WO2013100304A1 - 이산화탄소의 처리 모듈 및 그 처리 방법 - Google Patents

이산화탄소의 처리 모듈 및 그 처리 방법 Download PDF

Info

Publication number
WO2013100304A1
WO2013100304A1 PCT/KR2012/006660 KR2012006660W WO2013100304A1 WO 2013100304 A1 WO2013100304 A1 WO 2013100304A1 KR 2012006660 W KR2012006660 W KR 2012006660W WO 2013100304 A1 WO2013100304 A1 WO 2013100304A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
gas
liquid
separation unit
discharged
Prior art date
Application number
PCT/KR2012/006660
Other languages
English (en)
French (fr)
Inventor
유병용
김성배
우일국
오영태
나희승
Original Assignee
대우조선해양 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110143400A external-priority patent/KR20130075152A/ko
Priority claimed from KR1020110143401A external-priority patent/KR20130075153A/ko
Application filed by 대우조선해양 주식회사 filed Critical 대우조선해양 주식회사
Priority to US14/369,405 priority Critical patent/US9593883B2/en
Publication of WO2013100304A1 publication Critical patent/WO2013100304A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0266Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/104Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0027Oxides of carbon, e.g. CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/80Separating impurities from carbon dioxide, e.g. H2O or water-soluble contaminants
    • F25J2220/82Separating low boiling, i.e. more volatile components, e.g. He, H2, CO, Air gases, CH4
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/80Integration in an installation using carbon dioxide, e.g. for EOR, sequestration, refrigeration etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/08Internal refrigeration by flash gas recovery loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/40Control of freezing of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a carbon dioxide treatment module and a method of operating the carbon dioxide, and more particularly, can be supplied at a temperature and state conditions suitable for the demand of cryogenic liquid carbon dioxide, such as for transporting ships, storing and collecting carbon dioxide, or promoting oil recovery.
  • the present invention relates to a treatment module for carbon dioxide and a treatment method thereof.
  • Natural gas can be divided into sweet gas, which contains high methane, carbon dioxide and hydrogen sulfide, and sour gas, which is corrosive and toxic.In recent years, the number of gas wells capable of producing sweet gas has gradually decreased. It is a trend.
  • the present invention has been invented to improve the above problems, the carbon dioxide of the carbon dioxide to be supplied at a temperature and state conditions suitable for the demand of cryogenic liquid carbon dioxide, such as for the transport of ships, storage and capture of carbon dioxide, or oil recovery promotion. It is to provide a processing module and a processing method thereof.
  • the present invention discharges methane in the upper side, a controlled freezing zone (CFZ) is formed in the middle, and generated from a stranded gas well in the lower side.
  • a separation unit for discharging carbon dioxide contained in sour gas a gas-liquid separator connected to the separation unit to separate carbon dioxide into gas and liquid, and a liquid carbon dioxide mounted between the separation unit and the gas-liquid separator and discharged from the separation unit It is possible to provide a processing module for carbon dioxide, comprising an expansion valve for expanding the pressure reduction by throttling.
  • the inlet side temperature of the expansion valve is preferably higher than the gas outlet side and liquid outlet side temperatures of the gas-liquid separator.
  • the gas-liquid separator discharges gaseous carbon dioxide upward and discharges liquid carbon dioxide downward.
  • the gas-liquid separator is equipped with a liquid discharge pipe for discharging liquid carbon dioxide to a saturated liquid state at -55 ° C. to -20 ° C. to the lower side, and is mounted at the end of the liquid discharge pipe so that the ship transport or carbon dioxide capture and storage (CCS) is carried out. It is preferable to further include a flow control valve for controlling the supply amount of the liquid carbon dioxide supplied for) or for enhanced oil recovery (EOR).
  • the gas-liquid separator further includes a gas discharge pipe for discharging the gas carbon dioxide upwards, and a pressure control valve mounted on the gas discharge pipe.
  • the present invention is a separation unit for separating and discharging carbon dioxide from the sour gas generated in the limit gas well, an expansion valve for throttling and expanding the liquid carbon dioxide supplied from the separation unit, the gas and liquid two-phase of the carbon dioxide passed through the expansion valve
  • a process module for carbon dioxide may be provided that includes a gas-liquid separator that separates gas and liquid carbon dioxide from a two phase fluid.
  • the present invention discharges methane in the upper side, a controlled freezing zone (CFZ) is formed in the middle, sour gas (sour gas) generated from the stranded gas well on the lower side
  • a controlled freezing zone CTZ
  • sour gas sour gas
  • the further cooling is preferably accomplished by throttling and expanding the liquid carbon dioxide discharged from the separation unit.
  • the additional cooling is achieved by throttling and expanding the liquid carbon dioxide discharged from the separation unit, and separating the axially reduced gas and liquid carbon dioxide two-phase fluid through a gas-liquid separator into gaseous carbon dioxide and liquid carbon dioxide. desirable.
  • the present invention may provide a method for treating carbon dioxide, characterized in that the liquid carbon dioxide separated from the sour gas swelling under reduced pressure, and gas-liquid separation at low temperature to supply for ship transport or oil recovery enhancement.
  • a method for treating carbon dioxide characterized in that the liquid carbon dioxide separated from the sour gas swelling under reduced pressure, and gas-liquid separation at low temperature to supply for ship transport or oil recovery enhancement.
  • the separation unit for discharging the methane in the upper side, the controlled freezing zone (CFZ) is formed in the middle, the carbon dioxide contained in the sour gas in the lower side; And cooling the liquid carbon dioxide discharged from the separation unit by using the methane discharged from the separation unit as a refrigerant, and providing a processing module for carbon dioxide, characterized in that it comprises a heat exchanger mounted on a pipe from which the liquid carbon dioxide is discharged from the separation unit. Can be.
  • a pressure reducing valve on the pipe interconnecting the separation unit and the heat exchanger to reduce the pressure to a pressure suitable for ship transportation.
  • the pressure reducing valve may be installed on the heat exchanger outlet side pipe.
  • the liquid carbon dioxide passed through the heat exchanger and the pressure reducing valve may be shipped to the vessel and transported for carbon dioxide capture and storage (CCS) or enhanced oil recovery (EOR).
  • CCS carbon dioxide capture and storage
  • EOR enhanced oil recovery
  • the present invention is a refrigerant to the methane discharged from the separation unit to the heat exchanger mounted on the pipe forming a flow path of the liquid carbon dioxide discharged from the separation unit for separating and discharging the carbon dioxide from the sour gas produced in the stranded gas well It is possible to provide a processing module for carbon dioxide, characterized in that for cooling the liquid carbon dioxide passing through the heat exchanger.
  • the present invention is characterized by cooling the liquid carbon dioxide by passing the methane generated from the limit gas well as a refrigerant through the liquid carbon dioxide separated from the sour gas produced in the stranded gas well (sour gas) as a refrigerant. It is also possible to provide a treatment method.
  • the present invention also provides a first step of supplying sour gas to a separation unit that is connected to a stranded gas well and forms a controlled freezing zone (CFZ) and sour gas. Distilling from the separation unit to discharge methane to the upper side of the separation unit and liquid carbon dioxide to the lower side of the separation unit; and passing the methane as a refrigerant through a heat exchanger mounted on the liquid carbon dioxide discharge pipe of the separation unit.
  • CCS carbon dioxide capture and storage
  • EOR enhanced oil recovery
  • it may also provide a method for treating carbon dioxide, comprising the fourth step.
  • the second step preferably further includes the step of depressurizing the liquid carbon dioxide discharged from the separation unit via a pressure reducing valve mounted between the separation unit and the heat exchanger or on the pipe at the outlet side of the heat exchanger.
  • the present invention discharges methane in the upper side, a controlled freezing zone (CFZ) is formed in the middle, sour gas generated from the strandes gas well in the lower side
  • a separation unit for discharging the included carbon dioxide A heat exchanger cooling the liquid carbon dioxide discharged from the separation unit using methane discharged from the separation unit as a refrigerant, and mounted on a pipe through which liquid carbon dioxide is discharged from the separation unit; And a gas-liquid separator connected to the heat exchanger to separate carbon dioxide into a gas and a saturated liquid state at -55 ° C to -20 ° C.
  • the gas-liquid separator discharges gaseous carbon dioxide to the upper side, and discharges liquid carbon dioxide to the lower side.
  • an expansion valve is mounted on the pipe connecting the separation unit and the heat exchanger or on the pipe at the outlet side of the heat exchanger.
  • the present invention also provides a first step of supplying sour gas to a separation unit that is connected to a stranded gas well and forms a controlled freezing zone; A second step of cooling the methane as a refrigerant through a heat exchanger mounted on a pipe for discharging liquid carbon dioxide of the separation unit; A third step of separating heat-cooled liquid carbon dioxide into a gas and a liquid through a gas-liquid separator connected to the heat exchanger; And a fourth step of shipping the liquid carbon dioxide having passed through the gas-liquid separator to the vessel and transporting the carbon dioxide for carbon dioxide capture and storage (CCS) or enhanced oil recovery (EOR).
  • CCS carbon dioxide capture and storage
  • EOR enhanced oil recovery
  • the present invention is equipped with an expansion valve between the separation unit and the gas-liquid separator to axially decompress and expand the liquid carbon dioxide discharged from the separation unit by low temperature separation into gaseous carbon dioxide and liquid carbon dioxide to transport liquid carbon dioxide for CCS or to sell for EOR You could do it.
  • the present invention significantly reduces the cooling load of liquid carbon dioxide by distilling the sour gas produced from the limit gas well in a separation module forming a controlled freezing region, and using methane discharged as a refrigerant. May be shipped for CCS or sold for EOR.
  • the present invention when there is no carbon dioxide storage in the vicinity when processing a large amount of carbon dioxide generated as a by-product when producing natural gas using CFZ technology in the existing limit gas well without a carbon dioxide treatment facility, it is transported to a ship The cost required to construct and construct a treatment facility for liquefaction for transportation can be greatly reduced, which is economically efficient.
  • the present invention can significantly reduce the amount of gaseous carbon dioxide generated from the separation module that forms the installed and constructed controlled freezing zone (CFZ) and is released into the atmosphere, thereby being environmentally friendly and further strengthening in the future. It will also comply with the expected CO2 emission standards.
  • FIG. 1 is a conceptual diagram showing a processing module of carbon dioxide according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing a method of treating carbon dioxide according to an embodiment of the present invention.
  • FIG. 3 is a conceptual diagram showing a processing module of carbon dioxide according to another embodiment of the present invention.
  • FIG. 4 is a block diagram showing a method of treating carbon dioxide according to another embodiment of the present invention.
  • FIG. 5 is a conceptual diagram showing a processing module of carbon dioxide according to another embodiment of the present invention.
  • FIG. 6 is a block diagram showing a method of treating carbon dioxide according to another embodiment of the present invention.
  • FIG. 1 is a conceptual diagram showing an additional cooling module of carbon dioxide according to an embodiment of the present invention.
  • the separation unit 100 for separating and discharging carbon dioxide from the sour gas generated in the stranded gas well 900 and the expansion of the liquid carbon dioxide supplied from the separation unit 100 by axial expansion under reduced pressure.
  • the structure includes a valve 200 and a gas-liquid separator 300 that separates gas and liquid carbon dioxide from the gas and liquid two-phase fluid of carbon dioxide passing through the expansion valve 200.
  • the separation unit 100 discharges methane (CH4, sweet gas) to the upper side, and a controlled freezing zone (CFZ) is formed in the middle, and the limit gas well ( Carbon dioxide contained in the sour gas generated from 900 is to be discharged.
  • methane CH4, sweet gas
  • CFZ controlled freezing zone
  • the separation unit 100 distills and separates each component such as carbon dioxide, hydrogen sulfide, and methane contained in the sour gas generated from the limit gas well.
  • the separation unit 100 has an upper side of the separation tank 110 as an upper distillation zone (UDS, Upper Distillation Sector) to discharge methane (CH4), and a lower side of the separation tank 110 as a lower distillation zone ( LDS, Lower Distillation Sector (CO2) is emitted.
  • UDS Upper Distillation Sector
  • LDS Lower Distillation Sector
  • the separation tank 110 is connected to the limit gas well 900, and the sour gas supplied from the limit gas well 900 is cooled to a temperature suitable for distillation in the separation tank 110, and the limit gas well may be expanded under reduced pressure.
  • Cooling 120 and gas expansion valve 130 are sequentially mounted on the pipe interconnecting the 900 and the separation tank 110, respectively, and is expanded under reduced pressure.
  • the lower side of the separation tank 110 is equipped with a reheater 160 is heated to discharge the liquid carbon dioxide discharged to some of the separation tank 110 and the rest is discharged, the upper side of the separation tank 110, the condenser ( 140 is mounted to condense the sweet gas (CH4) in the heated sour gas vapor is accommodated in the temporary storage tank 150, and then supplied to the demand of natural gas through the gas discharge pipe (142).
  • a reheater 160 is heated to discharge the liquid carbon dioxide discharged to some of the separation tank 110 and the rest is discharged
  • the condenser ( 140 is mounted to condense the sweet gas (CH4) in the heated sour gas vapor is accommodated in the temporary storage tank 150, and then supplied to the demand of natural gas through the gas discharge pipe (142).
  • the liquid gas in which carbon dioxide or the like is mixed is stored in the temporary storage tank 170, and the separation tank 110 is provided through the injection pipe 190 mounted at each end of the nozzle 180 through the pump 180. Injecting to the inside to reduce the load caused by the separation of the sweet gas (CH4).
  • CH4 sweet gas
  • the expansion valve 200 is connected to the separation unit 100, that is, the discharge tank 400 connected to the lower side of the separation tank 110 to discharge the liquid carbon dioxide, thereby cooling and cooling the liquid carbon dioxide while expanding under reduced pressure. Let's do it.
  • Gas-liquid separator 300 is connected to the end of the discharge pipe 400 serves to separate carbon dioxide into gas and liquid.
  • the inlet side temperature of the expansion valve 200 is about 1 to 5 ° C., usually about 2.2 ° C., and the gas outlet side and liquid outlet side temperatures of the gas-liquid separator 300 passing through the expansion valve 200 are approximately. -55 to -20 ° C.
  • CCS carbon dioxide capture and storage
  • EOR enhanced oil recovery
  • the gas-liquid separator 300 discharges gaseous carbon dioxide to the upper side, and discharges liquid carbon dioxide to the lower side.
  • the gas-liquid separator 300 may apply a structure including a liquid discharge pipe 310 for discharging liquid carbon dioxide downward and a flow control valve 320 mounted at an end of the liquid discharge pipe 310 as shown. There will be.
  • the flow control valve 320 serves to control the amount of liquid carbon dioxide supplied for transport for carbon dioxide capture and storage (CCS) or for enhanced oil recovery (EOR). do.
  • the gas-liquid separator 300 is mounted on the gas discharge pipe 330 and the gas discharge pipe 330 for discharging gas carbon dioxide to the upper side to discharge the gas carbon dioxide when the pressure inside the gas-liquid separator 300 is higher than the set pressure. It is preferable to further include a pressure control valve 340 to open and close.
  • FIG. 2 is a block diagram illustrating a method of treating carbon dioxide according to an exemplary embodiment of the present invention, and reference numerals of the drawings not shown in FIG. 2 refer to FIG. 1.
  • the present invention can be understood that the embodiment in which the liquid carbon dioxide separated from the sour gas is throttled and expanded under reduced pressure, and gas-liquid separation is carried out at low temperature to supply the vessel for transportation or oil recovery.
  • the liquid carbon dioxide discharged from the separation unit 100 is further cooled to a low temperature to make and supply a temperature and pressure condition suitable for ship transportation.
  • the additional cooling is achieved by throttling and expanding the liquid carbon dioxide discharged from the separation unit 100 while passing through the expansion valve 200.
  • the additional cooling is achieved by passing the axially reduced gas and liquid carbon dioxide two-phase fluid through the gas-liquid separator 300 to separate gaseous carbon dioxide and liquid carbon dioxide.
  • liquid carbon dioxide discharged from the separation unit 100 at a temperature of about 2.2 ° C. becomes liquid carbon dioxide at about ⁇ 55 to ⁇ 20 ° C. through the expansion valve 200 and the gas-liquid separator 300, and may be shipped to the carbon dioxide transport ship. have.
  • FIG. 3 is a conceptual diagram illustrating a processing module of carbon dioxide according to another embodiment of the present invention.
  • the present invention is mounted on the pipe 400 to form a flow path of the liquid carbon dioxide discharged from the separation unit 100 for separating and discharging carbon dioxide from the sour gas produced in the stranded gas well (900) as shown
  • the heat exchanger 500 By passing the methane discharged from the separation unit 100 to the heat exchanger 500 as a refrigerant, it can be seen that the structure to cool the liquid carbon dioxide passing through the heat exchanger 500.
  • the separation unit 100 discharges methane (CH4) on the upper side, and a controlled freezing zone (CFZ) is formed in the middle, and from the limit gas well 900 on the lower side. It emits carbon dioxide contained in the sour gas generated.
  • CH4 methane
  • CTZ controlled freezing zone
  • the separation unit 100 distills and separates each component such as carbon dioxide, hydrogen sulfide, and methane contained in the sour gas generated from the limit gas well.
  • the separation unit 100 has an upper side of the separation tank 110 as an upper distillation zone (UDS, Upper Distillation Sector) to discharge methane, and a lower side of the separation tank 110 as a lower distillation zone (LDS, Lower). It becomes a distillation sector and carbon dioxide is emitted.
  • UDS Upper Distillation Sector
  • LDS Lower distillation zone
  • the separation tank 110 is connected to the limit gas well 900, and the sour gas supplied from the limit gas well 900 is cooled to a temperature suitable for distillation in the separation tank 110, and the limit gas well may be expanded under reduced pressure.
  • Cooling 120 and gas expansion valve 130 are sequentially mounted on the pipe interconnecting the 900 and the separation tank 110, respectively, and is expanded under reduced pressure.
  • the lower side of the separation tank 110 is equipped with a reheater 160 is heated to discharge the liquid carbon dioxide discharged to some of the separation tank 110 and the rest is discharged, the upper side of the separation tank 110, the condenser ( 140 is mounted and condensed methane in the heated sour gas vapor is accommodated in the temporary storage tank 150 and then supplied to the demand of natural gas through the gas discharge pipe 142.
  • the liquid gas in which carbon dioxide or the like is mixed is stored in the temporary storage tank 170, and the separation tank 110 is provided through the injection pipe 190 mounted at each end of the nozzle 180 through the pump 180. Inward injection reduces the load due to methane separation.
  • the heat exchanger 500 is mounted on the pipe 400 through which the liquid carbon dioxide is discharged from the separation unit 100, and is discharged from the separation unit 100 using methane discharged from the separation unit 100 as a refrigerant. It is for cooling liquid carbon dioxide.
  • the above-described gas discharge pipe 142 communicates with the heat exchanger 500, and the liquid carbon dioxide flowing through the pipe 400 is supplied to the inside of the heat exchanger 500 through the gas discharge pipe 142. 90 to -80 ° C).
  • the temperature at the inlet side of the heat exchanger 500 is about 1 to 5 ° C., usually about 2.2 ° C., and the temperature of the liquid carbon dioxide passing through the heat exchanger 500 is about ⁇ 55 to ⁇ 20 ° C.
  • liquid carbon dioxide is cooled to a temperature suitable for ship transport and shipped to the ship and then transported for carbon dioxide capture and storage (CCS) or enhanced oil recovery (EOR).
  • CCS carbon dioxide capture and storage
  • EOR enhanced oil recovery
  • the pressure reducing valve 600 is mounted on the pipe 400 connecting the separation unit 100 and the heat exchanger 500 or on the outlet pipe 400 of the heat exchanger 500.
  • the pressure reducing valve 600 is connected to the separation unit 100, that is, the lower side of the separation tank 110, and is mounted on the pipe 400 through which the liquid carbon dioxide is discharged to lower the pressure of the liquid carbon dioxide to reduce the pressure to a pressure suitable for ship transportation. Can be.
  • the liquid carbon dioxide separated through the separation unit 100 is in a high pressure state of about 37 bar, the liquid carbon dioxide may be decompressed to a saturation pressure of 5.5 bar to 19.7 bar at -55 degrees to -20 ° C through the pressure reducing valve 600.
  • saturated carbon dioxide of -50 to -30 ° C is considered to be a carbon dioxide state suitable for ship transport, it is preferable to reduce the pressure to 6.8 bar ⁇ 14.3 bar through the pressure reducing valve 600.
  • FIG. 4 is a block diagram illustrating a method of treating carbon dioxide according to an embodiment of the present invention, and reference numerals of the drawings not shown in FIG. 4 refer to FIG. 3.
  • the present invention is applicable to the embodiment of cooling the liquid carbon dioxide by passing the methane generated from the limit gas well as a refrigerant through the liquid carbon dioxide separated from the sour gas generated from the stranded gas well (sour gas) as a refrigerant I can figure it out.
  • the present invention is to further supply the liquid carbon dioxide discharged from the separation unit 100 to a low temperature to supply a state suitable for ship transport.
  • methane production by distillation is carried out in a separation unit 100 connected to a stranded gas well and forming a controlled freezing zone (CFZ).
  • a separation unit 100 connected to a stranded gas well and forming a controlled freezing zone (CFZ).
  • CFZ controlled freezing zone
  • sour gas sour gas
  • the sour gas is distilled from the separation unit 100 to discharge methane above the separation unit 100 and to discharge liquid carbon dioxide below the separation unit 500.
  • the heat exchanger 500 mounted on the liquid carbon dioxide discharge pipe 400 of the separation unit 100 is discharged through the gas discharge pipe 142 connected to the separation unit 100. Cooling is accomplished by passing methane through the refrigerant.
  • the liquid carbon dioxide that has passed through the heat exchanger 500 is shipped to the vessel for carbon dioxide capture and storage (CCS) or enhanced oil recovery (EOR). This is done by transporting the goods to the site.
  • CCS carbon dioxide capture and storage
  • EOR enhanced oil recovery
  • the liquid carbon dioxide is transported to the vessel via the pressure reducing valve 600 mounted between the separation unit 100 and the heat exchanger 500 or on the pipe 400 on the outlet side of the heat exchanger 500. It is preferable to further carry out the process of reducing the pressure to a pressure suitable for.
  • the liquid carbon dioxide discharged from the separation unit 100 at a temperature of about 2.2 ° C is -55 to -20 ° C, more preferably -50 ° C to -30 ° C through the pressure reducing valve 600 and the heat exchanger 500. It can be internal and external liquid carbon dioxide and shipped to carbon dioxide carriers.
  • the pressure is 5.5 bar to 19.7 bar, more preferably 14.3 bar of liquid carbon dioxide can be shipped to the carbon dioxide transport ship.
  • FIG. 5 is a conceptual diagram illustrating a carbon dioxide treatment module according to another embodiment of the present invention.
  • a separation unit 100 separating and discharging carbon dioxide from sour gas generated in a stranded gas well (900) and a pipe forming a flow path of liquid carbon dioxide discharged from the separation unit 100 is shown.
  • a heat exchanger 500 mounted on the 400 and a gas-liquid separator 300 for separating gas and liquid carbon dioxide from a gas and a liquid two-phase fluid of carbon dioxide that have passed through the heat exchanger 500. You can see that it is a structure.
  • the separation unit 100 discharges methane to the upper side, and a controlled freezing zone (CFZ) is formed in the middle, and is included in the sour gas generated from the limit gas well 900 at the lower side. To emit carbon dioxide.
  • CFZ controlled freezing zone
  • the separation unit 100 is substantially the same as the previous embodiment, and detailed description thereof will be omitted.
  • the heat exchanger 500 cools liquid carbon dioxide discharged from the separation unit 100 using methane discharged from the separation unit 100 as a refrigerant, and is mounted on a pipe through which liquid carbon dioxide is discharged from the separation unit 100. .
  • the gas discharge pipe 142 is connected to the heat exchanger 500, and the liquid carbon dioxide flowing in the pipe 400 is supplied to the inside of the heat exchanger 500 through the gas discharge pipe 142 (about ⁇ 90 ° C.). To about -80 ° C).
  • the gas-liquid separator 300 is connected to the heat exchanger 500 to separate carbon dioxide into a gas and a saturated liquid state of ⁇ 55 ° C. to ⁇ 20 ° C., thereby discharging gaseous carbon dioxide upward and discharging liquid carbon dioxide downward. .
  • the gas-liquid separator 300 is connected to the end of the discharge pipe 400 to separate carbon dioxide into gas and liquid.
  • an expansion valve 200 is mounted on the pipe connecting the separation unit 100 and the heat exchanger 500 or on the pipe at the outlet side of the heat exchanger 500 to cool the liquid carbon dioxide while throttling and expanding the liquid carbon dioxide.
  • the inlet side temperature of the expansion valve 200 is about 1 to 5 ° C, usually about 2.2 ° C, and the gas outlet side and liquid outlet side temperature of the gas-liquid separator 300 passing through the expansion valve 200 is approximately- 55 to -20 ° C.
  • CCS carbon dioxide capture and storage
  • EOR enhanced oil recovery
  • FIG. 6 is a block diagram illustrating a method of treating carbon dioxide according to another embodiment of the present invention, and reference numerals not shown in FIG. 6 refer to FIG. 5.
  • the present invention uses the methane generated from the bound gas well as a refrigerant, the carbon dioxide that is also separated and discharged from the limited gas well through the heat exchanger (500) to cool the refrigerant of the methane, the gas in the gas-liquid separator (300) And it can be seen that the embodiment of separating into a liquid can be applied.
  • a sour gas is supplied to the separation unit 100 connected to a stranded gas well and forming a controlled freezing zone. The work is done.
  • step (S2) is performed to pass the methane as a refrigerant to the heat exchanger 500 mounted on the liquid carbon dioxide discharge pipe of the separation unit 100 to cool.
  • step (S3) is performed to separate the liquid carbon dioxide cooled by heat exchange into gas and liquid through the gas-liquid separator 300 connected to the heat exchanger 500.
  • the liquid carbon dioxide that has passed through the gas-liquid separator 300 is shipped to the vessel and transported for carbon dioxide capture and storage (CCS) or enhanced oil recovery (EOR). Work is done.
  • CCS carbon dioxide capture and storage
  • EOR enhanced oil recovery
  • liquid carbon dioxide discharged from the separation unit 100 at a temperature of about 2.2 ° C is -55 to -20 ° C through the pressure reducing valve 600 and the heat exchanger 500, more preferably at about -30 ° C liquid carbon dioxide Can be shipped to a carbon dioxide carrier.
  • the pressure is 5.5 bar to 19.7 bar, more preferably 14.3 bar of liquid carbon dioxide can be shipped to the carbon dioxide transport ship.
  • the present invention is a cryogenic liquid, such as for carbon dioxide storage and collection or oil recovery promotion. It can be seen that the basic technical idea is to provide a carbon dioxide treatment module and a method of treating the carbon dioxide that can be supplied at a temperature and state conditions suitable for the demand of carbon dioxide.

Abstract

본 발명은 사워 가스(Sour Gas)로부터 분리된 액체 이산화탄소를 교축 감압 팽창시키고, 저온으로 기액 분리하여 선박 운송 또는 석유 회수증진용으로 공급하는 실시예와, 한계가스정(stranded gas well)으로부터 발생되는 사워 가스(sour gas)로부터 분리 배출되는 액체 이산화탄소에 한계가스정으로부터 발생되는 메탄을 냉매로써 통과시켜 액체 이산화탄소를 냉각시키는 실시예로부터 한계가스정의 사워 가스로부터 분리되는 물질을 냉매로 하여 이산화탄소를 냉각시킴으로써 이산화탄소 저장 및 포집용이나 석유 회수증진용 등 극저온의 액체 이산화탄소의 수요처에 적합한 온도 및 상태 조건으로 공급될 수 있도록 하는 이산화탄소의 처리 모듈 및 그 처리 방법에 관한 것이다.

Description

이산화탄소의 처리 모듈 및 그 처리 방법
본 발명은 이산화탄소의 처리 모듈 및 그 운용 방법에 관한 것으로, 더욱 상세하게는 선박의 운송용이나 이산화탄소 저장 및 포집용또는 석유 회수증진용 등 극저온의 액체 이산화탄소의 수요처에 적합한 온도 및 상태 조건으로 공급될 수 있도록 하는 이산화탄소의 처리 모듈 및 그 처리 방법에 관한 것이다.
산업 발전과 인구 증가에 따른 에너지의 수요 증가는 석유 자원을 고갈시킬 정도로 위기 상황에 직면하였으며, 석유보다는 매장량이 많다고 고려되는 천연가스 또한 함께 수요가 급증하게 되었다.
천연가스는 메탄 함량이 높은 스위트 가스(sweet gas)와 이산화탄소 및 황화수소가 많이 혼합되어 부식성과 독성을 지닌 사워 가스(sour gas)로 구분할 수 있으며, 최근에는 스위트 가스를 생산할 수 있는 가스정의 수가 점차 감소되는 추세이다.
따라서, 이제까지 경제적으로 효율이 낮아 개발을 기피해 왔던 사워 가스가 발생하는 한계가스정(stranded gas well)에 대한 개발 수요가 점차 증가하는 추세이다.
이러한 한계가스정의 개발에는 사워 가스에 포함된 이산화탄소 및 황화가스를 분리해 내기 위한 장치와 플랜트의 설치 및 시공이 필수적이며, 이러한 천연가스의 생산시 부가적으로 발생하는 이산화탄소는 대기중으로 방출시키거나 관로를 통하여 지중에 저장하는 방식으로 처리하고 있다.
따라서, 한계가스정을 개발할 경우에는 사워 가스로부터 분리한 이산화탄소를 저장할 지중의 저장소가 인근에 반드시 마련되어야 하며, 향후 이산화탄소의 배출 규제가 전세계적으로 더욱 강화된다면, 지중의 이산화탄소 저장소를 마련하지 않고는 이러한 한계가스정용 개발 장치 및 플랜트를 활용하여 한계가스정을 개발할 수 없게 되는 것이다.
본 발명은 상기와 같은 문제점을 개선하기 위하여 발명된 것으로, 선박의 운송용이나 이산화탄소 저장 및 포집용또는 석유 회수증진용 등 극저온의 액체 이산화탄소의 수요처에 적합한 온도 및 상태 조건으로 공급될 수 있도록 하는 이산화탄소의 처리 모듈 및 그 처리 방법을 제공하기 위한 것이다.
상기와 같은 목적을 달성하기 위하여 본 발명은, 상측으로는 메탄을 배출하고, 중간에는 제어된 동결 영역(Controlled Freezing Zone; CFZ)이 형성되며, 하측으로는 한계가스정(stranded gas well)로부터 발생하는 사워 가스(sour gas)에 포함된 이산화탄소를 배출하는 분리 유닛과, 분리 유닛과 연결되어 이산화탄소를 기체 및 액체로 분리하는 기액 분리기와, 분리 유닛과 기액 분리기 사이에 장착되어 분리 유닛으로부터 배출되는 액체 이산화탄소를 교축(絞縮) 감압 팽창시키는 팽창밸브를 포함하는 것을 특징으로 하는 이산화탄소의 처리 모듈을 제공할 수 있다.
그리고, 팽창밸브의 입구측 온도는 기액 분리기의 기체 출구측 및 액체 출구측 온도보다 높은 것이 바람직하다.
그리고, 기액 분리기는 상측으로 기체 이산화탄소를 배출시키고, 하측으로 액체 이산화탄소를 배출시키는 것을 특징으로 한다.
그리고, 기액 분리기는 하측으로 액체 이산화탄소를 -55℃~-20℃의 포화 액체상태로 배출시키는 액체 배출관과, 액체 배출관의 단부에 장착되어 선박 운송이나 이산화탄소 포집 및 저장(Carbon dioxide Capture and Storage; CCS)용 또는 석유 회수증진(Enhanced Oil Recovery; EOR)용으로 공급되는 액체 이산화탄소의 공급량을 조절하는 유량 조절 밸브를 더 포함하는 것이 바람직하다.
또한, 기액 분리기는 상측으로 기체 이산화탄소를 배출시키는 기체 배출관과, 기체 배출관 상에 장착되는 압력제어 밸브를 더 포함하는 것이 바람직하다.
한편, 본 발명은 한계가스정에서 발생되는 사워 가스로부터 이산화탄소를 분리 배출하는 분리 유닛과, 분리 유닛으로부터 공급받은 액체 이산화탄소를 교축 감압 팽창시키는 팽창 밸브와, 팽창 밸브를 통과한 이산화탄소의 기체 및 액체 2상 유체(2phase fluid)로부터 기체 및 액체 이산화탄소를 분리하는 기액 분리기를 포함하는 것을 특징으로 하는 이산화탄소의 처리 모듈을 제공할 수도 있다.
한편, 본 발명은 상측으로는 메탄을 배출하고, 중간에는 제어된 동결 영역(Controlled Freezing Zone; CFZ)이 형성되며, 하측으로는 한계가스정(stranded gas well)로부터 발생하는 사워 가스(sour gas)에 포함된 이산화탄소를 배출하는 분리 유닛으로부터 생산되는 액체 이산화탄소를 -55℃~-20℃의 포화 액체상태로 추가 냉각시켜 선박 운송 또는 석유 회수증진용으로 공급하는 것을 특징으로 하는 이산화탄소의 처리 방법을 제공할 수도 있음은 물론이다.
여기서, 추가 냉각은 분리 유닛으로부터 배출되는 액체 이산화탄소를 교축 감압 팽창시켜 이루어지는 것이 바람직하다.
이때, 추가 냉각은 분리 유닛으로부터 배출되는 액체 이산화탄소를 교축 감압 팽창시키고, 교축 감압 팽창된 기체 및 액체의 이산화탄소 2상 유체(2phase fluid)를 기액 분리기를 통과시켜 기체 이산화탄소 및 액체 이산화탄소로 분리함으로써 이루어지는 것이 바람직하다.
한편, 본 발명은 사워 가스(Sour Gas)로부터 분리된 액체 이산화탄소를 교축 감압 팽창시키고, 저온으로 기액 분리하여 선박 운송 또는 석유 회수증진용으로 공급하는 것을 특징으로 하는 이산화탄소의 처리 방법을 제공할 수도 있음은 물론이다.
또한, 본 발명은, 상측으로는 메탄을 배출하고, 중간에는 제어된 동결 영역(Controlled Freezing Zone; CFZ)이 형성되며, 하측으로는 사워 가스(sour gas)에 포함된 이산화탄소를 배출하는 분리 유닛과, 분리 유닛으로부터 배출되는 메탄을 냉매로 하여 분리 유닛으로부터 배출되는 액체 이산화탄소를 냉각시키며, 분리 유닛으로부터 액체 이산화탄소가 배출되는 배관 상에 장착되는 열교환기를 포함하는 것을 특징으로 하는 이산화탄소의 처리 모듈을 제공할 수 있다.
여기서, 분리 유닛과 열교환기를 상호 연결하는 배관 상에 감압 밸브를 설치해서 선박운송에 적합한 압력으로 감압시키는 것이 바람직히다.
이때, 감압 밸브는 열교환기 출구측 배관 상에 설치 될 수도 있다.
이때, 열교환기 및 감압 밸브를 통과한 액체 이산화탄소는 선박에 선적되어 이산화탄소 포집 및 저장(Carbon dioxide Capture and Storage; CCS)용 또는 석유 회수증진(Enhanced Oil Recovery; EOR)용으로 운송될 수 있을 것이다.
한편, 본 발명은 한계가스정(stranded gas well)에서 생산되는 사워 가스로부터 이산화탄소를 분리 배출하는 분리 유닛으로부터 배출되는 액체 이산화탄소의 유로를 형성하는 배관 상에 장착되는 열교환기에 분리 유닛으로부터 배출되는 메탄을 냉매로 통과시켜 열교환기를 통과하는 액체 이산화탄소를 냉각시키는 것을 특징으로 하는 이산화탄소의 처리 모듈을 제공할 수 있다.
또한, 본 발명은 한계가스정(stranded gaas well)에서 생산되는 사워 가스(sour gas)로부터 분리 배출되는 액체 이산화탄소에 한계가스정으로부터 발생되는 메탄을 냉매로써 통과시켜 액체 이산화탄소를 냉각시키는 것을 특징으로 하는 이산화탄소의 처리 방법을 제공할 수도 있다.
또한, 본 발명은 한계가스정(stranded gas well)과 배관 연결되며 제어된 동결 영역(CFZ, Controlled Freezing Zone)을 형성하는 분리 유닛에 사워 가스(sour gas)를 공급하는 제1 단계와, 사워 가스를 분리 유닛에서 증류하여 분리 유닛의 상측으로는 메탄을, 분리 유닛의 하측으로는 액체 이산화탄소를 배출시키는 제2 단계와, 분리 유닛의 액체 이산화탄소 배출용 배관 상에 장착된 열교환기에 메탄을 냉매로 통과시켜 냉각시키는 제3 단계와, 열교환기를 통과한 액체 이산화탄소를 이산화탄소 포집 및 저장(Carbon dioxide Capture and Storage; CCS)용 또는 석유 회수증진(Enhanced Oil Recovery; EOR)용으로 공급하기 위하여 선박에 선적하여 운송하는 제4 단계를 포함하는 것을 특징으로 하는 이산화탄소의 처리 방법을 제공할 수도 있음은 물론이다.
여기서, 제2 단계는 분리 유닛으로부터 배출되는 액체 이산화탄소는 분리 유닛과 열교환기 사이 또는 열교환기 출구측의 배관 상에 장착된 감압 밸브를 거쳐 감압되는 과정을 더 포함하는 것이 바람직하다.
한편, 본 발명은 상측으로는 메탄을 배출하고, 중간에는 제어된 동결 영역(Controlled Freezing Zone; CFZ)이 형성되며, 하측으로는 한계가스정(strandes gas well)으로부터 발생하는 사워 가스(sour gas)에 포함된 이산화탄소를 배출하는 분리 유닛; 분리 유닛으로부터 배출되는 메탄을 냉매로 하여 분리 유닛으로부터 배출되는 액체 이산화탄소를 냉각시키며, 분리 유닛으로부터 액체 이산화탄소가 배출되는 배관 상에 장착되는 열교환기; 및 열교환기와 연결되어 이산화탄소를 기체 및 -55℃~-20℃의 포화 액체상태로 분리하는 기액 분리기;를 포함하는 것을 특징으로 하는 액화 이산화탄소의 처리 모듈을 제공할 수도 있을 것이다.
여기서, 기액 분리기는, 상측으로 기체 이산화탄소를 배출시키고, 하측으로 액체 이산화탄소를 배출시키는 것이 바람직하다.
이때, 분리 유닛과 열교환기를 상호 연결하는 배관 상 또는 열교환기 출구측의 배관 상에 팽창 밸브가 장착되는 것이 바람직하다.
또한, 본 발명은 한계가스정(stranded gas well)과 배관 연결되며 제어된 동결 영역(Controlled Freezing Zone)을 형성하는 분리 유닛에 사워 가스(sour gas)를 공급하는 제1 단계; 분리 유닛의 액체 이산화탄소 배출용 배관 상에 장착된 열교환기에 메탄을 냉매로 통과시켜 냉각시키는 제2 단계; 열교환되어 냉각된 액체 이산화탄소를 열교환기와 연결된 기액 분리기를 통하여 기체 및 액체로 분리하는 제3 단계; 및 기액 분리기를 통과한 액체 이산화탄소를 선박에 선적하여 이산화탄소 포집 및 저장(Carbon dioxide Capture and Storage; CCS)용 또는 석유 회수증진(Enhanced Oil Recovery; EOR)용으로 운송하는 제4 단계;를 포함하는 것을 특징으로 하는 이산화탄소의 처리 방법을 제공할 수도 있음은 물론이다.
상기와 같은 구성 및 실시예에 따른 본 발명에 따르면 다음과 같은 효과를 도모할 수 있다.
우선, 본 발명은 분리 유닛과 기액 분리기 사이에 팽창 밸브를 장착하여 분리 유닛으로부터 배출되는 액체 이산화탄소를 교축 감압 팽창시켜 기체 이산화탄소 및 액체 이산화탄소로 저온 분리함으로써 액체 이산화탄소를 CCS용으로 운송하거나 EOR용으로 판매할 수도 있을 것이다.
그리고, 본 발명은 한계가스정으로부터 생산되는 사워 가스를 제어된 동결 영역을 형성하는 분리 모듈에서 증류하여 분리 배출되는 메탄을 냉매로 사용하여 액체 이산화탄소의 냉각 부하를 대폭 경감함은 물론, 용이하게 액체 이산화탄소를 CCS용으로 운송하거나 EOR용으로 판매할 수도 있을 것이다.
그리고, 본 발명은 이산화탄소 처리 시설이 없었던 기존의 한계가스정에서 CFZ기술을 이용해서 천연가스를 생산할 때 부산물로 발생되는 대용량의 이산화탄소를 처리할 때 부근에 이산화탄소 저장소가 없어서 장거리 운송할 경우, 이를 선박으로 운송하기 위하여 액화시키기 위한 처리 시설의 건설 및 시공에 필요한 비용을 대폭 줄일 수 있으므로, 경제적으로도 효율적이다.
또한, 본 발명은 설치 및 시공된 제어된 동결 영역(Controlled Freezing Zone; CFZ)을 형성하는 분리 모듈로부터 발생하여 대기중으로 배출되던 기체 이산화탄소의 양을 대폭 줄일 수 있으므로, 친환경적일 뿐 아니라, 향후 더욱 강화될 것으로 예상되는 이산화탄소 배출 규제 기준에도 적합하게 될 것이다.
도 1은 본 발명의 일 실시예에 따른 이산화탄소의 처리 모듈을 나타낸 개념도
도 2는 본 발명의 일 실시예에 따른 이산화탄소의 처리 방법을 나타낸 블록 선도
도 3은 본 발명의 다른 실시예에 따른 이산화탄소의 처리 모듈을 나타낸 개념도
도 4는 본 발명의 다른 실시예에 따른 이산화탄소의 처리 방법을 나타낸 블록 선도
도 5는 본 발명의 또 다른 실시예에 따른 이산화탄소의 처리 모듈을 나타낸 개념도
도 6은 본 발명의 또 다른 실시예에 따른 이산화탄소의 처리 방법을 나타낸 블록 선도
이하, 첨부된 도면을 참고로 본 발명의 바람직한 실시예에 대하여 설명한다.
도 1은 본 발명의 일 실시예에 따른 이산화탄소의 추가 냉각 모듈을 나타낸 개념도이다.
본 발명은 도시된 바와 같이 한계가스정(900, stranded gas well)에서 발생되는 사워 가스로부터 이산화탄소를 분리 배출하는 분리 유닛(100)과, 분리 유닛(100)으로부터 공급받은 액체 이산화탄소를 교축 감압 팽창시키는 팽창 밸브(200)와, 팽창 밸브(200)를 통과한 이산화탄소의 기체 및 액체 2상 유체(2phase fluid)로부터 기체 및 액체 이산화탄소를 분리하는 기액 분리기(300)를 포함하는 구조임을 파악할 수 있다.
본 발명은 상기와 같은 실시예의 적용이 가능하며 다음과 같은 실시예의 적용 또한 가능함은 물론이다.
우선, 분리 유닛(100)은 상측으로는 메탄(CH4, sweet gas)를 배출하고, 중간에는 제어된 동결 영역(CFZ, Controlled Freezing Zone, 이하 'CFZ')이 형성되며, 하측으로는 한계가스정(900)로부터 발생하는 사워 가스(sour gas)에 포함된 이산화탄소를 배출하는 것이다.
분리 유닛(100)은 한계가스정으로부터 발생되는 사워 가스에 포함된 이산화탄소, 황화수소 및 메탄 등의 각 성분을 증류하여 각각 분리하는 것이다.
분리 유닛(100)은 더욱 상세하게는 분리 탱크(110)의 상측이 상부 증류 구역(UDS, Upper Distillation Sector)이 되어 메탄(CH4)이 배출되고, 분리 탱크(110)의 하측이 하부 증류 구역(LDS, Lower Distillation Sector)이 되어 이산화탄소가 배출된다.
우선, 분리 탱크(110)는 한계가스정(900)과 배관 연결되며, 한계가스정(900)으로부터 공급되는 사워 가스는 분리 탱크(110) 내에서 증류하기 적합한 온도로 냉각되고 감압 팽창될 수 있도록 한계가스정(900)과 분리 탱크(110)를 상호 연결하는 배관 상에 순차적으로 장착된 냉각기(120) 및 가스 팽창밸브(130)를 통하여 각각 냉각되고 감압 팽창된다.
이때, 분리 탱크(110)의 하부측에서는 재열기(160)가 장착되어 배출되는 액체 이산화탄소를 가열하여 일부는 분리 탱크(110)로 환원시키고 나머지는 배출시키며, 분리 탱크(110)의 상부측에서는 응축기(140)가 장착되어 가열된 사워 가스 증기 중의 스위트 가스(CH4)를 응축시켜 임시저장탱크(150)에 수용한 후 가스 배출관(142)을 통하여 천연가스의 수요처에 공급하게 된다.
그리고, CFZ에서는 이산화탄소 등이 혼합된 액체 가스를 일시 저류조(170)에 저장해 두고, 펌프(180)를 통하여 노즐(미도시)이 각각 단부에 장착된 분사관(190)을 통하여 분리 탱크(110) 내측으로 분사시켜 스위트 가스(CH4)의 분리에 따른 부하를 경감시키게 된다.
한편, 팽창 밸브(200)는 분리 유닛(100), 즉 분리 탱크(110)의 하측에 연결되어 액체 이산화탄소가 배출되는 배출관(400)에 장착되어 액체 이산화탄소를 교축(絞縮) 감압 팽창시키면서 저온 냉각시킨다.
기액 분리기(300)는 배출관(400)의 단부에 연결되어 이산화탄소를 기체 및 액체로 분리하는 역할을 수행하게 된다.
여기서, 팽창 밸브(200)의 입구측 온도는 대략 1 내지 5℃ 정도이며, 통상 2.2℃내외이며, 팽창 밸브(200)를 통과한 기액 분리기(300)의 기체 출구측 및 액체 출구측 온도는 대략 -55 내지 -20℃이다.
이러한 온도 조건은 선박을 이용하여 이산화탄소 포집 및 저장(Carbon dioxide Capture and Storage; CCS)용 또는 석유 회수증진(Enhanced Oil Recovery; EOR)용으로 운송하기 적절한 온도가 되는 것이다.
이때, 기액 분리기(300)는 상측으로 기체 이산화탄소를 배출시키고, 하측으로 액체 이산화탄소를 배출시키게 된다.
즉, 기액 분리기(300)는 도시된 바와 같이 하측으로 액체 이산화탄소를 배출시키는 액체 배출관(310)과, 액체 배출관(310)의 단부에 장착되는 유량 조절 밸브(320)를 포함하는 구조를 적용할 수 있을 것이다.
유량 조절 밸브(320)는 이산화탄소 포집 및 저장(Carbon dioxide Capture and Storage; CCS)용 또는 석유 회수증진(Enhanced Oil Recovery; EOR)용으로 운송하기 위하여 공급되는 액체 이산화탄소의 공급량을 조절하는 역할을 수행하게 된다.
또한, 기액 분리기(300)는 상측으로 기체 이산화탄소를 배출시키는 기체 배출관(330)과, 기체 배출관(330) 상에 장착되어 기액 분리기(300) 내측의 압력이 설정 압력 이상일 때 기체 이산화탄소를 배출시키도록 개폐되는 압력제어 밸브(340)를 더 구비하는 것이 바람직하다.
상기와 같은 구성의 본 발명에 따른 이산화탄소의 처리 모듈을 이용한 액화 이산화탄소의 추가 냉각 방법에 대하여 도 2를 참고로 설명한다.
도 2는 본 발명의 일 실시예에 따른 이산화탄소의 처리 방법을 나타낸 블록 선도이며, 도 2에 표시되지 않은 도면의 부호는 도 1을 참고한다.
본 발명은 사워 가스(Sour Gas)로부터 분리된 액체 이산화탄소를 교축 감압 팽창시키고, 저온으로 기액 분리하여 선박 운송 또는 석유 회수증진용으로 공급하는 실시예를 적용할 수 있음을 파악할 수 있다.
즉, 본 발명은 분리 유닛(100)으로부터 배출되는 액체 이산화탄소를 저온으로 추가 냉각시킨 것을 선박 운송용으로 적합한 온도 및 압력 조건으로 만들어 공급하는 것이다.
여기서, 추가 냉각은 분리 유닛(100)으로부터 배출되는 액체 이산화탄소를 팽창 밸브(200)를 통과시키면서 교축 감압 팽창시켜 이루어지는 것이다.
즉, 추가 냉각은 교축 감압 팽창된 기체 및 액체의 이산화탄소 2상 유체(2phase fluid)를 기액 분리기(300)를 통과시켜 기체 이산화탄소 및 액체 이산화탄소로 분리함으로써 이루어지게 된다.
이때, 2.2℃ 내외의 온도로 분리 유닛(100)으로부터 배출된 액체 이산화탄소는 팽창 밸브(200) 및 기액 분리기(300)를 통하여 -55 내지 -20℃ 내외의 액체 이산화탄소가 되어 이산화탄소 운송선에 선적될 수 있다.
이하, 본 발명의 다른 실시예에 따른 이산화탄소의 처리 모듈 및 처리 방법에 관하여 설명하고자 한다.
도 3은 본 발명의 다른 실시예에 따른 이산화탄소의 처리 모듈을 나타낸 개념도이다.
본 발명은 도시된 바와 같이 한계가스정(900, stranded gas well)에서 생산되는 사워 가스로부터 이산화탄소를 분리 배출하는 분리 유닛(100)으로부터 배출되는 액체 이산화탄소의 유로를 형성하는 배관(400) 상에 장착되는 열교환기(500)에 분리 유닛(100)으로부터 배출되는 메탄을 냉매로 통과시켜 열교환기(500)를 통과하는 액체 이산화탄소를 냉각시키는 구조임을 파악할 수 있다.
본 발명은 상기와 같은 실시예의 적용이 가능하며 다음과 같은 실시예의 적용 또한 가능함은 물론이다.
우선, 분리 유닛(100)은 상측으로는 메탄(CH4)을 배출하고, 중간에는 제어된 동결 영역(CFZ, Controlled Freezing Zone, 이하 'CFZ')이 형성되며, 하측으로는 한계가스정(900)로부터 발생하는 사워 가스(sour gas)에 포함된 이산화탄소를 배출하는 것이다.
분리 유닛(100)은 한계가스정으로부터 발생되는 사워 가스에 포함된 이산화탄소, 황화수소 및 메탄 등의 각 성분을 증류하여 각각 분리하는 것이다.
분리 유닛(100)은 더욱 상세하게는 분리 탱크(110)의 상측이 상부 증류 구역(UDS, Upper Distillation Sector)이 되어 메탄이 배출되고, 분리 탱크(110)의 하측이 하부 증류 구역(LDS, Lower Distillation Sector)이 되어 이산화탄소가 배출된다.
우선, 분리 탱크(110)는 한계가스정(900)과 배관 연결되며, 한계가스정(900)으로부터 공급되는 사워 가스는 분리 탱크(110) 내에서 증류하기 적합한 온도로 냉각되고 감압 팽창될 수 있도록 한계가스정(900)과 분리 탱크(110)를 상호 연결하는 배관 상에 순차적으로 장착된 냉각기(120) 및 가스 팽창밸브(130)를 통하여 각각 냉각되고 감압 팽창된다.
이때, 분리 탱크(110)의 하부측에서는 재열기(160)가 장착되어 배출되는 액체 이산화탄소를 가열하여 일부는 분리 탱크(110)로 환원시키고 나머지는 배출시키며, 분리 탱크(110)의 상부측에서는 응축기(140)가 장착되어 가열된 사워 가스 증기 중의 메탄을 응축시켜 임시저장탱크(150)에 수용한 후 가스 배출관(142)을 통하여 천연가스의 수요처에 공급하게 된다.
그리고, CFZ에서는 이산화탄소 등이 혼합된 액체 가스를 일시 저류조(170)에 저장해 두고, 펌프(180)를 통하여 노즐(미도시)이 각각 단부에 장착된 분사관(190)을 통하여 분리 탱크(110) 내측으로 분사시켜 메탄의 분리에 따른 부하를 경감시키게 된다.
한편, 열교환기(500)는 분리 유닛(100)으로부터 액체 이산화탄소가 배출되는 배관(400) 상에 장착되는 것으로, 분리 유닛(100)으로부터 배출되는 메탄을 냉매로 하여 분리 유닛(100)으로부터 배출되는 액체 이산화탄소를 냉각시키기 위한 것이다.
이를 위하여 열교환기(500)에는 전술한 가스 배출관(142)이 연통되고 배관(400) 내를 유동하는 액체 이산화탄소는 가스 배출관(142)을 통하여 열교환기(500) 내부로 공급되는 차가운 메탄(대략 -90 내지 -80℃ 정도)에 의하여 냉각되는 것이다.
여기서, 열교환기(500)의 입구측 온도는 대략 1 내지 5℃ 정도이며, 통상 2.2℃내외이며, 열교환기(500)를 통과한 액체 이산화탄소의 온도는 대략 -55 내지 -20℃이다.
따라서, 액체 이산화탄소는 선박 운송에 적합한 온도로 냉각되어 선박에 선적된 후 이산화탄소 포집 및 저장(Carbon dioxide Capture and Storage; CCS)용 또는 석유 회수증진(Enhanced Oil Recovery; EOR)용으로 운송되는 것이다.
한편, 분리 유닛(100)과 열교환기(500)를 상호 연결하는 배관(400) 상 또는 열교환기(500)의 출구측 배관(400) 상에는 감압 밸브(600)가 장착되는 것이 바람직하다.
감압 밸브(600)는 분리 유닛(100), 즉 분리 탱크(110)의 하측에 연결되어 액체 이산화탄소가 배출되는 배관(400) 상에 장착되어 액체 이산화탄소의 압력을 낮추어 선박 운송에 적합한 압력으로 감압시킬 수 있다.
분리 유닛(100)을 통해서 분리된 액체 이산화탄소는 37 bar정도의 고압 상태이므로 감압 밸브(600)를 통해서 -55도 내지 -20℃에 포화압력 5.5 bar ~ 19.7 bar상태로 감압시킬 수 있다.
일반적으로, -50도 내지 -30℃의 포화이산화탄소는 선박 운송에 적합한 이산화탄소 상태로 고려되고 있으므로, 감압 밸브(600)를 통해 6.8 bar ~ 14.3 bar로 감압시키는 것이 바람직하다.
상기와 같은 구성의 본 발명에 따른 이산화탄소의 처리 모듈을 이용한 이산화탄소의 처리 방법에 대하여 도 4를 참고로 설명한다.
도 4는 본 발명의 일 실시예에 따른 이산화탄소의 처리 방법을 나타낸 블록 선도이며, 도 4에 표시되지 않은 도면의 부호는 도 3을 참고한다.
본 발명은 한계가스정(stranded gaas well)으로부터 발생되는 사워 가스(sour gas)로부터 분리 배출되는 액체 이산화탄소에 한계가스정으로부터 발생되는 메탄을 냉매로써 통과시켜 액체 이산화탄소를 냉각시키는 실시예를 적용할 수 있음을 파악할 수 있다.
즉, 본 발명은 분리 유닛(100)으로부터 배출되는 액체 이산화탄소를 저온으로 추가 냉각시켜 선박 운송에 적합한 상태로 공급하는 것이다.
더욱 상세하게 살펴 보면, 제1 단계(S1)에서 한계가스정(stranded gas well)과 배관 연결되며 제어된 동결 영역(CFZ, Controlled Freezing Zone)을 형성하는 분리 유닛(100)에 증류에 따른 메탄 생산을 위하여 사워 가스(sour gas)를 공급하는 작업이 이루어진다.
제2 단계(S2)에서는 사워 가스를 분리 유닛(100)에서 증류하여 분리 유닛(100)의 상측으로는 메탄을, 분리 유닛(500)의 하측으로는 액체 이산화탄소를 배출시키게 된다.
이후, 제3 단계(S3)에서는 분리 유닛(100)의 액체 이산화탄소 배출용 배관(400) 상에 장착된 열교환기(500)에, 분리 유닛(100)과 연결된 가스 배출관(142)을 통하여 배출되는 메탄을 냉매로 통과시켜 냉각시키는 작업이 이루어진다.
계속하여, 제4 단계(S4)에서는 열교환기(500)를 통과한 액체 이산화탄소를 선박에 선적하여 이산화탄소 포집 및 저장(Carbon dioxide Capture and Storage; CCS)용 또는 석유 회수증진(Enhanced Oil Recovery; EOR)용으로 운송하는 작업을 수행하면 되는 것이다.
이때, 제2 단계(S2)에서는 액체 이산화탄소는 분리 유닛(100)과 열교환기(500) 사이 또는 열교환기(500) 출구측의 배관(400) 상에 장착된 감압 밸브(600)를 거쳐 선박 운송에 적합한 압력으로 감압하는 과정을 더 실시하는 것이 바람직하다.
이때, 2.2℃ 내외의 온도로 분리 유닛(100)으로부터 배출된 액체 이산화탄소는 감압 밸브(600) 및 열교환기(500)를 통하여 -55 내지 -20℃, 더욱 바람직하게는 -50℃ 내지 -30℃ 내외의 액체 이산화탄소가 되어 이산화탄소 운송선에 선적될 수 있다.
이때, 압력은 5.5 bar 내지 19.7 bar, 더욱 바람직하게는 14.3 bar 내외의 액체 이산화탄소가 되어 이산화탄소 운송선에 선적될 수 있다.
이하, 본 발명의 또 다른 실시예에 따른 이산화탄소의 처리 모듈 및 그 처리 방법에 관하여 설명하고자 한다.
도 5는 본 발명의 또 다른 실시예에 따른 이산화탄소의 처리 모듈을 나타낸 개념도이다.
본 발명은 도시된 바와 같이 한계가스정(900, stranded gas well)에서 발생되는 사워 가스로부터 이산화탄소를 분리 배출하는 분리 유닛(100)과, 분리 유닛(100)으로부터 배출되는 액체 이산화탄소의 유로를 형성하는 배관(400) 상에 장착되는 열교환기(500)와, 열교환기(500)를 통과한 이산화탄소의 기체 및 액체 2상 유체(2phase fluid)로부터 기체 및 액체 이산화탄소를 분리하는 기액 분리기(300)를 포함하는 구조임을 파악할 수 있다.
분리 유닛(100)은 상측으로는 메탄을 배출하고, 중간에는 제어된 동결 영역(Controlled Freezing Zone; CFZ)이 형성되며, 하측으로는 한계가스정(900)으로부터 발생하는 사워 가스(sour gas)에 포함된 이산화탄소를 배출하는 것이다.
분리 유닛(100)에 관하여는 앞선 실시예와 대동소이한 바, 상세한 설명은 편의상 생략한다.
열교환기(500)는 분리 유닛(100)으로부터 배출되는 메탄을 냉매로 하여 분리 유닛(100)으로부터 배출되는 액체 이산화탄소를 냉각시키며, 분리 유닛(100)으로부터 액체 이산화탄소가 배출되는 배관 상에 장착되는 것이다.
이를 위하여 열교환기(500)에는 가스 배출관(142)이 연통되고 배관(400) 내를 유동하는 액체 이산화탄소는 가스 배출관(142)을 통하여 열교환기(500) 내부로 공급되는 차가운 메탄(대략 -90℃ 내지 -80℃ 정도)에 의하여 냉각되는 것이다.
기액 분리기(300)는 열교환기(500)와 연결되어 이산화탄소를 기체 및 -55℃~-20℃의 포화 액체상태로 분리하는 것으로, 상측으로 기체 이산화탄소를 배출시키고, 하측으로 액체 이산화탄소를 배출시키게 된다.
기액 분리기(300)는 배출관(400)의 단부에 연결되어 이산화탄소를 기체 및 액체로 분리하는 것이다.
여기서, 분리 유닛(100)과 열교환기(500)를 상호 연결하는 배관 상 또는 열교환기(500) 출구측의 배관 상에는 팽창 밸브(200)가 장착되어 액체 이산화탄소를 교축 감압 팽창시키면서 저온 냉각시키게 된다.
이때, 팽창 밸브(200)의 입구측 온도는 대략 1 내지 5℃ 정도로, 통상 2.2℃내외이며, 팽창 밸브(200)를 통과한 기액 분리기(300)의 기체 출구측 및 액체 출구측 온도는 대략 -55 내지 -20℃이다.
이러한 온도 조건은 선박을 이용하여 이산화탄소 포집 및 저장(Carbon dioxide Capture and Storage; CCS)용 또는 석유 회수증진(Enhanced Oil Recovery; EOR)용으로 운송하기 적절한 온도가 되는 것이다.
상기와 같은 본 발명의 또 다른 실시예에 따른 이산화탄소의 처리 모듈을 이용한 이산화탄소의 처리 방법에 대하여 도 6을 참고로 설명한다.
도 6은 본 발명의 또 다른 실시예에 따른 이산화탄소의 처리 방법을 나타낸 블록 선도이며, 도 6에 표시되지 않은 도면의 부호는 도 5를 참고한다.
본 발명은 한계가스정(stranded gas well)으로부터 발생되는 메탄을 냉매로 하여, 역시 한계가스정으로부터 분리 배출되는 이산화탄소를 열교환기(500)에 통과시켜 메탄의 냉매로 냉각하고, 기액 분리기(300)에서 기체 및 액체로 분리하는 실시예를 적용할 수 있음을 알 수 있다.
더욱 상세하게 살펴보면, 제1 단계(S1)에서는 한계가스정(stranded gas well)과 배관 연결되며 제어된 동결 영역(Controlled Freezing Zone)을 형성하는 분리 유닛(100)에 사워 가스(sour gas)를 공급하는 작업이 이루어진다.
제2 단계(S2)에서는 분리 유닛(100)의 액체 이산화탄소 배출용 배관 상에 장착된 열교환기(500)에 메탄을 냉매로 통과시켜 냉각시키는 작업이 이루어진다.
제3 단계(S3)에서는 열교환되어 냉각된 액체 이산화탄소를 열교환기(500)와 연결된 기액 분리기(300)를 통하여 기체 및 액체로 분리하는 작업이 이루어진다.
제4 단계(S4)에서는 기액 분리기(300)를 통과한 액체 이산화탄소를 선박에 선적하여 이산화탄소 포집 및 저장(Carbon dioxide Capture and Storage; CCS)용 또는 석유 회수증진(Enhanced Oil Recovery; EOR)용으로 운송하는 작업이 이루어진다.
여기서, 2.2℃ 내외의 온도로 분리 유닛(100)으로부터 배출된 액체 이산화탄소는 감압 밸브(600) 및 열교환기(500)를 통하여 -55 내지 -20℃, 더욱 바람직하게는 -30℃ 내외의 액체 이산화탄소가 되어 이산화탄소 운송선에 선적될 수 있다.
이때, 압력은 5.5 bar 내지 19.7 bar, 더욱 바람직하게는 14.3 bar 내외의 액체 이산화탄소가 되어 이산화탄소 운송선에 선적될 수 있다.이상과 같이 본 발명은 이산화탄소 저장 및 포집용이나 석유 회수증진용 등 극저온의 액체 이산화탄소의 수요처에 적합한 온도 및 상태 조건으로 공급될 수 있도록 하는 이산화탄소의 처리 모듈 및 그 처리 방법을 제공하는 것을 기본적인 기술적 사상으로 하고 있음을 알 수 있다.
그리고, 본 발명의 기본적인 기술적 사상의 범주 내에서 당해 업계 통상의 지식을 가진 자에게 있어서는 이산화탄소의 추가 냉각 및 처리 뿐 아니라, 선박 운송용이나 이산화탄소 포집 및 저장(Carbon dioxide Capture and Storage; CCS)용 또는 석유 회수증진(Enhanced Oil Recovery; EOR)용으로도 활용될 수 있는 등 다른 많은 변형 및 응용 또한 가능함은 물론이다.

Claims (22)

  1. 상측으로는 메탄을 배출하고, 중간에는 제어된 동결 영역(Controlled Freezing Zone; CFZ)이 형성되며, 하측으로는 한계가스정(stranded gas well)로부터 발생하는 사워 가스(sour gas)에 포함된 이산화탄소를 배출하는 분리 유닛;
    상기 분리 유닛과 연결되어 상기 이산화탄소를 기체 및 액체로 분리하는 기액 분리기; 및
    상기 분리 유닛과 상기 기액 분리기 사이에 장착되어 상기 분리 유닛으로부터 배출되는 액체 이산화탄소를 교축(絞縮) 감압 팽창시키는 팽창밸브;를 포함하는 것을 특징으로 하는 액화 이산화탄소의 추가 냉각 모듈.
  2. 청구항 1에 있어서,
    상기 팽창밸브의 입구측 온도는 상기 기액 분리기의 기체 출구측 및 액체 출구측 온도보다 높은 것을 특징으로 하는 액화 이산화탄소의 추가 냉각 모듈.
  3. 청구항 1에 있어서,
    상기 기액 분리기는,
    상측으로 기체 이산화탄소를 배출시키고, 하측으로 액체 이산화탄소를 배출시키는 것을 특징으로 하는 액화 이산화탄소의 추가 냉각 모듈.
  4. 청구항 1에 있어서,
    상기 기액 분리기는,
    하측으로 액체 이산화탄소를 -55℃~-20℃의 포화 액체상태로 배출시키는 액체 배출관과,
    상기 액체 배출관의 단부에 장착되어 이산화탄소 포집 및 저장(Carbon dioxide Capture and Storage; CCS)용 또는 석유 회수증진(Enhanced Oil Recovery; EOR)용으로 운송하기 위한 상기 액체 이산화탄소의 공급량을 조절하는 유량 조절 밸브를 더 포함하는 것을 특징으로 하는 액화 이산화탄소의 추가 냉각 모듈.
  5. 청구항 1에 있어서,
    상기 기액 분리기는,
    상측으로 기체 이산화탄소를 배출시키는 기체 배출관과,
    상기 기체 배출관 상에 장착되는 압력제어 밸브를 더 포함하는 것을 특징으로 하는 액화 이산화탄소의 추가 냉각 모듈.
  6. 한계가스정에서 발생되는 사워 가스로부터 이산화탄소를 분리 배출하는 분리 유닛과, 상기 분리 유닛으로부터 공급받은 액체 이산화탄소를 교축 감압 팽창시키는 팽창 밸브와, 상기 팽창 밸브를 통과한 이산화탄소의 기체 및 액체 2상 유체(2phase fluid)로부터 기체 및 액체 이산화탄소를 분리하는 기액 분리기를 포함하는 것을 특징으로 하는 액화 이산화탄소의 추가 냉각 모듈.
  7. 상측으로는 메탄을 배출하고, 중간에는 제어된 동결 영역(Controlled Freezing Zone; CFZ)이 형성되며, 하측으로는 한계가스정(stranded gas well)로부터 발생하는 사워 가스(sour gas)에 포함된 이산화탄소를 배출하는 분리 유닛으로부터 생산되는 액체 이산화탄소를 -55℃~-20℃의 포화 액체상태 로 추가 냉각시켜 선박 운송용으로 공급하는 것을 특징으로 하는 액화 이산화탄소의 추가 냉각 방법.
  8. 청구항 7에 있어서,
    상기 추가 냉각은,
    상기 분리 유닛으로부터 배출되는 액체 이산화탄소를 교축 감압 팽창시켜 이루어지는 것을 특징으로 하는 액화 이산화탄소의 추가 냉각 방법.
  9. 청구항 7에 있어서,
    상기 추가 냉각은,
    상기 분리 유닛으로부터 배출되는 액체 이산화탄소를 교축 감압 팽창시키고,
    교축 감압 팽창된 기체 및 액체의 이산화탄소 2상 유체(2phase fluid)를 기액 분리기를 통과시켜 기체 이산화탄소 및 액체 이산화탄소로 분리함으로써 이루어지는 것을 특징으로 하는 액화 이산화탄소의 추가 냉각 방법.
  10. 사워 가스(Sour Gas)로부터 분리된 액체 이산화탄소를 교축 감압 팽창시키고, 저온으로 기액 분리하여 선박 운송용으로 공급하는 것을 특징으로 하는 액화 이산화탄소의 추가 냉각 방법.
  11. 상측으로는 메탄을 배출하고, 중간에는 제어된 동결 영역(Controlled Freezing Zone; CFZ)이 형성되며, 하측으로는 사워 가스(sour gas)에 포함된 이산화탄소를 배출하는 분리 유닛; 및
    상기 분리 유닛으로부터 배출되는 상기 메탄을 냉매로 하여 상기 분리 유닛으로부터 배출되는 액체 이산화탄소를 냉각시키며, 상기 분리 유닛으로부터 액체 이산화탄소가 배출되는 배관 상에 장착되는 열교환기;를 포함하는 것을 특징으로 하는 이산화탄소의 처리 모듈.
  12. 청구항 11에 있어서,
    상기 분리 유닛과 상기 열교환기를 상호 연결하는 상기 배관 상 또는 상기 열교환기 출구측의 상기 배관 상에 감압 밸브가 장착되는 것을 특징으로 하는 이산화탄소의 처리 모듈.
  13. 청구항 11에 있어서,
    상기 열교환기를 통과한 상기 액체 이산화탄소는 선박을 이용하여 이산화탄소 포집 및 저장(Carbon dioxide Capture and Storage; CCS)용 또는 석유 회수증진(Enhanced Oil Recovery; EOR)용으로 운송되는 것을 특징으로 하는 이산화탄소의 처리 모듈.
  14. 한계가스정(stranded gas well)에서 생산되는 사워 가스로부터 이산화탄소를 분리 배출하는 분리 유닛으로부터 배출되는 액체 이산화탄소의 유로를 형성하는 배관 상에 장착되는 열교환기에 상기 분리 유닛으로부터 배출되는 메탄을 냉매로 통과시켜 상기 열교환기를 통과하는 액체 이산화탄소를 냉각시키는 것을 특징으로 하는 이산화탄소의 처리 모듈.
  15. 한계가스정(stranded gaas well)에서 생산되는 사워 가스(sour gas)로부터 분리 배출되는 액체 이산화탄소에 상기 한계가스정으로부터 발생되는 메탄을 냉매로써 통과시켜 상기 액체 이산화탄소를 냉각시키는 것을 특징으로 하는 이산화탄소의 처리 방법.
  16. 한계가스정(stranded gas well)과 배관 연결되며 제어된 동결 영역(CFZ, Controlled Freezing Zone)을 형성하는 분리 유닛에 사워 가스(sour gas)를 공급하는 제1 단계;
    상기 사워 가스를 상기 분리 유닛에서 증류하여 상기 분리 유닛의 상측으로는 메탄을, 상기 분리 유닛의 하측으로는 액체 이산화탄소를 배출시키는 제2 단계;
    상기 분리 유닛의 액체 이산화탄소 배출용 배관 상에 장착된 열교환기에 상기 메탄을 냉매로 통과시켜 냉각시키는 제3 단계; 및
    상기 열교환기를 통과한 액체 이산화탄소를 선박에 선적하여 이산화탄소 포집 및 저장(Carbon dioxide Capture and Storage; CCS)용 또는 석유 회수증진(Enhanced Oil Recovery; EOR)용으로 운송하는 제4 단계;를 포함하는 것을 특징으로 하는 이산화탄소의 처리 방법.
  17. 청구항 16에 있어서,
    상기 제2 단계는,
    상기 분리 유닛으로부터 배출되는 액체 이산화탄소는 상기 분리 유닛과 상기 열교환기 사이의 상기 배관 상에 장착된 감압 밸브를 거쳐 감압되는 과정을 더 포함하는 것을 특징으로 하는 이산화탄소의 처리 방법.
  18. 청구항 16에 있어서,
    상기 제2 단계는,
    상기 분리 유닛으로부터 배출되는 액체 이산화탄소는 상기 열교환기 출구측의 상기 배관 상에 장착된 감압 밸브를 거쳐 감압되는 과정을 더 포함하는 것을 특징으로 하는 이산화탄소의 처리 방법.
  19. 상측으로는 메탄을 배출하고, 중간에는 제어된 동결 영역(Controlled Freezing Zone; CFZ)이 형성되며, 하측으로는 한계가스정(strandes gas well)으로부터 발생하는 사워 가스(sour gas)에 포함된 이산화탄소를 배출하는 분리 유닛;
    상기 분리 유닛으로부터 배출되는 상기 메탄을 냉매로 하여 상기 분리 유닛으로부터 배출되는 액체 이산화탄소를 냉각시키며, 상기 분리 유닛으로부터 액체 이산화탄소가 배출되는 배관 상에 장착되는 열교환기; 및
    상기 열교환기와 연결되어 상기 이산화탄소를 기체 및 -55℃~-20℃의 포화 액체상태로 분리하는 기액 분리기;를 포함하는 것을 특징으로 하는 액화 이산화탄소의 처리 모듈.
  20. 청구항 19에 있어서,
    상기 기액 분리기는,
    상측으로 기체 이산화탄소를 배출시키고, 하측으로 액체 이산화탄소를 배출시키는 것을 특징으로 하는 액화 이산화탄소의 처리 모듈.
  21. 청구항 19에 있어서,
    상기 분리 유닛과 상기 열교환기를 상호 연결하는 상기 배관 상 또는 상기 열교환기 출구측의 상기 배관 상에 팽창 밸브가 장착되는 것을 특징으로 하는 액화 이산화탄소의 처리 모듈.
  22. 한계가스정(stranded gas well)과 배관 연결되며 제어된 동결 영역(Controlled Freezing Zone)을 형성하는 분리 유닛에 사워 가스(sour gas)를 공급하는 제1 단계;
    상기 분리 유닛의 액체 이산화탄소 배출용 배관 상에 장착된 열교환기에 상기 메탄을 냉매로 통과시켜 냉각시키는 제2 단계;
    열교환되어 냉각된 상기 액체 이산화탄소를 상기 열교환기와 연결된 기액 분리기를 통하여 기체 및 액체로 분리하는 제3 단계; 및
    상기 기액 분리기를 통과한 액체 이산화탄소를 선박에 선적하여 이산화탄소 포집 및 저장(Carbon dioxide Capture and Storage; CCS)용 또는 석유 회수증진(Enhanced Oil Recovery; EOR)용으로 운송하는 제4 단계;를 포함하는 것을 특징으로 하는 이산화탄소의 처리 방법.
PCT/KR2012/006660 2011-12-27 2012-08-22 이산화탄소의 처리 모듈 및 그 처리 방법 WO2013100304A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/369,405 US9593883B2 (en) 2011-12-27 2012-08-22 Module for treatment of carbon dioxide and treatment method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020110143400A KR20130075152A (ko) 2011-12-27 2011-12-27 액화 이산화탄소의 추가 냉각 모듈 및 방법
KR10-2011-0143401 2011-12-27
KR10-2011-0143400 2011-12-27
KR1020110143401A KR20130075153A (ko) 2011-12-27 2011-12-27 이산화탄소의 처리 모듈 및 방법

Publications (1)

Publication Number Publication Date
WO2013100304A1 true WO2013100304A1 (ko) 2013-07-04

Family

ID=48697740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006660 WO2013100304A1 (ko) 2011-12-27 2012-08-22 이산화탄소의 처리 모듈 및 그 처리 방법

Country Status (2)

Country Link
US (1) US9593883B2 (ko)
WO (1) WO2013100304A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114963692A (zh) * 2022-05-25 2022-08-30 崔静思 基于低温甲醇洗工艺低能耗捕集二氧化碳装置和方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE045214T2 (hu) * 2012-11-14 2019-12-30 Evonik Fibres Gmbh Membrános gázelválasztó berendezés gáz összetételének szabályozása
CN105157349B (zh) * 2015-10-09 2017-05-10 易湘华 二氧化碳节能装置及利用其节能的方法
CN106440661B (zh) * 2016-08-31 2020-03-31 惠生工程(中国)有限公司 一种制备高纯度液体二氧化碳的节能型装置和方法
DE102016011356A1 (de) * 2016-09-20 2018-03-22 Linde Aktiengesellschaft Verfahren und Anlage zur Herstellung eines Erdgassubstituts und eines Kohlendioxidprodukts
KR101919302B1 (ko) * 2017-07-28 2018-11-19 한국전력공사 이산화탄소 분리막 플랜트 이상 감지 시스템
JP7434334B2 (ja) * 2019-01-25 2024-02-20 サウジ アラビアン オイル カンパニー Co2回収を伴って水素を生成するための液体炭化水素およびco2輸送のためのプロセスおよび方法
CN115678628A (zh) * 2022-10-13 2023-02-03 新疆敦华绿碳技术股份有限公司 二氧化碳驱油伴生气液二氧化碳回收装置、系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618165A (ja) * 1992-07-01 1994-01-25 Nippon Sanso Kk 低沸点不純物を含むガスの凝縮分離方法及び装置
KR100338881B1 (ko) * 1997-07-01 2002-05-30 추후제출 하나 이상의 동결가능한 성분을 함유하는 천연 가스스트림의 액화 방법
KR20070083907A (ko) * 2004-10-08 2007-08-24 유니온 엔지니어링 아/에스 가스로부터 이산화탄소를 회수하는 방법
KR20100074268A (ko) * 2007-10-12 2010-07-01 유니온 엔지니어링 아/에스 공급가스로부터 이산화탄소의 제거
JP2011507680A (ja) * 2007-12-21 2011-03-10 エアパック・ホールディング・ベスローテン・フエンノートシャップ サワーガスの分離方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6070431A (en) * 1999-02-02 2000-06-06 Praxair Technology, Inc. Distillation system for producing carbon dioxide
GB0124617D0 (en) * 2001-10-12 2001-12-05 Alpha Thames Eng Method and apparatus for collecting sand contained in production fluid and disposing of the collected sand
GB0614250D0 (en) * 2006-07-18 2006-08-30 Ntnu Technology Transfer As Apparatus and Methods for Natural Gas Transportation and Processing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618165A (ja) * 1992-07-01 1994-01-25 Nippon Sanso Kk 低沸点不純物を含むガスの凝縮分離方法及び装置
KR100338881B1 (ko) * 1997-07-01 2002-05-30 추후제출 하나 이상의 동결가능한 성분을 함유하는 천연 가스스트림의 액화 방법
KR20070083907A (ko) * 2004-10-08 2007-08-24 유니온 엔지니어링 아/에스 가스로부터 이산화탄소를 회수하는 방법
KR20100074268A (ko) * 2007-10-12 2010-07-01 유니온 엔지니어링 아/에스 공급가스로부터 이산화탄소의 제거
JP2011507680A (ja) * 2007-12-21 2011-03-10 エアパック・ホールディング・ベスローテン・フエンノートシャップ サワーガスの分離方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114963692A (zh) * 2022-05-25 2022-08-30 崔静思 基于低温甲醇洗工艺低能耗捕集二氧化碳装置和方法

Also Published As

Publication number Publication date
US9593883B2 (en) 2017-03-14
US20140360226A1 (en) 2014-12-11

Similar Documents

Publication Publication Date Title
WO2013100304A1 (ko) 이산화탄소의 처리 모듈 및 그 처리 방법
WO2017007168A1 (ko) 엔진을 포함하는 선박
US8080090B2 (en) Process for feed gas cooling in reboiler during CO2 separation
US8268050B2 (en) CO2 separation apparatus and process for oxy-combustion coal power plants
US7850763B2 (en) Purification of carbon dioxide
US7819951B2 (en) Purification of carbon dioxide
US7766999B2 (en) Process for vaporizing the product CO2 at two different pressures during CO2 separation
JP2017533371A5 (ko)
KR20040072614A (ko) 탄화수소의 열분해로부터 유도된 가스의 분별분류방법과장치
CN109631494B (zh) 一种氦气生产系统和生产方法
US10690406B2 (en) Method and device for low-temperature cooling/liquefaction
KR20180092403A (ko) 휘발성 유기 화합물 회수 시스템 및 회수 방법
US20120240619A1 (en) Method and device for treating a carbon-dioxide-containing gas flow, wherein the energy of the vent gas (work and cold due to expansion) is used
WO2008099344A1 (en) Process for recycling of top gas during co2 separation
KR101045643B1 (ko) 고순도 및 초고순도 이산화탄소 정제 및 액화장치
BR112015005839B1 (pt) Processo para otimizar remoção de componentes condensáveis de um fluido
WO2023059076A1 (ko) 탄소중립형 액화천연가스 냉열에너지, 수소 및 이산화탄소 자원화 시스템 및 방법
US20050178153A1 (en) Integrated process and air separation process
WO2019230995A1 (ko) 가스 혼합물로부터 이산화탄소의 포획 및 분리를 위한 분리막 기반 공정
WO2013048040A2 (ko) 액화장치 및 액화방법과 이를 포함하는 유체전달 시스템
KR101278587B1 (ko) 열교환부와 열교환에 의하여 에너지를 저감시키기 위한 천연가스 액화방법
WO2024080439A1 (ko) 희귀가스 생산 시스템 및 이를 포함하는 액화수소 인수기지
RU2808890C1 (ru) Энерготехнологический комплекс для выработки тепловой и механической энергии и способ работы комплекса
JP4430351B2 (ja) フッ素化合物ガスの分離精製装置
WO2022191390A1 (ko) 암모니아 기반의 on-site 수소충전소

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14369405

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12862739

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/04/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12862739

Country of ref document: EP

Kind code of ref document: A1