hydraulic pump, 1a: regulator, 3: pilot pump (pilot hydraulic source), 4: boom cylinder (first hydraulic actuator), 5: control valve, 6: first operating device, 6a: operating lever, 6b: pilot Valve, 6c, 6d: Pilot pipe line, 8: Arm cylinder (second hydraulic actuator), 9: Control valve, 10: First operating device, 10a: Operating lever, 10b: Pilot valve, 10c, 10d: Pilot pipe line 7a, 11a: Pressure oil supply line, 7b, 11b: Tank line, 12: Overload relief valve with make-up, 13: Rod side line, 14: Communication line, 15: Bottom side line, 16: Communication control valve, 17: Regeneration control valve, 18: Regeneration passage, 19: Overload relief valve with make-up, 20: Bottom side line, 21: B 22: Electromagnetic proportional valve (electric drive device), 27: Controller, 40: Regeneration side control valve, 41: Tank side control valve, 42: Regeneration control valve, 43: Control valve, 123: Lever operation signal 124: Lever operation signal, 125:

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

 再生回路用の電磁比例弁を1個で構成し、油圧アクチュエータから排出された圧油を他の油圧アクチュエータの駆動に再生する場合としない場合とで、同様のアクチュエータ速度を確保できる作業機械の油圧駆動システムを提供する。 油圧シリンダ4のボトム側油室を油圧ポンプ装置50と第2油圧アクチュエータ8との間に接続する再生通路と排出される圧油の少なくとも一部を油圧ポンプ装置50と第2油圧アクチュエータの間に、その流量を調整して供給する再生流量調整装置と、排出される圧油の流量を調整してタンクに排出する排出流量調整装置と、再生流量調整装置と排出流量調整装置とを同時に制御する1つの電気駆動装置22と、再生流量調整装置による再生流量の多少にかかわらず、第1被駆動体の落下速度が大きく変化しないように、電気駆動装置へ制御指令を出力する制御装置27を備えた。

Description

作業機械の油圧駆動システム
 本発明は、作業機械の油圧駆動システムに係り、詳しくは、被駆動部材(例えばブーム)の自重落下等、被駆動部材の慣性エネルギにより油圧アクチュエータから排出された圧油を他のアクチュエータの駆動に再利用(再生)する再生回路を備えた油圧ショベル等の作業機械の油圧駆動システムに関する。
 ブームの自重落下によりブームシリンダから排出された圧油を例えばアームシリンダに再生する再生回路を備えた作業機械の油圧駆動システムが知られており、その例が特許文献1と特許文献2に記載されている。特許文献1に記載の油圧駆動システムでは、ブームシリンダのボトム側油室からの排出油をアームシリンダへ再生するときに、その分、アームシリンダに圧油を供給する油圧ポンプの吐出流量を減少させ、エンジンの燃費の向上を図っている。
 また、特許文献2に記載の油圧駆動システムでは、ブームシリンダのボトム側油室からの排出油を所定の条件の成立を判断した上で、センターバイパス油路を介してアームシリンダへ再生させることで、油圧回路の大型化及び複雑化を回避している。
特許第5296570号公報 特許第5301601号公報
 特許文献1の油圧駆動システムでは、ブームシリンダのボトム側油室からアームシリンダへの圧油の再生分、油圧ポンプの吐出流量を減少させ燃費向上を図るため、省エネルギ化を図ることができる。しかし、回生弁を制御する電磁比例弁とメータアウト弁を制御する電磁比例弁の2個の電磁比例弁が必要となるため、作業機械への搭載性能が悪化すると共に、生産コストが増大するという課題がある。
 一方、特許文献2の油圧駆動システムにおいては、1個の電磁比例弁で構成するため、このような課題は生じない。 
 しかし、特許文献2の油圧駆動システムは、所定の条件が成立せずに再生が行われない場合、ブームシリンダのボトム側油室からの排出油は1個の流量制御弁によりその流量が調整されるのに対して、条件が成立した場合、ブームシリンダのボトム側油室からの排出油は、上述した流量制御弁に加えて他の流量制御弁を介してセンターバイパス油路へ供給される。このため、再生を行う場合には、再生しない場合に比べて排出油の流量が増加し、ブームシリンダのピストンロッド速度が増加する可能性がある。このブームシリンダのピストンロッド速度の増加は、再生をする場合としない場合における操作性の違和感をオペレータに与える可能性がある。
 本発明は上述の事柄に基づいてなされたもので、その目的は、再生回路用の電磁比例弁(電気駆動装置)を1個で構成すると共に、油圧アクチュエータから排出された圧油を他の油圧アクチュエータの駆動に再生する場合としない場合とで、同様のアクチュエータ速度を確保できる作業機械の油圧駆動システムを提供することにある。
 上記の目的を達成するために、第1の発明は、油圧ポンプ装置と、前記油圧ポンプ装置から圧油が供給され第1被駆動体を駆動する第1油圧アクチュエータと、前記油圧ポンプ装置から圧油が供給され第2被駆動体を駆動する第2油圧アクチュエータと、前記油圧ポンプ装置から前記第1油圧アクチュエータに供給される圧油の流れを制御する第1流量調整装置と、前記油圧ポンプ装置から前記第2油圧アクチュエータに供給される圧油の流れを制御する第2流量調整装置と、前記第1被駆動体の動作を指令する操作信号を出力し前記第1流量調整装置を切り換える第1操作装置と、前記第2被駆動体の動作を指令する操作信号を出力し前記第2流量調整装置を切り換える第2操作装置とを備え、前記第1油圧アクチュエータは、前記第1操作装置が前記第1被駆動体の自重落下方向に操作されたときに、前記第1被駆動体の自重落下によりボトム側油室から圧油を排出しロッド側油室から圧油を吸入する油圧シリンダである作業機械の油圧駆動システムにおいて、前記油圧シリンダのボトム側油室を前記油圧ポンプ装置と前記第2油圧アクチュエータとの間に接続する再生通路と、前記油圧シリンダのボトム側油室から排出される圧油の少なくとも一部を前記再生通路を介して前記油圧ポンプ装置と前記第2油圧アクチュエータの間に、その流量を調整して供給する再生流量調整装置と、前記油圧シリンダのボトム側油室から排出される圧油の少なくとも一部を、その流量を調整してタンクに排出する排出流量調整装置と、前記再生流量調整装置と前記排出流量調整装置とを同時に制御する1つの電気駆動装置と、前記再生流量調整装置による再生流量の多少にかかわらず、前記第1被駆動体の落下速度が同様となるように、前記電気駆動装置へ制御指令を出力する制御装置を備えたものとする。
 本発明によれば、油圧アクチュエータから排出された圧油を他の油圧アクチュエータの駆動に再生する場合としない場合とで、同様のアクチュエータ速度を確保でき、再生回路用の電磁比例弁(電気駆動装置)を1個で構成することができる。この結果、良好な操作性が実現できると共に、低コスト化と搭載性の向上が図れる。
本発明の作業機械の油圧駆動システムの第1の実施の形態を示す制御システムの概略図である。 本発明の作業機械の油圧駆動システムの第1の実施の形態を搭載した油圧ショベルを示す側面図である。 本発明の作業機械の油圧駆動システムの第1の実施の形態を構成する再生制御弁の開口面積特性を示す特性図である。 本発明の作業機械の油圧駆動システムの第1の実施の形態を構成するコントローラのブロック図である。 本発明の作業機械の油圧駆動システムの第2の実施の形態を示す制御システムの概略図である。 本発明の作業機械の油圧駆動システムの第2の実施の形態を構成するタンク側制御弁の開口面積特性を示す特性図である。 本発明の作業機械の油圧駆動システムの第2の実施の形態を構成する再生側制御弁の開口面積特性を示す特性図である。 本発明の作業機械の油圧駆動システムの第3の実施の形態を示す制御システムの概略図である。 本発明の作業機械の油圧駆動システムの第4の実施の形態を示す制御システムの概略図である。
 以下、本発明の作業機械の油圧駆動システムの実施の形態を図面を用いて説明する。
 図1は本発明の作業機械の油圧駆動システムの第1の実施の形態を示す制御システムの概略図である。
 図1において、本実施の形態の油圧駆動システムは、メインの油圧ポンプ1及びパイロットポンプ3を含むポンプ装置50と、油圧ポンプ1から圧油が供給され、第1被駆動体である油圧ショベルのブーム205(図2参照)を駆動するブームシリンダ4(第1油圧アクチュエータ)と、油圧ポンプ1から圧油が供給され、第2被駆動体である油圧ショベルのアーム206(図2参照)を駆動するアームシリンダ8(第2油圧アクチュエータ)と、油圧ポンプ1からブームシリンダ4に供給される圧油の流れ(流量と方向)を制御する制御弁5(第1流量調整装置)と、油圧ポンプ1からアームシリンダ8に供給される圧油の流れ(流量と方向)を制御する制御弁9(第2流量調整装置)と、ブームの動作指令を出力し制御弁5を切り換える第1操作装置6と、アームの動作指令を出力し制御弁9を切り換える第2操作装置10とを備えている。油圧ポンプ1は図示しない他のアクチュエータにも圧油が供給されるように図示しない制御弁にも接続されているが、それらの回路部分は省略している。
 油圧ポンプ1は可変容量型であり、レギュレータ1aを備え、コントローラ27(後述)からの制御信号によってレギュレータ1aを制御することで油圧ポンプ1の傾転角(容量)が制御され、吐出流量が制御される。また、図示はしないが、レギュレータ1aは公知の如く、油圧ポンプ1の吐出圧が導かれ、油圧ポンプ1の吸収トルクが予め定めた最大トルクを超えないように油圧ポンプ1の傾転角(容量)を制限するトルク制御部を有している。油圧ポンプ1は圧油供給管路7a,11aを介して制御弁5,9に接続され、油圧ポンプ1の吐出油は制御弁5,9に供給される。
 流量調整装置である制御弁5,9は、それぞれ、ボトム側管路15,20又はロッド側管路13,21を介してブームシリンダ4及びアームシリンダ8のボトム側油室或いはロッド側油室に接続され、制御弁5,9の切換位置に応じて、油圧ポンプ1の吐出油は制御弁5,9からボトム側管路15,20又はロッド側管路13,21を介してブームシリンダ4及びアームシリンダ8のボトム側油室或いはロッド側油室に供給される。ブームシリンダ4から排出された圧油は、少なくともその一部が制御弁5からタンク管路7bを介してタンクに環流される。アームシリンダ8から排出された圧油は、その全てが制御弁9からタンク管路11bを介してタンクに環流される。
 なお、本実施の形態においては、油圧ポンプ1から各油圧アクチュエータ4,8に供給される圧油の流れ(流量と方向)を制御する流量調整装置を、それぞれ1つの制御弁5,9で構成する場合を例に説明するが、これに限るものではない。流量調整装置は、複数のバルブで供給する構成でも良いし、供給と排出を別々のバルブで構成するものでも良い。
 第1及び第2操作装置6,10は、それぞれ、操作レバー6a,10aとパイロット弁6b,10bとを有し、パイロット弁6b,10bは、それぞれ、パイロット管路6c,6d及びパイロット管路10c,10dを介して制御弁5の操作部5a,5b及び制御弁9の操作部9a,9bに接続されている。
 操作レバー6aがブーム上げ方向BU(図示左方向)に操作されると、パイロット弁6bは操作レバー6aの操作量に応じた操作パイロット圧Pbuを生成し、この操作パイロット圧Pbuはパイロット管路6cを介して制御弁5の操作部5aに伝えられ、制御弁5はブーム上げ方向(図示右側の位置)に切り換えられる。操作レバー6aがブーム下げ方向BD(図示右方向)に操作されると、パイロット弁6bは操作レバー6aの操作量に応じた操作パイロット圧Pbdを生成し、この操作パイロット圧Pbdはパイロット管路6dを介して制御弁5の操作部5bに伝えられ、制御弁5はブーム下げ方向(図示左側の位置)に切り換えられる。
 操作レバー10aがアームクラウド方向AC(図示右方向)に操作されると、パイロット弁10bは操作レバー10aの操作量に応じた操作パイロット圧Pacを生成し、この操作パイロット圧Pacはパイロット管路10cを介して制御弁9の操作部9aに伝えられ、制御弁9はアームクラウド方向(図示左側の位置)に切り換えられる。操作レバー10aがアームダンプ方向AD(図示左方向)に操作されると、パイロット弁10bは操作レバー10aの操作量に応じた操作パイロット圧Padを生成し、この操作パイロット圧Padはパイロット管路10dを介して制御弁9の操作部9bに伝えられ、操作弁9はアームダンプ方向(図示右側の位置)に切り換えられる。
 ブームシリンダ4のボトム側管路15とロッド側管路13との間、アームシリンダ8のボトム側管路20とロッド側管路21との間には、それぞれ、メイクアップ付きオーバーロードリリーフ弁12,19が接続されている。メイクアップ付きオーバーロードリリーフ弁12,19は、ボトム側管路15,20及びロッド側管路13,21の圧力が上がりすぎることにより油圧回路機器が損傷することを防ぐ機能と、ボトム側管路15,20及びロッド側管路13,21が負圧になることによりキャビテーションが発生することを低減する機能を有している。
 なお、本実施の形態は、ポンプ装置50が1つのメインポンプ(油圧ポンプ1)を含む場合のものであるが、ポンプ装置50は複数(例えば2つ)のメインポンプを含み、制御弁5,9に別々のメインポンプを接続し、ブームシリンダ4とアームシリンダ8に別々のメインポンプから圧油を供給するようにしても良い。
 図2は、本発明の作業機械の油圧駆動システムの第1の実施の形態を搭載した油圧ショベルを示す側面図である。
 油圧ショベルは下部走行体201と上部旋回体202とフロント作業機203を備えている。下部走行体201は左右のクローラ式走行装置201a,201a(片側のみ図示)を有し、左右の走行モータ201b,201b(片側のみ図示)により駆動される。上部旋回体202は下部走行体201上に旋回可能に搭載され、旋回モータ202aにより旋回駆動される。フロント作業機203は上部旋回体202の前部に俯仰可能に取り付けられている。上部旋回体202にはキャビン(運転室)202bが備えられ、キャビン202b内には上記第1及び第2操作装置6,10や図示しない走行用の操作ペダル装置等の操作装置が配置されている。
 フロント作業機203はブーム205(第1被駆動体)、アーム206(第2被駆動体)、バケット207を有する多関節構造であり、ブーム205はブームシリンダ4の伸縮により上部旋回体202に対して上下方向に回動し、アーム206はアームシリンダ8の伸縮によりブーム205に対して上下及び前後方向に回動し、バケット207はバケットシリンダ208の伸縮によりアーム206に対して上下及び前後方向に回動する。
 図1では、左右の走行モータ201b,201b、旋回モータ202a、バケットシリンダ208等の油圧アクチュエータに係わる回路部分を省略して示している。
 ここで、ブームシリンダ4は、第1操作装置6の操作レバー6aがブーム下げ方向(第1被駆動体の自重落下方向)BDに操作されたときに、ブーム205を含むフロント作業機203の重量に基づく自重落下により、ボトム側油室から圧油を排出しロッド側油室から圧油を吸入する油圧シリンダである。
 図1に戻り、本発明の油圧駆動システムは、上述した構成要素に加えて、ブームシリンダ4のボトム側管路15に配置され、ブームシリンダ4のボトム側油室から排出される圧油の流量を、制御弁5側(タンク側)とアームシリンダ8の圧油供給管路11a側(再生通路側)とに分配調整可能とする2位置3ポートの再生制御弁17と、再生制御弁17の一方の出口ポートに一端側が接続され他端側が圧油供給管路11aに接続される再生通路18と、ブームシリンダ4のボトム側管路15及びロッド側管路13からそれぞれ分岐し、ボトム側管路15及びロッド側管路13とを接続する連通通路14と、連通通路14に配置され、第1操作装置6のブーム下げ方向BDの操作パイロット圧Pbd(操作信号)に基づいて開弁し、ブームシリンダ4のボトム側油室の排出油の一部をブームシリンダ4のロッド側油室に再生して供給するとともに、ブームシリンダ4のボトム側油室をロッド側油室に連通させることでロッド側油室の負圧の発生を防止する連通制御弁16と、電磁比例弁22と、圧力センサ23,24,25,26と、コントローラ27とを備えている。
 再生制御弁17は、ブームシリンダ4のボトム側油室からの排出油をタンク側(制御弁5側)と再生通路18側とに流すことができるようタンク側通路(第1絞り)と再生側通路(第2絞り)とを有している。再生制御弁17のストロークは1個の電磁比例弁22(電気駆動装置)によって制御される。再生制御弁17の他方の出口ポートは、制御弁5のポートと接続している。本実施の形態においては、再生制御弁17が、ブームシリンダ4のボトム側油室から排出される圧油の少なくとも一部を再生通路18を介して油圧ポンプ1とアームシリンダ8の間に、その流量を調整して供給する再生流量調整装置と、ブームシリンダ4のボトム側油室から排出される圧油の少なくとも一部を、その流量を調整してタンクに排出する排出流量調整装置とを構成する。
 連通制御弁16は操作部16aを有し、第1操作装置6のブーム下げ方向BDの操作パイロット圧Pbdが操作部16aに伝えられることにより開弁する。
 圧力センサ23はパイロット管路6dに接続され、第1操作装置6のブーム下げ方向BDの操作パイロット圧Pbdを検出し、圧力センサ25はブームシリンダ4のボトム側管路15に接続され、ブームシリンダ4のボトム側油室の圧力を検出し、圧力センサ26はアームシリンダ8側の圧油供給管路11aに接続され、油圧ポンプ1の吐出圧を検出する。圧力センサ24は、第2操作装置10のパイロット管路10dに接続され、第2操作装置10のアームダンプ方向の操作パイロット圧Padを検出する。
 コントローラ27は、圧力センサ23,24,25,26からの検出信号123,124,125,126を入力し、それらの信号に基づいて所定の演算を行い、電磁比例弁22とレギュレータ1aに制御指令を出力する。
 電気駆動装置としての電磁比例弁22はコントローラ27からの制御指令により動作する。電磁比例弁22は、パイロット油圧源であるパイロットポンプ3から供給された圧油の1次圧を所望の圧力(2次圧)に変換して再生制御弁17の操作部17aに出力し、再生制御弁17のストロークを制御することで開度(開口面積)を制御する。
 図3は、本発明の作業機械の油圧駆動システムの第1の実施の形態を構成する再生制御弁の開口面積特性を示す特性図である。図3の横軸は再生制御弁17のスプールストロークを示し、縦軸は開口面積を示している。
 図3において、スプールストロークが最小の場合(ノーマル位置にある場合)は、タンク側通路が開いており開口面積は最大であり、再生側通路が閉じ開口面積はゼロである。ストロークを徐々に増やしてゆくと、タンク側通路の開口面積が徐々に減少し、再生側通路が開いて開口面積が徐々に増加してゆく。ストロークを更に増加させると、タンク側通路が閉じ(開口面積がゼロとなり)、再生側通路の開口面積は更に増加してゆく。このように構成されている結果、スプールストロークが最小の場合は、ブームシリンダ4のボトム側油室から排出された圧油は再生されることなく、全量が制御弁5側に流入し、ストロークを徐々に右に動かしていくと、ブームシリンダ4のボトム側油室から排出された圧油の一部が再生通路18に流入する。また、ストロークを調整することにより、タンク側通路と再生側通路18の開口面積を変化させることができ、再生流量を制御することができる。
 次に、ブーム下げのみを行う場合の動作の概要について説明する。 
 図1において、第1操作装置6の操作レバー6aがブーム下げ方向BDに操作された場合、第1操作装置6のパイロット弁6bから発生した操作パイロット圧Pbdは制御弁5の操作部5bと連通制御弁16の操作部16aに入力される。それにより制御弁5は図示左側の位置に切換られ、ボトム管路15がタンク管路7bと連通することにより、ブームシリンダ4のボトム側油室から圧油がタンクに排出され、ブームシリンダ4のピストンロッドが縮小動作(ブーム下げ動作)を行う。このとき、ロッド側管路13は圧油供給管路11aと遮断される。
 さらに連通制御弁14が図示下側の連通位置に切換られることにより、ブームシリンダ4のボトム側管路15をロッド側管路13に連通し、ブームシリンダ4のボトム側油室の排出油の一部をブームシリンダ4のロッド側油室に供給する。このことにより、ロッド側油室での負圧の発生を防止すると共に、制御弁5の切換によりブームシリンダ4のロッド側油室への油圧ポンプ1からの圧油の供給が遮断されるので、油圧ポンプ1の出力が抑制され燃費を低減できる。
 次に、ブーム下げとアームの駆動を同時に行う場合の動作の概要について説明する。なお、原理としてはアームダンプをする場合とクラウドする場合で同様のため、アームダンプ動作を例に説明する。
 第1操作装置6の操作レバー6aがブーム下げ方向BDに操作され、同時に第2操作装置10の操作レバー10aがアームダンプ方向ADに操作された場合、第1操作装置6のパイロット弁6bから発生した操作パイロット圧Pbdは制御弁5の操作部5bと連通制御弁16の操作部16aに入力される。それにより制御弁5は図示左側の位置に切換られ、ボトム管路15がタンク管路7bと連通することにより、ブームシリンダ4のボトム側油室から圧油がタンクに排出され、ブームシリンダ4のピストンロッドが縮小動作(ブーム下げ動作)を行う。
 第2操作装置10のパイロット弁10bから発生した操作パイロット圧Padは制御弁9の操作部9bに入力される。それにより制御弁9は切換られ、ボトム管路20がタンク管路11bと連通しかつロッド管路21が圧油供給管路11aと連通することにより、アームシリンダ8のボトム側油室の圧油はタンクに排出され、油圧ポンプ1からの吐出油がアームシリンダ8のロッド側油室に供給される。この結果、アームシリンダ8のピストンロッドは縮小動作を行う。
 コントローラ27には圧力センサ23,24,25,26からの検出信号123,124,125,126が入力され、後述する制御ロジックによって、電磁比例弁22と油圧ポンプ1のレギュレータ1aに制御指令を出力する。
 電磁比例弁22は制御指令に応じた制御圧力(2次圧)を生成し、この制御圧力により再生制御弁17は制御され、ブームシリンダ4のボトム側油室から排出された圧油の一部或いは全部が再生制御弁17を介しアームシリンダ8に再生して供給される。
 油圧ポンプ1のレギュレータ1aは制御指令に基づいて油圧ポンプ1の傾転角を制御し、アームシリンダ8の目標速度を保つよう適切にポンプ流量を制御する。
 次に、コントローラ27の制御機能について説明する。コントローラ27は、概略、以下の2つの機能を有している。
 まず、コントローラ27は、第1操作装置6がブーム205(第1被駆動体)の自重落下方向であるブーム下げ方向BDに操作され、これと同時に第2操作装置10が操作されたとき、ブームシリンダ4のボトム側油室の圧力が油圧ポンプ1とアームシリンダ8との間の圧油供給管路11aの圧力より高い場合に再生制御弁17をノーマル位置から切り換えることにより、ブームシリンダ4のボトム側油室からの排出油がアームシリンダのロッド側油室に再生される。このとき、ブームシリンダ4のボトム側油室の圧力と油圧ポンプ1とアームシリンダ8との間の圧油供給管路11aの圧力との差圧を算出し、この差圧に応じて再生制御弁17の開度を制御する。
 具体的には、差圧が小さいときには再生制御弁17のストロークを小さくして再生側通路の開口面積を絞るとともに、タンク側通路の開口面積を広くする。差圧が大きくなるに従って、再生側通路の開口面積を広くし、タンク側通路の開口面積を絞る。差圧が一定値以上に大きいときに、再生側通路の開口面積を最大値として、タンク側開口を閉止するように制御する。このように制御することで、再生制御弁17の切換ショックを抑制する。
 ブーム下げ操作とアーム駆動を同時に行った場合、動き始めは差圧が小さく、時間が経つにつれて差圧が大きくなる。そのため、差圧に応じて再生側通路の開口面積を徐々に開くことにより、切換ショックが抑えられ、良好な操作性を実現できる。
 さらに、差圧が小さい場合は、再生側開口を広くしても再生流量が少ないことから、ブームシリンダのピストンロッドの速度が遅くなることがある。そのため、差圧が小さい場合は、タンク側通路の開口面積を広くすることで、ボトム側油室からの排出流量を増加させ、ブームシリンダのピストンロッドの速度をオペレータの望む速度にするように制御している。一方、差圧が大きい場合は、再生流量が十分多くなることから、タンク側通路の開口を絞ることで、ブームシリンダのピストンロッドの速度が速くなり過ぎることを防止している。
 また、コントローラ27は、再生制御弁17を制御してブームシリンダ4のボトム側油室から油圧ポンプ1とアームシリンダ8との間の圧油供給管路11aに圧油を供給するとき、ブームシリンダ4のボトム側油室から圧油供給管路11aに供給される再生流量分、油圧ポンプ1の容量を減少させるように制御する。
 このことにより、油圧アクチュエータから排出された圧油を他の油圧アクチュエータの駆動に再生する場合としない場合や、圧油の再生流量の多少に関わらず、同様のアクチュエータ速度(ブームシリンダ4のピストンロッド速度)を確保することができる。この結果、いずれの場合でも、同様のブームの落下速度を実現できる。
 図4は、本発明の作業機械の油圧駆動システムの第1の実施の形態を構成するコントローラのブロック図である。
 図4に示すように、コントローラ27は、加算器130、関数発生器131、関数発生器133、関数発生器134、関数発生器135、乗算器136、乗算器138、関数発生器139、乗算器140、乗算器142、加算器144、出力変換部146を有している。
 図4において、検出信号123は第1操作装置6の操作レバー6aのブーム下げ方向の操作パイロット圧Pbdを圧力センサ23により検出した信号(レバー操作信号)であり、検出信号124は第2操作装置10の操作レバー10aのアームダンプ方向の操作パイロット圧Padを圧力センサ24により検出した信号(レバー操作信号)であり、検出信号125はブームシリンダ4のボトム側油室の圧力(ボトム側管路15の圧力)を圧力センサ25により検出した信号(ボトム圧信号)であり、検出信号126は油圧ポンプ1の吐出圧(圧油供給管路11aの圧力)を圧力センサ26により検出した信号(ポンプ圧信号)である。
 加算器130には、ボトム圧信号125及びポンプ圧信号126が入力され、ボトム圧信号125とポンプ圧信号126の偏差(ブームシリンダ4のボトム側油室の圧力と油圧ポンプ1の吐出圧との差圧)が求められ、この差圧信号が関数発生器131と関数発生器132に入力される。
 関数発生器131は、加算器130で求めた差圧信号に応じた再生制御弁17の再生側通路の開口面積を算出するものであり、図3に示した再生制御弁17の開口面積特性を基に特性が設定されている。具体的には、差圧が小さい場合には、再生制御弁17のストロークを小さくして再生側通路の開口面積を絞り、タンク側通路の開口面積を広げる。一方差圧が大きい場合には、再生通路側の開口面積を広くし、差圧が一定値に達すると再生側通路の開口面積を最大として、タンク側通路の開口を閉じるように制御する。
 関数発生器133は、加算器130で求めた差圧信号に応じた油圧ポンプ1の低減流量(以下ポンプ低減流量という)を求めるものである。関数発生器131の特性により差圧が大きくなるほど再生側通路の開口面積が大きくなり再生流量が増加する。このことから、差圧が大きくなるほど、ポンプ低減流量も多くなるように設定している。
 関数発生器134は、第1操作装置6のレバー操作信号123に応じて乗算器で用いる係数を算出するものであり、レバー操作信号123が0のときに最小値0を出力し、レバー操作信号123の増加にともなって出力を増大させ最大値として1を出力する。
 乗算器136は、関数発生器131で算出された開口面積と関数発生器134で算出された値とを入力し、乗算値を開口面積として出力する。ここで、第1操作装置6のレバー操作信号123が小さい場合は、ブームシリンダ4のピストンロッド速度を遅くする必要があるので、再生流量も減らすことが要求される。このため、関数発生器134は0以上1以下の範囲から小さい値を出力し、関数発生器131で算出された開口面積をさらに小さな値として出力する。
 一方、第1操作装置6のレバー操作信号123が大きい場合は、ブームシリンダ4のピストンロッド速度を速くする必要があるので、再生流量も増加できる。このため、関数発生器134は0以上1以下の範囲から大きい値を出力し、関数発生器131で算出された開口面積の減少量を減らし、大きな開口面積の値を出力する。
 乗算器138は、関数発生器133で算出されたポンプ低減流量と関数発生器134で算出された値とを入力し、乗算値をポンプ低減流量として出力する。ここで、第1操作装置6のレバー操作信号123が小さい場合は、再生流量も少ないので、ポンプ低減流量も少なく設定することが要求される。このため、関数発生器134は0以上1以下の範囲から小さい値を出力し、関数発生器133で算出されたポンプ低減流量をさらに小さな値として出力する。
 一方、第1操作装置6のレバー操作信号123が大きい場合は、再生流量が多くなり、ポンプ低減流量も大きく設定する必要がある。このため、関数発生器134は0以上1以下の範囲から大きい値を出力し、関数発生器133で算出されたポンプ低減流量の減少量を減らし、大きなポンプ低減流量の値を出力する。
 関数発生器135は、第2操作装置10のレバー操作信号124に応じて乗算器で用いる係数を算出するものであり、レバー操作信号124が0のときに最小値0を出力し、レバー操作信号124の増加にともなって出力を増大させ最大値として1を出力する。
 乗算器140は、乗算器136で算出された開口面積と関数発生器135で算出された値とを入力し、乗算値を開口面積として出力する。ここで、第2操作装置10のレバー操作信号124が小さい場合は、アームシリンダ4のピストンロッド速度を遅くする必要があるので、再生流量も減らすことが要求される。このため、関数発生器135は0以上1以下の範囲から小さい値を出力し、乗算器136で補正された開口面積をさらに小さな値として出力する。
 一方、第2操作装置10のレバー操作信号124が大きい場合は、アームシリンダ4のピストンロッド速度を速くする必要があるので、再生流量も増加できる。このため、関数発生器135は0以上1以下の範囲から大きい値を出力し、乗算器136で補正された開口面積の減少量を減らし、大きな開口面積の値を出力する。
 乗算器142は、乗算器138で算出されたポンプ低減流量と関数発生器135で算出された値とを入力し、乗算値をポンプ低減流量として出力する。ここで、第2操作装置10のレバー操作信号124が小さい場合は、再生流量も少ないので、ポンプ低減流量も少なく設定することが要求される。このため、関数発生器135は0以上1以下の範囲から小さい値を出力し、乗算器138で補正されたポンプ低減流量をさらに小さな値として出力する。
 一方、第2操作装置10のレバー操作信号124が大きい場合は、再生流量が多くなり、ポンプ低減流量も大きく設定する必要がある。このため、関数発生器135は0以上1以下の範囲から大きい値を出力し、乗算器138で補正されたポンプ低減流量の減少量を減らし、大きなポンプ低減流量の値を出力する。
 なお、ブームシリンダ4のボトム側油室からの排出油を、アームシリンダ8のくどうに再生する場合としない場合とで、ブームシリンダ4のピストンロッド速度が大きく変わらないように、関数発生器131、133、134、135の各設定テーブルを調整することが望ましい。また、ブームシリンダ4のボトム側油室からの排出油をアームシリンダ8に再生する動作は、主に水平引き動作であるため、このときのブームシリンダ8のボトム側油室の圧力とアームシリンダ8のロッド側油室の圧力とは、ある程度の決まった傾向の値になる。このため、水平引き動作時の各部圧力を採取して、圧力波形を分析して、上述の関数発生器の設定テーブルを調整すれば、再生制御弁17の開口面積を最適な値に設定できる。
 関数発生器139は、第2操作装置10のレバー操作信号124に応じてポンプ要求流量を算出するものである。レバー操作信号124が0の場合には、最低限の流量を油圧ポンプ1から出力するような特性が設定されている。これは、第2操作装置10の操作レバー10aを入れたときの応答性を良くすることと、油圧ポンプ1の焼付きを防止することを目的としてしる。また、レバー操作信号124の増加に伴って油圧ポンプ1の吐出流量を増加させ、アームシリンダ8に流入する圧油の流量を増やす。このことにより、操作量に応じたアームシリンダ8のピストンロッド速度を実現する。
 加算器144には、乗算器142で算出されたポンプ低減流量と関数発生器139で算出されたポンプ要求流量とが入力され、ポンプ要求流量からポンプ低減流量すなわち再生流量が減算されて目標ポンプ流量が算出される。
 出力変換部146には、乗算器140からの出力と加算器144からの出力が入力され、それぞれ電磁比例弁22への電磁弁指令222及び油圧ポンプ1のレギュレータ1aへの傾転指令201が出力される。
 このことにより、電磁比例弁22は、パイロットポンプ3から供給された圧油の1次圧を所望の圧力(2次圧)に変換して再生制御弁17の操作部17aに出力し、再生制御弁17のストロークを制御することで開度(開口面積)を制御する。また、レギュレータ1aが油圧ポンプ1の傾転角(容量)を制御することで、吐出流量が制御される。この結果、油圧ポンプ1は、ブームシリンダ4のボトム側から圧油供給管路11aに供給される再生流量分、容量を減少させるように制御される。
 次に、コントローラ27の動作について説明する。
 第1操作装置6の操作レバー6aをブーム下げ方向BDに操作することにより、圧力センサ23により検出された操作パイロット圧Pbdの信号はレバー操作信号123としてコントローラ27に入力される。第2操作装置10の操作レバー10aをアームダンプ方向ADに操作することにより、圧力センサ24により検出された操作パイロット圧Padの信号はレバー操作信号124としてコントローラ27に入力される。また、圧力センサ25,26により検出されたブームシリンダ4のボトム側油室の圧力、油圧ポンプ1の吐出圧の各信号はボトム圧信号125、ポンプ圧信号126としてコントローラ27に入力される。
 ボトム圧信号125とポンプ圧信号126とが加算器130に入力され、差圧信号を算出する。差圧信号は関数発生器131と関数発生器133に入力され、それぞれ再生制御弁17の再生側通路の開口面積とポンプ低減流量とを算出する。
 レバー操作信号123が関数発生器134に入力され、関数発生器134は、レバー操作量に応じた補正信号を算出し、乗算器136と乗算器138へ出力する。乗算器136は関数発生器131から出力される再生側通路の開口面積を補正し、乗算器138は関数発生器133から出力されるポンプ低減流量を補正する。
 同様にレバー操作信号124が関数発生器135に入力されると、関数発生器135は、レバー操作量に応じた補正信号を算出し、乗算器140と乗算器142へ出力する。乗算器140は乗算器136から出力される補正された再生側通路の開口面積を更に補正して出力変換部146へ出力し、乗算器142は乗算器138から出力される補正されたポンプ低減流量を更に補正して加算器144へ出力する。
 出力変換部146は、補正された再生側通路の開口面積を電磁弁指令222に変換し、電磁比例弁22に出力する。このことにより再生制御弁17のストロークが制御される。この結果、再生制御弁17はブームシリンダ4のボトム側油室の圧力と油圧ポンプ1の吐出圧との差圧に応じた開口面積に設定され、ブームシリンダ4のボトム側油室からの排出油がアームシリンダ8へ再生される。
 レバー操作信号124が関数発生器139に入力され、関数発生器139は、レバー操作量に応じたポンプ要求流量を算出して加算器144へ出力する。
 演算されたポンプ要求流量とポンプ低減流量とが加算器144へ入力され、ポンプ要求流量からポンプ低減流量すなわち再生流量を減算して目標ポンプ流量を算出して出力変換部146へ出力する。
 出力変換部146は、この目標ポンプ流量を油圧ポンプ1の傾転指令201に変換し、レギュレータ1aに出力する。このことにより、アームシリンダ8は第2操作装置10の操作信号(操作パイロット圧Pad)に応じた所望の速度に制御されるとともに、再生流量分油圧ポンプ1の吐出流量を低減することにより、油圧ポンプ1を駆動するエンジンの燃費を低減し、省エネルギ化を図ることが可能となる。
 以上の動作により、再生制御弁17は、ブームシリンダ4のボトム側油室の圧力と油圧ポンプ1の吐出圧との差圧に応じて、再生側通路の開口面積を徐々に増加させていくので、切換ショックが抑制され、良好な操作性が実現できる。また、上述した差圧と、第1操作装置6の操作量と、第2操作装置10の操作量とがいずれも小さいときには、再生制御弁17の再生側通路の開口面積を小さく設定し、タンク側通路の開口面積を大きく設定するので、再生流量が少なくても、タンク側流量が多くなる。このことにより、オペレータの望むブームシリンダのピストンロッド速度が確保できる。
 一方、差圧と、第1操作装置6の操作量と、第2操作装置10の操作量とが大きいときには、再生制御弁17の再生側通路の開口面積を大きく設定し、タンク側通路の開口面積を小さく設定するので、ブームシリンダのピストンロッド速度が速くなり過ぎることを抑制し、オペレータの望むブームシリンダのピストンロッド速度を確保できる。また、再生流量に応じて油圧ポンプ1の吐出流量を低減することにより、アームシリンダ8のピストンロッド速度に関してもオペレータの望む速度を確保できる。
 このことにより、油圧アクチュエータから排出された圧油を他の油圧アクチュエータの駆動に再生する場合としない場合や、圧油の再生流量の多少に関わらず、同様のアクチュエータ速度(ブームシリンダ4のピストンロッド速度)を確保することができる。この結果、いずれの場合でも、同様のブームの落下速度を実現できる。
 上述した本発明の作業機械の油圧駆動システムの第1の実施の形態によれば、油圧アクチュエータ4から排出された圧油を他の油圧アクチュエータ8の駆動に再生する場合としない場合とで、同様のアクチュエータ速度を確保でき、再生回路用の電磁比例弁22(電気駆動装置)を1個で構成することができる。この結果、良好な操作性が実現できると共に、低コスト化と搭載性の向上が図れる。
 以下、本発明の作業機械の油圧駆動システムの第2の実施の形態を図面を用いて説明する。図5は本発明の作業機械の油圧駆動システムの第2の実施の形態を示す制御システムの概略図、図6は本発明の作業機械の油圧駆動システムの第2の実施の形態を構成するタンク側制御弁の開口面積特性を示す特性図、図7は本発明の作業機械の油圧駆動システムの第2の実施の形態を構成する再生側制御弁の開口面積特性を示す特性図である。図5乃至図7において、図1乃至図4に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。
 本発明の作業機械の油圧駆動システムの第2の実施の形態においては、図1に示す再生制御弁17に替えてボトム側管路15に排出流量調整装置としてタンク側制御弁41を、再生通路18に再生流量調整装置として再生側制御弁40をそれぞれ備えた点が第1の実施の形態と異なる。タンク側制御弁41のストロークと再生側制御弁40のストロークとは1個の電磁比例弁22によって制御される。
 電気駆動装置としての電磁比例弁22はコントローラ27からの制御指令により動作する。電磁比例弁22は、パイロットポンプ3から供給された圧油の1次圧を所望の圧力(2次圧)に変換してタンク側制御弁41の操作部41aと再生側制御弁40の操作部40aとに出力し、タンク側制御弁41のストロークと再生側制御弁40のストロークとを制御することでそれぞれの弁の開度(開口面積)を制御する。
 図6はタンク側制御弁41の開口面積特性を示し、図7は再生側制御弁40開口面積特性をそれぞれ示している。これらの横軸は各弁のスプールストロークを示し、縦軸は開口面積を示している。これらの特性は、図3に示す第1の実施の形態における再生制御弁17の特性において、タンク側と再生側に分離したものと同等に形成されている。
 本実施の形態においては、再生側通路の開口面積とタンク側通路の開口面積とを独立して制御できるので、さらに燃費の向上を図ることができる。
 上述した本発明の作業機械の油圧駆動システムの第2の実施の形態によれば、上述した第1の実施の形態と同様の効果を得ることができる。
 また、上述した本発明の作業機械の油圧駆動システムの第2の実施の形態によれば、再生側通路の開口面積とタンク側通路の開口面積の設計上の自由度が上がるので、より細かいマッチング設定が可能になる。この結果、燃費低減効果をさらに向上させることができる。
 以下、本発明の作業機械の油圧駆動システムの第3の実施の形態を図面を用いて説明する。図8は本発明の作業機械の油圧駆動システムの第3の実施の形態を示す制御システムの概略図である。図8において、図1乃至図7に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。
 本発明の作業機械の油圧駆動システムの第3の実施の形態においては、図1に示す再生制御弁17に替えて、再生制御弁17の弁部と同じスプール等の構成を備えた弁部42Bと、弁部42Bに組み込まれ、コントローラ27から直接制御される電磁ソレノイド部42Aとを備えた電磁比例弁からなる再生制御弁42を設けた点が第1の実施の形態と異なる。本実施の形態において、電気駆動装置は、電磁ソレノイド部42Aが該当する。また、再生流量調整装置と、排出流量調整装置とは、再生制御弁42が構成する。
 本実施の形態においては、電磁比例弁22を配置する必要がないので、さらなる搭載性の向上が図れる。
 上述した本発明の作業機械の油圧駆動システムの第3の実施の形態によれば、上述した第1の実施の形態と同様の効果を得ることができる。
 以下、本発明の作業機械の油圧駆動システムの第4の実施の形態を図面を用いて説明する。図9は本発明の作業機械の油圧駆動システムの第4の実施の形態を示す制御システムの概略図である。図9において、図1乃至図8に示す符号と同符号のものは同一部分であるので、その詳細な説明は省略する。
 本発明の作業機械の油圧駆動システムの第4の実施の形態においては、図1に示す再生制御弁17とブームシリンダ4のボトム側油室との間のボトム側管路15に、ブームシリンダ4のボトム側油室からの排出油をタンクに排出可能とする制御弁43を設けた点が第1の実施の形態と異なる。本実施の形態において、再生流量調整装置は、再生制御弁17が構成し、排出流量調整装置は、再生制御弁17と制御弁43とが構成する
 制御弁43は、操作部43aを有し、第1操作装置6のブーム下げ方向BDの操作パイロット圧Pbdが操作部43aに伝えられることにより開弁し、ブームシリンダ4のボトム側油室からの排出油をタンクに排出する。制御弁43の開口面積は、制御弁5のタンク管路7bに接続される開口面積より十分に小さく設定されている。
 本実施の形態のように構成することで、例えば、制御弁9が閉止しているブーム下げ単独動作中に、万が一再生制御弁17がコントローラ27等の故障により不用意に切り替わり、ボトム側油室の排出場所がなくなった場合でも、制御弁43から排出できるので、ブームの急停止を防止できる。
 なお、ブームシリンダ4の上げ動作時に圧油を供給するための制御弁は、通常2個以上で構成することが多い。このため、2個以上の制御弁のいずれか1個に上述した制御弁43のような機能を持たせるように構成しても良い。この場合には、制御弁43を回路上に追設する必要がなく、従来から配置されている制御弁を流用できる。
 上述した本発明の作業機械の油圧駆動システムの第4の実施の形態によれば、上述した第1の実施の形態と同様の効果を得ることができる。
 また、上述した本発明の作業機械の油圧駆動システムの第4の実施の形態によれば、コントローラの故障等が発生した場合であっても、作業機械の油圧駆動システムの安定した稼動を可能にする。
 また、本発明は、上記の各実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例が含まれる。例えば、上記実施の形態では、本発明を油圧ショベルに適用した場合について説明したが、本発明は、第1操作装置が第1被駆動体の自重落下方向に操作されたときに、第1被駆動体の自重落下によりボトム側から圧油を排出しロッド側から圧油を吸入する油圧シリンダを備える作業機械であれば、油圧クレーン、ホイールローダ等、その他の作業機械にも適用することができる。
 1:油圧ポンプ、1a:レギュレータ、3:パイロットポンプ(パイロット油圧源)、4:ブームシリンダ(第1油圧アクチュエータ)、5:制御弁、6:第1操作装置、6a:操作レバー、6b:パイロット弁、6c,6d:パイロット管路、8:アームシリンダ(第2油圧アクチュエータ)、9:制御弁、10:第1操作装置、10a:操作レバー、10b:パイロット弁、10c,10d:パイロット管路、7a,11a:圧油供給管路、7b,11b:タンク管路、12:メイクアップ付きオーバーロードリリーフバルブ、13:ロッド側管路、14:連通通路、15:ボトム側管路、16:連通制御弁、17:再生制御弁、18:再生通路、19:メイクアップ付きオーバーロードリリーフバルブ、20:ボトム側管路、21:ロッド側管路、22:電磁比例弁(電気駆動装置)、27:コントローラ、40:再生側制御弁、41:タンク側制御弁、42:再生制御弁、43:制御弁、123:レバー操作信号、124:レバー操作信号、125:ボトム圧信号、126:ポンプ圧信号、130:加算器、131:関数発生器、133:関数発生器、134:関数発生器、135:関数発生器、136:乗算器、
138:乗算器、139:関数発生器、140:乗算器、142:乗算器、144:加算器、146:出力変換部、201:傾転指令、222:電磁弁指令、203:フロント作業機、205:ブーム(第1被駆動体)、206:アーム(第2被駆動体)、207:バケット。

Claims (6)

  1.  油圧ポンプ装置と、前記油圧ポンプ装置から圧油が供給され第1被駆動体を駆動する第1油圧アクチュエータと、前記油圧ポンプ装置から圧油が供給され第2被駆動体を駆動する第2油圧アクチュエータと、前記油圧ポンプ装置から前記第1油圧アクチュエータに供給される圧油の流れを制御する第1流量調整装置と、前記油圧ポンプ装置から前記第2油圧アクチュエータに供給される圧油の流れを制御する第2流量調整装置と、前記第1被駆動体の動作を指令する操作信号を出力し前記第1流量調整装置を切り換える第1操作装置と、前記第2被駆動体の動作を指令する操作信号を出力し前記第2流量調整装置を切り換える第2操作装置とを備え、
     前記第1油圧アクチュエータは、前記第1操作装置が前記第1被駆動体の自重落下方向に操作されたときに、前記第1被駆動体の自重落下によりボトム側油室から圧油を排出しロッド側油室から圧油を吸入する油圧シリンダである作業機械の油圧駆動システムにおいて、
     前記油圧シリンダのボトム側油室を前記油圧ポンプ装置と前記第2油圧アクチュエータとの間に接続する再生通路と、
     前記油圧シリンダのボトム側油室から排出される圧油の少なくとも一部を前記再生通路を介して前記油圧ポンプ装置と前記第2油圧アクチュエータの間に、その流量を調整して供給する再生流量調整装置と、
     前記油圧シリンダのボトム側油室から排出される圧油の少なくとも一部を、その流量を調整してタンクに排出する排出流量調整装置と、
     前記再生流量調整装置と前記排出流量調整装置とを同時に制御する1つの電気駆動装置と、
     前記再生流量調整装置による再生流量の多少にかかわらず、前記第1被駆動体の落下速度が同様となるように、前記電気駆動装置へ制御指令を出力する制御装置を備えた
     ことを特徴とする作業機械の油圧駆動システム。
  2.  請求項1に記載の作業機械の油圧駆動システムにおいて、
     前記再生流量調整装置と前記排出流量調整装置は、再生側絞りと排出側絞りを有する1つの再生制御弁であり、
     前記電気駆動装置は、パイロット油圧源から供給されたパイロット圧油の1次圧を所望の2次圧に減圧する電磁弁であり、
     前記再生制御弁は、前記電磁弁の2次圧により制御されるように構成した
     ことを特徴とする作業機械の油圧駆動システム。
  3.  請求項1に記載の作業機械の油圧駆動システムにおいて、
     前記再生流量調整装置は再生流量を調整する再生弁であり、前記排出流量調整装置は排出流量を調整する排出弁であり、
     前記電気駆動装置は、パイロット油圧源から供給されたパイロット圧油の1次圧を所望の2次圧に減圧する電磁弁であり、
     前記再生弁及び前記排出弁は、前記電磁弁の2次圧により同時に制御されるように構成した
     ことを特徴とする作業機械の油圧駆動システム。
  4.  請求項1に記載の作業機械の油圧駆動システムにおいて、
     前記再生流量調整装置と前記排出流量調整装置は、その弁体部に再生側絞りと排出側絞りを有する1つの再生制御弁であり、
     前記電気駆動装置は、前記再生制御弁に組み込まれた電磁ソレノイド部であり、
     前記再生制御弁は、前記電磁ソレノイド部により直接駆動されるように構成した
     ことを特徴とする作業機械の油圧駆動システム。
  5.  請求項1に記載の作業機械の油圧駆動システムにおいて、
     前記油圧シリンダのボトム側油室から排出された圧油を前記油圧シリンダのロッド側油室へ供給可能とする連通通路と、
     前記連通通路に設けられ、前記第1操作装置の前記第1被駆動体の自重落下方向の操作信号に基づいて開弁する連通制御弁とを備え、
     前記第1流量調整装置は、前記第1操作装置の操作に応じて、前記油圧ポンプ装置と前記油圧シリンダのボトム側油室またはロッド側油室との連通または遮断を切換える制御弁であって、
     前記制御弁は、前記第1操作装置が前記第1被駆動体の自重落下方向に操作されたときに、前記油圧ポンプ装置と前記油圧シリンダのロッド側油室とを遮断する切換位置を有する
     ことを特徴とする作業機械の油圧駆動システム。
  6.  請求項1に記載の作業機械の油圧駆動システムにおいて、
     前記排出流量調整装置の上流側に分岐して他の排出流量調整装置を配置し、前記他の排出流量調整装置は、前記第1操作装置から出力される操作信号に応じて、前記油圧シリンダのボトム側油室から排出される圧油の少なくとも一部を、その流量を調整してタンクに排出する
     ことを特徴とする作業機械の油圧駆動システム。
PCT/JP2015/077581 2014-10-02 2015-09-29 作業機械の油圧駆動システム WO2016052541A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15845887.7A EP3203088B1 (en) 2014-10-02 2015-09-29 Hydraulic drive system of industrial machine
KR1020177003356A KR101887318B1 (ko) 2014-10-02 2015-09-29 작업 기계의 유압 구동 시스템
CN201580042936.3A CN106574646B (zh) 2014-10-02 2015-09-29 作业机械的液压驱动系统
US15/504,993 US10436229B2 (en) 2014-10-02 2015-09-29 Hydraulic drive system for work machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-204349 2014-10-02
JP2014204349A JP6291394B2 (ja) 2014-10-02 2014-10-02 作業機械の油圧駆動システム

Publications (1)

Publication Number Publication Date
WO2016052541A1 true WO2016052541A1 (ja) 2016-04-07

Family

ID=55630567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077581 WO2016052541A1 (ja) 2014-10-02 2015-09-29 作業機械の油圧駆動システム

Country Status (6)

Country Link
US (1) US10436229B2 (ja)
EP (1) EP3203088B1 (ja)
JP (1) JP6291394B2 (ja)
KR (1) KR101887318B1 (ja)
CN (1) CN106574646B (ja)
WO (1) WO2016052541A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113557339A (zh) * 2019-03-06 2021-10-26 卡特彼勒公司 用于土方机器的电液装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101798914B1 (ko) * 2013-12-26 2017-11-17 두산인프라코어 주식회사 건설기계의 메인컨트롤밸브의 제어 방법 및 제어 장치
JP6453711B2 (ja) * 2015-06-02 2019-01-16 日立建機株式会社 作業機械の圧油エネルギ再生装置
JP6316776B2 (ja) * 2015-06-09 2018-04-25 日立建機株式会社 作業機械の油圧駆動システム
JP6639130B2 (ja) * 2015-07-15 2020-02-05 ナブテスコ株式会社 建設機械用油圧回路および建設機械
EP3181763A1 (en) * 2015-12-15 2017-06-21 Caterpillar Global Mining LLC Hydraulic clam actuator valve block
JP6360824B2 (ja) * 2015-12-22 2018-07-18 日立建機株式会社 作業機械
US10443628B2 (en) * 2016-10-26 2019-10-15 Deere & Company Boom control with integrated variable return metering
US11105347B2 (en) * 2017-07-20 2021-08-31 Eaton Intelligent Power Limited Load-dependent hydraulic fluid flow control system
WO2019053814A1 (ja) * 2017-09-13 2019-03-21 日立建機株式会社 作業機械
KR102410600B1 (ko) * 2017-11-17 2022-06-17 현대건설기계 주식회사 건설기계의 유압제어시스템
JP6914206B2 (ja) * 2018-01-11 2021-08-04 株式会社小松製作所 油圧回路
JP6889806B2 (ja) * 2018-04-17 2021-06-18 日立建機株式会社 作業機械
JP7342456B2 (ja) 2019-06-28 2023-09-12 コベルコ建機株式会社 油圧制御装置
CN110259737B (zh) * 2019-06-28 2021-05-28 北京三一智造科技有限公司 一种张紧控制液压系统及旋挖钻机
JP7253478B2 (ja) * 2019-09-25 2023-04-06 日立建機株式会社 作業機械
EP4008841A4 (en) * 2019-09-30 2023-05-03 Hitachi Construction Machinery Co., Ltd. MOVEMENT IDENTIFICATION DEVICE
KR102661855B1 (ko) * 2020-03-30 2024-04-30 히다치 겡키 가부시키 가이샤 작업 기계
CN112555207A (zh) * 2020-12-01 2021-03-26 上海华兴数字科技有限公司 液压控制系统和机械设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080110166A1 (en) * 2006-11-14 2008-05-15 Stephenson Dwight B Energy recovery and reuse techniques for a hydraulic system
JP2013053498A (ja) * 2011-09-06 2013-03-21 Sumitomo (Shi) Construction Machinery Co Ltd 建設機械
JP2013200023A (ja) * 2012-03-26 2013-10-03 Kyb Co Ltd 建設機械の制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296570A (en) 1976-02-09 1977-08-13 Citizen Watch Co Ltd Power saving method of crystal wristwatch
JPS531601A (en) 1976-06-28 1978-01-09 Koken Boring Machine Co Double pipe type boring device
US6502393B1 (en) * 2000-09-08 2003-01-07 Husco International, Inc. Hydraulic system with cross function regeneration
US6877417B2 (en) * 2001-04-17 2005-04-12 Shin Caterpillar Mitsubishi Ltd. Fluid pressure circuit
JPWO2004076334A1 (ja) * 2003-02-27 2006-06-01 日立建機株式会社 油圧作業機の油圧制御装置
JP2006336846A (ja) 2005-06-06 2006-12-14 Shin Caterpillar Mitsubishi Ltd 流体圧回路
JP5354650B2 (ja) 2008-10-22 2013-11-27 キャタピラー エス エー アール エル 作業機械における油圧制御システム
JP5296570B2 (ja) * 2009-02-16 2013-09-25 株式会社神戸製鋼所 作業機械の油圧制御装置及びこれを備えた作業機械
JP5461234B2 (ja) 2010-02-26 2014-04-02 カヤバ工業株式会社 建設機械の制御装置
JP5301601B2 (ja) 2011-03-31 2013-09-25 住友建機株式会社 建設機械
CN102182730A (zh) * 2011-05-05 2011-09-14 四川省成都普什机电技术研究有限公司 带势能回收装置的挖掘机动臂流量再生系统
CN103597220B (zh) * 2011-06-15 2016-02-17 日立建机株式会社 作业机械的动力再生装置
CN103608526B (zh) * 2011-07-06 2016-10-12 住友重机械工业株式会社 挖土机以及挖土机的控制方法
JP6226758B2 (ja) * 2014-01-22 2017-11-08 住友重機械工業株式会社 ショベル及び建設機械
CN106104012B (zh) * 2014-03-11 2019-07-23 住友重机械工业株式会社 挖土机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080110166A1 (en) * 2006-11-14 2008-05-15 Stephenson Dwight B Energy recovery and reuse techniques for a hydraulic system
JP2013053498A (ja) * 2011-09-06 2013-03-21 Sumitomo (Shi) Construction Machinery Co Ltd 建設機械
JP2013200023A (ja) * 2012-03-26 2013-10-03 Kyb Co Ltd 建設機械の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3203088A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113557339A (zh) * 2019-03-06 2021-10-26 卡特彼勒公司 用于土方机器的电液装置
CN113557339B (zh) * 2019-03-06 2023-12-29 卡特彼勒公司 用于土方机器的电液装置

Also Published As

Publication number Publication date
KR101887318B1 (ko) 2018-08-09
CN106574646B (zh) 2018-06-01
JP2016075302A (ja) 2016-05-12
US20170276155A1 (en) 2017-09-28
JP6291394B2 (ja) 2018-03-14
EP3203088A4 (en) 2018-05-30
EP3203088A1 (en) 2017-08-09
US10436229B2 (en) 2019-10-08
EP3203088B1 (en) 2021-08-11
KR20170028421A (ko) 2017-03-13
CN106574646A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
JP6291394B2 (ja) 作業機械の油圧駆動システム
JP6317656B2 (ja) 作業機械の油圧駆動システム
JP6453898B2 (ja) 作業機械の油圧駆動システム
JP6506146B2 (ja) 作業機械の油圧駆動装置
KR102062193B1 (ko) 작업 기계의 압유 에너지 회생 장치
WO2013015022A1 (ja) 建設機械
WO2016194783A1 (ja) 建設機械の油圧制御装置
WO2017056199A1 (ja) 建設機械
JP6250515B2 (ja) 建設機械の油圧制御装置
JP2010078035A (ja) 作業機械の油圧シリンダ制御回路
KR102460499B1 (ko) 쇼벨
WO2019049435A1 (ja) 建設機械
EP2918733B1 (en) Construction machine
KR101747519B1 (ko) 하이브리드식 건설 기계
JP2019052703A (ja) 建設機械の油圧駆動システム
JP6591370B2 (ja) 建設機械の油圧制御装置
JP2015031377A (ja) 油圧駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177003356

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15504993

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015845887

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015845887

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE