WO2016048057A1 - Lng 저장탱크의 자연기화율 저감 방법 - Google Patents

Lng 저장탱크의 자연기화율 저감 방법 Download PDF

Info

Publication number
WO2016048057A1
WO2016048057A1 PCT/KR2015/010083 KR2015010083W WO2016048057A1 WO 2016048057 A1 WO2016048057 A1 WO 2016048057A1 KR 2015010083 W KR2015010083 W KR 2015010083W WO 2016048057 A1 WO2016048057 A1 WO 2016048057A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
storage tank
vacuum pump
insulation layer
lng storage
Prior art date
Application number
PCT/KR2015/010083
Other languages
English (en)
French (fr)
Inventor
신정섭
박성우
김용태
유현수
황범석
강중규
Original Assignee
대우조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대우조선해양 주식회사 filed Critical 대우조선해양 주식회사
Priority to US15/513,443 priority Critical patent/US20170299118A1/en
Priority to SG11201702109UA priority patent/SG11201702109UA/en
Priority to CN201580051682.1A priority patent/CN107076357A/zh
Priority to EP15845368.8A priority patent/EP3199446A4/en
Publication of WO2016048057A1 publication Critical patent/WO2016048057A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/12Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge with provision for thermal insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/02Wall construction
    • B65D90/06Coverings, e.g. for insulating purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/001Thermal insulation specially adapted for cryogenic vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0375Thermal insulations by gas
    • F17C2203/0379Inert
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0631Three or more walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/068Special properties of materials for vessel walls
    • F17C2203/0682Special properties of materials for vessel walls with liquid or gas layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0341Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/013Single phase liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0626Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0631Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0642Composition; Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • F17C2260/033Dealing with losses due to heat transfer by enhancing insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the present invention relates to a method for reducing the natural vaporization rate of the LNG storage tank, and more particularly to a method for reducing the natural vaporization rate of LNG stored in the storage tank by improving the thermal insulation performance of the LNG storage tank.
  • LNG is obtained by cooling natural gas to a cryogenic temperature of about -163 ° C, and its volume is drastically reduced compared to that of gas, which is very suitable for long distance transportation by sea.
  • the LNG Carrier is for loading LNG to unload LNG to land requirements by operating the sea with LNG, and for this purpose, the LNG carrier includes a storage tank capable of withstanding the cryogenic temperature of LNG.
  • Storage tanks can be classified into independent tank type and membrane type depending on whether the load of the cargo directly acts on the insulation.
  • Membrane type storage tank is divided into GTT NO 96 type and Mark III type, and independent tank type storage tank is divided into MOSS type and IHI-SPB type.
  • the GTT NO 96 and GTT Mark III types were formerly called GT and TGZ types.In 1995, Gaz Transport (GT) and Technigaz (TGZ) were renamed GTT (Gaztransport & Technigaz), respectively.
  • Type 96, TGZ type is renamed and used GTT Mark III type.
  • Plywood is widely used as a material of the insulation box or insulation panel.
  • Plywood is the most competitive material among wood plywood, which can satisfy the role of load-bearing structural material, insulation material to prevent heat invasion from the outside, and the role of a container for storing and storing other materials. It is evaluated.
  • the plywood has a moisture content of about 10% to 15%, and the lower the moisture content, the lower the thermal conductivity of the plywood.
  • the thermal conductivity of the plywood is lowered, the thermal conductivity of the insulation box or the insulation panel itself is also lowered, which in turn increases the thermal insulation performance of the storage tank.
  • the plywood used in the conventional LNG storage tank has a water content of about 10% to 15% and has a higher thermal conductivity than that of the insulation box including the plywood or the insulation panel itself. Therefore, the plywood used in the conventional LNG storage tanks is a factor that hinders the thermal insulation performance of the insulation box or the insulation panel, and eventually reduces the BOR (Boil-off Rate) of LNG stored in the storage tank. The height became a factor.
  • the present invention is to solve the problems of the prior art, it is an object of the present invention to provide a method for reducing the natural vaporization rate of the LNG storage tank, including the step of lowering the internal pressure of the LNG storage tank insulation layer by operating a vacuum pump.
  • the step of manufacturing an LNG storage tank comprising a primary heat insulating layer and a secondary heat insulating layer; Connecting one end of a second vacuum hose to the secondary thermal insulation layer; Connecting the other end of the second vacuum hose to a vacuum pump; And lowering an internal pressure of the secondary insulation layer by operating the vacuum pump, and making the inside of the secondary insulation layer into a vacuum state to lower the moisture content of the plywood included in the secondary insulation layer.
  • a method of reducing the natural vaporization rate is provided.
  • the method of reducing the natural vaporization rate of the LNG storage tank may include connecting one end of the first vacuum hose to the primary heat insulation layer of the LNG storage tank; Connecting the other end of the first vacuum hose to the vacuum pump; And lowering an internal pressure of the primary insulation layer by operating the vacuum pump, and making the interior of the primary insulation layer into a vacuum state to lower the moisture content of the plywood included in the primary insulation layer.
  • the internal pressure of the primary heat insulation layer may be continuously maintained higher than the internal pressure of the secondary heat insulation layer.
  • a plurality of vacuum pumps may be installed, and each of the vacuum pumps may be connected to the other end of the first vacuum hose and the other end of the second vacuum hose.
  • the first vacuum hose and the second vacuum hose are respectively installed as many as the number of the vacuum pump so that the other end of one of the first vacuum hose and the other end of one of the second vacuum hose may be connected to one vacuum pump. Can be.
  • One end of the first vacuum hose may be connected to the primary heat insulation layer, one end of the second vacuum hose may be connected to the secondary heat insulation layer, and the other end of the first vacuum hose may be the number of the vacuum pumps.
  • Each other end branched by a branch may be connected to the respective vacuum pump, and the other end of the second vacuum hose may be branched by the number of the vacuum pumps, and each other end branched may be the respective vacuum.
  • the other end of the first vacuum hose may be connected to a first vacuum pump, and the other end of the second vacuum hose may be connected to a second vacuum pump.
  • the first vacuum pump and the second vacuum pump may be provided in plural numbers, each of the first vacuum pumps may be connected to the other end of the first vacuum hose, and each of the second vacuum pumps may be connected to the second vacuum pump.
  • the other end of the hose can be connected.
  • the first vacuum hose is installed as many as the number of the first vacuum pump so that the other end of one of the first vacuum hose can be connected to each of the first vacuum pump, the second vacuum hose is the second vacuum pump The second end of one of the second vacuum hose may be connected to each of the second vacuum pump is installed as the number of.
  • One end of the first vacuum hose may be connected to the primary heat insulation layer, one end of the second vacuum hose may be connected to the secondary heat insulation layer, and the other end of the first vacuum hose may be connected to the first vacuum pump.
  • Each of the other ends branched and branched by the number of may be connected to each of the first vacuum pumps, and the other end of the second vacuum hose may be branched and branched by the number of the second vacuum pumps.
  • An end can be connected with each said second vacuum pump.
  • the secondary heat insulating layer may further comprise the step of supplying a gas having a temperature above room temperature.
  • the gas may be any one of argon, helium, and nitrogen.
  • At least one of the primary insulation layer and the secondary insulation layer may be maintained in a vacuum state.
  • the method of reducing the natural vaporization rate of the LNG storage tank may further include supplying a gas to at least one of the primary insulation layer and the secondary insulation layer after the operation of lowering the moisture content of the plywood.
  • the gas may be any one of argon, helium, and nitrogen.
  • an LNG storage tank including a heat insulating layer; Connecting one end of the vacuum hose to the thermal insulation layer; Connecting the other end of the vacuum hose to a vacuum pump; And lowering an internal pressure of the insulation layer by operating the vacuum pump, and making the interior of the insulation layer into a vacuum state to lower the moisture content of the plywood included in the insulation layer.
  • a vacuum hose that is connected to the insulating layer and one end of the LNG storage tank; And a vacuum pump connected to the other end of the vacuum hose, wherein the vacuum pump is operated to lower the moisture content of the plywood included in the insulation layer by operating the vacuum pump to make the interior of the insulation layer into a vacuum state.
  • the vacuum device may further include a vacuum gauge for measuring the air pressure inside the heat insulation layer.
  • the vacuum device may further include a vacuum filter installed on the vacuum hose to filter out impurities.
  • the method of reducing the natural vaporization rate of the LNG storage tank of the present invention it is possible to lower the water content of the plywood used in the LNG storage tank, it is possible to increase the thermal conductivity of the insulation box and the insulation panel including the plywood, LNG storage tank Increasing the insulation performance of the LNG can lower the BOR of LNG stored in the storage tank.
  • LNG storage tanks must carry liquid LNG, and the vaporization point of LNG is very low (about -162 ° C), so it is easily vaporized. Therefore, preventing LNG from vaporizing as much as possible during transportation is one of the most important challenges in LNG storage tank design. Therefore, lowering the BOR of LNG in the LNG storage tank means that the LNG transportation can be carried out efficiently and economically.
  • the method of reducing the natural vaporization rate of the LNG storage tank of the present invention it is possible to satisfy the role as a structural material, a heat insulating material, etc. instead of using another material having a higher moisture content than the plywood as the heat insulating material used in the LNG storage tank.
  • plywood which is the most competitive material among those materials, while reducing the moisture content of the plywood, it is possible to lower the thermal conductivity of the LNG storage tank while still adopting the advantages of the plywood.
  • the plywood is vacuum dried while the LNG storage tank is dried according to the existing method, the water content of the plywood can be easily and quickly reduced.
  • FIG. 1 is a side view schematically showing an LNG storage tank and a vacuum apparatus used in the first preferred embodiment of the present invention.
  • FIG. 2 is a side view schematically showing an LNG storage tank and a vacuum apparatus used in the second preferred embodiment of the present invention.
  • 3 is a state diagram of water according to changes in temperature and pressure.
  • FIG. 4 is a graph schematically illustrating a change in air pressure inside the heat insulation layer according to a preferred embodiment of the present invention.
  • FIG. 5 is a flowchart schematically showing a method for reducing a natural vaporization rate of an LNG storage tank according to a first embodiment of the present invention.
  • FIG. 6 is a flow chart schematically showing a method for reducing the natural vaporization rate of the LNG storage tank according to a second embodiment of the present invention.
  • FIG. 1 is a side view schematically showing an LNG storage tank and a vacuum apparatus used in the first preferred embodiment of the present invention.
  • the LNG storage tank 100 may include an internal space 110 in which LNG is stored; A primary heat insulation layer 120 installed to surround the outside of the internal space 110; It includes; a secondary heat insulating layer 121 is installed to surround the outside of the primary heat insulating layer 120.
  • the LNG storage tank 100, the secondary heat insulating layer 121 is installed on the hull, the secondary sealing wall is installed on the secondary heat insulating layer, the primary heat insulating layer 120 is installed on the secondary sealing wall, 1 The primary sealing wall is installed on the primary heat insulating layer.
  • the primary sealing wall and the secondary sealing wall serve to prevent LNG from flowing out of the storage tank 100, and the primary heat insulating layer 120 and the secondary heat insulating layer 121 separate the internal space 110 from the outside. Insulated with, serves to maintain the temperature of the internal space 110 so that LNG stored in the internal space 110 is not vaporized.
  • Vacuum device 200 of the present embodiment the first vacuum gauge 210 for measuring the air pressure inside the primary heat insulating layer 120; A second vacuum gauge 211 measuring air pressure inside the secondary heat insulation layer 121; A first vacuum hose 220 to which one end of the primary heat insulation layer 120 is connected; A second vacuum hose 221 to which one end of the second heat insulating layer 121 is connected; A first vacuum filter 230 installed on the first vacuum hose 220; A second vacuum filter 231 installed on the second vacuum hose 221; And a vacuum pump 240 to which the other end of the first vacuum hose 220 and the other end of the second vacuum hose 221 are connected.
  • the first vacuum gauge 210 is connected to the primary heat insulation layer 120 of the LNG storage tank 100 to measure the air pressure inside the primary heat insulation layer 120
  • the second vacuum gauge 211 is the LNG storage tank 100. It is connected to the secondary heat insulating layer 121 of) to measure the air pressure inside the secondary heat insulating layer 121.
  • the vacuum system (210, 211) can be confirmed in real time the pressure inside the heat insulating layer (120, 121) of the LNG storage tank 100, because the secondary heat insulating layer 121 is formed while surrounding the outside of the first heat insulating layer (120) If the pressure of the primary heat insulation layer 120 is smaller than the pressure of the secondary heat insulation layer 121, there is a risk that the storage tank 100 is damaged. Therefore, in carrying out the present invention, it is very important to maintain the pressure of the primary thermal insulation layer 120 higher than the pressure of the secondary thermal insulation layer 121, and the vacuum insulation layers 210 and 211 of the primary thermal insulation layer 120 are used. It may be continuously checked whether the pressure is maintained higher than the pressure of the secondary heat insulating layer 121.
  • vacuum drying refers to a drying method of evaporating moisture of a material by lowering the atmospheric pressure to a vapor pressure at which moisture can evaporate, and checking the pressure of the heat insulation layers 120 and 121 through the vacuum systems 210 and 211 to evaporate well. It is possible to check whether or not it is being made and how long it will be dried.
  • 3 is a state diagram of water according to changes in temperature and pressure.
  • the pressure inside the heat insulation layers 120 and 121 is adjusted to be as close as possible to the vapor pressure.
  • FIG. 4 is a graph schematically illustrating a change in air pressure inside the heat insulation layer according to a preferred embodiment of the present invention.
  • the air pressure inside the heat insulation layers 120 and 121 is approximately equal to atmospheric pressure before the vacuum drying method according to the present embodiment (C) is performed. Then, when (D) the vacuum drying method of this embodiment is carried out, the air pressure inside the heat insulation layers 120 and 121 is gradually reduced.
  • the temperature of the plywood is kept constant, but in the present invention, since the evaporation of the moisture of the plywood inside the well-insulated LNG storage tank 100, the heat of vaporization necessary for evaporating the moisture of the plywood is external May not be supplied sufficiently. If the heat of vaporization is not supplied enough, the temperature of the plywood will drop in the process of evaporating the moisture of the plywood.However, if the process of evaporating the plywood is continued, the moisture of the plywood will be reduced and the required heat of vaporization will be less, The temperature difference between the wah increases and the heat supply increases, so the temperature of the plywood rises again.
  • the temperature of the plywood which has been lowered, may continue to fall, which may occur.
  • the moisture in the plywood becomes ice.
  • Sublimation of the ice inside the plywood directly with water vapor greatly increases the vacuum drying time, so when the temperature of the plywood drops below zero, it warms up by supplying a warm gas.
  • the warm air supplied when the temperature of the plywood drops to below zero is preferably an inert gas such as argon (Ar), helium (He), or nitrogen (N2), which is included in the outside air when supplying air outside the insulation layer.
  • an inert gas such as argon (Ar), helium (He), or nitrogen (N2)
  • Ar argon
  • He helium
  • N2 nitrogen
  • the vacuum hoses 220 and 221 connect the vacuum pump 240 and the heat insulation layers 120 and 121 of the LNG storage tank 100 so that the air inside the heat insulation layers 120 and 121 is connected to the vacuum hoses 220 and 221. Through the vacuum pump 240 to be let out.
  • One end of the first vacuum hose 220 is connected to the primary heat insulating layer 120, and the other end of the first vacuum hose 220 is connected to the vacuum pump 240.
  • one end of the second vacuum hose 221 is connected to the secondary heat insulating layer 121, the other end of the second vacuum hose 221 is connected to the vacuum pump 240.
  • the vacuum filter serves to filter out minute impurities sucked together with the air along the vacuum hoses 220 and 221.
  • the heat insulating material particles may enter the vacuum hoses 220 and 221, and the vacuum hoses 220 and 221 are clogged or vacuumed by impurities by filtering out impurities such as heat insulating particles with a vacuum filter.
  • the pump 240 is not broken.
  • the first vacuum filter 230 is installed on the first vacuum hose 220, and the second vacuum filter 231 is installed on the second vacuum hose 221.
  • the vacuum pump 240 is installed to lower the pressure in the heat insulation layers 120 and 121 by drawing out the air in the heat insulation layers 120 and 121 through the vacuum hoses 220 and 221 connected to the other end of the vacuum pump 240. do.
  • the vacuum pump 240 of the present embodiment has a first vacuum hose 220 connected to the primary heat insulating layer 120 and a second vacuum hose 221 connected to the secondary heat insulating layer 121 to one vacuum pump 240. Are all connected.
  • the vacuum pump 240 of the present embodiment when the vacuum pump 240 of the present embodiment is operated, the air inside the first heat insulating layer 120 and the air inside the second heat insulating layer 121 are simultaneously exhausted, so that the pressure inside the first heat insulating layer 120 is reduced to the second heat insulating layer.
  • the second vacuum hose 221 is first connected to the vacuum pump 240 to lower the air pressure in the secondary heat insulation layer 121, and then the first vacuum hose 220 is vacuumed. It is preferable to carry out a vacuum drying method by additionally connecting to the pump 240 to lower the air pressure of the primary heat insulating layer 120 and the secondary heat insulating layer 121 at the same time.
  • the vacuum drying method is applied only to the secondary thermal insulation layer 121, and the vacuum insulation method is not performed on the primary thermal insulation layer 120. You can also consider the solution.
  • a plurality of vacuum pumps 240 may be installed.
  • the vacuum pump 240 of the present embodiment may have a first vacuum hose 220 and a second vacuum hose 221 on each vacuum pump 240 even when a plurality of vacuum pumps 240 are installed. Are all connected.
  • first vacuum hose 220 and the second vacuum hose 221 may be installed as many as the number of the vacuum pump 240 so that one first vacuum hose 220 and one second vacuum may be connected to the 240.
  • the hose 221 may be installed in such a manner as to be connected to one vacuum pump 240.
  • the heat insulating layers 120 and 121 of the LNG storage tank 100 may be maintained in a vacuum state. Since heat may also be transferred by gas convection, the heat insulating layers 120 and 121 are vacuumed so that external heat is not transferred to LNG inside the storage tank 100 by convection of the gas inside the heat insulating layers 120 and 121. It is to avoid.
  • an inert gas such as argon (Ar), helium (He), and nitrogen (N 2) into the heat insulation layers 120 and 121.
  • Ar argon
  • He helium
  • N 2 nitrogen
  • the plywood can absorb moisture contained in the outside air, and the inert gas is safe because it has low reactivity with other materials. In general, a lot of cheap nitrogen is used.
  • FIG. 2 is a side view schematically showing an LNG storage tank and a vacuum apparatus used in the second preferred embodiment of the present invention.
  • the LNG storage tank 100 of the present embodiment like the LNG storage tank 100 of the first embodiment, the internal space 110 in which the LNG is stored; A primary heat insulation layer 120 installed to surround the outside of the internal space 110; It includes; a secondary heat insulating layer 121 is installed to surround the outside of the primary heat insulating layer 120.
  • the vacuum apparatus 200 of the present embodiment like the vacuum apparatus 200 of the first embodiment, the first vacuum gauge 210 for measuring the air pressure inside the primary heat insulating layer 120; A second vacuum gauge 211 measuring air pressure inside the secondary heat insulation layer 121; A first vacuum hose 220 to which one end of the primary heat insulation layer 120 is connected; A second vacuum hose 221 to which one end of the second heat insulating layer 121 is connected; A first vacuum filter 230 installed on the first vacuum hose 220; A second vacuum filter 231 installed on the second vacuum hose 221; And vacuum pumps 241 and 242.
  • the vacuum pumps 241 and 242 of the present embodiment are connected to the first vacuum hose 220 to extract the air of the primary heat insulating layer 120. (241); And a second vacuum pump 242 connected to the second vacuum hose 221 to extract air from the secondary heat insulating layer 121.
  • the vacuum pumps 241 and 242 of the present embodiment can separate the air of the primary heat insulating layer 120 and the air of the secondary heat insulating layer 121 separately, so as to remove the first vacuum hose 220 as in the first embodiment. It is not necessary to connect to the first vacuum pump 241 before the two vacuum hoses 221. However, since the pressure inside the primary heat insulating layer 120 must be maintained higher than the pressure inside the secondary heat insulating layer 121, the first vacuum pump 241 and the second vacuum are operated after the first operation of the second vacuum pump 242 alone. It is desirable to operate the pumps 242 together.
  • the vacuum pumps 241 and 242 of the present embodiment may be provided in plural, and even if several vacuum pumps 241 and 242 are installed, the respective first vacuum pumps ( The first vacuum hose 220 is connected to the first heat insulating layer 120 at one end thereof and the second vacuum pump 242 is connected to the second vacuum hose 242 at one end thereof to the second heat insulating layer 121. 221 is connected.
  • one first vacuum hose 220 branches to provide a plurality of first vacuum pumps 241 as in the case of the first embodiment. May be connected and one second vacuum hose 221 is branched and connected to the plurality of second vacuum pumps 242, and the first vacuum hose 220 is installed as many as the number of the first vacuum pumps 241 and the second The vacuum hose 221 is installed as many as the number of the second vacuum pump 242 so that one first vacuum hose 220 is connected with one first vacuum pump 241 and one second vacuum hose 221 is It may be installed in a manner connected with one second vacuum pump 242.
  • the first vacuum gauge 210 of the present embodiment is connected to the primary heat insulation layer 120 of the LNG storage tank 100 to control the air pressure inside the primary heat insulation layer 120.
  • the second vacuum gauge 211 of the present embodiment is connected to the secondary heat insulating layer 121 of the LNG storage tank 100 in the same manner as the second vacuum gauge 211 of the second embodiment and is inside the secondary heat insulating layer 121. Measure the atmospheric pressure.
  • the vacuum hoses 220 and 221 of the present embodiment like the vacuum hoses 220 and 221 of the first embodiment, connect the vacuum pumps 241 and 242 and the heat insulating layers 120 and 121 of the LNG storage tank 100 to each other.
  • the air in the heat insulation layers 120 and 121 may escape to the vacuum pumps 241 and 242 through the vacuum hoses 220 and 221.
  • first vacuum hose 220 of the present embodiment is connected to the primary heat insulating layer 120, and the other end of the first vacuum hose 220 is connected to the first vacuum pump 241.
  • first vacuum pump 241 one end of the second vacuum hose 221 is connected to the secondary heat insulating layer 121, the other end of the second vacuum hose 221 is connected to the second vacuum pump 242.
  • the vacuum filter of the present embodiment serves to filter out minute impurities sucked together with the air along the vacuum hoses 220 and 221, and the first vacuum filter 230 is the first vacuum. It is installed on the hose 220, and the second vacuum filter 231 is installed on the second vacuum hose 221.
  • FIG. 5 is a flowchart schematically showing a method for reducing a natural vaporization rate of an LNG storage tank according to a first embodiment of the present invention.
  • the natural vaporization rate reduction method of the LNG storage tank of the present embodiment the step of manufacturing the LNG storage tank 100 (S10); Connecting one end of the second vacuum hose 221 to the secondary heat insulation layer 121 (S20); Connecting one end of the first vacuum hose 220 to the primary heat insulation layer 120 (S30); Connecting the other end of the second vacuum hose 221 to the vacuum pump (S40); Operating the vacuum pump to lower the internal pressure of the secondary thermal insulation layer 121 (S50); Connecting the other end of the first vacuum hose 220 to a vacuum pump (S60); And lowering the internal pressure of the primary heat insulation layer 120 by operating the vacuum pump (S70).
  • Second vacuum hose 221 so that the internal pressure of the primary thermal insulation layer 120 can be continuously maintained higher than the internal pressure of the secondary thermal insulation layer 121 during the method of reducing the natural vaporization rate of the LNG storage tank of the present embodiment.
  • the first vacuum hose 220 By connecting the other end of the vacuum pump (S60) to operate the vacuum pump to lower the internal pressure of the first heat insulating layer 120 and the second heat insulating layer 121 at the same time (S70), or the other side of the second vacuum hose 221 Connecting the end to the vacuum pump (S40) and operating the vacuum pump to make the inside of the secondary heat insulating layer 121 in a vacuum state (S50) by connecting the other end of the first vacuum hose 220 to the vacuum pump (S60). The vacuum pump is operated to make the inside of the primary insulation layer 121 in a vacuum state (S70).
  • FIG. 6 is a flow chart schematically showing a method for reducing the natural vaporization rate of the LNG storage tank according to a second embodiment of the present invention.
  • the natural vaporization rate reduction method of the LNG storage tank according to the present embodiment may include manufacturing the LNG storage tank 100 in the same manner as the natural vaporization rate reduction method of the LNG storage tank according to the first embodiment (S11); Connecting one end of the second vacuum hose 221 to the secondary heat insulation layer 121 (S21); Connecting one end of the first vacuum hose 220 to the primary heat insulation layer 120 (S31); Connecting the other end of the second vacuum hose 221 to the vacuum pump (S41); Operating the vacuum pump to lower the internal pressure of the secondary thermal insulation layer 121 (S51); Connecting the other end of the first vacuum hose 220 to a vacuum pump (S61); And lowering the internal pressure of the primary heat insulating layer 120 by operating the vacuum pump (S71).
  • the first connected to the first vacuum hose 220 to extract the air of the primary heat insulating layer 120 Vacuum pump 241; And a second vacuum pump 242 connected to the second vacuum hose 221 to extract air from the secondary heat insulating layer 121, so that the other end of the second vacuum hose 221 is It is connected to the second vacuum pump 242 (S41), to operate the second vacuum pump 242 to lower the internal pressure of the secondary heat insulating layer 121 (S51), the other end of the first vacuum hose 220 Is connected to the first vacuum pump 241 (S61), to operate the first vacuum pump 241 to lower the internal pressure of the primary heat insulating layer 120 (S71).
  • the LNG storage of the first embodiment is stored. Unlike when performing the method of reducing the natural vaporization rate of the tank, the first vacuum hose 220 after the step (S41) of connecting the other end of the second vacuum hose 221 to the second vacuum pump 242 It is not necessary to perform the step (S61) of connecting the other end of the vacuum pump.
  • the internal pressure of the primary heat insulating layer 120 is continuously increased during the method of reducing the natural vaporization rate of the LNG storage tank of the present embodiment.
  • the second vacuum pump 242 is operated to lower the internal pressure of the second heat insulating layer 121 to some extent so as to be maintained higher than the internal pressure of the second heat insulating layer 121 (S51) and the first vacuum pump 241 and By operating the second vacuum pump 242 together to lower the internal pressure of the primary heat insulating layer 120 and the secondary heat insulating layer 121 at the same time (S71), or by operating the second vacuum pump 242 to the second heat insulating layer 121 After making the inside of the vacuum (S51) to operate the first vacuum pump 241 to make the inside of the primary heat insulating layer 120 in a vacuum (S71).
  • the method of reducing the natural vaporization rate of the LNG storage tank of the present embodiment is also similar to the method of reducing the natural vaporization rate of the LNG storage tank of the first embodiment, and one end of the first vacuum hose 220 is placed on the primary heat insulating layer 120. Connecting (S31); Connecting the other end of the first vacuum hose 220 to the first vacuum pump 241 (S61); And lowering the internal pressure of the primary heat insulating layer 120 by operating the first vacuum pump 241 (S71); omitted, without performing a vacuum drying method on the primary heat insulating layer 120, the secondary heat insulating layer ( Vacuum drying may be performed only on 121).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

LNG 저장탱크의 자연기화율 저감 방법이 개시된다. 상기 LNG 저장탱크의 자연기화율 저감 방법은, 1차 단열층 및 2차 단열층을 포함하는 LNG 저장탱크를 제작하는 단계; 상기 2차 단열층에 제 2 진공 호스의 일측 단부를 연결하는 단계; 상기 제 2 진공 호스의 타측 단부를 진공 펌프에 연결하는 단계; 및 상기 진공 펌프를 작동시켜 상기 2차 단열층의 내부 압력을 낮추는 단계;를 포함하고, 상기 2차 단열층 내부를 진공 상태로 만들어 상기 2차 단열층에 포함되는 플라이우드의 함수율을 낮춘다.

Description

LNG 저장탱크의 자연기화율 저감 방법
본 발명은 LNG 저장탱크의 자연기화율 저감 방법에 관한 것으로서, 더욱 구체적으로는 LNG 저장탱크의 단열 성능을 향상시켜 저장탱크 내부에 보관되어 있는 LNG의 자연기화율을 저감시키는 방법에 관한 것이다.
세계적으로 친환경 사업에 대한 관심이 증가하고 있는 가운데 석유, 석탄 등과 같은 기존의 에너지원을 대체할 수 있는 청정연료의 수요가 점차 증가하고 있다. 이러한 상황에서 천연가스는 청정성, 안정성, 편리성을 두루 갖춘 주요 에너지원으로 다양한 분야에서 사용되고 있다. 우리나라는 배관을 통해 천연가스를 직접 공급받는 미국이나 유럽과 달리 천연가스를 초저온으로 액화시킨 액화천연가스(Liquified Natural Gas, 이하, LNG라고 함.)를 도입하여 소비자에게 공급하고 있다. 따라서, 국내의 천연 가스의 수요증가와 함께 LNG를 저장하기 위한 저장탱크의 수요 역시 증가하고 있다.
LNG는 천연가스를 대략 -163℃의 극저온으로 냉각하여 얻어지는 것으로, 가스 상태일 때보다 그 부피가 대폭적으로 감소되므로 해상을 통한 원거리 운반에 매우 적합하다. LNG 운반선은, LNG를 싣고 바다를 운항하여 육상 소요처에 LNG를 하역하기 위한 것이며, 이를 위해 LNG의 극저온에 견딜 수 있는 저장탱크를 포함한다.
저장탱크는 단열재에 화물의 하중이 직접적으로 작용하는지 여부에 따라 독립탱크형(Independent Tank)과 멤브레인형(Membrane Type)으로 분류할 수 있다. 그 중 멤브레인형 저장탱크는 GTT NO 96형과 Mark Ⅲ형으로 나눠지며, 독립탱크형 저장탱크는 MOSS형과 IHI-SPB형으로 나눠진다. GTT NO 96형과 GTT Mark Ⅲ형은 종래 GT형과 TGZ형으로 불리던 것인데, 1995년 Gaz Transport(GT)사와 Technigaz(TGZ)사가 GTT(Gaztransport & Technigaz)사로 명칭이 변경되면서 각각 GT형은 GTT NO 96형으로, TGZ형은 GTT Mark Ⅲ형로 개칭되어 사용되고 있다.
LNG 저장탱크 중 멤브레인 타입의 경우 단열 박스나 단열 판넬에 의해 단열 성능을 확보하게 되는데, 단열 박스나 단열 판넬의 재료로 플라이우드(Plywood)가 많이 사용된다. 플라이우드는 나무 합판으로서, 하중을 견디는 구조재로서의 역할, 외부로부터 열 침입을 막아주는 단열재로서의 역할, 다른 재료를 보관 및 저장할 수 있는 용기의 역할 등을 동시에 만족시킬 수 있는 재료 중 가장 경쟁력 있는 재료로 평가받고 있다.
일반적으로 플라이우드는 10% 내지 15% 정도의 함수율을 가지는데, 함수율이 낮을수록 플라이우드의 열전도율이 낮아지게 된다. 플라이우드의 열전도율이 낮아지면, 단열 박스나 단열 판넬 자체의 열전도율도 낮아지게 되고, 결국 저장탱크의 단열 성능이 높아지게 된다.
종래의 LNG 저장탱크에 사용되던 플라이우드는, 함수율이 10% 내지 15% 정도로서, 플라이우드를 포함하는 단열 박스나 단열 판넬 자체의 열전도율보다 더 높은 열전도율을 가지고 있었다. 따라서, 종래의 LNG 저장탱크에 사용되던 플라이우드는 단열 박스나 단열 판넬의 단열 성능을 저해하는 요인이 되었고, 결국 저장탱크 내부에 저장되어 있는 LNG의 BOR(Boil-off Rate; 자연기화율)를 높이는 요인이 되었다.
본 발명은 이러한 종래 기술의 문제점을 해결하기 위한 것으로서, 진공 펌프를 작동시켜 LNG 저장탱크 단열층의 내부 압력을 낮추는 단계를 포함하는, LNG 저장탱크의 자연기화율 저감 방법을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위한 본 발명의 일 측면에 따르면, 1차 단열층 및 2차 단열층을 포함하는 LNG 저장탱크를 제작하는 단계; 상기 2차 단열층에 제 2 진공 호스의 일측 단부를 연결하는 단계; 상기 제 2 진공 호스의 타측 단부를 진공 펌프에 연결하는 단계; 및 상기 진공 펌프를 작동시켜 상기 2차 단열층의 내부 압력을 낮추는 단계;를 포함하고, 상기 2차 단열층 내부를 진공 상태로 만들어 상기 2차 단열층에 포함되는 플라이우드의 함수율을 낮추는, LNG 저장탱크의 자연기화율 저감 방법이 제공된다.
상기 LNG 저장탱크의 자연기화율 저감 방법은, 상기 LNG 저장탱크의 1차 단열층에 제 1 진공 호스의 일측 단부를 연결하는 단계; 상기 제 1 진공 호스의 타측 단부를 상기 진공 펌프에 연결하는 단계; 및 상기 진공 펌프를 작동시켜 상기 1차 단열층의 내부 압력을 낮추는 단계;를 더 포함할 수 있고, 상기 1차 단열층 내부를 진공 상태로 만들어 상기 1차 단열층에 포함되는 플라이우드의 함수율을 낮출 수 있으며, 상기 LNG 저장탱크의 자연기화율 저감 방법을 실시하는 동안 계속적으로 상기 1차 단열층의 내부 압력은 상기 2차 단열층의 내부 압력보다 크게 유지될 수 있다.
상기 진공 펌프는 다수 개 설치될 수 있고, 각각의 상기 진공 펌프에는 상기 제 1 진공 호스의 타측 단부 및 상기 제 2 진공 호스의 타측 단부가 연결될 수 있다.
상기 제 1 진공 호스 및 상기 제 2 진공 호스는 각각 상기 진공 펌프의 개수만큼 설치되어 하나의 상기 제 1 진공 호스의 타측 단부 및 하나의 상기 제 2 진공 호스의 타측 단부는 하나의 상기 진공 펌프와 연결될 수 있다.
상기 제 1 진공 호스의 일측 단부는 상기 1차 단열층과 연결될 수 있고, 상기 제 2 진공 호스의 일측 단부는 상기 2차 단열층과 연결될 수 있으며, 상기 제 1 진공 호스의 타측 단부는 상기 진공 펌프의 개수만큼 분기되어 분기된 각각의 상기 타측 단부는 각각의 상기 진공 펌프와 연결될 수 있고, 상기 제 2 진공 호스의 타측 단부는 상기 진공 펌프의 개수만큼 분기되어 분기된 각각의 상기 타측 단부는 각각의 상기 진공 펌프와 연결될 수 있다.
상기 제 1 진공 호스의 타측 단부는 제 1 진공 펌프에 연결될 수 있고, 상기 제 2 진공 호스의 타측 단부는 제 2 진공 펌프에 연결될 수 있다.
상기 제 1 진공 펌프 및 상기 제 2 진공 펌프는 다수 개 설치될 수 있고, 각각의 제 1 진공 펌프에는 상기 제 1 진공 호스의 타측 단부가 연결될 수 있으며, 각각의 제 2 진공 펌프에는 상기 제 2 진공 호스의 타측 단부가 연결될 수 있다.
상기 제 1 진공 호스는 상기 제 1 진공 펌프의 개수만큼 설치되어 각각의 상기 제 1 진공 펌프에는 하나의 상기 제 1 진공 호스의 타측 단부가 연결될 수 있고, 상기 제 2 진공 호스는 상기 제 2 진공 펌프의 개수만큼 설치되어 각각의 상기 제 2 진공 펌프에는 하나의 상기 제 2 진공 호스의 타측 단부가 연결될 수 있다.
상기 제 1 진공 호스의 일측 단부는 상기 1차 단열층과 연결될 수 있고, 상기 제 2 진공 호스의 일측 단부는 상기 2차 단열층과 연결될 수 있으며, 상기 제 1 진공 호스의 타측 단부는 상기 제 1 진공 펌프의 개수만큼 분기되어 분기된 각각의 상기 타측 단부는 각각의 상기 제 1 진공 펌프와 연결될 수 있고, 상기 제 2 진공 호스의 타측 단부는 상기 제 2 진공 펌프의 개수만큼 분기되어 분기된 각각의 상기 타측 단부는 각각의 상기 제 2 진공 펌프와 연결될 수 있다.
상기 LNG 저장탱크의 자연기화율 저감 방법은, 상기 1차 단열층 및 상기 2차 단열층 내부의 기압이 일정하게 유지되는 시간을 조절하여 플라이우드의 함수율을 조절할 수 있다.
상기 LNG 저장탱크의 자연기화율 저감 방법은, 상기 1차 단열층에 포함되는 플라이우드의 온도가 영하로 떨어지면 상기 1차 단열층에 상온 이상의 온도를 가지는 기체를 공급하고 상기 2차 단열층에 포함되는 플라이우드의 온도가 영하로 떨어지면 상기 2차 단열층에 상온 이상의 온도를 가지는 기체를 공급하는 단계를 더 포함할 수 있다.
상기 기체는, 아르곤, 헬륨 및 질소 중 어느 하나일 수 있다.
상기 플라이우드의 함수율을 낮추는 작업 이후에도 상기 1차 단열층 및 상기 2차 단열층 중 하나 이상은 진공 상태로 유지될 수 있다.
상기 LNG 저장탱크의 자연기화율 저감 방법은, 상기 플라이우드의 함수율을 낮추는 작업 이후에 상기 1차 단열층 및 상기 2차 단열층 중 하나 이상에 기체를 공급하는 단계를 더 포함할 수 있다.
상기 기체는, 아르곤, 헬륨 및 질소 중 어느 하나일 수 있다.
상기 목적을 달성하기 위한 본 발명의 다른 측면에 따르면, 단열층을 포함하는 LNG 저장탱크를 제작하는 단계; 상기 단열층에 진공 호스의 일측 단부를 연결하는 단계; 상기 진공 호스의 타측 단부를 진공 펌프에 연결하는 단계; 및 상기 진공 펌프를 작동시켜 상기 단열층의 내부 압력을 낮추는 단계;를 포함하고, 상기 단열층 내부를 진공 상태로 만들어 상기 단열층에 포함되는 플라이우드의 함수율을 낮추는, LNG 저장탱크의 자연기화율 저감 방법이 제공된다.
상기 목적을 달성하기 위한 본 발명의 또 다른 측면에 따르면, LNG 저장탱크의 단열층과 일측 단부가 연결되는 진공 호스; 및 상기 진공 호스의 타측 단부가 연결되는 진공 펌프;를 포함하고, 상기 진공 펌프를 작동시켜 상기 단열층 내부를 진공 상태로 만들어 상기 단열층에 포함되는 플라이우드의 함수율을 낮추는, 진공 장치가 제공된다.
상기 진공 장치는, 상기 단열층 내부의 기압을 측정하는 진공계를 더 포함할 수 있다.
상기 진공 장치는, 상기 진공 호스 상에 설치되어 불순물을 걸러내는 진공 필터를 더 포함할 수 있다.
본 발명의 LNG 저장탱크의 자연기화율 저감 방법에 의하면, LNG 저장탱크에 사용되는 플라이우드의 함수율을 낮출 수 있어, 플라이우드를 포함하는 단열 박스 및 단열 판넬의 열전도율을 높일 수 있고, LNG 저장탱크의 단열 성능을 높여 저장탱크 내부에 저장되어 있는 LNG의 BOR을 낮출 수 있다.
LNG 저장탱크는 액체 상태의 LNG를 운반하여야 하고, LNG의 기화점이 매우 낮으므로(약 -162℃) 쉽게 기화된다. 따라서, 운반 도중 LNG가 최대한 기화되지 않도록 하는 것은 LNG 저장탱크 설계의 가장 중요한 과제 중 하나이다. 따라서, LNG 저장탱크 내부의 LNG의 BOR를 낮출 수 있다는 것은 LNG 운반을 효율적이고 경제적으로 할 수 있다는 것을 의미한다.
또한, 본 발명의 LNG 저장탱크의 자연기화율 저감 방법에 의하면, LNG 저장탱크에 사용되는 단열재로서 플라이우드보다 함수율이 높은 다른 재료를 사용하는 것이 아니라, 구조재, 단열재 등으로서의 역할을 동시에 만족시킬 수 있는 재료 중 가장 경쟁력 있는 재료인 플라이우드를 그대로 사용하면서도 플라이우드의 함수율을 낮추는 방법을 택함으로써, 플라이우드의 장점을 그대로 채용하면서도 LNG 저장탱크의 열전도율을 낮출 수 있다.
뿐만 아니라, 기존의 공법대로 LNG 저장탱크를 건조한 상태에서 플라이우드를 진공 건조시키므로, 간편하고 빠르게 플라이우드의 함수율을 낮출 수 있다.
도 1은 본 발명의 바람직한 제 1 실시예에 사용되는 LNG 저장탱크 및 진공 장치를 개략적으로 도시한 측면도이다.
도 2는 본 발명의 바람직한 제 2 실시예에 사용되는 LNG 저장탱크 및 진공 장치를 개략적으로 도시한 측면도이다.
도 3은 온도 및 압력의 변화에 따른 물의 상태도이다.
도 4는 본 발명의 바람직한 실시예에 따른 단열층 내부의 기압 변화를 개략적으로 도시한 그래프이다.
도 5는 본 발명의 바람직한 제 1 실시예에 따른 LNG 저장탱크의 자연기화율 저감 방법을 개략적으로 도시한 순서도이다.
도 6은 본 발명의 바람직한 제 2 실시예에 따른 LNG 저장탱크의 자연기화율 저감 방법을 개략적으로 도시한 순서도이다.
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다. 하기 실시예의 LNG 저장탱크의 자연기화율 저감 방법은, LNG 운반을 위해 설계된 모든 해양 구조물에 적용될 수 있다. 또한, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
도 1은 본 발명의 바람직한 제 1 실시예에 사용되는 LNG 저장탱크 및 진공 장치를 개략적으로 도시한 측면도이다.
도 1을 참조하면, LNG 저장탱크(100)는, LNG가 보관되는 내부 공간(110); 내부 공간(110)의 외부를 둘러싸도록 설치되는 1차 단열층(120); 1차 단열층(120)의 외부를 둘러싸도록 설치되는 2차 단열층(121);을 포함한다.
일반적으로 LNG 저장탱크(100)는, 선체 위에 2차 단열층(121)이 설치되고, 2차 단열층 위에 2차 밀봉벽이 설치되며, 2차 밀봉벽 위에 1차 단열층(120)이 설치되고, 1차 단열층 위에 1차 밀봉벽이 설치된다.
1차 밀봉벽 및 2차 밀봉벽은 LNG가 저장탱크(100) 외부로 유출되지 않도록 막아주는 역할을 하며, 1차 단열층(120) 및 2차 단열층(121)은, 내부 공간(110)을 외부와 단열시켜, 내부 공간(110)에 보관되는 LNG가 기화되지 않도록 내부 공간(110)의 온도를 유지하는 역할을 한다.
본 실시예의 진공 장치(200)는, 1차 단열층(120) 내부의 기압을 측정하는 제 1 진공계(210); 2차 단열층(121) 내부의 기압을 측정하는 제 2 진공계(211); 1차 단열층(120)과 일측 단부가 연결되는 제 1 진공 호스(220); 2차 단열층(121)과 일측 단부가 연결되는 제 2 진공 호스(221); 제 1 진공 호스(220) 상에 설치되는 제 1 진공 필터(230); 제 2 진공 호스(221) 상에 설치되는 제 2 진공 필터(231); 및 제 1 진공 호스(220)의 타측 단부 및 제 2 진공 호스(221)의 타측 단부가 연결되는 진공 펌프(240);를 포함한다.
제 1 진공계(210)는, LNG 저장탱크(100)의 1차 단열층(120)과 연결되어 1차 단열층(120) 내부의 기압을 측정하고, 제 2 진공계(211)는, LNG 저장탱크(100)의 2차 단열층(121)과 연결되어 2차 단열층(121) 내부의 기압을 측정한다.
진공계(210, 211)를 통하여 LNG 저장탱크(100)의 단열층(120, 121) 내부의 기압을 실시간으로 확인할 수 있는데, 1차 단열층(120) 외부를 둘러싸면서 2차 단열층(121)이 형성되므로, 1차 단열층(120)의 압력이 2차 단열층(121)의 압력보다 더 작아지면 저장탱크(100)가 파손될 위험이 있다. 따라서, 본 발명을 실시함에 있어서 1차 단열층(120)의 압력을 2차 단열층(121)의 압력보다 높게 유지하는 것은 매우 중요하고, 진공계(210, 211)를 이용하여 1차 단열층(120)의 압력이 2차 단열층(121)의 압력보다 높게 유지되는지 계속적으로 확인할 수 있다.
또한, 진공 건조란, 수분이 증발할 수 있는 증기압까지 기압을 낮추어 재료의 수분을 증발시키는 건조법을 의미하는데, 진공계(210, 211)를 통해 단열층(120, 121)의 압력을 확인하여 증발이 잘 되고 있는지 여부를 체크하고 언제까지 건조시킬 것인지 여부를 판단할 수 있다.
도 3은 온도 및 압력의 변화에 따른 물의 상태도이다.
도 3을 참조하면, (X)융해 곡선, (Y)증기압 곡선 및 (Z)승화 곡선이 만나는 점인 (T)삼중점의 온도보다 높은 온도에서 압력을 증기압보다 낮추면 (A)액체 상태의 물이 (B)기체 상태의 수증기로 변함을 알 수 있다. 진공 건조는 같은 온도에서 압력을 낮추면 기화하는 물의 성질을 이용한 것이다.
본 실시예에서는 효율적인 진공 건조를 위하여 증기압보다 낮은 압력을 유지하되 최대한 증기압에 가까운 압력이 되도록 단열층(120, 121) 내부의 압력을 조절한다.
도 4는 본 발명의 바람직한 실시예에 따른 단열층 내부의 기압 변화를 개략적으로 도시한 그래프이다.
도 4를 참조하면, 단열층(120, 121) 내부의 기압은, (C)본 실시예에 따른 진공 건조 방법을 실시하기 전에는 대기압과 대략 같다. 그러다가 (D)본 실시예의 진공 건조 방법을 실시하면 단열층(120, 121) 내부의 기압은 점점 줄어든다.
진공 장치(200)로 계속적으로 기압을 낮추더라도 (E)단열층(120, 121) 내부의 기압이 거의 일정하게 유지되는 구간이 있는데, 이는 단열층(120, 121) 내부의 기압이 물을 기화시킬 수 있을 만큼 낮아져, 플라이우드에 포함되어 있던 수분이 증발하여 수증기가 되었기 때문이다. 즉, 진공 장치(200)로 단열층(120, 121) 내부의 기압을 낮추는 만큼 수증기가 단열층(120, 121) 내부의 기압을 높이므로 단열층(120, 121) 내부의 기압이 거의 일정하게 유지되는 것이다. 그러다가 플라이우드에 포함되어 있던 수분이 거의 모두 증발하면 더 이상 수증기가 단열층(120, 121) 내부의 기압을 높일 수가 없으므로 (F)단열층(120, 121) 내부의 기압은 다시 줄어든다.
따라서, 계속적으로 진공 건조 방법을 실시하더라도 (E)단열층(120, 121) 내부의 기압이 거의 일정하게 유지된다면, 플라이우드의 수분이 증발하고 있음을 확인할 수 있다. 또한, (E)단열층(120, 121) 내부의 기압이 거의 일정하게 유지되는 동안 플라이우드의 수분이 증발하는 것이므로, (E)단열층(120, 121) 내부의 기압이 거의 일정하게 유지되는 시간을 조절하여 플라이우드의 함수율을 조절할 수 있다.
진공계(210, 211)를 통해 단열층(120, 121) 내부의 기압을 체크하여, 플라이우드의 수분이 증발하고 있는지 여부를 확인하고, 수분 증발 시간을 조절하여 플라이우드의 함수율을 조절할 수 있는 것이다.
일반적으로 수분이 증발하고 있을 때에는 온도가 일정하게 유지되나, 본 발명에서는 단열이 잘 되어있는 LNG 저장탱크(100) 내부에서 플라이우드의 수분을 증발시키므로, 플라이우드의 수분이 증발하는데 필요한 기화열이 외부에서 충분히 공급되지 않을 수 있다. 기화열이 충분히 공급되지 않으면 플라이우드의 수분을 증발시키는 과정에서 플라이우드의 온도가 떨어지게 되나, 보통은 플라이우드를 증발시키는 과정을 계속하면, 플라이우드의 수분이 줄어들어 필요로 하는 기화열이 적어지거나, 외부와의 온도차이가 커져 열 공급량이 늘어나게 되어, 플라이우드의 온도는 다시 올라가게 된다.
그런데, 플라이우드의 수분을 증발시키는 과정에서 낮아졌던 플라이우드의 온도가 올라가지 못하고 계속 떨어지는 경우가 생길 수 있는데, 플라이우드의 온도가 영하 이하로 떨어지게 되면, 플라이우드 내부의 수분은 얼음이 된다. 플라이우드 내부의 얼음을 수증기로 바로 승화시키면 진공 건조 작업 시간이 크게 증가하므로, 플라이우드의 온도가 영하로 떨어지면 따뜻한 기체를 공급하여 온도를 올린다.
기체를 공급하면 진공 상태가 깨지므로 다시 단열층(120, 121) 내부를 진공으로 만드는 과정을 다시 거쳐야 하나, 플라이우드 내부의 수분이 얼음이 되는 경우보다는 작업 시간을 줄일 수 있다.
플라이우드의 온도가 영하로 떨어질 때 공급하는 따듯한 공기는, 아르곤(Ar), 헬륨(He), 질소(N₂) 등의 비활성 가스인 것이 바람직한데, 단열층 외부 공기를 공급하는 경우에는 외부 공기에 포함되어 있는 수분을 플라이우드가 흡수할 수 있고, 비활성 가스는 다른 물질과의 반응성이 낮으므로 안전하기 때문이다. 일반적으로는 가격이 저렴한 질소가 많이 쓰인다.
진공 호스(220, 221)는, 진공 펌프(240)와 LNG 저장탱크(100)의 단열층(120, 121)을 연결하여, 단열층(120, 121) 내부의 공기가 진공 호스(220, 221)를 통하여 진공 펌프(240)로 빠져나갈 수 있도록 한다. 제 1 진공 호스(220)의 일측 단부는 1차 단열층(120)과 연결되고, 제 1 진공 호스(220)의 타측 단부는 진공 펌프(240)와 연결된다. 또한, 제 2 진공 호스(221)의 일측 단부는 2차 단열층(121)과 연결되고, 제 2 진공 호스(221)의 타측 단부는 진공 펌프(240)와 연결된다.
진공 필터는, 진공 호스(220, 221)를 따라 공기와 함께 빨려오는 미세한 불순물을 걸러내는 역할을 한다. 특히, 입자형 단열재가 사용된 경우, 단열재 입자가 진공 호스(220, 221)로 들어올 수 있는데, 진공 필터로 단열재 입자와 같은 불순물을 걸러내 불순물에 의해 진공 호스(220, 221)가 막히거나 진공 펌프(240)가 고장나지 않도록 한다. 제 1 진공 필터(230)는 제 1 진공 호스(220) 상에 설치되고, 제 2 진공 필터(231)는 제 2 진공 호스(221) 상에 설치된다.
진공 펌프(240)는, 진공 펌프(240)와 타측 단부가 연결된 진공 호스(220, 221)를 통해 단열층(120, 121) 내부의 공기를 빼내어 단열층(120, 121) 내부의 압력을 낮추기 위하여 설치된다. 본 실시예의 진공 펌프(240)는 하나의 진공 펌프(240)에 1차 단열층(120)과 연결되는 제 1 진공 호스(220)와 2차 단열층(121)과 연결되는 제 2 진공 호스(221)가 모두 연결된다.
따라서, 본 실시예의 진공 펌프(240)가 작동되면 1차 단열층(120) 내부의 공기와 2차 단열층(121) 내부의 공기가 동시에 빠져나오므로, 1차 단열층(120) 내부 압력을 2차 단열층(121) 내부 압력보다 크게 유지시키기 위하여, 제 2 진공 호스(221)를 먼저 진공 펌프(240)에 연결시켜 2차 단열층(121) 내부의 기압을 낮춘 후, 제 1 진공 호스(220)를 진공 펌프(240)에 추가로 연결시켜 1차 단열층(120)과 2차 단열층(121)의 기압을 동시에 낮추는 방식으로 진공 건조 방법을 실시하는 것이 바람직하다.
1차 단열층(120) 내부 압력을 2차 단열층(121) 내부 압력보다 크게 유지시키기 위하여 2차 단열층(121)에만 진공 건조 방법을 실시하고, 1차 단열층(120)에는 진공 건조 방법을 실시하지 않는 방안도 고려해볼 수 있다.
진공 펌프(240)는 여러 개가 설치될 수도 있는데, 본 실시예의 진공 펌프(240)는 여러 개가 설치된 경우에도 각각의 진공 펌프(240)에 제 1 진공 호스(220) 및 제 2 진공 호스(221)가 모두 연결된다.
또한, 진공 펌프(240)가 여러 개 설치되는 경우, 제 1 진공 호스(220)의 타측 단부 및 제 2 진공 호스(221)의 타측 단부는 진공 펌프(240)의 수만큼 분기하여 다수개의 진공 펌프(240)와 각각 연결될 수도 있고, 제 1 진공 호스(220) 및 제 2 진공 호스(221)는 진공 펌프(240)의 수만큼 설치되어 하나의 제 1 진공 호스(220) 및 하나의 제 2 진공 호스(221)가 하나의 진공 펌프(240)와 연결되는 방식으로 설치될 수도 있다.
LNG 저장탱크(100)의 단열성능을 높이기 위하여 LNG 저장탱크(100)의 단열층(120, 121)을 진공 상태를 유지할 수도 있다. 열은 기체의 대류에 의해서도 전달될 수 있으므로, 단열층(120, 121)을 진공 상태로 만들어 외부의 열이 단열층(120, 121) 내부 기체의 대류에 의해 저장탱크(100) 내부의 LNG로 전달되지 않도록 하는 것이다.
또한, 단열층(120, 121)을 진공 상태로 유지하지 않는 경우에도, 단열층(120, 121) 내부에 아르곤(Ar), 헬륨(He), 질소(N₂) 등의 비활성 가스를 공급하는 것이 바람직한데, 단열층 외부 공기를 공급하는 경우에는 외부 공기에 포함되어 있는 수분을 플라이우드가 흡수할 수 있고, 비활성 가스는 다른 물질과의 반응성이 낮으므로 안전하기 때문이다. 일반적으로는 가격이 저렴한 질소가 많이 쓰인다.
도 2는 본 발명의 바람직한 제 2 실시예에 사용되는 LNG 저장탱크 및 진공 장치를 개략적으로 도시한 측면도이다.
본 실시예의 LNG 저장탱크(100)는, 제 1 실시예의 LNG 저장탱크(100)와 마찬가지로, LNG가 보관되는 내부 공간(110); 내부 공간(110)의 외부를 둘러싸도록 설치되는 1차 단열층(120); 1차 단열층(120)의 외부를 둘러싸도록 설치되는 2차 단열층(121);을 포함한다.
또한, 본 실시예의 진공 장치(200)는, 제 1 실시예의 진공 장치(200)와 마찬가지로, 1차 단열층(120) 내부의 기압을 측정하는 제 1 진공계(210); 2차 단열층(121) 내부의 기압을 측정하는 제 2 진공계(211); 1차 단열층(120)과 일측 단부가 연결되는 제 1 진공 호스(220); 2차 단열층(121)과 일측 단부가 연결되는 제 2 진공 호스(221); 제 1 진공 호스(220) 상에 설치되는 제 1 진공 필터(230); 제 2 진공 호스(221) 상에 설치되는 제 2 진공 필터(231); 및 진공 펌프(241, 242);를 포함한다.
다만, 본 실시예의 진공 펌프(241, 242)는, 제 1 실시예의 진공 펌프(240)와는 달리, 제 1 진공 호스(220)와 연결되어 1차 단열층(120)의 공기를 빼내는 제 1 진공 펌프(241); 및 제 2 진공 호스(221)와 연결되어 2차 단열층(121)의 공기를 빼내는 제 2 진공 펌프(242);의 두 종류가 설치된다.
따라서, 본 실시예의 진공 펌프(241, 242)는 1차 단열층(120)의 공기와 2차 단열층(121)의 공기를 별도로 빼낼 수 있으므로, 제 1 실시예에서처럼 제 1 진공 호스(220)를 제 2 진공 호스(221)보다 먼저 제 1 진공 펌프(241)에 연결시킬 필요는 없다. 단, 1차 단열층(120) 내부 압력을 2차 단열층(121) 내부 압력보다 크게 유지시켜야 하므로, 제 2 진공 펌프(242)를 먼저 단독으로 작동시킨 후에 제 1 진공 펌프(241)와 제 2 진공 펌프(242)를 함께 작동시키는 것이 바람직하다.
본 실시예의 진공 펌프(241, 242)도 제 1 실시예의 진공 펌프(240)와 마찬가지로, 여러 개 설치될 수 있는데, 진공 펌프(241, 242)가 여러 개가 설치된 경우에도 각각의 제 1 진공 펌프(241)에는 일측 단부가 1차 단열층(120)과 연결된 제 1 진공 호스(220)가 연결되고, 각각의 제 2 진공 펌프(242)에는 일측 단부가 2차 단열층(121)과 연결된 제 2 진공 호스(221)가 연결된다.
또한, 본 실시예의 진공 펌프(241, 242)가 여러 개 설치되는 경우에도, 제 1 실시예의 경우와 마찬가지로, 하나의 제 1 진공 호스(220)가 분기하여 다수개의 제 1 진공 펌프(241)와 연결되고 하나의 제 2 진공 호스(221)가 분기하여 다수개의 제 2 진공 펌프(242)와 연결될 수도 있고, 제 1 진공 호스(220)는 제 1 진공 펌프(241)의 수만큼 설치되고 제 2 진공 호스(221)는 제 2 진공 펌프(242)의 수만큼 설치되어 하나의 제 1 진공 호스(220)가 하나의 제 1 진공 펌프(241)와 연결되고 하나의 제 2 진공 호스(221)는 하나의 제 2 진공 펌프(242)와 연결되는 방식으로 설치될 수도 있다.
본 실시예의 제 1 진공계(210)는, 제 1 실시예의 제 1 진공계(210)와 마찬가지로, LNG 저장탱크(100)의 1차 단열층(120)과 연결되어 1차 단열층(120) 내부의 기압을 측정하고, 본 실시예의 제 2 진공계(211)는, 제 2 실시예의 제 2 진공계(211)와 마찬가지로, LNG 저장탱크(100)의 2차 단열층(121)과 연결되어 2차 단열층(121) 내부의 기압을 측정한다.
본 실시예의 진공 호스(220, 221)는, 제 1 실시예의 진공 호스(220, 221)와 마찬가지로, 진공 펌프(241, 242)와 LNG 저장탱크(100)의 단열층(120, 121)을 연결하여, 단열층(120, 121) 내부의 공기가 진공 호스(220, 221)를 통하여 진공 펌프(241, 242)로 빠져나갈 수 있도록 한다.
단, 본 실시예의 제 1 진공 호스(220)의 일측 단부는 1차 단열층(120)과 연결되고, 제 1 진공 호스(220)의 타측 단부는 제 1 진공 펌프(241)와 연결된다. 또한, 제 2 진공 호스(221)의 일측 단부는 2차 단열층(121)과 연결되고, 제 2 진공 호스(221)의 타측 단부는 제 2 진공 펌프(242)와 연결된다.
본 실시예의 진공 필터는, 제 1 실시예의 진공 필터와 마찬가지로, 진공 호스(220, 221)를 따라 공기와 함께 빨려오는 미세한 불순물을 걸러내는 역할을 하며, 제 1 진공 필터(230)는 제 1 진공 호스(220) 상에 설치되고, 제 2 진공 필터(231)는 제 2 진공 호스(221) 상에 설치된다.
도 5는 본 발명의 바람직한 제 1 실시예에 따른 LNG 저장탱크의 자연기화율 저감 방법을 개략적으로 도시한 순서도이다.
도 5를 참조하면, 본 실시예의 LNG 저장탱크의 자연기화율 저감 방법은, LNG 저장탱크(100)를 제작하는 단계(S10); 2차 단열층(121)에 제 2 진공 호스(221)의 일측 단부를 연결하는 단계(S20); 1차 단열층(120)에 제 1 진공 호스(220)의 일측 단부를 연결하는 단계(S30); 제 2 진공 호스(221)의 타측 단부를 진공 펌프에 연결하는 단계(S40); 진공 펌프를 작동시켜 2차 단열층(121)의 내부 압력을 낮추는 단계(S50); 제 1 진공 호스(220)의 타측 단부를 진공 펌프에 연결하는 단계(S60); 및 진공 펌프를 작동시켜 1차 단열층(120)의 내부 압력을 낮추는 단계(S70);를 포함한다.
본 실시예의 LNG 저장탱크의 자연기화율 저감 방법을 실시하는 동안 계속적으로 1차 단열층(120)의 내부 압력이 2차 단열층(121)의 내부 압력보다 높게 유지될 수 있도록, 제 2 진공 호스(221)의 타측 단부를 진공 펌프에 연결하는 단계(S40)를 거친 후에 제 1 진공 호스(220)의 타측 단부를 진공 펌프에 연결하는 단계(S60)를 실시하는 것이 바람직하다.
즉, 제 2 진공 호스(221)의 타측 단부를 진공 펌프에 연결하고(S40) 진공 펌프를 작동시켜 2차 단열층(121)의 내부 압력을 어느 정도 낮춘 후(S50) 제 1 진공 호스(220)의 타측 단부를 진공 펌프에 연결하여(S60) 진공 펌프를 작동시켜 1차 단열층(120) 및 2차 단열층(121)의 내부 압력을 동시에 낮추거나(S70), 제 2 진공 호스(221)의 타측 단부를 진공 펌프에 연결(S40)하고 진공 펌프를 작동시켜 2차 단열층(121) 내부를 진공 상태로 만든 후(S50) 제 1 진공 호스(220)의 타측 단부를 진공 펌프에 연결하여(S60) 진공 펌프를 작동시켜 1차 단열층(121) 내부를 진공 상태로 만들어야 한다(S70).
또한, 1차 단열층(120)에 제 1 진공 호스(220)의 일측 단부를 연결하는 단계(S30); 제 1 진공 호스(220)의 타측 단부를 진공 펌프에 연결하는 단계(S60); 및 진공 펌프를 작동시켜 1차 단열층(120)의 내부 압력을 낮추는 단계(S70);를 생략하여, 1차 단열층(120)에는 진공 건조 방법을 실시하지 않고, 2차 단열층(121)에만 진공 건조 방법을 실시할 수도 있다.
도 6은 본 발명의 바람직한 제 2 실시예에 따른 LNG 저장탱크의 자연기화율 저감 방법을 개략적으로 도시한 순서도이다.
도 6을 참조하면, 본 실시예의 LNG 저장탱크의 자연기화율 저감 방법은, 제 1 실시예의 LNG 저장탱크의 자연기화율 저감 방법과 마찬가지로, LNG 저장탱크(100)를 제작하는 단계(S11); 2차 단열층(121)에 제 2 진공 호스(221)의 일측 단부를 연결하는 단계(S21); 1차 단열층(120)에 제 1 진공 호스(220)의 일측 단부를 연결하는 단계(S31); 제 2 진공 호스(221)의 타측 단부를 진공 펌프에 연결하는 단계(S41); 진공 펌프를 작동시켜 2차 단열층(121)의 내부 압력을 낮추는 단계(S51); 제 1 진공 호스(220)의 타측 단부를 진공 펌프에 연결하는 단계(S61); 및 진공 펌프를 작동시켜 1차 단열층(120)의 내부 압력을 낮추는 단계(S71);를 포함한다.
단, 본 실시예에서는, 제 1 실시예의 LNG 저장탱크의 자연기화율 저감 방법을 실시할 때와는 달리, 제 1 진공 호스(220)와 연결되어 1차 단열층(120)의 공기를 빼내는 제 1 진공 펌프(241); 및 제 2 진공 호스(221)와 연결되어 2차 단열층(121)의 공기를 빼내는 제 2 진공 펌프(242);의 두 종류의 진공 펌프를 사용하므로, 제 2 진공 호스(221)의 타측 단부는 제 2 진공 펌프(242)에 연결되고(S41), 2차 단열층(121)의 내부 압력을 낮추기 위해 제 2 진공 펌프(242)를 작동시키며(S51), 제 1 진공 호스(220)의 타측 단부는 제 1 진공 펌프(241)에 연결되고(S61), 1차 단열층(120)의 내부 압력을 낮추기 위해 제 1 진공 펌프(241)를 작동시킨다(S71).
또한, 본 실시예에서는, 제 1 진공 호스(220)는 제 1 진공 펌프(241)에, 제 2 진공 호스(221)는 제 2 진공 펌프(242)에 각각 연결되므로, 제 1 실시예의 LNG 저장탱크의 자연기화율 저감 방법을 실시할 때와는 달리, 제 2 진공 호스(221)의 타측 단부를 제 2 진공 펌프(242)에 연결하는 단계(S41)를 거친 후에 제 1 진공 호스(220)의 타측 단부를 진공 펌프에 연결하는 단계(S61)를 실시하여야 하는 것은 아니다.
그러나, 제 1 실시예의 LNG 저장탱크의 자연기화율 저감 방법을 실시할 때와 마찬가지로, 본 실시예의 LNG 저장탱크의 자연기화율 저감 방법을 실시하는 동안 계속적으로 1차 단열층(120)의 내부 압력이 2차 단열층(121)의 내부 압력보다 높게 유지될 수 있도록, 제 2 진공 펌프(242)를 작동시켜 2차 단열층(121) 내부 압력을 어느 정도 낮춘 후(S51) 제 1 진공 펌프(241)와 제 2 진공 펌프(242)를 함께 작동시켜 1차 단열층(120)과 2차 단열층(121)의 내부 압력을 동시에 낮추거나(S71), 제 2 진공 펌프(242)를 작동시켜 2차 단열층(121) 내부를 진공 상태로 만든 후(S51) 제 1 진공 펌프(241)를 작동시켜 1차 단열층(120) 내부를 진공 상태로 만들어야 한다(S71).
또한, 본 실시예의 LNG 저장탱크의 자연기화율 저감 방법도, 제 1 실시예의 LNG 저장탱크의 자연기화율 저감 방법과 마찬가지로, 1차 단열층(120)에 제 1 진공 호스(220)의 일측 단부를 연결하는 단계(S31); 제 1 진공 호스(220)의 타측 단부를 제 1 진공 펌프(241)에 연결하는 단계(S61); 및 제 1 진공 펌프(241)를 작동시켜 1차 단열층(120)의 내부 압력을 낮추는 단계(S71);를 생략하여, 1차 단열층(120)에는 진공 건조 방법을 실시하지 않고, 2차 단열층(121)에만 진공 건조 방법을 실시할 수도 있다.
본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 요지를 벗어나지 아니하는 범위 내에서 다양하게 수정 또는 변형되어 실시될 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어서 자명한 것이다.

Claims (19)

1차 단열층 및 2차 단열층을 포함하는 LNG 저장탱크를 제작하는 단계;
상기 2차 단열층에 제 2 진공 호스의 일측 단부를 연결하는 단계;
상기 제 2 진공 호스의 타측 단부를 진공 펌프에 연결하는 단계; 및
상기 진공 펌프를 작동시켜 상기 2차 단열층의 내부 압력을 낮추는 단계;를 포함하고,
상기 2차 단열층 내부를 진공 상태로 만들어 상기 2차 단열층에 포함되는 플라이우드의 함수율을 낮추는, LNG 저장탱크의 자연기화율 저감 방법.
청구항 1에 있어서,
상기 LNG 저장탱크의 1차 단열층에 제 1 진공 호스의 일측 단부를 연결하는 단계;
상기 제 1 진공 호스의 타측 단부를 상기 진공 펌프에 연결하는 단계; 및
상기 진공 펌프를 작동시켜 상기 1차 단열층의 내부 압력을 낮추는 단계;를 더 포함하고,
상기 1차 단열층 내부를 진공 상태로 만들어 상기 1차 단열층에 포함되는 플라이우드의 함수율을 낮추며,
상기 LNG 저장탱크의 자연기화율 저감 방법을 실시하는 동안 계속적으로 상기 1차 단열층의 내부 압력은 상기 2차 단열층의 내부 압력보다 크게 유지되는, LNG 저장탱크의 자연기화율 저감 방법.
청구항 2에 있어서,
상기 진공 펌프는 다수 개 설치되고,
각각의 상기 진공 펌프에는 상기 제 1 진공 호스의 타측 단부 및 상기 제 2 진공 호스의 타측 단부가 연결되는, LNG 저장탱크의 자연기화율 저감 방법.
청구항 3에 있어서,
상기 제 1 진공 호스 및 상기 제 2 진공 호스는 각각 상기 진공 펌프의 개수만큼 설치되어 하나의 상기 제 1 진공 호스의 타측 단부 및 하나의 상기 제 2 진공 호스의 타측 단부는 하나의 상기 진공 펌프와 연결되는, LNG 저장탱크의 자연기화율 저감 방법.
청구항 3에 있어서,
상기 제 1 진공 호스의 일측 단부는 상기 1차 단열층과 연결되고,
상기 제 2 진공 호스의 일측 단부는 상기 2차 단열층과 연결되며,
상기 제 1 진공 호스의 타측 단부는 상기 진공 펌프의 개수만큼 분기되어 분기된 각각의 상기 타측 단부는 각각의 상기 진공 펌프와 연결되고,
상기 제 2 진공 호스의 타측 단부는 상기 진공 펌프의 개수만큼 분기되어 분기된 각각의 상기 타측 단부는 각각의 상기 진공 펌프와 연결되는, LNG 저장탱크의 자연기화율 저감 방법.
청구항 2에 있어서,
상기 제 1 진공 호스의 타측 단부는 제 1 진공 펌프에 연결되고,
상기 제 2 진공 호스의 타측 단부는 제 2 진공 펌프에 연결되는, LNG 저장탱크의 자연기화율 저감 방법.
청구항 6에 있어서,
상기 제 1 진공 펌프 및 상기 제 2 진공 펌프는 다수 개 설치되고,
각각의 제 1 진공 펌프에는 상기 제 1 진공 호스의 타측 단부가 연결되며,
각각의 제 2 진공 펌프에는 상기 제 2 진공 호스의 타측 단부가 연결되는, LNG 저장탱크의 자연기화율 저감 방법.
청구항 7에 있어서,
상기 제 1 진공 호스는 상기 제 1 진공 펌프의 개수만큼 설치되어 각각의 상기 제 1 진공 펌프에는 하나의 상기 제 1 진공 호스의 타측 단부가 연결되고,
상기 제 2 진공 호스는 상기 제 2 진공 펌프의 개수만큼 설치되어 각각의 상기 제 2 진공 펌프에는 하나의 상기 제 2 진공 호스의 타측 단부가 연결되는, LNG 저장탱크의 자연기화율 저감 방법.
청구항 7에 있어서,
상기 제 1 진공 호스의 일측 단부는 상기 1차 단열층과 연결되고,
상기 제 2 진공 호스의 일측 단부는 상기 2차 단열층과 연결되며,
상기 제 1 진공 호스의 타측 단부는 상기 제 1 진공 펌프의 개수만큼 분기되어 분기된 각각의 상기 타측 단부는 각각의 상기 제 1 진공 펌프와 연결되고,
상기 제 2 진공 호스의 타측 단부는 상기 제 2 진공 펌프의 개수만큼 분기되어 분기된 각각의 상기 타측 단부는 각각의 상기 제 2 진공 펌프와 연결되는, LNG 저장탱크의 자연기화율 저감 방법.
청구항 2 내지 청구항 9 중 어느 한 항에 있어서,
상기 1차 단열층 및 상기 2차 단열층 내부의 기압이 일정하게 유지되는 시간을 조절하여 플라이우드의 함수율을 조절하는, LNG 저장탱크의 자연기화율 저감 방법.
청구항 2 내지 청구항 9 중 어느 한 항에 있어서,
상기 1차 단열층에 포함되는 플라이우드의 온도가 영하로 떨어지면 상기 1차 단열층에 상온 이상의 온도를 가지는 기체를 공급하고 상기 2차 단열층에 포함되는 플라이우드의 온도가 영하로 떨어지면 상기 2차 단열층에 상온 이상의 온도를 가지는 기체를 공급하는 단계를 더 포함하는, LNG 저장탱크의 자연기화율 저감 방법.
청구항 11에 있어서,
상기 기체는,
아르곤, 헬륨 및 질소 중 어느 하나인, LNG 저장탱크의 자연기화율 저감 방법.
청구항 2 내지 청구항 9 중 어느 한 항에 있어서,
상기 플라이우드의 함수율을 낮추는 작업 이후에도 상기 1차 단열층 및 상기 2차 단열층 중 하나 이상은 진공 상태로 유지되는, LNG 저장탱크의 자연기화율 저감 방법.
청구항 2 내지 청구항 9 중 어느 한 항에 있어서,
상기 플라이우드의 함수율을 낮추는 작업 이후에 상기 1차 단열층 및 상기 2차 단열층 중 하나 이상에 기체를 공급하는 단계를 더 포함하는, LNG 저장탱크의 자연기화율 저감 방법.
청구항 14에 있어서,
상기 기체는,
아르곤, 헬륨 및 질소 중 어느 하나인, LNG 저장탱크의 자연기화율 저감 방법.
단열층을 포함하는 LNG 저장탱크를 제작하는 단계;
상기 단열층에 진공 호스의 일측 단부를 연결하는 단계;
상기 진공 호스의 타측 단부를 진공 펌프에 연결하는 단계; 및
상기 진공 펌프를 작동시켜 상기 단열층의 내부 압력을 낮추는 단계;를 포함하고,
상기 단열층 내부를 진공 상태로 만들어 상기 단열층에 포함되는 플라이우드의 함수율을 낮추는, LNG 저장탱크의 자연기화율 저감 방법.
LNG 저장탱크의 단열층과 일측 단부가 연결되는 진공 호스; 및
상기 진공 호스의 타측 단부가 연결되는 진공 펌프;를 포함하고,
상기 진공 펌프를 작동시켜 상기 단열층 내부를 진공 상태로 만들어 상기 단열층에 포함되는 플라이우드의 함수율을 낮추는, 진공 장치.
청구항 17에 있어서,
상기 단열층 내부의 기압을 측정하는 진공계를 더 포함하는, 진공 장치.
청구항 17에 있어서,
상기 진공 호스 상에 설치되어 불순물을 걸러내는 진공 필터를 더 포함하는, 진공 장치.
PCT/KR2015/010083 2014-09-26 2015-09-24 Lng 저장탱크의 자연기화율 저감 방법 WO2016048057A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/513,443 US20170299118A1 (en) 2014-09-26 2015-09-24 Method for reducing natural evaporation rate of lng storage tank
SG11201702109UA SG11201702109UA (en) 2014-09-26 2015-09-24 Method for reducing natural evaporation rate of lng storage tank
CN201580051682.1A CN107076357A (zh) 2014-09-26 2015-09-24 降低lng储罐的自然蒸发速率的方法
EP15845368.8A EP3199446A4 (en) 2014-09-26 2015-09-24 Method for reducing natural evaporation rate of lng storage tank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0128954 2014-09-26
KR1020140128954A KR20160036837A (ko) 2014-09-26 2014-09-26 Lng 저장탱크의 자연기화율 저감 방법

Publications (1)

Publication Number Publication Date
WO2016048057A1 true WO2016048057A1 (ko) 2016-03-31

Family

ID=55581485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010083 WO2016048057A1 (ko) 2014-09-26 2015-09-24 Lng 저장탱크의 자연기화율 저감 방법

Country Status (6)

Country Link
US (1) US20170299118A1 (ko)
EP (1) EP3199446A4 (ko)
KR (1) KR20160036837A (ko)
CN (1) CN107076357A (ko)
SG (1) SG11201702109UA (ko)
WO (1) WO2016048057A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7323990B2 (ja) * 2018-07-10 2023-08-09 川崎重工業株式会社 露点温度調整装置および露点温度調整方法
JP7273508B2 (ja) * 2018-12-28 2023-05-15 川崎重工業株式会社 船舶
EP4381221A1 (en) * 2021-08-02 2024-06-12 Shell Internationale Research Maatschappij B.V. Containment system for liquid hydrogen
CN114562675B (zh) * 2022-02-23 2023-08-04 中太(苏州)氢能源科技有限公司 一种用于存储液氢和液氦的金属存储舱
NO20220270A1 (en) * 2022-03-03 2023-09-04 Lattice Int As Membrane tank feasible for cryogenic service

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948256B2 (ja) * 1975-10-04 1984-11-26 千代田化工建設株式会社 危険物貯蔵タンクの基礎
KR20120004258A (ko) * 2010-07-06 2012-01-12 삼성중공업 주식회사 Lng 저장탱크의 단열 시스템
KR20130043737A (ko) * 2011-10-21 2013-05-02 대우조선해양 주식회사 Lng 저장탱크
KR20140067852A (ko) * 2012-11-27 2014-06-05 에스티엑스조선해양 주식회사 액화천연가스 운반선 화물창 하부 구역의 슬로싱 감소 구조물
KR101425830B1 (ko) * 2012-09-05 2014-08-13 (주)동성화인텍 액체 화물창의 단열 모듈

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110051299A (ko) * 2009-11-05 2011-05-18 한국가스공사 육상용 액화가스 저장탱크의 이중방벽 및 그 형성방법
CN103174932B (zh) * 2013-03-27 2015-08-19 张家港市科华化工装备制造有限公司 一种低温储罐
KR101551797B1 (ko) * 2014-09-22 2015-09-09 대우조선해양 주식회사 액화천연가스 화물창 및 단열성능 유지방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948256B2 (ja) * 1975-10-04 1984-11-26 千代田化工建設株式会社 危険物貯蔵タンクの基礎
KR20120004258A (ko) * 2010-07-06 2012-01-12 삼성중공업 주식회사 Lng 저장탱크의 단열 시스템
KR20130043737A (ko) * 2011-10-21 2013-05-02 대우조선해양 주식회사 Lng 저장탱크
KR101425830B1 (ko) * 2012-09-05 2014-08-13 (주)동성화인텍 액체 화물창의 단열 모듈
KR20140067852A (ko) * 2012-11-27 2014-06-05 에스티엑스조선해양 주식회사 액화천연가스 운반선 화물창 하부 구역의 슬로싱 감소 구조물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3199446A4 *

Also Published As

Publication number Publication date
EP3199446A4 (en) 2018-05-02
KR20160036837A (ko) 2016-04-05
EP3199446A1 (en) 2017-08-02
CN107076357A (zh) 2017-08-18
SG11201702109UA (en) 2017-04-27
US20170299118A1 (en) 2017-10-19

Similar Documents

Publication Publication Date Title
WO2016048057A1 (ko) Lng 저장탱크의 자연기화율 저감 방법
JP7423616B2 (ja) 液化水素を貯蔵及び分配するための方法並びに設備
JP2013536392A (ja) 一体化された液体貯蔵器
JP2021177088A (ja) 液化水素貯留方法および液化水素貯留システム
KR101159211B1 (ko) 배기가스 중 이산화탄소 포집시스템
WO2021132975A1 (ko) 헬륨 가스 액화기 및 헬륨 가스 액화 방법
WO2013141453A1 (ko) 이산화탄소 운영 시스템 및 방법
WO2018062714A1 (ko) 가스 공급 모듈 및 이를 구하는 가스 공급 설비
WO2013100304A1 (ko) 이산화탄소의 처리 모듈 및 그 처리 방법
US3837821A (en) Elevating natural gas with reduced calorific value to distribution pressure
WO2015174681A1 (ko) Lpg 운반선의 연료공급 시스템 및 연료공급 방법
CN1122143C (zh) 用来防止储藏在不渗透的等温储罐中的液化气的蒸发的方法和实现该方法的装置
CN103615655A (zh) 一种低温绝热气瓶抽真空系统
WO2021157855A1 (ko) 선박의 액화가스 재기화 시스템 및 방법
KR102351014B1 (ko) Flng의 lng 하역 시스템 및 방법
US7263841B1 (en) Superconducting magnet system with supplementary heat pipe refrigeration
KR101092388B1 (ko) 초저온 유체 저장 시스템 및 방법
CN105135210B (zh) 一种用于lng常压储罐的bog冷凝回收系统及方法
KR102393102B1 (ko) 액화천연가스 화물창의 기화율 저감 시스템
WO2015170889A1 (ko) Leg선의 연료공급 시스템 및 연료공급 방법
KR101602209B1 (ko) 부유식 액화천연가스 설비의 보그 압축용 냉각시스템
KR20180010645A (ko) Flng의 lng 하역 시스템 및 방법
CN220397257U (zh) 一种lng箱式橇装加气站的布置结构
WO2023079683A1 (ja) 液化水素貯留方法および液化水素貯留システム
WO2024010114A1 (ko) 액화수소 증발가스 제어 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845368

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15513443

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015845368

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015845368

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE