WO2014176902A1 - 触控电极及制作方法、电容式触控装置和触摸显示装置 - Google Patents

触控电极及制作方法、电容式触控装置和触摸显示装置 Download PDF

Info

Publication number
WO2014176902A1
WO2014176902A1 PCT/CN2013/088825 CN2013088825W WO2014176902A1 WO 2014176902 A1 WO2014176902 A1 WO 2014176902A1 CN 2013088825 W CN2013088825 W CN 2013088825W WO 2014176902 A1 WO2014176902 A1 WO 2014176902A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
electrode
pins
electrodes
layer
Prior art date
Application number
PCT/CN2013/088825
Other languages
English (en)
French (fr)
Inventor
鲁友强
邱云
王静
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/358,477 priority Critical patent/US9684401B2/en
Publication of WO2014176902A1 publication Critical patent/WO2014176902A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49105Switch making

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a touch electrode structure and a manufacturing method thereof, a capacitive touch device, and a touch display device. Background technique
  • the conventional touch display device mainly uses a touch sensor on a substrate (for example, a glass substrate) to form a touch sensor substrate, and then the touch substrate and the protective layer and the liquid crystal display (LCD, Liquid). Cristal Display ) fits to form a touch display device to achieve touch display.
  • a substrate for example, a glass substrate
  • LCD liquid crystal display
  • Cristal Display fits to form a touch display device to achieve touch display.
  • the touch electrode structure in the touch sensor includes: a plurality of electrode groups 6V formed on the substrate 60 ′ and electrode pins 62 ′ for connecting the touch circuits, wherein each electrode group includes two
  • the triangular electrodes 611' are insulated and interdigitated, and each electrode is connected to one electrode pin; correspondingly, along the AA of FIG. 1, the cross-sectional structure of the touch substrate is as shown in FIG. 2.
  • the distance between the electrode pins is between 6 and 8 mm
  • the gap between IT0 (the distance between the adjacent triangular electrodes in Figure 1) is between 50 and 100 ⁇ m.
  • Such an electrode structure design can meet the general application requirements.
  • the above-mentioned electrode structure design may not be reported properly, as shown in Fig. 3, wherein Al, ⁇ 2 and A3 respectively represent the touch positions of the finger on the touch screen.
  • Al, ⁇ 2 and A3 respectively represent the touch positions of the finger on the touch screen.
  • the touch is on A1 and ⁇ 2 since the adjacent two electrodes are touched at the same time, the coordinates can be correctly calculated; but when the touch is on A3, only one electrode is touched, so the figure cannot be correctly calculated.
  • the coordinates of the A3 position In practical applications, it is inevitable that the touch is in the A3 position, for example, when the touch width is 5 mm or when the little finger is touched.
  • the report rate is an indicator of the touch sensitivity.
  • the above electrode structure design There are certain defects, and it is impossible to ensure that each touch can accurately report points, that is to say, it is impossible to accurately calculate the coordinate point of the touch position for each touch. Summary of the invention
  • the embodiment of the invention provides a touch electrode structure, a capacitive touch device and a touch display device for improving the touch linearity and the report rate of the capacitive touch device.
  • a touch electrode structure includes a plurality of electrode groups and a plurality of electrode pins for connecting the touch circuits, wherein each electrode group includes two layers of the same layer insulated and alternately complementary The electrode, each electrode includes at least two sub-electrodes, the sub-electrodes of each electrode are electrically connected to each other, and the sub-electrodes of different electrodes in each electrode group are arranged at intervals; each electrode is connected to one electrode pin.
  • a capacitive touch device includes the touch electrode structure described above.
  • a touch display device includes a touch layer and a display panel. The touch layer is formed on the display panel, and the touch layer includes the touch electrode structure.
  • a method for fabricating a touch electrode structure includes: forming a plurality of electrode groups and a plurality of electrode pins for connecting a touch circuit by one patterning process, wherein each electrode group includes two Electrodes insulated from each other and interleaved and complementary in the same layer, each electrode includes at least two sub-electrodes, and sub-electrodes of each electrode are electrically connected to each other, and sub-electrodes of different electrodes in each electrode group are arranged at intervals; One electrode is connected to one electrode pin.
  • Embodiments of the present invention provide a touch electrode structure, a method of fabricating the same, a capacitive touch device, and a touch display device.
  • the touch electrode structure provided by the embodiment of the invention expands the electrode area involved in the touch without increasing the pin and changing the pitch of each pin in the prior art, and ensures the touch when applied to the touch display device. Accurate reporting at the time of control increases touch rate and linearity.
  • FIG. 1 is a schematic plan view of a touch electrode structure in the prior art
  • FIG. 2 is a schematic structural view of a cross-sectional layer in the A-A' direction of the structure shown in FIG. 1;
  • FIG. 3 is a schematic view of a touch area of the structure shown in FIG. 1;
  • FIG. 4 is a schematic plan view of a touch electrode structure according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a touch area of a touch electrode structure according to an embodiment of the present invention.
  • FIG. 6 is a schematic plan view showing a touch coordinate of a triangular electrode structure
  • FIG. 7 is a schematic cross-sectional view of a touch display device according to an embodiment of the present invention
  • FIG. 8 is a schematic plan view of a touch electrode structure in the structure shown in FIG. 7;
  • FIG. 9 is a corresponding schematic diagram of an electrode pin and a black matrix in the touch display device shown in FIG. 8;
  • FIG. 10 is a corresponding schematic diagram of each pin in the touch display device shown in FIG.
  • FIG. 11 is a cross-sectional structural diagram of another touch display device according to an embodiment of the present invention.
  • the technical solutions of the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings of the embodiments of the present invention. It is apparent that the described embodiments are part of the embodiments of the invention, rather than all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the described embodiments of the present invention without departing from the scope of the invention are within the scope of the invention.
  • the embodiment of the invention provides a touch electrode structure, a capacitive touch device and a touch display device for improving the touch linearity and the report rate of the capacitive touch device.
  • a touch electrode structure includes a plurality of electrode groups and a plurality of electrode pins for connecting the touch circuit, and includes a plurality of electrode groups and a plurality of electrode pins for connecting the touch circuits.
  • Each electrode group includes two mutually insulated and staggered complementary electrodes disposed in the same layer, each electrode including at least two sub-electrodes, the sub-electrodes of each electrode being electrically connected to each other, and different electrodes in each electrode group Sub-electrodes - spaced apart.
  • the two sub-electrodes may be two sub-electrodes of the same shape, which facilitates calculation of the coordinates of the touch area.
  • the shape of the sub-electrodes is a triangle.
  • the triangular electrode in the prior art is equally divided, and the number of equal parts is determined according to the needs of the touch precision, and is two or more triangles.
  • the triangular electrode with a pitch of 6 mm in each prior art is equally divided into two small triangular sub-electrodes, so that the maximum touch area of each triangular sub-electrode is 3 mm, so when the touch width is 5 mm. , can guarantee accurate reporting.
  • the shape of the sub-electrodes is a right triangle.
  • the electrodes, electrode pins, and marker pins can be on the same layer.
  • the electrodes, electrode pins, and marking pins are fabricated in the same layer to enable the tube process.
  • the material of the touch electrode is a transparent conductive material or a metal material.
  • the touch electrode structure for the touch display is generally disposed on the light exit side of the LCD, so in order to ensure the effect of the display, the material of the touch electrode is selected from a transparent conductive material.
  • a touch electrode structure includes a plurality of electrode groups 51 and a plurality of electrode pins 52 for connecting touch circuits, wherein each electrode group 51 includes two
  • the electrodes 511 are mutually insulated and staggered and complementary, each electrode includes a sub-electrode 5111 and a sub-electrode 5112, and the sub-electrode 5111 and the sub-electrode 5112 of each electrode are electrically connected to each other, and the sub-electrodes of the different electrodes 511 in each electrode group 51 are Arranged at intervals; each electrode 511 is connected to an electrode lead 52.
  • the pitch is 6mm
  • the maximum touch area of each sub-electrode is 3mm
  • the touch width is 5mm. In the test, or with the tip of the little finger, you can achieve accurate points. For example, as shown
  • any touch area of Al, A2 or A3 it is ensured that the touch area can cover at least two electrodes, so that there is no case where only one electrode is touched, so that an accurate report can be made. Increased reporting rate and touch linearity.
  • FIG. 6 is a schematic diagram of the touch of the coordinate A of the touch position.
  • the self-inductance capacitors Cl, C2, C3, Cl, C2, and C3 corresponding to the electrodes shown in FIG. 6 respectively correspond to the first channel, the second channel, and the third channel.
  • 1, 2, 3 are the channel values of the first channel, the second channel, and the third channel respectively; then in the touch circuit The physical coordinates of the above point A and the resolution of the LCD are mapped to obtain the coordinate position of point A on the LCD. It should be noted that the physical coordinates of the above point A and the resolution of the LCD are mapped to obtain the coordinate position of the A point on the LCD. This process is the same as the prior art, and will not be described herein.
  • each electrode group comprises two mutually insulated and staggered complementary electrodes disposed in the same layer, each electrode including at least Two sub-electrodes, wherein the sub-electrodes of each electrode are electrically connected to each other, and the sub-electrodes of different electrodes in each electrode group are arranged at intervals; each electrode is connected to one electrode lead.
  • a capacitive touch device according to an embodiment of the invention will be described below.
  • a capacitive touch device includes the touch electrode structure described above.
  • the capacitive touch device may be a touch keyboard, a touch display device, etc., and all possible capacitive touch devices fall within the scope of protection of the present invention.
  • a touch display device includes a touch layer and a display panel.
  • the touch control layer is formed on the display panel, and the touch layer includes the touch electrode structure.
  • the display panel may be a thin film transistor TFT display panel, an organic light emitting diode OLED display panel, or the like. Here, the type of the display panel is not limited.
  • the material of the touch electrode structure is a transparent conductive material.
  • the touch display device further includes a protective layer formed on the touch layer, thereby reducing External interference.
  • the touch display device further includes an electrostatic protection layer formed between the touch layer and the display panel to reduce the damage of static electricity to the internal structure of the display panel.
  • the electrostatic protection layer and the touch layer may be insulated.
  • the display panel further includes a color film substrate and a touch circuit board, a black matrix is formed on the color film substrate, and a alignment mark for connecting the electrode pins and the touch circuit board is disposed on the black matrix;
  • the structure is provided with at least two mark pins, and the mark pin is distributed on both sides of all the electrode pins.
  • the alignment mark is a hollow figure on the black matrix layer, and the cutout graphic is the same as the mark pin.
  • the touch circuit board is provided with a plurality of circuit pins, and the touch layer is electrically connected to the touch circuit board through the circuit pins and the electrode pins, and the touch electrode structure further includes the same layer as the electrode pins.
  • a plurality of detecting electrode pins, a sensing circuit pin is further disposed on the touch circuit board, a conductive film is disposed between the touch circuit board and the touch layer, and the detecting electrode pin and the detecting circuit pin are used for Monitor the conductive film.
  • the detecting electrodes are pin-symmetrically disposed at the edge of all the electrode pins for connecting the touch circuit, the detecting circuit pins and the detecting electrode pins, and the distance and the electrode pins for connecting the touch circuits. - The nearest half of the corresponding circuit pins have no copper plating on the surface of the test circuit pins.
  • the number of detection electrode pins and detection circuit pins is at least four.
  • the touch display device provided by the present invention will be described below in conjunction with preferred embodiments.
  • the preferred embodiment of the present invention is described by taking a transparent conductive material as an example, and the display panel is exemplified by a TFT display panel, but is not intended to limit the present invention.
  • a touch display device includes an array substrate 1 , a color filter substrate 2 , a liquid crystal layer 3 between the array substrate 1 and the color filter substrate 2 , and a touch circuit board 4 .
  • the method further includes: a touch layer 5 formed on the light exiting side of the color filter substrate 2, and a protective layer 6 formed on the touch layer 5.
  • the structure of the touch layer 5 is the touch electrode structure shown in FIG. 6, and the material of the touch electrode is a transparent conductive material, such as a transparent conductive oxide film ITO.
  • the touch electrode structure is directly formed on the light exiting side of the color filter substrate, so that the touch electrode structure can not only realize the function of the touch, but also function as an electrostatic discharge layer. Therefore, the structure is collapsed, making the thickness of the touch screen thinner.
  • the touch electrode structure shown in FIG. 6 is directly formed on the light emitting side of the color filter substrate 2, and the electrode group 51 is formed in the touch area 20, and the electrode pins are formed on the non-touch. region.
  • the profile of the touch display device shown in Fig. 7 can be obtained by performing the cross section along the direction B-B in Fig. 8.
  • a black matrix is formed on the color filter substrate, and an alignment mark for connecting the electrode pins to the touch circuit board is disposed on the black matrix; at least two mark pins are disposed on the touch electrode structure, and the mark The pins are distributed on both sides of all electrode pins.
  • the alignment mark is a hollow figure on the black matrix layer, and the cutout graphic is the same as the mark pin.
  • the touch electrode structure is provided with at least two mark pins 53 distributed on both sides of all the electrode pins 52; on the color film substrate
  • the black matrix 21 is provided with an alignment mark 22 for connecting the electrode pin 52 to the touch circuit, and the position of the alignment mark 22 on the black matrix corresponds to the position of the mark pin, and the alignment mark 22 is located.
  • the hollowed out graphic of the black matrix layer, the hollowed out graphic is the same as the graphic of the marked pin.
  • the flexible printed circuit board on glass (FOG) production process is bonded by an anisotropic conductive film (ACF) and at a certain temperature.
  • ACF anisotropic conductive film
  • a processing method for mechanically connecting and electrically conducting the liquid crystal glass and the flexible circuit board under hot pressure and pressure generally including four processes of ACF pre-posting, pre-binding, main binding and detection.
  • the touch electrode structure is directly formed on the light exiting side of the color filter substrate, and since the material of the touch electrode structure is a transparent conductive material, the touch electrode structure can only be slightly visible under the reflected light, resulting in transparency.
  • the touch electrode structure of the conductive material is very difficult to do in the pre-bound alignment of the FOG. Therefore, the method provided by the embodiment of the present invention redesigns the graphics of the black matrix, so that when the FOG is pre-bound, the touch electrode pins and the touch circuit board can be realized by the alignment mark 22 graphic on the black matrix.
  • the alignment on the top is aligned to improve the accuracy of the alignment.
  • the pattern of the alignment mark is not limited to the same pattern as the mark pin.
  • the touch circuit board is provided with a plurality of circuit pins, and the touch layer is electrically connected to the touch circuit board through the circuit pins and the electrode pins, and the touch electrode structure further includes the same layer as the electrode pins.
  • a plurality of detecting electrode pins, a sensing circuit pin is further disposed on the touch circuit board, a conductive film is disposed between the touch circuit board and the touch layer, and the detecting electrode pin and the detecting circuit pin are used for Monitoring guide Electric film.
  • the number of detection electrode pins and detection circuit pins is at least four.
  • the touch circuit board 4 is provided with a plurality of circuit pins 40, and the touch layer 5 is electrically connected to the touch circuit board 4 through the circuit pins 40 and the electrode pins 52.
  • the touch electrode structure further includes a plurality of detecting electrode pins 54 disposed in the same layer as the electrode pins, and the touch circuit board is further provided with a detecting circuit pin 41 and a detecting circuit pin 42; the touch circuit board A conductive film such as ACF particles, a detection electrode lead, and a detection circuit pin are provided between the touch layer and the touch layer for monitoring the conductive film.
  • the detecting electrode pins 54 are symmetrically disposed at the edges of all the electrode pins 52 for connecting the touch circuits, and the detecting circuit pins correspond to the detecting electrode pins, and the surface of the detecting circuit pins 42 is not provided. Copper plating, for example, the detection circuit pins 42 are symmetrically disposed on the touch circuit board, as symmetrically disposed at the edges of the touch circuit board.
  • the detection electrode pin and the detection circuit pin are added, and the copper plating process is not performed on the detection circuit pin to improve the penetration of the corresponding area of the detection circuit pin. The light rate, so that when the FOG process is performed, the blast state of the ACF particles can be monitored through the electrode lead area of the test, thereby detecting the FOG bonding yield.
  • test electrode pins have the same shape as the electrode pins used to connect the touch circuits. In this way, it is easier to implement in the production process.
  • the number of electrode electrodes for detection may be at least four, for example, four detection electrode pins and four detection circuit pins as shown in FIG.
  • the touch electrode structure is directly formed on the light exiting side of the color filter substrate, and the functions of touch and electrostatic discharge are realized at the same time, and the implementation of the present invention is adopted.
  • the touch rate and linearity of the touch are improved.
  • the process provided by the embodiment of the present invention can realize double-sided thinning of the LCD, that is, after the LCD is finished, the upper and lower sides of the LCD are thinned, and the touch electrode structure is thinned.
  • the light-emitting side of the color filter substrate is formed by a patterning process, and then the FOG process is performed, and finally bonded to the protective layer, thereby completing the fabrication of the touch display device.
  • the flatness is better and the yield of the fit is higher.
  • the touch electrode structure provided by the embodiment of the present invention is also applicable to a conventional touch display device, that is, an electrostatic protection layer is disposed between the color film substrate and the touch layer.
  • another touch display device provided by the embodiment of the present invention includes an array substrate V, a color filter substrate 2', a liquid crystal layer y between the array substrate and the color filter substrate, and a touch circuit provided.
  • the touch circuit board 4' further includes: an electrostatic protection layer 5' formed on the light-emitting side of the color filter substrate, a touch layer 6' formed on the electrostatic protection layer, and a protective layer 7 formed on the touch layer
  • the touch layer includes a substrate and the touch electrode structure formed on the substrate.
  • the touch electrode structure in the touch substrate 6', is the touch electrode structure shown in FIG. 4 provided by the embodiment of the present invention. It should be noted that the structure shown in FIG. 11 is a cross-sectional structure of a conventional touch display device. It is obvious that the touch electrode structure provided by the embodiment of the present invention can also be applied to the structure of a conventional touch display device.
  • the embodiment of the invention provides a touch electrode structure, a manufacturing method thereof, a capacitive touch device and a touch display device.
  • the touch electrode structure provided by the embodiment of the invention includes a plurality of electrode groups and a plurality of electrode pins for connecting the touch circuits, wherein each electrode group includes two electrodes insulated and interdigitated with each other, each electrode Including at least two sub-electrodes, and the sub-electrodes of each electrode are electrically connected to each other, and the sub-electrodes of different electrodes in each electrode group are arranged at intervals; each electrode is connected with one electrode lead; each electrode is connected with one electrode lead foot.
  • the touch electrode structure expands the electrode area involved in the touch without increasing the pin and changing the pitch of the pin in the prior art, and ensures accurate reporting when applied to the capacitive touch device. Improve touch linearity.
  • the process provided by the embodiments of the present invention can realize double-sided thinning of the LCD, and then perform FOG process after thinning, and finally adhere to the protective layer to complete the fabrication of the touch display device, and at the FOG. In the process, the alignment is made more accurate without increasing the number of processes. Compared with the traditional LCD display module with assembled backlight, the flatness is better and the bonding yield is higher.
  • embodiments of the present invention can be provided as a method, system, or computer program product.
  • the invention can be implemented as hardware, software, or a combination of software and hardware.
  • the invention can be embodied in the form of one or more computer program products embodied on a computer-usable storage medium, including but not limited to disk storage and optical storage, and the like.
  • the present invention is made with reference to a method, apparatus (system) and computer program according to an embodiment of the present invention.
  • the flow chart and/or block diagram of the product is described. It will be understood that each flow and/or block of the flowcharts and/or block diagrams can be implemented by computer program instructions, and combinations of flow and/or blocks in the flowcharts and/or block diagrams.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

本发明公开了一种触控电极结构及其制作方法、一种电容式触控装置和一种触摸显示装置,用以提高电容式触控装置的触控线性度和报点率。本发明实施例提供的触控电极结构,包括多个电极组和多个用于连接触控电路的电极引脚,其中,每一电极组包括两个同层设置的相互绝缘且交错互补的电极,每一电极包括至少两个子电极,每一电极的子电极相互电性连接,且每一电极组中不同电极的子电极一一间隔排列,每一电极连接一电极引脚。

Description

触控电极及制作方法、 电容式触控装置和触摸显示装置 技术领域
本发明涉及显示技术领域, 尤其涉及一种触控电极结构及其制作方法、 一种电容式触控装置和一种触摸显示装置。 背景技术
传统的触摸显示装置主要是将触摸传感器( touch sensor )制作在基板 (例 如, 玻璃基板)上, 形成触控基板(sensor glass )后, 再将触控基板与保护层 和液晶显示器(LCD, Liquid Cristal Display )贴合, 至此形成触摸显示装置, 实现触控显示的目的。
如图 1所示, 触摸传感器中触控电极结构包括: 形成在基板 60' 上的多 个电极组 6V 和用于连接触控电路的电极引脚 62' , 其中, 每一电极组包括 两个相互绝缘且交错互补的三角形电极 611' , 每一电极与一个电极引脚相连 接; 对应的, 沿图 1中 A-A, 方向触控基板的剖面结构如图 2所示。 一般情 况下, 各电极引脚之间的距离在 6-8mm之间, 而 IT0之间的间隙(图 1中相 邻的三角形电极之间的距离)在 50-100 μ ιη之间。 如此的电极结构设计, 能 够满足一般的应用要求。
但是, 上述的电极结构设计存在不能正常报点的情况, 如图 3所示, 其 中, Al、 Α2和 A3分别代表手指在触控屏上的触控位置。 当触控在 A1和 Α2时, 由于同时触摸到了相邻的两个电极, 因此可以正确的计算出坐标; 但 当触控在 A3时, 仅触控到一个电极, 因此并不能正确地计算出 A3位置的坐 标。 在实际应用中, 触控在 A3位置的情况是不可避免的, 例如以触控宽度为 5mm测试的情况或者小拇指尖触摸的情况。
报点率是衡量触控灵敏度的一个指标, 报点率越高, 触控的灵敏度越高, 越可以真实地反映触摸点的位置。 而由上述分析可知, 上述的电极结构设计 存在一定的缺陷, 不能够保证每一次触摸都能准确地报点, 也就是说不能够 保证每一次触摸都能够准确地计算出触摸位置的坐标点。 发明内容
本发明实施例提供了一种触控电极结构、 电容式触控装置和触摸显示装 置, 用以提高电容式触控装置的触控线性度和报点率。
本发明实施例提供的一种触控电极结构, 包括多个电极组和多个用于连 接触控电路的电极引脚, 其中, 每一电极组包括两个同层设置的相互绝缘且 交错互补的电极, 每一电极包括至少两个子电极, 每一电极的子电极相互电 性连接, 且每一电极组中不同电极的子电极——间隔排列; 每一电极连接一 电极引脚。
本发明实施例提供的一种电容式触控装置, 包括上述的触控电极结构。 本发明实施例提供的一种触摸显示装置, 包括触控层和显示面板, 触控 层形成在显示面板上, 触控层包括上述的触控电极结构。
本发明实施例提供的一种触控电极结构的制作方法, 包括: 通过一次构 图工艺形成多个电极组和多个用于连接触控电路的电极引脚, 其中, 每一电 极组包括两个同层设置的相互绝缘且交错互补的电极, 每一电极包括至少两 个子电极, 且每一电极的子电极相互电性连接, 且每一电极组中不同电极的 子电极——间隔排列; 每一电极连接一电极引脚。
本发明实施例提供了一种触控电极结构及其制作方法、 电容式触控装置 及和触摸显示装置。 本发明实施例提供的触控电极结构在不增加引脚、 不改 变现有技术中各引脚间距的情况下, 扩大了触控涉及的电极区域, 应用在触 摸显示装置上时, 保证了触控发生时的准确报点, 提高了触控报点率和线性 度。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 筒单地介绍, 显而易见地, 下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为现有技术中触控电极结构的平面示意图;
图 2为图 1所示的结构中 A-A' 方向的剖面层结构示意图;
图 3为图 1所示结构的触摸区域示意图;
图 4为本发明实施例提供的一种触控电极结构的平面示意图;
图 5为本发明实施例提供的触控电极结构的触摸区域示意图;
图 6为三角形电极结构计算触摸坐标的平面示意图;
图 7为本发明实施例提供的一种触摸显示装置的剖面结构示意图; 图 8为图 7所示的结构中触控电极结构的平面示意图;
图 9为图 8所示的触摸显示装置中电极引脚和黑矩阵的对应示意图; 图 10为图 8所示的触摸显示装置中各引脚的对应示意图;
图 11为本发明实施例提供的另一种触摸显示装置的剖面结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
除非另作定义, 此处使用的技术术语或者科学术语应当为本发明所属领 域内具有一般技能的人士所理解的通常意义。 "一个"、 "一"或者 "该"等类 似词语也不表示数量限制, 而是表示存在至少一个。 "包括"或者 "包含"等 类似的词语意指出现在 "包括" 或者 "包含" 前面的元件或者物件涵盖出现 在 "包括" 或者 "包含" 后面列举的元件或者物件及其等同, 并不排除其他 元件或者物件。 "连接"或者 "相连"等类似的词语并非限定于物理的或者机 械的连接, 而是可以包括电性的连接, 不管是直接的还是间接的。 "上"、 "下"、 "左"、 "右" 等仅用于表示相对位置关系, 当被描述对象的绝对位置 改变后, 则该相对位置关系也可能相应地改变。
本发明实施例提供了一种触控电极结构、 电容式触控装置和触摸显示装 置, 用以提高电容式触控装置的触控线性度和报点率。
本发明实施例提供的一种触控电极结构, 包括多个电极组和多个用于连 接触控电路的电极引脚, 包括多个电极组和多个用于连接触控电路的电极引 脚, 其中, 每一电极组包括两个同层设置的相互绝缘且交错互补的电极, 每 一电极包括至少两个子电极, 每一电极的子电极相互电性连接, 且每一电极 组中不同电极的子电极——间隔排列。
在实际的实施过程中,例如,两个子电极可以是形状相同的两个子电极, 这样有利于计算触摸区域的坐标。
举例来说, 子电极的形状为三角形。 以现有技术中的三角形电极为例, 本发明实施例中将现有技术中三角形电极做等分, 等分的份数根据触控精度 的需要而定, 为两个或者更多个三角形。 例如, 将现有技术中各引脚间距为 6mm的三角形电极等分为两个小三角形子电极,这样每个三角形子电极的最 大触控区域为 3mm,如此在触控宽度为 5mm的测试时, 能保证准确的报点。
举例来说, 子电极的形状为直角三角形。
举例来说, 电极、 电极引脚和标记引脚可以位于同一层。 电极、 电极引 脚和标记引脚同层制作能够筒化工序。
举例来说, 触控电极的材料为透明导电材料或金属材料。 例如, 用于触 控显示的触控电极结构一般设置在 LCD 的出光侧, 因此为了保证显示的效 果, 触控电极的材料选用透明导电材料。
下面结合附图和优选实施例, 对本发明提供的触控电极结构进行说明。 如图 4所示, 本发明实施例提供的一种触控电极结构, 包括多个电极组 51和多个用于连接触控电路的电极引脚 52, 其中, 每一电极组 51包括两个 相互绝缘且交错互补的电极 511 , 每一电极包括子电极 5111和子电极 5112, 每一电极的子电极 5111和子电极 5112相互电性连接,且每一电极组 51中不 同电极 511的子电极——间隔排列; 每一电极 511连接一电极引脚 52。 的间距为 6mm, 每一子电极的最大触摸区域为 3mm, 在触控宽度为 5mm的 测试中, 或者用小拇指尖测试的情况下, 能够实现准确的 点。 例如, 如图
5所示, 不论对于 Al、 A2或 A3任一触控区域, 均能保证触控区域至少能够 覆盖到两个电极, 因此不会出现仅触摸到一个电极的情况, 从而能够准确的 报点, 提高了报点率及触摸线性度。
图 6为触控位置的坐标 A的触控示意图。当触摸物体与触控基板接触时, 会产生如图 6所示的与各电极的自感电容 Cl、 C2、 C3, Cl、 C2、 C3分别 对应第一通道、 第二通道、 第三通道。 以 Cl=10, C2=30, C3=20为例, A点 的坐标计算结果为 X=(10 1+30 2+20 3)/(10+30+20)=2.167,Υ=30/( 10+20 ) =1 , 因此 Α点的坐标为 (2.167,1 ), 公式中 1、 2、 3分别为第一通道、 第二 通道、 第三通道的通道值; 然后再在触控电路里将获得的上述 A点的物理坐 标与 LCD的分辨率做映射即可得到 A点在 LCD上的坐标位置。 其中, 需要 说明的是, 将获得的上述 A点的物理坐标与 LCD的分辨率做映射以获得 A 点在 LCD上的坐标位置, 这一过程与现有技术相同, 在此不再赘述。
针对上述本发明实施例提供的触控电极结构, 本发明实施例提供的一种 触控电极结构的制作方法, 包括:
通过一次构图工艺形成多个电极组和多个用于连接触控电路的电极引脚 以, 其中, 每一电极组包括两个同层设置的相互绝缘且交错互补的电极, 每 一电极包括至少两个子电极, 且每一电极的子电极相互电性连接, 且每一电 极组中不同电极的子电极——间隔排列; 每一电极连接一电极引脚。
下面对本发明实施例提供的一种电容式触控装置进行说明。
本发明实施例提供的一种电容式触控装置, 包括上述的触摸电极结构。 其中, 电容式触摸装置可以是触摸键盘、 触摸显示装置等, 所有可能的电容 式触控装置均落在本发明保护的范围内。
下面, 对本发明实施例提供的触摸显示装置进行说明。
本发明实施例提供的一种触摸显示装置, 包括触控层和显示面板, 该触 控层形成在显示面板上, 该触控层包括上述的触控电极结构。 其中, 显示面 板可以为薄膜晶体管 TFT显示面板、有机发光二极管 OLED显示面板等。在 此, 对显示面板的类型不做限定。
举例来说, 触控电极结构的材料为透明导电材料。
举例来说, 触摸显示装置还包括形成在触控层上的保护层, 以此来减少 外界的干扰。
举例来说, 触摸显示装置还包括形成在触控层和显示面板之间的静电保 护层, 以此来减少静电对显示面板内部结构的破坏。 在实际的实施过程中, 静电保护层与触控层之间可以是绝缘的。
举例来说, 显示面板还包括彩膜基板和触控电路板, 彩膜基板上形成有 黑矩阵, 黑矩阵上设置有用于将电极引脚与触控电路板连接的对位标记; 触 控电极结构上设置有至少两个标记引脚, 标记弓 I脚分布在所有电极引脚的两 侧。
举例来说, 对位标记是位于黑矩阵层的镂空图形, 且镂空图形与标记引 脚的图形相同。
举例来说, 触控电路板上设置有多个电路引脚, 触控层通过电路引脚和 电极引脚与触控电路板电连接, 触控电极结构还包括与电极引脚同层设置的 多个检测用电极引脚, 触控电路板上还设置有检测用电路引脚, 触控电路板 和触控层之间设置有导电膜, 检测用电极引脚和检测用电路引脚用于监测导 电膜。
检测用电极引脚对称设置在所有用于连接触控电路的电极引脚的边缘, 检测用电路引脚与检测用电极引脚——对应, 且距离与用于连接触控电路的 电极引脚——对应的电路引脚最近的一半数量的检测用电路引脚的表面没有 镀铜。
举例来说, 检测用电极引脚和检测用电路引脚的数量至少为 4个。
下面结合优选实施例对本发明提供的触摸显示装置进行说明。 本优选实 施例以触控电极结构的材料以选用透明导电材料为例进行说明, 且显示面板 以 TFT显示面板为例进行说明, 但不用来限制本发明。
如图 7所示, 本发明实施例提供的一种触摸显示装置, 包括阵列基板 1、 彩膜基板 2、位于阵列基板 1和彩膜基板 2之间的液晶层 3以及触控电路板 4 , 还包括: 形成在彩膜基板 2出光侧的触控层 5, 和形成在触控层 5之上的保 护层 6。 其中, 触控层 5的结构为图 6所示的触控电极结构, 且触控电极的 材料为透明导电材料, 如透明导电氧化物薄膜 ITO。
本发明实施例中, 将触控电极结构直接制作在彩膜基板的出光侧, 使得 触控电极结构不仅可以实现触控的作用,同时还可以起到静电释放层的作用, 因此筒化了结构, 使得触控屏的厚度更薄。
更详细的, 如图 8所示, 图 6所示的触控电极结构直接形成在彩膜基板 2的出光侧, 且电极组 51形成在触控区域 20内, 电极引脚形成在非触控区 域。 同时, 沿图 8中 B-B, 方向进行剖面, 即可得到图 7所示的触摸显示装 置的结构。
举例来说, 彩膜基板上形成有黑矩阵, 黑矩阵上设置有用于将电极引脚 与触控电路板连接的对位标记; 触控电极结构上设置有至少两个标记引脚, 该标记引脚分布在所有电极引脚的两侧。
举例来说, 对位标记是位于黑矩阵层的镂空图形, 且镂空图形与标记引 脚的图形相同。
在实际的实施过程中, 例如, 如图 9所示, 触控电极结构上设置有至少 两个标记引脚 53 , 该标记引脚分布在所有电极引脚 52的两侧; 彩膜基板上 的黑矩阵 21上设置有用于将电极引脚 52与触控电路连接的对位标记 22,且 对位标记 22在黑矩阵上的位置与标记引脚的位置相对应, 同时对位标记 22 是位于黑矩阵层的镂空图形, 镂空的图形与标记引脚的图形相同。 在此需要 说明的是, 柔性线路板与玻璃电路板接装 ( Flexible printed circuits board On Glass, FOG )生产工艺是通过各向异性导电膜(ACF, Anisotropic Conductive Film )粘合, 并在一定的温度、 压力和时间下热压而实现液晶玻璃与柔性线 路板机械连接和电气导通的一种加工方式, 一般包括 ACF预贴、预绑定、主 绑定和检测四个过程。 本发明实施例中, 将触控电极结构直接制作在彩膜基 板的出光侧, 而由于触控电极结构的材料为透明导电材料, 使得触控电极结 构在反射光下只能轻微可见, 导致透明导电材料的触控电极结构在做 FOG 的预绑定的对位时非常困难。 因此本发明实施例提供的方法, 将黑矩阵的图 形重新设计, 如此, 在 FOG预绑定时, 即可通过黑矩阵上的对位标记 22图 形, 实现触控电极引脚与触控电路板上的连接对位, 提高对位的准确度。 另 夕卜, 需要说明的是, 对位标记的图形并不限于与标记引脚的图形相同。
举例来说, 触控电路板上设置有多个电路引脚, 触控层通过电路引脚和 电极引脚与触控电路板电连接, 触控电极结构还包括与电极引脚同层设置的 多个检测用电极引脚, 触控电路板上还设置有检测用电路引脚, 触控电路板 和触控层之间设置有导电膜, 检测用电极引脚和检测用电路引脚用于监测导 电膜。
举例来说, 检测用电极引脚和检测用电路引脚的数量至少为 4个。
在实际的实施过程中,如图 10所示,触控电路板 4上设置有多个电路引 脚 40, 触控层 5通过电路引脚 40和电极引脚 52与触控电路板 4电连接, 触 控电极结构还包括与电极引脚同层设置的多个检测用电极引脚 54,触控电路 板上还设置有检测用电路引脚 41和检测用电路引脚 42; 触控电路板和触控 层之间设置有导电膜,例如 ACF粒子,检测用电极引脚和检测用电路引脚用 于监测导电膜。
其中,检测用电极引脚 54对称设置在所有用于连接触控电路的电极引脚 52的边缘, 检测用电路引脚与检测用电极引脚对应, 且其中检测用电路引脚 42的表面没有镀铜, 例如, 检测用电路引脚 42在触摸电路板上对称设置, 如在触摸电路板的边缘对称设置。 在此, 需要说明的是, 由于电极引脚的位 置位于非触控区域, 因此对于所有电极引脚中位于中间区域的电极引脚, 其 对应的黑矩阵没有镂空, 因此对于所有电极引脚中位于中间区域的电极引脚 由于黑矩阵的遮挡是不透光的,所以实现导电膜中 ACF粒子的检测是非常困 难的。 而通过本实施例提供的技术方案, 通过增加检测用电极引脚和检测用 电路引脚, 同时在检测用电路引脚上不进行镀铜处理, 以提高该检测用电路 引脚对应区域的透光率, 这样在做 FOG 工艺时, 即可通过该检测用电极引 脚区域监测 ACF粒子的爆破状态, 从而检测出 FOG的贴合良率。
举例来说, 所有检测用电极引脚与用于连接触控电路的电极引脚形状相 同。 如此, 在制作工艺上更容易实现。
检测用电极引脚的数量可以至少为 4个,例如,如图 10所示的 4个检测 用电极引脚和 4个检测用电路引脚的情况。
本发明实施例提供的上述触摸显示装置, 在制作过程中, 通过将触控电 极结构直接制作在彩膜基板的出光侧, 同时实现了触控和静电释放的功能, 且由于采用了本发明实施例提供的触控电极结构, 其触控的报点率和线性度 均得到提高。 同时, 相对于传统工艺, 本发明实施例提供的工艺方法, 能够 实现 LCD的双面减薄, 即制作完 LCD之后, 先对 LCD的上下两面进行减 薄工艺,减薄后将触控电极结构通过一次构图工艺形成在彩膜基板的出光侧, 再进行 FOG工艺, 最后与保护层贴合, 至此完成触摸显示装置的制作。 相 对于传统工艺, 其平整度更好, 且其贴合的良率更高。
当然,本发明实施例提供的触控电极结构还适用于传统的触摸显示装置, 即在上述彩膜基板和上述触控层之间设置有静电保护层。 如此, 参照图 11 , 本发明实施例提供的另一种触摸显示装置, 包括阵列基板 V、 彩膜基板 2'、 位于阵列基板和彩膜基板之间的液晶层 y 以及设置有触控电路的触控电路 板 4' ,还包括: 形成在彩膜基板出光侧的静电保护层 5'、形成在静电保护层 之上的触控层 6' , 和形成在触控层之上的保护层 7' , 其中,触控层包括基板 和形成在基板上的上述触控电极结构。
在实际的实施过程中, 参见图 11所示的结构, 在触控基板 6' 中, 触控 电极结构为本发明实施例提供的如图 4所示的触控电极结构。 需要说明是, 图 11所示的结构为传统的触摸显示装置的剖面结构,显然本发明实施例提供 的触控电极结构同样可以应用于传统的触摸显示装置的结构中。
综上所述, 本发明实施例提供了一种触控电极结构及其制作方法、 电容 式触控装置和触摸显示装置。 本发明实施例提供的触控电极结构, 包括多个 电极组和多个用于连接触控电路的电极引脚, 其中, 每一电极组包括两个相 互绝缘且交错互补的电极, 每一电极包括至少两个子电极, 且每一电极的子 电极相互电性连接, 且每一电极组中不同电极的子电极——间隔排列; 每一 电极连接一电极引脚; 每一电极连接一电极引脚。 该触控电极结构在不增加 引脚、 不改变现有技术中引脚间距的情况下, 扩大了触控涉及的电极区域, 应用在电容式触控装置上时,保证了准确的报点,提高了触控线性度。 同时, 相对于传统工艺, 本发明实施例提供的工艺方法, 能够实现 LCD 的双面减 薄, 减薄后再进行 FOG工艺, 最后与保护层贴合, 完成触摸显示装置的制 作, 且在 FOG工艺中, 在没有增加工序的情况下使得对位更准确。 相对于 传统的组装完背光的 LCD显示模组, 其平整度更好, 且其贴合的良率更高。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或 计算机程序产品。 因此, 本发明可被实施为硬件、 软件、 或软件和硬件的结 合。 而且, 本发明可实施为一个或多个其中包含有计算机可用程序代码的计 算机可用存储介质 (包括但不限于磁盘存储器和光学存储器等)上实施的计 算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 设备 (系统)和计算机程序产 品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图 和 /或方框图中的每一流程和 /或方框, 以及流程图和 /或方框图中的流程 和 /或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器, 使得通 过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流 程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个流程或 多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的步 骤。
以上所述, 仅为本发明的示范性实施方式, 但本发明的保护范围并不局 限于此, 本领域的技术人员可以轻易想到的对本发明实施例的各种改动和变 型, 都应涵盖在本发明的保护范围之内。 本发明的保护范围由所附的权利要 求确定。

Claims

权利要求书
1. 一种触控电极结构, 包括多个电极组和多个用于连接触控电路的电 极引脚, 其中,
每一所述电极组包括两个同层设置的相互绝缘且交错互补的电极, 每一 所述电极包括至少两个子电极, 且每一电极的子电极相互电性连接, 且每一 电极组中不同电极的子电极——间隔排列; 每一电极连接一电极引脚。
2. 根据权利要求 1 所述的触控电极结构, 其中, 所述子电极的形状为 三角形。
3. 根据权利要求 1或 2所述的触控电极结构, 其中, 所述子电极的形 状为直角三角形。
4. 根据权利要求 1-3中任一项所述的触控电极结构, 其中, 所述电极、 电极引脚和标记弓 I脚位于同一层。
5. 根据权利要求 1-4中任一项所述的触控电极结构,其中,所述触控电 极结构的材料为透明导电材料或金属材料。
6. 一种电容式触控装置,其包括如权利要求 1-5中任一项所述的触控电 极结构。
7. 一种触摸显示装置, 包括触控层和显示面板, 所述触控层形成在所 述显示面板上, 所述触控层包括如权利要求 1-4任一所述的触控电极结构。
8. 根据权利要求 7所述的触摸显示装置, 其中, 所述触控电极结构的 材料为透明导电材料。
9. 根据权利要求 7或 8所述的触摸显示装置, 还包括形成在所述触控 层上的保护层。
10.根据权利要求 7-9 中任一项所述的触摸显示装置, 还包括形成在所 述触控层和显示面板之间的静电保护层。
11.根据权利要求 8-10中任一项所述的触摸显示装置, 其中, 所述显示 面板还包括彩膜基板和触控电路板, 所述彩膜基板上形成有黑矩阵, 所述黑 矩阵上设置有用于将电极引脚与触控电路板连接的对位标记, 所述触控电极 结构上设置有至少两个标记引脚, 并且所述标记弓 I脚分布在所有电极引脚的 两侧。
12.根据权利要求 11所述的触摸显示装置, 其中, 所述对位标记是位于 黑矩阵层的镂空图形, 且镂空图形与所述标记引脚的图形相同。
13.根据权利要求 8-12中任一项所述的触摸显示装置, 其中, 所述触控 电路板上设置有多个电路引脚, 所述触控层通过所述电路引脚和所述电极引 脚与所述触控电路板电连接, 所述触控电极结构还包括与电极引脚同层设置 的多个检测用电极引脚, 所述触控电路板上还设置有检测用电路引脚, 所述 触控电路板和所述触控层之间设置有导电膜, 所述检测用电极引脚和所述检 测用电路引脚用于监测导电膜。
14.根据权利要求 13所述的触摸显示装置, 其中, 所述检测用电极引脚 和所述检测用电路引脚的数量至少为 4个。
15. 一种触控电极结构的制作方法, 包括:
通过一次构图工艺形成多个电极组和多个用于连接触控电路的电极引脚 以, 其中,
每一所述电极组包括两个同层设置的相互绝缘且交错互补的电极, 每一 所述电极包括至少两个子电极, 且每一电极的子电极相互电性连接, 且每一 电极组中不同电极的子电极——间隔排列, 每一电极连接一电极引脚。
PCT/CN2013/088825 2013-05-02 2013-12-07 触控电极及制作方法、电容式触控装置和触摸显示装置 WO2014176902A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/358,477 US9684401B2 (en) 2013-05-02 2013-12-07 Touch electrode and fabricating method thereof, capacitive touch device and touch dislay device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310157852.7A CN103268179B (zh) 2013-05-02 2013-05-02 触控电极及制作方法、电容式触控装置和触摸显示装置
CN201310157852.7 2013-05-02

Publications (1)

Publication Number Publication Date
WO2014176902A1 true WO2014176902A1 (zh) 2014-11-06

Family

ID=49011814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088825 WO2014176902A1 (zh) 2013-05-02 2013-12-07 触控电极及制作方法、电容式触控装置和触摸显示装置

Country Status (3)

Country Link
US (1) US9684401B2 (zh)
CN (1) CN103268179B (zh)
WO (1) WO2014176902A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103234153B (zh) * 2013-04-28 2015-11-18 京东方科技集团股份有限公司 一种直下式背光源及液晶显示装置
CN103268179B (zh) * 2013-05-02 2016-05-25 京东方科技集团股份有限公司 触控电极及制作方法、电容式触控装置和触摸显示装置
CN103677431A (zh) * 2013-12-31 2014-03-26 京东方科技集团股份有限公司 一种触摸屏及其制作方法、显示装置
CN103970392B (zh) * 2014-04-18 2019-10-01 京东方科技集团股份有限公司 一种触摸屏及显示装置
WO2016201879A1 (zh) * 2015-06-15 2016-12-22 京东方科技集团股份有限公司 电路板、电路板组件和液晶显示装置
CN204669721U (zh) 2015-06-15 2015-09-23 京东方科技集团股份有限公司 电路板和液晶显示装置
CN105278748A (zh) * 2015-10-19 2016-01-27 京东方科技集团股份有限公司 一种oled基板、显示装置、可穿戴设备、驱动方法以及补偿电路
US10691245B2 (en) 2016-06-22 2020-06-23 Samsung Display Co., Ltd. Touch sensor
CN206147560U (zh) * 2016-08-19 2017-05-03 合肥鑫晟光电科技有限公司 一种触控基板和触控显示装置
KR102633061B1 (ko) 2016-09-23 2024-02-06 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
CN110275647B (zh) 2018-03-13 2021-01-12 京东方科技集团股份有限公司 触控结构及其制作方法、触控装置和触摸定位方法
CN108388384A (zh) * 2018-04-24 2018-08-10 北京硬壳科技有限公司 一种电容式触控面板、触控装置及触控方法
CN109920342A (zh) * 2019-01-31 2019-06-21 绍兴光彩显示技术有限公司 一种触摸感应数码管
CN109976585B (zh) * 2019-03-28 2022-07-12 合肥鑫晟光电科技有限公司 电路板、触控显示装置
CN111857395A (zh) * 2019-04-30 2020-10-30 群创光电股份有限公司 触控显示设备
CN110416264B (zh) * 2019-07-22 2022-03-01 武汉华星光电半导体显示技术有限公司 显示装置的绑定方法及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830877A (zh) * 2012-08-15 2012-12-19 敦泰科技有限公司 一种单导电层触摸屏多点定位方法和装置
CN102855043A (zh) * 2012-08-31 2013-01-02 敦泰科技有限公司 一种单导电层多点识别电容屏
CN202815799U (zh) * 2012-08-31 2013-03-20 敦泰科技有限公司 一种单导电层多点识别电容屏
CN103268179A (zh) * 2013-05-02 2013-08-28 京东方科技集团股份有限公司 触控电极及制作方法、电容式触控装置和触摸显示装置
CN203224862U (zh) * 2013-05-02 2013-10-02 京东方科技集团股份有限公司 触控电极结构、电容式触控装置和触摸显示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769767B2 (ja) * 1991-10-16 1995-07-31 インターナショナル・ビジネス・マシーンズ・コーポレイション フィンガ・タッチまたはスタイラスの位置を検出するためのタッチ・オーバーレイ、および検出システム
CN101398539B (zh) * 2007-09-28 2010-09-29 群康科技(深圳)有限公司 显示模组
KR101055049B1 (ko) * 2009-01-19 2011-08-05 엘지이노텍 주식회사 입력장치
TWI395006B (zh) * 2009-09-09 2013-05-01 Au Optronics Corp 觸控顯示面板
CN101661358B (zh) * 2009-09-15 2012-09-05 友达光电股份有限公司 电子装置
JP5173079B2 (ja) * 2010-02-23 2013-03-27 シャープ株式会社 表示装置
KR101314779B1 (ko) * 2010-08-18 2013-10-08 엘지디스플레이 주식회사 정전용량 방식 터치 스크린 패널 및 그 제조방법
CN102033672A (zh) * 2010-10-13 2011-04-27 深圳欧菲光科技股份有限公司 单层电极的电容式触摸屏
US20120105133A1 (en) * 2010-10-29 2012-05-03 Young Wook Kim Input device
TWI537778B (zh) * 2011-04-06 2016-06-11 Sitronix Technology Corp Touch panel sensing structure
CN202159324U (zh) * 2011-07-08 2012-03-07 华映视讯(吴江)有限公司 触控面板
CN102902390B (zh) * 2011-07-26 2015-07-15 瀚宇彩晶股份有限公司 触控面板
TWI476459B (zh) * 2012-05-03 2015-03-11 Innocom Tech Shenzhen Co Ltd 彩色濾光片基板,及觸控顯示裝置
CN102707514B (zh) * 2012-05-03 2014-03-26 北京京东方光电科技有限公司 一种3d触控液晶透镜光栅、显示装置及其制造方法
TWI478030B (zh) * 2012-06-21 2015-03-21 Au Optronics Corp 內嵌式觸控顯示面板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830877A (zh) * 2012-08-15 2012-12-19 敦泰科技有限公司 一种单导电层触摸屏多点定位方法和装置
CN102855043A (zh) * 2012-08-31 2013-01-02 敦泰科技有限公司 一种单导电层多点识别电容屏
CN202815799U (zh) * 2012-08-31 2013-03-20 敦泰科技有限公司 一种单导电层多点识别电容屏
CN103268179A (zh) * 2013-05-02 2013-08-28 京东方科技集团股份有限公司 触控电极及制作方法、电容式触控装置和触摸显示装置
CN203224862U (zh) * 2013-05-02 2013-10-02 京东方科技集团股份有限公司 触控电极结构、电容式触控装置和触摸显示装置

Also Published As

Publication number Publication date
US20150193064A1 (en) 2015-07-09
CN103268179A (zh) 2013-08-28
CN103268179B (zh) 2016-05-25
US9684401B2 (en) 2017-06-20

Similar Documents

Publication Publication Date Title
WO2014176902A1 (zh) 触控电极及制作方法、电容式触控装置和触摸显示装置
US9927832B2 (en) Input device having a reduced border region
KR101331964B1 (ko) 접촉 감지 장치 및 접촉 감지 장치 제조 방법
KR20120109191A (ko) 터치센서 내장형 액정표시장치 및 그 제조방법
US20140347319A1 (en) Touch panel
TWI400519B (zh) 觸控面板及具備觸控面板之電子機器
US9671638B2 (en) High-accuracy in-cell touch panel structure of narrow border
KR20120121705A (ko) 인셀 터치 패널
KR20140004100A (ko) 3d 터치 제어 액정 렌즈 격자, 그 제조 방법, 및 3d 터치 제어 디스플레이 장치
KR20120000565A (ko) 정전용량형 터치 장치와 결합된 액정 표시 장치
JP6233075B2 (ja) タッチパネルセンサおよびタッチパネルセンサを備える入出力装置
US9250492B2 (en) In-cell touch panel structure of narrow border
US9665196B2 (en) Touch sensor-integrated type display device
JP5827972B2 (ja) タッチセンサ一体型表示装置
WO2011001561A1 (ja) タッチパネル装置及びその製造方法、並びに表示装置及びその製造方法
US9753572B2 (en) Touch panel, method of fabricating the same and touch display device
TWM526720U (zh) 壓力感測輸入裝置
US20170277304A1 (en) Pressure Detection Device, Grating, Display Device and Display Method Thereof
CN203224862U (zh) 触控电极结构、电容式触控装置和触摸显示装置
JP2011081524A (ja) 表示装置
JP2019527860A (ja) タッチ基板、タッチパネル及びタッチパネルを有するタッチ装置、並びにタッチパネルの製造方法
JP6568537B2 (ja) 静電容量式タッチパネル
JP6612123B2 (ja) 静電容量式入力装置
KR20140131128A (ko) 터치 스크린 패널의 제조 방법
TW202131149A (zh) 觸控面板、其製備方法及觸控顯示裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14358477

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.03.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13883589

Country of ref document: EP

Kind code of ref document: A1