WO2016052082A1 - 静電容量式タッチパネル - Google Patents

静電容量式タッチパネル Download PDF

Info

Publication number
WO2016052082A1
WO2016052082A1 PCT/JP2015/075337 JP2015075337W WO2016052082A1 WO 2016052082 A1 WO2016052082 A1 WO 2016052082A1 JP 2015075337 W JP2015075337 W JP 2015075337W WO 2016052082 A1 WO2016052082 A1 WO 2016052082A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch panel
transparent conductive
electrodes
conductive film
capacitive touch
Prior art date
Application number
PCT/JP2015/075337
Other languages
English (en)
French (fr)
Inventor
祐司 ▲高▼橋
玉井 仁
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2016551680A priority Critical patent/JP6568537B2/ja
Priority to CN201580044920.6A priority patent/CN106605191A/zh
Publication of WO2016052082A1 publication Critical patent/WO2016052082A1/ja
Priority to US15/472,846 priority patent/US20170199599A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present invention relates to a capacitive touch panel in an electronic device, and in particular, it can detect both a contact type and a non-contact type that can detect not only when a human finger touches the touch panel but also when it is approaching, that is, non-contact.
  • the present invention relates to a capacitive touch panel.
  • touch panels that allow data input and operation instructions by touching the panel surface with a pen tip or a fingertip have become widespread.
  • touch panels such as a resistive touch panel and a capacitive touch panel, depending on the structure for detecting the contact position and the detection method, but in recent years a projected capacitive touch panel capable of multipoint detection. Is spreading.
  • a projected capacitive touch panel uses a transparent electrode material such as ITO on a support substrate such as glass or plastic to form electrode patterns of a plurality of rows of X-direction electrodes and a plurality of columns of Y-direction electrodes.
  • the two formed transparent conductive film layers are overlapped with a transparent insulating layer interposed therebetween to form a plurality of rows and columns of matrix capacitor elements.
  • the film thickness of the transparent conductive film layer such as ITO is made as thin as possible.
  • the technology to do is demanded.
  • the film thickness of the transparent conductive film layer is reduced, the sheet resistance is increased, and the response speed and resolution are reduced.
  • wiring resistance becomes high and response speed falls because electrode patterns, such as ITO, become long.
  • a striped X-direction electrode and a striped Y-direction electrode are formed by thin metal (copper) wires, and they intersect.
  • an electrode layer having a mesh structure by overlapping is disclosed. Since metal (copper) has a lower resistivity than transparent conductive film materials such as ITO, wiring resistance can be lowered even when used as an electrode pattern for a capacitive touch panel. Is also applicable.
  • the current capacitive touch panel is mainly due to the touch of the fingertip or pen tip on the touch panel surface, but when the fingertip is brought into contact with the touch panel surface, the fingerprint adheres and impairs the visibility of the display.
  • the durability of the touch panel is reduced by the impact of the fingertip or pen tip contact.
  • the touch-type touch panel cannot be operated when the fingertip is dirty. For this reason, with the spread of touch panels, a touch panel that can be detected not only by a contact operation but also by a non-contact operation has been desired.
  • Patent Document 2 discloses an OLED interface capable of detecting both contact and non-contact.
  • a panel layer GL, an anode electrode layer A, an organic light emitting layer O, and a cathode electrode layer K are laminated in this order, and a plurality of rhombus electrode segments 2 are arranged in a matrix of a plurality of rows and a plurality of columns on the surface of the panel layer GL.
  • a transparent electrode layer is formed by ITO coating so as to form a linear array pattern.
  • the electrode groups S1 and S9 located in the edge region and the four electrode groups of the electrode rows Z1 and Z5 are regarded as “frames”, and the approach of the fingertip is detected without contact.
  • the X position and the Y position of the fingertip can be detected.
  • the Z position can be detected by detecting the distance between the touch panel surface and the fingertip with a detection signal, and the fingertip is switched to the contact mode when the fingertip falls below the shortest distance of the Z position, and the X position of the fingertip in the contact operation And the Y position are detected.
  • a capacitive touch panel in order to enable detection by both a touch operation and a non-contact operation with a single touch panel, the resolution for the touch operation must be kept high to some extent. It is necessary to increase the number of detection electrodes in the region. Then, since the area per one detection electrode becomes small, the amount of change in the capacitance value with the fingertip approaching cannot be detected. That is, only detection by contact operation is possible, and detection by non-contact operation is impossible.
  • the electrode pattern of the transparent electrode layer of Patent Document 2 is the same as the ITO electrode pattern of the conventional capacitive touch panel, and the area per one detection electrode is small, and a plurality of them are connected to form an electrode row or electrode row.
  • the capacitance does not increase so much, it is difficult to increase the sensitivity for detecting the non-contact operation.
  • An object of the present invention is to provide a capacitive touch panel with high sensitivity to non-contact operation while maintaining high resolution for contact operation.
  • the capacitive touch panel of the present invention includes one or a plurality of transparent film bases, a plurality of first direction electrodes provided in the film base and extending in a first direction, and a second direction intersecting the first direction.
  • a capacitive touch panel having a plurality of second direction electrodes extending in the direction, wherein each of the first direction electrodes and each second direction electrode includes a plurality of thin wires made of a conductive material, and detects a non-contact operation.
  • at least one transparent conductive film electrode is provided.
  • the area of the transparent conductive film electrode is set to be larger than the total area of portions of the plurality of first direction electrodes and the plurality of second direction electrodes that overlap the transparent conductive film electrode in plan view.
  • the first and second direction electrodes are for detecting a contact operation, and the transparent conductive film electrode is made of a conductive material different from that of the first and second direction electrodes.
  • the first direction is a left-right direction and the second direction is a vertical direction
  • the transparent conductive film electrode includes a pair of transparent conductive film electrodes for detecting a first direction operation arranged in the first direction, A pair of transparent conductive film electrodes for detecting a second direction operation arranged in the second direction.
  • the transparent conductive film electrode includes a pair of third direction operation detecting transparent conductive film electrodes arranged in a third direction obtained by rotating the first direction by 45 ° clockwise and the second direction in a clockwise direction. It is good also as a structure which has a pair of 4th direction operation detection transparent conductive film electrodes arranged in the 4th direction rotated 45 degrees in the rotation direction.
  • the plurality of first direction electrodes and the plurality of second direction electrodes may be formed on the first surface of the film base material, and the transparent conductive film electrode may be formed on the second surface of the film base material.
  • the transparent conductive film electrode is formed on the first surface of the film substrate, and the plurality of first direction electrodes and the plurality of second direction electrodes are formed on the surface of the transparent conductive film electrode with an insulating film interposed therebetween. Good.
  • two of the plurality of first direction electrodes, the plurality of second direction electrodes, and the transparent conductive film electrode are formed on the first film substrate as the first film member, and the second film member is the second film member.
  • the plurality of first direction electrodes are formed on the first surface of the first film base and the plurality of second direction electrodes are formed on the second surface, and the second film member is formed.
  • the transparent conductive film electrode is formed on the first surface and / or the second surface of the second film substrate, and the first film member is disposed closer to the panel surface of the touch panel than the second film member. May be formed.
  • the X position and the Y position for the contact operation can be detected with high accuracy by the plurality of first direction electrodes and the plurality of second direction electrodes.
  • the at least 1 transparent conductive film electrode is larger than the total area of the part which overlaps with several 1st direction electrodes and several 2nd direction electrodes by planar view, the sensitivity with respect to non-contact operation can be improved. That is, in a single capacitive touch panel, high sensitivity detection can be performed in a non-contact operation while increasing the resolution in the contact operation.
  • FIG. 1 is an exploded perspective view of Example 1.
  • FIG. 3 is a plan view of a first direction electrode layer of Example 1.
  • FIG. 3 is a plan view of a second direction electrode layer of Example 1.
  • FIG. 1 is a basic configuration diagram showing capacitor elements of Example 1.
  • FIG. 3 is a plan view of a transparent conductive film electrode layer of Example 1.
  • FIG. 3 is a cross-sectional view illustrating a layer structure of a capacitive touch panel according to Example 1.
  • FIG. It is sectional drawing explaining the layer structure of the capacitive touch panel concerning a change form. It is sectional drawing explaining the layer structure of the capacitive touch panel concerning a change form.
  • FIG. 6 is a plan view of a transparent conductive film electrode of a capacitive touch panel of Example 2.
  • FIG. 6 is a plan view of a transparent conductive film electrode of the capacitive touch panel of Example 3.
  • FIG. 6 is a plan view of a transparent conductive film electrode of a capacitive touch panel of Example 4.
  • FIG. 6 is a plan view of a transparent conductive film electrode of a capacitive touch panel of Example 5.
  • FIG. 1 and FIG. 2 show the basic configuration of the capacitive touch panel 1 according to the present embodiment.
  • the capacitive touch panel 1 includes a first film member 1a in which a first direction electrode layer 3 is formed on the front surface (first surface) of the transparent film substrate 2 and a second direction electrode layer 4 is formed on the back surface (second surface).
  • a transparent conductive film electrode layer 6 is formed on the back surface of the transparent film substrate 5 to produce a second film member 1b, and the first film member 1a and the second film member 1b are formed by the transparent adhesive layer 7. It has a laminated structure.
  • the transparent film substrates 2 and 5 are not particularly limited as long as they are colorless and transparent at least in the visible light region and have heat resistance at the temperature at which the transparent electrode layer is formed.
  • polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN), cycloolefin resins, polycarbonate resins, polyimide resins, cellulose Based resins and the like.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • cycloolefin resins polycarbonate resins
  • polyimide resins polyimide resins
  • cellulose Based resins and the like cycloolefin resin are suitable.
  • the thickness of the transparent film bases 2 and 5 is not particularly limited, but is preferably 10 ⁇ m to 400 ⁇ m, more preferably 50 ⁇ m to 125 ⁇ m. If the thickness is within the above range, the transparent film bases 2 and 5 may have durability and appropriate flexibility, so that the first direction electrode layer 3 and the second direction are formed on both sides of the transparent film base 2. It is possible to form the electrode layer 4 and the transparent conductive film electrode layer 6 on the back surface of the transparent film substrate 5 with high productivity by a roll-to-roll method.
  • one first direction electrode X is formed by connecting in parallel, for example, six parallel conductive wires 30 extending in the left-right direction (first direction) at the same pitch.
  • the first direction electrode X is preferably provided with five redundant lines 32 that electrically connect the six conductive thin wires 30 at, for example, six equal positions in the left-right direction.
  • the first direction electrodes X are arranged in, for example, m rows in a stripe shape at a pitch of 5 mm to form first direction electrodes X1 to Xm, and each connection wiring 33 drawn from each first direction electrode X is provided.
  • the electrode pattern is formed by collecting the two at one end.
  • one second direction electrode Y is formed by connecting in parallel, for example, six parallel conductive wires 40 extending in the vertical direction (second direction) at the same pitch.
  • the second direction electrode Y is preferably provided with four redundant lines 42 that electrically connect the six thin conductive wires 40 at a position divided into, for example, five equal parts in the vertical direction.
  • the second direction electrodes Y are arranged in, for example, n rows in a stripe shape at a pitch of 5 mm to form second direction electrodes Y1 to Yn, and each connection wiring 43 led out from each second direction electrode Y is provided.
  • the electrode pattern is formed by collecting the two at one end.
  • the conductive thin wires 30 and 40 are formed with a thickness of 100 nm to 5 ⁇ m and a line width of 1 ⁇ m to 5 ⁇ m. Since the thin conductive wires 30 and 40 have the above-described thickness and line width, there is a risk of disconnection in the manufacturing process of the first direction electrode layer 3 and the second direction electrode layer 4. 1, disconnection of the second direction electrodes X and Y is prevented.
  • the material of the conductive thin wires 30 and 40 is not particularly limited as long as it has conductivity, and can be appropriately selected according to the purpose. However, a metal thin wire having low electrical resistivity and good conductivity is used, Metals such as Ag, Al, Cu, Ni, and Au are suitable as the conductive material.
  • first direction electrode layer 3 and the second direction electrode layer 4 of the first film member 1a are formed by a sputtering method or an electrolytic plating method, a rectangular sheet-like transparent film substrate 2 is formed in this embodiment. Although applied, it is not limited to this, and can be appropriately selected as long as it functions as an insulating layer of the first direction electrode layer 3 and the second direction electrode layer 4.
  • the capacitive touch panel 1 has n drive lines (second direction electrodes Y) and m sense lines (first direction electrodes X).
  • a capacitor element 60 for the capacitance method is configured.
  • a drive signal is supplied to the n drive lines Y1 to Yn every minute, and the signals of the m sense lines in the drive of each of the drive lines Y1 to Yn are read to perform the touch operation in the first and second directions.
  • the signal is detected.
  • the capacitor element 60 arranged on the capacitive touch panel 1 is a capacitor element in which stray capacitance generated between the fingertip and the first and second direction electrodes X and Y when the user's fingertip contacts the panel surface is the capacitor element. Since the electric quantity of 60 is affected, the touch operation can be detected from the signal of the sense line.
  • the first film member 1a has a grid-like electrode pattern in which the first direction electrode layer 3 and the second direction electrode layer 4 are overlapped and intersect at 90 °.
  • the electrode pattern formed on the first film member 1a is not limited to the lattice shape intersecting at 90 °.
  • the first The directional electrode layer 3 and the second directional electrode layer 4 can be formed as an electrode pattern in which the angle is slightly shifted from 90 °, and interference caused by interaction with the electrode line of the display screen on the back of the touch panel Generation of stripes (moire) can be prevented and visibility can be improved.
  • the transparent conductive film electrode layer 6 for detecting the non-contact operation with high sensitivity will be described with reference to FIG. 1, FIG. 2, and FIG.
  • the transparent conductive film electrode layer 6 is formed on the back surface of the transparent film substrate 5, and as shown in FIG. 6, a pair of electrode segments 61, 62 for detecting the left-right operation arranged in the left-right direction (first direction). And a pair of electrode segments 63 and 64 for detecting the operation in the vertical direction arranged in the vertical direction (second direction) so that the gaps M between the adjacent electrodes are equally spaced.
  • the connection wiring 65 is pulled out from 64, and the connection wiring 65 is gathered at one end portion to form an electrode pattern.
  • the transparent conductive film electrode layer 6 only needs to be made of a transparent conductive material, and is made of a conductive material different from the first direction electrode layer 3 and the second direction electrode layer 4, for example, metal oxide (ITO) or It is preferably made of a conductive polymer material.
  • the film thickness of the transparent conductive film electrode layer 6 is 100 nm or less, and the gap M is preferably 50 ⁇ m to 100 ⁇ m.
  • the areas of the electrode segments 61 to 64 of the transparent conductive film electrode layer 6 are based on the total area of the portions of the plurality of first direction electrodes X and the plurality of second direction electrodes Y that overlap the electrode segments 61 to 64 in plan view. Is also set larger.
  • the electrode segments 61 to 64 are arranged. Therefore, the lines of electric force from the transparent conductive film electrode layer 6 are likely to come out from the panel surface, and detection with high sensitivity to a non-contact operation becomes possible.
  • the non-contact operation position (fingertip) Stray capacitance is generated between the electrode segments 61 to 64 at the positions corresponding to the fingertips, and a minute current flows through the electrode segments 61 to 64 at the non-contact operation position, for example, by relatively detecting them.
  • the non-contact operation position can be detected.
  • the detection sensitivity for the non-contact operation on the capacitive touch panel is related to the electrode area.
  • a specific non-contact type operation example that can be operated with the transparent conductive film electrode layer 6 in this embodiment will be described.
  • the fingertip movement between the electrode segments 61 and 62 can instruct, for example, left / right scroll operation, page feed and page return operation of the display screen.
  • the fingertip movement between the electrode segments 63 and 64 for example, a display screen up / down scroll operation, volume up / down operation can be detected.
  • the capacitive touch panel 1 includes a first film member 1a in which a first direction electrode layer 3 is formed on the surface of a transparent film substrate 2 and a second direction electrode layer 4 is formed on the back surface thereof. And the 2nd film member 1b which formed the transparent conductive film electrode layer 6 on the back surface of the transparent film base material 5 is produced by bonding together with the transparent adhesive layer 7.
  • the transparent pressure-sensitive adhesive layer 7 is an optically transparent double-sided pressure-sensitive adhesive sheet (OCA), and a material excellent in transparency, adhesion reliability, and corrosion resistance to a transparent conductive film can be appropriately employed.
  • the manufacturing process of the capacitive touch panel 1 of Example 1 will be described with reference to FIG.
  • the 1st process of forming the 1st direction electrode layer 3 in the surface of the transparent film base material 2 the 2nd process of forming the 2nd direction electrode layer 4 in the back surface of the transparent film base material 2, a transparent film base
  • the capacitive touch panel 1 is manufactured in the order of the third step of forming the transparent conductive film electrode layer 6 on the back surface of the material 5 and the fourth step of bonding the first film member 1a and the second film member 1b.
  • a seed layer is formed on the surface of the transparent film substrate 2 by a roll-to-roll method using a sputtering apparatus.
  • a sputtering apparatus As the target provided in the chamber of the sputtering apparatus, metal, metal oxide, or the like is used. Thereafter, the electrode pattern of the first direction electrode layer 3 is patterned by photolithography.
  • the photoresist agent when a photoresist agent is applied to the surface of the seed layer and ultraviolet rays are irradiated from the top of the photomask on which the electrode pattern of the first direction electrode layer 3 is formed (exposure), the photoresist agent reacts and seeds An electrode pattern is baked onto the layer. Thereafter, a metal film (copper) is formed on a portion not covered with the resist by electrolytic plating, and then the resist is removed. Finally, an etching process is performed to remove unnecessary exposed portions of the seed layer.
  • the second step of forming the second direction electrode layer 4 on the back surface of the transparent film substrate 2 is performed in the same manner as the first step.
  • a photomask in which the electrode pattern of the second direction electrode layer 4 is formed instead of the electrode pattern of the first direction electrode layer 3 is used.
  • the first film member 1a is formed in which the first direction electrode layer 3 is formed on the surface of the transparent film substrate 2 and the second direction electrode layer 4 is formed on the back surface.
  • a third step of forming the transparent conductive film electrode layer 6 on the back surface of the transparent film substrate 5 is performed.
  • a transparent conductive thin film made of ITO is formed on one side of the transparent film substrate 5 by a roll-to-roll method using a sputtering apparatus.
  • a gas mainly containing an inert gas such as argon is suitable.
  • patterning of the electrode pattern of the transparent conductive film electrode layer 6 is performed by photolithography.
  • Patterning is performed by applying a photoresist agent on the surface of the transparent conductive thin film and irradiating ultraviolet rays from above the photomask on which the electrode pattern of the transparent conductive electrode layer 6 is formed (exposure).
  • the electrode pattern is baked. Thereafter, the transparent conductive thin film that is not covered with the resist is removed by etching, and finally the photoresist agent is removed with a chemical or the like.
  • the second film member 1b in which the transparent conductive film electrode layer 6 is formed on the back surface of the transparent film substrate 5 is produced.
  • a fourth step of bonding the first film member 1a and the second film member 1b is performed.
  • the 1st film member 1a and the 2nd film member 1b are bonded together using the optical transparent double-sided adhesive sheet as the transparent adhesive layer 7, the capacitive touch panel 1 is produced.
  • the film forming method of the first direction electrode layer 3, the second direction electrode layer 4, and the transparent conductive film electrode layer 6 is not limited to the sputtering method as long as it is a manufacturing method in which a uniform thin film is formed.
  • the film forming method can be appropriately employed.
  • the capacitive touch panel 1A having the layer structure shown in FIG. 8 has the first direction electrode layer 3, the transparent insulating layer 8 and the second direction electrode layer 4 on the surface (first surface) of the transparent film base 2 from above.
  • the transparent conductive film electrode layer 6 is formed on the back surface (second surface). Since the capacitive touch panel 1 ⁇ / b> A can be made of a single transparent film substrate 2, it can be made thinner than the capacitive touch panel 1. Also in the capacitive touch panel 1A, since the first direction electrode layer 3 and the second direction electrode layer 4 for contact operation are disposed above the transparent conductive film electrode layer 6 as a layer structure, it is transparent. Electric lines of force from the conductive film electrode layer 6 are likely to come out from the panel surface, and detection with high sensitivity to non-contact operation is possible.
  • the capacitive touch panel 1B having the layer structure shown in FIG. 9 has a transparent conductive film electrode layer 6 formed on the surface (first surface) of the transparent film substrate 2, and the transparent conductive film electrode layer 6 has a first surface on the surface.
  • the unidirectional electrode layer 3, the transparent insulating layer 8, and the second directional electrode layer 4 are formed in order from the top. Since the capacitive touch panel 1 ⁇ / b> B can be made of a single transparent film substrate 2, it can be made thinner than the capacitive touch panel 1.
  • the first direction electrode layer 3 and the second direction electrode layer 4 for contact operation are disposed as a layer structure above the transparent conductive film electrode layer 6, the transparent conductive film The lines of electric force from the membrane electrode layer 6 are likely to come out from the panel surface and can be detected with high sensitivity to a non-contact operation.
  • the second direction electrode layer 4 and the transparent conductive film electrode layer 6 are different from each other. In order to form a circuit, some kind of insulating layer is required between them, or electrical control for separately detecting contact detection and non-contact detection is required.
  • the capacitive touch panel 1C having the layer structure shown in FIG. 10 has the first direction electrode layer 3, the transparent insulating layer 8, and the second direction electrode layer 4 on the surface (first surface) of the transparent film substrate 2 from above.
  • the first film member 1c formed in order and the second film member 1d formed by forming the transparent conductive film electrode layer 6 on the surface (first surface) of the transparent film substrate 5 are formed by the transparent adhesive layer 7. It is what was pasted together.
  • the first film member 1c is disposed at a position closer to the panel surface of the capacitive touch panel 1C than the second film member 1d.
  • the electrode layers 3 and 4 can be simultaneously patterned by laser etching or the like. Therefore, the manufacturing time can be shortened and the cost can be reduced.
  • the capacitive touch panel 1D having the layer structure shown in FIG. 11 forms the first direction electrode layer 3 on the surface (first surface) of the transparent film substrate 2, and the second direction on the back surface (second surface).
  • the first film member 1 a on which the electrode layer 4 is formed and the second film member 1 e on which the transparent conductive film electrode layer 6 is formed on the surface (first surface) of the transparent film substrate 5 are pasted by the transparent adhesive layer 7. It is a combination.
  • the first film member 1a is disposed at a position closer to the panel surface of the capacitive touch panel 1D than the second film member 1e.
  • the capacitive touch panel 1D corresponds to a capacitive touch panel 1 obtained by replacing the second film member 1b of the capacitive touch panel 1 with a second film member 1e.
  • the layer structure of the capacitive touch panel 1 is not limited to that shown in FIGS. 7 to 11, and the first direction electrode layer 3, the second direction electrode layer 4, Any material can be selected as long as the transparent conductive electrode layer 6 can be formed.
  • Example 2 as shown in FIG. 12, a transparent conductive film electrode layer 6 ⁇ / b> A is provided instead of the transparent conductive film electrode layer 6. Others are the capacitive touch panel 1 comprised similarly to Example 1.
  • FIG. As the transparent conductive film electrode layer 6 ⁇ / b> A, one electrode segment 80 made of rectangular ITO is formed, and the connection wiring 81 is drawn from the electrode segment 80.
  • the transparent conductive electrode layer 6A Since the transparent conductive electrode layer 6A has a large area of the electrode segment 80, the stray capacitance increases when the fingertip is brought close to the panel surface, and the fingertip moves from the direction orthogonal to the panel surface of the touch panel (Z-axis direction) to the panel surface. It is possible to detect a non-contact operation of approaching with high sensitivity.
  • an operation menu is displayed on the screen, An operation of turning on the backlight that has been extinguished to reduce power consumption can be performed.
  • Example 3 as shown in FIG. 13, a transparent conductive film electrode layer 6 ⁇ / b> B is provided instead of the transparent conductive film electrode layer 6. Others are the capacitive touch panel 1 comprised similarly to Example 1.
  • FIG. The transparent conductive film electrode layer 6B includes a pair of left and right operation detection electrode segments 82 and 83 arranged in the left and right direction (first direction) and a pair of up and down direction operations arranged in the up and down direction (second direction).
  • the gap MB is provided, the connection wiring 90 is drawn out from each of the electrode segments 82 to 89, and the connection wiring 90 is collected at one end.
  • the display position is not only indicated in the vertical and horizontal directions (electrode segments 82 to 85). Instructing operations in the upper right direction (electrode segment 88), lower right direction (electrode segment 87), upper left direction (electrode segment 86), and lower left direction (electrode segment 89) can also be instructed.
  • Example 4 a transparent conductive film electrode layer 6C is provided in place of the transparent conductive film electrode layer 6 as shown in FIG. Others are the capacitive touch panel 1 comprised similarly to Example 1.
  • FIG. The transparent conductive film electrode layer 6C includes a pair of left and right direction operation detection electrode segments 91 and 92 arranged in the left and right direction (first direction) and a pair of up and down direction operations arranged in the up and down direction (second direction).
  • the electrode segments 99 are arranged with gaps MC equally spaced between the adjacent electrode segments, and the connection wirings 100 are drawn out from the respective electrode segments 91 to 99, and the connection wirings 100 are collected at one end. It becomes composition.
  • the transparent conductive film electrode layer 6C in addition to the operation example in Example 3, for example, when the fingertip approaches the center electrode segment 99, an operation menu is displayed, and then the fingertip is moved and selected in a non-contact state. An instruction that the desired operation is performed can be performed. Furthermore, when it is first detected that the fingertip has approached any of the electrode segments 91 to 99, the numerals 1 to 9 are displayed at positions corresponding to the electrode segments 91 to 99 to cancel the sleep state. It is also possible to configure so that the passcode can be input without contact.
  • Example 5 a transparent conductive film electrode layer 6D is provided in place of the transparent conductive film electrode layer 6 as shown in FIG. Others are the capacitive touch panel 1 comprised similarly to Example 1.
  • FIG. In the transparent conductive film electrode layer 6D the rectangular electrode segments 91 to 99 of the transparent conductive film electrode layer 6C of Example 4 are replaced with circular electrode segments 101 to 109, and connection wirings are formed from the respective electrode segments 101 to 109. 110 is pulled out and each connection wiring 110 is collected at one end.
  • the same operation as in Example 4 is possible.

Abstract

接触操作に対する分解能を高く維持しつつ、非接触操作に対する感度を高めた静電容量式タッチパネルを提供する。1又は複数の透明なフィルム基材2,5と、前記フィルム基材2,5に装備された第1方向(左右方向)に延びる複数の第1方向電極X及び前記第1方向と交差する第2方向(上下方向)に延びる複数の第2方向電極Yを有する静電容量式タッチパネル1において、前記各第1方向電極Xと各第2方向電極Yは夫々導電材料製の複数の細線30,40で構成され、非接触操作を検知する為の少なくとも1つの透明導電膜電極6が設けられたことを特徴とする。

Description

静電容量式タッチパネル
 本発明は、電子機器における静電容量式タッチパネルに関し、特に、人の指等がタッチパネルに接触した場合だけではなく、接近すなわち非接触の場合も検知可能な接触式と非接触式の両方検知可能な静電容量式タッチパネルに関する。
 近年、スマートフォン、タブレット型端末、携帯型ゲーム機等のモバイルデバイス等に用いられる入力装置として、ペン先や指先でパネル面に接触してデータ入力や操作指示が可能なタッチパネルが広く普及している。タッチパネルには、接触位置を検知する構造及び検出方式の違いにより、抵抗膜式タッチパネル、静電容量式タッチパネル等様々なタイプがあるが、近年は多点検知が可能な投影型静電容量式タッチパネルの普及が進んできている。
 一般的に、投影型静電容量式タッチパネルは、ガラスやプラスチック等の支持基板上に、ITO等の透明電極材料を用いて、複数行のX方向電極と複数列のY方向電極の電極パターンを形成した2枚の透明導電膜層を透明絶縁層を挟んで重ね合わせて、複数行複数列のマトリクス状のキャパシタ要素が形成されている。タッチパネル面に指先を接近させると指先と透明電極間の浮遊容量が変化するので、これを検知して指先がタッチパネル面に接触したX方向とY方向の位置を検出している。
 ここで、タッチパネル付き表示装置の表示画像を鮮明に映し出すためには、透明導電膜層の透明性を高める必要があり、透明性を高めるためにITO等の透明導電膜層の膜厚をできるだけ薄くする技術が求められている。しかし、透明導電膜層の膜厚を薄くすると、シート抵抗が高くなり、レスポンス速度や分解能が低下する。また、大型ディスプレイ用のタッチパネルをITO等の透明導電膜で製造する場合、ITO等の電極パターンが長くなることで配線抵抗が高くなり、レスポンス速度が低下する。
 そこで、特許文献1の静電容量式タッチパネルでは、ITO等の透明導電膜の代わりに、金属(銅)細線によるストライプ状のX方向電極とストライプ状のY方向電極を形成して、それを交差するように重ね合わせてメッシュ構造の電極層としたものが開示されている。金属(銅)は、ITO等の透明導電膜材料に比べて抵抗率が低いので、静電容量式タッチパネルの電極パターンとして用いても配線抵抗を低くすることが可能で、大画面用のタッチパネルにも適用可能となっている。
 ところで、現在の静電容量式タッチパネルは、タッチパネル面への指先やペン先の接触によるものが主流であるが、指先をタッチパネル面に接触させると指紋が付着して、ディスプレイの視認性を阻害し、指先やペン先の接触による衝撃でタッチパネルの耐久性能が低下する。また、指先が汚れている状態では接触式のタッチパネルの操作ができない。このため、タッチパネルの普及が進むにつれ、接触操作だけでなく非接触操作でも検知可能なタッチパネルが望まれるようになってきている。
 特許文献2には、接触及び非接触の両方検出可能なOLEDインターフェースが開示されている。このOLEDインターフェースは、パネル層GL、アノード電極層A、有機発光層O及びカソード電極層Kの順で積層され、パネル層GLの表面に、複数の菱形の電極セグメント2が複数行複数列のマトリクス状の配列パターンとなるよう、ITOコーティングによって透明電極層が形成されている。
 このITO透明電極層の電極セグメント2のうち、縁領域に位置する電極列S1とS9、及び電極行Z1とZ5の4つの電極グループを「フレーム」ととらえ、非接触で指先の接近を検知し、指先のX位置とY位置を検出可能な構成となっている。電極列S1とS9で非接触での指先のX位置を検知し、電極行Z1とZ5で非接触での指先のY位置を検知している。さらに、タッチパネル面と指先の距離を検出信号で検知してZ位置を検出可能に構成し、指先がZ位置の最短距離を下回った場合に接触モードに切り替えて、接触操作での指先のX位置及びY位置を検知している。
特開2014-029614号公報 特表2014-512615号公報
 静電容量式タッチパネルにおいて、一つのタッチパネルで接触操作と非接触操作の両方での検知を可能にするためには、接触操作に対する分解能をある程度高く維持しなければならず、そのためには、限られた領域内での検出用電極数を多くする必要がある。そうすると、検出用電極1個当たりの面積が小さくなるため、指先が接近した状態での静電容量値の変化量を検知できない。すなわち、接触操作での検知のみ可能で、非接触操作での検知はできない。
 特許文献2の透明電極層の電極パターンは、従来の静電容量式タッチパネルのITO電極パターンと同じであり、検出用電極1個当たりの面積が小さく、それを複数個繋げて電極列や電極行としても、静電容量はさほど大きくならないので、非接触式操作を検知する感度を高めることが難しい。
 一方、接触式と非接触式の両方式対応の静電容量式タッチパネルで非接触操作に対する感度を高くするためには、ITOの電極セグメントの電極面積を大きくして静電容量を大きくすることが考えられるが、限られた領域内でのITOの電極セグメントの電極面積を大きくすると、今度は検出用電極の数が減ることとなり、接触操作に対する分解能が下がる。このため、接触操作での分解能をある程度高く維持しつつ、非接触操作を高感度で検知可能なタッチパネルは実現困難となっている。
 本発明の目的は、接触操作に対する分解能を高く維持しつつ、非接触操作に対する感度を高めた静電容量式タッチパネルを提供することである。
本発明の静電容量式タッチパネルは、1又は複数の透明なフィルム基材と、フィルム基材に装備された第1方向に延びる複数の第1方向電極及び前記第1方向と交差する第2方向に延びる複数の第2方向電極を有する静電容量式タッチパネルであって、前記各第1方向電極と各第2方向電極は夫々導電材料製の複数の細線で構成し、非接触操作を検知する為の少なくとも1つの透明導電膜電極を設けたものである。
 前記透明導電膜電極の面積は、複数の第1方向電極及び複数の第2方向電極のうちの前記透明導電膜電極に平面視で重なる部分の合計面積よりも大きく設定されている。
 前記第1,第2方向電極は接触操作を検知する為のものであり、前記透明導電膜電極は、前記第1,第2方向電極と異なる導電材料で構成されている。
 前記第1方向は左右方向であり且つ前記第2方向は上下方向であり、前記透明導電膜電極は、前記第1方向に並べた1対の第1方向操作検知用透明導電膜電極と、前記第2方向に並べた1対の第2方向操作検知用透明導電膜電極とを有している。
 また、前記透明導電膜電極は、前記第1方向を時計回り方向に45°回転させた第3方向に並べた1対の第3方向操作検知用透明導電膜電極と、前記第2方向を時計回り方向に45°回転させた第4方向に並べた1対の第4方向操作検知用透明導電膜電極を有する構成としてもよい。
 また、フィルム基材の第1面に前記複数の第1方向電極及び複数の第2方向電極を形成し、前記フィルム基材の第2面に前記透明導電膜電極を形成してもよい。前記フィルム基材の第1面に前記透明導電膜電極を形成し、この透明導電膜電極の表面に絶縁膜を挟んで前記複数の第1方向電極及び複数の第2方向電極を形成してもよい。
 また、第1フィルム部材として第1のフィルム基材に前記複数の第1方向電極と前記複数の第2方向電極と前記透明導電膜電極のうちの2つを形成し、第2フィルム部材として第2のフィルム基材に前記複数の第1方向電極と前記複数の第2方向電極と前記透明導電膜電極のうちの残りの1つを形成し、第1フィルム部材と第2フィルム部材とを接着剤層を介して接着して形成してもよい。
 さらに、第1フィルム部材として前記第1のフィルム基材の第1面に前記複数の第1方向電極を形成し且つ第2面に前記複数の第2方向電極を形成し、第2フィルム部材として前記第2のフィルム基材の第1面及び/又は第2面に前記透明導電膜電極を形成し、前記第1フィルム部材を前記第2フィルム部材よりも前記タッチパネルのパネル面に近い位置に配置して形成してもよい。
 本発明によれば、複数の第1方向電極及び複数の第2方向電極により、接触操作に対するX位置及びY位置を高精度で検知できる。また、少なくとも1つの透明導電膜電極は、複数の第1方向電極及び複数の第2方向電極と平面視で重なる部分の合計面積よりも大きいため、非接触操作に対する感度を高めることができる。すなわち、一つの静電容量式タッチパネルにおいて、接触操作での分解能を高めつつ、非接触操作での高感度検知が可能となる。
本発明の実施例1の静電容量式タッチパネルの平面図である。 実施例1の分解斜視図である。 実施例1の第1方向電極層の平面図である。 実施例1の第2方向電極層の平面図である。 実施例1のキャパシタ要素を示す基本構成図である。 実施例1の透明導電膜電極層の平面図である。 実施例1の静電容量式タッチパネルの層構造を説明する断面図である。 変更形態にかかる静電容量式タッチパネルの層構造を説明する断面図である。 変更形態にかかる静電容量式タッチパネルの層構造を説明する断面図である。 変更形態にかかる静電容量式タッチパネルの層構造を説明する断面図である。 変更形態にかかる静電容量式タッチパネルの層構造を説明する断面図である。 実施例2の静電容量式タッチパネルの透明導電膜電極の平面図である。 実施例3の静電容量式タッチパネルの透明導電膜電極の平面図である。 実施例4の静電容量式タッチパネルの透明導電膜電極の平面図である。 実施例5の静電容量式タッチパネルの透明導電膜電極の平面図である。
 以下、本発明の好ましい実施の形態について実施例に基づいて説明する。
 本実施例に係る静電容量式タッチパネル1の基本的な構成を図1、図2に示す。静電容量式タッチパネル1は、透明フィルム基材2の表面(第1面)に第1方向電極層3、裏面(第2面)に第2方向電極層4を形成して第1フィルム部材1aを作製し、透明フィルム基材5の裏面に透明導電膜電極層6を形成して第2フィルム部材1bを作製し、第1フィルム部材1aと第2フィルム部材1bとを透明粘着剤層7によって貼り合わせた構成となっている。
 透明フィルム基材2,5は、少なくとも可視光領域で無色透明であり、透明電極層形成温度における耐熱性を有していれば、その材料は特に限定されない。透明フィルム基材2,5の材料としては、ポリエチレンテレフタレート(PET)やポリブチレンテレフテレート(PBT)やポリエチレンナフタレート(PEN)等のポリエステル樹脂やシクロオレフィン系樹脂、ポリカーボネート樹脂、ポリイミド樹脂、セルロース系樹脂等が挙げられる。特に、ポリエチレンテレフタレートやシクロオレフィン系樹脂が好適である。
 透明フィルム基材2,5の厚さは特に限定されないが、10μm~400μmが好ましく、50μm~125μmがより好ましい。厚さが上記範囲内であれば、透明フィルム基材2,5が耐久性と適度な柔軟性とを有し得るため、透明フィルム基材2の両面に第1方向電極層3と第2方向電極層4を、また透明フィルム基材5の裏面に透明導電膜電極層6をロールトゥロール方式により生産性高く製膜することが可能である。
 次に、接触操作を検知する為の第1方向電極層3、第2方向電極層4について、図3、図4に基づいて説明する。図3に示すように、左右方向(第1方向)に延びる導電細線30を同じピッチで例えば6本平行に並べたものを、並列接続して1つの第1方向電極Xが形成される。第1方向電極Xには、左右方向に例えば6等分した位置で、6本の導電細線30を電気的に接続する5本の冗長線32が設けられていることが好ましい。第1方向電極層3は、この第1方向電極Xを5mmピッチでストライプ状に例えばm行配列して第1方向電極X1~Xmとし、各第1方向電極Xから引き出された各接続配線33を一端部に集めて形成した電極パターンとなる。
 図4に示すように、上下方向(第2方向)に延びる導電細線40を同じピッチで例えば6本平行に並べたものを、並列接続して1つの第2方向電極Yが形成される。第2方向電極Yには、上下方向に例えば5等分した位置で、6本の導電細線40を電気的に接続する4本の冗長線42が設けられていることが好ましい。第2方向電極層4は、この第2方向電極Yを5mmピッチでストライプ状に例えばn列配列して第2方向電極Y1~Ynとし、各第2方向電極Yから引き出された各接続配線43を一端部に集めて形成した電極パターンとなる。
 導電細線30,40は、厚さ100nm~5μm、線幅1μm~5μmで形成される。導電細線30,40が上記厚さ及び線幅のため、第1方向電極層3及び第2方向電極層4の製造工程において断線箇所が生じる恐れがあるため、冗長線32,42を設けて第1,第2方向電極X,Yの断線を防止している。
 導電細線30,40の材質としては導電性を有していれば特に制限はなく、目的に応じて適宜選択しうるが、電気抵抗率が低く、導電性の良い金属細線が用いられ、特に、Ag,Al,Cu,Ni,Auなどの金属が導電材料として好適である。
 第1フィルム部材1aの第1方向電極層3及び第2方向電極層4は、スパッタリング法や電解メッキ法にて製膜するため、本実施例においては長方形のシート状の透明フィルム基材2を適用したが、これに限定されるものではなく、第1方向電極層3及び第2方向電極層4の絶縁層としての機能を果たすものであれば適宜選択できる。
 静電容量式タッチパネル1は、図5に示すように、n本のドライブライン(第2方向電極Y)とm本のセンスライン(第1方向電極X)とを有し、その交差箇所に静電容量方式の為のキャパシタ要素60が構成される。n本のドライブラインY1~Ynに微少時間おきに駆動信号を供給し、各ドライブラインY1~Ynのドライブ中のm本のセンスラインの信号を読み取ることで、タッチ操作した第1,第2方向の信号を検知するようになっている。静電容量式タッチパネル1に配置されているキャパシタ要素60は、使用者の指先がパネル面に接触した際、指先と第1,第2方向電極X,Y間に発生する浮遊容量が、キャパシタ要素60の電気量に影響を及ぼすため、センスラインの信号からタッチ操作を検知することができる。
 また、第1フィルム部材1aには、図1、図2に示すように、第1方向電極層3と第2方向電極層4とを重ね合わせて、90°で交差する格子状の電極パターンが形成されているが、第1フィルム部材1aに形成される電極パターンは90°で交差する格子状に限定されるものではない。
 例えば、第1方向電極層3の第1方向電極X1~Xmと、第2方向電極層4の第2方向電極Y1~Ynとの交差角を90°より若干小さく又は大きく形成すれば、第1方向電極層3と第2方向電極層4とを90°より若干角度をずらして重ね合わせた電極パターンとして形成することができ、タッチパネルの背部の表示画面の電極ラインとの相互作用で発生する干渉縞(モアレ)の発生を防ぎ、視認性を向上させることができる。
 次に、非接触操作を高感度で検知する為の透明導電膜電極層6について、図1、図2、図6に基づいて説明する。透明導電膜電極層6は、透明フィルム基材5の裏面に形成され、図6に示すように、左右方向(第1方向)に並べた1対の左右方向操作検知用の電極セグメント61,62と、上下方向(第2方向)に並べた1対の上下方向操作検知用の電極セグメント63,64とを、隣接する電極間の隙間Mが等間隔となるよう配置し、各電極セグメント61~64から接続配線65を夫々引き出して、各接続配線65を一端部に集めて電極パターンを形成した構成となる。
 透明導電膜電極層6は、透明な導電材料で作製されればよく、第1方向電極層3及び第2方向電極層4とは異なる導電材料で作製され、例えば、金属酸化物(ITO)又は導電性高分子材料で作製されることが好ましい。透明導電膜電極層6の膜厚は100nm以下で、隙間Mは50μm~100μmが好ましい。透明導電膜電極層6の各電極セグメント61~64の面積は、複数の第1方向電極X及び複数の第2方向電極Yのうち各電極セグメント61~64と平面視で重なる部分の合計面積よりも大きく設定されている。
 このため、層構造として透明導電膜電極層6より上方(タッチ面)に、接触操作の為の第1方向電極層3及び第2方向電極層4を配置しても、各電極セグメント61~64の面積が大きいため、透明導電膜電極層6からの電気力線がパネル面から外側に出やすく、非接触操作に対する高感度での検知が可能となる。つまり、透明導電膜電極層6によって非接触操作を検知する場合、接続配線65に流れる微小電流を微少時間おきにモニタリングしていき、使用者の指先をパネル面に近づけると非接触操作位置(指先に対応する位置)の電極セグメント61~64と指先との間に浮遊容量が発生して、非接触操作位置の電極セグメント61~64に微小電流が流れ、例えばこれらを相対的に検知することで非接触操作位置が検知可能となる。
 ここで、静電容量式タッチパネルでの非接触操作に対する検知感度は、電極面積と関連し、電極面積が大きければ大きい程、使用者の指先がタッチパネルのパネル面から離れた位置でも高感度での検知が可能となる。従って、静電容量式タッチパネル1において、非接触操作に対する検知感度は、非接触操作を検知するための透明導電膜電極層6の電極セグメント61~64の面積と関連し、電極セグメント61~64の面積が大きければ大きい程、使用者の指先がタッチパネルのパネル面から離れた位置でも高感度での検知が可能となる。
 パネル面に指先を接近させた非接触の状態で、電極セグメント61で検知した後に電極セグメント62で検知した場合、非接触状態で指先を左から右へ移動させたことが検知可能となる。同様に、電極セグメント62で検知した後に電極セグメント61で検知した場合、非接触状態で指先を右から左へ移動させたことが検知可能となる。同様に、電極セグメント63で検知した後に電極セグメント64で検知した場合、非接触状態で指先を上から下へ移動させたことが検知可能となる。同様に、電極セグメント64で検知した後に電極セグメント63で検知した場合、非接触状態で指先を下から上へ移動させたことが検知可能となる。
 本実施例における透明導電膜電極層6にて操作可能となる具体的な非接触式の動作例について説明する。指先をパネル面に一定距離接近させた状態で、電極セグメント61,62の相互間での指先の移動で、例えば、表示画面の左右スクロール操作、ページ送り及びページ戻しの操作が指示可能となる。同様に電極セグメント63,64の相互間での指先の移動で、例えば、表示画面の上下スクロール操作、音量のUP及びDOWN操作が検知可能となる。
 次に、実施例1の静電容量式タッチパネル1の層構造について、図7を参照して説明する。静電容量式タッチパネル1は、図7に示すように、透明フィルム基材2の表面に第1方向電極層3を形成し、その裏面に第2方向電極層4を形成した第1フィルム部材1aと、透明フィルム基材5の裏面に透明導電膜電極層6を形成した第2フィルム部材1bとを透明粘着剤層7によって貼り合わせて作製される。透明粘着剤層7は光学透明両面粘着剤シート(OCA)であって、透明性、接着信頼性、透明導電膜への耐腐食性に優れたものを適宜採用しうる。
 次に、実施例1の静電容量式タッチパネル1の作製工程について図7を参照して説明する。
 作製工程としては、透明フィルム基材2の表面に第1方向電極層3を形成する第1工程、透明フィルム基材2の裏面に第2方向電極層4を形成する第2工程、透明フィルム基材5の裏面に透明導電膜電極層6を形成する第3工程、第1フィルム部材1aと第2フィルム部材1bとを貼り合わせる第4工程、という順序で静電容量式タッチパネル1が作製される。
 まず、透明フィルム基材2の表面に第1方向電極層3を形成する第1工程、について説明する。スパッタリング装置を用いてロールトゥロール方式により、透明フィルム基材2の表面にシード層を製膜する。スパッタリング装置のチャンバー内に設けたターゲットとしては、金属、金属酸化物等が用いられる。その後、フォトリソグラフィ法により第1方向電極層3の電極パターンのパターニングが行われる。
 パターニングは、シード層の表面にフォトレジスト剤を塗布し、第1方向電極層3の電極パターンを形成したフォトマスクの上から紫外線を照射する(露光)と、フォトレジスト剤が反応して、シード層の上に電極パターンが焼き付けられる。その後、電解メッキ製法により、レジストで覆われていない部分に金属膜(銅)を製膜してから、レジストを除去する。最後に、エッチング処理を施し、不要な露出部分のシード層を除去することにより行われる。
 次に、透明フィルム基材2の裏面に第2方向電極層4を形成する第2工程、を前記第1工程と同様に行う。この際、前記第1方向電極層3の電極パターンに代えて、第2方向電極層4の電極パターンを形成したフォトマスクが使用される。第2工程が終了すると、透明フィルム基材2の表面に第1方向電極層3が形成され、裏面に第2方向電極層4が形成された第1フィルム部材1aが作製される。
 次に、透明フィルム基材5の裏面に透明導電膜電極層6を形成する第3工程が行われる。スパッタリング装置を用いてロールトゥロール方式により、透明フィルム基材5の片面にITOからなる透明導電薄膜を製膜する。製膜に用いられるガスとしては、アルゴン等の不活性ガスを主成分とするものが好適である。その後、フォトリソグラフィ法により透明導電膜電極層6の電極パターンのパターニングが行われる。
 パターニングは、透明導電薄膜の表面にフォトレジスト剤を塗布し、透明導電膜電極層6の電極パターンを形成したフォトマスクの上から紫外線を照射する(露光)と、フォトレジスト剤が反応して、電極パターンが焼き付けられる。その後、エッチング処理により、レジストで覆われていない部分の透明導電薄膜を取り除き、最後に、薬品などでフォトレジスト剤を除去することにより行われる。第3工程により、透明フィルム基材5の裏面に透明導電膜電極層6が形成された第2フィルム部材1bが作製される。
 最終工程として、第1フィルム部材1aと第2フィルム部材1bとを貼り合わせる第4工程が行われる。第1フィルム部材1aと第2フィルム部材1bとを透明粘着剤層7としての光学透明両面粘着剤シートを用いて貼り合わせると静電容量式タッチパネル1が作製される。
 ここで、第1方向電極層3、第2方向電極層4及び透明導電膜電極層6の製膜方法は、均一な薄膜が形成される製造方法であれば、スパッタリング法に限定されず、他の製膜方法を適宜採用しうる。
 次に、静電容量式タッチパネル1の層構造の変更形態について説明する。図8に示す層構造からなる静電容量式タッチパネル1Aは、透明フィルム基材2の表面(第1面)に第1方向電極層3、透明絶縁層8及び第2方向電極層4を上から順に形成し、裏面(第2面)に透明導電膜電極層6を形成したものである。静電容量式タッチパネル1Aは、透明フィルム基材2を1枚で作製できるため、静電容量式タッチパネル1と比べて薄く作製できる。また、静電容量式タッチパネル1Aにおいても、層構造として透明導電膜電極層6よりに上方に、接触操作の為の第1方向電極層3及び第2方向電極層4が配置されるため、透明導電膜電極層6からの電気力線がパネル面から外側に出やすく、非接触操作に対する高感度での検知が可能となる。
 図9に示す層構造からなる静電容量式タッチパネル1Bは、透明フィルム基材2の表面(第1面)に透明導電膜電極層6を形成し、この透明導電膜電極層6の表面に第1方向電極層3、透明絶縁層8及び第2方向電極層4を上から順に形成したものである。静電容量式タッチパネル1Bは、透明フィルム基材2を1枚で作製できるため、静電容量式タッチパネル1に比べて薄く作製できる。また、静電容量式タッチパネル1Bにおいても、層構造として透明導電膜電極層6より上方に、接触操作の為の第1方向電極層3及び第2方向電極層4が配置されるため、透明導電膜電極層6からの電気力線がパネル面から外側に出やすく、非接触操作に対する高感度での検知が可能となるが、第2方向電極層4と透明導電膜電極層6とが、別回路を形成するため、これらの間に何らかの絶縁層か、或いは接触検知と非接触検知を分離検出する電気的制御が必要となる。
 図10に示す層構造からなる静電容量式タッチパネル1Cは、透明フィルム基材2の表面(第1面)に第1方向電極層3、透明絶縁層8及び第2方向電極層4を上から順に形成してなる第1フィルム部材1cと、透明フィルム基材5の表面(第1面)に透明導電膜電極層6を形成してなる第2フィルム部材1dとを、透明粘着剤層7によって貼り合わせたものである。第1フィルム部材1cが第2フィルム部材1dよりも静電容量式タッチパネル1Cのパネル面に近い位置に配置される。透明フィルム基材2の表面に第1方向電極層3、透明絶縁層8及び第2方向電極層4を順に製膜してから、レーザーエッチング等により、各電極層3,4のパターニングが同時に出来るため、製造時間の短縮やコストの削減が可能となる。
 図11に示す層構造からなる静電容量式タッチパネル1Dは、透明フィルム基材2の表面(第1面)に第1方向電極層3を形成し、その裏面(第2面)に第2方向電極層4を形成した第1フィルム部材1aと、透明フィルム基材5の表面(第1面)に透明導電膜電極層6を形成した第2フィルム部材1eとを、透明粘着剤層7によって貼り合わせたものである。第1フィルム部材1aが第2フィルム部材1eよりも静電容量式タッチパネル1Dのパネル面に近い位置に配置される。静電容量式タッチパネル1Dは、静電容量式タッチパネル1の第2フィルム部材1bを第2フィルム部材1eに置き換えたものに相当する。
 静電容量式タッチパネル1の層構造は、図7~11に示したものに限定されるものではなく、その他の層構造であっても、第1方向電極層3、第2方向電極層4及び透明導電膜電極層6を形成可能なものであれば、適宜選択しうる。
 実施例2では、図12に示すように、前記透明導電膜電極層6に代えて透明導電膜電極層6Aが設けられる。その他は実施例1と同様に構成した静電容量式タッチパネル1である。透明導電膜電極層6Aとして、矩形形状のITOからなる1つの電極セグメント80が形成され、電極セグメント80から接続配線81を引き出した構成となる。
 透明導電膜電極層6Aは、電極セグメント80の面積が大きいため、指先をパネル面に近づけた場合の浮遊容量が大きくなり、タッチパネルのパネル面と直交する方向(Z軸方向)からパネル面に指先を接近させる非接触操作を高感度で検知可能となる。透明導電膜電極層6Aでは、例えば、指先をパネル面に接近させて、指先とパネル面とのZ軸方向の距離が一定距離以内となった場合に、操作メニューを画面に表示させる操作や、消費電力削減のために消滅させていたバックライトをONにする操作等が可能となる。
 実施例3では、図13に示すように、前記透明導電膜電極層6に代えて透明導電膜電極層6Bが設けられる。その他は実施例1と同様に構成した静電容量式タッチパネル1である。透明導電膜電極層6Bは、左右方向(第1方向)に並べた1対の左右方向操作検知用の電極セグメント82,83と、上下方向(第2方向)に並べた1対の上下方向操作検知用の電極セグメント84,85と、左右方向(第1方向)を時計回り方向に45°回転させた第3方向に並べた1対の第3方向操作検知用の電極セグメント86,87と、上下方向(第2方向)を時計回り方向に45°回転させた第4方向に並べた1対の第4方向操作検知用の電極セグメント88,89とを、隣接する各電極セグメント間に等間隔の隙間MBを設けて配置し、各電極セグメント82~89夫々から接続配線90を引き出して、各接続配線90を一端部に集めた構成となる。
 透明導電膜電極層6Bでは、実施例1での操作に加え、例えば、ナビゲーションの為の地図表示アプリや、ゲームアプリにおいて、表示位置を上下左右方向(電極セグメント82~85)の指示だけでなく、右上方向(電極セグメント88)、右下方向(電極セグメント87)、左上方向(電極セグメント86)、左下方向(電極セグメント89)への指示操作も指示可能となる。
 実施例4では、図14に示すように、前記透明導電膜電極層6に代えて透明導電膜電極層6Cが設けられる。その他は実施例1と同様に構成した静電容量式タッチパネル1である。透明導電膜電極層6Cは、左右方向(第1方向)に並べた1対の左右方向操作検知用の電極セグメント91,92と、上下方向(第2方向)に並べた1対の上下方向操作検知用の電極セグメント93,94と、左右方向(第1方向)を時計回り方向に45°回転させた第3方向に並べた1対の第3方向操作検知用の電極セグメント95,96と、上下方向(第2方向)を時計回り方向に45°回転させた第4方向に並べた1対の第4方向操作検知用の電極セグメント97,98と、電極セグメント91~98の中央位置に設けた電極セグメント99とを、隣接する各電極セグメント間に等間隔の隙間MCを設けて配置し、各電極セグメント91~99夫々から接続配線100を引き出して、各接続配線100を一端部に集めた構成となる。
 透明導電膜電極層6Cでは、実施例3での操作例に加え、例えば、中央の電極セグメント99に指先が接近すると操作メニューが表示され、次いで、非接触の状態のまま指先を移動させて選択した所望の操作が実行されるといった指示が可能となる。さらに、最初に電極セグメント91~99の何れかに指先が接近したことを検知した時に、各電極セグメント91~99に対応する位置に数字の1~9を表示させ、スリープ状態を解除するためのパスコードを非接触で入力操作が可能に構成することもできる。
 実施例5では、図15に示すように、前記透明導電膜電極層6に代えて透明導電膜電極層6Dが設けられる。その他は実施例1と同様に構成した静電容量式タッチパネル1である。透明導電膜電極層6Dは、実施例4の透明導電膜電極層6Cの矩形形状の各電極セグメント91~99を円形形状の電極セグメント101~109に置き換え、各電極セグメント101~109夫々から接続配線110を引き出して、各接続配線110を一端部に集めた構成となる。透明導電膜電極層6Dでは、実施例4と同様の操作が可能である。
 その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施例に種々の変更を付加した形態で実施可能であり、本発明はそのような変更形態を包含するものである。
1   静電容量式タッチパネル
1a  第1フィルム部材
1b  第2フィルム部材
2,5 透明フィルム基材
3   第1方向電極層
4   第2方向電極層
6   透明導電膜電極層
7   透明粘着剤層
30,40 導電細線
60  キャパシタ要素
61~64 電極セグメント
65  接続配線
X   第1方向電極
Y   第2方向電極

Claims (11)

  1.  1又は複数の透明なフィルム基材と、前記フィルム基材に装備された第1方向に延びる複数の第1方向電極及び前記第1方向と交差する第2方向に延びる複数の第2方向電極を有する静電容量式タッチパネルにおいて、
     前記各第1方向電極と各第2方向電極は夫々導電材料製の複数の細線で構成され、
     非接触操作を検知する為の少なくとも1つの透明導電膜電極が設けられたことを特徴とする静電容量式タッチパネル。
  2.  前記透明導電膜電極の面積は、複数の第1方向電極及び複数の第2方向電極のうちの前記透明導電膜電極に平面視で重なる部分の合計面積よりも大きく設定されていることを特徴とする請求項1に記載の静電容量式タッチパネル。
  3.  前記第1,第2方向電極は接触操作を検知する為のものであり、
     前記透明導電膜電極は、前記第1,第2方向電極と異なる導電材料で構成されたことを特徴とする請求項1又は2に記載の静電容量式タッチパネル。
  4.  前記透明導電膜電極は、金属酸化物又は導電性高分子材料で構成されたことを特徴とする請求項1~3のいずれかに記載の静電容量式タッチパネル。
  5.  前記透明導電膜電極を介して、前記タッチパネルのパネル面と直交する方向から前記パネル面に接近する非接触操作を検知可能に構成されたことを特徴とする請求項1~4のいずれかに記載の静電容量式タッチパネル。
  6.  前記第1方向は左右方向であり且つ前記第2方向は上下方向であり、
     前記透明導電膜電極は、前記第1方向に並べた1対の第1方向操作検知用透明導電膜電極と、前記第2方向に並べた1対の第2方向操作検知用透明導電膜電極を有することを特徴とする請求項1~5のいずれかに記載の静電容量式タッチパネル。
  7.  前記透明導電膜電極は、前記第1方向を時計回り方向に45°回転させた第3方向に並べた1対の第3方向操作検知用透明導電膜電極と、前記第2方向を時計回り方向に45°回転させた第4方向に並べた1対の第4方向操作検知用透明導電膜電極を有することを特徴とする請求項6に記載の静電容量式タッチパネル。
  8.  前記フィルム基材の第1面に前記複数の第1方向電極及び複数の第2方向電極が形成され、前記フィルム基材の第2面に前記透明導電膜電極が形成されたことを特徴とする請求項1~7のいずれかに記載の静電容量式タッチパネル。
  9.  前記フィルム基材の第1面に前記透明導電膜電極が形成され、この透明導電膜電極の表面に絶縁膜を挟んで前記複数の第1方向電極及び複数の第2方向電極が形成されたことを特徴とする請求項1~7のいずれかに記載の静電容量式タッチパネル。
  10.  第1のフィルム基材に前記複数の第1方向電極と前記複数の第2方向電極と前記透明導電膜電極のうちの2つを形成してなる第1フィルム部材と、第2のフィルム基材に前記複数の第1方向電極と前記複数の第2方向電極と前記透明導電膜電極のうちの残りの1つを形成してなる第2フィルム部材とを接着剤層を介して接着したことを特徴とする請求項1~7のいずれかに記載の静電容量式タッチパネル。
  11.  前記第1のフィルム基材の第1面に前記複数の第1方向電極を形成し且つ第2面に前記複数の第2方向電極を形成してなる第1フィルム部材と、前記第2のフィルム基材の第1面及び/又は第2面に前記透明導電膜電極を形成してなる第2フィルム部材とを有し、
     前記第1フィルム部材を前記第2フィルム部材よりも前記タッチパネルのパネル面に近い位置に配置したことを特徴とする請求項1~7、10のいずれかに記載の静電容量式タッチパネル。
PCT/JP2015/075337 2014-09-30 2015-09-07 静電容量式タッチパネル WO2016052082A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016551680A JP6568537B2 (ja) 2014-09-30 2015-09-07 静電容量式タッチパネル
CN201580044920.6A CN106605191A (zh) 2014-09-30 2015-09-07 静电容量式触摸面板
US15/472,846 US20170199599A1 (en) 2014-09-30 2017-03-29 Capacitive touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-200462 2014-09-30
JP2014200462 2014-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/472,846 Continuation US20170199599A1 (en) 2014-09-30 2017-03-29 Capacitive touch panel

Publications (1)

Publication Number Publication Date
WO2016052082A1 true WO2016052082A1 (ja) 2016-04-07

Family

ID=55630125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075337 WO2016052082A1 (ja) 2014-09-30 2015-09-07 静電容量式タッチパネル

Country Status (4)

Country Link
US (1) US20170199599A1 (ja)
JP (1) JP6568537B2 (ja)
CN (1) CN106605191A (ja)
WO (1) WO2016052082A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI622911B (zh) * 2017-02-14 2018-05-01 宏碁股份有限公司 觸控裝置
CN112805667A (zh) * 2018-11-27 2021-05-14 阿尔卑斯阿尔派株式会社 具有斜交检测电极组的接近检测装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287118A (ja) * 2006-03-23 2007-11-01 Wacom Co Ltd 情報処理装置、操作入力方法及びセンス部品
JP2012198879A (ja) * 2011-03-08 2012-10-18 Fujifilm Corp 抵抗膜式マルチタッチパネル及び抵抗膜式マルチタッチパネルに用いる電極シート
WO2014080924A1 (ja) * 2012-11-26 2014-05-30 学校法人福岡大学 近接・接触センサ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4483822B2 (ja) * 2006-04-04 2010-06-16 株式会社デンソー 燃料噴射制御装置
US7903094B2 (en) * 2006-06-23 2011-03-08 Wacom Co., Ltd Information processing apparatus, operation input method, and sensing device
CN103713771B (zh) * 2008-08-01 2017-09-08 3M创新有限公司 具有复合电极的触敏装置
WO2010075308A2 (en) * 2008-12-26 2010-07-01 Atmel Corporation Multiple electrode touch sensitive device
JP2011022744A (ja) * 2009-07-15 2011-02-03 Sanyo Electric Co Ltd 静電容量型タッチセンサ用の信号処理回路
KR20110076188A (ko) * 2009-12-29 2011-07-06 삼성전자주식회사 정전 용량 센싱 장치 및 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287118A (ja) * 2006-03-23 2007-11-01 Wacom Co Ltd 情報処理装置、操作入力方法及びセンス部品
JP2012198879A (ja) * 2011-03-08 2012-10-18 Fujifilm Corp 抵抗膜式マルチタッチパネル及び抵抗膜式マルチタッチパネルに用いる電極シート
WO2014080924A1 (ja) * 2012-11-26 2014-05-30 学校法人福岡大学 近接・接触センサ

Also Published As

Publication number Publication date
JPWO2016052082A1 (ja) 2017-09-21
US20170199599A1 (en) 2017-07-13
JP6568537B2 (ja) 2019-08-28
CN106605191A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
TWI664560B (zh) 層疊構造體、觸摸面板、帶觸摸面板的顯示裝置及其製造方法
JP6534381B2 (ja) タッチパネル、表示装置、並びに、タッチパネルの製造方法
JP5685411B2 (ja) タッチパネル
US8717333B2 (en) Electrostatic capacity type touch panel, display device and process for producing electrostatic capacity type touch panel
US9317161B2 (en) Touch sensor with spacers supporting a cover panel
US9772728B2 (en) Capacitive touch panel with additional subsidiary receiver mesh electrodes
JP2012128605A (ja) タッチパネル
WO2014176902A1 (zh) 触控电极及制作方法、电容式触控装置和触摸显示装置
JP2011181057A (ja) 単層容量式タッチ装置
KR20130116784A (ko) 표시장치용 터치 스크린 패널 및 그 제조방법
KR20110129024A (ko) 금속박막을 이용한 터치패널 및 그 제조방법
JP2013206315A (ja) フィルム状タッチパネルセンサー及びその製造方法
KR20150009846A (ko) 터치 스크린 패널 및 그 제조 방법
JP5882962B2 (ja) 入力装置
JP5878593B2 (ja) 入力装置の製造方法
TW201523367A (zh) 觸控面板
JP6568537B2 (ja) 静電容量式タッチパネル
KR20160070591A (ko) 터치센서
KR101462147B1 (ko) 서브 전극 라인을 포함하는 메쉬 전극 패턴을 가지는 터치 스크린 제조방법
KR101006387B1 (ko) 저항막 방식의 멀티 터치 패널 및 그 제조 방법
KR20140016623A (ko) 터치스크린 패널 및 그 형성방법
JP2019527860A (ja) タッチ基板、タッチパネル及びタッチパネルを有するタッチ装置、並びにタッチパネルの製造方法
KR101381729B1 (ko) 단일 금속박막 터치패널 및 제조방법
JP2013214185A (ja) タッチパネルセンサー及びその製造方法
KR101366358B1 (ko) 터치스크린 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847112

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551680

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847112

Country of ref document: EP

Kind code of ref document: A1