WO2016047957A1 - 고효율의 네오펜틸 글리콜의 제조방법 및 이의 제조장치 - Google Patents

고효율의 네오펜틸 글리콜의 제조방법 및 이의 제조장치 Download PDF

Info

Publication number
WO2016047957A1
WO2016047957A1 PCT/KR2015/009661 KR2015009661W WO2016047957A1 WO 2016047957 A1 WO2016047957 A1 WO 2016047957A1 KR 2015009661 W KR2015009661 W KR 2015009661W WO 2016047957 A1 WO2016047957 A1 WO 2016047957A1
Authority
WO
WIPO (PCT)
Prior art keywords
neopentyl glycol
hydrogenation reactor
preparing
solution
hydrogenation
Prior art date
Application number
PCT/KR2015/009661
Other languages
English (en)
French (fr)
Inventor
엄성식
고동현
김미영
정다원
김태윤
최민지
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150129657A external-priority patent/KR101757053B1/ko
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to US14/906,155 priority Critical patent/US9914682B2/en
Priority to EP15820424.8A priority patent/EP3187481B1/en
Priority to CN201580001734.4A priority patent/CN105658609B/zh
Priority to JP2016550448A priority patent/JP6280654B2/ja
Publication of WO2016047957A1 publication Critical patent/WO2016047957A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • C07C29/141Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/94Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols

Definitions

  • the present disclosure relates to a method for manufacturing high efficiency neopentyl glycol and a manufacturing apparatus thereof, and more specifically, unlike the prior art, energy need not be separately heated from a feed vessel to a hydrogenation reactor inlet.
  • the present invention relates to a method for manufacturing neopentyl glycol and a method for manufacturing the same, wherein the high boiling by-products are not generated in the above section, thereby preventing poisoning of the hydrogenation catalyst in the reactor by the high boiling by-products, and further improving the yield of the hydrogenation reaction.
  • Neopentyl glycol is a white crystalline material with a melting point of 130 ° C or higher. It is used as an important intermediate for various synthetic resins. It is also used as a raw material for various plastic powder coatings, synthetic lubricants, plasticizers, surfactants, and textile processing agents. It is widely used.
  • Such NPG is generally prepared by aldol condensation reaction of isobutyraldehyde with formaldehyde to form hydroxypivaldehyde (HPA), and then reacting the HPA with hydrogen under a catalyst.
  • HPA hydroxypivaldehyde
  • the reaction must be heated to a high temperature in order to maintain the liquid state of the HPA feedstock from the feed vessel to the inlet of the hydrogenation reactor, so that the HPNE feedstock, already a high-boiling by-product, before being introduced into the hydrogenation reactor
  • By-products such as, etc. are generated to reduce the HPA content from the hydrogenation reactor inlet, eventually reducing the content of NPG generated after the hydrogenation reaction, and the content of by-products such as neopentylglycol hydroxy pivalate (HPNE) is rather increased.
  • the by-products are known to be temperature sensitive so far that the higher the temperature, the greater the rate and amount of the produced product. However, if the temperature is lowered, the complete liquefaction of the HPA raw material is impossible, so that the reactivity decreases. On the contrary, if the temperature of the HPA raw material is increased to increase the reactivity, a by-product increases significantly.
  • an object of the present disclosure is to provide a method for producing high efficiency neopentyl glycol having low by-products without decreasing reactivity and a manufacturing apparatus thereof.
  • the present invention is a method for preparing neopentyl glycol by adding a hydroxy fibaldehyde solution and hydrogen to a hydrogenation reactor including a hydrogenation catalyst, the hydroxy fibaldehyde solution is a hydroxy It provides a method for preparing neopentyl glycol, which comprises 6 to 30% by weight of cifialdehyde, 35 to 70% by weight of neopentyl glycol, 10 to 30% by weight of alcohol and 10 to 30% by weight of water.
  • the present invention includes a feed vessel in which the hydroxyfibaldehyde solution is stored; A raw material supply pipe for supplying a hydroxyfibaldehyde solution to the hydrogenation reactor in the feed basin; A hydrogen supply pipe for supplying hydrogen to the hydrogenation reactor; A hydrogenation reactor having a hydrogenation catalyst fixed therein; Discharge piping for discharging the neopentyl glycol product generated from the hydrogenation reactor; A neopentyl glycol recovery pipe for supplying some neopentyl glycol product from the discharge pipe to the feed basin; A recycle pipe for recycling some neopentyl glycol product from the discharge pipe to the hydrogenation reactor; It provides a neopentyl glycol manufacturing apparatus comprising a; and a heating device for heating the hydroxy fibaldehyde solution supplied to the hydrogenation reactor through the raw material supply pipe just before being introduced into the hydrogenation reactor.
  • 1 is a process diagram schematically showing a manufacturing process of neopentyl glycol of the present disclosure.
  • the method for preparing neopentyl glycol according to the present invention is a method for preparing neopentyl glycol by adding a hydroxyfibaldehyde solution and hydrogen to a hydrogenation reactor including a hydrogenation catalyst, wherein the hydroxyfibaldehyde solution is hydroxypi 6 to 30% by weight of brothide, 35 to 70% by weight of neopentyl glycol, 10 to 30% by weight of alcohol and 10 to 30% by weight of water.
  • the feed basin is not particularly limited in the case of a means capable of supplying the raw material to the raw material supply pipe by storing the raw material, and may be, for example, a raw material storage tank, a raw material supply tank, or a feeding tank.
  • the feed basin may further include agitation means capable of mixing the raw materials, for example.
  • the hydroxyfibaldehyde solution may include, for example, 8 to 20% by weight of hydroxyfibaldehyde, 40 to 52% by weight of neopentyl glycol, 15 to 25% by weight of alcohol and 10 to 27% by weight of water. In this case, the by-products are less effective without lowering the reactivity.
  • the weight ratio of hydroxyfibaldehyde and neopentyl glycol is, for example, 1: 1.5 to 1: 8, or 1: 2 to 1: 6.5, and the heat is well within this range, so that the reaction is good and there are few by-products. There is.
  • the alcohol may be, for example, octanol, i-butanol or methanol, and preferably octanol.
  • the water may be 10 to 30% by weight, for example 10 to 27% by weight or 12 to 30% by weight, the reactivity, HPA conversion and NPG yield within this range is excellent effect.
  • the neopentyl glycol may be, for example, a part of the neopentyl glycol discharged from the hydrogenation reactor, and in this case, since the same material as the reaction product is used, a separate separation step is not required in the post-treatment process, so it is economical and has good process efficiency. It works.
  • the hydroxyfibaldehyde solution is maintained at 40 to 100 ° C., or 60 to 75 ° C., from a feed vessel, for example, and is supplied to a hydrogenation reactor.
  • the temperature is low, the raw material solution is solidified to cause problems in transport.
  • by-products are generated and the temperature is maintained at a high temperature, by-products are made in the feed basin, thereby maintaining an appropriate temperature in the above range has the effect of increasing the reaction yield while suppressing the by-product generation.
  • the maintenance of the temperature of the feed basin can be achieved smoothly by incorporating the hot NPG product discharged from the hydrogenation reactor into the feed basin (mixed with hydroxyfibaldehyde) at a constant rate.
  • the hydroxyfibaldehyde solution may be dispersed and added by a distributor when it is introduced into the hydrogenation reactor, for example, and the reaction yield, HPA conversion and NPG selectivity are excellent in this case.
  • the temperature inside the hydrogenation reactor that is, the reaction temperature or the reactor inlet temperature is, for example, 100 to 250 ° C, 130 to 200 ° C, or 140 to 195 ° C.
  • the pressure inside the hydrogenation reactor ie the reaction pressure, is, for example, 10 to 250 bar, 20 to 120 bar, or 25 to 50 bar.
  • the hydrogenation catalyst may be, for example, a copper-based catalyst.
  • the copper-based catalyst is, for example, a CuO / BaO catalyst.
  • the catalyst has an excellent performance and a long lifespan.
  • the CuO / BaO catalyst is preferably a CuO / BaO catalyst containing 60 to 99 wt% of CuO and 1 to 40 wt% of BaO, more preferably 80 to 95 wt% of CuO and BaO CuO / BaO catalyst containing 5 to 20% by weight, most preferably CuO / BaO catalyst containing 85 to 90% by weight of CuO and 10 to 15% by weight of BaO, within the range of Excellent performance and long life.
  • the CuO / BaO catalyst may measure metal and metal oxide contents through ICP analysis.
  • the copper-based catalyst may include, for example, a silicon oxide or aluminum oxide support.
  • the performance and physical properties of the catalyst may be good, and the activity of the catalyst may be maintained for a long time.
  • the copper catalyst may be preferably a CuO / BaO / SiO catalyst.
  • the sum of x and y is preferably 20 to 50 (% by weight), or 30 to 50 (% by weight) based on the sum of x, y and z (100% by weight), and the performance of the catalyst within this range. This is an excellent and long life effect.
  • the hydrogenation reactor is, for example, a fixed bed reactor, and in this case, the catalyst and the reaction product are easily separated, the catalyst replacement is easy, and the reactor size can be reduced, thereby making an economic process.
  • the hydroxyfibaldehyde solution is preferably prepared in a feed vessel (feed vessel) is supplied to the hydrogenation reactor, for example, in this case the entire manufacturing process can be operated stably, there is an effect that the operation is easy.
  • the hydroxyfibaldehyde solution is prepared in the feed basin does not mean that the hydroxyfibaldehyde solution of the desired composition is made during the feed of the raw material in the raw material supply pipe, but the hydroxyfibaldehyde of the desired composition in the feed basin. After making the solution, it is supplied to the hydrogenation reactor through the raw material supply pipe.
  • the neopentyl glycol solution discharged from the hydrogenation reactor may include, for example, 6 wt% or less, or 5.5 wt% or less of a high boiling point component having a higher boiling point than NPG.
  • the purification equipment is simple and the purification cost is low. It works.
  • the high boiling point component may be, for example, hydroxyfibaldehyde dimer, that is, HPNE.
  • the hydroxyfibaldehyde solution may be mixed with hydrogen gas, for example, before being supplied to the hydrogenation reactor, and in this case, the dispersion efficiency of the gas and liquid raw materials introduced into the reactor may be increased, thereby increasing the HPA conversion rate and NPG yield. There is.
  • the method for producing neopentyl glycol is, for example, a portion of the neopentyl glycol solution discharged from the hydrogenation reactor may be recycled to the hydrogenation reactor, in this case, in combination with the heat exchanger has the effect of easily controlling the heat generated in the hydrogenation reaction have.
  • the hydroxyfibaldehyde solution may be heated to near the hydrogenation reaction temperature by heating means or a heating device, for example, just before being introduced into the hydrogenation reactor, in which case the HPA conversion rate and the hydrogenation reaction yield are excellent.
  • the heating means or heating device is usually not particularly limited as long as it is a heating means or heating device that can be applied to a hydrogenation reaction device of a hydroxyfibaldehyde solution.
  • Just before being introduced into the hydrogenation reactor may mean between the hydrogenation reactor from the point where the hydroxyfibaldehyde solution and the recycled neopentyl glycol solution meet, or between the hydrogenation reactor at the connection site of the raw material supply pipe and the recycling pipe. .
  • Near the hydrogenation reaction temperature may be, for example, 50 to 200 °C, 60 to 180 °C, or 80 to 145 °C.
  • the method for producing neopentyl glycol may be, for example, not separately heated from a feed vessel to a hydrogenation reactor inlet, in which case the production of by-products in the process of feeding the reactor is suppressed while preventing the solidification of the reaction raw materials. It is effective.
  • the neopentyl glycol manufacturing apparatus of the present disclosure includes a feed vessel in which a hydroxyfibaldehyde solution is stored; A raw material supply pipe for supplying a hydroxyfibaldehyde solution to the hydrogenation reactor in the feed basin; A hydrogen supply pipe for supplying hydrogen to the hydrogenation reactor; A hydrogenation reactor having a hydrogenation catalyst fixed therein; Discharge piping for discharging the neopentyl glycol product generated from the hydrogenation reactor; A neopentyl glycol recovery pipe for supplying some neopentyl glycol product from the discharge pipe to the feed basin; A recycle pipe for recycling some neopentyl glycol product from the discharge pipe to the hydrogenation reactor; And a heating device for heating the hydroxyfibaldehyde solution supplied to the hydrogenation reactor through the raw material supply pipe just before being introduced into the hydrogenation reactor.
  • a distributor may be installed at a point connected to the upper hydrogen supply pipe, and in this case, reaction yield, HPA conversion rate, and NPG selectivity may be improved.
  • the feed basin may be connected to the HPA manufacturing apparatus as an example.
  • FIG. 1 is a process diagram schematically showing an example of the NPG manufacturing process of the present invention, when using the hydroxyfibaldehyde solution (HPA solution) according to the present invention does not require a separate heating (heating) to save energy
  • HPA solution hydroxyfibaldehyde solution
  • By-products are not produced in the sections 1 to 2, and thus, poisoning of the hydrogenation catalyst by the by-products, in particular, high-boiling by-products such as HPNE, is prevented, and eventually, the NPG content of the product at the reactor outlet 3 is greatly increased. have.
  • the neopentyl glycol product produced from the hydrogenation reactor was obtained from an outlet tube connected to the bottom of the hydrogenation reactor, and the composition of the neopentyl glycol product thus obtained was measured by gas chromatography (HP-1, Agilent, Conditions: 70 ° C./3 min-10 ° C./min-280° C./35 min ° C.).
  • HPA Hydroxyfibaldehyde solution
  • HPA Hydroxyfibaldehyde solution
  • HPA Hydroxyfibaldehyde solution
  • High boiling point component components with higher boiling point than NPG, containing 3 to 3.5% by weight of HPNE, and remaining components correspond to unknown substances having higher boiling point than NPG
  • the preparation method of neopentyl glycol of the present invention is excellent in the HPA conversion and NPG reaction yield, in particular the neopentyl glycol product obtained through this by-product (new addition It was confirmed that there was almost no high boiling point component).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 기재는 고효율의 네오펜틸 글리콜 제조방법 및 이의 제조장치에 관한 것으로, 보다 상세하게는 수소화 촉매를 포함하는 수소화 반응기에 히드록시피브알데히드 용액과 수소를 투입하여 네오펜틸 글리콜을 제조하는 방법에 있어서, 상기 히드록시피브알데히드 용액은 히드록시피브알데히드 6 내지 30 중량%, 네오펜틸 글리콜 35 내지 70 중량%, 알코올 10 내지 30 중량% 및 물 10 내지 30 중량%를 포함하는 것을 특징으로 하는 네오펜틸 글리콜의 제조방법 및 이의 제조장치에 관한 것이다. 본 기재에 따르면, 피드 배슬에서 수소화 반응기 입구까지 별도로 가열(heating)할 필요가 없어 에너지가 절감되고, 이에 따라 상기 구간에서 고비점 부산물이 생성되지 않으며, 따라서 고비점 부산물에 의한 피독으로부터 반응기 내 수소화 촉매의 활성이 보호되고, 나아가 수소화 반응 수율이 향상되는 네오펜틸 글리콜의 제조방법 및 이의 제조장치를 제공하는 효과가 있다.

Description

고효율의 네오펜틸 글리콜의 제조방법 및 이의 제조장치
〔출원(들)과의 상호 인용〕
본 출원은 2014년 9월 25일자 한국 특허 출원 제10-2014-0128324호 및 2015년 9월 14일자 한국 특허 출원 제10-2015-0129657호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 기재는 고효율의 네오펜틸 글리콜의 제조방법 및 이의 제조장치에 관한 것으로, 보다 상세하게는 종래 기술과는 달리 피드 배슬(feed vessel)에서 수소화 반응기 입구까지 별도로 가열(heating)할 필요가 없어 에너지가 절감됨과 동시에 상기 구간에서 고비점 부산물이 생성되지 않아 고비점 부산물에 의한 반응기 내 수소화 촉매의 피독이 방지되고, 나아가 수소화 반응 수율이 향상되는 네오펜틸 글리콜의 제조방법 및 이의 제조장치에 관한 것이다.
네오펜틸 글리콜(neopentyl glycol; NPG)은 융점이 130 ℃ 이상인 백색 결정 물질로 각종 합성수지의 중요한 중간체로 이용되고, 또한 각종 플라스틱 분체 도료, 합성 윤활유, 가소제, 계면활성제, 섬유 가공제 등의 원료로 산업상 광범위하게 사용되고 있다.
이러한 NPG는 일반적으로 이소부티르알데히드와 포름알데히드를 알돌축합 반응시켜 히드록시피브알데히드(hydroxypivaldehyde; HPA)를 만든 다음, 이 HPA를 촉매 하에서 수소와 반응시켜 제조한다.
상기 반응은 피드 배슬(feed vessel)에서 수소화 반응기 입구까지 HPA 원료가 액체 상태를 유지할 수 있도록 높은 온도로 가열(heating)해야 하는데, 이 때문에 HPA 원료가 수소화 반응기에 투입되기 전에 이미 고비점 부산물인 HPNE 등과 같은 부산물이 생성되어 수소화 반응기 입구에서부터 HPA 함량이 줄어들게 되고, 결국 수소화 반응 후 생성되는 NPG의 함량이 감소하고 네오펜틸글리콜 하이드록시피발레이트(HPNE) 등과 같은 부산물의 함량은 오히려 증가하게 된다.
이렇듯 HPA를 수소화시켜 NPG를 제조하는 공정은 고온의 운전 조건으로 인해 에스테르, 이소-부탄올 등과 같은 부산물이 많이 생성되고, 특히 하기 반응식 1로 생성되는 HPNE와 같은 에스테르 잔류물은 비점이 NPG와 유사하여 증류에 의한 분리가 매우 어려우며 수소화 촉매의 활성을 떨어뜨리는 문제가 있다.
[반응식 1]
Figure PCTKR2015009661-appb-I000001
상기 부산물들은 지금까지 온도에 민감하여 온도가 높을수록 생성되는 속도와 양이 커지는 것으로 알려져 있다. 그러나, 온도를 낮추면 HPA 원료의 완전한 액화가 불가능하여 반응성이 떨어지는 문제가 발생하고, 반대로 반응성을 높이기 위해 HPA 원료의 온도를 높이면 부산물이 크게 증가하는 문제가 발생한다.
현재 상온에서 고체 상태로 존재하는 HPA 원료를 부산물 생성을 최소화하기 위해 70 ℃ 정도로 승온하여 액상으로 전환시킨 다음, 이를 수소 가스와 함께 수소화 반응기에 투입하여 NPG를 제조하는 기술이 개시되어 있으나, 낮은 수율과 높은 정제 비용 등은 여전히 큰 문제가 되고 있는 실정이다.
〔선행기술문헌〕
〔특허문헌〕
KR공개특허 제2006-0073044호
상기와 같은 종래기술의 문제점을 해결하고자, 본 기재는 반응성이 저하되지 않으면서도 부산물이 적은 고효율의 네오펜틸 글리콜의 제조방법 및 이의 제조장치를 제공하는 것을 목적으로 한다.
본 기재의 상기 목적 및 기타 목적들은 하기 설명된 본 기재에 의하여 모두 달성될 수 있다.
상기의 목적을 달성하기 위하여, 본 기재는 수소화 촉매를 포함하는 수소화 반응기에 히드록시피브알데히드 용액과 수소를 투입하여 네오펜틸 글리콜을 제조하는 방법에 있어서, 상기 히드록시피브알데히드 용액은 히드록시피브알데히드 6 내지 30 중량%, 네오펜틸 글리콜 35 내지 70 중량%, 알코올 10 내지 30 중량% 및 물 10 내지 30 중량%를 포함하는 것을 특징으로 하는 네오펜틸 글리콜의 제조방법을 제공한다.
또한, 본 기재는 히드록시피브알데히드 용액이 저장된 피드 배슬(feed vessel); 상기 피드 배슬에서 히드록시피브알데히드 용액을 수소화 반응기로 공급하는 원료공급배관; 수소를 상기 수소화 반응기에 공급하는 수소공급배관; 내부에 수소화 촉매가 고정된 수소화 반응기; 수소화 반응기로부터 생성된 네오펜틸 글리콜 생성물을 배출시키는 배출배관; 상기 배출배관으로부터 일부 네오펜틸 글리콜 생성물을 상기 피드 배슬에 공급하는 네오펜틸 글리콜 회수배관; 상기 배출배관으로부터 일부 네오펜틸 글리콜 생성물을 상기 수소화 반응기로 재순환시키는 재순환 배관; 및 상기 원료공급배관을 통해 수소화 반응기로 공급되는 히드록시피브알데히드 용액을 수소화 반응기로 투입되기 직전에 가열시키는 가열장치;를 포함하는 네오펜틸 글리콜 제조장치를 제공한다.
상기에서 살펴본 바와 같이, 본 기재에 따르면 피드 배슬에서 수소화 반응기 입구까지 별도로 가열(heating)할 필요가 없어 에너지가 절감되고, 이에 따라 상기 구간에서 고비점 부산물이 생성되지 않으며, 따라서 고비점 부산물에 의한 피독으로부터 반응기 내 수소화 촉매의 활성이 보호되고, 나아가 수소화 반응 수율이 크게 개선되는 네오펜틸 글리콜의 제조방법 및 이의 제조장치를 제공하는 효과가 있다.
도 1은 본 기재의 네오펜틸 글리콜의 제조공정을 개략적으로 도시한 공정도이다.
이하 본 기재를 상세하게 설명한다.
본 기재의 네오펜틸 글리콜의 제조방법은 수소화 촉매를 포함하는 수소화 반응기에 히드록시피브알데히드 용액과 수소를 투입하여 네오펜틸 글리콜을 제조하는 방법에 있어서, 상기 히드록시피브알데히드 용액은 히드록시피브알데히드 6 내지 30 중량%, 네오펜틸 글리콜 35 내지 70 중량%, 알코올 10 내지 30 중량% 및 물 10 내지 30 중량%를 포함하는 것을 특징으로 한다. 이 경우 피드 배슬에서 수소화 반응기 입구까지 별도로 가열할 필요가 없어 에너지가 절감되고, 동시에 고비점 부산물이 생성되지 않으며, 나아가 고비점 부산물에 의한 피독으로부터 반응기 내 수소화 촉매의 활성이 보호되고, 결과적으로 수소화 반응 수율이 크게 개선된다.
본 기재에서 피드 배슬은 원료를 저장하여 원료공급배관으로 원료를 공급할 수 있는 수단인 경우 특별히 제한되지 않고, 일례로 원료저장탱크, 원료공급탱크 또는 피딩 탱크(feeding tank) 등일 수 있다.
상기 피드 배슬은 일례로 원료를 혼합할 수 있는 교반수단을 더 포함할 수 있다.
상기 히드록시피브알데히드 용액은 일례로 히드록시피브알데히드 8 내지 20 중량%, 네오펜틸 글리콜 40 내지 52 중량%, 알코올 15 내지 25 중량% 및 물 10 내지 27 중량%를 포함할 수 있고, 이 경우 반응성이 저하되지 않으면서도 부산물이 적은 효과가 있다.
상기 히드록시피브알데히드와 네오펜틸 글리콜의 중량비는 일례로 1:1.5 내지 1:8, 또는 1:2 내지 1:6.5이고, 이 범위 내에서 제열이 잘되어 반응이 잘 가면서도 부산물이 적은 효과가 있다.
상기 알코올은 일례로 옥탄올, i-부탄올 또는 메탄올 등일 수 있고, 바람직하게는 옥탄올이다.
상기 물은 10 내지 30 중량%, 일례로 10 내지 27 중량% 또는 12 내지 30 중량%일 수 있고, 이 범위 내에서 반응성, HPA 전환율 및 NPG 수율이 우수한 효과가 있다.
상기 네오펜틸 글리콜은 일례로 상기 수소화 반응기에서 배출된 네오펜틸 글리콜의 일부일 수 있고, 이 경우 반응생성물과 동일한 물질을 사용하기 때문에 후처리 공정에서 별도의 분리공정이 필요하지 않아 경제적이면서 공정효율이 좋은 효과가 있다.
상기 히드록시피브알데히드 용액은 일례로 피드 배슬(feed vessel)로부터 40 내지 100 ℃, 또는 60 내지 75 ℃로 유지되어 수소화 반응기에 공급되고, 온도가 낮을 경우에는 원료 용액이 고형화 되어 이송에 문제가 발생하며 온도가 높게 유지될 경우에는 피드 배슬에서 부산물들이 만들어지기 때문에 상기 범위에서의 적절한 온도 유지가 부산물 생성을 억제하면서 반응수율을 증가시키는 효과가 있다. 상기 피드 배슬의 온도 유지는 수소화 반응기로부터 배출되는 고온의 NPG 생성물을 일정한 비율로 상기 피드 배슬에 투입(히드록시피브알데히드와 혼합)하여 원할히 달성할 수 있다.
상기 히드록시피브알데히드 용액은 일례로 상기 수소화 반응기에 투입될 때 디스트리뷰터(distributor)에 의해 분산 투입될 수 있고, 이 경우 반응수율, HPA 전환율 및 NPG 선택도가 우수한 효과가 있다.
상기 수소화 반응기 내부의 온도, 즉 반응온도 또는 반응기 입구온도는 일례로 100 내지 250 ℃, 130 내지 200 ℃, 또는 140 내지 195 ℃이다.
상기 수소화 반응기 내부의 압력, 즉 반응압력은 일례로 10 내지 250 bar, 20 내지 120 bar, 또는 25 내지 50 bar이다.
상기 수소화 촉매는 일례로 구리계 촉매일 수 있다.
상기 구리계 촉매는 일례로 CuO/BaO 촉매이고, 이 경우 촉매의 성능이 우수하고 수명이 긴 효과가 있다.
상기 CuO/BaO 촉매는 바람직하게 CuO를 60 내지 99 중량%로 포함하고 BaO를 1 내지 40 중량%로 포함하는 CuO/BaO 촉매이고, 보다 바람직하게는 CuO를 80 내지 95 중량%로 포함하고 BaO를 5 내지 20 중량%로 포함하는 CuO/BaO 촉매이며, 가장 바람직하게는 CuO를 85 내지 90 중량%로 포함하고 BaO를 10 내지 15 중량%로 포함하는 CuO/BaO 촉매이고, 이 범위 내에서 촉매의 성능이 우수하고 수명이 긴 효과가 있다.
상기 CuO/BaO 촉매는 일례로 ICP 분석을 통해 금속 및 금속산화물 함량을 측정할 수 있다.
상기 구리계 촉매는 일례로 규소산화물 또는 알루미늄산화물 지지체를 포함할 수 있고, 이 경우 촉매의 성능 및 물성이 좋고 촉매의 활성이 장시간 유지되는 효과가 있다.
상기 구리계 촉매는 바람직하게 CuO/BaO/SiO 촉매일 수 있다.
상기 CuO/BaO/SiO 촉매는 일례로 (CuO)x(BaO)y(SiO)z(x, y, z는 중량%이고, x:y:z=10~50:0~10:40~90, 10~50:1~10:40~89 또는 29~50:1~10:40~70)인 촉매일 수 있다. 상기 x와 y의 합은 바람직하게는 x, y 및 z의 총합(100 중량%)을 기준으로 20 내지 50 (중량%), 또는 30 내지 50 (중량%)이고, 이 범위 내에서 촉매의 성능이 뛰어나고 수명이 긴 효과가 있다.
상기 수소화 반응기는 일례로 고정층 반응기(fixed bed reactor)이고, 이 경우 촉매와 반응생성물 분리가 용이하며 촉매 교체작업이 용이하고 반응기 크기를 줄일 수 있어 경제적인 공정을 구성하는 효과가 있다.
상기 히드록시피브알데히드 용액는 일례로 피드 배슬(feed vessel)에서 준비되어 수소화 반응기로 공급되는 것이 바람직하고, 이 경우 전체 제조공정이 안정적으로 운전될 수 있고, 작업이 용이한 효과가 있다.
상기 히드록시피브알데히드 용액이 피드 배슬에서 준비된다는 의미는 원료공급배관에서 원료공급 중에 목적하는 조성의 히드록시피브알데히드 용액이 만들어지는 것이 아니라, 피드 배슬에서 목적하는 조성의 히드록시피브알데히드 용액을 만든 다음, 이를 원료공급배관을 통해 수소화 반응기로 공급하는 것을 말한다.
상기 수소화 반응기에서 배출되는 네오펜틸 글리콜 용액은 일례로 끓는점이 NPG 보다 높은 고비점 성분이 6 중량% 이하, 또는 5.5 중량% 이하로 포함될 수 있고, 이 경우 정제 설비가 간단하고, 정제 비용이 적게 드는 효과가 있다. 상기 고비점 성분은 일례로 히드록시피브알데히드 이합체, 즉 HPNE일 수 있다.
상기 히드록시피브알데히드 용액은 일례로 수소화 반응기에 공급되기 전에 수소 가스와 혼합될 수 있고, 이 경우 반응기로 투입되는 기체와 액체 원료의 분산효율을 높일 수 있어 HPA 전환율과 NPG 수율을 증가시키는 효과가 있다.
상기 네오펜틸 글리콜의 제조방법은 일례로 상기 수소화 반응기에서 배출되는 네오펜틸 글리콜 용액의 일부가 수소화 반응기로 재순환될 수 있고, 이 경우 열교환기와 결합하여 수소화 반응에서 발생하는 열을 용이하게 제어하는 효과가 있다.
상기 히드록시피브알데히드 용액은 일례로 수소화 반응기에 투입되기 직전에 가열수단이나 가열장치에 의해 수소화 반응 온도 부근까지 가열될 수 있고, 이 경우 HPA 전환율과 수소화 반응 수율이 우수한 효과가 있다.
상기 가열수단 또는 가열장치는 통상적으로 히드록시피브알데히드 용액의 수소화 반응장치에 적용할 수 있는 가열수단 또는 가열장치인 경우 특별히 제한되지 않는다.
상기 수소화 반응기에 투입되기 직전이라 함은 히드록시피브알데히드 용액과 재순환되는 네오펜틸 글리콜 용액이 만나는 지점부터 수소화 반응기 사이, 또는 원료 공급배관과 재순환 배관의 연결 부위에서 수소화 반응기 사이를 의미할 수 있다.
상기 수소화 반응온도 부근은 일례로 50 내지 200 ℃, 60 내지 180 ℃, 또는 80 내지 145℃일 수 있다.
상기 네오펜틸 글리콜의 제조방법은 일례로 피드 배슬(feed vessel)에서 수소화 반응기 입구까지 별도로 가열하지 않는 것일 수 있고, 이 경우 반응원료의 고형화를 방지하면서 반응기로 공급되는 과정에서의 부산물의 생성이 억제되는 효과가 있다.
본 기재의 네오펜틸 글리콜 제조장치는 히드록시피브알데히드 용액이 저장된 피드 배슬(feed vessel); 상기 피드 배슬에서 히드록시피브알데히드 용액을 수소화 반응기로 공급하는 원료공급배관; 수소를 상기 수소화 반응기에 공급하는 수소공급배관; 내부에 수소화 촉매가 고정된 수소화 반응기; 수소화 반응기로부터 생성된 네오펜틸 글리콜 생성물을 배출시키는 배출배관; 상기 배출배관으로부터 일부 네오펜틸 글리콜 생성물을 상기 피드 배슬에 공급하는 네오펜틸 글리콜 회수배관; 상기 배출배관으로부터 일부 네오펜틸 글리콜 생성물을 상기 수소화 반응기로 재순환시키는 재순환 배관; 및 상기 원료공급배관을 통해 수소화 반응기로 공급되는 히드록시피브알데히드 용액을 수소화 반응기로 투입되기 직전에 가열시키는 가열장치;를 포함하는 것을 특징으로 한다.
상기 수소화 반응기는 일례로 상단 수소공급배관과 연결되는 지점에 디스트리뷰터(distributor)가 설치될 수 있고, 이 경우 반응수율, HPA 전환율 및 NPG 선택도가 개선되는 효과가 있다.
상기 피드 배슬은 일례로 HPA 제조장치와 연결될 수 있다.
하기 도 1은 본 기재의 NPG 제조공정의 일례를 개략적으로 도시한 공정도로, 본 기재에 따른 히드록시피브알데히드 용액(HPA 용액)을 사용하는 경우 별도의 가열(heating)이 필요 없어 에너지가 절약되고, ①~② 구간에서 부산물이 생성되지 않으며, 따라서 부산물, 특히 HPNE와 같은 고비점 부산물에 의한 수소화 촉매의 피독 현상이 방지되고, 결국 반응기 출구 ③에서 생성물인 NPG 함량이 크게 증가함을 확인할 수 있다.
이하, 본 기재의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 기재를 예시하는 것일 뿐 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
실시예 1
히드록시피브알데히드 12 중량%, 네오펜틸 글리콜 48 중량%, 옥탄올 23.1 중량%, 물 12 중량% 및 고비점 성분 4.5 중량%로 이루어진 히드록시피브알데히드 용액(HPA:NPG=1:4)을 피드 배슬에 조제한 후 피드 배슬 온도를 60 ℃로 유지하면서 원료공급배관을 통해 3.4 g/분의 유속으로 340 ml 용량의 수소화 반응기로 이송시켰다. 이와 동시에 수소를 수소공급배관을 통해 원료공급배관의 히드록시피브알데히드 용액에 투입하여 혼합하였다. 이때 수소화 반응기에 고정된 촉매는 CuO/BaO/SiO(CuO:BaO:SiO 중량비=40:5:55) 촉매였고, 반응기 입구온도와 반응압력은 각각 140 ℃, 40 bar이었다. 24 시간 연속적으로 운전한 후에 상기 수소화 반응기로부터 생성된 네오펜틸 글리콜 생성물을 수소화 반응기 하단에 연결된 배출관으로부터 수득하였고, 이렇게 수득된 네오펜틸 글리콜 생성물의 조성은 가스 크로마토그래피(HP-1, Agilent사, 측정조건: 70℃/3min-10℃/min-280℃/35min ℃)를 이용하여 측정하였다.
실시예 2
상기 실시예 1에서 히드록시피브알데히드 20 중량%, 네오펜틸 글리콜 40 중량%, 옥탄올 22.9 중량%, 물 11.9 중량% 및 고비점 성분 5.2 중량%로 이루어진 히드록시피브알데히드 용액(HPA:NPG=1:2)을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
실시예 3
상기 실시예 1에서 히드록시피브알데히드 8 중량%, 네오펜틸 글리콜 52 중량%, 옥탄올 22.9 중량%, 물 15 중량% 및 고비점 성분 5.1 중량%로 이루어진 히드록시피브알데히드 용액(HPA:NPG=1:6.5)을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
비교예 1
상기 실시예 1에서 히드록시피브알데히드 5 중량%, 네오펜틸 글리콜 55 중량%, 옥탄올 23 중량%, 물 12.2 중량%, 고비점 성분 4.8 중량%로 이루어진 히드록시피브알데히드 용액(HPA:NPG = 1:11)을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
비교예 2
상기 실시예 1에서 히드록시피브알데히드 35 중량%, 네오펜틸 글리콜 25 중량%, 옥탄올 23 중량%, 물 12 중량% 및 고비점 성분 5 중량%로 이루어진 히드록시피브알데히드 용액(HPA:NPG = 1:1.4)을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
[시험예]
상기 실시예 1 내지 3 및 비교예 1 내지 2에서 수득한 네오펜틸 글리콜 생성물을 상기와 같은 가스 크로마토그래피로 분석하여 HPA 전환율 및 NPG 수율을 하기와 같이 계산하였고, 그 결과를 하기의 표 1에 나타내었다.
* 전환율: (1-(생성물중 HPA함량 /원료중 HPA량))*100
* 수율: (생성물중 NPG함량 /(원료중 HPA함량+원료중 NPG함량))*100
* 고비점 성분: NPG 보다 비점이 높은 성분들로 HPNE가 3 내지 3.5 중량% 포함되고, 나머지 성분들은 NPG 보다 비점이 높은 unknown 물질에 해당함
구분 실시예1 실시예2 실시예3 비교예1 비교예2
HPA용액조성 NPG 48 40 52 55 34.5
HPA 12 20 8 5 25.5
2-EH+H2O 35.1 34.8 34.9 35.2 35
고비점성분 4.9 5.2 5.1 4.8 5
NPG용액조성 NPG 59.8 59.5 59.7 57 56
HPA 0.1 0.04 0.08 0.3 1
2-EH+H2O 35 35 35 35 35
고비점성분 5.1 5.46 5.22 7.7 8
HPA 전환율(%) 99.2 99.8 99.0 94.0 96.1
NPG 수율(%) 99.7 99.2 99.5 95.0 93.3
상기 표 1에 나타낸 바와 같이, 본 기재의 네오펜틸 글리콜의 제조방법(실시예 1 내지 3)은 HPA 전환율과 NPG 반응수율이 우수하고, 특히 이를 통해 수득한 네오펜틸 글리콜 생성물은 부산물(새로 추가된 고비점 성분)이 거의 없는 것을 확인할 수 있었다.
[규칙 제91조에 의한 정정 19.10.2015] 
Delete

Claims (17)

  1. 수소화 촉매를 포함하는 수소화 반응기에 히드록시피브알데히드 용액과 수소를 투입하여 네오펜틸 글리콜을 제조하는 방법에 있어서, 상기 히드록시피브알데히드 용액은 히드록시피브알데히드 6 내지 30 중량%, 네오펜틸 글리콜 35 내지 70 중량%, 알코올 10 내지 30 중량% 및 물 10 내지 30 중량%를 포함하는 것을 특징으로 하는
    네오펜틸 글리콜의 제조방법.
  2. 제 1항에 있어서,
    상기 히드록시피브알데히드 용액는 피드 배슬(feed vessel)에서 준비되어 수소화 반응기로 공급되는 것을 특징으로 하는
    네오펜틸 글리콜의 제조방법.
  3. 제 1항에 있어서,
    상기 히드록시피브알데히드와 네오펜틸 글리콜의 중량비는 1:1.5 내지 1:8인 것을 특징으로 하는
    네오펜틸 글리콜의 제조방법.
  4. 제 3항에 있어서,
    상기 히드록시피브알데히드와 네오펜틸 글리콜의 중량비는 1:2 내지 1:6.5인 것을 특징으로 하는
    네오펜틸 글리콜의 제조방법.
  5. 제 1항에 있어서,
    상기 네오펜틸 글리콜은 상기 수소화 반응기에서 배출된 네오펜틸 글리콜의 일부인 것을 특징으로 하는
    네오펜틸 글리콜의 제조방법.
  6. 제 1항에 있어서,
    상기 히드록시피발알데이드 용액은 40 내지 100 ℃로 유지되어 수소화 반응기에 공급되는 것을 특징으로 하는
    네오펜틸 글리콜의 제조방법.
  7. 제 1항에 있어서,
    상기 수소화 반응기 내부의 온도는 100 내지 250 ℃인 것을 특징으로 하는
    네오펜틸 글리콜의 제조방법.
  8. 제 1항에 있어서,
    상기 수소화 촉매는 구리계 촉매인 것을 특징으로 하는
    네오펜틸 글리콜의 제조방법.
  9. 제 8항에 있어서,
    상기 구리계 촉매는 CuO/BaO 촉매인 것을 특징으로 하는
    네오펜틸 글리콜의 제조방법.
  10. 제8항에 있어서,
    상기 구리계 촉매는 지지체로 규소산화물 또는 알루미늄산화물을 포함하는 것을 특징으로 하는
    네오펜틸 글리콜의 제조방법.
  11. 제 1항에 있어서,
    상기 수소화 반응기는 고정층 반응기(fixed bed reactor)인 것을 특징으로 하는
    네오펜틸 글리콜의 제조방법.
  12. 제 1항에 있어서,
    상기 수소화 반응기에서 배출되는 네오펜틸 글리콜 용액은 네오펜틸글리콜 하이드록시피발레이트(HPNE)가 6.0 중량% 이하로 포함되는 것을 특징으로 하는
    네오펜틸 글리콜의 제조방법.
  13. 제 1항에 있어서,
    상기 히드록시피브알데히드 용액은 수소화 반응기에 공급되기 전에 수소 가스와 혼합되는 것을 특징으로 하는
    네오펜틸 글리콜의 제조방법.
  14. 제 1항에 있어서,
    상기 네오펜틸 글리콜의 제조방법은 상기 수소화 반응기에서 배출되는 네오펜틸 글리콜 용액의 일부가 수소화 반응기로 재순환되는 것을 특징으로 하는
    네오펜틸 글리콜의 제조방법.
  15. 제 1항에 있어서,
    상기 히드록시피브알데히드 용액은 수소화 반응기에 투입되기 직전에 수소화 반응 온도까지 가열되는 것을 특징으로 하는
    네오펜틸 글리콜의 제조방법.
  16. 제 1항에 있어서,
    상기 네오펜틸 글리콜의 제조방법은 피드 배슬(feed vessel)에서 수소화 반응기 입구까지 별도로 가열하지 않는 것을 특징으로 하는
    네오펜틸 글리콜의 제조방법.
  17. 히드록시피브알데히드 용액이 저장된 피드 배슬(feed vessel); 상기 피드 배슬에서 히드록시피브알데히드 용액을 수소화 반응기로 공급하는 원료공급배관; 수소를 상기 수소화 반응기에 공급하는 수소공급배관; 내부에 수소화 촉매가 고정된 수소화 반응기; 수소화 반응기로부터 생성된 네오펜틸 글리콜 생성물을 배출시키는 배출배관; 상기 배출배관으로부터 일부 네오펜틸 글리콜 생성물을 상기 피드 배슬에 공급하는 네오펜틸 글리콜 회수배관; 상기 배출배관으로부터 일부 네오펜틸 글리콜 생성물을 상기 수소화 반응기로 재순환 시키는 재순환 배관; 및 상기 원료공급배관을 통해 수소화 반응기로 공급되는 히드록시피브알데히드 용액을 수소화 반응기로 투입되기 직전에 가열시키는 가열장치;를 포함하는 것을 특징으로 하는
    네오펜틸 글리콜의 제조장치.
PCT/KR2015/009661 2014-09-25 2015-09-15 고효율의 네오펜틸 글리콜의 제조방법 및 이의 제조장치 WO2016047957A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/906,155 US9914682B2 (en) 2014-09-25 2015-09-15 Highly efficient neopentyl glycol preparation method and device therefor
EP15820424.8A EP3187481B1 (en) 2014-09-25 2015-09-15 Method for preparing neopentyl glycol at high efficiency and apparatus for preparing same
CN201580001734.4A CN105658609B (zh) 2014-09-25 2015-09-15 高效的新戊二醇制备方法及用于该方法的装置
JP2016550448A JP6280654B2 (ja) 2014-09-25 2015-09-15 高効率のネオペンチルグリコールの製造方法及びその製造装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140128324 2014-09-25
KR10-2014-0128324 2014-09-25
KR10-2015-0129657 2015-09-14
KR1020150129657A KR101757053B1 (ko) 2014-09-25 2015-09-14 고효율의 네오펜틸 글리콜의 제조방법 및 이의 제조장치

Publications (1)

Publication Number Publication Date
WO2016047957A1 true WO2016047957A1 (ko) 2016-03-31

Family

ID=55581427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009661 WO2016047957A1 (ko) 2014-09-25 2015-09-15 고효율의 네오펜틸 글리콜의 제조방법 및 이의 제조장치

Country Status (1)

Country Link
WO (1) WO2016047957A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0484800B1 (en) * 1990-11-06 1995-09-27 Mitsubishi Gas Chemical Company, Inc. Process for producing neopentyl glycol
KR20010033761A (ko) * 1997-12-30 2001-04-25 코르피 크리스티나 네오펜틸 글리콜의 제조 방법
KR20060073044A (ko) 2004-12-24 2006-06-28 주식회사 엘지화학 네오펜틸글리콜의 제조방법
US20110098515A1 (en) * 2008-07-02 2011-04-28 Kurt Schalapski Method of producing neopentyl glycol
US20110184212A1 (en) * 2008-07-15 2011-07-28 Oxea Gmbh Process for preparing neopentyl glycol by cracking high boilers occuring in the production process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0484800B1 (en) * 1990-11-06 1995-09-27 Mitsubishi Gas Chemical Company, Inc. Process for producing neopentyl glycol
KR20010033761A (ko) * 1997-12-30 2001-04-25 코르피 크리스티나 네오펜틸 글리콜의 제조 방법
KR20060073044A (ko) 2004-12-24 2006-06-28 주식회사 엘지화학 네오펜틸글리콜의 제조방법
US20110098515A1 (en) * 2008-07-02 2011-04-28 Kurt Schalapski Method of producing neopentyl glycol
US20110184212A1 (en) * 2008-07-15 2011-07-28 Oxea Gmbh Process for preparing neopentyl glycol by cracking high boilers occuring in the production process

Similar Documents

Publication Publication Date Title
WO2015012550A1 (ko) 메틸올알칸알의 제조방법
WO2019098501A1 (ko) 페놀 제조 공정에서의 부산물 분해방법
WO2014112808A1 (ko) 알칸올의 제조 장치
WO2017043785A1 (ko) 글리콜의 제조장치 및 제조방법
WO2012115422A2 (ko) 글리콜 모노-터셔리-부틸에테르 화합물의 제조 방법
WO2019083188A1 (ko) 트리메틸올프로판의 제조방법
WO2010058983A2 (ko) (메트)아크릴산 에스테르의 회수방법
WO2016047957A1 (ko) 고효율의 네오펜틸 글리콜의 제조방법 및 이의 제조장치
WO2012112003A2 (ko) 글리콜에테르를 이용한 고순도 이소부텐의 제조 방법
EP3187481A1 (en) Method for preparing neopentyl glycol at high efficiency and apparatus for preparing same
WO2014209068A1 (ko) 알릴 알코올의 제조방법 및 이에 의하여 제조된 알릴 알코올
JP2017504614A (ja) ポリオキシメチレンジメチルエーテルカルボニル化物及びメトキシ酢酸メチルの製造方法
WO2021071073A1 (ko) 알돌 축합 반응 장치
CN113416133A (zh) 连续化生产(甲基)丙烯酸多元醇酯的方法
WO2020130314A1 (ko) 페놀계 부산물의 분해 방법 및 이의 분해 장치
WO2017003209A1 (ko) 증류 장치
WO2012057438A2 (ko) 1,3,5-트리옥산의 제조방법
KR102052084B1 (ko) 네오펜틸 글리콜의 제조방법
WO2018190642A2 (ko) 산화적 탈수소화 반응용 촉매 시스템, 이를 포함하는 산화적 탈수소화용 반응기 및 산화적 탈수소화 방법
WO2016091058A1 (zh) 一种由2-戊烯制备3-戊酮的方法
WO2022108050A1 (ko) 디에스터계 물질의 제조방법
JPH06122638A (ja) アルコールの精製方法
CN113443968A (zh) 一种3,5-二甲基苯酚的工业化制备方法
WO2022080753A1 (ko) 네오펜틸 글리콜의 제조방법
KR101752562B1 (ko) 공정효율이 높은 네오펜틸 글리콜 제조장치

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2015820424

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14906155

Country of ref document: US

Ref document number: 2015820424

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016550448

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15820424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE