WO2016052336A1 - 気管に挿入可能な気管用チューブ - Google Patents

気管に挿入可能な気管用チューブ Download PDF

Info

Publication number
WO2016052336A1
WO2016052336A1 PCT/JP2015/077112 JP2015077112W WO2016052336A1 WO 2016052336 A1 WO2016052336 A1 WO 2016052336A1 JP 2015077112 W JP2015077112 W JP 2015077112W WO 2016052336 A1 WO2016052336 A1 WO 2016052336A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
trachea
several tens
several
nanometers
Prior art date
Application number
PCT/JP2015/077112
Other languages
English (en)
French (fr)
Inventor
秀彬 柴田
祐亮 百貫
美雪 小山
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2016551975A priority Critical patent/JP6588452B2/ja
Publication of WO2016052336A1 publication Critical patent/WO2016052336A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/24Surgical instruments, devices or methods, e.g. tourniquets for use in the oral cavity, larynx, bronchial passages or nose; Tongue scrapers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes

Definitions

  • the present invention relates to a tracheal tube that can be inserted into a trachea. More particularly, the present invention relates to a tracheostomy tube, a multi-tube tracheostomy tube, an inner cylinder thereof, an endotracheal tube, and a tracheal cannula for annular thyroid puncture and incision.
  • tracheal intubation which is a method of inserting a tracheal tube called an endotracheal tube into the trachea from the mouth or nose through the pharynx to the trachea
  • Tracheostomy is a method in which tracheostomy tubes called tracheostomy tubes are inserted into the trachea from the incision through the skin of the trachea and the upper part of the trachea when the intubation is prolonged or when tracheal intubation is impossible Incision
  • annular thyroid incision is a method of inserting the tracheal cannula by incising the annular thyroid (annular thyroid ligament), and inserting the tracheal cannula by puncturing the annular thyroid
  • An example is a ring-shaped thyroid puncture.
  • tracheal tube that can be inserted into the trachea
  • the amount of secretions such as sputum increases. This may cause stenosis / occlusion of the tracheal tube and may cause dyspnea / suffocation.
  • wrinkles are normally discharged by ciliary movement of the trachea, wrinkles are likely to adhere because the tracheal tube has no cilia. Therefore, the sputum in the tracheal tube must be periodically sucked to prevent the tracheal tube from becoming constricted and not blocked.
  • the salmon is mainly composed of water and glycoprotein (mucin), and the viscosity is as wide as several hundred to several hundred thousand cP.
  • the soot left behind in the tracheal tube may dry out and become more likely to adhere.
  • the removal of sputum from the tracheal tube must be performed frequently and must be carefully aspirated so that it is left as little as possible, so the burden on the nurse / caregiver is great. Therefore, there is a demand for a tracheal tube that does not easily adhere soot.
  • Patent Document 1 discloses that an anhydrous maleic vinyl maleate is formed on the surface of a tracheostomy tube made of any one of polyvinyl chloride, polyurethane, nylon, and nylon elastomer and on the inner surface that forms a lumen for securing the airway of the lumen.
  • a mixture of an acid copolymer and a polyether block amide was applied by immersing a tracheostomy tube in a solution of a 2-propanol / tetrahydrofuran mixture having a weight ratio of 70:30, and the applied mixture was added with water.
  • a tracheostomy tube is described that has been treated with an aqueous sodium oxide solution to form a coating that exhibits surface lubricity when wet.
  • This tracheostomy tube describes that if the inner surface of the luminal body is moistened by breathing or brim when the patient breathes, surface lubricity is exhibited and it is difficult for wrinkles or the like to adhere to the inner surface of the luminal body. Has been.
  • an object of the present invention is to provide a tube for trachea to which soot hardly adheres.
  • the inventors have made a distal end portion disposed on the lung side in the trachea, a proximal end portion provided on the opposite side of the distal end portion, and a distal end from the proximal end portion.
  • a tracheal tube that can be inserted into the trachea and includes a lumen body having an airway securing lumen that penetrates through the portion, at least a part of the inner surface of the lumen body forming the airway securing lumen has a size of several ⁇ m to several tens Providing a tube for trachea in which wrinkles are less likely to adhere when a microstructural region in which concaves and convexes of several tens to several hundreds of nanometers are formed on top of concaves and convexes of ⁇ m size, preferably several tens of ⁇ m. It has been learned that this can be done, and the present invention has been completed.
  • the present invention provides the following (1) to (24).
  • a microstructure region is disposed on at least a portion of the inner surface forming the lumen for securing the airway of the lumen body;
  • the fine structure region includes a particle layer formed of microparticles having an average secondary particle diameter of several ⁇ m to several tens of ⁇ m, in which nanoparticles having an average primary particle diameter of several tens to several hundreds of nanometers are aggregated A tube for trachea that can be inserted into the trachea according to (1).
  • the microstructure region has an average secondary particle size in which nanoparticles having an average primary particle size of several tens to several hundreds of nanometers and nanoparticles having an average primary particle size of several tens to several hundreds of nanometers are aggregated.
  • the tracheal tube which can be inserted into the trachea according to (1), comprising a particle layer formed of microparticles of several ⁇ m to several tens of ⁇ m.
  • the microstructure region includes a particle layer formed of nanoparticles having an average primary particle diameter of several tens to several hundreds of nanometers and microparticles having an average primary particle diameter of several ⁇ m to several tens of ⁇ m.
  • Insertable tracheal tube Insertable tracheal tube.
  • the unevenness having a size of several ⁇ m to several tens of ⁇ m is formed by at least one selected from the group consisting of extrusion processing, injection molding, cutting processing, laser processing, and surface processing using a core rod,
  • the unevenness of several tens to several hundreds of nanometers is formed by at least one selected from the group consisting of nanoparticle coating of several tens to several hundreds of nanometers, nanoimprinting, solvent treatment, plasma sputtering, and laser processing.
  • the microstructure region can be inserted into the trachea according to (1), having a surface on which undulations of several tens to several hundreds of nanometers are further superimposed on undulations of several tens of ⁇ m. Tube for trachea.
  • the microstructure region includes a particle layer formed of microparticles having an average secondary particle diameter of several tens of ⁇ m, in which nanoparticles having an average primary particle diameter of several tens to several hundreds of nanometers are aggregated (7 A tube for trachea that can be inserted into the trachea described in 1.).
  • the microstructure region has an average secondary particle size in which nanoparticles having an average primary particle size of several tens to several hundreds of nanometers and nanoparticles having an average primary particle size of several tens to several hundreds of nanometers are aggregated.
  • the tracheal tube that can be inserted into the trachea according to (7), including a particle layer formed of microparticles of several tens of ⁇ m.
  • the fine structure region includes a particle layer formed of nanoparticles having an average primary particle diameter of several tens to several hundreds of nanometers and microparticles having an average primary particle diameter of several tens of ⁇ m. Tube for trachea that can be inserted into the trachea.
  • the fine structure region is formed with unevenness of several tens ⁇ m size, and further formed with unevenness of several tens nm to several hundreds nm size, and can be inserted into the trachea according to (7) Tube for trachea.
  • the unevenness of a size of several tens of ⁇ m is formed by at least one selected from the group consisting of extrusion processing, injection molding, cutting processing, laser processing, and surface processing using a core rod, and several tens Irregularities with a size of nm to several hundreds of nm are formed by at least one selected from the group consisting of nanoparticle coating of several tens of nm to several hundreds of nm, nanoimprinting, solvent treatment, plasma sputtering, and laser processing.
  • a tube for trachea that can be inserted into the trachea according to (11).
  • the tracheal tube insertable into the trachea according to (1) or (7), wherein the fine structure region includes a particle layer formed of nanoparticles having an average primary particle diameter of several tens to several hundreds of nanometers. .
  • the tracheal tube which can be inserted into the trachea according to any one of (1) to (13), wherein the lumen body has a curved portion or a bent portion positioned between the distal end portion and the proximal end portion. .
  • the tracheal tube which can be inserted into the trachea according to (14), which is a tracheal cannula that can puncture the annular thyroid membrane.
  • a tracheal tube which has a fine structure region having an uneven surface on its inner surface and can be inserted into a trachea.
  • intersection point K The intersection point intersecting with the inner surface of the tube wall located outside the curve is the intersection point K
  • the reference line perpendicular to the plane P at the intersection point K is the reference line S
  • the tangent line tangent to the inner peripheral surface of the lumen body is the tangent line T
  • the tangent line T (14) to (21) where the microstructure region is disposed at a position on the inner peripheral surface of the lumen body where the angle ⁇ is 30 ° or more, where A tube for trachea that can be inserted into the trachea according to any one of the above.
  • the angle ⁇ is an acute angle or a right angle formed by the reference line S and the tangent line T.
  • the tube for tracheas which a wrinkle cannot adhere easily can be provided.
  • the tracheal tube of the present invention it is possible to reduce the frequency of sucking and removing wrinkles adhering to the tracheal tube, so that the burden on the patient and caregiver can be reduced.
  • FIG. 1 is a view showing a state in which a tracheostomy tube according to a first embodiment of the present invention is attached to a patient.
  • FIG. 2A is a cross-sectional view showing the main part of the tracheostomy tube according to the first embodiment of the present invention shown in FIG.
  • FIG. 2B is a cross-sectional view taken along the line AA shown in FIG.
  • FIG. 2C is a partially enlarged cross-sectional view of the fine structure region.
  • FIG. 2D is a cross-sectional view showing a state in which wrinkles adhering to the inside of the tracheostomy tube according to the first embodiment of the present invention are sucked.
  • FIG. 2A is a cross-sectional view showing the main part of the tracheostomy tube according to the first embodiment of the present invention shown in FIG.
  • FIG. 2B is a cross-sectional view taken along the line AA shown in FIG.
  • FIG. 2C is a partially enlarged cross
  • FIG. 2E is a partially enlarged cross-sectional view of another embodiment of the microstructure region.
  • FIG. 3A is a cross-sectional view showing a modification of the tracheostomy tube according to the first embodiment.
  • 3B and 3C are cross-sectional views taken along line BB shown in FIG. 3A.
  • FIG. 4A is a cross-sectional view showing a main part of a tracheostomy tube according to the second embodiment of the present invention.
  • FIG. 4B is a cross-sectional view taken along the line CC shown in FIG.
  • FIG. 4C is a cross-sectional view showing a modification of the tracheostomy tube according to the second embodiment.
  • FIG. 5A is a cross-sectional view showing the main part of a tracheostomy tube according to the third embodiment of the present invention.
  • FIG. 5B is a cross-sectional view taken along the line DD shown in FIG.
  • FIG. 5C is a cross-sectional view showing a modified example of the tracheostomy tube according to the third embodiment.
  • FIG. 6A is a cross-sectional view showing the main part of a tracheostomy tube according to the fourth embodiment of the present invention.
  • FIG. 6B is a cross-sectional view taken along the line EE shown in FIG.
  • FIG. 7 is a view showing a state in which an endotracheal tube according to a fifth embodiment of the present invention is attached to a patient.
  • FIG. 8A is a perspective view showing a configuration example of an endotracheal tube according to the fifth embodiment of the present invention shown in FIG.
  • FIG. 8B is a cross-sectional view taken along the line FF shown in FIG.
  • FIG. 9 is a view showing a state in which a tracheal cannula according to a sixth embodiment of the present invention is attached to a patient.
  • FIG. 10 is a view showing a state in which a tracheal cannula according to a seventh embodiment of the present invention is attached to a patient.
  • a sputum is a type of mucus that is a viscous fluid that is secreted from the mucous membranes of the trachea and has a slimy nature. Pulling properties) and viscoelasticity (like rubber, it stretches when it is grabbed and lifted, returns to its original shape when released, and breaks when stretched more than a certain amount). Examples of the main components of koji include water and glycoproteins such as mucin.
  • the repellency refers to the property of repelling wrinkles. As a result of repelling wrinkles, wrinkles are less likely to adhere to the inside of the tracheal tube (the inner peripheral surface of the lumen body). Moreover, the stringing property of the cocoon can be suppressed.
  • the repellency surface is a surface on which the wrinkle moves when an inclination angle is set to 30 ° and 100 ⁇ L of the wrinkle is dropped on the surface.
  • the tracheal tube shown in FIGS. 1 and 2 is a so-called tracheostomy tube.
  • a tracheostomy tube 101 shown in FIG. 1 is an instrument for performing respiratory management of a patient, and is used in a state where it is directly inserted into the trachea 7 through an incision hole formed by incising the trachea.
  • the tracheostomy tube 101 includes a lumen body 102 that constitutes a main part of the tracheostomy tube 101, and a fixing portion 127 for fixing the lumen body 102 to a patient. As shown in FIGS.
  • a microstructure region 150 is arranged on the inner surface (inner peripheral surface) forming the lumen for securing the airway of the lumen body 102.
  • the fine structure region 150 is disposed on the inner peripheral surface of the lumen body 102.
  • the microstructure region 150 may be a coating 250 including a particle layer 154 and an adhesive layer 152.
  • the lumen body 102 is formed in a cylindrical shape that is open at both ends and has a uniform outer diameter and inner diameter along the length direction. Inside the lumen body 102, an airway securing lumen 102a that is a space through which exhalation passes along the length direction of the lumen body 102 is formed.
  • the lumen body 102 includes a distal end portion 122, a proximal end portion 121 disposed on the opposite side of the distal end portion 122, and a curved portion 123 positioned between the proximal end portion 121 and the distal end portion 122.
  • the curved portion 123 is curved so that the central axis of the distal end portion 122 and the central axis of the proximal end portion 121 intersect at an angle ⁇ , and in this first embodiment, the lumen body 102 is formed in a substantially L shape. Is done. That is, the angle ⁇ is about 90 °.
  • the lumen body 102 has such flexibility that the ⁇ can be changed in a range from about 90 ° to about 120 ° in accordance with a change in the posture of the patient. Even if the ⁇ changes within this range, the microstructure region 150 does not peel off or fall off from the lumen body 102.
  • the material of the lumen body 102 include synthetic resins such as silicone, polycarbonate, polypropylene, polyethylene, and polyvinyl chloride.
  • a tracheostomy hole formed by incising the wall of the trachea 7 and the skin 5 on the upper part of the trachea 7 in a patient lying on his back (the supine position).
  • the distal end portion 122 of the lumen body 102 is inserted into the trachea 7.
  • the distal end portion 122 of the luminal body 102 is tracheal toward the lung side so as to be spaced apart from the mucous membranes (skin-side tracheal mucosa 7a, inner tracheal mucosa 7b) constituting the tube wall of the trachea 7. 7.
  • proximal end portion 121 of the lumen body 102 is exposed to the outside through the tracheostomy hole, and a ventilator (not shown) is attached to the proximal end portion 121.
  • a ventilator (not shown) is attached to the proximal end portion 121.
  • exhaled air passes through the airway securing lumen 102a.
  • respiratory management is performed.
  • the fixing portion 127 is attached to the proximal end portion 121 of the lumen body 102.
  • the fixing portion 127 fixes the distal end portion 122 to an appropriate position in the trachea 7 by contacting the skin 5 when the luminal body 102 is attached to the patient.
  • the fixed plate 128 is a flat plate member, and a storage hole 131 that penetrates the fixed plate 128 is formed at the center.
  • An adhesive portion 129 is attached to the front surface of the fixing plate 128, and the back surface of the fixing plate 128 is brought into contact with the patient's skin 5.
  • the bonding portion 129 is for bonding the lumen body 102 to the fixing portion 127, and has a ring shape in which a substantially circular through hole 130 is formed at the center.
  • the through hole 130 of the bonding portion 129 communicates with the storage hole 131 of the fixing plate 128, and the size of the through hole 130 is set according to the outer diameter of the lumen body 102.
  • the lumen body 102 passes through the accommodation hole 131 of the fixing plate 128 and the through hole 130 of the bonding portion 129, and is fixed by, for example, an adhesive.
  • fixing with an adhesive is given as an example, but various fixing methods such as fixing by welding can be employed.
  • the fine structure region 150 includes a particle layer 154 and is disposed on the entire inner surface of the lumen body 102 forming the lumen for securing the airway.
  • the particle layer 154 is located on the surface side (innermost side) of the microstructure region 150 disposed on the inner surface forming the airway securing lumen 102a of the lumen body 102, and the surface 24 thereof faces the airway securing lumen 102a. It is an (exposed) layer that prevents soot from accumulating inside the lumen body 102. That is, the airway securing lumen 102a functions so as not to be blocked.
  • the particle layer 154 includes the nanoparticles 11 and the microparticles 21, and is further several tens of nanometers to several tens of micrometers, or several tens of nanometers to several hundreds of tens of micrometers in size. It is a layer having a surface on which nm-size irregularities are formed in a superimposed manner.
  • the nanoparticles 11 are attached to the microparticles 21 and the luminal body 21, and the unevenness of several tens to several tens of micrometers, or the unevenness of several tens to several hundreds of nanometers on the unevenness Is a layer having a surface formed in a superimposed manner.
  • the particle layer 154 When an adhesive layer 152 described later is interposed between the particle layer 154 and the lumen body 102, the particle layer 154 has the nanoparticles 11 attached to the microparticles 21 and the adhesive layer 152, and several ⁇ m to several This is a layer having a surface in which unevenness of several tens to several hundreds of nanometers is further superimposed on unevenness of a size of 10 ⁇ m or several tens of ⁇ m.
  • the unevenness having a size of several ⁇ m to several tens of ⁇ m the unevenness having a size of 5 to 50 ⁇ m shown in Example 1 described later can be given.
  • the average primary particle diameter of the nanoparticles 11 is in the range of several tens nm to several hundreds nm, preferably 10 to 100 nm, more preferably 10 to 50 nm.
  • the average primary particle size or average secondary particle size of the microparticles 21 is in the range of several ⁇ m to several tens of ⁇ m, particularly several tens of ⁇ m, preferably 10 to 70 ⁇ m, more preferably 10 to 40 ⁇ m.
  • the microparticle 21 may be one in which the nanoparticles 11 are aggregated.
  • the particle layer 154 has unevenness of several tens to several tens of micrometers, or unevenness of several tens to several hundreds of nanometers on the unevenness of several tens of micrometers. Since the superposed surface 24 is provided, the microstructure region 150 can obtain excellent repellency.
  • the particle layer 154 is formed by depositing nanoparticles 11 having an average primary particle diameter of several tens to several hundreds of nanometers so as to have irregularities of several ⁇ m to several tens of ⁇ m, or several tens of ⁇ m. Also good. Further, the particle layer 154 is a microparticle having an average secondary particle diameter in the range of several ⁇ m to several tens of ⁇ m, particularly microparticles of several tens of ⁇ m, in which nanoparticles 11 having an average primary particle diameter of several tens to several hundreds ⁇ m are aggregated. 21 may be deposited and formed.
  • the average primary particle diameter of nanoparticles and the average primary particle diameter and average secondary particle diameter of microparticles can be measured using a transmission electron microscope or a scanning electron microscope.
  • the diameter is considered as the diameter
  • the average value of the longest diameter and the shortest diameter is regarded as the diameter, and 20 arbitrarily selected by observation with a scanning electron microscope or the like.
  • the average diameter of the particles is defined as the average primary particle diameter or the average secondary particle diameter.
  • Nanoparticles 11 and microparticles 21 are not particularly limited, but are preferably hydrophobic fine particles.
  • hydrophobic oxide fine particles, metal oxide composite particles, fluororesin fine particles, and the like can be used.
  • the hydrophobic oxide used for the hydrophobic oxide particles is not particularly limited as long as it is a hydrophobic oxide.
  • a hydrophobic oxide for example, at least one of silica (silicon dioxide), alumina, titania and the like can be used.
  • the hydrophobicity may be imparted by surface treatment.
  • fine particles in which hydrophilic oxide fine particles are subjected to surface treatment with a silane coupling agent or the like to make the surface state hydrophobic can be used. . These can be known or commercially available.
  • titania examples include “AEROXIDE TiO 2 T805” (average primary particle size: about 21 nm) (Evonik Degussa).
  • alumina examples include fine particles in which the product name “AEROXIDE Alu C” (average primary particle size: about 13 nm) (Evonik Degussa) or the like is treated with a silane coupling agent to make the particle surface hydrophobic.
  • the metal oxide composite particles include metal oxide particles as a core and a coating layer formed on the surface thereof.
  • the metal oxide particles serving as the core form an aggregate structure (aggregate porous structure) in which a plurality of metal oxide particles (primary particles) are three-dimensionally connected.
  • the covering layer is formed inside and outside the aggregate structure.
  • fluorine-containing metal oxide composite particles are preferable.
  • the fluorine-containing metal oxide composite particles are not particularly limited as long as they include metal oxide particles and a coating layer containing a polyfluoroalkyl methacrylate resin formed on the surface thereof.
  • the metal oxide particles are not limited as long as they can be the core of the metal oxide composite particles.
  • At least one kind of particles (powder) such as silicon oxide, titanium oxide, aluminum oxide, and zinc oxide may be used.
  • the polyfluoroalkyl methacrylate resin include a copolymer obtained by copolymerizing polyfluorooctyl methacrylate, 2-N, N-diethylaminoethyl methacrylate, 2-hydroxyethyl methacrylate, and 2,2′-ethylenedioxydiethyl dimethacrylate. It can be used suitably.
  • the fluororesin fine particles are not particularly limited as long as they are mainly composed of a fluororesin.
  • the fluororesin include polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE, CTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), perfluoroalkoxy fluororesin (PFA), tetrafluoroethylene.
  • PTFE polytetrafluoroethylene
  • PCTFE polychlorotrifluoroethylene
  • CTFE polyvinylidene fluoride
  • PVDF polyvinyl fluoride
  • PFA perfluoroalkoxy fluororesin
  • tetrafluoroethylene tetrafluoroethylene
  • FEP ethylene / hexafluoropropylene copolymer
  • ETFE ethylene / tetrafluoroethylene copolymer
  • ECTFE ethylene / chlorotrifluoro
  • Hydrophobic fine particles are preferably hydrophobic metal oxide fine particles, more preferably hydrophobic silica fine particles.
  • hydrophobic silica fine particles having a silyl group, preferably a trimethylsilyl group on the surface, or metal oxide particles having a surface coated with a polyfluoroalkyl methacrylate resin are preferred because they are more excellent in preventing soot adhesion.
  • the total adhesion amount (weight after drying) of the nanoparticles 11 and the microparticles 21 is not limited, but is usually preferably 0.01 to 10 g / m 2 and preferably 0.2 to 1.5 g / m 2 . Is more preferably 0.3 to 1 g / m 2, and particularly preferably 0.5 to 1 g / m 2 .
  • more excellent repellency can be obtained over a long period of time, and it is further advantageous in terms of suppressing dropping of the nanoparticles 11 and microparticles, cost, and the like.
  • the nanoparticles 11 are porous layers having a three-dimensional network structure.
  • the thickness is preferably about 0.1 to 5 ⁇ m, and more preferably about 0.2 to 2.5 ⁇ m.
  • the particle layer 154 is disposed on the entire inner surface of the lumen body 102 that forms the airway securing lumen 102a.
  • the present invention is not limited to this aspect, and the particle layer 154 is disposed in at least a partial region. It only has to be done.
  • the microstructure region 150 may include an adhesive layer 152 that is interposed between the lumen body 102 and the particle layer 154 and improves the adhesion between them.
  • the adhesive layer 152 and the particle layer 154 constitute a coating 250.
  • the particle layer 154 is disposed on the entire surface of the adhesive layer 152 disposed on the entire inner surface of the lumen 102a for securing the airway of the lumen 102.
  • the present invention is not limited to this mode, and the region where the particle layer 154 is disposed. May be disposed in at least a partial region of the adhesive layer 152.
  • the thickness of the adhesive layer 152 is not particularly limited, but is preferably about 2 to 150 ⁇ m from the viewpoint of adhesion, productivity, manufacturing cost, and the like.
  • the adhesive layer 152 a known material can be used.
  • a layer formed of an adhesive such as a lacquer type adhesive, an easy peel adhesive, or a hot melt adhesive can be employed.
  • a lacquer type adhesive or a sealant film it is preferable to employ a lacquer type adhesive or a sealant film, and particularly an adhesive layer formed of a lacquer type adhesive can be suitably employed.
  • the lacquer type adhesive means an adhesive that is dried and cured by volatilization of the solvent.
  • the manufacturing method of the microstructure region 150 of the tracheostomy tube 101 of the present embodiment is not particularly limited.
  • the nanoparticles 11 and the microparticles 21 are attached to the inner surface of the lumen 102 forming the lumen 102a for securing the airway.
  • the particle layer 154 is disposed on the inner surface of the lumen 102 to form the airway securing lumen 102a, and the adhesive layer 152 is disposed on the inner surface of the lumen body 102a (exposed to the airway securing lumen 102a).
  • a method in which the nanoparticles 11 and the microparticles 21 are attached to the surface) and the particle layer 154 is disposed on the adhesive layer 152.
  • Examples of the method for arranging the adhesive layer 152 include known methods such as a dry laminating method, an extrusion laminating method, a wet laminating method, and a heat laminating method.
  • a known method such as roll coating, gravure coating, bar coating, doctor blade coating, brush coating, powder electrostatic method or the like can be employed.
  • roll coating or the like it can be carried out by a method in which a coating film is formed on the adhesive layer 152 using a dispersion obtained by dispersing the nanoparticles 11 and microparticles 21 in a solvent and then dried.
  • the solvent in this case is not limited, and in addition to water, for example, alcohol (ethanol), cyclohexane, toluene, acetone, IPA, propylene glycol, hexylene glycol, butyl diglycol, pentamethylene glycol, normal pentane, normal hexane, hexyl alcohol
  • An organic solvent such as can be selected as appropriate.
  • a very small amount of a dispersant, a colorant, an anti-settling agent, a viscosity modifier and the like can be used in combination.
  • the dispersion amount of the nanoparticles 11 and the microparticles 21 with respect to the solvent is usually about 10 to 100 g / L in total.
  • the drying temperature is not limited as long as it does not affect the luminal substrate, but it is usually 150 ° C. or less, and preferably 80 to 120 ° C.
  • the heating temperature in this case can be appropriately set according to the type of the adhesive layer 152 and the like, and is usually from (Tm ⁇ 50) ° C. to (Tm + 50) with respect to the melting point Tm (melting start temperature) ° C. of the adhesive layer 152 used. ) It is preferable to be within the range of ° C.
  • FIG. 1 A case where the eyelid in the tracheostomy tube 101 is sucked using a suction catheter will be described with reference to FIG.
  • the suction catheter 601 is inserted into the lumen body 102 from the proximal end 121 side of the lumen body 102, and the tip of the suction catheter 601 is advanced to the vicinity of the tip section 122 along the inner surface of the lumen body 102, Aspirate Z.
  • the fine structure region 150 is disposed on the inner surface of the lumen 102a for securing the airway of the lumen body 102.
  • the inner surface of the lumen 102 for forming the lumen 102a for securing the airway is several ⁇ m to For example, a method of forming unevenness with a size of several tens of ⁇ m or several tens of ⁇ m, and further forming unevenness with a size of several tens to several hundreds of nanometers on the unevenness.
  • examples of the method for forming the unevenness of several ⁇ m to several tens of ⁇ m or several tens of ⁇ m include extrusion molding, injection molding, cutting, laser processing, surface processing using a core rod, and the like.
  • examples of the method for forming irregularities with a size of several tens to several hundreds of nanometers include coating of nanoparticles with an average primary particle size of several tens to several hundreds of nanometers, nanoimprinting, solvent treatment, plasma sputtering, and laser processing. Can do.
  • the nanoparticles having an average primary particle diameter of several tens to several hundreds of nanometers those described above are preferable.
  • irregularities having a size of several ⁇ m to several tens of ⁇ m or several tens of ⁇ m may be newly formed, but a commercially available product having such irregularities on the surface may be used.
  • the microstructure region 150 exists over the entire circumference of the inner peripheral surface of the lumen body 102, but is not limited to this form. As shown in 3 (A) to (C), it may be arranged only on a part of the inner peripheral surface of the lumen body 102.
  • 3A to 3C show a tracheostomy tube 201 according to a modification of the first embodiment. The difference from the tracheostomy tube 101 of the first embodiment shown in FIG. The position where the structure area 150 exists is mentioned.
  • 3B and 3C are cross-sectional views taken along line BB shown in FIG. 3A.
  • a plane P passing through the center J of each luminal body 102 at the proximal end 121, the distal end 122, and the bending portion 123 is a luminal body.
  • the tangent line T is the reference.
  • the microstructure region 150 is present at a position on the inner peripheral surface of the lumen 102 where the angle ⁇ formed with the line S is 30 ° or more.
  • FIG. 4 A second embodiment of the tracheal tube of the present invention will be described with reference to FIG.
  • the tracheal tube shown in FIG. 4 is a so-called tracheostomy tube.
  • the difference between the tracheostomy tube 301 of the second embodiment shown in FIG. 4 and the tracheostomy tube 101 of the first embodiment shown in FIG. 2 described above is mainly that the tracheostomy tube 301 includes the cuff 106 and the cuff.
  • the point which has the adjustment part 108 is mentioned.
  • a cuff 106 is attached to the distal end portion 122 of the lumen body 102.
  • the cuff 106 is fixed so as to cover the outer peripheral surface of the lumen body 102 in the vicinity of the distal end portion 122.
  • the cuff 106 is connected to the cuff adjusting unit 108.
  • the cuff adjusting unit 108 includes a pilot balloon 126 and an air injection tube 125 that connects the cuff 106 and the pilot balloon 126.
  • the pilot balloon 126 is formed to have a substantially flat hexagonal cross section.
  • the cross-sectional shape of the pilot balloon 126 is described as a hexagon, but the present invention is not limited to this.
  • the cross-sectional shape of the pilot balloon 126 can be formed in a substantially square shape or a circular shape, and may be formed in various other shapes.
  • An air injection hole 126 a is provided at one end of the pilot balloon 126, and a discharge port 126 b is provided at the other end of the pilot balloon 126.
  • a check valve is attached to the air injection hole 126a. Then, air is sent into the cuff 106 through the pilot balloon 126 and the air injection tube 125 from the air injection hole 126a. The air sent in does not leak from the air injection hole 126a by the check valve. Further, the pressure applied to the cuff 106 can be sensed tactilely by pressing the pilot balloon 126 with a finger.
  • the air injection tube 125 communicates with the internal space of the cuff 106 through the cuff side opening 111 formed once.
  • a storage hole 231 is formed at the center of the fixed plate 128.
  • the adhesive portion 129 has a substantially circular through hole 130 and a groove formed from the outer periphery toward the through hole 130.
  • the through hole 130 communicates with the storage hole 231.
  • the lumen body 102 and the air injection tube 125 pass through the storage hole 231. That is, the air injection tube 125 passes through the groove portion of the bonding portion 129 and the accommodation hole 131 of the fixing plate 128. 4B, the air injection tube 125 is disposed along the inside of the curved portion 123 of the lumen body 102, and is fixed to the outer peripheral surface 102c of the lumen body 102.
  • the cuff 106 When the air sent from the air injection hole 126a through the pilot balloon 126 and the air injection tube 125 enters the cuff 106, the cuff 106 swells and the mucous membrane of the trachea 7 (skin-side tracheal mucosa 7a, body inner tracheal mucosa 7b). ). Thereby, the clearance gap formed between the lumen body 102 and the trachea 7 can be closed.
  • the cuff 106 blocks the gap formed between the luminal body 102 and the trachea 7, thereby preventing oxygen sent from the ventilator from leaking to the larynx side, and saliva flowing from the larynx side, etc. Can be prevented from entering the lungs.
  • FIG. 4B the configuration in which the air injection tube 125 is fixed to the outer peripheral surface 102c of the lumen body 102 has been described.
  • the present invention is not limited to this configuration, and for example, as shown in FIG.
  • an air injection lumen 125 a may be provided in the tube wall of the lumen 302, and air may be sent from the pilot balloon 126 to the cuff 106.
  • FIG. 5 A third embodiment of the tracheal tube of the present invention will be described with reference to FIG.
  • the tracheal tube shown in FIG. 5 is a so-called tracheostomy tube.
  • the difference between the tracheostomy tube 401 of the third embodiment shown in FIG. 5 and the tracheostomy tube 301 of the second embodiment shown in FIG. 4 is mainly that the tracheostomy tube 401 is a cuff-side suction part.
  • the point which has 138 is mentioned.
  • a cuff-side suction unit 138 is disposed on the opposite side of the cuff adjusting unit 108 with the lumen body 102 interposed therebetween.
  • the cuff side suction part 138 includes a cuff side suction connector 139 and a cuff side suction tube 140.
  • a storage hole 331 is formed at the center of the fixed plate 128.
  • the cuff side suction tube 140 passes through the groove portion of the bonding portion 129 and the accommodation hole 331 of the fixing plate 128, similarly to the air injection tube 125.
  • the cuff-side suction tube 140 is disposed along the outside of the curved portion 123 of the lumen body 102 and is fixed to the outer peripheral surface 102 c of the lumen body 102.
  • One end of the cuff side suction tube 140 extends to the vicinity of the cuff 106 and opens, and the cuff side suction port 140a is formed by this opening.
  • a cuff side suction connector 139 is attached to the other end of the cuff side suction tube 140.
  • a suction device (not shown) is attached to the cuff side suction connector 139.
  • Saliva or the like flowing from the larynx side flows through the mucous membrane of the trachea 7 (skin-side tracheal mucosa 7a, internal tracheal mucosa 7b) and flows to the lung side.
  • the saliva or the like is blocked by the cuff 106 in an inflated state, and accumulates in a space formed by the mucous membrane (skin-side tracheal mucosa 7 a and body inner tracheal mucosa 7 b) and the cuff 106.
  • the saliva etc. which were dammed by the cuff 106 are sucked from the cuff side suction port 140a by the cuff side suction part 138 by operating the suction device.
  • the microstructure region 150 described above may be disposed on the inner peripheral surface of the cuff side suction tube 140.
  • the fine structure region 150 including the repellent layer 154 may be disposed on the inner peripheral surface of the cuff side suction tube 140, it is possible to prevent wrinkles from adhering to the inner peripheral surface of the cuff side suction tube 140 and to absorb the cuff side suction. Occlusion of the tube 140 can be suppressed.
  • a suction line and related components may be further added to suck foreign substances such as sputum attached to the lung side of the cuff 106.
  • the configuration in which the air injection tube 125 and the cuff side suction tube 140 are fixed to the outer peripheral surface 102c of the lumen 102 is not limited to this configuration.
  • an air injection lumen 125b is provided in the tube wall of the lumen body 402 instead of the air injection tube 125, and the tube wall of the lumen body 402 is replaced instead of the cuff side suction tube 140.
  • a cuff-side suction lumen 140b may be provided therein.
  • the tracheostomy tube shown in FIG. 6 is a so-called tracheostomy tube, but is called a double-tube tracheostomy tube or a tracheostomy tube with an inner tube, and a tracheostomy tube body used for the purpose of securing an airway after tracheostomy
  • This is a combination of inner cannula used to remove secretions in the tube and increase the patency of the lumen.
  • the inner cannula (hereinafter sometimes referred to as “inner cylinder”) is used as a tracheostomy tube body (hereinafter referred to as “inner tube”). It is sometimes referred to as an “outer cylinder”).
  • each member constituting the double-tube tracheostomy tube 701 will be described in detail.
  • the lumen body 102 constituting the inner cylinder 701a is formed in a cylindrical shape that is open at both ends and has a uniform outer diameter and inner diameter along the length direction. Inside the lumen body 102, an airway securing lumen 102a that is a space through which exhalation passes along the length direction of the lumen body 102 is formed.
  • the lumen body 102 includes a distal end portion 122 and a proximal end portion 121 disposed on the opposite side of the distal end portion 122, and a curved portion 123 positioned between the proximal end portion 121 and the distal end portion 122 as desired. You may have.
  • the lumen body 102 is preferably made of a flexible material and is preferably deformed along the lumen body 702.
  • the lumen body 102 When the lumen body 102 has the curved portion 123, the lumen body 102 is curved so that the central axis of the distal end portion 122 and the central axis of the base end portion 121 intersect at an angle ⁇ , and the lumen body 102 is formed in an approximately L shape. May be. In the lumen body 102 shown in FIG. 6A, the angle ⁇ is about 90 °.
  • the material of the lumen body 102 include synthetic resins such as silicone, polycarbonate, polypropylene, polyethylene, and polyvinyl chloride.
  • the lumen body 702 constituting the outer cylinder 701b is formed in a cylindrical shape that is open at both ends and has a uniform outer diameter and inner diameter along the length direction. Inside the lumen body 702, an inner cylinder insertion lumen 702a, which is a space for inserting an inner cannula (inner cylinder) along the length direction of the lumen body 702, is formed.
  • the lumen body 702 includes a distal end portion 722, a proximal end portion 721 disposed on the opposite side of the distal end portion 722, and a curved portion 723 positioned between the proximal end portion 721 and the distal end portion 722.
  • the curved portion 723 is curved so that the central axis of the distal end portion 722 and the central axis of the proximal end portion 721 intersect at an angle ⁇ , and in this fourth embodiment, the lumen body 702 is formed in a substantially L shape. Is done. That is, the angle ⁇ is about 90 °.
  • the lumen body 702 has such flexibility that the angle ⁇ can be changed in a range from about 90 ° to about 120 ° in accordance with a change in the posture of the patient.
  • Examples of the material of the lumen body 702 include synthetic resins such as silicone, polycarbonate, polypropylene, polyethylene, and polyvinyl chloride.
  • a fine structure region having the same configuration as the fine structure region 150 may be disposed on the inner surface of the lumen body 702 forming the inner tube insertion lumen.
  • the proximal end 721 of the lumen body 702 is exposed outside the body through the tracheostomy hole, and a ventilator (not shown) is attached to the proximal end 721.
  • a ventilator (not shown) is attached to the proximal end 721.
  • exhaled air passes into the lumen 102a for securing the airway of the inner cylinder.
  • respiratory management is performed.
  • the fixing portion 727 is attached to the proximal end portion 721 of the lumen body 702.
  • the fixing portion 727 fixes the distal end portion 722 to an appropriate position in the trachea 7 by contacting the skin 5 when the lumen body 702 is attached to the patient.
  • the fixing plate 728 is a flat plate member, and a storage hole 731 penetrating the fixing plate 728 is formed at the center.
  • An adhesive portion 729 is attached to the front surface of the fixing plate 728, and the back surface of the fixing plate 728 is brought into contact with the patient's skin 5.
  • the bonding portion 729 is used to bond the lumen body 702 to the fixing portion 727, and has a ring shape in which a substantially circular through hole 730 is formed at the center.
  • the through hole 730 of the bonding portion 729 communicates with the storage hole 731 of the fixing plate 728, and the size of the through hole 730 is set according to the outer diameter of the lumen body 702.
  • the lumen body 702 penetrates through the accommodation hole 731 of the fixing plate 728 and the through-hole 730 of the bonding portion 729, and is fixed by, for example, an adhesive.
  • fixing with an adhesive is given as an example, but various fixing methods such as fixing by welding can be employed.
  • the fine structure region 150 installed on the inner surface of the lumen 102a of the lumen 102 constituting the inner cylinder is as described in the first embodiment of the present invention.
  • the multi-tube tracheostomy tube of the present invention has been described.
  • the cuff and the cuff adjusting unit, the suction line, and related configurations are described. Modifications such as adding can be made.
  • the tracheal tube shown in FIGS. 7 and 8 is a so-called endotracheal tube.
  • the endotracheal tube 501 shown in FIGS. 7 and 8 is an instrument for performing respiratory management of a patient, and is inserted into the trachea 7 from the patient's mouth.
  • the endotracheal tube 501 includes a lumen body 202, a cuff 206, and an air injection tube 225.
  • the fine structure region 150 described above is disposed on the inner peripheral surface of the lumen body 202 over the entire periphery.
  • the form of the microstructure region 150 is as described above, and a description thereof is omitted.
  • the endotracheal tube 501 includes a lumen body 202, an air injection lumen 225 b provided along the longitudinal direction of the lumen body 202, and extended to at least the vicinity of the distal end portion 222 of the lumen body 202, and the lumen body 202 is provided in the vicinity of the distal end portion of the lumen body 202 so as to surround the outer peripheral surface of the lumen body 202 and communicates with the other end of the air injection lumen 225b and the inflatable / shrinkable cuff 206 communicating with one end of the air injection lumen 225b.
  • the lumen body 202 is formed in a cylindrical shape having both ends opened.
  • the lumen body 202 includes a distal end portion 222, a proximal end portion 221 provided on the opposite side of the distal end portion 222, and a curved portion 223 positioned between the proximal end portion 221 and the distal end portion 222.
  • the lumen body 202 is made of a flexible material, and has an airway securing lumen 202a that penetrates from the distal end portion 222 to the proximal end portion 221 for introducing anesthetic gas, oxygen gas, and the like.
  • the distal end portion 222 of the lumen body 202 is formed in a smooth bevel shape in order to facilitate insertion into the body. Further, a connector 212 for connecting to the breathing circuit is attached to the proximal end portion 221.
  • an air injection lumen 225b that is thinner than the airway securing lumen 202a is provided on the tube wall forming the lumen body 202 along the longitudinal direction of the lumen body 202.
  • the air injection lumen 225b is an inflation lumen for sending air into a cuff 206 described later.
  • the air injecting lumen 225 b communicates with the internal space of the cuff 206 via a cuff side opening 225 a formed on the outer surface of the tube wall of the lumen 202 in the cuff 206.
  • the air injecting lumen 225b is a tube for injecting air through a notch 207 formed on the outer surface of the tube wall of the lumen 202 at a position in the vicinity of the base end 221. 225 is in communication.
  • connection between the air injection tube 225 and the air injection lumen 225b is performed, for example, by inserting a preheated mandrel into the air injection lumen 225b, and simultaneously removing the mandrel, the air injection tube 225 is inserted into the air injection lumen 225b. It is carried out by a method such as inserting in and fixing using a solvent or an adhesive.
  • a cuff 206 capable of expanding and contracting is provided so as to surround the outer peripheral surface in an annular shape.
  • the cuff 206 is formed on the outer periphery of the lumen body 202 by covering a cuff-side opening 225a of the air injection lumen 225b with a membrane formed in advance having an inner diameter larger than the outer diameter of the lumen body 202.
  • the both ends are attached to the outer peripheral surface of the lumen body 202 with an adhesive or a solvent, or are fused and attached by heat, high frequency, or the like, so that they are attached in an airtight manner.
  • an inflatable / deflatable pilot balloon 226 for recognizing the degree of expansion / contraction of the cuff 206 is installed at the rear end of the air injection tube 225 so as to communicate with the air injection tube 225. .
  • a check valve 226a having a function of preventing gas from flowing into the pilot balloon 226 but preventing gas from flowing into the pilot balloon 226 is installed at the rear end side of the pilot balloon 226. Yes.
  • a syringe or the like is connected to the check valve 226a and a gas such as air is press-fitted, the gas passes through the pilot balloon 226, the air injection tube 225, the air injection lumen 225b, and the cuff side opening 225a.
  • the cuff 206 is fed into the cuff 206 and the cuff 206 expands.
  • a sixth embodiment of the tracheal tube of the present invention will be described with reference to FIG.
  • the tracheal tube shown in FIG. 9 is also called a small tracheostomy tube, a percutaneous tracheal puncture tube, an annular thyroid puncture tracheal cannula, an annular thyroid incision tracheal cannula, or the like.
  • a tracheal cannula 801 shown in FIG. 9 is an instrument for performing respiratory management of a patient who needs emergency respiratory management, and is inserted into the trachea 7 by puncturing the patient's annular thyroid membrane.
  • the tracheal cannula 801 includes a lumen body 102 and a fixing portion 127.
  • the lumen body 102 of the tracheal cannula 801 is also called an outer needle because it punctures the annular thyroid membrane as a set with the inserted inner needle.
  • the fine structure region 150 (not shown) described above is disposed over the entire circumference.
  • the form of the microstructure region 150 (not shown) is as described above, and a description thereof is omitted.
  • the tracheal cannula 801 includes a lumen body 102 into which an inner needle (not shown) is inserted, and a fixing portion 127 that is provided at the proximal end portion of the lumen body 102 and fixes the lumen body 102 to the skin.
  • the lumen body 102 is made of a synthetic resin, and includes a curved portion that is curved at an angle of 15 ° or less with respect to the axial direction of the inner needle at the distal end portion.
  • the annular thyroid membrane (annular thyroid ligament) between the cricoid cartilage and the thyroid cartilage is punctured with a metal inner needle (not shown) inserted into the lumen body 102.
  • the inner needle (not shown) is removed, and only the lumen body 102 is left in the trachea.
  • the tracheal cannula 801 is fixed by tying a cotton tape or the like (not shown) inserted through a string hole (not shown) provided in the fixing part 127 to the neck.
  • a seventh embodiment of the tracheal tube of the present invention will be described with reference to FIG.
  • the tracheal tube shown in FIG. 10 is also referred to as an annular thyroid puncture tracheal cannula, an annular thyroid incision tracheal cannula, or the like.
  • the tracheal cannula 901 shown in FIG. 10 is used for the purpose of aspirating and removing the secretory fluid stored in the trachea or bronchus, for the purpose of securing a suction passage leading from the front of the neck to the inside of the trachea.
  • the tracheal cannula 901 includes a lumen body 102 and a fixing portion 127 (in particular, also referred to as a flange portion).
  • the fine structure region 150 (not shown) described above is disposed over the entire circumference.
  • the form of the microstructure region 150 (not shown) is as described above, and a description thereof is omitted.
  • the tracheal cannula 901 includes a lumen body 102 into which an introducer (not shown) is inserted, and a fixing portion 127 (flange) that is provided at the base of the lumen body 102 and fixes the lumen body 102 to the skin. ing.
  • the lumen body 102 is made of a synthetic resin and includes a curved portion that curves from the proximal end portion to the distal end portion.
  • the tracheal cannula 901 expands the puncture hole of the cricoid thyroid membrane by an expansion operation by a dilator (not shown) via a guide wire (not shown) introduced into the trachea 7 using the Seldinger method, for example.
  • the lumen body 102 into which an introducer (not shown) is inserted can be inserted into the trachea 7 through the puncture hole expanded in the thyroid membrane, and the introducer can be removed to place the tracheal cannula 901 in the trachea.
  • the annular thyroid membrane may be incised, the lumen body 102 into which the introducer is inserted from the incision hole may be inserted into the trachea 7, the introducer may be removed, and the tracheal cannula 901 may be placed in the trachea.
  • normal tracheal suction using a suction catheter (not shown) and oxygen or air supply can be performed via the tracheal cannula 901.
  • AEROSIL RX200 hydrophobic fine particles
  • Test piece C1 An inorganic system comprising an inorganic nanoparticle dispersion liquid having a water repellency angle of 170 ° or more obtained by dispersing Hydrophobia (nanoparticles by hydrolysis condensation of alkoxysilane) in a solvent on the same slide glass as in Example 1.
  • a test piece (hereinafter referred to as “test piece C1”) was produced by dip coating with a super water repellent, manufactured by Miyake Applied Science Co., Ltd.
  • Test piece C2 was produced.
  • test piece A test piece C3 was produced from the same PVC sheet as in Comparative Example 2.
  • Example 1 showed excellent repellency and adhesion suppression for all soot samples. In Example 1, no stringing of the kite was observed after the kite moved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Dentistry (AREA)
  • Otolaryngology (AREA)
  • Emergency Medicine (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Prostheses (AREA)
  • Surgical Instruments (AREA)

Abstract

 気管内の肺側に配置される先端部、先端部と反対側に設けられる基端部、および、基端部から先端部にかけて貫通する気道確保用ルーメンを有する管腔体を備える、気管に挿入可能な気管用チューブにおいて、管腔体の気道確保用ルーメンを形成する内面の少なくとも一部に微細構造領域が配置され、微細構造領域は、数μm~数十μmサイズ、好ましくは数十μmサイズの凹凸の上にさらに数十nm~数百nmサイズの凹凸が重畳的に形成された表面を有し、痰が付着しにくい、気管に挿入可能な気管用チューブが提供される。

Description

気管に挿入可能な気管用チューブ
 本発明は、気管に挿入可能な気管用チューブに関する。より詳細には、本発明は、気管切開チューブ、複管式気管切開チューブ、その内筒、気管内チューブおよび輪状甲状膜穿刺・切開用気管カニューレに関する。
 気道確保を必要とする患者の気道確保を行うための方法としては、口または鼻から咽頭を経由して気管に気管内チューブと呼ばれる気管用チューブを気管に挿入する方法である気管挿管、気管内挿管が長期にわたっている場合や気管挿管ができない場合には、気管とその上部の皮膚を切開してその部分から気管に気管切開チューブと呼ばれる気管用チューブを挿入する方法である気管切開(外科的気管切開)、緊急に気道確保が必要な場合には、輪状甲状膜(輪状甲状靭帯)を切開して気管カニューレを挿入する方法である輪状甲状膜切開、輪状甲状膜を穿刺して気管カニューレを挿入する方法である輪状甲状膜穿刺などが挙げられる。
 しかし、気管に挿入可能な気管用チューブ(以下、単に「気管用チューブ」という場合がある。)を気管内に挿入することによって気管が刺激されるため、痰などの分泌物が多量となって、気管用チューブの狭窄・閉塞を引き起こし、呼吸困難・窒息といった事象を発生させるおそれがある。痰は、通常であれば気管の繊毛運動によって排出されるが、気管用チューブには繊毛が無いため、痰が付着しやすい。そのため、気管用チューブ内の痰を定期的に吸引して気管用チューブの狭窄を防止し、閉塞しないようにしなければならない。痰は、主に水分と糖タンパク質(ムチン)で構成されており、粘度は数百~数十万cP程度と幅広く、粘度が高いほど気管用チューブ内に付着しやすく、除去の際に取り残しの残渣が出やすい。気管用チューブ内に取り残された痰が乾燥して、さらに痰が付着しやすくなることもある。気管用チューブからの痰の除去は、頻繁に行わなくてはならず、しかも極力取り残しが少なくなるように注意深く吸引しなければならないため、看護者・介護者の負担は大きい。
 そのため、痰が付着しにくい気管用チューブが求められている。
 例えば、特許文献1には、ポリ塩化ビニル、ポリウレタン、ナイロン、ナイロンエラストマーのいずれかの樹脂で構成した気管切開チューブの表面および管腔体の気道確保用ルーメンを形成する内面に、メチルビニルエーテル無水マレイン酸共重合体と、ポリエーテルブロックアミドとの混合物を、重量比が70:30の2-プロパノール/テトラヒドロフラン混合液に溶解した溶液に気管切開チューブを浸漬して塗布し、さらに塗布した混合物を水酸化ナトリウム水溶液で処理して、湿潤時に表面潤滑性を発現する被膜を形成した気管切開チューブが記載されている。この気管切開チューブは、患者が呼吸をする際の息やつば等によって管腔体の内面が湿ると、表面潤滑性が発現して、管腔体の内面に痰等が付着し難くなると記載されている。
国際公開第2006/037626号
 しかし、本発明者らが検討した限りでは、特許文献1に記載された気管切開チューブでは、昨今要求されるレベルでの痰の付着抑制が達成されておらず、改良の余地が残されていることが知見された。
 そこで、本発明は、痰が付着しにくい気管用チューブを提供することを課題とする。
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、気管内の肺側に配置される先端部、先端部と反対側に設けられる基端部、および、基端部から先端部にかけて貫通する気道確保用ルーメンを有する管腔体を備える、気管に挿入可能な気管用チューブにおいて、管腔体の気道確保用ルーメンを形成する内面の少なくとも一部に、数μmサイズ~数十μmサイズ、好ましくは数十μmサイズの凹凸の上にさらに数十nm~数百nmサイズの凹凸が重畳的に形成されている微細構造領域を配置すると、痰が付着しにくい気管用チューブを提供することができることを知得し、本発明を完成させるに至った。
 すなわち、本発明は以下の(1)~(24)を提供する。
(1)気管内の肺側に配置される先端部、先端部と反対側に設けられる基端部、および、基端部から先端部にかけて貫通する気道確保用ルーメンを有する管腔体を備える、気管に挿入可能な気管用チューブにおいて、
 管腔体の気道確保用ルーメンを形成する内面の少なくとも一部に微細構造領域が配置され、
 微細構造領域が、数μm~数十μmサイズの凹凸の上にさらに数十nm~数百nmサイズの凹凸が重畳的に形成された表面を有する、気管に挿入可能な気管用チューブ。
(2)微細構造領域が、平均一次粒子径が数十nm~数百nmのナノ粒子が凝集した、平均二次粒子径が数μm~数十μmのマイクロ粒子により形成された粒子層を含む、(1)に記載の気管に挿入可能な気管用チューブ。
(3)微細構造領域が、平均一次粒子径が数十nm~数百nmのナノ粒子、および平均一次粒子径が数十nm~数百nmのナノ粒子が凝集した、平均二次粒子径が数μm~数十μmのマイクロ粒子により形成された粒子層を含む、(1)に記載の気管に挿入可能な気管用チューブ。
(4)微細構造領域が、平均一次粒子径が数十nm~数百nmのナノ粒子、および平均一次粒子径が数μm~数十μmのマイクロ粒子により形成された粒子層を含む、(1)に記載の気管に挿入可能な気管用チューブ。
(5)微細構造領域が、数μm~数十μmサイズの凹凸を形成し、さらにその上に数十nm~数百nmサイズの凹凸を形成したものである、(1)に記載の気管に挿入可能な気管用チューブ。
(6)数μm~数十μmサイズの凹凸が押出加工、射出成型、切削加工、レーザー加工および芯棒を用いた表面加工からなる群から選択される少なくとも1つにより形成されたものであり、かつ
 数十nm~数百nmサイズの凹凸が数十nm~数百nmサイズのナノ粒子の被覆、ナノインプリント、溶剤処理、プラズマスパッタおよびレーザー加工からなる群から選択される少なくとも1つにより形成されたものである、(5)に記載の気管に挿入可能な気管用チューブ。
(7)微細構造領域が、数十μmサイズの凹凸の上にさらに数十nm~数百nmサイズの凹凸が重畳的に形成された表面を有する、(1)に記載の気管に挿入可能な気管用チューブ。
(8)微細構造領域が、平均一次粒子径が数十nm~数百nmのナノ粒子が凝集した、平均二次粒子径が数十μmのマイクロ粒子により形成された粒子層を含む、(7)に記載の気管に挿入可能な気管用チューブ。
(9)微細構造領域が、平均一次粒子径が数十nm~数百nmのナノ粒子、および平均一次粒子径が数十nm~数百nmのナノ粒子が凝集した、平均二次粒子径が数十μmのマイクロ粒子により形成された粒子層を含む、(7)に記載の気管に挿入可能な気管用チューブ。
(10)微細構造領域が、平均一次粒子径が数十nm~数百nmのナノ粒子、および平均一次粒子径が数十μmのマイクロ粒子により形成された粒子層を含む、(7)に記載の気管に挿入可能な気管用チューブ。
(11)微細構造領域が、数十μmサイズの凹凸を形成し、さらにその上に数十nm~数百nmサイズの凹凸を形成したものである、(7)に記載の気管に挿入可能な気管用チューブ。
(12)数十μmサイズの凹凸が押出加工、射出成型、切削加工、レーザー加工および芯棒を用いた表面加工からなる群から選択される少なくとも1つにより形成されたものであり、かつ
 数十nm~数百nmサイズの凹凸が数十nm~数百nmサイズのナノ粒子の被覆、ナノインプリント、溶剤処理、プラズマスパッタおよびレーザー加工からなる群から選択される少なくとも1つにより形成されたものである、(11)に記載の気管に挿入可能な気管用チューブ。
(13)微細構造領域が、平均一次粒子径が数十nm~数百nmのナノ粒子により形成された粒子層を含む、(1)または(7)に記載の気管に挿入可能な気管用チューブ。
(14)管腔体が先端部と基端部との間に位置する湾曲部または屈曲部を有する、(1)~(13)のいずれか1項に記載の気管に挿入可能な気管用チューブ。
(15)気管切開チューブである、(14)に記載の気管に挿入可能な気管用チューブ。
(16)複管式気管切開チューブである、(14)に記載の気管に挿入可能な気管用チューブ。
(17)複管式気管切開チューブの内管である、(14)に記載の気管に挿入可能な気管用チューブ。
(18)気管内チューブである、(14)に記載の気管に挿入可能な気管用チューブ。
(19)輪状甲状膜の穿刺孔または切開孔を介して気管に挿入可能な気管カニューレである、(14)に記載の気管に挿入可能な気管用チューブ。
(20)輪状甲状膜に穿刺可能な気管カニューレである、(14)に記載の気管に挿入可能な気管用チューブ。
(21)小気管切開チューブである、(19)または(20)に記載の気管に挿入可能な気管用チューブ。
(22)凹凸が形成された表面を有する微細構造領域を内面に有する、気管に挿入可能な気管用チューブ。
(23)湾曲部が先端部の中心軸と基端部の中心軸とがなす角を±45°の範囲内で変化させることができる、(14)~(21)のいずれか1項に記載の気管に挿入可能な気管用チューブ。
(24)管腔体の中心軸に直交する断面図において、基端部、先端部および湾曲部のそれぞれにおける管腔体の中心を通る平面を平面P、平面Pが管腔体の湾曲部の湾曲の外側に位置するチューブ壁の内面と交差する交点を交点K、交点Kにおいて平面Pに直交する基準線を基準線S、管腔体の内周面に接する接線を接線T、ならびに接線Tが基準線Sとなす角を角φとするとき、角φが30°以上となる管腔体の内周面上の位置に微細構造領域が配置されている、(14)~(21)のいずれか1項に記載の気管に挿入可能な気管用チューブ。ただし、角φは、基準線Sと接線Tとがなす鋭角または直角である。
 本発明によれば、痰が付着しにくい気管用チューブを提供することができる。
 また、本発明の気管用チューブを使用することにより、気管用チューブに付着した痰を吸引除去する頻度を低減することができるので、患者および介護者の負担を軽減することができる。
図1は、本発明の第1の実施形態にかかる気管切開チューブを患者に装着した状態を示す図である。 図2(A)は、図1に示す本発明の第1の実施形態にかかる気管切開チューブの要部を示す断面図である。図2(B)は、図2(A)に示すA-A線に沿って切断した断面図である。図2(C)は、微細構造領域の一部拡大断面図である。図2(D)は、本発明の第1の実施形態にかかる気管切開チューブの内部に付着した痰を吸引する状態を示す断面図である。図2(E)は、微細構造領域の他の実施形態の一部拡大断面図である。 図3(A)は、第1の実施形態にかかる気管切開チューブの変形例を示す断面図である。図3(B)および図3(C)は、図3(A)に示すB-B線に沿って切断した断面図である。 図4(A)は、本発明の第2の実施形態にかかる気管切開チューブの要部を示す断面図である。図4(B)は、図4(A)に示すC-C線に沿って切断した断面図である。図4(C)は、第2の実施形態にかかる気管切開チューブの変形例を示す断面図である。 図5(A)は、本発明の第3の実施形態にかかる気管切開チューブの要部を示す断面図である。図5(B)は、図5(A)に示すD-D線に沿って切断した断面図である。図5(C)は、第3の実施形態にかかる気管切開チューブの変形例を示す断面図である。 図6(A)は、本発明の第4の実施形態にかかる気管切開チューブの要部を示す断面図である。図6(B)は、図6(A)に示すE-E線に沿って切断した断面図である。 図7は、本発明の第5の実施形態にかかる気管内チューブを患者に装着した状態を示す図である。 図8(A)は、図7に示す本発明の第5の実施形態にかかる気管内チューブの構成例を示す斜視図である。図8(B)は、図8(A)に示すF-F線に沿って切断した断面図である。 図9は、本発明の第6の実施形態にかかる気管カニューレを患者に装着した状態を示す図である。 図10は、本発明の第7の実施形態にかかる気管カニューレを患者に装着した状態を示す図である。 図11は、実施例1の数μm~数十μmサイズの凹凸の上にさらに数十nm~数百nmサイズの凹凸が重畳された微細構造のSEM像である(倍率=1000倍、10000倍)。 図12は比較例1の数十nmサイズの凹凸を有する微細構造のSEM像である(倍率=1000倍、10000倍)。
[用語の定義]
 本発明における「痰」および「撥痰性」の定義について説明する。
 痰とは、粘液の一種で、気管等の粘膜から分泌されるスライミーな性質を示す粘性流体であって、程度の差はあるものの、曳糸性(突っ込んだ棒を引き上げたときに、糸を引く性質)および粘弾性(ゴムのように、一部をつかんで持ち上げると伸びて、離すと元の形状に戻り、一定以上伸ばすと切れる性質)を有するものである。痰の主成分としては、水とムチン等の糖タンパク質とが挙げられる。
 撥痰性とは、痰を撥ねる性質をいう。痰を撥ねる結果、気管用チューブ内部(管腔体の内周面)に痰が付着しにくくなる。また、痰の糸曳き性を抑制することができる。また、撥痰性表面とは、傾斜角を30°とし、そこに痰を100μLずつ滴下した際に、痰が移動する表面をいう。
[第1の実施形態]
 まず、本発明の気管用チューブの第1の実施形態について、図1および図2を参照して説明する。図1および図2に示す気管用チューブは、いわゆる気管切開チューブである。
 図1に示す気管切開チューブ101は、患者の呼吸管理を行うための器具であり、気管を切開して形成された切開孔から気管7に直接挿入された状態で使用される。気管切開チューブ101は、気管切開チューブ101の主要部を構成する管腔体102と、管腔体102を患者に対して固定するための固定部127とから構成される。
 図2(A)および図2(B)に示すように、管腔体102の気道確保用ルーメンを形成する内面(内周面)上には微細構造領域150が配置されている。
 図2(C)に示すように微細構造領域150は、管腔体102の内周面上に配置される。また、図2(E)に示すように微細構造領域150は、粒子層154および接着層152を含む被膜250であってもよい。
 以下、気管切開チューブ101を構成する各部材について詳述する。
 管腔体102は、両端が開口し、かつ、長さ方向に沿って均一な外径および内径を有する筒形状に形成される。管腔体102の内部には、管腔体102の長さ方向に沿って呼気が通る空間である気道確保用ルーメン102aが形成されている。
 管腔体102は、先端部122と、先端部122と反対側に配置される基端部121と、基端部121と先端部122との間に位置する湾曲部123を有する。湾曲部123は先端部122の中心軸と基端部121の中心軸が角度θで交差するように湾曲しており、この第1の実施形態では、管腔体102は略L字状に形成される。つまり、角度θは約90°である。
 なお、管腔体102は、患者の体位の変化等に合わせて上記θが約90°から約120°までの範囲で変化しうる程度の可撓性を有する。上記θがこの範囲内で変化しても、微細構造領域150は、管腔体102から剥離したり、脱落したりはしない。
 管腔体102の材質としては、例えば、シリコーン、ポリカーボネート、ポリプロピレン、ポリエチレン、ポリ塩化ビニル等の合成樹脂を挙げることができる。
 図2(A)に示されるように、仰向けに寝ている(仰臥位)の患者に対して、気管7の管壁と気管7の上部の皮膚5を切開することで形成された気管切開孔から管腔体102の先端部122が気管7内に挿入される。このとき、管腔体102の先端部122は、気管7の管壁を構成する粘膜(皮膚側気管粘膜7a、体内側気管粘膜7b)から所定の間隔を隔てるように、肺側に向けて気管7内に配置される。
 また、管腔体102の基端部121は、気管切開孔から体外に露出しており、この基端部121に、人工呼吸器(図示せず)が取り付けられている。人工呼吸器が作動することで、気道確保用ルーメン102a内に呼気が通る。これにより、患者の呼吸を持続させ、呼吸管理を行っている。その結果、呼吸に必要な酸素の通り道である気道が閉塞することを防止することができ、患者の呼吸管理を行うことができる。
 固定部127は、管腔体102の基端部121に取り付けられている。固定部127は、管腔体102を患者に装着した際に、皮膚5に当接することで、先端部122を気管7内の適切な位置に固定するものであり、固定板128と、接着部129とを有している。
 固定板128は、平板状の部材で、中央部に、固定板128を貫通する収納孔131が形成されている。そして、固定板128の表面には、接着部129が取り付けられ、固定板128の裏面は、患者の皮膚5に当接される。
 接着部129は、管腔体102を固定部127に接着するもので、中央に略円形の貫通孔130が形成されたリング形状を有している。接着部129の貫通孔130は、固定板128の収納孔131と連通しており、貫通孔130の大きさは、管腔体102の外径に合わせて設定される。
 このような固定板128の収納孔131および接着部129の貫通孔130に、管腔体102が貫通され、例えば、接着剤により固定される。
 本実施形態では、管腔体102を接着部129に固定する方法として、接着剤による固定を例に挙げたが、例えば、溶着による固定など各種の固定方法を採用することができる。
 微細構造領域150は、粒子層154からなり、管腔体102の気道確保用ルーメンを形成する内面全体に配置されている。
 粒子層154は、管腔体102の気道確保用ルーメン102aを形成する内面に配置される微細構造領域150の表面側(最内側)に位置し、その表面24が気道確保用ルーメン102aに面する(露出する)層であり、管腔体102内部に痰が堆積するのを防止する。つまり、気道確保用ルーメン102aが閉塞しないように機能する。
 粒子層154は、図2(C)に示すように、ナノ粒子11およびマイクロ粒子21を含み、数μm~数十μmサイズ、または数十μmサイズの凹凸の上にさらに数十nm~数百nmサイズの凹凸が重畳的に形成された表面を有する層である。言い換えれば、ナノ粒子11が、マイクロ粒子21および管腔体21に付着して、数μm~数十μmサイズ、または数十μmサイズの凹凸の上にさらに数十nm~数百nmサイズの凹凸が重畳的に形成された表面を有する層である。後述する接着層152が粒子層154と管腔体102との間に介在する場合には、粒子層154は、ナノ粒子11が、マイクロ粒子21および接着層152に付着して、数μm~数十μmサイズ、または数十μmサイズの凹凸の上にさらに数十nm~数百nmサイズの凹凸が重畳的に形成された表面を有する層である。数μm~数十μmサイズの凹凸の一例としては、後述する実施例1に示される5~50μmサイズの凹凸が挙げられる。
 ナノ粒子11の平均一次粒子径は、数十nm~数百nmの範囲内であり、好ましくは10~100nm、より好ましくは10~50nm。マイクロ粒子21の平均一次粒子径または平均二次粒子径は、数μm~数十μmの範囲内、特には数十μmであり、好ましくは10~70μm、より好ましくは10~40μmである。ここで、マイクロ粒子21は、ナノ粒子11が凝集したものであってもよい。
 ナノ粒子11およびマイクロ粒子21をミックスして用いることにより、粒子層154は、数μm~数十μmサイズ、または数十μmサイズの凹凸の上にさらに数十nm~数百nmサイズの凹凸が重畳的に形成された表面24を有することとなるので、微細構造領域150は優れた撥痰性を得ることができる。
 また、粒子層154は、平均一次粒子径が数十nm~数百nmのナノ粒子11を、数μm~数十μmサイズ、または数十μmサイズの凹凸を有するように堆積して形成してもよい。
 さらに、粒子層154は、平均一次粒子径が数十~数百μmのナノ粒子11が凝集した、平均二次粒子径が数μm~数十μmの範囲内、特には数十μmのマイクロ粒子21を堆積して形成してもよい。
 なお、本発明において、ナノ粒子の平均一次粒子径ならびにマイクロ粒子の平均一次粒子径および平均二次粒子径の測定は、透過型電子顕微鏡または走査型電子顕微鏡を用いて実施することができる。具体的には、粒子形状が球状の場合はその直径、非球状の場合はその最長径と最短径との平均値を直径とみなし、走査型電子顕微鏡等による観察により任意に選んだ20個分の粒子の直径の平均を一次粒子平均径または平均二次粒子径とする。
 ナノ粒子11およびマイクロ粒子21は、特に限定されないが、疎水性微粒子が好ましく、例えば、疎水性酸化物微粒子、金属酸化物複合粒子、フッ素樹脂微粒子等を使用することができる。
 疎水性酸化物粒子に用いる疎水性酸化物としては、疎水性を有する酸化物であれば特に限定されず、例えば、シリカ(二酸化ケイ素)、アルミナ、チタニア等の少なくとも1種を用いることができる。また、疎水性は表面処理により付与されたものであってもよく、例えば、親水性酸化物微粒子をシランカップリング剤等で表面処理を施し、表面状態を疎水性とした微粒子を用いることもできる。これらは公知または市販のものを採用することができる。例えば、シリカとしては、製品名「AEROSIL R972」(平均1次粒子径:約16nm)、「AEROSIL R972V」(平均1次粒子径:約16nm)、「AEROSIL R972CF」(平均1次粒子径:約16nm)、「AEROSIL R974」(平均1次粒子径:約16nm)、「AEROSIL RX200」(平均1次粒子径:約12nm)、「AEROSIL RY200」(平均1次粒子径:約12nm)(以上、日本アエロジル株式会社製)、「AEROSIL R202」(平均1次粒子径:約14nm)、「AEROSIL R805」(平均1次粒子径:約12nm)、「AEROSIL R812」(平均1次粒子径:約7nm)、「AEROSIL R812S」(平均1次粒子径:約7nm)、(以上、エボニック デグサ社製)等が挙げられる。チタニアとしては、製品名「AEROXIDE TiO T805」(平均1次粒子径:約21nm)(エボニック デグサ社製)等が例示できる。
 アルミナとしては、製品名「AEROXIDE Alu C」(平均1次粒子径:約13nm)(エボニック デグサ社製)等をシランカップリング剤で処理して粒子表面を疎水性とした微粒子が例示できる。
 金属酸化物複合粒子は、コアとなる金属酸化物粒子とその表面に形成された被覆層を含むものである。コアとなる金属酸化物粒子は、複数の金属酸化物粒子(一次粒子)が三次元的に連なる凝集体構造(凝集体多孔質構造)を形成している。被覆層はその凝集体構造の内部および外殻に形成される。金属酸化物複合粒子としては、フッ素含有金属酸化物複合粒子が好ましい。フッ素含有金属酸化物複合粒子は、金属酸化物粒子と、その表面に形成されたポリフルオロアルキルメタアクリレート樹脂を含む被覆層とを含むものであれば特に限定されない。金属酸化物粒子は、金属酸化物複合粒子のコアとなり得るものであれば限定的でなく、例えば酸化ケイ素、酸化チタン、酸化アルミニウム、酸化亜鉛等の粒子(粉末)の少なくとも1種を用いることができる。ポリフルオロアルキルメタアクリレート樹脂としては、例えば、ポリフルオロオクチルメタクリレート、2-N,N-ジエチルアミノエチルメタクリレート、2-ヒドロキシエチルメタクリレート、2,2’-エチレンジオキシジエチルジメタクリレートが共重合したコポリマー等を好適に用いることができる。
 フッ素樹脂微粒子はフッ素樹脂を主成分とするものであれば特に限定されない。フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE、CTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、ペルフルオロアルコキシフッ素樹脂(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、エチレン・四フッ化エチレン共重合体(ETFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)等を用いることができる。
 疎水性微粒子としては、疎水性酸化金属微粒子が好ましく、疎水性シリカ微粒子がより好ましい。とりわけ、痰の付着防止効果がより優れることから、表面にシリル基、好ましくはトリメチルシリル基を有する疎水性シリカ微粒子、または表面にポリフルオロアルキルメタアクリレート樹脂の被覆を形成した金属酸化物粒子が好ましい。
 ナノ粒子11およびマイクロ粒子21の合計付着量(乾燥後重量)は限定的ではないが、通常0.01~10g/mとするのが好ましく、0.2~1.5g/mとするのがより好ましく、0.3~1g/mとするのがさらに好ましく、0.5~1g/mとするのが特に好ましい。上記範囲内に設定することによって、より優れた撥痰性が長期にわたって得ることができる上、ナノ粒子11およびマイクロ粒子の脱落抑制、コスト等の点でもいっそう有利となる。
 粒子層154を、ナノ粒子11を数μm~数十μmサイズ、または数十μmサイズの凹凸を形成するように堆積して構成する場合、ナノ粒子11は、三次元網目構造を有する多孔質層を形成していることが好ましく、その厚みは0.1~5μm程度が好ましく、0.2~2.5μm程度がさらに好ましい。このようなポーラスな層状態で付着することにより、当該層に空気を多く含むことができ、より優れた痰の付着防止効果を発揮することができる。
 なお、第1の実施形態では、粒子層154は、管腔体102の気道確保用ルーメン102aを形成する内面全体に配置されているが、この態様に限定されず、少なくとも一部の領域に配置されていればよい。
 また、微細構造領域150は、図2(E)に示すように、管腔体102と粒子層154との間に介在し、両者の密着性を向上させる接着層152を含んでもよい。接着層152と粒子層154とは被膜250を構成する。
 また、粒子層154は、管腔体102の気道確保用ルーメン102aの内面全体に配置される接着層152の全面に配置されているが、この態様には限定されず、粒子層154の配置領域は、接着層152の少なくとも一部の領域に配置されていてもよい。
 接着層152の厚みは特に限定されないが、密着性、生産性、製造コスト等の観点から、2~150μm程度とすることが好ましい。
 接着層152としては、公知の材料を採用することができる。例えば、公知のシーラントフィルムのほか、ラッカータイプ接着剤、イージーピール接着剤、ホットメルト接着剤等の接着剤により形成される層を採用することができる。本発明では、この中でも、ラッカータイプ接着剤またはシーラントフィルムを採用するのが好ましく、特にラッカータイプ接着剤により形成される接着層を好適に採用することができる。なお、ラッカータイプ接着剤とは、溶剤が揮発することによって乾燥・硬化するタイプの接着剤をいう。
 本実施形態の気管切開チューブ101の微細構造領域150の作製方法は特に制限されないが、例えば、管腔体102の気道確保用ルーメン102aを形成する内面に、ナノ粒子11およびマイクロ粒子21を付着させて粒子層154を配置する方法、あるいは、管腔体102の気道確保用ルーメン102aを形成する内面に、接着層152を配置し、接着層152の表面(気道確保用ルーメン102aに露出している面)にナノ粒子11およびマイクロ粒子21を付着させて接着層152の上に粒子層154を配置する方法が挙げられる。
 接着層152を配置する方法としては、例えば、ドライラミネート法、押し出しラミネート法、ウエットラミネート法、ヒートラミネート法等の公知の方法が挙げられる。
 粒子層154を配置する方法としては、例えば、ロールコーティング、グラビアコーティング、バーコート、ドクターブレードコーティング、刷毛塗り、粉体静電法等の公知の方法を採用することができる。ロールコーティング等を採用する場合は、ナノ粒子11およびマイクロ粒子21を溶媒に分散させてなる分散体を用いて接着層152上に塗膜を形成した後に乾燥する方法により実施することができる。この場合の溶媒は限定されず、水のほか、例えばアルコール(エタノール)、シクロヘキサン、トルエン、アセトン、IPA、プロピレングリコール、ヘキシレングリコール、ブチルジグリコール、ペンタメチレングリコール、ノルマルペンタン、ノルマルヘキサン、ヘキシルアルコール等の有機溶剤を適宜選択することができる。この際、微量の分散剤、着色剤、沈降防止剤、粘度調整剤等を併用することもできる。溶媒に対するナノ粒子11およびマイクロ粒子21の分散量は通常、合計で、10~100g/L程度とすればよい。乾燥温度は、管腔体基材に影響を与えない範囲であれば制限されないが、通常は150℃以下、特に80~120℃とすることが好ましい。
 さらに、接着層152上に粒子層154を配置する際、または配置した後に、加熱処理を施す(管腔体102を加熱する)こともできる。加熱処理を実施することにより接着層152に対するナノ粒子11およびマイクロ粒子21の付着力(固定力)をより高めることができる。この場合の加熱温度は、接着層152の種類等に応じて適宜設定することができ、通常は用いる接着層152の融点Tm(溶融開始温度)℃に対して(Tm-50)℃から(Tm+50)℃の範囲内とすることが好ましい。
 気管切開チューブ101内の痰を、吸引カテーテルを用いて吸引する場合について、図2(D)を参照して説明する。
 図1で示すように、気管切開チューブ101を装着される患者は通常仰向きで寝ているため、痰などの異物は重力方向である背側に溜まりやすい。つまり、図2(D)中の下側に痰が溜まりやすい。
 そこで、管腔体102の基端部121側から吸引カテーテル601を管腔体102に挿入し、吸引カテーテル601の先端を管腔体102の内面上に沿わせながら先端部122付近まで進めて、痰Zを吸引する。
 また、管腔体102の気道確保用ルーメン102aの内面に微細構造領域150を配置する方法としては、上述した方法のほか、管腔体102の気道確保用ルーメン102aを形成する内面に数μm~数十μmサイズ、または数十μmサイズの凹凸を形成し、さらにその上に数十nm~数百nmサイズの凹凸を形成する方法などが挙げられる。
 ここで、数μm~数十μmサイズ、または数十μmサイズの凹凸を形成する方法としては、押出成型、射出成型、切削加工、レーザー加工、芯棒を用いた表面加工などを挙げることができ、数十nm~数百nmサイズの凹凸を形成する方法としては、平均一次粒子径が数十nm~数百nmのナノ粒子の被覆、ナノインプリント、溶剤処理、プラズマスパッタ、レーザー加工などを挙げることができる。平均一次粒子径が数十nm~数百nmのナノ粒子としては、上記したものが好ましい。
 また、数μm~数十μmサイズ、または数十μmサイズの凹凸は、新たに形成してもよいが、そのような凹凸を表面に有する市販品を使用してもよい。
〈変形例〉
 上述した図1および図2の気管切開チューブ101の形態では、微細構造領域150は管腔体102の内周面の全周にわたって存在しているが、この形態には限定されず、例えば、図3(A)~(C)に示すように、管腔体102の内周面上の一部のみに配置されていてもよい。
 図3(A)~(C)は第1の実施形態の変形例にかかる気管切開チューブ201を示し、上述した図1に示す第1の実施形態の気管切開チューブ101との相違点は、微細構造領域150の存在する位置が挙げられる。なお、図3(B)および(C)は、図3(A)に示すB-B線に沿って切断した断面図である。
 気管切開チューブ201では、管腔体102の中心軸に直交する断面図において、基端部121と先端部122と湾曲部123におけるそれぞれの管腔体102の中心Jを通る平面Pが管腔体102の湾曲部123の湾曲の外側に位置するチューブ壁の内面と交差する交点Kと、平面Pが管腔体102の湾曲部123の湾曲の内側に位置するチューブ壁の内面と交差する交点Lと、交点Kにおいて平面Pに直交する基準線Sと、管腔体102の内周面に接する接線Tと、接線Tと内周面との接点Mとを想定した場合に、接線Tが基準線Sとなす角φが30°以上となる管腔体102の内周面上の位置に微細構造領域150が存在している。ただし、角φは、接点Mが交点Lまたは交点Kと一致するとき、すなわち接線Tが基準線Sに一致するときまたは平行であるとき、φ=0°とし、接点Mが交点Kおよび交点Lのいずれとも一致しないとき、すなわち基準線Sと接線Tとが一致せず、平行でもないときは、基準線Sと接線Tとがなす鋭角または直角を意図する。
 上記のような位置に微細構造領域150を有する気管切開チューブ201を、図1で示すように仰向けに寝ている患者に挿入した場合、微細構造領域150上に付着した痰は、の作用(撥痰性)によって管腔体102内の患者の背中側(図3(B)および(C)中の下側)に移動して、溜まりやすい。一般的に、図2(D)で述べた吸引カテーテルの先端部は、管腔体102の内周面のうち図3(B)および(C)での下側の位置には到達しやすいが、図3(B)および(C)中の左右側の位置(微細構造領域150が配置される位置)には到達しにくい。そのため、上記のような位置に微細構造領域150が配置されていれば、その上に痰が付着しても吸引カテーテルで吸引できる位置まで痰が移動しやすく、結果として管腔体内部の痰の堆積が抑制される。
[第2の実施形態]
 本発明の気管用チューブの第2の実施形態について、図4を参照して説明する。図4に示す気管用チューブは、いわゆる気管切開チューブである。
 図4に示す第2の実施形態の気管切開チューブ301と、上述した図2に示す第1の実施形態の気管切開チューブ101との相違点は、主に、気管切開チューブ301がカフ106およびカフ調整部108を有する点が挙げられる。そこで、以下では、主にカフ106およびカフ調整部108など気管切開チューブ101と異なる点について説明し、気管切開チューブ101と共通する部分には同一の符号を付して説明を省略する。
 管腔体102の先端部122には、カフ106が取り付けられている。カフ106は、管腔体102における先端部122近傍の外周面を覆うように固定されている。カフ106は、カフ調整部108と接続している。カフ調整部108は、パイロットバルーン126と、カフ106およびパイロットバルーン126を接続する空気注入用チューブ125とにより構成される。
 パイロットバルーン126は、略扁平の六角形状の断面を有するように形成される。本例では、パイロットバルーン126の断面形状を六角形として説明するが、これに限定されない。例えば、パイロットバルーン126の断面形状を略四角形や円形などに形成することができ、その他様々な形状に形成してもよい。
 パイロットバルーン126の一端部には空気注入孔126aが設けられ、パイロットバルーン126の他端部には、排出口126bが設けられている。空気注入孔126aには、逆止弁が取り付けられている。そして、空気注入孔126aから空気がパイロットバルーン126および空気注入用チューブ125を介してカフ106に送り込まれる。送り込まれた空気は、逆止弁により、空気注入孔126aから漏れ出なくなる。また、パイロットバルーン126を指で押圧することで、カフ106にかかる圧を触感的に感知することができる。
 空気注入用チューブ125は、その一端がパイロットバルーン126に接続され、その他端がカフ106に接続されている。この空気注入用チューブ125はその一旦に形成されたカフ側開口部111を介して、カフ106の内部空間と連通している。
 なお、固定板128の中央部には、収納孔231が形成されている。また、接着部129は、略円形の貫通孔130と、外周から貫通孔130に向かって形成された溝部を有している。この貫通孔130は、収納孔231と連通している。収納孔231には、管腔体102と、空気注入用チューブ125とが貫通する。つまり、空気注入用チューブ125は、接着部129の溝部と固定板128の収納孔131を貫通する。そして、図4(B)に示すように、空気注入用チューブ125は、管腔体102の湾曲部123における湾曲の内側に沿って配置され、管腔体102の外周面102cに固定される。
 空気注入孔126aからパイロットバルーン126および空気注入用チューブ125を介して送り込まれた空気がカフ106に入ることで、カフ106は膨らみ、気管7の粘膜(皮膚側気管粘膜7a、体内側気管粘膜7b)に密着する。これにより、管腔体102と気管7との間に形成される隙間を塞ぐことができる。
 カフ106が管腔体102と気管7との間に形成される隙間を塞ぐことで、人工呼吸器から送られた酸素が喉頭側に漏れることを防止するとともに、喉頭側から流れてきた唾液等が肺側に入りこむことを防止することができる。
〈変形例〉
 上記図4(B)においては、空気注入用チューブ125が管腔体102の外周面102cに固定される形態について述べたが、この形態には限定されず、例えば、図4(C)に示すように、空気注入用チューブ125の代わりに、管腔体302のチューブ壁内に空気注入用ルーメン125aを設けて、パイロットバルーン126からカフ106に空気を送り込んでもよい。
[第3の実施形態]
 本発明の気管用チューブの第3の実施形態について、図5を参照して、説明する。図5に示す気管用チューブは、いわゆる気管切開チューブである。
 図5に示す第3の実施形態の気管切開チューブ401と、上述した図4に示す第2の実施形態の気管切開チューブ301との相違点は、主に、気管切開チューブ401がカフ側吸引部138を有する点が挙げられる。そこで、以下では、主にカフ側吸引部138など気管切開チューブ301と異なる点について説明し、気管切開チューブ301と共通する部分には同一の符号を付して説明を省略する。
 管腔体102を挟んで、カフ調整部108と反対側には、カフ側吸引部138が配置されている。カフ側吸引部138は、カフ側吸引コネクタ139と、カフ側吸引チューブ140とから構成される。
 なお、固定板128の中央部には、収納孔331が形成されている。カフ側吸引チューブ140は、空気注入用チューブ125と同様に、接着部129の溝部および固定板128の収納孔331を貫通する。そして、図5(B)に示すように、カフ側吸引チューブ140は、管腔体102の湾曲部123における湾曲の外側に沿って配置され、管腔体102の外周面102cに固定される。
 カフ側吸引チューブ140の一端は、カフ106の近傍にまで延びて開口しており、この開口によりカフ側吸引口140aが形成されている。カフ側吸引チューブ140の他端部には、カフ側吸引コネクタ139が取り付けられている。カフ側吸引コネクタ139には、吸引器(図示せず)が装着される。
 喉頭側から流れてきた唾液等は、気管7の粘膜(皮膚側気管粘膜7a、体内側気管粘膜7b)を伝い、肺側に流れる。この唾液等は、膨張状態にあるカフ106によって堰き止められ、粘膜(皮膚側気管粘膜7a、体内側気管粘膜7b)とカフ106により形成される空間に溜まる。そして、カフ106によって堰き止められた唾液等は、吸引器が作動することで、カフ側吸引部138により、カフ側吸引口140aから吸引される。
 なお、カフ側吸引チューブ140の内周面には、上述した微細構造領域150が配置されていてもよい。撥痰性層154を含む微細構造領域150をカフ側吸引チューブ140の内周面上に配置することにより、カフ側吸引チューブ140の内周面に痰が付着するのを防止し、カフ側吸引チューブ140の閉塞の発生を抑制できる。
 また、カフ106よりも肺側に付着した痰などの異物を吸引するために、さらに吸引ラインおよび関連する構成を付加してもよい。
〈変形例〉
 上記図5(B)においては、空気注入用チューブ125およびカフ側吸引チューブ140が管腔体102の外周面102cに固定される形態について述べたが、この形態には限定されず、例えば、図5(C)に示すように、空気注入用チューブ125の代わりに管腔体402のチューブ壁内に空気注入用ルーメン125bを設けると共に、カフ側吸引チューブ140の代わりに管腔体402のチューブ壁内にカフ側吸引用ルーメン140bを設けてもよい。
[第4の実施形態]
 本発明の第4の実施形態について、図6を参照して説明する。図6に示す気管用チューブは、いわゆる気管切開チューブであるが、複管式気管切開チューブまたは内筒付き気管切開チューブと呼ばれ、気管切開術後の気道確保目的に使用する気管切開チューブ本体と、チューブ内の分泌物除去および内腔の開存性を高めるために使用するインナーカニューラを組み合わせたものであり、インナーカニューラ(以下「内筒」という場合がある。)を気管切開チューブ本体(以下「外筒」という場合がある。)に挿入して使用する。
 以下、複管式気管切開チューブ701を構成する各部材について詳述する。
 内筒701aを構成する管腔体102は、両端が開口し、かつ、長さ方向に沿って均一な外径および内径を有する筒形状に形成される。管腔体102の内部には、管腔体102の長さ方向に沿って呼気が通る空間である気道確保用ルーメン102aが形成されている。
 管腔体102は、先端部122と、先端部122と反対側に配置される基端部121とを有し、所望により、基端部121と先端部122との間に位置する湾曲部123を有していてもよい。
 管腔体102は可撓性を有する材料で構成され、管腔体702に沿って変形することが好ましい。
 管腔体102が湾曲部123を有する場合は、先端部122の中心軸と基端部121の中心軸が角度θで交差するように湾曲し、管腔体102は略L字状に形成されてもよい。図6(A)に示す管腔体102においては、角度θは約90°である。
 管腔体102の材質としては、例えば、シリコーン、ポリカーボネート、ポリプロピレン、ポリエチレン、ポリ塩化ビニル等の合成樹脂を挙げることができる。
 外筒701bを構成する管腔体702は、両端が開口し、かつ、長さ方向に沿って均一な外径および内径を有する筒形状に形成される。管腔体702の内部には、管腔体702の長さ方向に沿ってインナーカニューラ(内筒)を挿入するための空間である内筒挿入用ルーメン702aが形成されている。
 管腔体702は、先端部722と、先端部722と反対側に配置される基端部721と、基端部721と先端部722との間に位置する湾曲部723を有する。湾曲部723は先端部722の中心軸と基端部721の中心軸が角度θで交差するように湾曲しており、この第4の実施形態では、管腔体702は略L字状に形成される。つまり、角度θは約90°である。
 なお、管腔体702は、患者の体位の変化等に合わせて上記θが約90°から約120°までの範囲で変化しうる程度の可撓性を有する。
 管腔体702の材質としては、例えば、シリコーン、ポリカーボネート、ポリプロピレン、ポリエチレン、ポリ塩化ビニル等の合成樹脂を挙げることができる。
 なお、管腔体702の内管挿入用ルーメンを形成する内面には微細構造領域150と同様の構成を備える微細構造領域が配置されていてもよい。
 また、管腔体702の基端部721は、気管切開孔から体外に露出しており、この基端部721に、人工呼吸器(図示せず)が取り付けられている。人工呼吸器が作動することで、内筒の気道確保用ルーメン102a内に呼気が通る。これにより、患者の呼吸を持続させ、呼吸管理を行っている。その結果、呼吸に必要な酸素の通り道である気道が閉塞することを防止することができ、患者の呼吸管理を行うことができる。
 固定部727は、管腔体702の基端部721に取り付けられている。固定部727は、管腔体702を患者に装着した際に、皮膚5に当接することで、先端部722を気管7内の適切な位置に固定するものであり、固定板728と、接着部729とを有している。
 固定板728は、平板状の部材で、中央部に、固定板728を貫通する収納孔731が形成されている。そして、固定板728の表面には、接着部729が取り付けられ、固定板728の裏面は、患者の皮膚5に当接される。
 接着部729は、管腔体702を固定部727に接着するもので、中央に略円形の貫通孔730が形成されたリング形状を有している。接着部729の貫通孔730は、固定板728の収納孔731と連通しており、貫通孔730の大きさは、管腔体702の外径に合わせて設定される。
 このような固定板728の収納孔731および接着部729の貫通孔730に、管腔体702が貫通され、例えば、接着剤により固定される。
 本実施形態では、管腔体702を接着部729に固定する方法として、接着剤による固定を例に挙げたが、例えば、溶着による固定など各種の固定方法を採用することができる。
 内筒を構成する管腔体102の気道確保用ルーメン102aを構成する内面に設置された微細構造領域150については、本発明の第1の実施形態において説明したとおりである。
 以上では、本発明の複管式気管切開チューブの一形態について説明したが、本発明の第2の実施態様、第3の実施態様と同様に、カフおよびカフ調整部、吸引ラインならびに関連する構成を付加する等の変形が可能である。
[第5の実施形態]
 本発明の気管用チューブの第5の実施形態について、図7および図8を参照して、説明する。図7および図8に示す気管用チューブは、いわゆる気管内チューブである。
 図7および図8に示す気管内チューブ501は、患者の呼吸管理を行うための器具であり、患者の口から気管7に挿入される。気管内チューブ501は、管腔体202と、カフ206と、空気注入用チューブ225とから構成される。
 図8(B)に示すように、管腔体202の内周面には、全周にわたって上述した微細構造領域150が配置されている。微細構造領域150の形態は上述の通りであり、説明を省略する。
 気管内チューブ501は、管腔体202と、この管腔体202の長手方向に沿って設けられ、管腔体202の少なくとも先端部222付近まで延長された空気注入用ルーメン225bと、管腔体202の先端部付近に、管腔体202の外周面を囲むように設けられ、空気注入用ルーメン225bの一端と連通する膨張収縮可能なカフ206と、空気注入用ルーメン225bの他端と連通し、カフ206が膨張しているかどうかを確認するパイロットバルーン226とを有している。
 管腔体202は、両端が開口した筒状に形成される。管腔体202は、先端部222と、先端部222と反対側に設けられる基端部221と、基端部221と先端部222との間に位置する湾曲部223を有する。
 管腔体202は、可撓性を有する材料で構成されており、麻酔ガス、酸素ガス等を導入するための先端部222から基端部221まで貫通した気道確保用ルーメン202aを有している。管腔体202の先端部222は、体内への挿入を容易なものとするために、滑らかなベベル状に形成されている。また、基端部221には、呼吸回路に接続するためのコネクタ212が取り付けられている。
 管腔体202を形成するチューブ壁には、図8(B)に示すように、気道確保用ルーメン202aより細い空気注入用ルーメン225bが、管腔体202の長手方向に沿って設けられている。この空気注入用ルーメン225bは、後述するカフ206内に空気を送り込むためのインフレーション用のルーメンである。
 また、この空気注入用ルーメン225bは、カフ206内の管腔体202のチューブ壁の外面に形成されたカフ側開口部225aを介して、カフ206の内部空間と連通している。
 また、空気注入用ルーメン225bは、図8(A)に示すように、基端部221付近の位置において、管腔体202のチューブ壁外面に形成された切欠部207を介して空気注入用チューブ225と連通している。
 空気注入用チューブ225と空気注入用ルーメン225bとの接続は、例えば、予め加熱したマンドレルを空気注入用ルーメン225b内に挿入し、このマンドレルの抜去と同時に空気注入用チューブ225を空気注入用ルーメン225b内に挿入し、溶剤または接着剤を用いて固着する方法などにより行なわれる。
 管腔体202の先端部付近には、その外周面を環状に囲むようにして、膨張収縮可能なカフ206が設けられている。
 このカフ206は、予め管腔体202の外径よりも大きな内径を有する筒形状に成形された膜を空気注入用ルーメン225bのカフ側開口部225aを覆うようにして管腔体202の外周にかぶせ、その両端を管腔体202の外周面に対し、接着剤、溶剤により接着するか、または熱、高周波等により融着することにより、気密的に固着して取り付けられる。
 また、空気注入用チューブ225の後端部には、カフ206の膨張・収縮の程度を認識するための膨張収縮可能なパイロットバルーン226が、空気注入用チューブ225と連通するように設置されている。
 さらに、パイロットバルーン226の後端側には、パイロットバルーン226内への気体の流入は許容するが、膨張したパイロットバルーン226からの気体の流出は阻止する機能を有する逆止弁226aが設置されている。この逆止弁226aにシリンジ等を接続して空気のような気体を圧入すると、その気体は、パイロットバルーン226、空気注入用チューブ225内、空気注入用ルーメン225bおよびカフ側開口部225aを介してカフ206内に送り込まれ、カフ206が膨張する。
 以上では、本発明の気管内チューブの一形態について説明したが、本発明の気管切開チューブと同様に、吸引ラインおよび関連する構成を付加する等の変形が可能である。
[第6の実施形態]
 本発明の気管用チューブの第6の実施形態について、図9を参照して、説明する。図9に示す気管用チューブは、小気管切開チューブ、経皮的気管穿刺チューブ、輪状甲状膜穿刺用気管カニューレ、輪状甲状膜切開用気管カニューレなどとも呼ばれるものである。
 図9に示す気管カニューレ801は、緊急に呼吸管理を必要とする患者の呼吸管理を行うための器具であり、患者の輪状甲状膜に穿刺して気管7に挿入される。気管カニューレ801は、管腔体102と、固定部127とから構成される。気管カニューレ801の管腔体102は、挿入した内針とセットにして輪状甲状膜を穿刺することから、外針ともいわれる。
 気管カニューレ801の管腔体102の気道確保用ルーメンを形成する内面(内周面)には、全周にわたって上述した微細構造領域150(図示せず)が配置されている。微細構造領域150(図示せず)の形態は上述のとおりであり、説明を省略する。
 気管カニューレ801は、内針(図示せず)が挿入される管腔体102と、管腔体102の基端部に備えられ、管腔体102を皮膚に固定する固定部127とを備えている。管腔体102は合成樹脂製であり、先端部に内針の軸方向に対して15°以下の角度をなすように湾曲している湾曲部を備えている。
 気管カニューレ801を使用するときには、管腔体102に金属製の内針(図示せず)を挿入した状態で、輪状軟骨と甲状軟骨との間の輪状甲状膜(輪状甲状靭帯部)に穿刺する。次いで、内針(図示せず)を抜去して、管腔体102のみを気管内に留置する。そして、固定部127に設けられた紐通し孔(図示せず)に挿通した綿テープ等(図示せず)を頸部に固縛することにより、気管カニューレ801を固定する。
 以上では、本発明の気管カニューレの一形態について説明したが、本発明の気管切開チューブと同様に、種々の変形が可能である。
[第7の実施形態]
 本発明の気管用チューブの第7の実施形態について、図10を参照して説明する。図10に示す気管用チューブは、輪状甲状膜穿刺用気管カニューレ、輪状甲状膜切開用気管カニューレなどとも呼ばれるものである。
 図10に示す気管カニューレ901は、気管もしくは気管支の内部に貯留した分泌液の吸引除去を目的として、首部前面から気管の内部へ通じる吸引通路を確保するために使用する気管分泌物吸引、または緊急時の救急蘇生を目的として、首部前面から気管の内部へ通じる呼吸気道を確保するために使用する緊急気道確保のために使用する器具であり、患者の輪状甲状膜の穿刺孔または切開孔を通じて気管7に挿入される。気管カニューレ901は、管腔体102と固定部127(特に、フランジ部ともいう。)とから構成される。
 気管カニューレ901の管腔体102の気道確保用ルーメンを形成する内面(内周面)には、全周にわたって上述した微細構造領域150(図示せず)が配置されている。微細構造領域150(図示せず)の形態は上述のとおりであり、説明を省略する。
 気管カニューレ901は、イントロデューサ(図示せず)が挿入される管腔体102と、管腔体102の基部に備えられ、管腔体102を皮膚に固定する固定部127(フランジ)とを備えている。管腔体102は合成樹脂製であり、基端部から先端部にかけて湾曲する湾曲部を備えている。
 気管カニューレ901は、例えば、セルジンガー法を用いて気管7に導入したガイドワイヤ(図示せず))を介してダイレータ(図示せず)による拡張操作で輪状甲状膜の穿刺孔を拡張し、輪状甲状膜の拡張した穿刺孔から、イントロデューサ(図示せず)を挿入した管腔体102を気管7に挿入し、イントロデューサを抜去して気管カニューレ901を気管内に留置することができる。また、輪状甲状膜を切開して、切開孔からイントロデューサを挿入した管腔体102を気管7に挿入し、イントロデューサを抜去して気管カニューレ901を気管内に留置してもよい。気管カニューレ901の留置後は、気管カニューレ901を介して、サクションカテーテル(図示せず)を使用した通常の気管内の吸引や酸素または空気の送気を行うことができる。
 以上では、本発明の気管カニューレの一形態について説明したが、本発明の気管切開チューブと同様に、種々の変形が可能である。
 以下に実施例及び比較例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。
[実施例1]
(1)試験片の作製
 スライドガラス(サイズ26mm×76mm、厚み1mm;白縁磨フロストスライドグラス、松浪硝子工業社製)の表面に、ヒートシールラッカー(主成分=アクリル樹脂+ポリエステル樹脂、以下、単に「ラッカー」という。)を乾燥後重量5g/mとなるように塗布した。
 次に、疎水性微粒子〔AEROSIL RX200、エボニック デグサ社製(平均一次粒子径12nm)5gを溶媒(エタノール)100mLに分散させてコート液を調製した。
 調製したコート液をラッカー塗布面に浸漬コートで塗布した後、100℃、15秒で乾燥させて溶媒を蒸発させることにより、試験片1を作製した。
(2)微細構造の観察
 試験片1のコーティング面を、走査型電子顕微鏡を用いて、倍率1000倍および10000倍で観察した。
 この観察結果より、試験片1のコーティング面には、表面に5~50μm程度の粒子状の凹凸が認められるとともに、凹凸の表面には、数十nm~数百nmサイズの凹凸が認められた(図11)。
(3)各種試験
 ヒトまたはブタから痰を採取し、痰1~5に付番し、それぞれの粘度を、E型粘度測定器を用いて測定した。痰の粘度の測定結果を、表1の「粘度」の欄に記載した。
 3.1)撥痰性(痰付着抑制能)
 試験片1を必要数用意し、30°の傾斜台の上に乗せ、そこに痰サンプル1~5を100μLずつ滴下した。その際の痰の動きを観察し、次の基準により撥痰性があるかないかの評価をした。結果を表1の「撥痰性」の欄に示す。
 滴下した痰が転がった・・・あり
 滴下した痰が転がらずに付着した、または濡れ広がって垂れていった・・・なし
 3.2)移動距離
 痰を滴下してから30秒間の痰の移動距離を測定した。30秒間で痰がサンプル表面から移動して落下した場合は、落下するまでの移動距離と時間から、30秒間の移動距離を算出した。結果を表1の「移動距離」の欄に示す。なお、「>2250」は移動距離が測定限界の2250mmに達したことを意味する。
 3.3)痰残渣量
 試験片のコーティング面に各痰サンプルを100μLずつ滴下した後、その痰を吸引した後の痰の残渣を肉眼で観察し、残渣量の多少を「無し」、「少ない」、「中程度」および「多い」のいずれかで評価した。結果を表1の「痰残渣量」の欄に示す。
[比較例1]
(1)試験片の作製
 実施例1と同様のスライドガラスに、Hydrophobia(アルコキシシランの加水分解縮合によるナノ粒子を溶媒に分散した撥水角170°以上の無機性ナノ粒子分散液からなる無機系超撥水剤、三宅応用科学工業社製)を浸漬コーティングして試験片(以下「試験片C1」という。)を作製した。
(2)微細構造の観察
 試験片C1を用いて、実施例1と同様にして微細構造の観察を行ったところ、一次粒子径が数十nmの粒子が堆積していることが認められた(図12)。
(3)各種試験
 試験片C1を用いて、実施例1と同様にして各種試験を行った。各種試験の結果は、表1の該当欄に示す。
[比較例2]
(1)試験片の作製
 PVCシート(サイズ26mm×76mm、厚み1.5mm;PVCペレットをヒートプレスすることで作製)に、MX-301(フッ素系コート材、サーフ工業社製)をコーティングして試験片C2を作製した。
(2)各種試験
 試験片C2を用いて、実施例1と同様にして各種試験を行った。各種試験の結果は、表1の該当欄に示す。
[比較例3]
(1)試験片の作製
 比較例2と同様のPVCシートにより、試験片C3を作製した。
(2)各種試験
 試験片C3を用いて、実施例1と同様にして各種試験を行った。各種試験の結果は、表1の該当欄に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1がすべての痰サンプルに対して優れた撥痰性および付着抑制性を示した。また、実施例1では痰が移動した後に、痰の糸曳きは認められなかった。
5 皮膚
7 気管
7a 皮膚側気管粘膜
7b 体内側気管粘膜
11 ナノ粒子
21 マイクロ粒子
24 表面
101,201,301,401,501 気管切開チューブ
102,202,302,402,702 管腔体
102a,202a 気道確保用ルーメン
102c 外周面
104a 吸引ライン
104c 空気注入ライン
106,206 カフ
108 カフ調整部
121,221,721 基端部
122,222,722 先端部
123,223,723 湾曲部
125,225 空気注入用チューブ
111,225a カフ側開口部
125b,225b 空気注入用ルーメン
126,226 パイロットバルーン
126a 空気注入孔
126b 排出口
127,727 固定部
128,728 固定板
129,729 接着部
130,730 貫通孔
131,231,331,731 収納孔
138 カフ側吸引部
139 カフ側吸引コネクタ
140 カフ側吸引チューブ
140a カフ側吸引口
140b カフ側吸引用ルーメン
150 微細構造領域
152 接着層
154 粒子層
201 気管内チューブ
207 切欠部
212 コネクタ
226a 逆止弁
250 被膜
601 吸引カテーテル
701 複管式気管切開チューブ
701a 内筒
701b 外筒
702a 内筒挿入用ルーメン
801,901 気管カニューレ
Z 痰

Claims (22)

  1.  気管内の肺側に配置される先端部、前記先端部と反対側に設けられる基端部、および、前記基端部から前記先端部にかけて貫通する気道確保用ルーメンを有する管腔体を備える、気管に挿入可能な気管用チューブにおいて、
     前記管腔体の前記気道確保用ルーメンを形成する内面の少なくとも一部に微細構造領域が配置され、
     前記微細構造領域が、数μm~数十μmサイズの凹凸の上にさらに数十nm~数百nmサイズの凹凸が重畳的に形成された表面を有する、気管に挿入可能な気管用チューブ。
  2.  前記微細構造領域が、平均一次粒子径が数十nm~数百nmのナノ粒子が凝集した、平均二次粒子径が数μm~数十μmのマイクロ粒子により形成された粒子層を含む、請求項1に記載の気管に挿入可能な気管用チューブ。
  3.  前記微細構造領域が、平均一次粒子径が数十nm~数百nmのナノ粒子、および前記平均一次粒子径が数十nm~数百nmのナノ粒子が凝集した、平均二次粒子径が数μm~数十μmのマイクロ粒子により形成された粒子層を含む、請求項1に記載の気管に挿入可能な気管用チューブ。
  4.  前記微細構造領域が、平均一次粒子径が数十nm~数百nmのナノ粒子、および平均一次粒子径が数μm~数十μmのマイクロ粒子により形成された粒子層を含む、請求項1に記載の気管に挿入可能な気管用チューブ。
  5.  前記微細構造領域が、数μm~数十μmサイズの凹凸を形成し、さらにその上に数十nm~数百nmサイズの凹凸を形成したものである、請求項1に記載の気管に挿入可能な気管用チューブ。
  6.  前記数μm~数十μmサイズの凹凸が押出加工、射出成型、切削加工、レーザー加工および芯棒を用いた表面加工からなる群から選択される少なくとも1つにより形成されたものであり、かつ
     前記数十nm~数百nmサイズの凹凸が数十nm~数百nmサイズのナノ粒子の被覆、ナノインプリント、溶剤処理、プラズマスパッタおよびレーザー加工からなる群から選択される少なくとも1つにより形成されたものである、請求項6に記載の気管に挿入可能な気管用チューブ。
  7.  前記微細構造領域が、数十μmサイズの凹凸の上にさらに数十nm~数百nmサイズの凹凸が重畳的に形成された表面を有する、請求項1に記載の気管に挿入可能な気管用チューブ。
  8.  前記微細構造領域が、平均一次粒子径が数十nm~数百nmのナノ粒子が凝集した、平均二次粒子径が数十μmのマイクロ粒子により形成された粒子層を含む、請求項7に記載の気管に挿入可能な気管用チューブ。
  9.  前記微細構造領域が、平均一次粒子径が数十nm~数百nmのナノ粒子、および前記平均一次粒子径が数十nm~数百nmのナノ粒子が凝集した、平均二次粒子径が数十μmのマイクロ粒子により形成された粒子層を含む、請求項7に記載の気管に挿入可能な気管用チューブ。
  10.  前記微細構造領域が、平均一次粒子径が数十nm~数百nmのナノ粒子、および平均一次粒子径が数十μmのマイクロ粒子により形成された粒子層を含む、請求項7に記載の気管に挿入可能な気管用チューブ。
  11.  前記微細構造領域が、数十μmサイズの凹凸を形成し、さらにその上に数十nm~数百nmサイズの凹凸を形成したものである、請求項7に記載の気管に挿入可能な気管用チューブ。
  12.  前記数十μmサイズの凹凸が押出加工、射出成型、切削加工、レーザー加工および芯棒を用いた表面加工からなる群から選択される少なくとも1つにより形成されたものであり、かつ
     前記数十nm~数百nmサイズの凹凸が数十nm~数百nmサイズのナノ粒子の被覆、ナノインプリント、溶剤処理、プラズマスパッタおよびレーザー加工からなる群から選択される少なくとも1つにより形成されたものである、請求項11に記載の気管に挿入可能な気管用チューブ。
  13.  前記微細構造領域が、平均一次粒子径が数十nm~数百nmのナノ粒子により形成された粒子層を含む、請求項1または7に記載の気管に挿入可能な気管用チューブ。
  14.  前記管腔体が前記先端部と前記基端部との間に位置する湾曲部または屈曲部を有する、請求項1~13のいずれか1項に記載の気管に挿入可能な気管用チューブ。
  15.  気管切開チューブである、請求項14に記載の気管に挿入可能な気管用チューブ。
  16.  複管式気管切開チューブである、請求項14に記載の気管に挿入可能な気管用チューブ。
  17.  複管式気管切開チューブの内管である、請求項14に記載の気管に挿入可能な気管用チューブ。
  18.  気管内チューブである、請求項14に記載の気管に挿入可能な気管用チューブ。
  19.  輪状甲状膜の穿刺孔または切開孔を介して気管に挿入可能な気管カニューレである、請求項14に記載の気管に挿入可能な気管用チューブ。
  20.  輪状甲状膜に穿刺可能な気管カニューレである、請求項19に記載の気管に挿入可能な気管用チューブ。
  21.  小気管切開チューブである、請求項19または20に記載の気管に挿入可能な気管用チューブ。
  22.  凹凸が形成された表面を有する微細構造領域を内面に有する、気管に挿入可能な気管用チューブ。
PCT/JP2015/077112 2014-09-30 2015-09-25 気管に挿入可能な気管用チューブ WO2016052336A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016551975A JP6588452B2 (ja) 2014-09-30 2015-09-25 気管に挿入可能な気管用チューブ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014201553 2014-09-30
JP2014-201553 2014-09-30
JP2015015170 2015-01-29
JP2015-015170 2015-01-29

Publications (1)

Publication Number Publication Date
WO2016052336A1 true WO2016052336A1 (ja) 2016-04-07

Family

ID=55630373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077112 WO2016052336A1 (ja) 2014-09-30 2015-09-25 気管に挿入可能な気管用チューブ

Country Status (2)

Country Link
JP (1) JP6588452B2 (ja)
WO (1) WO2016052336A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107952151A (zh) * 2017-12-16 2018-04-24 葛新 气管插管

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102099A (ja) * 2004-10-05 2006-04-20 Nippon Sherwood Medical Industries Ltd 気管切開チューブ
JP2012170792A (ja) * 2011-02-24 2012-09-10 Kawasumi Lab Inc 気管カニューレ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102099A (ja) * 2004-10-05 2006-04-20 Nippon Sherwood Medical Industries Ltd 気管切開チューブ
JP2012170792A (ja) * 2011-02-24 2012-09-10 Kawasumi Lab Inc 気管カニューレ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107952151A (zh) * 2017-12-16 2018-04-24 葛新 气管插管

Also Published As

Publication number Publication date
JPWO2016052336A1 (ja) 2017-07-20
JP6588452B2 (ja) 2019-10-09

Similar Documents

Publication Publication Date Title
JP5679813B2 (ja) 改良されたバルーンカフ付きの気管切開チューブ
US9132212B2 (en) Endotracheal cuff and technique for using the same
AU2013322221B2 (en) Self positioning tracheal tube clearance mechanism using skives
US20200215285A1 (en) Tracheal tube and suction device
AU2012349768B2 (en) Multi-diameter pediatric tracheal cuff
US20100313895A1 (en) Self-sizing adjustable endotracheal tube
JP2007502190A (ja) 内側カニューレおよび外側カニューレを備えた気管開口術チューブ
US9446213B2 (en) Tracheal tube
JP6473459B2 (ja) 気管チューブシステム
CN107583159A (zh) 一种气管插管、声门上自主呼吸并可正压通气的装置
US20130047992A1 (en) Endotracheal tube comprising corrugated cuff
US20080078406A1 (en) Endotracheal tube and technique for using the same
WO2016052350A1 (ja) 気管に挿入可能な気管用チューブ
JP6588452B2 (ja) 気管に挿入可能な気管用チューブ
JP6573896B2 (ja) 気管に挿入可能な気管用チューブ
JP2016131839A (ja) 気管用チューブ
JP2016131831A (ja) 気管用チューブ
JP6598801B2 (ja) 気管用チューブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551975

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847105

Country of ref document: EP

Kind code of ref document: A1