WO2016051060A1 - Produit corroye en alliage aluminium magnesium lithium - Google Patents

Produit corroye en alliage aluminium magnesium lithium Download PDF

Info

Publication number
WO2016051060A1
WO2016051060A1 PCT/FR2015/052580 FR2015052580W WO2016051060A1 WO 2016051060 A1 WO2016051060 A1 WO 2016051060A1 FR 2015052580 W FR2015052580 W FR 2015052580W WO 2016051060 A1 WO2016051060 A1 WO 2016051060A1
Authority
WO
WIPO (PCT)
Prior art keywords
product
weight
wrought
content
deformed
Prior art date
Application number
PCT/FR2015/052580
Other languages
English (en)
Inventor
Gaëlle POUGET
Bernard Bes
Original Assignee
Constellium Issoire
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1402186A external-priority patent/FR3026411B1/fr
Priority claimed from FR1402187A external-priority patent/FR3026410B1/fr
Application filed by Constellium Issoire filed Critical Constellium Issoire
Priority to EP15785159.3A priority Critical patent/EP3201370B1/fr
Priority to JP2017535970A priority patent/JP2017532456A/ja
Priority to BR112017006131A priority patent/BR112017006131A2/pt
Priority to US15/514,398 priority patent/US20170292180A1/en
Priority to CA2960942A priority patent/CA2960942A1/fr
Priority to CN201580052806.8A priority patent/CN106715735A/zh
Priority to KR1020177011944A priority patent/KR20170067810A/ko
Publication of WO2016051060A1 publication Critical patent/WO2016051060A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor

Definitions

  • the invention relates to wrought products of aluminum-magnesium-lithium alloy, more particularly to such products with improved property compromise, in particular an improved compromise between yield strength and toughness of said products.
  • the invention also relates to a manufacturing process and the use of these products intended in particular for aeronautical and aerospace construction.
  • Aluminum alloys containing lithium are very interesting in this respect, since lithium can reduce the density of aluminum by 3% and increase the modulus of elasticity by 6% for each weight percent of lithium added.
  • aluminum alloys containing magnesium and lithium simultaneously make it possible to reach particularly low densities and have therefore been extensively studied.
  • GB 1, 172,736 teaches an alloy containing 4 to 7% by weight Mg, 1.5 - 2.6% Li, 0.2 - 1% Mn and / or 0.05 - 0.3% Zr, remains aluminum , useful for producing products with high mechanical strength, good corrosion resistance, low density and high modulus of elasticity. Said products are obtained by a process comprising an optional quenching and then an income.
  • the products resulting from the process according to GB 1, 172,736 exhibit a breaking strength ranging from approximately 440 MPa to approximately 490 MPa, a tensile yield strength ranging from approximately 270 MPa to approximately 340 MPa and an elongation at break of about 5-8%.
  • the international application WO 92/03583 describes a useful alloy for aeronautical structures having a low density and of general formula Mg a LibZn c AgdAlbai, in which a is between 0.5 and 10%, b is between 0.5 and 3%, c is between 0.1 and 5%, d is between 0.1 and 2% and bal indicates that the balance is aluminum.
  • This document also discloses a process for obtaining said alloy comprising the steps of: a) casting an ingot of composition described above, b) removing the residual stresses of said ingot by heat treatment, c) homogenizing by heating and maintaining temperature then cool the ingot, d) hot rolling said ingot to its final thickness, e) dissolve and then soaking the product thus laminated, f) pull the product and g) achieve a revenue of said product by heating and maintaining temperature .
  • No. 5,431,876 teaches a ternary alloy group of lithium aluminum and magnesium or copper, including at least one additive such as zirconium, chromium and / or manganese.
  • the alloy is prepared according to methods known to those skilled in the art including, by way of example, extrusion, dissolution, quenching, traction of the product of 2 to 7% and then income.
  • US Pat. No. 6,551,424 discloses a process for producing aluminum-magnesium-lithium alloy rolled products of composition (in% by weight) Mg: 3.0 - 6.0; Li: 0.4 -
  • No. 6,461,566 discloses an alloy of composition (in% by weight) Li: 1.5 - 1.9; Mg:
  • the patent application WO 2012/16072 describes a wrought product made of aluminum alloy of composition in% by weight, Mg: 4.0 - 5.0; Li: 1.0 - 1.6; Zr: 0.05-0.15; Ti: 0.01-0.15; Fe: 0.02 - 0.2; Si: 0.02 - 0.2; Mn: ⁇ 0.5; Cr ⁇ 0.5; Ag: ⁇ 0.5; Cu ⁇ 0.5; Zn ⁇ 0.5; Se ⁇ 0.01; other elements ⁇ 0.05; remains aluminum.
  • Said product is in particular obtained according to a manufacturing process comprising in particular successively the casting of the alloy in raw form, its hot deformation and optionally cold, the setting solution and the quenching of the product thus deformed, optionally the cold deformation of the product thus put in solution and quenched and finally the income of the wrought product at a temperature below 150 ° C.
  • the metallurgical state obtained for the rolled products is advantageously a T6 or T6X or T8 or T8X state and for the advantageously spun products a T5 or T5X state in the case of quenching on a press or a T6 or T6X or T8 or T8X state.
  • Wrought products made of aluminum-magnesium-lithium alloy have a low density and are therefore particularly interesting in the extremely demanding field of aeronautics.
  • their performance must be significantly improved compared to that of existing products, in particular their performance in terms of a compromise between the static mechanical strength properties (in particular tensile yield strength limit and in compression, breaking strength) and the properties of damage tolerance (toughness, resistance to the propagation of fatigue cracks), these properties being in general antinomic.
  • These alloys must also have sufficient corrosion resistance, be able to be shaped according to the usual processes and have low residual stresses so that they can be machined without substantial distortion during said machining.
  • a first object of the invention is a wrought product of aluminum alloy composition, in% by weight, Mg: 4.0 - 5.0; Li: 1.0 - 1.8; Mn: 0.3 - 0.5; Zr: 0.05-0.15; Ag: ⁇ 0.5; Fe: ⁇ 0.1; Ti: ⁇ 0.15; If: ⁇ 0.05; other elements ⁇ 0.05 each and ⁇ 0.15 in combination; remains aluminum.
  • the subject of the invention is also a process for manufacturing said wrought product in which:
  • Mw 4.0-5.0; Li: 1.0 -1.8; Mn: 0.3 - 0.5; Zr: 0.05-0.15; Ag: ⁇ 0.5; Fe: ⁇ 0.1; Ti: ⁇ 0.15; If: ⁇ 0.05; other elements ⁇ 0.05 each and ⁇ 0.15 in combination; remains aluminum;
  • said hot-deformed product is dissolved at a temperature of 360 ° C to 460 ° C, preferably 380 ° C to 420 ° C, for 15 minutes to 8 hours;
  • the deformed and quenched product is deformed in a controlled manner to obtain a cold permanent deformation of 1 to 10%, preferably of 2 to 6%, more preferably of 3 to 5% and more preferably still 4 to 5%;
  • the invention also relates to the use of said wrought product to produce an aircraft structural element.
  • Figure 1 Frame for fuselage frame of Example 1
  • Figure 2 Yield strength, Rp0,2, as a function of toughness, KQ * for a flat bar 10 mm thick (* all values of KQ are invalid due to criterion P max / PQ ⁇ 1, 10 of ASTM E399)
  • Figure 3 Yield strength, Rp0,2, as a function of the stress intensity factor corresponding to the maximum force, K max (evaluated according to ASTM E399) for a 10 mm thick flat bar
  • the static mechanical characteristics in tension in other words the tensile strength R m , the conventional yield stress at 0.2% elongation R P o, 2, and the elongation at break A%, are determined by a tensile test according to standard NF EN ISO 6892-1, the sampling and the direction of the test being defined by the EN 485-1 standard.
  • Increasing the stresses on the product during the Klc toughness test according to ASTM E399 may be indicative of the propensity of the product for delamination.
  • the term "delamination”("crackdelamination” and / or "crack divider” in English) means cracking in orthogonal planes at the front of the main crack. The orientation of these plans corresponds to that of non-recrystallized grain boundaries after deformation.
  • a low roll-out is a sign of less fragile planes involved and minimizes the risk of crack deviation towards the longitudinal direction during a propagation in fatigue or under monotonous stress.
  • EN 12258 Unless otherwise specified, the definitions of EN 12258 apply.
  • structural element or “structural element” of a mechanical construction a mechanical part for which the static and / or dynamic mechanical properties are particularly important for the performance of the structure and for which a structural calculation is usually prescribed or performed.
  • These are typically elements whose failure is likely to endanger the safety of said construction, its users, its users or others.
  • these structural elements include the elements that make up the fuselage (such as fuselage skin, (skin fuselage), stiffeners or fuselage stringers, bulkheads, frames circumferential frames, wings (such as upper or lower wing skin), stiffeners, ribs, floor (fioor beams) and seat rails (seat tracks)) and the empennage composed in particular of horizontal and vertical stabilizers (horizontal or vertical vertical stabilizers), as well as the doors.
  • fuselage such as fuselage skin, (skin fuselage), stiffeners or fuselage stringers, bulkheads, frames circumferential frames, wings (such as upper or lower wing skin), stiffeners, ribs, floor (fioor beams) and seat rails (seat tracks)
  • empennage composed in particular of horizontal and vertical stabilizers (horizontal or vertical vertical stabilizers), as well as the doors.
  • the wrought aluminum alloy product according to the invention has the following particular composition, in% by weight: Mg: 4.0 - 5.0; Li: 1.0 - 1.8; Mn: 0.3 - 0.5; Zr: 0.05-0.15; Ag: ⁇ 0.5; Fe: ⁇ 0.1; Ti: ⁇ 0.15; If: ⁇ 0.05; other elements ⁇ 0.05 each and ⁇ 0.15 in combination; remains aluminum.
  • the aluminum alloy products having such a composition associated in particular with the particular Mn content selected have improved static mechanical properties and a low propensity for delamination.
  • the Mn content, in% by weight is 0.35 to 0.45, preferably 0.35 to 0.40.
  • the raw form of aluminum alloy has a silver content of less than or equal to 0.25% by weight, more preferably a silver content of 0.05% to 0.1% by weight.
  • This element contributes in particular to the static mechanical properties.
  • the shape Crude aluminum alloy has a total content of Ag and Cu less than 0.15% by weight, preferably less than or equal to 0.12%. The control of the maximum content of these two elements in combination makes it possible in particular to improve the resistance to intergranular corrosion of the wrought product.
  • the raw form has a zinc content, in% by weight, of less than 0.04%, preferably less than or equal to 0.03%.
  • a zinc content in% by weight, of less than 0.04%, preferably less than or equal to 0.03%.
  • the raw form of aluminum alloy has a Fe content, in% by weight, of less than 0.08%, preferentially less than or equal to 0.07%, more preferably still less than or equal to 0.06%.
  • a minimum Fe content, as well as possibly that of Si can contribute to improving the mechanical properties and in particular the fatigue properties of the alloy. Excellent results have in particular been obtained for an Fe content of 0.02 to 0.06% by weight and / or an Si content of 0.02 to 0.05% by weight.
  • the lithium content of the products according to the invention is between 1.0 and 1.8% by weight.
  • the raw form of aluminum alloy has a content of Li, in% by weight, of less than 1.6%, preferably less than or equal to 1.5%, preferably even less than or equal to 1 , 4%.
  • a minimum lithium content of 1.1% by weight and preferably 1.2% by weight is advantageous.
  • the present inventors have found that a limited lithium content, in the presence of certain addition elements, makes it possible to very significantly improve the toughness, which largely compensates for the slight increase in density and the decrease in the static mechanical properties.
  • the raw form of aluminum alloy has a Zr content, in% by weight, of 0.10 to 0.15%.
  • the inventors have indeed found that such a Zr content makes it possible to obtain an alloy having a favorable fiber structure for improved static mechanical properties.
  • the raw form of aluminum alloy has a Mg content, in% by weight, of 4.5 to 4.9%. Excellent results have been obtained for alloys according to this embodiment in particular as regards the static mechanical properties.
  • the Cr content of the products according to the invention is less than 0.05% by weight, preferably less than 0.01% by weight.
  • Such a limited Cr content in combination with the other elements of the alloy according to the invention makes it possible in particular to limit the formation of primary phases during casting.
  • the Ti content of the products according to the invention is less than 0.15% by weight, preferably between 0.01 and 0.05% by weight.
  • the Ti content is limited in the particular alloy of the present invention in particular to prevent the formation of primary phases during casting.
  • the products according to the invention have a maximum content of 10 ppm of
  • the raw form of aluminum alloy is substantially free of Se, Be, Y, more preferably said The raw form comprises less than 0.01% by weight of these elements taken in combination.
  • the raw form of aluminum alloy has a composition, in% by weight:
  • Mg 4.0 - 5.0, preferably 4.5 - 4.9;
  • Li 1, 1 -1.6, preferably 1, 2 - 1, 5;
  • Zr 0.05-0.15, preferentially 0.10-0.15;
  • Fe 0.02 - 0.1, preferably 0.02 - 0.06;
  • Mn 0.3 - 0.5; preferably from 0.35 to 0.45, preferentially from 0.35 to 0.40; Cr: ⁇ 0.05, preferentially ⁇ 0.01; Ag: ⁇ 0.5; preferentially ⁇ 0.25; more preferably still ⁇ 0.1;
  • the manufacturing process of the products according to the invention comprises the successive steps of producing a bath of liquid metal so as to obtain an Al-Mg-Li alloy of particular composition, casting said alloy in raw form, optionally the homogenization of said raw form thus cast, the hot deformation of said raw form to obtain a hot deformed product, optionally the separate solution of the product thus deformed hot, the quenching of said hot deformed product, optionally the dressing / planing of the deformed and tempered product, optionally the cold deformation in a controlled manner of the deformed product and quenched to obtain a permanent cold deformation of 1 to 10%, preferably 2 to 6%, more preferably 3 to 5%, the income of said product deformed and tempered.
  • the tempering step is performed before the cold deformation step in a controlled manner.
  • the manufacturing process therefore consists first of all in the casting of a crude form of Al-Mg-Li alloy of composition, in% by weight: Mg: 4.0 - 5.0; Li: 1.0 -1, 8; Mn: 0.3 - 0.5; Zr: 0.05-0.15; Ag: ⁇ 0.5; Fe: ⁇ 0.1; Ti: ⁇ 0.15; If: ⁇ 0.05; other elements ⁇ 0.05 each and ⁇ 0.15 in combination; remains aluminum.
  • a bath of liquid metal is made and then cast in raw form, typically a rolling plate, a spinning billet or a forging blank.
  • the manufacturing method optionally comprises a homogenization step of the raw form so as to reach a temperature of between 450 ° C. and 550 ° C. and, preferably, between 480 ° C. C and 520 ° C for a period of between 5 and 60 hours.
  • the homogenization treatment can be carried out in one or more stages.
  • the hot deformation is carried out directly after a simple reheating without performing homogenization.
  • the raw form is then hot deformed, typically by spinning, rolling and / or forging, to obtain a deformed product.
  • This hot deformation is preferably carried out at an inlet temperature above 400 ° C and advantageously from 420 ° C to 450 ° C.
  • the hot deformation is a spinning deformation of the raw form.
  • the hot-deformed and optionally cold-deformed product is optionally subjected to separate dissolution at a temperature of 360 ° C. to 460 ° C., preferably 380 ° C. to 420 ° C., for 15 minutes to 8 hours.
  • the deformed product and, optionally, dissolved solution is then quenched. Quenching is carried out with water and / or air. It is advantageous to perform quenching in the air because the intergranular corrosion properties are improved. In the case of a spun product, it is advantageous to carry out quenching on a press (or quenching on spinning heat), preferably quenching on an air press, such quenching in particular making it possible to improve the static mechanical properties . According to another embodiment, it may also be a quench on water press. In the case of quenching on a press, the product is dissolved in spinning heat.
  • the hot deformed product and hardened may optionally be subjected to a dressing step or planing according to whether it is a profile or a sheet.
  • dressing step or planing a cold deformation step without permanent deformation or with a permanent deformation less than 1%.
  • the hot-deformed, quenched and optionally raised / flat product is also cold-deformed in a controlled manner to obtain a permanent cold deformation of 1 to 10%, preferably of 2 to 6%, more preferably of 3 to 5%. %, and more preferably still 4 to 5%.
  • the permanent cold deformation is 2 to 4%.
  • the cold deformation can in particular be carried out by traction, compression and / or rolling. According to a preferred embodiment, the cold deformation is performed by traction.
  • the income is achieved by heating, in one or more steps, at a temperature below 150 ° C, preferably at a temperature of 70 ° C to 140 ° C for 5 to 100 hours.
  • the revenue step is performed after the cold deformation step in a controlled manner.
  • the metallurgical state obtained for the wrought products corresponds in particular to a T8 state according to the EN515 standard.
  • the tempering step is performed before the cold deformation step in a controlled manner.
  • the deformed hot and tempered product is then cold deformed in a controlled manner to obtain a permanent cold deformation of 1 to 10%, preferably of 2 to 6%, more preferably of 3 to 5%, and more preferably of 4 to 5%.
  • the permanent cold deformation is 2 to 4%.
  • the method of manufacturing a wrought product does not comprise any cold deformation step inducing a permanent deformation of at least 1% between the hot deformation step or, if this step is present, solution and the income stage.
  • the combination of the chosen composition, in particular the content of Mg, Li and Mn and of the transformation parameters, in particular the order of the steps of the manufacturing process, advantageously makes it possible to obtain wrought products having an improved property compromise. quite special, especially the compromise between mechanical resistance and damage tolerance, while having a low density and a good corrosion performance.
  • the wrought products according to the invention are preferably spun products such as profiles, rolled products such as sheets or thick plates and / or forged products.
  • the wrought products according to the invention have particularly advantageous characteristics in comparison with identical wrought products whose only difference is their Mn content, in particular a Mn content, in% by weight, less than 0.3% or greater than 0.5%.
  • identical wrought products is understood to mean aluminum alloy products of the same composition, in% by weight, with the exception of Mn, and obtained according to the same manufacturing process, in particular products wrought in the same metallurgical state. according to standard EN515 and having the same rate of deformation in tensile traction permanently obtained by traction in a controlled manner.
  • the wrought products according to the invention exhibit less delamination on the fracture surfaces of the Klc test pieces obtained according to the ASTM E399 standard than identical wrought products having, for their sole difference, their Mn content, in particular Mn content, in% by weight, less than 0.3% or greater than 0.5%.
  • the wrought products according to the invention have, at a thickness of between 0.5 and 15 mm, a breaking strength Rm (L) greater than that of products.
  • the wrought products according to the invention have, at mid-thickness, for a thickness of between 0.5 and 15 mm, a tensile yield strength Rp0.2 (L). greater than that of wrought products identical but having only difference their Mn content, in particular a Mn content, in% by weight, less than 0.3% or greater than 0.5%.
  • the products wrought in the T8 state, advantageously in the T8 state with a permanent cold deformation greater than 4%, according to the invention have, at mid-thickness, for a thickness between 0 , 5 and 15 mm, at least one property of static resistance among properties (i) to (iii) and at least one property of damage tolerance among properties (iv) to (v): (i) a breaking strength Rm (L)> 450 MPa, preferably Rm (L)> 455 MPa;
  • the products wrought in the T9 state, advantageously in the T9 state with a permanent cold deformation greater than 4%, according to the invention have, at mid-thickness, for a thickness of between 0.degree. , 5 and 15 mm, at least one property of static resistance among properties (i) to (iii) and at least one property of damage tolerance among properties (iv) to (v):
  • the wrought products in the T8 or T9 state previously mentioned have, for a thickness of between 0.5 and 15 mm, at mid-thickness at least two static strength properties chosen from among the properties ( i) to (iii) and at least one property of damage tolerance selected from properties (iv) to (v).
  • the spun products according to the invention have particularly advantageous characteristics.
  • the spun products preferably have a thickness of between 0.5 mm and 15 mm, but products with a thickness greater than 15 mm, up to 50 mm or even 100 mm or more may also have advantageous properties.
  • the thickness of the spun products is defined according to EN 2066: 2001: the cross section is divided into elementary rectangles of dimensions A and B; A being always the largest dimension of the elementary rectangle and B can be considered as the thickness of the elementary rectangle. The sole is the elementary rectangle with the largest dimension A.
  • the wrought products according to the invention are advantageously used to produce aircraft structural elements, in particular aircraft.
  • Preferred aircraft structural elements include fuselage skin, fuselage frame, stiffener or fuselage rail, or wing skin, sail stiffener, rib, or spar.
  • Alloy B has a composition according to the invention.
  • the density of alloys A and B calculated in accordance with the procedure of The Aluminum Association described on pages 2-12 and 2-13 of "Aluminum Standards and Data", is 2.55.
  • Billet diameters of 358 mm were made in the raw forms. They were heated to 430-440 ° C and then hot deformed by spinning on a press in the form of a fuselage frame profile as shown in Figure 1. The products thus spun were quenched in the air (quenching). on press). They then suffered:
  • T9 for products in final state T9: a bi-bearing income made for 30 hours at 120 ° C followed by 10 h at 100 ° C and then a controlled pull with permanent deformation of 3 or 5% (respectively T9-3% and T9 -5%).
  • a Mn content of the Al-Mg-Li alloy of approximately 0.4% by weight makes it possible to significantly improve the alloy strength (Rp0.2 and Rm), in particular the mechanical strength in the L direction, compared to that of an alloy having a Mn content of about 0.14% by weight (alloy A).
  • the best results are generally obtained when the controlled traction is performed after the income ⁇ 8 ⁇ T9).
  • Alloy B has a composition according to the invention.
  • Billet diameters of 358 mm were made in the raw forms. They were heated to 430-440 ° C and then hot deformed by spinning on a press in the form of a flat bar (100 mm x 10 mm). The products thus spun were quenched in the air (quenching on a press). They then suffered:
  • T9 for products in final state T9: a bi-bearing income made for 30 hours at 120 ° C followed by 10 h at 100 ° C and then a controlled pull with permanent deformation of 3 or 5% (respectively T9-3% and T9 -5%).
  • a Mn content of the Al-Mg-Li alloy of approximately 0.4% by weight makes it possible to significantly improve the alloy strength (Rp0.2 and Rm), in particular the mechanical strength in the L direction, compared to that of an alloy having a Mn content of about 0.14% by weight (alloy A).
  • the best results are usually obtained when the controlled pull is performed after the income (T8 ⁇ T9).
  • the values of KQ have always been invalid according to the ASTM E399 standard, in particular with respect to the criterion Pmax / PQ ⁇ 1, 10.
  • the results are presented in K max (stress intensity factor corresponding to the maximum force P m ax).
  • the results are reported in Tables 6 and 7 and illustrated in Figures 2 and 3 (LT and TL specimens respectively). These results are averages of at least two values.
  • FIG. 2 illustrates the yield strength, Rp0.2, of the products of the present example as a function of toughness, KQ (all KQ values are invalid due to the P MAX / PQ 1 1, 10 criterion).
  • FIG. 3 illustrates the elastic limit, Rp0.2, of the products of the present example as a function of the stress intensity factor corresponding to the maximum stress, K max .
  • T9 products have an excellent compromise between their static properties, in particular Rp0.2, and their toughness, KQ, OR their stress intensity factor corresponding to the maximum force, Kma X.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

L'invention concerne un produit corroyé en alliage d'aluminium de composition, en % en poids, Mg : 4,0 –5,0; Li : 1,0 –1,8; Mn : 0,3-0,5; Zr : 0,05 –0,15; Ag : ≤ 0,5; Fe: ≤ 0,1; Ti: <0,15; Si : ≤ 0,05; autres éléments ≤0,05 chacun et≤0,15 en association; reste aluminium. L'invention a encore pour objet un procédé de fabrication d'un tel produit corroyé dans lequel on coule une forme brute en alliage d'aluminium de composition, en % en poids: Mg : 4,0 –5,0; Li : 1,0 –1,8; Mn : 0,3 -0,5; Zr : 0,05 –0,15;Ag : ≤ 0,5;Fe: ≤ 0,1; Ti: <0,15; Si : ≤ 0,05;autres éléments ≤0,05 chacun et≤0,15 en association; reste aluminium; optionnellement, on homogénéise ladite forme brute;on déforme à chaud ladite forme brute pour obtenir un produit déformé à chaud; optionnellement, on met en solution ledit produit déformé à chaud à une température de 360°C à 460°C, préférentiellement de 380°C à 420°C pendant 15 minutes à 8 heures;on trempe ledit produit déformé à chaud; optionnellement, on effectue un dressage dudit produit déformé et trempé;optionnellement, on déforme à froid de façon contrôlée le produit déformé pour obtenir une déformation permanente à froid de 1 à 10 %, de préférence de 2 à 6%, plus préférentiellement encore de 3 à 5%;on réalise un revenu dudit produit déformé et trempé. Un autre objet encore de l'invention est l'utilisation dudit produit corroyé pour réaliser des éléments de structure d'aéronefs.

Description

Produit corroyé en alliage aluminium magnésium lithium
Domaine de l'invention
L'invention concerne des produits corroyés en alliage aluminium-magnésium-lithium, plus particulièrement de tels produits au compromis de propriétés amélioré, notamment un compromis amélioré entre limite d'élasticité en traction et ténacité desdits produits. L'invention a également pour objet un procédé de fabrication ainsi que l'utilisation de ces produits destinés en particulier à la construction aéronautique et aérospatiale.
Etat de la technique
Des produits corroyés en alliage d'aluminium sont développés pour produire des pièces de haute résistance destinées notamment à l'industrie aéronautique et à l'industrie aérospatiale. Les alliages d'aluminium contenant du lithium sont très intéressants à cet égard, car le lithium peut réduire la densité de l'aluminium de 3 % et augmenter le module d'élasticité de 6 % pour chaque pourcent en poids de lithium ajouté. En particulier, les alliages d'aluminium contenant simultanément du magnésium et du lithium permettent d'atteindre des densités particulièrement faibles et ont donc été extensivement étudiés.
Le brevet GB 1 ,172,736 enseigne un alliage contenant 4 à 7% en poids Mg, 1 ,5 - 2,6 % Li, 0,2 - 1% Mn et/ou 0,05 - 0,3 % Zr, reste aluminium, utile pour l'élaboration de produits présentant une résistance mécanique élevée, une bonne résistance à la corrosion, une faible densité et un module d'élasticité élevé. Lesdits produits sont obtenus par un procédé comprenant une trempe optionnelle puis d'un revenu. A titre d'exemple, les produits issus du procédé selon GB 1 ,172,736 présentent une résistance à la rupture allant d'environ 440MPa à environ 490 MPa, une limite d'élasticité en traction allant d'environ 270 MPa à environ 340 MPa et un allongement à la rupture de l'ordre de 5-8%. La demande internationale WO 92/03583 décrit un alliage utile pour les structures aéronautiques ayant une faible densité et de formule générale MgaLibZncAgdAlbai, dans lequel a est compris entre 0,5 et 10%, b est compris entre 0,5 et 3%, c est compris entre 0,1 et 5%, d est compris entre 0,1 et 2% et bal indique que le reste est de l'aluminium. Ce document divulgue également un procédé d'obtention dudit alliage comprenant les étapes : a) couler d'un lingot de composition ci-avant décrite, b) retirer les contraintes résiduelles dudit lingot par traitement thermique, c) homogénéiser par chauffage et maintien en température puis refroidir le lingot, d) laminer à chaud ledit lingot jusqu'à son épaisseur finale, e) mettre en solution puis tremper le produit ainsi laminé, f) tractionner le produit et g) réaliser un revenu dudit produit par chauffage et maintien en température.
Le brevet US 5,431,876 enseigne un groupe d'alliages ternaire d'aluminium lithium et magnésium ou cuivre, incluant au moins un additif tel que le zirconium, le chrome et/ou le manganèse. L'alliage est préparé selon des procédés connus de l'homme du métier comprenant, à titre d'exemple, une extrusion, une mise en solution, une trempe, une traction du produit de 2 à 7 % puis un revenu.
Le brevet US 6,551,424 décrit un procédé de fabrication de produits laminés en alliage aluminium-magnésium-lithium de composition (en % en poids) Mg : 3,0 - 6,0 ; Li : 0,4 -
3.0 ; Zn jusqu'à 2,0 ; Mn jusqu'à 1 ,0 ; Ag jusqu'à 0,5 ; Fe jusqu'à 0,3 ; Si jusqu'à 0,3 ; Cu jusqu'à 0,3 ; 0,02 - 0,5 d'un élément sélectionné dans le groupe consistant en Se, Hf, Ti, V, Nd, Zr, Cr, Y, Be, ledit procédé incluant un laminage à froid dans le sens de la longueur et dans le sens de la largeur.
Le brevet US 6,461 ,566 décrit un alliage de composition (en % en poids) Li : 1 ,5 - 1 ,9 ; Mg :
4.1 - 6,0 ; Zn 0,1 - 1 ,5 ; Zr 0,05 - 0,3 ; Mn 0,01 - 0,8 ; H 0,9 x 10"5 - 4,5 x 10"5 et au moins un élément sélectionné dans le groupe Be 0,001 - 0,2 ; Y 0,001 - 0,5 et Se 0,01 - 0,3.
La demande de brevet WO 2012/16072 décrit un produit corroyé en alliage d'aluminium de composition en % en poids, Mg : 4,0 - 5,0 ; Li : 1,0 - 1,6 ; Zr : 0,05 - 0,15 ; Ti : 0,01 - 0,15 ; Fe : 0,02 - 0,2 ; Si : 0,02 - 0,2 ; Mn : < 0,5 ; Cr < 0,5 ; Ag : < 0,5 ; Cu < 0,5 ; Zn < 0,5 ; Se < 0,01 ; autres éléments < 0,05 ; reste aluminium. Ledit produit est en particulier obtenu selon un procédé de fabrication comprenant notamment successivement la coulée de l'alliage sous forme brute, sa déformation à chaud et optionnellement à froid, la mise en solution puis la trempe du produit ainsi déformé, optionnellement la déformation à froid du produit ainsi mis en solution et trempé et enfin le revenu du produit corroyé à une température inférieure à 150 °C. L'état métallurgique obtenu pour les produits laminés est avantageusement un état T6 ou T6X ou T8 ou T8X et pour les produits filés avantageusement un état T5 ou T5X dans le cas de la trempe sur presse ou un état T6 ou T6X ou T8 ou T8X.
Les produits corroyés en alliage aluminium-magnésium-lithium présentent une faible densité et sont donc particulièrement intéressants dans le domaine extrêmement exigeant de l'aéronautique. Pour que de nouveaux produits soient sélectionnés dans un tel domaine, leur performance doit être signifïcativement améliorée par rapport à celle des produits existants, en particulier leur performance en terme de compromis entre les propriétés de résistance mécanique statique (notamment limite d'élasticité en traction et en compression, résistance à la rupture) et les propriétés de tolérance aux dommages (ténacité, résistance à la propagation des fissures en fatigue), ces propriétés étant en général antinomiques.
Ces alliages doivent également présenter une résistance à la corrosion suffisante, pouvoir être mis en forme selon les procédés habituels et présenter de faibles contraintes résiduelles de façon à pouvoir être usinés sans distorsion substantielle lors dudit usinage.
Il existe donc un besoin pour des produits corroyés en alliage aluminium-magnésium-lithium présentant une faible densité ainsi que des propriétés améliorées par rapport à celles des produits connus, en particulier en termes de compromis entre les propriétés de résistance mécanique statique et les propriétés de tolérance aux dommages. Concernant les propriétés de tolérance aux dommages, les produits corroyés doivent en particulier présenter une ténacité élevée ainsi qu'une faible propension au délaminage. De tels produits doivent de plus pouvoir être obtenus selon un procédé de fabrication fiable, économique et facilement adaptable à une ligne de fabrication conventionnelle.
Objet de l'invention
Un premier objet de l'invention est un produit corroyé en alliage d'aluminium de composition, en % en poids, Mg : 4,0 - 5,0 ; Li : 1 ,0 - 1,8 ; Mn : 0,3 - 0,5 ; Zr : 0,05 - 0,15 ; Ag : < 0,5 ; Fe : < 0,1 ; Ti : < 0,15 ; Si : < 0,05 ; autres éléments < 0,05 chacun et < 0,15 en association ; reste aluminium. L'invention a également pour objet un procédé de fabrication dudit produit corroyé dans lequel :
(a) on coule une forme brute en alliage d'aluminium de composition, en % en poids :
Mg : 4,0 - 5,0 ; Li : 1 ,0 -1 ,8; Mn : 0,3 - 0,5 ; Zr : 0,05 - 0,15; Ag : < 0,5 ; Fe : < 0,1 ; Ti : < 0,15 ; Si : < 0,05 ; autres éléments < 0,05 chacun et < 0,15 en association ; reste aluminium ;
(b) optionnellement, on homogénéise ladite forme brute ;
(c) on déforme à chaud ladite forme brute pour obtenir un produit déformé à chaud;
(d) optionnellement, on met en solution ledit produit déformé à chaud à une température de 360°C à 460°C, préférentiellement de 380°c à 420°C, pendant 15 minutes à 8 heures ;
(e) on trempe ledit produit déformé à chaud ;
(f) optionnellement, on effectue un dressage/planage dudit produit déformé et trempé ;
(g) optionnellement, on déforme à froid de façon contrôlée le produit déformé et trempé pour obtenir une déformation permanente à froid de 1 à 10 %, de préférence de 2 à 6%, plus préférentiellement encore de 3 à 5% et, plus préférentiellement encore de 4 à 5% ;
(h) on réalise un revenu dudit produit déformé et trempé.
L'invention a encore pour objet l'utilisation dudit produit corroyé pour réaliser un élément de structure d'aéronefs.
Description des figures
Figure 1 : Profilé pour cadre de fuselage de l'exemple 1
Figure 2 : Limite d'élasticité, Rp0,2, en fonction de la ténacité, KQ* pour une barre plate de 10 mm d'épaisseur (* toutes les valeurs de KQ sont invalides en raison du critère Pmax / PQ≤ 1 , 10 de la norme ASTM E399 ) Figure 3 : Limite d'élasticité, Rp0,2, en fonction du facteur d'intensité de contrainte correspondant à la force maximale, Kmax (évaluée selon la norme ASTM E399) pour une barre plate de 10 mm d'épaisseur
Description de l'invention
Sauf mention contraire, toutes les indications concernant la composition chimique des alliages sont exprimées comme un pourcentage en poids basé sur le poids total de l'alliage. A titre d'exemple, l'expression 1 ,4 Cu signifie que la teneur en cuivre exprimée en % en poids est multipliée par 1 ,4. La désignation des alliages se fait en conformité avec les règlements de The Aluminium Association, connus de l'homme du métier. La densité dépend de la composition et est déterminée par calcul plutôt que par une méthode de mesure de poids. Les valeurs sont calculées en conformité avec la procédure de The Aluminium Association, qui est décrite pages 2-12 et 2-13 de « Aluminum Standards and Data ». Les définitions des états métallurgiques sont indiquées dans la norme européenne EN 515.
Les caractéristiques mécaniques statiques en traction, en d'autres termes la résistance à la rupture Rm, la limite d'élasticité conventionnelle à 0,2% d'allongement RPo,2, et l'allongement à la rupture A%, sont déterminés par un essai de traction selon la norme NF EN ISO 6892-1 , le prélèvement et le sens de l'essai étant définis par la norme EN 485-1. La ténacité est déterminée par essai de ténacité Klc selon la norme ASTM E399. Une courbe donnant le facteur d'intensité de contrainte effectif en fonction de l'extension de fissure effective est déterminée selon la norme ASTM E399. Les essais ont été réalisés avec une éprouvette CT8 (B = 8mm, W = 16 mm). Dans le cas de valeurs de KQ invalides selon la norme ASTM E399, en particulier par rapport au critère Pmax/PQ < 1 ,10, les résultats ont été aussi présentés en Kmax (facteur d'intensité de contrainte correspondant à la force maximale
L'augmentation des contraintes sur le produit lors de l'essai de ténacité Klc selon la norme ASTM E399 peut être révélatrice de la propension du produit au délaminage. On entend ici par « délaminage » (« crack delamination » et/ou « crack divider » en anglais) une fissuration dans des plans orthogonaux au front de la fissure principale. L'orientation de ces plans correspond à celle des joints de grains non recristallisés après déformation par corroyage. Un faible dé laminage est le signe d'une moindre fragilité des plans concernés et minimise les risques de déviation de fissure vers la direction longitudinale lors d'une propagation en fatigue ou sous sollicitation monotone.
Sauf mention contraire, les définitions de la norme EN 12258 s'appliquent.
Par ailleurs, on appelle ici « élément de structure » ou « élément structural » d'une construction mécanique une pièce mécanique pour laquelle les propriétés mécaniques statiques et/ou dynamiques sont particulièrement importantes pour la performance de la structure et pour laquelle un calcul de structure est habituellement prescrit ou réalisé. Il s'agit typiquement d'éléments dont la défaillance est susceptible de mettre en danger la sécurité de ladite construction, de ses utilisateurs, de ses usagers ou d'autrui. Pour un avion, ces éléments de structure comprennent notamment les éléments qui composent le fuselage (tels que la peau de fuselage, (fuselage skin en anglais), les raidisseurs ou lisses de fuselage (stringers), les cloisons étanches (bulkheads), les cadres de fuselage (circumferential frames), les ailes (tels que la peau de voilure extrados ou intrados (upper or lower wing skin), les raidisseurs (stringers ou stiffeners), les nervures (ribs), les longerons (spars), les profilés de plancher (fioor beams) et les rails de sièges (seat tracks)) et l'empennage composé notamment de stabilisateurs horizontaux et verticaux (horizontal or vertical stabilisers), ainsi que les portes.
Le produit corroyé en alliage d'aluminium selon l'invention a la composition particulière suivante , en % en poids,: Mg : 4,0 - 5,0 ; Li : 1 ,0 - 1 ,8 ; Mn : 0,3 - 0,5 ; Zr : 0,05 - 0,15 ; Ag : < 0,5 ; Fe : < 0,1 ; Ti : < 0,15 ; Si : < 0,05 ; autres éléments < 0,05 chacun et < 0,15 en association ; reste aluminium. Les produits en alliage d'aluminium ayant une telle composition associée notamment à la teneur en Mn particulière sélectionnée présentent des propriétés mécaniques statiques améliorées ainsi qu'une faible propension au délaminage. Selon un mode de réalisation encore plus avantageux, la teneur en Mn, en % en poids, est de 0,35 à 0,45, préférentiellement de 0,35 à 0,40.
Selon un mode de réalisation avantageux, la forme brute en alliage d'aluminium présente une teneur en argent inférieure ou égale à 0,25 % en poids, plus préférentiellement une teneur en argent de 0,05 % à 0,1 % en poids. Cet élément contribue notamment aux propriétés mécaniques statiques. De plus, selon un mode de réalisation encore plus avantageux, la forme brute en alliage d'aluminium présente une teneur totale en Ag et Cu inférieure à 0,15 % en poids, préférentiellement inférieure ou égale à 0,12%. Le contrôle de la teneur maximale en ces deux éléments en association permet en particulier d'améliorer la résistance à la corrosion intergranulaire du produit corroyé.
Selon un mode de réalisation particulier, la forme brute présente une teneur en zinc, en % en poids, inférieure à 0,04%, préférentiellement inférieure ou égale à 0,03%. Une telle limitation de teneur en zinc dans l'alliage particulier décrit précédemment a donné d'excellents résultats en termes de densité et de résistance à la corrosion de l'alliage.
Selon un autre mode de réalisation compatible avec les modes précédents, la forme brute en alliage d'aluminium présente une teneur en Fe, en % en poids, inférieure à 0,08%, préférentiellement inférieure ou égale à 0,07%, plus préférentiellement encore inférieure ou égale à 0,06%. Les présents inventeurs pensent qu'une teneur minimum en Fe, ainsi qu'éventuellement celle de Si, peut contribuer à améliorer les propriétés mécaniques et notamment les propriétés en fatigue de l'alliage. D'excellents résultats ont en particulier été obtenus pour une teneur en Fe de 0,02 à 0,06 % en poids et/ ou une teneur en Si de 0,02 à 0,05% en poids.
La teneur en lithium des produits selon l'invention est comprise entre 1 ,0 et 1 ,8 % en poids. Selon un mode de réalisation avantageux, la forme brute en alliage d'aluminium présente une teneur en Li, en % en poids, inférieure à 1,6%, préférentiellement inférieure ou égale à 1,5%, préférentiellement encore inférieure ou égale à 1,4%. Une teneur minimale en lithium de 1,1 % en poids et de préférence de 1 ,2 % en poids est avantageuse. Les présents inventeurs ont constaté qu'une teneur en lithium limitée, en présence de certains éléments d'addition, permet d'améliorer très significativement la ténacité, ce qui compense largement la légère augmentation de densité et la diminution des propriétés mécaniques statiques.
Selon un mode de réalisation préféré, la forme brute en alliage d'aluminium présente une teneur en Zr, en % en poids, de 0,10 à 0,15%. Les inventeurs ont en effet constaté qu'une telle teneur en Zr permet d'obtenir un alliage présentant une structure fibrée favorable pour des propriétés mécaniques statiques améliorées.
Selon un mode de réalisation avantageux, la forme brute en alliage d'aluminium présente une teneur en Mg, en % en poids, de 4,5 à 4,9%. D'excellents résultats ont été obtenus pour des alliages selon ce mode de réalisation notamment pour ce qui concerne les propriétés mécaniques statiques.
Selon un mode de réalisation avantageux, la teneur en Cr des produits selon l'invention est inférieure à 0,05% en poids, préférentiellement inférieure à 0,01% en poids. Une telle teneur limitée en Cr en association avec les autres éléments de l'alliage selon l'invention permet notamment de limiter la formation de phases primaires lors de la coulée.
La teneur en Ti des produits selon l'invention est inférieure à 0,15% en poids, préférentiellement comprise entre 0,01 et 0,05% en poids. La teneur en Ti est limitée dans l'alliage particulier de la présente invention notamment pour éviter la formation de phases primaires lors de la coulée. D'autre part, il peut être avantageux de contrôler la teneur en Ti pour maîtriser la structure granulaire et notamment la taille de grain lors de la coulée de l'alliage.
Certains éléments peuvent être néfastes pour les alliages Al-Mg-Li tels que précédemment décrits, en particulier pour des raisons de transformation de l'alliage telles que la toxicité et/ou les casses lors de la déformation. Il est donc préférable de limiter ces éléments à un niveau très faible, i.e. inférieur à 0,05 % en poids ou même moins. Dans un mode de réalisation avantageux, les produits selon l'invention ont une teneur maximale de 10 ppm de
Na, préférentiellement de 8 ppm de Na, et/ou une teneur maximale de 20 ppm de Ca. Selon un mode de réalisation particulièrement avantageux, la forme brute en alliage d'aluminium est substantiellement exempte de Se, Be, Y, plus préférentiellement ladite forme brute comprend moins de 0,01% en poids de ces éléments pris en combinaison.
Selon un mode de réalisation particulièrement avantageux, la forme brute en alliage d'aluminium présente une composition, en % en poids :
Mg : 4,0 - 5,0, préférentiellement 4,5 - 4,9;
Li : 1 ,1 -1,6, préférentiellement 1 ,2 - 1 ,5 ;
Zr : 0,05 - 0,15, préférentiellement 0,10 - 0,15 ;
Ti : < 0,15, préférentiellement 0,01-0,05 ;
Fe : 0,02 - 0,1 , préférentiellement 0,02 - 0,06 ;
Si : 0,02 - 0,05 ;
Mn : 0,3 - 0,5 ; préférentiellement de 0,35 à 0,45, préférentiellement de 0,35 à 0,40 ; Cr : < 0,05, préférentiellement < 0,01 ; Ag : < 0,5 ; préférentiellement < 0,25 ; plus préférentiellement encore < 0,1 ;
Se : < 0,01 ;
autres éléments < 0,05 chacun et < 0,15 en association ;
reste aluminium. D'excellents résultats ont été obtenus avec un alliage présentant une telle composition.
Le procédé de fabrication des produits selon l'invention comprend les étapes successives d'élaboration d'un bain de métal liquide de façon à obtenir un alliage Al-Mg-Li de composition particulière, la coulée dudit alliage sous forme brute, optionnellement l'homogénéisation de ladite forme brute ainsi coulée, la déformation à chaud de ladite de forme brute pour obtenir un produit déformé à chaud, optionnellement la mise en solution séparée du produit ainsi déformé à chaud, la trempe dudit produit déformé à chaud, optionnellement le dressage/planage du produit déformé et trempé, optionnellement la déformation à froid de façon contrôlée du produit déformé et trempé pour obtenir une déformation permanente à froid de 1 à 10 %, de préférence de 2 à 6%, plus préférentiellement encore de 3 à 5%, le revenu dudit produit déformé et trempé. Selon un mode de réalisation avantageux, l'étape de revenu est réalisée avant l'étape de déformation à froid de façon contrôlée.
Le procédé de fabrication consiste donc tout d'abord à la coulée d'une forme brute en alliage Al-Mg-Li de composition, en % en poids : Mg : 4,0 - 5,0 ; Li : 1,0 -1 ,8; Mn : 0,3 - 0,5 ; Zr : 0,05 - 0,15; Ag : < 0,5 ; Fe : < 0,1 ; Ti : < 0,15 ; Si : < 0,05 ; autres éléments < 0,05 chacun et < 0,15 en association ; reste aluminium. Un bain de métal liquide est donc réalisé puis coulé sous forme brute, typiquement une plaque de laminage, une billette de filage ou une ébauche de forge.
Suite à l'étape de coulée de la forme brute, le procédé de fabrication comprend optionnellement une étape d'homogénéisation de la forme brute de façon à atteindre une température comprise entre 450 °C et 550 °C et, de préférence, entre 480 °C et 520 °C pendant une durée comprise entre 5 et 60 heures. Le traitement d'homogénéisation peut être réalisé en un ou plusieurs paliers. Selon un mode de réalisation préféré de l'invention, on procède directement à la déformation à chaud à la suite d'un simple réchauffage sans effectuer d'homogénéisation. La forme brute est ensuite déformée à chaud, typiquement par filage, laminage et/ou forgeage, pour obtenir un produit déformé. Cette déformation à chaud est effectuée de préférence à une température d'entrée supérieure à 400 °C et, de manière avantageuse, de 420°C à 450°C. Selon un mode de réalisation avantageux, la déformation à chaud est une déformation par filage de la forme brute.
Dans le cas de la fabrication de tôles par laminage, il peut être nécessaire de réaliser une étape de laminage à froid (qui constitue alors une première étape optionnelle de déformation à froid) pour les produits dont l'épaisseur est inférieure à 3 mm. Il peut s'avérer utile de réaliser un ou plusieurs traitements thermiques intermédiaires, typiquement réalisés à une température comprise entre 300 et 420 °C, avant ou au cours du laminage à froid.
Le produit déformé à chaud et, optionnellement à froid, est optionnellement soumis à une mise en solution séparée à une température de 360°C à 460°C, préférentiellement de 380°C à 420°C, pendant 15 minutes à 8 heures.
Le produit déformé et, optionnellement, mis en solution est ensuite trempé. La trempe est effectuée à l'eau et/ou à l'air. Il est avantageux de réaliser la trempe à l'air car les propriétés de corrosion intergranulaire sont améliorées. Dans le cas d'un produit filé, il est avantageux de réaliser la trempe sur presse (ou trempe sur chaleur de filage), préférentiellement une trempe sur presse à l'air, une telle trempe permettant en particulier d'améliorer les propriétés mécaniques statiques. Selon un autre mode de réalisation, il peut également s'agir d'une trempe sur presse à l'eau. Dans le cas de la trempe sur presse, le produit est mis en solution sur chaleur de filage.
Le produit déformé à chaud et trempé peut éventuellement être soumis à une étape de dressage ou de planage selon qu'il s'agit d'un profilé ou d'une tôle. On entend ici par « dressage/planage » une étape de déformation à froid sans déformation permanente ou avec une déformation permanente inférieure à 1%.
Le produit déformé à chaud, trempé et, optionnellement dressé/plané, est également déformé à froid de façon contrôlée pour obtenir une déformation permanente à froid de 1 à 10 %, de préférence de 2 à 6%, plus préférentiellement encore de 3 à 5%, et plus préférentiellement encore de 4 à 5%. Selon un mode de réalisation avantageux, la déformation permanente à froid est de 2 à 4%. La déformation à froid peut en particulier être réalisée par traction, compression et/ou laminage. Selon un mode de réalisation préféré, la déformation à froid est réalisée par traction.
Le produit déformé, trempé et, optionnellement dressé/plané, subit une étape de revenu. Avantageusement, le revenu est réalisé par chauffage, en un ou plusieurs paliers, à une température inférieure à 150 °C, de préférence à une température de 70 °C à 140 °C, pendant 5 à 100 heures.
Selon un premier mode de réalisation, l'étape de revenu est réalisée après l'étape de déformation à froid de façon contrôlée. L'état métallurgique obtenu pour les produits corroyé correspond notamment à un état T8 selon la norme EN515.
Selon un second mode de réalisation, l'étape de revenu est réalisée avant l'étape de déformation à froid de façon contrôlée. Le produit déformé à chaud et revenu est alors déformé à froid de façon contrôlée pour obtenir une déformation permanente à froid de 1 à 10 %, de préférence de 2 à 6%, plus préférentiellement encore de 3 à 5%, et plus préférentiellement encore de 4 à 5%. Selon un mode de réalisation avantageux, la déformation permanente à froid est de 2 à 4%. De façon tout à fait inattendue, il a en effet été mis en évidence que, lorsqu'elle est réalisée après l'étape de revenu, la déformation à froid de façon contrôlée d'un produit corroyé de composition telle que décrite précédemment permet d'obtenir un excellent compromis entre les propriétés mécaniques statiques et celles de tolérance aux dommages, en particulier de ténacité. L'état métallurgique obtenu pour les produits corroyé correspond notamment à un état T9 selon la norme EN515.
Selon un mode de réalisation avantageux, le procédé de fabrication d'un produit corroyé ne comprend aucune étape de déformation à froid induisant une déformation permanente d'au moins 1% entre l'étape de déformation à chaud ou, si cette étape est présente, de mise en solution et l'étape de revenu.
La combinaison de la composition choisie, en particulier de la teneur en Mg, Li et Mn et des paramètres de transformation, en particulier l'ordre des étapes du procédé de fabrication, permet avantageusement d'obtenir des produits corroyés ayant un compromis de propriétés amélioré tout à fait particulier, notamment le compromis entre la résistance mécanique et la tolérance aux dommages, tout en présentant une faible densité et une bonne performance en corrosion. Les produits corroyés selon l'invention sontpréférentiellement des produits filés tels que des profilés, des produits laminés tels que des tôles ou des tôles épaisses et/ou des produits forgés.
Les produits corroyés selon l'invention présentent des caractéristiques particulièrement avantageuses en comparaison à des produits corroyés identiques mais présentant pour seule différence leur teneur en Mn, en particulier une teneur en Mn, en % en poids, inférieure à 0,3% ou supérieure à 0,5%. On entend par « produits corroyés identiques » des produits en alliage d'aluminium de même composition, en % en poids, à l'exception du Mn, et obtenus selon le même procédé de fabrication, en particulier des produits corroyés dans le même état métallurgique selon la norme EN515 et présentant le même taux de déformation en traction permanente en traction obtenu par traction de façon contrôlée.
Selon un mode de réalisation avantageux, les produits corroyés selon l'invention présentent un moindre délaminage sur les surfaces de rupture des éprouvettes Klc obtenues suivant la norme ASTM E399 que des produits corroyés identiques mais présentant pour seule différence leur teneur en Mn, en particulier une teneur en Mn, en % en poids, inférieure à 0,3% ou supérieure à 0,5%.
Selon un mode de réalisation compatible avec le mode précédent, les produits corroyés selon l'invention ont à mi-épaisseur, pour une épaisseur comprise entre 0,5 et 15 mm, une résistance à la rupture Rm (L) supérieure à celle de produits corroyés identiques mais présentant pour seule différence leur teneur en Mn, en particulier une teneur en Mn, en % en poids, inférieure à 0,3% ou supérieure à 0,5%.
Selon un mode de réalisation compatible avec les modes précédents, les produits corroyés selon l'invention ont, à mi-épaisseur, pour une épaisseur comprise entre 0,5 et 15 mm, une limite d'élasticité en traction Rp0,2 (L) supérieure à celle de produits corroyés identiques mais présentant pour seule différence leur teneur en Mn, en particulier une teneur en Mn, en % en poids, inférieure à 0,3% ou supérieure à 0,5%.
Selon un mode de réalisation avantageux, les produits corroyés à l'état T8, avantageusement à l'état T8 avec une déformation permanente à froid supérieure à 4%, selon l'invention présentent, à mi-épaisseur, pour une épaisseur comprise entre 0,5 et 15 mm, au moins une propriété de résistance mécanique statique parmi les propriétés (i) à (iii) et au moins une propriété de tolérance aux dommages parmi les propriétés (iv) à (v) : (i) une résistance à la rupture Rm (L) > 450 MPa, de préférence Rm (L) > 455 MPa;
(ii) une limite d'élasticité en traction Rp0,2 (L) > 330 MPa ; de préférence Rp0,2 (L)
> 335 MPa et, plus préférentiellement encore Rp0,2 (L) > 350 MPa;
(iii) une limite d'élasticité en traction R p0,2 (TL) > 300 MPa,de préférence Rp0,2 (TL) > 305 et, plus préférentiellement encore Rp0,2 (TL) > 320 MPa;
(iv) une ténacité, mesurée selon la norme ASTM E399 avec des éprouvettes CT8 de largeur W = 16 mm et d'épaisseur = 8 mm, KQ (L-T) > 24 MPaVm, de préférence KQ (L-T) > 26 MPaVm ;
(v) un facteur d'intensité de contrainte correspondant à la force maximale Pmax, mesurée selon la norme ASTM E399 avec des éprouvettes CT8 de largeur W = 16 mm et d'épaisseur = 8mm, Kmax (L-T) > 30 MPaVm, de préférence Kmax (L-T)
> 32 MPaVm.
Selon un mode de réalisation avantageux, les produits corroyés à l'état T9, avantageusement à l'état T9 avec une déformation permanente à froid supérieure à 4%, selon l'invention présentent, à mi-épaisseur, pour une épaisseur comprise entre 0,5 et 15 mm, au moins une propriété de résistance mécanique statique parmi les propriétés (i) à (iii) et au moins une propriété de tolérance aux dommages parmi les propriétés (iv) à (v) :
(i) une résistance à la rupture Rm (L) > 450 MPa, de préférence Rm (L) > 460 MPa;
(ii) une limite d'élasticité en traction Rp0,2 (L) > 380 MPa, de préférence Rp0,2 (L)
> 390 MPa et, plus préférentiellement encore, Rp0,2 (L) > 410 MPa;
(iii) une limite d'élasticité en traction Rp0,2 (TL) > 320 MPa, de préférence Rp0,2 (TL) > 335 MPa plus préférentiellement Rp0,2 (TL) > 340 MPa et, plus préférentiellement encore, Rp0,2 (TL) > 350 MPa;
(iv) une ténacité, mesurée selon la norme ASTM E399 avec des éprouvettes CT8 de largeur W = 16 mm et d'épaisseur = 8 mm, KQ (L-T) > 20 MPaVm, de préférence KQ (L-T) > 22 MPaVm ;
(v) un facteur d'intensité de contrainte correspondant à la force maximale Pmax, mesurée selon la norme ASTM E399 avec des éprouvettes CT8 de largeur W = 16 mm et d'épaisseur = 8mm, KMAX (L-T) > 22 MPaVm, de préférence KMAX (L-T)
> 25 MPaVm. Selon un mode de réalisation préféré, les produits corroyés à l'état T8 ou T9 précédemment cités ont, pour une épaisseur comprise entre 0,5 et 15 mm, à mi-épaisseur au moins deux propriétés de résistance mécanique statique choisies parmi les propriétés (i) à (iii) et au moins une propriété de tolérance aux dommages choisies parmi les propriétés (iv) à (v).
Les produits corroyés selon l'invention présentent en outre une moindre propension au délaminage, ce dernier étant évalué sur les surfaces de rupture d'éprouvettes Klc suivant la norme ASTME399 (éprouvette CT8, B = 8mm, W = 16 mm).
Les produits filés selon l'invention présentent des caractéristiques particulièrement avantageuses. Les produits filés ont de préférence une épaisseur comprise entre 0,5 mm et 15 mm, mais des produits d'épaisseur supérieure à 15 mm, jusque 50 mm ou même 100 mm ou plus peuvent avoir également des propriétés avantageuses. L'épaisseur des produits filés est définie selon la norme EN 2066 : 2001 : la section transversale est divisée en rectangles élémentaires de dimensions A et B ; A étant toujours la plus grande dimension du rectangle élémentaire et B pouvant être considéré comme l'épaisseur du rectangle élémentaire. La semelle est le rectangle élémentaire présentant la plus grande dimension A.
Les produits corroyés selon l'invention sont avantageusement utilisés pour réaliser des éléments de structure d'aéronef, notamment d'avions. Des éléments de structure d'aéronef préférés sont notamment une peau de fuselage, un cadre de fuselage, un raidisseur ou une lisse de fuselage ou encore une peau de voilure, un raidisseur de voilure, une nervure ou un longeron. Ces aspects, ainsi que d'autres de l'invention sont expliqués plus en détails à l'aide des exemples illustratifs et non limitatifs suivants.
Exemples
Exemple 1
Plusieurs formes brutes en alliage Al-Mg-Li dont la composition est donnée dans le tableau 1 ont été coulées. L'alliage B présente une composition selon l'invention. La densité des alliages A et B, calculée en conformité avec la procédure de The Aluminium Association décrite en pages 2-12 et 2-13 de « Aluminum Standards and Data », est de 2,55.
Tableau 1 - Composition en % en poids et densité des alliages Al-Mg-Li utilisés
Figure imgf000016_0001
Des billettes de 358 mm de diamètre ont été réalisées dans les formes brutes. Elles ont été réchauffées à 430-440°C puis déformées à chaud par filage sur une presse sous forme d'un profilé pour cadre de fuselage tel que représenté à la figure 1. Les produits ainsi filés ont été trempés à l'air (trempe sur presse). Ils ont ensuite subi :
- pour les produits à l'état final T6 : un revenu bi-palier effectué pendant 30h à 120°C suivi de 10h à l00°C ;
- pour les produits à l'état final T8 : une traction contrôlée avec déformation permanente de 3 ou 5% (respectivement T8-3% et T8-5%) puis un revenu bi-palier effectué pendant 30h à 120°C suivi de 10h à l00°C;
- pour les produits à l'état final T9 : un revenu bi-palier effectué pendant 30h à 120°C suivi de lOh à 100°C puis une traction contrôlée avec déformation permanente de 3 ou 5% (respectivement T9-3% et T9-5%).
Des échantillons ont été testés pour déterminer leurs propriétés mécaniques statiques (limite d'élasticité Rpo,2 en MPa, résistance à la rupture Rm en MPa, et allongement A en % ).
Les résultats obtenus sont donnés dans les tableaux 2 (sens L) et 3 (sens TL) ci-dessous. Ces résultats sont les moyennes de 4 mesures effectuées sur des échantillons pleine épaisseur prélevés sur 4 positions sur le cadre de fuselage (postions référencées a, b, c et d sur la figure 1) pour le sens L et de 2 mesures effectuées sur des échantillons pleine épaisseur prélevés sur 1 position unique, référencée c sur la figure 1, pour le sens TL.
Tableau 2 - Propriétés mécaniques des produits obtenus (sens L)
Figure imgf000017_0001
Tableau 3 - Propriétés mécaniques des produits obtenus (sens TL)
Figure imgf000017_0002
Une teneur en Mn de l'alliage Al-Mg-Li d'environ 0,4 % en poids (alliage B) permet d'améliorer signifîcativement la résistance mécanique de alliage (Rp0,2 et Rm), notamment la résistance mécanique dans le sens L, par rapport à celle d'un alliage présentant une teneur en Mn d'environ 0,14 % en poids (alliage A). Par ailleurs, les propriétés mécaniques, en particulier pour l'alliage B, augmentent avec l'augmentation de la traction contrôlée (T6 < TX-3% < TX-5% avec TX = T8 ou T9). Enfin, les meilleurs résultats sont généralement obtenus lorsque la traction contrôlée est effectuée après le revenu Γ8 < T9).
Exemple 2
Plusieurs formes brutes en alliage Al-Mg-Li dont la composition est donnée dans le tableau 1 de l'exemple précédent ont été coulées. L'alliage B présente une composition selon l'invention.
Des billettes de 358 mm de diamètre ont été réalisées dans les formes brutes. Elles ont été réchauffées à 430-440°C puis déformées à chaud par filage sur une presse sous forme d'une barre plate (100 mm x 10 mm). Les produits ainsi filés ont été trempés à l'air (trempe sur presse). Ils ont ensuite subit :
- pour les produits à l'état final T6 : un revenu bi-palier effectué pendant 30h à 120°C suivi de 10h à l00°C ;
- pour les produits à l'état final T8 : une traction contrôlée avec déformation permanente de 3 ou 5% (respectivement T8-3% et T8-5%) puis un revenu bi-palier effectué pendant 30h à 120°C suivi de 10h à l00°C;
- pour les produits à l'état final T9 : un revenu bi-palier effectué pendant 30h à 120°C suivi de lOh à 100°C puis une traction contrôlée avec déformation permanente de 3 ou 5% (respectivement T9-3% et T9-5%).
Des échantillons cylindriques de 4 mm de diamètre ont été testés pour déterminer leurs propriétés mécaniques statiques (limite d'élasticité, RPo,2, en MPa ; résistance à la rupture, Rm, en MPa et allongement, A, en % ).
Les résultats obtenus sont donnés dans les tableaux 4 (sens L) et 5 (sens TL) ci-dessous. Tableau 4 - Propriétés mécaniques des produits obtenus (sens L).
Figure imgf000018_0002
Tableau 5 - Propriétés mécaniques des produits obtenus (sens TL).
Figure imgf000018_0001
Une teneur en Mn de l'alliage Al-Mg-Li d'environ 0,4 % en poids (alliage B) permet d'améliorer signifîcativement la résistance mécanique de alliage (Rp0,2 et Rm), notamment la résistance mécanique dans le sens L, par rapport à celle d'un alliage présentant une teneur en Mn d'environ 0,14 % en poids (alliage A). Par ailleurs, les propriétés mécaniques, en particulier Rp0,2, augmentent avec l'augmentation de la traction contrôlée (T6 < TX-3% < TX-5% avec TX = T8 ou T9). Enfin, les meilleurs résultats sont généralement obtenus lorsque la traction contrôlée est effectuée après le revenu (T8 < T9).
La ténacité des produits a été caractérisée par l'essai de Klc suivant la norme ASTM E399. Les essais ont été effectués avec une éprouvette CT8 (B = 8mm, W = 16 mm) prélevée à mi- épaisseur. Les valeurs de KQ ont toujours été invalides selon la norme ASTM E399, en particulier par rapport au critère Pmax/PQ≤ 1 , 10. Pour cela, les résultats sont présentés en Kmax (facteur d'intensité de contrainte correspondant à la force maximale Pmax). Les résultats sont reportés dans les tableaux 6 et 7 et illustrés aux figures 2 et 3 (éprouvettes L-T et T-L respectivement). Ces résultats sont les moyennes d'au moins deux 2 valeurs.
Tableau 6 - Résultats des essais de ténacité sur éprouvettes L-T (Kmax et KQ en MPaVm)
Figure imgf000019_0001
Tableau 7 - Résultats des essais de ténacité sur éprouvettes T-L (Kmax et KQ en MPa
Figure imgf000019_0002
Les produits selon l'invention présentent une ténacité satisfaisante quelle que soit la teneur en Mn de l'alliage. La figure 2 illustre la limite d'élasticité, Rp0,2, des produits du présent exemple en fonction de la ténacité, KQ (toutes les valeurs de KQ sont invalides en raison du critère PMAX / PQ≤ 1 ,10 ). La figure 3 illustre la limite d'élasticité, Rp0,2, des produits du présent exemple en fonction du facteur d'intensité de contrainte correspondant à la contrainte maximale, Kmax.
Les produits en T9 présentent un excellent compromis entre leurs propriétés statiques, en particulier Rp0,2, et leur ténacité, KQ, OU leur facteur d'intensité de contrainte correspondant à la force maximale, KmaX.
Le délaminage a été quantifié de façon semi-quantitative sur les surfaces de rupture des éprouvettes Klc précédemment décrites selon un score de 0 à 2 : score 0 = absence de délaminage visible, score 1 = faible délaminage, score 2 = délaminage marqué (plusieurs feuillets/fissures secondaires dans le sens L visibles). Les tableaux 8 et 9 récapitulent les scores attribués aux différentes éprouvettes (éprouvettes L-T et T-L respectivement).
Tableau 8 - Evaluation du délaminage sur éprouvettes L-T (scores)
Figure imgf000020_0001
Tableau 9 - Evaluation du délaminage sur éprouvettes T- L (scores)
Figure imgf000020_0002
Les produits en alliage B présentent un délaminage plus faible que les produits en alliage A.

Claims

Revendications
1. Produit corroyé en alliage d'aluminium de composition, en % en poids, Mg : 4,0 - 5,0 ; Li : 1,0 - 1,8 ; Mn : 0,3 - 0,5 ; Zr : 0,05 - 0,15 ; Ag : < 0,5 ; Fe : < 0,1 ; Ti : < 0,15 ; Si :≤ 0,05 ; autres éléments < 0,05 chacun et < 0,15 en association ; reste aluminium.
2. Produit corroyé selon la revendication 1 présentant une teneur en Mn, en % en poids de 0,35 à 0,45.
3. Produit corroyé selon la revendication 1 ou 2 présentant une teneur en Zn, en % en poids, inférieure à 0,04%, préférentiellement inférieure ou égale à 0,03%.
4. Produit corroyé selon l'une quelconque des revendications 1 à 3 présentant une teneur en Fe, en % en poids, inférieure à 0,08%, préférentiellement inférieure ou également à 0,07%, préférentiellement encore inférieure ou égale à 0,06%.
5. Produit corroyé selon l'une quelconque des revendications 1 à 4 présentant une teneur en Li, en % en poids, inférieure à 1,6%, préférentiellement inférieure ou également à 1 ,5%, préférentiellement encore inférieure ou égale à 1,4%.
6. Produit corroyé selon l'une quelconque des revendications 1 à 5 présentant un moindre délaminage sur les surfaces de rupture des éprouvettes Klc obtenues suivant la norme ASTM E399 qu'un produit corroyé identique mais présentant pour seule différence une teneur en Mn, en % en poids, inférieure à 0,3.
7. Produit corroyé selon l'une quelconque des revendications 1 à 6, ayant à mi-épaisseur, pour une épaisseur comprise entre 0,5 et 15 mm, une résistance à la rupture Rm (L) supérieure à celle d'un produit corroyé identique mais présentant pour seule différence leur teneur en Mn, en % en poids.
8. Produit corroyé selon l'une quelconque des revendications 1 à 6, ayant à mi-épaisseur, pour une épaisseur comprise entre 0,5 et 15 mm, une limite d'élasticité en traction Rp0,2 (L) supérieure à celle d'un produit corroyé identique mais présentant pour seule différence leur teneur en Mn, en % en poids.
9. Procédé de fabrication d'un produit corroyé dans lequel :
(a) on coule une forme brute en alliage d'aluminium de composition, en % en poids :
Mg : 4,0 - 5,0 ; Li : 1 ,0 -1 ,8; Mn : 0,3 - 0,5 ; Zr : 0,05 - 0,15; Ag : < 0,5 ; Fe : < 0,1 ; Ti : < 0,15 ; Si : < 0,05 ; autres éléments < 0,05 chacun et < 0,15 en association ; reste aluminium ;
(b) optionnellement, on homogénéise ladite forme brute ;
(c) on déforme à chaud ladite forme brute pour obtenir un produit déformé à chaud ;
(d) optionnellement, on met en solution ledit produit déformé à chaud à une température de 360°C à 460°C, préférentiellement de 380°C à 420°C pendant 15 minutes à 8 heures ;
(e) on trempe ledit produit déformé à chaud;
(f) optionnellement, on effectue un dressage/planage dudit produit déformé et trempé ;
(g) optionnellement, on déforme à froid de façon contrôlée le produit déformé et trempé pour obtenir une déformation permanente à froid de 1 à 10 %, de préférence de 2 à 6%, plus préférentiellement encore de 3 à 5% ;
(h) on réalise un revenu dudit produit déformé et trempé.
10. Procédé selon la revendication 9 dans lequel l'étape de revenu (h) est réalisée avant l'étape de déformation à froid de façon contrôlée (g).
1 1. Procédé selon la revendication 9 ou 10 dans lequel la déformation à chaud de l'étape (c) est une déformation par filage de la forme brute.
12. Procédé selon l'une quelconques des revendications 9 à 11 dans lequel la trempe de l'étape (e) est une trempe sur presse.
13. Utilisation d'un produit corroyé selon l'une quelconques des revendications 1 à 8 ou obtenu selon l'une quelconque des revendications 9 à 12, pour réaliser un élément de structure d'aéronef, préférentiellement une peau de fuselage, un cadre de fuselage, un raidisseur ou lisse de fuselage ou une nervure.
PCT/FR2015/052580 2014-09-29 2015-09-29 Produit corroye en alliage aluminium magnesium lithium WO2016051060A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP15785159.3A EP3201370B1 (fr) 2014-09-29 2015-09-29 Produit corroye en alliage aluminium magnesium lithium
JP2017535970A JP2017532456A (ja) 2014-09-29 2015-09-29 アルミニウム‐マグネシウム‐リチウム合金製の展伸製品
BR112017006131A BR112017006131A2 (pt) 2014-09-29 2015-09-29 produto corroído em liga de alumínio - magnésio - lítio
US15/514,398 US20170292180A1 (en) 2014-09-29 2015-09-29 Wrought product made of a magnesium-lithium-aluminum alloy
CA2960942A CA2960942A1 (fr) 2014-09-29 2015-09-29 Produit corroye en alliage aluminium magnesium lithium
CN201580052806.8A CN106715735A (zh) 2014-09-29 2015-09-29 镁‑锂‑铝合金制得的锻制品
KR1020177011944A KR20170067810A (ko) 2014-09-29 2015-09-29 알루미늄-마그네슘-리튬 합금으로 제조되는 전신 제품

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR14/02187 2014-09-29
FR1402186A FR3026411B1 (fr) 2014-09-29 2014-09-29 Procede de fabrication de produits en alliage aluminium magnesium lithium
FR1402187A FR3026410B1 (fr) 2014-09-29 2014-09-29 Produit corroye en alliage aluminium magnesium lithium
FR14/02186 2014-09-29

Publications (1)

Publication Number Publication Date
WO2016051060A1 true WO2016051060A1 (fr) 2016-04-07

Family

ID=54356641

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/FR2015/052581 WO2016051061A1 (fr) 2014-09-29 2015-09-29 Procédé de fabrication de produits en alliage aluminium, magnésium, lithium
PCT/FR2015/052580 WO2016051060A1 (fr) 2014-09-29 2015-09-29 Produit corroye en alliage aluminium magnesium lithium

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/052581 WO2016051061A1 (fr) 2014-09-29 2015-09-29 Procédé de fabrication de produits en alliage aluminium, magnésium, lithium

Country Status (8)

Country Link
US (2) US20170292180A1 (fr)
EP (2) EP3201371B1 (fr)
JP (1) JP2017532456A (fr)
KR (1) KR20170067810A (fr)
CN (2) CN107075623A (fr)
BR (2) BR112017006273B1 (fr)
CA (2) CA2960947A1 (fr)
WO (2) WO2016051061A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109844151A (zh) * 2016-10-17 2019-06-04 伊苏瓦尔肯联铝业 用于航空航天应用的由铝-镁-钪合金制成的薄板

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037390A2 (fr) 2016-08-26 2018-03-01 Shape Corp. Procédé de formage à chaud et appareil de pliage transversal d'une poutre d'aluminium profilée pour former à chaud un composant structural de véhicule
CA3040622A1 (fr) 2016-10-24 2018-05-03 Shape Corp. Procede de formage et de traitement thermique d'un alliage d'aluminium en plusieurs etapes pour la production de composants pour vehicules
FR3080861B1 (fr) * 2018-05-02 2021-03-19 Constellium Issoire Procede de fabrication d'un alliage aluminium cuivre lithium a resistance en compression et tenacite ameliorees
WO2020206161A1 (fr) * 2019-04-05 2020-10-08 Arconic Technologies Llc Procédés de formage à froid d'alliages d'aluminium-lithium
MX2022007165A (es) * 2019-12-17 2022-07-12 Novelis Inc Supresion de agrietamiento por corrosion bajo tension en aleaciones de alto contenido de magnesio mediante la adicion de calcio.
CN112226656A (zh) * 2020-09-25 2021-01-15 西南铝业(集团)有限责任公司 一种Al-Mg-Mn-Er系铝合金挤压制品的生产工艺
CN112410691B (zh) * 2020-11-10 2021-12-24 中国航发北京航空材料研究院 一种铝锂合金材料退火工艺
CN114054531A (zh) * 2021-11-18 2022-02-18 西南铝业(集团)有限责任公司 一种高均匀性2196铝锂合金型材的挤压方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1519021A (fr) * 1967-03-07 1968-03-29 Iosif Naumovich Fridlyander Ni Alliage à base d'aluminium
EP0273600A2 (fr) * 1986-12-01 1988-07-06 Comalco Aluminium, Ltd. Alliages aluminium-lithium
EP0377640A1 (fr) * 1987-08-10 1990-07-18 Martin Marietta Corp Alliages d'aluminium-lithium soudables a resistance ultra elevee.
SU1367517A1 (ru) * 1986-01-16 1995-07-25 И.Н. Фридляндер Сплав на основе алюминия
RU2256720C1 (ru) * 2004-04-02 2005-07-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ термомеханической обработки полуфабрикатов из алюминиевых сплавов
WO2012160272A1 (fr) * 2011-05-20 2012-11-29 Constellium France Alliage aluminium magnésium lithium à ténacité améliorée

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4790884A (en) * 1987-03-02 1988-12-13 Aluminum Company Of America Aluminum-lithium flat rolled product and method of making
DE68913561T2 (de) * 1988-01-28 1994-10-20 Aluminum Co Of America Aluminium-Lithium-Legierungen.
CA2352333C (fr) * 1998-12-18 2004-08-17 Corus Aluminium Walzprodukte Gmbh Procede de fabrication d'un produit d'alliage aluminium-magnesium-lithium
CN101233252B (zh) * 2005-08-16 2013-01-09 阿勒里斯铝业科布伦茨有限公司 高强度可焊Al-Mg合金
FR2894985B1 (fr) * 2005-12-20 2008-01-18 Alcan Rhenalu Sa Tole en aluminium-cuivre-lithium a haute tenacite pour fuselage d'avion
CN101896631B (zh) * 2007-11-15 2015-11-25 阿勒里斯铝业科布伦茨有限公司 Al-Mg-Zn锻造合金产品及其制造方法
CN103045975A (zh) * 2012-12-29 2013-04-17 湖南工程学院 一种改善Al-Mg-Li系合金易轧制开裂的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1519021A (fr) * 1967-03-07 1968-03-29 Iosif Naumovich Fridlyander Ni Alliage à base d'aluminium
SU1367517A1 (ru) * 1986-01-16 1995-07-25 И.Н. Фридляндер Сплав на основе алюминия
EP0273600A2 (fr) * 1986-12-01 1988-07-06 Comalco Aluminium, Ltd. Alliages aluminium-lithium
EP0377640A1 (fr) * 1987-08-10 1990-07-18 Martin Marietta Corp Alliages d'aluminium-lithium soudables a resistance ultra elevee.
RU2256720C1 (ru) * 2004-04-02 2005-07-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Способ термомеханической обработки полуфабрикатов из алюминиевых сплавов
WO2012160272A1 (fr) * 2011-05-20 2012-11-29 Constellium France Alliage aluminium magnésium lithium à ténacité améliorée

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
A.A. ALEKSEEV ET AL: "Nature of Formation of the Areas Having an Ultrafine Grain Structure in Al-Li-Mg System Alloys", MATERIALS SCIENCE FORUM, vol. 519-521, 1 January 2006 (2006-01-01), pages 265 - 270, XP055156875, DOI: 10.4028/www.scientific.net/MSF.519-521.265 *
CHEN Z G ET AL: "The effect of small additions of silver on aging behavior of Al-Mg-Li alloys", ALUMIUM ALLOYS: THEIR PHYSICAL AND MECHANICAL PROPERTIES, PAPERS PRESENTED AT THE INTERNATIONAL CONFERENCE, 4TH, ATLANTA, SEPT. 11-16, 1994,, vol. 2, 11 September 1994 (1994-09-11), pages 177 - 182, XP009181561 *
FRIDLYANDER ET AL: "Aluminum-lithium structural alloys", METALLOVEDENIE I TERMICESKAYA OBRABOTKA METALLOV // MÉTALLURGIE PHYSIQUE ET TRAITEMENT THERMIQUE DES MÉTAUX, IZDATEL'STVO MASINOSTROENIE, MOSCOW, RU, no. 4, 1 January 1990 (1990-01-01), pages 2 - 8, XP009181555, ISSN: 0026-0819 *
FRIDLYANDER I N ET AL: "Soviet aluminum-lithium alloys of aerospace application", ALUMINIUM-LITHIUM: PAPERS PRESENTED AT THE SIXTH INTERNATIONAL ALUMINIUM-LITHIUM CONFERENCE, 1991, GARMISCH-PARTENKIRCHEN (FRG),, vol. 1, 1 January 1992 (1992-01-01), pages 35 - 42, XP009181554 *
FRIDLYANDER I N: "Aluminum alloys containing lithium and magnesium", METALLOVEDENIE I TERMICHESKAYA OBRABOTKA METALLOV (RU), no. 9, 1 January 2003 (2003-01-01), pages 13 - 16, XP009181595, ISSN: 0026-0819 *
KUMAR S; MCSHANE H B; SHEPPARD T: "EFFECT OF EXTRUSION PARAMETERS ON THE MICROSTRUCTURE AND PROPERTIES OF AN AL-LI-MG-ZR ALLOY", JOURNAL OF MATERIALS SCIENCE, vol. 29, no. 4, 15 February 1994 (1994-02-15), pages 1067 - 1074, XP009181605, ISSN: 0022-2461 *
V. G. KOVSIZHNYKH ET AL: "Mechanical Properties of Extruded Panels of Alloy 01420", METAL SCIENCE AND HEAT TREATMENT., vol. 11, no. 2, 1 January 1969 (1969-01-01), US, pages 20 - 21, XP055156887, ISSN: 0026-0673 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109844151A (zh) * 2016-10-17 2019-06-04 伊苏瓦尔肯联铝业 用于航空航天应用的由铝-镁-钪合金制成的薄板
CN109844151B (zh) * 2016-10-17 2021-03-19 伊苏瓦尔肯联铝业 用于航空航天应用的由铝-镁-钪合金制成的薄板

Also Published As

Publication number Publication date
BR112017006273B1 (pt) 2021-06-08
CA2960942A1 (fr) 2016-04-07
EP3201371A1 (fr) 2017-08-09
BR112017006131A2 (pt) 2017-12-19
BR112017006273A2 (pt) 2017-12-12
CN106715735A (zh) 2017-05-24
EP3201371B1 (fr) 2021-04-28
EP3201370A1 (fr) 2017-08-09
US20170292180A1 (en) 2017-10-12
CA2960947A1 (fr) 2016-04-07
US20170218493A1 (en) 2017-08-03
WO2016051061A1 (fr) 2016-04-07
EP3201370B1 (fr) 2020-04-15
CN107075623A (zh) 2017-08-18
JP2017532456A (ja) 2017-11-02
KR20170067810A (ko) 2017-06-16

Similar Documents

Publication Publication Date Title
EP3201370B1 (fr) Produit corroye en alliage aluminium magnesium lithium
EP2710163B1 (fr) Alliage aluminium magnésium lithium à ténacité améliorée
EP2655680B1 (fr) Alliage aluminium cuivre lithium à résistance en compression et ténacité améliorées
EP2449142B1 (fr) Alliage aluminium cuivre lithium a resistance mecanique et tenacite ameliorees
EP2766503B1 (fr) Procédé de transformation amélioré de tôles en alliage al-cu-li
EP2364378B1 (fr) Produits en alliage aluminium-cuivre-lithium
EP3384061B1 (fr) Alliage aluminium cuivre lithium à resistance mécanique et tenacité ameliorées
FR2838135A1 (fr) PRODUITS CORROYES EN ALLIAGES A1-Zn-Mg-Cu A TRES HAUTES CARACTERISTIQUES MECANIQUES, ET ELEMENTS DE STRUCTURE D&#39;AERONEF
FR2907796A1 (fr) Produits en alliage d&#39;aluminium de la serie aa7000 et leur procede de fabrication
FR2853667A1 (fr) Alliage al-an-mg-cu ameliore en ce qui concerne ses proprietes combinees de tolerance aux dommages et de resistance mecanique
EP2981632B1 (fr) Tôles minces en alliage d&#39;aluminium-cuivre-lithium pour la fabrication de fuselages d&#39;avion
EP2981631B1 (fr) Tôles en alliage d&#39;aluminium-cuivre-lithium pour la fabrication de fuselages d&#39;avion
EP3526358B1 (fr) Toles minces en alliage aluminium-magnesium-scandium pour applications aerospatiales
EP3201372A1 (fr) Tôles isotropes en alliage d&#39;aluminium-cuivre-lithium pour la fabrication de fuselages d&#39;avion
EP3788178B1 (fr) Alliage aluminium cuivre lithium a resistance en compression et tenacite ameliorees
EP3610048B1 (fr) Produits en alliage aluminium-cuivre-lithium a faible densite
FR3026410B1 (fr) Produit corroye en alliage aluminium magnesium lithium
EP3610047B1 (fr) Produits en alliage aluminium-cuivre-lithium
FR3026411A1 (fr) Procede de fabrication de produits en alliage aluminium magnesium lithium
EP3362584B1 (fr) Toles minces en alliage aluminium-magnesium-zirconium pour applications aerospatiales

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15785159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2960942

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15514398

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017535970

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017006131

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2015785159

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177011944

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017006131

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170324