WO2016045632A1 - 一种成型刀具及加工工件的方法、成型设备 - Google Patents

一种成型刀具及加工工件的方法、成型设备 Download PDF

Info

Publication number
WO2016045632A1
WO2016045632A1 PCT/CN2015/090856 CN2015090856W WO2016045632A1 WO 2016045632 A1 WO2016045632 A1 WO 2016045632A1 CN 2015090856 W CN2015090856 W CN 2015090856W WO 2016045632 A1 WO2016045632 A1 WO 2016045632A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
cutter shaft
expansion
workpiece
positioning
Prior art date
Application number
PCT/CN2015/090856
Other languages
English (en)
French (fr)
Inventor
杨东佐
Original Assignee
杨东佐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨东佐 filed Critical 杨东佐
Publication of WO2016045632A1 publication Critical patent/WO2016045632A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/06Profile cutting tools, i.e. forming-tools

Definitions

  • the invention relates to a forming tool and a method for processing a workpiece in a machine tool field, and a molding device, in particular to a forming tool for a boring machine, a drill bit, an extrusion device, a method for processing a workpiece, a molding device such as a boring machine, a drill bit, and an extrusion device.
  • a multi-blade boring tool capable of synchronously adjusting an outer diameter
  • which has a lower cutter body, a non-standard cutter clamp, an upper cutter body and an adjustment mechanism; and a groove on the lower cutter body;
  • the middle part has a positioning hole;
  • the lower part of the non-standard holder has a lower boss, the rear end has a trapezoidal end face, and the upper part of the front end is provided with a blade;
  • the upper body has a mounting hole, a pressing hole, a step hole, a sipe, and the side has a system The side and the screw hole are cut;
  • the adjusting mechanism includes an adjusting screw, a rotation preventing nut, and a taper adjusting block and a spring.
  • the adjustment of the screw can drive the cone adjustment block up or down.
  • the spring pushes the tapered adjustment block to rise.
  • the tapered surface of the tapered adjustment block and the trapezoidal surface of the trapezoidal end face drive the non-standard tool holders to move outward synchronously, so that the outer diameter of the blade increases.
  • the non-standard tool holder is pushed by each of the non-standard tool holders under the action of each of the centripetal springs, so that the outer diameter of the blade is reduced.
  • the boring tool of this structure can realize the synchronous adjustment of the outer diameter of the blade, when the outer diameter of the blade is adjusted, the boring tool must stop working, and the outer diameter of the boring tool cannot be adjusted during the process of machining the workpiece. With the boring tool of this structure, the annular groove on the wall of the workpiece is machined with low efficiency.
  • the Chinese invention patent "Self-feeding differential planetary flat disc” (Application No.: 200810049865.1) discloses a flat rotary disc, flat rotary disc and cymbal that can effectively solve the precision of radial feeding of the boring machine and improve the machining quality.
  • the milling shaft rotates at the same time, the driving plate is driven on the flat rotating disc, and the worm is connected with the worm.
  • the worm wheel drives the worm to rotate, and the volute on the driving slide makes a radial linear motion, thereby driving the radial movement of the cutter head.
  • the inadequacy of the invention is that the change in the radial feed rate is inconvenient.
  • boring tool holder (application number: 94237587.4) is composed of body, worm, inner ring gear, upper cover, slider, insert, screw, clutch, adjusting screw and fork, automatic feed cutting
  • the inner groove, the outer circle, the outer groove, the inner and outer cone surfaces and the step hole end face can be cut, and the disadvantage is that a plurality of inner ring gears with different numbers of teeth need to be prepared to satisfy Change the slider's unit time movement value requirement.
  • the invention patent "Mechanical Rotary Disc” (Application No. 200910094665.2) includes a horizontal spindle, a flange, a fixed gear, a planetary gear, a screw pair (13) installed in the headstock, and a worm gear is connected to the transmission shaft. Passive gears, drive gears and clutches are easy to operate. The disadvantages are: the feed rate during machining is not adjustable, and the electric control device is also included in the flat disc, which is not conducive to safe operation.
  • a trampoline multi-function knife holder which is an independent knife body structure, the tool holder main body, two sets of NW type planetary gear trains, manual-automatic conversion device , the counting device and the fixed axle wheel train, etc., the tool holder body is fixed on the machine tool by the external chuck thereof, the tool holder main shaft passes through the tool holder body, one end of the shaft is a cone shaft coupled with the machine tool main shaft, and the other end is fixed With the flat rotary disc, the rotation of the machine tool spindle is transmitted to the flat rotary disc through the spindle of the tool holder.
  • the rotation speed of the flat rotary disc is the same as the rotation speed of the machine tool spindle.
  • Two sets of NW planetary gear trains are installed in the tool holder body, and the input end is the tool holder main shaft.
  • the driving gear on the upper end is the gear d
  • the side of the flat rotating disc is a fixed-axis gear train, and its input end
  • the gear a the output end is the internal gear a
  • the manual, automatic switching device and the counting device are installed between the two sets of NW-type planetary gear trains and the fixed-axis gear train; when the radial feed is in the manual gear position, the meshing sleeve is placed on the sleeve
  • the internal gear d is disengaged from the output gears d of the two sets of NW planetary gear trains, and the internal splines on the meshing sleeve are connected with an external spline on the main shaft of the tool holder, and the external gears and the gears a and the gear b on the sleeve are engaged.
  • the product of the gear ratio of the internal gear a is 1; when the spindle stops rotating, the internal gear d on the meshing sleeve is meshed with the output gears d of the two sets of NW planetary gear trains by the shifting fork, and the external flower on the main shaft of the tool holder
  • the key is separated from the internal spline on the sleeve, and the product ratio of the gear c and the gear a to the gear b and the internal gear a is not equal to 1;
  • the counting device is composed of a counting dial, a counting worm wheel, a worm, a worm shaft cover, and a manual worm
  • the shank is composed, the counting dial is coaxial with the counting worm wheel, the counting worm wheel is meshed with the worm, and the worm is meshed with the large worm wheel of the fixed shaft wheel train.
  • the patent is connected to the spindle of a similar T68 series horizontal boring machine through the rear chuck and cone shaft.
  • the manual and automatic radial feed of the boring bar can be completed without stopping the machine spindle, the plane can be cut, inside and outside.
  • the annular groove on the circle, the tapered surface on the inner and outer circles, etc. can simplify the structure of the machine tool.
  • the tool holder is similar to a continuously variable transmission, and can adjust the radial feed amount of the boring bar arbitrarily without stopping the spindle. It compensates for the defects of the radial feed of the ordinary boring machine.
  • the power required for the radial feed motion of the boring bar comes from the main shaft itself, and no external electric or mechanical power source is needed.
  • the trampoline multi-tool holder of this structure and the adjustment structure of the radial feed of the boring bar are very complicated.
  • a boring tool is disclosed. Specifically, it is a boring tool used for boring processing of a hole on a trampoline. It comprises a body with a central hole on the body and a hydraulic cylinder at the rear end of the body. The front end of the body has a cover, and the front section of the center hole has a cone core. A taper rod is provided at one end of the cone core adjacent to the piston rod. A second spring is sleeved on the middle portion of the jack. Both ends of the jack are respectively offset from the piston rod and the cone core. There is a first spring between the cone core and the cover.
  • the front section of the body has a radial sliding hole in the circumferential direction, and a knife block is arranged in the radial sliding hole.
  • An inclined hole is formed on the body wall on one side of the radial sliding hole and on the blade block, and the outer end of the inclined hole is screwed with a pressing screw.
  • the piston rod of the hydraulic cylinder pushes the ejector rod and the ejector rod to push the cone core to move axially toward the cover direction, and the tapered outer side surface of the cone core slides on the tapered inner side surface of the cutter block, and the cutter block moves outward radially, the blade
  • the machining outer diameter becomes larger; after the machining is completed, the cone core moves axially away from the cover under the action of the first spring and the second spring, and the blade moves inward by the elastic force of the third spring, and the blade is reset.
  • the boring tool of such a structure because the piston rod, the ejector rod, the second spring, etc.
  • the body the arbor
  • the body the body must be a hollow shaft, which greatly affects the force of the body.
  • the body is very long, it is difficult to process and assemble, and the outer diameter of the body is very small, which cannot be realized.
  • the technical problem to be solved by the present invention is that, in view of the deficiencies of the prior art, a method for forming a tool and a workpiece and a molding device are provided, and the radial advancement of the forming tool can be arbitrarily adjusted while the tool shaft is rotated or processed.
  • the amount of the material is very simple and the cost is very low. It can simultaneously process a plurality of annular grooves on the wall of the workpiece.
  • a forming tool comprising a cutter shaft, two or more blades, a blade axial positioning mechanism that maintains a position of the blade axis in a state in which the blade is machined, a spring that resets the blade radially and holds the blades together;
  • the utility model comprises an expansion driving cone surface arranged on the cutter shaft for driving the blade to move outward radial direction, and an axial blade sliding groove arranged on the cutter shaft to cooperate with the blade;
  • the blade is elongated, including the blade body, and is convexly arranged
  • the blade on the outer side surface of the blade body is provided with a circumferentially distributed spring receiving groove near the blade body on the outer side surface of the blade body, and the expansion of the driving cone surface for expansion is provided on the inner side of the blade body.
  • the blade is mounted in the sliding groove of the blade, and in the unexpanded state of the blade, the expansion of the blade is hooped on the corresponding driving driving cone surface on the cutter shaft, and the blade is hung on the cutter shaft by the spring;
  • the cutting edge in the axial blade chute protrudes radially from the cutting edge.
  • the pressure spring is further included, and the cutter shaft is a stepped shaft; the compression spring is sleeved on the cutter shaft, one side is resisted by the step surface of the cutter shaft, and one side is resisted by the blade.
  • the blade is machined, the blade is axially positioned in the axial direction without displacement, and the blade moves in the direction of the blade. Therefore, the compression spring is compressed and accumulates a large elastic force. After the blade is processed, the elastic force of the compression spring causes the blade to expand.
  • the expansion of the small end of the tapered surface toward the arbor is driven by the small end of the driving cone, and at the same time, the blade moves radially inward under the action of the spring to achieve the purpose of radially inward movement resetting of the blade.
  • the compression spring and the spring are collectively reset, the structure is simple, the installation is convenient, and the cost is low.
  • a first inner convex portion is convexly protruded on an inner side surface of the blade body, and a taper surface for expansion on the blade is disposed on the first inner convex portion; and the first inner portion is disposed on the cutter shaft
  • the concave portion engaged with the convex portion, the driving tapered surface for expansion is disposed on the concave portion; and in the unexpanded state of the blade, the first inner convex portion on the blade is mounted in the concave portion on the arbor.
  • the first inner projection on the blade is mounted in a recess in the arbor to axially limit the blade to ensure that the blade remains on the arbor.
  • the recessed portion is an annular groove
  • the wall of the recessed portion away from the small end of the cutter shaft is a conical expansion drive cone surface
  • the recessed portion is adjacent to the axis of the wall vertical cutter shaft of the small end of the cutter shaft; the blade is away from the expansion cone
  • the face of the face is perpendicular to the axis of the blade.
  • the concave portion is an annular groove for easy processing; the concave portion is adjacent to the axis of the vertical axis of the small end of the cutter shaft; the blade is away from the axis of the vertical surface of the expansion cone, and the elastic force of the compression spring is always maintained when the blade is not expanded.
  • the face of the blade facing away from the expansion cone abuts against the wall of the recess adjacent the small end of the arbor, allowing the blade to be accurately positioned in the unexpanded state and absolutely ensuring that the blade remains on the arbor.
  • the cutter shaft includes a large shaft, a middle shaft connected to the end surface of the large shaft, a large-end and a middle shaft, an expansion driving cone formed by the driving cone for expansion, and a small end of the driving cone for expansion.
  • a small shaft connected, one or more annular chip flutes disposed on the central shaft, the recessed portion is disposed on the central shaft, the axial blade chute extends through the central shaft and the driving cone for expansion; within the blade body
  • a second inner convex portion that cooperates with the driving cone and the small shaft for expansion is also protruded inwardly on the side surface, and the second inner convex portion includes a tapered surface for expansion that cooperates with the driving cone for expansion.
  • the cutter shaft and the blade of this structure can be reliably mounted on the cutter shaft in an unexpanded state in which the blade does not move radially outward; in the process of radially outward movement of the blade, there are two drive blade diameters. Moving outwards, the blade moves more smoothly.
  • an expansion and contraction projection for driving the blade to move radially outward and for driving the blade to move radially inward is protruded on the cutter shaft, and the drive cone on the cutter shaft is disposed in the convex portion.
  • the expansion and contraction projection and the cutter shaft form a contracting recess for driving the blade to move radially inward, and the side wall of the recess for recessing
  • the contraction drive taper surface is formed, and the expansion drive taper surface on the cutter shaft coincides with the taper direction of the contraction drive taper surface; and the insert body is provided with a recessed portion for expansion and contraction that cooperates with the expansion and contraction projection portion of the cutter shaft.
  • the expansion and contraction recessed portion forms an expansion taper surface away from the groove wall of the free end of the cutter shaft, and the expansion and contraction recess portion forms a drive taper for driving the insert inward radial direction and the cutter shaft toward the free end of the cutter shaft.
  • the shrinkage of the fit is with a tapered surface.
  • the shrinking drive taper surface and the shrinking taper surface are provided, and after the processing is completed, the shrinkage of the cutter shaft is slid by the taper surface of the drive taper on the blade, and the blade is driven to move radially inward to make the blade reset. reliable.
  • the forming tool is a tool for processing a blind hole;
  • the blade axial positioning mechanism comprises a positioning connector, a positioning sleeve, a positioning ball;
  • the positioning connector comprises a stepped cylindrical positioning connector, and the positioning connector
  • the large shaft is provided with a blade receiving groove that communicates with the axial blade chute, and a spring receiving groove that communicates with and cooperates with the spring receiving groove on the blade body, and is provided on the outer circumference of the small shaft of the positioning connector
  • the positioning sleeve includes a cylindrical portion matching the outer diameter of the large shaft of the positioning connector, and a tapered portion connecting the large end to the cylindrical portion, and the positioning sleeve is provided with the outer portion of the positioning connector a threaded hole matched by the threaded portion, a through hole penetrating through the end surface of the tapered portion and the bottom surface of the threaded hole; the blade extends toward the positioning connector at one end into the blade receiving groove of the positioning
  • one side of the positioning ball is axially positioned by the positioning connector, and the other side is axially positioned by the positioning ball receiving through hole and protrudes from the positioning sleeve; the blade is axially axially received by the blade receiving groove during processing Positioning.
  • the axial positioning mechanism of the blade has a simple structure and reliable positioning.
  • the forming tool is a forming tool for processing the groove on the hole wall of the workpiece; the blade on each blade is one or more axially distributed on the blade body along the axis of the blade, and the respective protrusions are independent.
  • the cross-sectional shape of the single protrusion at the highest point of the protrusion and the axis of the cutter shaft is a pointed shape or a trapezoidal shape or an arc or a rectangle, and the corresponding protrusions on the two or more blades that are held together are circumferentially distributed to form a broken shape. Open ring.
  • the blade is a protrusion protruding from the blade body for processing the annular groove on the wall of the hole, and the corresponding protrusions on the same ring of the two or more blades that are held together are processed on the hole wall of the workpiece.
  • the grooves, how many projections are on each blade, and how many grooves are formed in the wall of the hole in the workpiece.
  • the cross-sectional shape of the axis of the groove via is the same as the cross-sectional shape of the corresponding projection on the blade at the highest point passing the projection and the axis of the cutter shaft.
  • the forming tool is a forming tool for processing the groove on the hole wall of the workpiece; the blade on each blade is one or more axially distributed on the blade body along the axis of the blade, and the respective protrusions are independent.
  • the sides of the individual protrusions are distributed on the same cylindrical curved surface or the sides of the single protrusions are formed into a pointed shape; on the two or more blades that are held together
  • the corresponding circumferential distribution of the projections forms a broken annulus.
  • the forming tool can be an extrusion tool for machining the grooves on the wall of the hole of the workpiece.
  • the sides of the individual projections are formed in a pointed shape, and the forming tool can be a drill bit that processes the grooves in the wall of the hole of the workpiece.
  • the forming tool is a drill bit for machining the hole wall of the straight hole of the workpiece; the blade on each blade is integral, and the sides of the blade form a pointed shape.
  • a blade of this construction is used to finish the hole wall of the workpiece.
  • the forming tool is a tool for machining a through hole;
  • the axial positioning mechanism of the blade comprises a planar bearing, the outer diameter of the planar bearing is larger than the diameter of the through hole; and the blade further comprises a blade resisting portion of the radially protruding blade body;
  • the plane bearing is provided with a blade resisting portion receiving groove; the plane bearing is installed outside the blade, the resisting portion of the blade is mounted in the blade resisting portion receiving groove, the axial side of the blade resisting portion is resisted by the plane bearing, and the one side is pressed by the spring withstand.
  • the blade axial positioning mechanism of the forming tool for processing the through hole has a simple structure and reliable positioning.
  • the forming tool is a tool for machining a through hole;
  • the axial positioning mechanism of the blade comprises a positioning connector and a bevel bearing;
  • the bevel bearing comprises an inner sleeve and a jacket fixed to the body;
  • the positioning connector is stepped and positioned in the connection.
  • the large shaft of the piece is provided with a blade accommodating groove which communicates with the axial blade chute, and a spring accommodating groove which communicates with the spring accommodating groove on the blade body; the blade extends into the positioning toward one end of the positioning connector
  • the blade of the connecting member is accommodated in the groove, and the blade and the positioning connecting member are mounted together by a spring, and the small shaft of the positioning connecting piece is tightly fitted with the through hole of the inner sleeve of the inclined bearing to fix the inner sleeve of the inclined bearing on the positioning connecting member;
  • the bevel bearing inner sleeve is mounted in the outer casing.
  • a molding device comprising: a forming tool, a machine base, a knife sleeve mounted on the machine base, and capable of sliding back and forth linearly on the machine base, driving the cutter shaft to rotate the cutter shaft driving device, driving the cutter shaft sleeve back and forth A linearly driven knife sleeve drive; the cutter shaft is only rotatably mounted in the cutter sleeve relative to the cutter sleeve.
  • the fixing sleeve is further fixed to the cutter sleeve;
  • the cutter sleeve driving device comprises a fixing bracket and a screw sleeve fixed on the fixing seat, and the worm and the worm driving mechanism mounted on the fixing frame are disposed at A threaded through hole in the fixing frame, the threaded end passes through the screw of the threaded through hole, the head of the screw is a turbine matched with the worm, and the threaded end of the screw is screwed with the threaded sleeve.
  • a method for machining a workpiece using a forming tool comprising a cutter shaft and two or more blades, wherein the cutter shaft is provided with an expansion driving cone surface for driving the blade to move radially outward, and is disposed on the blade a taper surface for expansion that cooperates with a driving taper surface for expansion;
  • Methods of machining workpieces include:
  • the cutter shaft and the blade rotate synchronously, and at the same time, the cutter shaft moves toward the workpiece axial direction, and the driving cone surface is slid on the expansion cone surface to drive the blade to move radially outward to perform workpiece processing;
  • the blade has no axial movement relative to the workpiece during machining.
  • the forming tool further comprises a spring for radially resetting the blade and holding the blade together; an axial blade chute engaged with the blade on the cutter shaft; the blade is elongated, including the blade body, convex a blade disposed on an outer side surface of the blade body is provided with a circumferentially distributed spring receiving groove on both sides of the blade body near the blade body, the expansion tapered surface is disposed on the inner side of the blade body; and the blade is mounted on the blade In the sliding groove, in the unexpanded state of the blade, the expansion of the blade is hung on the driving cone surface of the expansion, and the blade is held by the spring on the cutter shaft; the blade mounted in the axial blade chute is radially protruded Knife shaft
  • Methods of machining workpieces include:
  • the cutter shaft moves in the opposite direction away from the workpiece, the blade moves radially inward under the elastic force of the spring and axially slides in the opposite axial direction of the blade, and the forming tool exits the workpiece, and the blade is expanded.
  • the tapered surface is held together on the driving cone surface for expansion.
  • the forming tool is a tool for machining a blind hole, and the forming tool further comprises a positioning ball mounted with the blade;
  • Processing methods include:
  • the blade, the cutter shaft and the positioning ball move synchronously into the blind hole until the positioning ball resists the bottom of the blind hole, and the cutter shaft moves axially toward the positioning ball and the workpiece, and the blade has no axis relative to the positioning ball and the workpiece. Movement in the direction.
  • the forming tool is a tool for machining a through hole;
  • the forming tool comprises a plane bearing, the outer diameter of the plane bearing is larger than the diameter of the through hole;
  • the blade further comprises a resisting portion; and the blade bearing is provided with a blade resisting portion a slot;
  • the blade is mounted in the axial blade chute through the planar bearing, the resisting portion of the blade is mounted in the blade resisting portion receiving groove, and the axial side of the blade resisting portion is resisted by the smooth bearing;
  • Processing methods include:
  • the blade, the cutter shaft and the plane bearing move synchronously into the through hole until the plane bearing resists the workpiece, the cutter shaft moves axially toward the plane bearing and the workpiece, and the blade has no axial direction relative to the plane bearing and the workpiece. motion.
  • the forming tool is a forming tool for processing the groove on the hole wall of the workpiece;
  • the blade on each blade is one or more axially distributed on the blade body along the axis of the blade, and each of the independent convex
  • the cross-sectional shape of the single protrusion at the highest point of the protrusion and the axis of the cutter shaft is a pointed shape or a trapezoidal or curved or rectangular shape, and the corresponding protrusions on the two or more blades that are held together are circumferentially distributed.
  • Methods of machining workpieces include:
  • the corresponding protrusions on the same circle on the two or more blades that are held together are machined with a groove on the hole wall of the workpiece, and the cross-sectional shape of the axis of the groove passing through the hole of the workpiece is on the blade.
  • the corresponding projection has the same cross-sectional shape at the highest point of the projection and the axis of the cutter shaft.
  • the invention has the beneficial effects that the axial movement of the cutter shaft toward the member direction causes the expansion of the drive cone on the cutter shaft to slide on the expansion cone surface of the blade, thereby driving the blade to move radially outward, so that the blade is The outer diameter of the machining becomes large. Therefore, the forming tool of the structure can adjust the radial feed amount of the forming tool arbitrarily in the case of the rotation of the tool shaft, that is, the machining state, and the radial feed amount of the tool can be adjusted relatively, so that the efficiency is greatly improved due to the knife.
  • the driving cone surface for expansion is directly arranged on the shaft, and the radial feed of the forming tool can be easily adjusted by simply moving the tool shaft axially during the rotation of the tool shaft.
  • the structure is very simple and the cost is very low.
  • the motion is reliable and can be practical in the case of a small cutter shaft.
  • the blade on the same blade is a plurality of axially distributed projections, a plurality of annular grooves on the wall of the workpiece can be simultaneously processed.
  • FIG. 1 is a perspective view showing the initial state of processing of a blade of a molding tool according to a first embodiment of the present invention.
  • Fig. 2 is a perspective view showing a molding tool according to a first embodiment of the present invention.
  • Fig. 3 is a perspective exploded perspective view showing a molding tool according to a first embodiment of the present invention.
  • Figure 4 is a plan view of a single blade of Embodiment 1 of the present invention.
  • Fig. 5 is a cross-sectional view showing the state in which the blade of the molding tool according to the first embodiment of the present invention is in an unexpanded state, the axis of the tool shaft, and the highest point of the blade.
  • Fig. 6 is a cross-sectional view showing the state in which the blade of the molding tool according to the first embodiment of the present invention is fully expanded, passes through the axis of the cutter shaft, and the highest point of the blade.
  • Fig. 7 is a perspective view showing a single blade of a second embodiment of the present invention.
  • Figure 8 is a left side elevational view of a single blade of a second embodiment of the present invention.
  • Figure 9 is a top plan view of Figure 8.
  • Figure 10 is a perspective view showing a molding tool according to a second embodiment of the present invention.
  • Figure 11 is a perspective exploded view of a molding tool according to a second embodiment of the present invention.
  • Fig. 12 is a cross-sectional view showing the state in which the blade of the molding tool according to the second embodiment of the present invention is in an unexpanded state, the axis of the tool shaft and the highest point of the blade.
  • Figure 13 is a cross-sectional view showing the state in which the blade of the molding tool of the second embodiment of the present invention is fully expanded, passes through the axis of the cutter shaft, and the highest point of the blade.
  • Figure 14 is a perspective view showing a molding tool according to a fourth embodiment of the present invention.
  • Figure 15 is a perspective exploded view of a molding tool according to a fourth embodiment of the present invention.
  • Figure 16 is a cross-sectional view showing the state in which the blade of the molding tool according to Embodiment 4 of the present invention is in an unexpanded state, the axis of the tool shaft and the highest point of the blade.
  • Figure 17 is a perspective exploded view of a molding tool according to a fifth embodiment of the present invention.
  • Figure 18 is a perspective view showing a molding tool according to a fifth embodiment of the present invention.
  • Fig. 19 is a cross-sectional view showing the state in which the blade of the molding tool according to the fifth embodiment of the present invention is in an unexpanded state, the axis of the tool shaft and the highest point of the blade.
  • Figure 20 is a cross-sectional view showing the state in which the blade of the molding tool according to the fifth embodiment of the present invention is fully expanded, passing through the axis of the cutter shaft and the highest point of the blade.
  • Figure 21 is a perspective view showing a molding tool according to a sixth embodiment of the present invention.
  • Figure 22 is a perspective exploded view of a molding tool according to a sixth embodiment of the present invention.
  • Figure 23 is a plan view of a single blade of Embodiment 6 of the present invention.
  • Figure 24 is a cross-sectional view showing the state in which the blade of the molding tool according to Embodiment 6 of the present invention is in an unexpanded state, the axis of the tool shaft and the highest point of the blade.
  • Figure 25 is a cross-sectional view showing the state in which the blade of the molding tool according to Embodiment 6 of the present invention is fully expanded, passes through the axis of the cutter shaft, and the highest point of the blade.
  • Figure 26 is a perspective view showing a molding tool according to a seventh embodiment of the present invention.
  • Figure 27 is a perspective exploded view of a molding tool according to a seventh embodiment of the present invention.
  • Figure 28 is a plan view of a single blade of Embodiment 7 of the present invention.
  • Figure 29 is a cross-sectional view showing the state in which the blade of the molding tool according to Embodiment 7 of the present invention is not expanded, the axis of the tool shaft, and the highest point of the blade.
  • Figure 30 is a cross-sectional view showing the state in which the blade of the molding tool according to Embodiment 7 of the present invention is fully expanded, passes through the axis of the cutter shaft, and the highest point of the blade.
  • Figure 31 is a perspective view showing a molding tool according to Embodiment 8 of the present invention.
  • Figure 32 is a perspective exploded view of a molding tool according to Embodiment 8 of the present invention.
  • Figure 33 is a plan view of a single blade of Embodiment 8 of the present invention.
  • Figure 34 is a cross-sectional view showing the state in which the blade of the molding tool according to Embodiment 8 of the present invention is not inflated, the axis of the tool shaft and the highest point of the blade.
  • Figure 35 is a cross-sectional view showing the state in which the blade of the molding tool according to Embodiment 8 of the present invention is fully expanded, passes through the axis of the cutter shaft, and the highest point of the blade.
  • Figure 36 is a perspective exploded perspective view of a molding tool according to a ninth embodiment of the present invention.
  • Figure 37 is a perspective view showing a molding tool according to a ninth embodiment of the present invention.
  • Figure 38 is a perspective view showing the initial state of processing of the blade of the molding tool according to the ninth embodiment of the present invention.
  • Figure 39 is a cross-sectional view showing the state in which the blade of the molding tool according to the ninth embodiment of the present invention is in an unexpanded state, the axis of the tool shaft and the highest point of the blade.
  • Figure 40 is a perspective exploded view of a molding tool according to a tenth embodiment of the present invention.
  • Figure 41 is a perspective view showing a molding tool, a knife bushing driving device, and a blade driving device in accordance with an eleventh embodiment of the present invention.
  • Figure 42 is a perspective view showing a molding apparatus of an eleventh embodiment of the present invention.
  • Figure 43 is a cross-sectional view, partly in plan view, of the axial cross section of the tool shaft according to the eleventh embodiment of the present invention.
  • Figure 44 is a perspective view showing a molding apparatus of Embodiment 12 of the present invention.
  • Figure 45 is a perspective view showing a molding apparatus of Embodiment 13 of the present invention.
  • Figure 46 is a cross-sectional view, partly in plan view, of the axial cross section of the tool shaft according to Embodiment 13 of the present invention.
  • an extrusion tool for processing the annular groove 53 on the wall of the hole of the blind hole 52 including the cutter shaft 1, the four-lobed blade 2, maintains the axis of the blade 2 in the state of machining of the blade 2.
  • the positional constant blade axial positioning mechanism causes the blade 2 to be radially reset and the spring 3, the spring 4, and the compression spring 5 that hold the blade 2 together.
  • the cutter shaft 1 includes a large shaft 6, a middle shaft 7 connected to the end surface of the large shaft 6, an expansion driving cone 8 formed by the expansion driving cone surface whose large end is connected to the center shaft 7, and a driving cone 8 for expansion.
  • a small shaft 9 connected at the small end, an axial blade chute 10 which penetrates the middle shaft 7 and the driving cone 8 for expansion and the blade 2, a recess 11 provided on the center shaft 7, and a three-ring annular flute 12.
  • the recess 11 is an annular groove 53 adjacent to the large shaft 6.
  • the wall of the recessed portion 11 away from the small end of the cutter shaft 1 is the driving taper surface 13 for expansion, and the wall 14 of the recessed portion 11 near the small end of the cutter shaft 1 is perpendicular to the axis of the cutter shaft 1; the groove of the recessed portion 11
  • the bottom 15 is a cylindrical shape that is coplanar with the small shaft 9.
  • the groove bottom 16 of the flute 12 is cylindrical and has a diameter larger than the diameter of the groove bottom 15 of the recess 11.
  • the groove bottom 17 of the axial blade chute 10 is a flat surface.
  • the blade 2 is in the form of a strip, comprising a blade body 18 protruding from the outer side surface 20 of the blade body 18 and having a plurality of blades 19 axially distributed along the axis of the blade 1 and independent projections 19, outside the blade body 18.
  • a circumferentially-distributed spring receiving groove 21 and a spring receiving groove 22 are disposed on the side surface 20 of the blade body 18, and the inner surface of the blade body 18 is inwardly convexly provided with the recessed portion 11
  • An inner convex portion 23 and a second inner convex portion 24 that cooperates with the driving cone 8 for expansion.
  • the first inner convex portion 23 includes an expansion tapered surface 25 that cooperates with the expansion driving tapered surface 13 of the recessed portion 11, and faces the inner side surface 26 of the groove bottom portion 15 of the recessed portion 11, and is adjacent to the concave portion 11 at the small end of the cutter shaft 1.
  • the wall 14 cooperates with a vertical face 27 of the axis of the vertical blade 2.
  • the second inner convex portion 24 includes an expansion tapered surface 28 that cooperates with the expansion driving cone 8 , facing the inner side surface 29 of the small shaft 9 , and the second inner convex portion 24 faces away from the surface 30 of the expansion tapered surface 28 and the blade body The end face of 18 is flush.
  • the cross-sectional shape of the single projection 19 of the blade at the highest point passing the projection 19 and the axis of the cutter shaft 1 is an equilateral triangle including the side 31 and the side 32.
  • the side 33 and the side 34 of the single projection 19 are connected in series on the same cylindrical curved surface.
  • the face of the inner side surface 35 of the blade body 18 that mates with the groove bottom 17 of the axial blade chute 10 is planar.
  • the blade axial positioning mechanism includes a positioning connector 36, a positioning sleeve 37, and a positioning ball 38.
  • the positioning connector 36 is stepped, and the large shaft 39 of the positioning connector 36 is matched with the outer diameter of the mounted blade body 18, and the small shaft 9 of the avoidance cutter shaft 1 is disposed in the positioning connector 36.
  • the circular blind hole 40 and the accommodating positioning ball 38 accommodate the positioning ball recess 41, and the large shaft 39 of the positioning connector 36 is provided with a blade receiving groove 42 communicating with the axial blade chute 10, and positioning
  • the outer circumference of the large shaft 39 of the connecting member 36 is provided with a spring receiving groove 43 communicating with and fitting with the spring receiving groove 22 of the blade body 18, and an external thread portion is provided on the outer circumference of the small shaft 44 of the positioning connecting member 36. 45.
  • the positioning sleeve 37 includes a cylindrical portion 46 that matches the outer diameter of the large shaft 39 of the positioning connector 36, and a tapered portion 47 that is connected to the cylindrical portion 46 at the large end, and is provided with a positioning connection in the positioning sleeve 37.
  • the threaded hole 48 of the external threaded portion 45 of the piece 36 penetrates the end surface of the tapered portion 47 and the positioning ball receiving through hole 49 of the bottom surface of the threaded hole 48.
  • the positioning ball 38 is mounted in the positioning ball receiving through hole 49.
  • the positioning sleeve 37 is threadedly engaged with the external thread portion 45 of the positioning connector 36 through the threaded hole 48 on the positioning connector 36, and the positioning ball 38 is received in the positioning ball.
  • the receiving ball 38 is axially positioned by the positioning ball recess 41 and the other side is positioned by the positioning ball receiving through hole 49 and protrudes from the positioning sleeve.
  • Cartridge 37
  • One end of the blade 2 facing the positioning connector 36 extends into the blade receiving groove 42 of the positioning connector 36, and is mounted in the spring receiving groove 22 by the spring 4 to mount the blade 2 and the positioning connector 36 together and protrude Positioning sleeve 37.
  • the compression spring 5 is sleeved on the central shaft 7 of the cutter shaft 1, and the blade 2 is mounted in the axial blade chute 10.
  • the expansion of the first inner convex portion 23 of the blade 2 is held in the recessed portion 11 of the cutter shaft 1 by the tapered surface 25.
  • the expansion taper 28 of the second inner convex portion 24 of the blade 2 is hung on the expansion driving cone 8 of the cutter shaft 1, and the four blades 2 and the cutter shaft 1 are passed by the spring 3. Hold together.
  • the blade 2 is then mounted in the blade receiving groove 42 of the positioning connector 36, and the positioning connector 36 and the blade 2 are mounted together by the spring 4 being mounted in the spring receiving groove 22 and the spring receiving groove 43.
  • the four blades 2 are radially positioned by the spring force of the spring 3 and the spring 4, and the vertical surface 27 of the first inner convex portion 23 is pressed against the wall 14 of the recess 11 near the small end of the cutter shaft 1
  • the four blades 2 are positioned radially so as to be determined by the axial positional force of the compression spring 5 of the blade 2 and the mounting position of the blade shaft 1.
  • the side of the compression spring 5 is resisted by the step surface of the cutter shaft 1, and one side is resisted by the blade 2.
  • the blade 2 abuts against the groove bottom 50 of the blade receiving groove 42 by the elastic force of the compression spring 5.
  • the corresponding projections 19 on the two or more blades 2 that are held together are circumferentially distributed to form a broken loop.
  • the corresponding spring receiving grooves 21 of the blade 2 that are held together are circumferentially distributed to form a broken ring shape, and the corresponding spring receiving groove 22 of the blade 2 and the spring receiving groove 43 of the positioning connecting member 36 are held together.
  • the circumferential distribution forms a broken loop.
  • the spring 3 is completely received in the spring receiving groove 21, and the spring 4 is completely accommodated in the spring receiving groove 22 and the spring receiving groove 43.
  • a projection 19 mounted on the blade 2 in the axial blade chute 10 projects radially from the cutter shaft 1.
  • the blade 2 is axially positioned by the groove bottom 50 of the blade receiving groove 42 during processing.
  • Methods of machining workpieces include:
  • the blade 2, the cutter shaft 1, the positioning connector 36, the positioning sleeve 37, and the positioning ball 38 move synchronously into the blind hole 52 of the workpiece 51 until the positioning ball 38 abuts against the bottom of the blind hole 52, and the blade 2 is in the compression spring.
  • the elastic force of 5 resists the groove bottom 50 of the blade receiving groove 42 , and the blade 2 is axially positioned;
  • the cutter shaft 1 and the insert 2 rotate synchronously, and the cutter shaft 1 moves axially in the axial insert chute 10 toward the positioning ball 38 and the workpiece 51, and the expansion taper 13 is used for expansion.
  • the tapered surface 25 slides, the driving cone 8 slides on the expansion taper surface 28 to drive the blade 2 to move radially outward, and the two or more blades 2 that are held together are pressed against the workpiece 51 by corresponding protrusions 19 on the same circle.
  • a groove 53 is formed in the wall of the blind hole 52 of the workpiece 51; the cross-sectional shape of the groove 53 passing through the axis of the blind hole 52 on the workpiece 51 and the corresponding projection 19 on the blade 2 are the highest through the projection 19.
  • the cross-sectional shape of the axis of the point and the arbor 1 is the same; how many protrusions 19 are formed on each blade 2, and how many grooves 53 are formed on the hole wall of the blind hole 52 on the workpiece 51;
  • one end of the blade 2 is axially positioned against the groove bottom 50 of the blade receiving groove 42 by the end surface of the blade 2, and the other side passes the elastic force of the compression spring 5, and the cutter shaft 1 is axially the blade chute.
  • the axial force acting on the blade 2 in the axial movement of the positioning ball 38 and the workpiece 51 in the axial direction of the blade 2 is axially positioned to the blade 2, so that the blade 2 has no axial movement relative to the positioning ball 38 and the workpiece 51;
  • the cutter shaft 1 is moved in the opposite direction away from the workpiece 51.
  • the axial movement of the blade 2 is restricted, and the blade 2 is The spring 3 and the spring 4 move radially inwardly and slide axially relative to the cutter shaft 1 in the axial blade chute 10; after the projection 19 of the blade 2 comes out of the groove 53 on the workpiece 51, the blade 2 The axial movement is no longer restricted, the blade 2 moves axially with the cutter shaft 1, the forming tool exits the workpiece 51, and the expansion of the first inner convex portion 23 of the blade 2 is held by the concave portion 11 of the cutter shaft 1 On the driving taper surface 13 for expansion, the expansion of the second inner convex portion 24 of the blade 2 is held by the tapered surface 28 on the cutter shaft 1 to drive the cone 8 thereon.
  • the forming tool is a drill bit for machining a groove on the hole wall of the workpiece, and the side surface of the single projection 71 of the blade edge of the blade is formed into a pointed shape, including the blade body.
  • a flat surface 74 of the side surface 73 of one side of the 72 is a sloped surface 76 inclined to the side surface 75 opposite to the side surface 73 of the blade body 72. The plane 74 and the top of the ramp 76 are not connected.
  • the processing method is different from that of the first embodiment in that during the processing, the two or more blades that are held together are cut on the same protrusion 71 on the same circle, and a groove is formed on the hole wall of the blind hole of the workpiece.
  • the cutter shaft 90 includes a large shaft 91, a center shaft 92 connected to the end surface of the large shaft 91, and a small shaft 93 connected to the end surface of the center shaft 92.
  • An expansion and contraction projection 94 for driving the blade 103 to move radially outward and for driving the blade 103 to move radially inwardly and outwardly is provided on the small shaft 93 for driving the blade 103 to expand radially outward.
  • the driving taper 95 is disposed on one side toward the free end of the cutter shaft 90, and the expansion and contraction projection 94 and the cutter shaft 90 on the side facing away from the free end of the cutter shaft 90 form a contraction for driving the inward radial movement of the blade 103.
  • the recessed portion 96 forms a contraction drive taper surface 97 on the side wall of the contracting recessed portion 96, and the expansion drive tapered surface 95 on the cutter shaft 90 coincides with the taper direction of the contraction drive taper surface 97.
  • An expansion and contraction recess 100 that engages with the expansion and contraction projection 94 of the blade shaft 90 is provided on the inner side surface 99 of the blade body 98, and the expansion and contraction recess 100 is formed to be driven away from the groove wall of the free end of the cutter shaft 90.
  • the blade 103 is radially outwardly moved, and the expansion taper 101 is engaged with the expansion taper 95 of the cutter shaft 90.
  • the expansion and contraction recess 100 is formed toward the groove wall of the free end of the cutter shaft 90 for driving the blade 103 inward radial direction.
  • the contraction taper 102 is engaged with the drive taper surface 97 for contracting the cutter shaft 90.
  • the method includes the difference from Embodiment 1 in that:
  • the cutter shaft 90 is moved in the opposite direction away from the small shaft 93 of the workpiece.
  • the blade 103 is not coming out of the groove 105 on the wall of the blind hole 104 on the small shaft 93 of the workpiece, the blade 103 The axial movement is limited, and the blade 103 is axially slid in the blade chute 106 with respect to the arbor 90; after the contracting conical surface 102 of the blade 103 and the contracting recess 96 of the arbor 90 are in contact, the spring 107, the spring 108
  • the elastic force causes the blade 103 to move radially inward while sliding the drive blade 103 to move radially inward by the contraction of the blade 103 by the taper surface 102 on the contraction driving cone surface 97 of the blade shaft 90;
  • the molding tool is a drill for processing a straight light hole.
  • the blade 122 on the outer side of each blade 121 is integral, and the sides of the blade 122 are formed in a pointed shape, including a plane 125 coplanar with the side 124 of one side of the blade body 123, and a side opposite the side 124 of the blade body 123. 126 inclined slope 127.
  • the plane 125 is connected to the top of the ramp 127.
  • Methods of machining workpieces include:
  • the blade 121 and the cutter shaft 128 move synchronously into the blind hole 131 of the workpiece 130 until the positioning ball 129 abuts against the bottom of the blind hole 131, and the blade 121 is axially positioned;
  • the cutter shaft 128 and the blade 121 rotate synchronously, and the cutter shaft 128 slides axially in the axial blade chute 138 toward the positioning ball 129 and the workpiece 130, and is expanded by the expansion driving cone 132.
  • the tapered surface 133 slides, and the driving cone 134 slides on the expansion taper surface 135 to drive the blade 121 to move radially outward.
  • the blade 122 finishes the hole wall of the blind hole 131 of the workpiece 130;
  • the cutter shaft 128 moves in the opposite direction away from the workpiece 130.
  • the blade 121 is not detached from the hole wall of the blind hole 131 of the workpiece 130 in the radial direction, the blade 121 The axial movement is limited by the frictional force, and the blade 121 moves radially inwardly under the elastic force of the spring 136 and the spring 137 and axially slides in the axial blade chute 138 on the cutter shaft 128; the radial separation in the blade 121
  • the axial movement of the blade 121 is not limited, and the blade 121 also moves radially inward under the elastic force of the spring 136 and the spring 137 and axially slides in the axial blade chute 138 relative to the cutter shaft 128.
  • the expansion tapered surface 133 of the first inner convex portion 139 of the blade 121 is hugged on the expansion driving tapered surface 132 of the concave portion 140 of the arbor 128, the expansion of the second inner convex portion 141 of the blade 121 is converge with the tapered surface 135.
  • the blade 121 moves axially with the cutter shaft 128 and the forming tool exits the workpiece 130.
  • the forming tool is a cutter for forming the annular groove 163 on the wall of the through hole 162 of the workpiece 161.
  • the forming tool also includes a blade connector 164.
  • the blade connector 164 includes a cylindrical portion 166 that matches the outer diameter of the blade body 165 that is mounted together, and a tapered portion 167 that is coupled to the cylindrical portion 166 at the large end, and a cutter shaft in the blade connector 164.
  • the hollow hole 170 of the small shaft 169 of the 168 is provided with a blade receiving groove 172 which communicates with the axial blade chute 171 on the cutter shaft 168 and engages with the blade at the cylindrical portion 166 of the blade joint 164.
  • a spring receiving groove 174 is formed on the outer circumference of the cylindrical portion 166 of the piece 164 to communicate with and cooperate with the spring receiving groove 173 of the blade body 165.
  • the blade axial positioning mechanism includes a planar bearing 175 having an outer diameter greater than the aperture of the through hole 162, the inner circumference 176 of the planar bearing 175 and the outer circumference 176 of the blade 178 that is mounted in the planar bearing 175 in an unexpanded state.
  • the distance is greater than or equal to the distance that the blade 178 moves radially outwardly during the machining process; the blade 178 further includes a blade abutting portion 179 that radially projects the blade body 165; and the blade bearing 175 is provided with a blade resisting portion.
  • Slot 180 is provided with a blade resisting portion.
  • the compression spring 181 is sleeved on the central shaft 182 of the arbor 168, and the blade 178 is mounted in the axial blade chute 171.
  • the expansion cone 184 of the first inner convex portion 183 of the blade 178 is engaged with the recess 185 of the arbor 168.
  • On the driving taper surface 186 for expansion the expansion taper 188 of the second inner convex portion 187 of the blade 178 is hung on the expansion driving cone 189 of the cutter shaft 168, and the four blades 178 and the cutter shaft 168 are passed through the spring 190. Hold together.
  • the blade 178 is then mounted in the blade receiving slot 172 of the blade connector 164, and the blade connector 164 and the blade 178 are mounted together by spring 191 mounted in the spring receiving slot 173 and the spring receiving slot 174.
  • the four blades 178 are radially positioned by the spring force of the spring 190 and the spring 191, and the vertical surface 192 of the first inner convex portion 183 is pressed against the concave portion 185 near the tool axis.
  • the four blades 178 are radially positioned on the wall 193 of the small end 168 to determine the mounting position of the blade 168 while the blade 178 is subjected to the axial spring force of the compression spring 181.
  • the pressure spring 181 side is resisted by the step surface 194 of the cutter shaft 168, and one side is resisted by the blade abutting portion 179 of the blade 178.
  • the blade 178 resists the blade receiving groove 172 by the elastic force of the compression spring 181.
  • the plane bearing 175 is mounted outside the blade 178, and the blade abutting portion 179 is mounted in the blade abutting portion receiving groove 180.
  • the blade abutting portion 179 is axially resisted by the planar bearing 175, and the one side is resisted by the compression spring 181.
  • the method of processing the workpiece 161 is different from the embodiment:
  • the blade 178, the arbor 168, the blade connector 164, and the planar bearing 175 move synchronously into the through hole 162 of the workpiece 161 until the planar bearing 175 abuts against the workpiece 161, and the blade 178 resists the blade under the elastic force of the compression spring 181.
  • the groove bottom 195 of the receiving groove 172, the blade 178 is axially positioned;
  • the arbor 168 and the blade 178 rotate synchronously, while the arbor 168 moves axially in the axial blade chute 171 toward the planar bearing 175 and the workpiece 161, and is expanded by the expansion driving cone 186.
  • the tapered surface 184 slides, the driving cone 189 slides on the expansion taper surface 188 to drive the blade 178 to move radially outward, and the two or more blades 178 that are held together are wound on the same ring to cut the workpiece 161 on the workpiece.
  • a circular groove 163 is formed in the hole wall of the through hole 162 of 161;
  • the forming tool is a cutter for cutting the groove 201 on the hole wall of the blind hole 215 of the workpiece 200, and the side of the single projection 203 of the blade edge of the blade 202.
  • Forming a pointed shape including a plane 206 coplanar with the side 205 of one side of the blade body 204, a facet 207 of the vertical plane 206, a slope 209 inclined to the side 208 opposite the side 205 of the blade body 204, connecting the ramp 209 and The curved surface 210 of the facet 207.
  • the single protrusion 203 of the blade has an equilateral trapezoidal shape in cross-section through the highest point of the projection 203 and the axis of the cutter shaft 211, including the symmetrical side 212 and the side 213, connecting the sides 212 and the top of the side 213 Side 214.
  • the processing method is different from the embodiment in that, during the processing, the workpieces 200 are cut by the corresponding protrusions 203 on the same circle on the two or more blades 202 that are held together, and a circle is formed on the hole wall of the blind hole 215 of the workpiece 200. Groove 201.
  • the single projection 241 of the blade edge of the blade 240 has a semicircular arc shape in a cross section 243 passing through the highest point of the projection 241 and the axis of the cutter shaft 242.
  • a single projection 241 of the blade edge of the blade 240 is defined by a semi-cone that is disposed on the blade body 244 and that is perpendicular to the axis of the blade shaft 242, through a plane 246 that is coplanar with the side 245 of one side of the blade body 244, and the blade.
  • the inclined side surface 248 of the side surface 245 opposite to the side 245 of the body 244 cuts both end portions of the semi-cylindrical body, and is formed by rounding the connecting side 250 of the cylindrical surface 249 of the semi-cylindrical body and the inclined surface 248.
  • the blade of each blade 261 is only one projection 262, and the projection 262 has a cross section passing through the highest point of the projection 262 and the axis of the cutter shaft 263.
  • the shape is rectangular, including side edges 264 and side edges 265 connecting side edges 264 and sides 266 of side edges 265.
  • the blade is a hole wall of a circular through hole 284 which is disposed on the outer side surface of the blade body 281 and axially distributed along the blade shaft 282 for processing the workpiece 283.
  • the protrusion 290 has the same structure as the protrusion 286.
  • the shape of the cross section of the protrusion 286 passing through the highest point of the protrusion 286 and the axis of the cutter shaft 282 includes two parallel straight line segments 291 and a straight line segment 292 connecting the outer contour line and the straight line portion 291 of the same section of the blade body 281.
  • the oblique oblique line segment 293 connects the outer contour line and the straight line segment 292 of the same section of the blade body 281 and the outer oblique oblique line segment 294, and connects the other end of the straight line segment 291 with the inner oblique oblique line segment 295 to connect the other end of the straight line segment 292.
  • the oblique diagonal section 296, the diagonal section 295 is coupled to the diagonal section 296.
  • the oblique line segment 294 and the oblique line segment 293 are symmetrical about the center position of the straight line segment 291 and the straight line segment 292.
  • the oblique line segment 296 is symmetrical with the oblique line segment 295 with respect to the center position of the straight line segment 291 and the straight line segment 292.
  • the expansion and contraction projection 302 of the blade shaft 301 is used to drive the blade 303 to radially outwardly move the expansion driving cone 304 to form a square vertebral body, and the blade 303
  • the expansion taper surface 306 on the recessed portion 305 is a flat surface, and the expansion taper surface 306 of the blade 303 is fitted to the expansion drive cone surface 304 of the cutter shaft 301 by a flat fit, so that the blade 303 is on the cutter shaft 301.
  • a molding apparatus including a molding tool 320, a base 321, a small support base 322 fixed to the base 321, and a large support base 323, which can be supported by a large support.
  • a cutter sleeve 324 that moves linearly back and forth in the seat 323, a bearing 325 mounted in the cutter sleeve 324, a bearing 326, a planar bearing 327 mounted in the small bearing seat 322, and a cutter shaft drive device that drives the cutter shaft 328 to rotate.
  • a knife bushing driving device that drives the knife bushing 324 to move linearly back and forth, and a fixing seat 329 fixed to the knife bushing 324.
  • the small bearing seat 322 is mounted between the large bearing seat 323 and the workpiece 330.
  • the cutter shaft driving device includes an external gear 331 formed on the outer circumference of one end of the cutter shaft 328, a pinion gear 332 fixed to the fixed seat 329 and meshed with the external gear 331, and a motor 333 fixed to the fixed seat 329 and driving the cutter shaft 328 to rotate.
  • the gear 332 is mounted within the arbor sleeve 324, and the gear shaft 334 of the pinion 332 is fixed through the mount 329 to the motor 333 that drives the cutter shaft 328 to rotate.
  • the knife sleeve driving device comprises a fixing frame 335 and a threaded sleeve 336 fixed on the fixing base 329, a worm 337 mounted on the fixing frame 335 and mounted on the fixing frame 335 and coaxially fixed with the worm 337 for driving the worm 337 to rotate.
  • the threaded end 343 is threadedly coupled to the threaded sleeve 336.
  • the structure of the forming tool 320 is the same as that of the fifth embodiment.
  • the cutter shaft 328 is rotatably mounted in the cutter sleeve 324 via a bearing 325 and a bearing 326.
  • the cutter shaft 328 passes through the planar bearing 327, and other members of the forming cutter 320 are mounted on the side of the small bearing seat 322 facing away from the large bearing seat 323.
  • the worm 337 is rotated by the hand wheel 338, and the worm 337 rotates the turbine 342 engaged with the screw 341.
  • the screw 341 rotates synchronously with the turbine 342, and the threaded end 343 of the screw 341 and the screw sleeve 336 are screwed to drive the axial movement of the fixing base 329.
  • the cutter bushing 324 mounted on the fixed seat 329 and the cutter shaft 328 mounted in the cutter bushing 324 are axially linearly moved.
  • the blade 344 moves radially outward.
  • the workpiece 330 is processed.
  • the drive motor 363 is mounted on the fixed frame 361 and fixed coaxially with the worm 362 for driving the worm 362 to rotate.
  • the radial feed can be very small when machining the workpiece 364, and even continuous feed can be achieved.
  • the fixing base 381 is further included.
  • the blade axial positioning mechanism includes a positioning connector 382 and a bevel bearing 383.
  • the bevel bearing 383 includes an inner sleeve 384 and a sleeve 385 fixed to the fixing base 381.
  • the positioning connector 382 is stepped on the large shaft 386 of the positioning connector 382.
  • a blade receiving groove 388 communicating with the axial blade chute 387 and a spring receiving groove 391 communicating with and engaging with the spring receiving groove 390 of the blade body 389 are provided; the blade 392 extends toward one end of the positioning connector 382 The blade 392 and the positioning connector 382 are mounted together by the spring 393, and the small shaft 394 of the positioning connector 382 is tightly fitted with the through hole 395 of the inner sleeve 384 of the bevel bearing 383. The inner sleeve 384 of the bevel bearing 383 is secured to the positioning connector 382.
  • the inner sleeve 384 of the bevel bearing 383 is mounted within the outer sleeve 385 and axially resisted by the outer sleeve 385 to axially position the blade 392.
  • the inner sleeve 384 of the bevel bearing 383 is separate from the outer sleeve 385.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Cutting Devices (AREA)
  • Milling Processes (AREA)

Abstract

一种成型刀具,包括刀轴(1)、刀片(2)、刀片轴向定位机构、使刀片径向复位和将刀片合抱在一起的弹簧(3、4、5);刀轴(1)包括膨胀用驱动锥面(13)、与刀片配合的轴向刀片滑槽(10);在刀片本体的外侧面上有弹簧容置槽(21、22),在刀片本体的内侧设有与膨胀用驱动锥面(13)配合的膨胀用锥面(28);刀片(2)安装在刀片滑动槽(10)内。成型刀具能在刀轴(1)旋转状态下任意调节成型刀具的径向进给量,大大提高加工效率,结构简单,成本低廉。还提供了一种加工工件的方法和一种成型设备。

Description

一种成型刀具及加工工件的方法、成型设备 技术领域
本发明涉及机床领域的成型刀具及加工工件的方法、成型设备,特别是涉及镗床、钻头、挤压设备等的成型刀具及加工工件的方法,镗床、钻头、挤压设备等成型设备。
背景技术
普通镗床等设备,在加工过程中,当需要扩孔时需停车后,再调节镗刀的径向进给量。现有的镗刀,在调节刀刃外径大小时,多数是对单个刀刃一个一个地调节。这样,要想把每一个刀刃的外径调节到一样大小,调节时需要花费较长时间。而且,当某一个刀刃的外径调整好并用锁紧螺钉压紧后,这个刀刃的外径往往又会发生轻微变化。因此,很难把每一个刀刃的外径调整得完全一致。
申请号为201310008874.7的发明专利中,公开了一种可同步调节外径的多刃镗刀,带有下刀体、非标刀夹、上刀体和调节机构;下刀体上有凹槽;中部有定位孔;非标刀夹的下部有下凸台,后端部有梯形端面,前端上部安装有刀片;上刀体上有安装孔、压紧孔、台阶孔、刀槽,侧面有统削侧面和螺孔;调节机构包括有调节螺钉、止转螺母以及锥面调节块和弹簧。通过调节螺钉可以带动锥面调节块向上或者向下移动。当锥面调节块向上移动时,弹簧推动锥面调节块上升。这时,锥面调节块的锥面和梯形端面的梯形面,带动各个非标刀夹同步向外移动,使得刀刃外径增大。当锥面调节块向下移动时,非标刀夹在每个向心弹簧的作用下,把各个非标刀夹向内推动,使得刀刃的外径变小。调节时,转动调节螺钉,通过锥面调节块和非标刀夹的梯形端面,带动非标刀夹移动,调节刀刃外径。这种结构的镗刀,虽然可以实现同步调节刀刃外径,但调节刀刃外径时,镗刀必须停止工作,无法实现加工工件的过程中调节镗刀外径。用这种结构的镗刀,加工工件的孔壁上的环形槽,效率低。
在为了解决在加工过程中,当需要扩孔时需停车再调节镗刀的径向进给量的问题,本领域的技术人员一直在不懈的努力
中国发明专利《自进给差动行星平旋盘》(申请号:200810049865.1)公开的是一种可有效解决镗床径向进给的精度、提高机械加工质量的平旋盘,平旋盘与镗铣轴同时旋转,平旋盘上有驱动滑板,还有蜗条,蜗杆与蜗条相连,蜗轮带动蜗杆旋转,驱动滑板上的蜗条做径向直线运动,从而带动刀头径向运动,该发明不足之处为径向进给速度的改变不方便。
实用新型专利《镗刀架》(申请号:94237587.4)是由本体、蜗杆、内齿圈、上盖板、滑块、镶块、丝杆、离合器、调节螺钉和拨叉组成,自动进给切削时能改变进给量和进刀方向,可镗切内槽、外圆、切外槽、内外锥面和台阶孔端面,其不足之处为:需要准备多个不同齿数的内齿圈才能满足改变滑块的单位时间移动值要求。
发明专利《机械平旋盘》(申请号=200910094665.2)包括安装于主轴箱内的水平主轴、法兰盘、固定齿轮、行星齿轮、丝杆副(13),在传动轴上连接有蜗轮蜗杆、被动齿轮、主动齿轮和离合器,操作简单,其不足之处是:加工时进给量不可调,平旋盘内还附带有电气控制设备,不利于安全操作。
申请号为201020259579.0的发明专利中,公开了一种镗床多功能刀架,为一独立的刀架体结构,刀架体内由刀架主轴、两组NW型行星轮系、手动——自动转换装置、计数装置及定轴轮系等组成,刀架体由其外部的卡盘固联在机床上,刀架主轴穿过刀架体,其轴一端为与机床主轴联接的锥轴,另一端固联有平旋盘,机床主轴的转动通过刀架主轴传至平旋盘,平旋盘转速与机床主轴转速相同,两组NW型行星轮系安装在刀架体内,其输入端为刀架主轴上的主动齿轮,输出端为齿轮d,在安装平旋盘一侧为定轴轮系,其输入端 为齿轮a,输出端为内齿轮a,手动、自动转换装置和计数装置安装在两组NW型行星轮系与定轴轮系之间;当径向进刀处于手动挡位置时,啮合套上的内齿轮d与两组NW型行星轮系的输出齿轮d脱离啮合,啮合套上的内花键与刀架主轴上一段外花键相连接,啮合套上的外齿轮和齿轮a与齿轮b和内齿轮a的传动比乘积为1;主轴停止转动时,通过拨动拨叉使啮合套上的内齿轮d与两组NW型行星轮系的输出齿轮d啮合,刀架主轴上的外花键与啮合套上的内花键分离,齿轮c和齿轮a与齿轮b和内齿轮a的传动比乘积不等于1;计数装置由计数表盘、计数蜗轮、蜗杆、蜗杆轴挡盖、手动蜗杆摇柄组成,计数表盘与计数蜗轮同轴,计数蜗轮与蜗杆啮合,蜗杆又与定轴轮系的大蜗轮啮合。该专利通过尾部的卡盘和锥轴与类似T68系列卧式镗床的主轴相联,虽然在机床主轴不停的情况下可以完成镗刀杆的手动和自动径向进给,可以切削平面、内外圆上的环形沟槽、内外圆上的锥面等,又可以简化机床结构,该刀架类似一个无级变速器,能在主轴不停的情况下任意调节镗刀杆的径向进给量,弥补了普通镗床径向进刀这方面的缺陷,镗刀杆径向进给运动所需的动力来自主轴本身,无需外加电气或机械等动力源。这种结构的镗床多功能刀架,镗刀杆径向进给的调节结构非常复杂。
申请号为201110231372.1的发明专利中,公开了一种镗刀具。具体说,是镗床上用来对孔进行镗削加工处理用的镗刀具。它包括本体,本体上有中心孔,本体后端有液压油缸。本体前端有封盖,中心孔的前段内有锥芯。靠近活塞杆的锥芯一端有顶杆。顶杆的中间段上套有第二弹簧。顶杆两端分别与活塞杆和锥芯相抵。锥芯与封盖间有第一弹簧。本体的前段周向有径向滑孔,径向滑孔内有刀块。径向滑孔一侧的本体壁上和刀块上均有斜孔,该斜孔的外端旋有压紧螺钉。刀块一侧亦有斜孔,该斜孔与本体壁上的斜孔对应,两斜孔间有压紧螺钉和第三弹簧。通过液压油缸的活塞杆推动顶杆、顶杆推动锥芯向封盖方向轴向运动,锥芯的锥形外侧面在刀块的锥形内侧面滑动,刀块向外径向运动,刀片的加工外径变大;加工完成后,锥芯在第一弹簧和第二弹簧的作用下向背离封盖的方向轴向运动,通过第三弹簧的弹力使刀块向内径向运动,刀片复位。这种结构的镗刀具,由于调节刀片的加工外径的活塞杆、顶杆、第二弹簧等置于本体(刀轴)内,本体必须为空心轴,一方面会大大影响本体的受力,特别是当本体很长时,加工装配都很困难,而本体很的外径很小时,无法实现。
发明内容
本发明要解决的技术问题是,针对现有技术的不足,提供一种成型刀具及加工工件的方法、成型设备,能在在刀轴旋转即加工状态的情况下任意调节成型刀具的径向进给量,结构非常简单,成本非常低,能同时加工工件的孔壁上的多个环形凹槽。
一种成型刀具,包括刀轴、两片以上的刀片,还包括在刀片加工状态保持刀片轴线位置不变的刀片轴向定位机构、使刀片径向复位和将刀片合抱在一起的弹簧;刀轴包括设置在刀轴上用来驱动刀片向外径向运动的膨胀用驱动锥面,设置在刀轴上与刀片配合的轴向刀片滑槽;刀片为长条状,包括刀片本体,凸设在刀片本体外侧面上的刀刃,在刀片本体的外侧面上靠近刀片本体的两端均设有周向分布的弹簧容置槽,在刀片本体的内侧设有与膨胀用驱动锥面配合的膨胀用锥面;刀片安装在刀片滑动槽内,在刀片未膨胀状态,刀片的膨胀用锥面合抱在刀轴上相应的膨胀用驱动锥面上,并通过弹簧将刀片合抱在刀轴上;安装在轴向刀片滑槽内的刀刃径向凸出刀轴。
作为方案一的改进,还包括压簧,刀轴为阶梯轴;压簧套在刀轴上,一侧被刀轴的阶梯面抵挡,一侧被刀片抵挡。刀片加工工件时,由于刀片被轴向定位在轴线方向无位移,刀轴向刀片方向运动,因此压簧被压缩积聚很大的弹力,在刀片加工工件完成后,压簧的弹力使刀片的膨胀用锥面的小端朝向刀轴的膨胀用驱动锥面的小端运动,同时在弹簧的作用下刀片径向向内运动,达到刀片径向向内运动复位的目的。压簧和弹簧共同复位,结构简单,安装方便,成本低。
作为方案二的改进,在刀片本体的内侧面上向内凸设有第一内凸部,刀片上的膨胀用锥面设置在第一内凸部上;在刀轴上设有与第一内凸部配合的凹陷部,膨胀用驱动锥面设置在凹陷部上;在刀片未膨胀状态,刀片上的第一内凸部安装在刀轴上的凹陷部内。
通过刀片上的第一内凸部安装在刀轴上的凹陷部内,对刀片轴向限位,确保刀片保持在刀轴上。
作为方案三的改进,凹陷部为环形凹槽,凹陷部远离刀轴小端的壁为锥形的膨胀用驱动锥面,凹陷部靠近刀轴小端的壁垂直刀轴的轴线;刀片背离膨胀用锥面的面垂直刀片的轴线。
凹陷部为环形凹槽,便于加工;凹陷部靠近刀轴小端的壁垂直刀轴的轴线;刀片背离膨胀用锥面的面垂直刀片的轴线,在刀片未膨胀状态,压簧的弹力始终能保持刀片背离膨胀用锥面的面抵挡在凹陷部靠近刀轴小端的壁,使刀片在未膨胀状态能准确定位,且可绝对确保刀片保持在刀轴上。
作为方案四的改进,刀轴包括大轴,与大轴端面相连的中轴,大端与中轴相连、由膨胀用驱动锥面形成的膨胀用驱动锥体,与膨胀用驱动锥体小端相连的小轴,设置在中轴上的一圈以上环状的排屑槽,凹陷部设置在中轴上,轴向刀片滑槽贯穿中轴和与膨胀用驱动锥体;在刀片本体的内侧面上还向内凸设有与膨胀用驱动锥体和小轴配合的第二内凸部,第二内凸部包括与膨胀用驱动锥体配合的膨胀用锥面。
这种结构的刀轴和刀片,在刀片未径向向外运动的未膨胀状态,刀片能可靠的安装在刀轴上;在刀片径向向外运动的过程中,由于有两处驱动刀片径向向外运动,刀片运动更平稳。
作为方案一的改进,在刀轴上凸设有用来驱动刀片向外径向运动和用来驱动刀片向内径向运动的膨胀收缩用凸出部,刀轴上膨胀用驱动锥面设置在凸出部朝向刀轴的自由端的一侧,在背离刀轴的自由端的一侧膨胀收缩用凸出部与刀轴形成用来驱动刀片向内径向运动的收缩用凹陷部,收缩用凹陷部的侧壁形成收缩用驱动锥面,刀轴上的膨胀用驱动锥面与收缩用驱动锥面的锥度方向一致;在刀片本体上设有与刀轴的膨胀收缩用凸出部配合的膨胀收缩用凹陷部,膨胀收缩用凹陷部背离刀轴自由端的槽壁形成膨胀用锥面,膨胀收缩用凹陷部朝向刀轴自由端的槽壁形成用来驱动刀片向内径向运动、与刀轴的收缩用驱动锥面配合的收缩用锥面。设有相互配合的收缩用驱动锥面和收缩用锥面,在加工完成后,刀轴的收缩用驱动锥面在刀片上的收缩用锥面滑动,驱动刀片向内径向运动,使刀片复位更可靠。
作为方案一的改进,成型刀具为加工盲孔的刀具;刀片轴向定位机构包括定位连接件、定位套筒、定位球;定位连接件包括阶梯状的圆柱形的定位连接件,在定位连接件的大轴上设有与轴向刀片滑槽连通并配合的刀片容置槽、与刀片本体上的弹簧容置槽连通并配合的弹簧容置槽,在定位连接件小轴的外周上设有外螺纹部;定位套筒包括与定位连接件的大轴外径相匹配的圆柱形部,和大端与圆柱形部相连的锥形部,在定位套筒内设有与定位连接件的外螺纹部配合的螺纹孔,贯穿锥形部的端面与螺纹孔底面的定位球容置通孔;刀片朝向定位连接件的一端伸入定位连接件的刀片容置槽内,并通过弹簧将刀片和定位连接件安装在一起,定位球安装在定位球容置通孔内并凸出定位球容置通孔,定位套筒通过螺纹孔与定位连接件的外螺纹部配合螺纹连接在定位连接件上;定位球一侧被定位连接件轴向定位,另一侧被定位球容置通孔轴向定位并突出定位套筒;刀片在加工过程中被刀片容置槽的槽底轴向定位。这种刀片轴向定位机构,结构简单,定位可靠。
作为方案一的改进,成型刀具为加工工件的孔壁上的凹槽的成型刀具;每片刀片上的刀刃为凸设在刀片本体上的一个以上沿刀轴轴向分布、各自独立的凸起,单个凸起在经过凸起的最高点和刀轴的轴线的横截面形状为尖角形或梯形或弧形或矩形,合抱在一起的两片以上的刀片上相应的凸起周向分布形成断开的环状。刀刃为凸设在刀片本体上的凸起,用来加工孔壁上的环状凹槽,合抱在一起的两片以上的刀片上同一圈上相应的凸起在工件的孔壁上加工一圈凹槽,每片刀片上有多少个凸起,在工件上的孔壁上就形成多少圈凹槽。凹槽过孔的轴线的截面形状与刀片上相应的凸起在经过凸起的最高点和刀轴的轴线的横截面形状相同。
作为方案一的改进,成型刀具为加工工件的孔壁上的凹槽的成型刀具;每片刀片上的刀刃为凸设在刀片本体上的一个以上沿刀轴轴向分布、各自独立的凸起;单个凸起的侧面分布在同一圆柱形曲面上或单个凸起的侧面形成尖角形;合抱在一起的两片以上的刀片上 相应的凸起周向分布形成断开的环状。当单个凸起的侧面为分布在同一圆柱形曲面上的圆弧面时,成型刀具可为加工工件的孔壁上的凹槽的挤压成型刀具。单个凸起的侧面形成尖角形,成型刀具可为加工工件的孔壁上的凹槽的钻头。
作为方案一的改进,成型刀具为加工工件的直光孔的孔壁的钻头;每片刀片上的刀刃为一个整体,刀刃的侧面形成尖角形。这种结构的刀片,用于精加工工件的孔壁。
作为方案二的改进,成型刀具为加工通孔的刀具;刀片轴向定位机构包括平面轴承,平面轴承的外径大于通孔的孔径;刀片还包括径向凸出刀片本体的刀片抵挡部;在平面轴承上设有刀片抵挡部容置槽;平面轴承安装在刀片外,刀片的抵挡部安装在刀片抵挡部容置槽内,刀片抵挡部轴向一侧被平面轴承抵挡,一侧被压簧抵挡。这种加工通孔的成型刀具的刀片轴向定位机构,结构简单,定位可靠。
作为方案一的改进,成型刀具为加工通孔的刀具;刀片轴向定位机构包括定位连接件、斜面轴承;斜面轴承包括内套和与机体固定的外套;定位连接件为阶梯状,在定位连接件的大轴上设有与轴向刀片滑槽连通并配合的刀片容置槽、与刀片本体上的弹簧容置槽连通并配合的弹簧容置槽;刀片朝向定位连接件的一端伸入定位连接件的刀片容置槽内,并通过弹簧将刀片和定位连接件安装在一起,定位连接件小轴与斜面轴承内套的通孔紧配合将斜面轴承的内套固定在定位连接件上;在加工工件时,斜面轴承内套安装在外套内。
一种成型设备,其特征在于:包括成型刀具,机座,安装在机座上、可在机座上来回直线滑动地刀轴套,驱动刀轴旋转地刀轴驱动装置,驱动刀轴套来回直线运动的刀轴套驱动装置;刀轴相对刀轴套仅可转到的安装在刀轴套内。
作为方案十三的改进,还包括与刀轴套固定的固定座;刀轴套驱动装置包括固定在固定座上的固定架和螺套,安装在固定架上的蜗杆及蜗杆驱动机构,设置在固定架上的螺纹通孔,螺纹端穿过螺纹通孔的螺杆,螺杆的头部为与蜗杆配合的涡轮,螺杆的螺纹端与螺套螺纹连接。
一种使用成型刀具加工工件的方法,成型刀具包括刀轴、两片以上的刀片,其特征在于在刀轴上设有用来驱动刀片向外径向运动的膨胀用驱动锥面,在刀片上设有与膨胀用驱动锥面配合的膨胀用锥面;
加工工件的方法包括:
将成型刀具伸入工件的孔内并对刀片轴向定位;
对刀片轴向定位后,刀轴和刀片同步旋转,同时刀轴朝向工件轴向运动,通过膨胀用驱动锥面在膨胀用锥面上滑动驱动刀片径向向外运动,进行工件加工;
加工过程中刀片相对工件无轴向方向运动。
作为方案十五的改进,成型刀具还包括使刀片径向复位和将刀片合抱在一起的弹簧;在刀轴上与刀片配合的轴向刀片滑槽;刀片为长条状,包括刀片本体,凸设在刀片本体外侧面上的刀刃,在刀片本体的外侧面上靠近刀片本体的两端均设有周向分布的弹簧容置槽,膨胀用锥面设置在刀片本体的内侧;刀片安装在刀片滑动槽内,在刀片未膨胀状态,刀片的膨胀用锥面合抱在膨胀用驱动锥面上,并通过弹簧将刀片合抱在刀轴上;安装在轴向刀片滑槽内的刀片径向凸出刀轴;
加工工件的方法包括:
刀轴和刀片同步旋转和同时刀轴朝向工件轴向运动过程中,刀片相对于刀轴在刀片滑槽内滑动;
完成工件加工后,刀轴朝向背离工件的方向反向运动,刀片在弹簧的弹力作用下径向向内运动和相对刀轴向刀片滑槽内轴向滑动,成型刀具退出工件,刀片的膨胀用锥面复位合抱在膨胀用驱动锥面上。
作为方案十五的改进,成型刀具为加工盲孔的刀具,成型刀具还包括与刀片安装在一起的定位球;
加工方法包括:
在加工过程中,刀片、刀轴、定位球同步运动伸入盲孔内,直至定位球抵挡在盲孔的孔底,刀轴朝向定位球和工件轴向运动,刀片相对定位球和工件无轴向方向的运动。
作为方案十五的改进,成型刀具为加工通孔的刀具;成型刀具包括平面轴承,平面轴承的外径大于通孔的孔径;刀片还包括抵挡部;在平面轴承上设有刀片抵挡部容置槽;刀片穿过平面轴承安装在轴向刀片滑槽内,刀片的抵挡部安装在刀片抵挡部容置槽内,刀片抵挡部轴向一侧被光面轴承抵挡;
加工方法包括:
在加工过程中,刀片、刀轴、平面轴承同步运动伸入通孔内,直至平面轴承抵挡在工件上,刀轴朝向平面轴承和工件轴向运动,刀片相对平面轴承和工件无轴向方向的运动。
作为方案十五的改进,成型刀具为加工工件的孔壁上的凹槽的成型刀具;每片刀片上的刀刃为凸设在刀片本体上的一个以上沿刀轴轴向分布、各自独立的凸起,单个凸起在经过凸起的最高点和刀轴的轴线的横截面形状为尖角形或梯形或弧形或矩形,合抱在一起的两片以上的刀片上相应的凸起周向分布形成断开的环状;
加工工件的方法包括:
刀片加工工件的过程中,合抱在一起的两片以上的刀片上同一圈上相应的凸起在工件的孔壁上加工一圈凹槽,凹槽过工件的孔的轴线的截面形状与刀片上相应的凸起在经过凸起的最高点和刀轴的轴线的横截面形状相同。
本发明的有益效果是,通过刀轴朝向构件方向的轴向运动,刀轴上的膨胀用驱动锥面在刀片的膨胀用锥面上滑动,就能驱动刀片径向向外运动,使刀片的加工外径变大。因此这种结构的成型刀具,能在刀轴旋转即加工状态的情况下任意调节成型刀具的径向进给量,相对需停机才能调节刀具的径向进给量,大大提高效率,由于在刀轴上直接设置膨胀用驱动锥面,只需在刀轴转动过程中使刀轴轴向运动,就能非常容易地实现任意调节成型刀具的径向进给量,结构非常简单,成本非常低,运动可靠,在刀轴较小的情况下也可实用,当同一刀片上的刀刃为多个轴向分布的凸起时,能同时加工工件的孔壁上的多个环形凹槽。
附图说明
图1是本发明实施例1的成型刀具的刀片未膨胀的加工初始状态的立体示意图。
图2是本发明实施例1的成型刀具的立体示意图。
图3是本发明实施例1的成型刀具的立体分解示意图。
图4是本发明实施例1的单片刀片的俯视图。
图5是本发明实施例1的成型刀具的刀片未膨胀状态过刀轴轴线和刀刃的最高点的剖视示意图。
图6是本发明实施例1的成型刀具的刀片完全膨胀状态过刀轴轴线和刀刃的最高点的剖视示意图。
挤压成型刀
图7是本发明实施例2的单片刀片的立体示意图。
图8是本发明实施例2的单片刀片的左视示意图。
图9是图8的俯视示意图。
图10是本发明实施例2的成型刀具的立体示意图。
图11是本发明实施例2的成型刀具的立体分解示意图。
图12是本发明实施例2的成型刀具的刀片未膨胀状态过刀轴轴线和刀刃的最高点的剖视示意图。
图13是本发明实施例2的成型刀具的刀片完全膨胀状态过刀轴轴线和刀刃的最高点的剖视示意图。
图14是本发明实施例4的成型刀具的立体示意图。
图15是本发明实施例4的成型刀具的立体分解示意图。
图16是本发明实施例4的成型刀具的刀片未膨胀状态过刀轴轴线和刀刃的最高点的剖视示意图。
图17是本发明实施例5的成型刀具的立体分解示意图。
图18是本发明实施例5的成型刀具的立体示意图。
图19是本发明实施例5的成型刀具的刀片未膨胀状态过刀轴轴线和刀刃的最高点的剖视示意图。
图20是本发明实施例5的成型刀具的刀片完全膨胀状态过刀轴轴线和刀刃的最高点的剖视示意图。
图21是本发明实施例6的成型刀具的立体示意图。
图22是本发明实施例6的成型刀具的立体分解示意图。
图23是本发明实施例6的单片刀片的俯视图。
图24是本发明实施例6的成型刀具的刀片未膨胀状态过刀轴轴线和刀刃的最高点的剖视示意图。
图25是本发明实施例6的成型刀具的刀片完全膨胀状态过刀轴轴线和刀刃的最高点的剖视示意图。
图26是本发明实施例7的成型刀具的立体示意图。
图27是本发明实施例7的成型刀具的立体分解示意图。
图28是本发明实施例7的单片刀片的俯视图。
图29是本发明实施例7的成型刀具的刀片未膨胀状态过刀轴轴线和刀刃的最高点的剖视示意图。
图30是本发明实施例7的成型刀具的刀片完全膨胀状态过刀轴轴线和刀刃的最高点的剖视示意图。
图31是本发明实施例8的成型刀具的立体示意图。
图32是本发明实施例8的成型刀具的立体分解示意图。
图33是本发明实施例8的单片刀片的俯视图。
图34是本发明实施例8的成型刀具的刀片未膨胀状态过刀轴轴线和刀刃的最高点的剖视示意图。
图35是本发明实施例8的成型刀具的刀片完全膨胀状态过刀轴轴线和刀刃的最高点的剖视示意图。
图36是本发明实施例9的成型刀具的立体分解示意图。
图37是本发明实施例9的成型刀具的立体示意图。
图38是本发明实施例9的成型刀具的刀片未膨胀的加工初始状态的立体示意图。
图39是本发明实施例9的成型刀具的刀片未膨胀状态过刀轴轴线和刀刃的最高点的剖视示意图。
图40是本发明实施例10的成型刀具的立体分解示意图。
图41是本发明实施例11的成型刀具、刀轴套驱动装置、刀轴驱动装置的立体示意图。
图42是本发明实施例11的成型设备的立体示意图。
图43是本发明实施例11的过刀轴的轴线水平面剖并俯视的剖视示意图。
图44是本发明实施例12的成型设备的立体示意图。
图45是本发明实施例13的成型设备的立体示意图。
图46是本发明实施例13的过刀轴的轴线水平面剖并俯视的剖视示意图。
具体实施方式
实施例1
如图1至图6所示,一种加工盲孔52的孔壁上的环状凹槽53的挤压成型刀具,包括刀轴1,四瓣刀片2,在刀片2加工状态保持刀片2轴线位置不变的刀片轴向定位机构,使刀片2径向复位和将刀片2合抱在一起的弹簧3、弹簧4,压簧5。
刀轴1包括大轴6,与大轴6端面相连的中轴7,大端与中轴7相连的、由膨胀用驱动锥面形成的膨胀用驱动锥体8,与膨胀用驱动锥体8小端相连的小轴9,贯穿中轴7和膨胀用驱动锥体8与刀片2配合的轴向刀片滑槽10,设置在中轴7上的凹陷部11和三圈环状的排屑槽12。凹陷部11为环形凹槽53,靠近大轴6。凹陷部11远离刀轴1小端的壁为膨胀用驱动锥面13,凹陷部11靠近刀轴1小端的壁14垂直刀轴1的轴线;凹陷部11的槽 底15为与小轴9共面的圆柱形。排屑槽12的槽底16为圆柱形,其直径大于凹陷部11的槽底15的直径。轴向刀片滑槽10的槽底17为平面。
刀片2为长条状,包括刀片本体18,凸设在刀片本体18外侧面20上、由多个沿刀轴1轴向分布、各自独立的凸起19组成的刀刃,在刀片本体18的外侧面20上靠近刀片本体18的两端均设有周向分布的弹簧容置槽21、弹簧容置槽22,在刀片本体18的内侧面35上向内凸设有与凹陷部11配合的第一内凸部23和与膨胀用驱动锥体8配合的第二内凸部24。第一内凸部23包括与凹陷部11的膨胀用驱动锥面13配合的膨胀用锥面25,正对凹陷部11的槽底15的内侧面26,与凹陷部11靠近刀轴1小端的壁14配合、垂直刀片2的轴线的垂直面27。第二内凸部24包括与膨胀用驱动锥体8配合的膨胀用锥面28,正对小轴9的内侧面29,第二内凸部24背离膨胀用锥面28的面30与刀片本体18的端面齐平。刀刃的单个凸起19在经过凸起19的最高点和刀轴1的轴线的横截面形状为包括边31和边32的等边三角形。单个凸起19的侧面33和侧面34相连分布在同一圆柱形曲面上。刀片本体18的内侧面35与轴向刀片滑槽10的槽底17配合的面为平面。
刀片轴向定位机构包括定位连接件36、定位套筒37、定位球38。
定位连接件36为阶梯状,定位连接件36的大轴39与安装在一起的刀片本体18的外径尺寸匹配,在定位连接件36内设有避空刀轴1的小轴9的避空圆盲孔40和容置定位球38的容置定位球凹陷部41,在定位连接件36的大轴39上设有与轴向刀片滑槽10连通并配合的刀片容置槽42,在定位连接件36的大轴39的外周上设有与刀片本体18上的弹簧容置槽22连通并配合的弹簧容置槽43,在定位连接件36的小轴44的外周上设有外螺纹部45。
定位套筒37包括与定位连接件36的大轴39外径相匹配的圆柱形部46,和大端与圆柱形部46相连的锥形部47,在定位套筒37内设有与定位连接件36的外螺纹部45配合的螺纹孔48,贯穿锥形部47的端面与螺纹孔48底面的定位球容置通孔49。
定位球38安装在定位球容置通孔49内,定位套筒37通过螺纹孔48与定位连接件36的外螺纹部45螺纹配合连接在定位连接件36上,定位球38容置在定位球容置通孔49和容置定位球凹陷部41内,定位球38一侧被容置定位球凹陷部41轴向定位,另一侧被定位球容置通孔49轴向定位并突出定位套筒37。
刀片2朝向定位连接件36的一端伸入定位连接件36的刀片容置槽42内,并通过弹簧4安装在弹簧容置槽22内将刀片2和定位连接件36安装在一起,并凸出定位套筒37。
压簧5套在刀轴1的中轴7上,刀片2安装在轴向刀片滑槽10内,刀片2的第一内凸部23的膨胀用锥面25合抱在刀轴1的凹陷部11的膨胀用驱动锥面13上,刀片2的第二内凸部24的膨胀用锥面28合抱在刀轴1的膨胀用驱动锥体8上,通过弹簧3将四片刀片2与刀轴1合抱在一起。再将刀片2安装在定位连接件36的刀片容置槽42内,通过弹簧4安装在弹簧容置槽22和弹簧容置槽43内将定位连接件36和刀片2安装在一起。在刀片2未膨胀状态,通过弹簧3、弹簧4的弹力对四片刀片2径向定位,通过第一内凸部23的垂直面27抵挡在凹陷部11靠近刀轴1小端的壁14上对四片刀片2径向定位,从而在刀片2受到压簧5的轴向弹力的作用下仍与刀轴1的安装位置关系确定。压簧5一侧被刀轴1的阶梯面抵挡,一侧被刀片2抵挡。刀片2在压簧5的弹力作用下抵挡在刀片容置槽42的槽底50。合抱在一起的两片以上的刀片2上相应的凸起19周向分布形成断开的环状。合抱在一起的刀片2上相应的弹簧容置槽21周向分布形成断开的环状,合抱在一起的刀片2上相应的弹簧容置槽22和定位连接件36上的弹簧容置槽43周向分布形成断开的环状。
弹簧3完全容置在弹簧容置槽21内,弹簧4完全容置在弹簧容置槽22和弹簧容置槽43内。安装在轴向刀片滑槽10内的刀片2上的凸起19径向凸出刀轴1。刀片2在加工过程中被刀片容置槽42的槽底50轴向定位。
加工工件的方法包括:
刀片2、刀轴1、定位连接件36、定位套筒37、定位球38同步运动伸入工件51的盲孔52内,直至定位球38抵挡在盲孔52的孔底,刀片2在压簧5的弹力作用下抵挡在刀片容置槽42的槽底50,刀片2被轴向定位;
对刀片2轴向定位后,刀轴1和刀片2同步旋转,同时刀轴1在轴向刀片滑槽10内朝向定位球38和工件51轴向运动,通过膨胀用驱动锥面13在膨胀用锥面25滑动、驱动锥体8在膨胀用锥面28上滑动驱动刀片2径向向外运动,合抱在一起的两片以上的刀片2上同一圈上相应的凸起19挤压工件51,在工件51的盲孔52的孔壁上加工一圈凹槽53;凹槽53过工件51上的盲孔52的轴线的截面形状与刀片2上相应的凸起19在经过凸起19的最高点和刀轴1的轴线的横截面形状相同;每片刀片2上有多少个凸起19,在工件51上的盲孔52的孔壁上就形成多少圈凹槽53;
在加工过程中,一侧通过刀片2一端的端面抵挡在刀片容置槽42的槽底50对刀片2轴向定位,另一侧通过压簧5的弹力、刀轴1在轴向刀片滑槽10内朝向定位球38和工件51轴向运动时作用在刀片2的轴向力对刀片2轴向定位,使刀片2相对定位球38和工件51无轴向方向的运动;
完成工件51加工后,刀轴1朝向背离工件51的方向反向运动,当刀片2的凸起19还未脱出工件51上的凹槽53时,刀片2的轴向运动受到限制,刀片2在弹簧3、弹簧4的弹力作用下径向向内运动和相对刀轴1在轴向刀片滑槽10内轴向滑动;在刀片2的凸起19脱出工件51上的凹槽53后,刀片2的轴向运动不再受到限制,刀片2随刀轴1一起轴向运动,成型刀具退出工件51,刀片2的第一内凸部23的膨胀用锥面25合抱在刀轴1的凹陷部11的膨胀用驱动锥面13上,刀片2的第二内凸部24的膨胀用锥面28合抱在刀轴1驱动锥体8在上。
实施例2
如图7至图9所示,与实施例1不同的是,成型刀具为加工工件的孔壁上的凹槽的钻头,刀片的刀刃的单个凸起71的侧面形成尖角形,包括与刀片本体72的一侧的侧面73共面的平面74,与刀片本体72的侧面73相背的侧面75倾斜的斜面76。平面74和斜面76的顶部不相连。
加工方法与实施例1不同的是,加工过程中,合抱在一起的两片以上的刀片上同一圈上相应的凸起71切削工件,在工件的盲孔的孔壁上加工一圈凹槽。
实施例3
如图10至图13所示,与实施例1不同的是,刀轴90包括大轴91,与大轴91端面相连的中轴92,与中轴92的端面相连的小轴93。在小轴93上凸设有用来驱动刀片103向外径向运动和用来驱动刀片103向内外径向运动的膨胀收缩用凸出部94,用来驱动刀片103向外径向运动的膨胀用驱动锥面95设置在朝向刀轴90的自由端的一侧,在背离刀轴90的自由端的一侧膨胀收缩用凸出部94与刀轴90形成用来驱动刀片103向内径向运动的收缩用凹陷部96,收缩用凹陷部96的侧壁形成收缩用驱动锥面97,刀轴90上的膨胀用驱动锥面95与收缩用驱动锥面97的锥度方向一致。
在刀片本体98的内侧面99上设有与刀轴90的膨胀收缩用凸出部94配合的膨胀收缩用凹陷部100,膨胀收缩用凹陷部100背离刀轴90自由端的槽壁形成用来驱动刀片103向外径向运动、与刀轴90的膨胀用驱动锥面95配合的膨胀用锥面101,膨胀收缩用凹陷部100朝向刀轴90自由端的槽壁形成用来驱动刀片103向内径向运动、与刀轴90的收缩用驱动锥面97配合的收缩用锥面102。
加工工件
的方法包括与实施例1不同的是:
完成工件小轴93加工后,刀轴90朝向背离工件小轴93的方向反向运动,当刀片103在未脱出工件小轴93上的盲孔104的孔壁上的凹槽105时,刀片103的轴向运动受到限制,刀片103相对刀轴90在刀片滑槽106内轴向滑动;在刀片103的收缩用锥面102和刀轴90的收缩用凹陷部96接触后,弹簧107、弹簧108的弹力使刀片103径向向内运动,同时通过刀片103的收缩用锥面102在刀轴90的收缩用驱动锥面97上滑动驱动刀片103径向向内运动;
在刀片103脱出工件小轴93的盲孔104的孔壁上的凹槽105后,刀片103的轴向运动不再受到限制,刀片103随刀轴90一起轴向运动,成型刀具退出工件小轴93,刀片103 的膨胀收缩用凹陷部100上的膨胀用锥面101合抱在刀轴90的膨胀收缩用凸出部94的膨胀用驱动锥面95上。
实施例4
如图14至图16所示,与实施例2不同的是,成型刀具为加工直光孔的钻头。每片刀片121外侧面上的刀刃122为一个整体,刀刃122的侧面形成尖角形,包括与刀片本体123的一侧的侧面124共面的平面125,与刀片本体123的侧面124相背的侧面126倾斜的斜面127。平面125和斜面127的顶部相连。
加工工件的方法包括:
刀片121、刀轴128同步运动伸入工件130的盲孔131内,直至定位球129抵挡在盲孔131的孔底,刀片121被轴向定位;
对刀片121轴向定位后,刀轴128和刀片121同步旋转,同时刀轴128在轴向刀片滑槽138内朝向定位球129和工件130轴向滑动,通过膨胀用驱动锥面132在膨胀用锥面133滑动、驱动锥体134在膨胀用锥面135上滑动驱动刀片121径向向外运动,刀片121径向向外运动过程中刀刃122对工件130的盲孔131的孔壁精加工;
完成对工件130的盲孔131的孔壁精加工后,刀轴128朝向背离工件130的方向反向运动,当刀片121在径向未脱离工件130的盲孔131的孔壁时,刀片121的轴向运动由于摩擦力受到限制,刀片121在弹簧136、弹簧137的弹力作用下径向向内运动和相对刀轴128上的轴向刀片滑槽138内轴向滑动;在刀片121径向脱离工件130后,刀片121的轴向运动不在受到限制,刀片121还会在弹簧136、弹簧137的弹力作用下径向向内运动和相对刀轴128在轴向刀片滑槽138内轴向滑动,直至刀片121的第一内凸部139的膨胀用锥面133合抱在刀轴128的凹陷部140的膨胀用驱动锥面132上,刀片121的第二内凸部141的膨胀用锥面135合抱在刀轴128的驱动锥体134上,刀片121随刀轴128一起轴向运动,成型刀具退出工件130。
实施例5
如图17至图20所示,与实施例2不同的是,成型刀具为成型工件161上的通孔162的孔壁上的环形槽163的刀具。成型刀具还包括刀片连接件164。
刀片连接件164包括与安装在一起的刀片本体165外径相匹配的圆柱形部166,和大端与圆柱形部166相连的锥形部167,在刀片连接件164内设有避空刀轴168的小轴169的避空圆孔170,在刀片连接件164的圆柱形部166上设有与刀轴168上的轴向刀片滑槽171连通并配合的刀片容置槽172,在刀片连接件164的圆柱形部166的外周上设有与刀片本体165上的弹簧容置槽173连通并配合的弹簧容置槽174。
刀片轴向定位机构包括平面轴承175,平面轴承175的外径大于通孔162的孔径,平面轴承175的内周176与未膨胀状态、安装在平面轴承175内合抱在一起的刀片178的外周177的距离大于或等于刀片178在加工过程中刀片178径向向外运动的距离;刀片178还包括径向凸出刀片本体165的刀片抵挡部179;在平面轴承175上设有刀片抵挡部容置槽180。
压簧181套在刀轴168的中轴182上,刀片178安装在轴向刀片滑槽171内,刀片178的第一内凸部183的膨胀用锥面184合抱在刀轴168的凹陷部185的膨胀用驱动锥面186上,刀片178的第二内凸部187的膨胀用锥面188合抱在刀轴168的膨胀用驱动锥体189上,通过弹簧190将四片刀片178与刀轴168合抱在一起。再将刀片178安装在刀片连接件164的刀片容置槽172内,通过弹簧191安装在弹簧容置槽173和弹簧容置槽174内将刀片连接件164和刀片178安装在一起。
在刀片178未径向向外运动的未膨胀状态,通过弹簧190、弹簧191的弹力对四片刀片178径向定位,通过第一内凸部183的垂直面192抵挡在凹陷部185靠近刀轴168小端的壁193上对四片刀片178径向定位,从而在刀片178受到压簧181的轴向弹力的作用下仍与刀轴168的安装位置关系确定。压簧181一侧被刀轴168的阶梯面194抵挡,一侧被刀片178的刀片抵挡部179抵挡。刀片178在压簧181的弹力作用下抵挡在刀片容置槽172 的槽底195。平面轴承175安装在刀片178外,刀片抵挡部179安装在刀片抵挡部容置槽180内,刀片抵挡部179轴向一侧被平面轴承175抵挡,一侧被压簧181抵挡。
加工工件161的方法与实施例不同的是:
刀片178、刀轴168、刀片连接件164、平面轴承175同步运动伸入工件161的通孔162内,直至平面轴承175抵挡在工件161上,刀片178在压簧181的弹力作用下抵挡在刀片容置槽172的槽底195,刀片178被轴向定位;
对刀片178轴向定位后,刀轴168和刀片178同步旋转,同时刀轴168在轴向刀片滑槽171内朝向平面轴承175和工件161轴向运动,通过膨胀用驱动锥面186在膨胀用锥面184滑动、驱动锥体189在膨胀用锥面188上滑动驱动刀片178径向向外运动,合抱在一起的两片以上的刀片178上同一圈上相应的凸起切削工件161,在工件161的通孔162的孔壁上加工一圈环形槽163;
在加工过程中,一侧通过刀片178的刀片抵挡部179抵挡在平面轴承175上、平面轴承175抵挡在工件161上对刀片178轴向定位,另一侧通过压簧181的弹力、刀轴168在轴向刀片滑槽171内朝向定位球和工件161轴向运动时作用在刀片178的轴向力对刀片178轴向定位,使刀片178相对定位球和工件161无轴向方向的运动。
实施例6
如图21至图25所示,与实施例3不同的是,成型刀具为切削加工工件200的盲孔215的孔壁上的凹槽201的刀具,刀片202的刀刃的单个凸起203的侧面形成尖角形,包括与刀片本体204的一侧的侧面205共面的平面206,垂直平面206的小平面207,与刀片本体204的侧面205相背的侧面208倾斜的斜面209,连接斜面209和小平面207的弧面210。
刀刃的单个凸起203在经过凸起203的最高点和刀轴211的轴线的横截面形状为等边梯形,包括对称的侧边212和侧边213,连接侧边212和侧边213的顶边214。
加工方法与实施例不同的是,加工过程中,合抱在一起的两片以上的刀片202上同一圈上相应的凸起203切削工件200,在工件200的盲孔215的孔壁上加工一圈凹槽201。
实施例7
如图26至图30所示,与实施例6不同的是,刀片240的刀刃的单个凸起241在经过凸起241的最高点和刀轴242的轴线的横截面243形状为半圆弧形。
刀片240的刀刃的单个凸起241由凸设在刀片本体244上、轴线与刀轴242的轴线垂直的半锥体,通过与刀片本体244的一侧的侧面245共面的平面246、与刀片本体244的侧面245相背的侧面247倾斜的斜面248切割半圆柱体的两个端部,再对半圆柱体的圆柱形面249与斜面248的连接边250倒圆形成。
实施例8
如图31至图35所示,与实施例2不同的是,每片刀片261的刀刃仅为一个凸起262,凸起262在经过凸起262的最高点和刀轴263的轴线的横截面的形状为矩形,包括侧边264和侧边265,连接侧边264和侧边265的边266。
实施例9
如图36至图39所示,与实施例6不同的是,刀刃为凸设在刀片本体281的外侧面上、沿刀轴282轴向分布、用来加工工件283的圆通孔284的孔壁上的环形槽(未示出)的独立的凸起286、和用来加工工件287的圆盲孔288的孔壁上的环形槽(未示出)的独立的凸起290。凸起290与凸起286的结构相同。
凸起286在经过凸起286的最高点和刀轴282的轴线的横截面的形状包括两并列的直线段291、直线段292,连接刀片本体281同一截面的外轮廓线与直线段291且外斜的斜线段293,连接刀片本体281同一截面的外轮廓线与直线段292且外斜的斜线段294,连接直线段291另一端且内斜的斜线段295,连接直线段292另一端且内斜的斜线段296,斜线段295与斜线段296连接在一起。斜线段294与斜线段293关于直线段291、直线段292的中心位置对称。斜线段296与斜线段295关于直线段291、直线段292的中心位置对称。
实施例10
如图40所示,与实施例3不同的是,刀轴301的膨胀收缩用凸出部302上用来驱动刀片303向外径向运动的膨胀用驱动锥面304形成方椎体,刀片303的膨胀收缩用凹陷部305上的膨胀用锥面306为平面,刀片303的膨胀用锥面306通过平面贴合合抱在刀轴301的膨胀用驱动锥面304上,这样刀片303在刀轴301上滑动时均为面接触,运动更平稳,大大减少刀片303与刀轴301间的磨损。
实施例11
如图41至图43所示,与实施例5不同的是,一种成型设备,包括成型刀具320,底座321,固定在底座321上的小支承座322和大支承座323,可在大支承座323内来回直线运动地的刀轴套324,安装在刀轴套324内的轴承325、轴承326,安装在小支承座322内的平面轴承327,驱动刀轴328旋转地刀轴驱动装置,驱动刀轴套324来回直线运动的刀轴套驱动装置、与刀轴套324固定的固定座329。小支承座322安装在大支承座323和工件330间。
刀轴驱动装置包括在刀轴328一端外周上成型的外齿轮331,与固定座329固定、与外齿轮331啮合的小齿轮332,与固定座329固定、驱动刀轴328旋转的电机333,小齿轮332安装在刀轴套324内,小齿轮332的齿轮轴334穿过固定座329与驱动刀轴328旋转的电机333固定。
刀轴套驱动装置包括固定在固定座329上的固定架335和螺套336,安装在固定架335上的蜗杆337及安装在固定架335上与蜗杆337同轴固定、用来驱动蜗杆337旋转的手轮338,安装在固定架335上的轴承339和轴承340,通过轴承339和轴承340安装在固定架335上的螺杆341,螺杆341的头部为与蜗杆337配合的涡轮342,螺杆341的螺纹端343与螺套336螺纹连接。
成型刀具320的结构与实施例5相同。刀轴328通过轴承325、轴承326可转动地安装在刀轴套324内。刀轴328穿过平面轴承327,成型刀具320的其它构件安装在小支承座322背离大支承座323的一侧。
通过手轮338旋转蜗杆337,蜗杆337带动与之啮合的涡轮342旋转,螺杆341随着涡轮342同步旋转,通过螺杆341的螺纹端343与螺套336螺纹连接驱动固定座329轴向直线运动,从而驱动安装在固定座329上的刀轴套324和安装在刀轴套324内的刀轴328轴向直线运动,刀轴328向工件330的轴向方向运动时,刀片344径向向外运动,对工件330进行加工。
实施例12
如图44所示,与实施例11不同的是,安装在固定架361上与蜗杆362同轴固定、用来驱动蜗杆362旋转的为驱动电机363。通过驱动电机363驱动蜗杆362,在加工工件364时,径向进给可以非常小,甚至可以实现连续进给。
实施例13
如图45、图46所示,与实施例11不同的是还包括固定座381。刀片轴向定位机构包括定位连接件382、斜面轴承383;斜面轴承383包括内套384和与固定座381固定的外套385;定位连接件382为阶梯状,在定位连接件382的大轴386上设有与轴向刀片滑槽387连通并配合的刀片容置槽388、与刀片本体389上的弹簧容置槽390连通并配合的弹簧容置槽391;刀片392朝向定位连接件382的一端伸入定位连接件382的刀片容置槽388内,并通过弹簧393将刀片392和定位连接件382安装在一起,定位连接件382的小轴394与斜面轴承383内套384的通孔395紧配合将斜面轴承383的内套384固定在定位连接件382上。在加工工件时,斜面轴承383的内套384安装在外套385内并被外套385轴向抵挡,从而对刀片392轴向定位。在未加工状态,斜面轴承383的内套384与外套385是分离的。

Claims (19)

  1. 一种成型刀具,包括刀轴、两片以上的刀片,其特征在于:还包括在刀片加工状态保持刀片轴线位置不变的刀片轴向定位机构、使刀片径向复位和将刀片合抱在一起的弹簧;刀轴包括设置在刀轴上用来驱动刀片向外径向运动的膨胀用驱动锥面,设置在刀轴上与刀片配合的轴向刀片滑槽;刀片包括刀片本体,凸设在刀片本体外侧面上的刀刃,在刀片本体的外侧面上靠近刀片本体的两端均设有周向分布的弹簧容置槽,在刀片本体的内侧设有与膨胀用驱动锥面配合的膨胀用锥面;刀片安装在刀片滑动槽内,在刀片未膨胀状态,刀片的膨胀用锥面合抱在刀轴上相应的膨胀用驱动锥面上,并通过弹簧将刀片合抱在刀轴上;安装在轴向刀片滑槽内的刀刃径向凸出刀轴。
  2. 如权利要求1所述的一种成型刀具,其特征在于:还包括压簧,所述的刀轴为阶梯轴;压簧套在刀轴上,一侧被刀轴的阶梯面抵挡,一侧被刀片抵挡。
  3. 如权利要求2所述的一种成型刀具,其特征在于:在刀片本体的内侧面上向内凸设有第一内凸部,所述的膨胀用锥面设置在所述的第一内凸部上;在刀轴上设有与第一内凸部配合的凹陷部,所述的膨胀用驱动锥面设置在凹陷部上;在刀片未膨胀状态,所述的刀片上的第一内凸部安装在刀轴上的凹陷部内。
  4. 如权利要求3所述的一种成型刀具,其特征在于:所述的凹陷部为环形凹槽,凹陷部远离刀轴小端的壁为锥形的膨胀用驱动锥面,凹陷部靠近刀轴小端的壁垂直刀轴的轴线;刀片背离膨胀用锥面的面垂直刀片的轴线。
  5. 如权利要求4所述的一种成型刀具,其特征在于:刀轴包括大轴,与大轴端面相连的中轴,大端与中轴相连、由所述膨胀用驱动锥面形成的膨胀用驱动锥体,与膨胀用驱动锥体小端相连的小轴,设置在中轴上的一圈以上环状的排屑槽,所述的凹陷部设置在中轴上,所述的轴向刀片滑槽贯穿中轴和与所述膨胀用驱动锥体;在刀片本体的内侧面上还向内凸设有与所述膨胀用驱动锥体和所述小轴配合的第二内凸部,第二内凸部包括与膨胀用驱动锥体配合的所述膨胀用锥面。
  6. 如权利要求1所述的一种成型刀具,其特征在于:在刀轴上凸设有用来驱动刀片向外径向运动和用来驱动刀片向内径向运动的膨胀收缩用凸出部,刀轴上所述的膨胀用驱动锥面设置在凸出部朝向刀轴的自由端的一侧,在背离刀轴的自由端的一侧膨胀收缩用凸出部与刀轴形成用来驱动刀片向内径向运动的收缩用凹陷部,收缩用凹陷部的侧壁形成收缩用驱动锥面,刀轴上的膨胀用驱动锥面与收缩用驱动锥面的锥度方向一致;在所述的刀片本体上设有与刀轴的膨胀收缩用凸出部配合的膨胀收缩用凹陷部,膨胀收缩用凹陷部背离刀轴自由端的槽壁形成所述膨胀用锥面,膨胀收缩用凹陷部朝向刀轴自由端的槽壁形成用来驱动刀片向内径向运动、与刀轴的收缩用驱动锥面配合的收缩用锥面。
  7. 如权利要求1所述的一种成型刀具,其特征在于:所述的成型刀具为加工盲孔的刀具;所述的刀片轴向定位机构包括定位连接件、定位套筒、定位球;定位连接件包括阶梯状的圆柱形的定位连接件,在定位连接件的大轴上设有与轴向刀片滑槽连通并配合的刀片容置槽、与刀片本体上相应的弹簧容置槽连通并配合的弹簧容置槽,在定位连接件小轴的外周上设有外螺纹部;定位套筒包括与定位连接件的大轴外径相匹配的圆柱形部,和大端与圆柱形部相连的锥形部,在定位套筒内设有与定位连接件的外螺纹部配合的螺纹孔,贯穿锥形部的端面与螺纹孔底面的定位球容置通孔;刀片朝向定位连接件的一端伸入定位连接件 的刀片容置槽内,并通过所述的弹簧将刀片和定位连接件安装在一起,定位球安装在定位球容置通孔内并凸出定位球容置通孔,定位套筒通过螺纹孔与定位连接件的外螺纹部配合螺纹连接在定位连接件上;定位球一侧被定位连接件轴向定位,另一侧被定位球容置通孔轴向定位并突出定位套筒;刀片在加工过程中被刀片容置槽的槽底轴向定位。
  8. 如权利要求1所述的一种成型刀具,其特征在于:所述的成型刀具为加工工件的孔壁上的凹槽的成型刀具;每片刀片上的所述的刀刃为凸设在刀片本体上的一个以上沿刀轴轴向分布、各自独立的凸起,单个凸起在经过凸起的最高点和刀轴的轴线的横截面形状为尖角形或梯形或弧形或矩形,合抱在一起的两片以上的刀片上相应的凸起周向分布形成断开的环状。
  9. 如权利要求1所述的一种成型刀具,其特征在于:所述的成型刀具为加工工件的孔壁上的凹槽的成型刀具;每片刀片上的所述的刀刃为凸设在刀片本体上的一个以上沿刀轴轴向分布、各自独立的凸起;单个凸起的侧面分布在同一圆柱形曲面上或单个凸起的侧面形成尖角形;合抱在一起的两片以上的刀片上相应的凸起周向分布形成断开的环状。
  10. 如权利要求1所述的一种成型刀具,其特征在于:所述的成型刀具为加工工件的直光孔的孔壁的钻头;所述每片刀片上的所述的刀刃为一个整体,刀刃的侧面形成尖角形。
  11. 如权利要求2所述的一种成型刀具,其特征在于:所述的成型刀具为加工通孔的刀具;所述的刀片轴向定位机构包括平面轴承,平面轴承的外径大于通孔的孔径;所述的刀片还包括径向凸出刀片本体的刀片抵挡部;在平面轴承上设有刀片抵挡部容置槽;平面轴承安装在刀片外,刀片的抵挡部安装在刀片抵挡部容置槽内,刀片抵挡部轴向一侧被平面轴承抵挡,一侧被压簧抵挡。
  12. 如权利要求1所述的一种成型刀具,其特征在于:所述的成型刀具为加工通孔的刀具;所述的刀片轴向定位机构包括定位连接件、斜面轴承;斜面轴承包括内套和与机体固定的外套;定位连接件为阶梯状,在定位连接件的大轴上设有与轴向刀片滑槽连通并配合的刀片容置槽、与刀片本体上的弹簧容置槽连通并配合的弹簧容置槽;刀片朝向定位连接件的一端伸入定位连接件的刀片容置槽内,并通过所述的弹簧将刀片和定位连接件安装在一起,定位连接件小轴与斜面轴承内套的通孔紧配合将斜面轴承的内套固定在定位连接件上;在加工工件时,斜面轴承内套安装在外套内。
  13. 一种包括如权利要求1至12所述的成型刀具的成型设备,其特征在于:还包括机座,安装在机座上、可在机座上来回直线滑动地刀轴套,驱动刀轴旋转地刀轴驱动装置,驱动刀轴套来回直线运动的刀轴套驱动装置;刀轴相对刀轴套仅可转到的安装在刀轴套内。
  14. 如权利要求13所述的成型设备,其特征在于:还包括与刀轴套固定的固定座;刀轴套驱动装置包括固定在固定座上的固定架和螺套,安装在固定架上的蜗杆及蜗杆驱动机构,设置在固定架上的螺纹通孔,螺纹端穿过螺纹通孔的螺杆,螺杆的头部为与蜗杆配合的涡轮,螺杆的螺纹端与螺套螺纹连接。
  15. 一种使用成型刀具加工工件的方法,成型刀具包括刀轴、两片以上的刀片,其特征在于在刀轴上设有用来驱动刀片向外径向运动的膨胀用驱动锥面,在刀片上设有与膨胀用驱动锥面配合的膨胀用锥面;
    加工工件的方法包括:
    将成型刀具伸入工件的孔内并对刀片轴向定位;
    对刀片轴向定位后,刀轴和刀片同步旋转,同时刀轴朝向工件轴向运动,通过膨胀用驱动锥面在膨胀用锥面上滑动驱动刀片径向向外运动,进行工件加工;
    加工过程中刀片相对工件无轴向方向运动。
  16. 如权利要求15所述的一种使用成型刀具加工工件的方法,其特征在于:成型刀具还包括使刀片径向复位和将刀片合抱在一起的弹簧;在刀轴上与刀片配合的轴向刀片滑槽;刀片为长条状,包括刀片本体,凸设在刀片本体外侧面上的刀刃,在刀片本体的外侧面上靠近刀片本体的两端均设有周向分布的弹簧容置槽,所述的膨胀用锥面设置在刀片本体的内侧;刀片安装在刀片滑动槽内,在刀片未膨胀状态,刀片的膨胀用锥面合抱在膨胀用驱动锥面上,并通过弹簧将刀片合抱在刀轴上;安装在轴向刀片滑槽内的刀片径向凸出刀轴;加工工件的方法包括:
    刀轴和刀片同步旋转,同时刀轴朝向工件轴向运动过程中,刀片相对于刀轴在刀片滑槽内滑动;
    完成工件加工后,刀轴朝向背离工件的方向反向运动,刀片在弹簧的弹力作用下径向向内运动和相对刀轴向刀片滑槽内轴向滑动,成型刀具退出工件,刀片的膨胀用锥面复位合抱在刀轴的膨胀用驱动锥面上。
  17. 如权利要求15所述的一种使用成型刀具加工工件的方法,其特征在于:所述的成型刀具为加工盲孔的刀具,所述的成型刀具还包括与刀片安装在一起的定位球;
    加工方法包括:
    在加工过程中,刀片、刀轴、定位球同步运动伸入盲孔内,直至定位球抵挡在盲孔的孔底,刀轴朝向定位球和工件轴向运动,刀片相对定位球和工件无轴向方向的运动。
  18. 如权利要求15所述的一种使用成型刀具加工工件的方法,其特征在于:所述的成型刀具为加工通孔的刀具;所述的成型刀具包括平面轴承,平面轴承的外径大于通孔的孔径;所述的刀片还包括抵挡部;在平面轴承上设有刀片抵挡部容置槽;刀片穿过平面轴承安装在所述的轴向刀片滑槽内,刀片的抵挡部安装在刀片抵挡部容置槽内,刀片抵挡部轴向一侧被光面轴承抵挡;
    加工方法包括:
    在加工过程中,刀片、刀轴、平面轴承同步运动伸入通孔内,直至平面轴承抵挡在工件上,刀轴朝向平面轴承和工件轴向运动,刀片相对平面轴承和工件无轴向方向的运动。
  19. 如权利要求15所述的一种使用成型刀具加工工件的方法,其特征在于:所述的成型刀具为加工工件的孔壁上的凹槽的成型刀具;每片刀片上的所述的刀刃为凸设在刀片本体上的一个以上沿刀轴轴向分布、各自独立的凸起,单个凸起在经过凸起的最高点和刀轴的轴线的横截面形状为尖角形或梯形或弧形或矩形,合抱在一起的两片以上的刀片上相应的凸起周向分布形成断开的环状;
    加工工件的方法包括:
    刀片加工工件的过程中,合抱在一起的两片以上的刀片上同一圈上相应的凸起在工件的孔壁上加工一圈凹槽,凹槽过工件的孔的轴线的截面形状与刀片上相应的凸起在经过凸起的最高点和刀轴的轴线的横截面形状相同。
PCT/CN2015/090856 2014-09-27 2015-09-26 一种成型刀具及加工工件的方法、成型设备 WO2016045632A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410507636.5A CN105436533A (zh) 2014-09-27 2014-09-27 一种成型刀具及加工工件的方法、成型设备
CN201410507636.5 2014-09-27

Publications (1)

Publication Number Publication Date
WO2016045632A1 true WO2016045632A1 (zh) 2016-03-31

Family

ID=55547414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090856 WO2016045632A1 (zh) 2014-09-27 2015-09-26 一种成型刀具及加工工件的方法、成型设备

Country Status (2)

Country Link
CN (1) CN105436533A (zh)
WO (1) WO2016045632A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107214354A (zh) * 2016-05-12 2017-09-29 南通山口精工机电有限公司 一种阶梯式多工位一次成型刀
CN109355140A (zh) * 2018-10-26 2019-02-19 湘潭大学 一种碎肥皂再利用装置
CN112620805A (zh) * 2020-12-09 2021-04-09 芜湖航天汽车连杆有限公司 一种连杆大头孔倒角加工处理方法
CN114952508A (zh) * 2021-02-23 2022-08-30 上银科技股份有限公司 工件定向机构

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109482918B (zh) * 2018-12-14 2023-10-20 广东星联精密机械有限公司 一种支撑套加工的专用刀具
CN114535719B (zh) * 2022-02-18 2023-08-01 睢宁核源风力发电有限公司 一种风力发电设备驱动组件成型装置
CN117644227B (zh) * 2024-01-30 2024-03-29 常州昊锐工具有限公司 一种阶梯式深孔内排屑钻刀组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200951469Y (zh) * 2006-10-19 2007-09-26 武裕 镗滚头
DE102007042960B3 (de) * 2007-08-30 2008-08-28 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG Auflaufwerkzeug
CN101628343A (zh) * 2009-07-29 2010-01-20 常州市西夏墅工具研究所有限公司 镗滚组合加工工具
CN102294494A (zh) * 2011-08-14 2011-12-28 无锡振华机械有限公司 镗刀具

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200951469Y (zh) * 2006-10-19 2007-09-26 武裕 镗滚头
DE102007042960B3 (de) * 2007-08-30 2008-08-28 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG Auflaufwerkzeug
CN101628343A (zh) * 2009-07-29 2010-01-20 常州市西夏墅工具研究所有限公司 镗滚组合加工工具
CN102294494A (zh) * 2011-08-14 2011-12-28 无锡振华机械有限公司 镗刀具

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107214354A (zh) * 2016-05-12 2017-09-29 南通山口精工机电有限公司 一种阶梯式多工位一次成型刀
CN109355140A (zh) * 2018-10-26 2019-02-19 湘潭大学 一种碎肥皂再利用装置
CN109355140B (zh) * 2018-10-26 2024-02-20 湘潭大学 一种碎肥皂再利用装置
CN112620805A (zh) * 2020-12-09 2021-04-09 芜湖航天汽车连杆有限公司 一种连杆大头孔倒角加工处理方法
CN114952508A (zh) * 2021-02-23 2022-08-30 上银科技股份有限公司 工件定向机构
CN114952508B (zh) * 2021-02-23 2023-09-29 上银科技股份有限公司 工件定向机构

Also Published As

Publication number Publication date
CN105436533A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2016045632A1 (zh) 一种成型刀具及加工工件的方法、成型设备
EP2467225B1 (en) Pipe end machining device with axial autofeed
CA2531164A1 (en) Arbor for hole cutter and related method of use
CN203044929U (zh) 直压式单刃微调精镗刀
GB2481312A (en) A mechanically actuated inner diameter grooving tool
EP2558261B1 (en) A machining assembly with the transmission adjustable into different positions
CN203592166U (zh) 一种气缸套粗车外圆及粗铰内孔夹具
CN110919035A (zh) 一种用于加工深孔内环槽的刀具
CN204248073U (zh) 一种翅片分切机构
CN111266612A (zh) 一种粗精双模可调镗刀及其使用方法
CN110524327A (zh) 圆盘刀磨刀机
CN206763923U (zh) 角度倒角刀
CN203265682U (zh) 一种镗削球弧面用的镗床
US2228498A (en) Boring tool
CN213969317U (zh) 一种方便调节的顺序铰珩刀
US4260303A (en) Boring tools
CN114012442A (zh) 闭门器加工装置及应用于该装置的闭门器本体加工工艺
US2358516A (en) Undercutting attachment for drill presses
CN102229001A (zh) 一种应用于气钻的超声振动套铰加工装置
CN204338908U (zh) 一种成型刀具及成型设备
CN220638242U (zh) 一种便于更换刀头的模切刀具结构
CN103722195A (zh) 高精度镗刀
CN203918678U (zh) 一种用于手板车床上对产品收边加工的滚铆治具
CN203759982U (zh) 教学用手动插齿机
CN219310097U (zh) 一种便于拆卸夹头的电主轴

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15843615

Country of ref document: EP

Kind code of ref document: A1