WO2016045030A1 - 基于石墨烯材料的分散快速固相萃取方法 - Google Patents

基于石墨烯材料的分散快速固相萃取方法 Download PDF

Info

Publication number
WO2016045030A1
WO2016045030A1 PCT/CN2014/087385 CN2014087385W WO2016045030A1 WO 2016045030 A1 WO2016045030 A1 WO 2016045030A1 CN 2014087385 W CN2014087385 W CN 2014087385W WO 2016045030 A1 WO2016045030 A1 WO 2016045030A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
graphene material
solid phase
phase extraction
activated
Prior art date
Application number
PCT/CN2014/087385
Other languages
English (en)
French (fr)
Inventor
张明东
张麟德
Original Assignee
深圳粤网节能技术服务有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳粤网节能技术服务有限公司 filed Critical 深圳粤网节能技术服务有限公司
Priority to PCT/CN2014/087385 priority Critical patent/WO2016045030A1/zh
Publication of WO2016045030A1 publication Critical patent/WO2016045030A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/42Selective adsorption, e.g. chromatography characterised by the development mode, e.g. by displacement or by elution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation

Definitions

  • the invention relates to the technical field of chemical sample pretreatment, in particular to a method for dispersing fast solid phase extraction based on graphene materials.
  • solid phase extraction SPE
  • SPE solid phase extraction
  • DSPE dispersive fast solid phase extraction
  • graphene material as an improved solid phase extraction agent is beneficial to achieve better separation.
  • direct use of graphene for rapid solid phase extraction is not very suitable in operation, mainly because the density of graphene is too small, and it is difficult to separate the graphene sufficiently from the sample during centrifugation.
  • only graphene is used as a strong non-polar solid phase extracting agent, and the advantages of graphene have not been fully utilized to obtain a better separation effect.
  • a method for dispersing fast solid phase extraction based on graphene material comprising the following steps:
  • the method for performing pore activation on a graphene material is specifically:
  • the graphene material is charged into the reactor, heated to 300 ° C ⁇ 500 ° C in a protective gas atmosphere, and then water vapor is introduced into the reactor for activation for 1 h ⁇ 3 h, and then the protective gas is changed, after 1 min ⁇ 5 min. Heating is stopped, the graphene material is taken out, washed, and dried to obtain an activated graphene material.
  • the flow rate of the water vapor is from 0.5 mL/min to 5 mL/min.
  • the graphene is a single layer graphene or an oligo graphene
  • the modified graphene is selected from the group consisting of aminated graphene, carboxylated graphene, cyan graphene, nitro graphene.
  • the mass ratio of the activated graphene material to the chemical sample to be treated is from 1 to 20:200.
  • the shaking extraction time is from 0.5 min to 5 min.
  • the centrifugal speed is from 3000 r/min to 4000 r/min, and the centrifugation time is from 1 min to 3 min.
  • the above-mentioned graphene material-based dispersive rapid solid phase extraction method uses the activated graphene material as a solid phase extracting agent, and the degree of cross-linking between the grids of the activated graphene material is increased, making it easier to centrifuge or filter. The operation is separated. Therefore, the method can combine the dispersed solid phase extraction technology with the activated graphene material as a solid phase extracting agent, which simplifies the cumbersome operation in the conventional solid phase extraction, and only needs to be oscillated and The pretreatment of the chemical sample can be completed by centrifugation, and the operation is relatively simple.
  • the target component to be detected has no adsorption capacity, thereby effectively removing the chemical sample, thereby making it possible to remove the chemical sample.
  • the target component to be tested is determined in a subsequent chromatographic analysis. Therefore, the separation effect of the above-described dispersed solid phase extraction method based on graphene material is better.
  • a method for dispersing fast solid phase extraction based on graphene material comprising the following steps:
  • the eluent is selected from the group consisting of deionized water, methanol, ethanol, isopropanol, acetonitrile, ethyl acetate, chloroform, dichloromethane, carbon tetrachloride, diethyl ether, toluene, benzene, and rings.
  • hexane petroleum ether, hexane, pentane, hydrochloric acid having a mass fraction of 37%, an aqueous solution having a mass fraction of 40% sodium hydroxide, and deionized water.
  • the mass ratio of the first precipitate to the eluent is 1 mg: 1 to 50 mL.
  • the above-mentioned graphene material-based dispersive rapid solid phase extraction method uses the activated graphene material as a solid phase extracting agent, and the degree of cross-linking between the grids of the activated graphene material is increased, making it easier to centrifuge or filter. The operation is separated. Therefore, the method can combine the dispersed solid phase extraction technology with the activated graphene material as a solid phase extracting agent, which simplifies the cumbersome operation in the conventional solid phase extraction, and only needs to be oscillated and The pretreatment of the chemical sample can be completed by filtration, and the operation is relatively simple.
  • the adsorption target is fixed to a specific target component to be detected, and the impurity is not adsorbed, thereby effectively carrying out the chemical sample.
  • the impurity is removed, so that the target component to be detected is determined in a specific chromatographic analysis. Therefore, the separation effect of the above-described dispersed solid phase extraction method based on graphene material is better.
  • FIG. 1 is a flow chart of a method for dispersing fast solid phase extraction based on graphene materials according to an embodiment
  • FIG. 2 is a flow chart of a graphene material-based dispersion fast solid phase extraction method according to another embodiment
  • Figure 3 is a liquid chromatogram of Example 1
  • Figure 4 is a liquid chromatogram of Example 2.
  • Figure 5 is a liquid chromatogram of Example 3.
  • Figure 6 is a liquid chromatogram of Example 4.
  • Fig. 7 is a liquid chromatogram of Example 5.
  • a graphene material-based dispersed fast solid phase extraction method includes the following steps 110 and 120 .
  • Step 110 performing pore activation on the graphene material to obtain an activated graphene material, and the graphene material is graphene or modified graphene.
  • Graphene is a single-layer graphene or an oligo-graphene.
  • the surface of graphene is composed of a conjugated large ⁇ bond, which is extremely non-polar and can achieve strong ⁇ - ⁇ interaction with organic molecules containing aromatic rings, thereby achieving reversible adsorption. Therefore, graphene is an excellent solid phase extractant.
  • the modified graphene is selected from the group consisting of aminated graphene, carboxylated graphene, cyano graphene, nitro graphene, boric acid graphene, phosphoryl graphene, hydroxylated graphene, fluorenated graphene, methylation Graphene, allylated graphene, trifluoromethylated graphene, dodecylated graphene, octadecylated graphene, graphene fluoride, graphene bromide, graphene chloride and iodine At least one of graphene.
  • the above modified graphene refers to a functionalized graphene.
  • aminated graphene refers to introduction of an amino group into graphene
  • carboxylated graphene refers to introduction of a carboxyl group into graphene
  • fluorinated graphene refers to introduction of a fluorine atom into graphene.
  • the modification of graphene can effectively change the polarity characteristics of its surface and even reverse the polarity, which is suitable for separating more samples. Introduce specific functional groups on the surface of graphene to achieve capture of target molecules, improve adsorption performance, and make full use of the advantages of graphene, not just using graphene as a strong non-polar solid phase extractant. To expand the type of chemical sample to be processed.
  • the method for performing pore activation on the graphene material is specifically:
  • the graphene material is charged into the reactor, heated to 300 ° C ⁇ 500 ° C in a protective gas atmosphere, and then steam is introduced into the reactor for activation for 1 h ⁇ 3 h, and then the protective gas is changed, and the heating is stopped after 1 min - 5 min.
  • the graphene material is taken out, washed, and dried to obtain an activated graphene material.
  • the reactor may be a tube furnace, a horse boiling furnace or the like.
  • the shielding gas can be nitrogen or an inert gas.
  • the above method for pore activation of graphene material introduces pores on graphene or modified graphene by means of water vapor activation, increases surface area thereof, and improves the strength between graphene or modified graphene and impurities. Adsorption is beneficial to improve the separation effect. Moreover, after activation, the degree of cross-linking between the grids of the graphene material is increased, making it easier to separate in the centrifugation or filtration operation, overcoming the difficulty of sufficiently separating the graphene from the sample. Thus, the graphene material can be applied to the dispersion rapid extraction technique.
  • the above-described method for pore-forming activation of graphene materials is activated only by heating and using water vapor, without using other chemical activators, and is environmentally friendly.
  • the flow rate of the water vapor is from 0.5 mL/min to 5 mL/min.
  • the above washing method is to rinse the graphene material with deionized water for 2 to 3 times. Drying is dried at 60 ° C ⁇ 80 ° C for 1 h ⁇ 2h.
  • pore activation methods may be employed.
  • activation of a graphene material is achieved by performing pore formation on a graphene material using a chemical activating agent such as potassium hydroxide or the like.
  • Step 120 adding the activated graphene material to the chemical sample to be treated to obtain a mixture, subjecting the mixture to shock extraction, and then performing centrifugation to obtain a precipitate and a supernatant, and the supernatant contains the target component to be detected.
  • the mass ratio of the activated graphene material to the chemical sample to be treated is from 1 to 20:200 to ensure complete adsorption of impurities without waste of graphene material.
  • the mixture is subjected to shock extraction to achieve adsorption of impurities by the activated graphene material.
  • the activated graphene material has a large specific surface area and has a strong adsorption capacity. Therefore, the short time of the oscillating extraction can ensure complete adsorption of impurities by the activated graphene material and improve efficiency.
  • the shaking extraction time is from 0.5 min to 5 min.
  • the rotational speed of the centrifugation is from 3000 r/min to 4000 r/min, and the centrifugation time is from 1 min to 3 min.
  • the activated graphene material adsorbs impurities, and the precipitated is an activated graphene material adsorbed with impurities, and the supernatant contains the target component to be detected.
  • the supernatant was filtered through a 0.22 ⁇ m microporous membrane and stored in a sample vial for subsequent analysis, such as liquid chromatography calibration.
  • the precipitate is subjected to subsequent treatment to desorb the adsorbed impurities to recover the graphene material.
  • the precipitate can be eluted with an eluent to desorb the impurities.
  • the above-mentioned graphene material-based dispersive rapid solid phase extraction method uses the activated graphene material as a solid phase extracting agent, and the degree of cross-linking between the grids of the activated graphene material is increased, making it easier to centrifuge or filter. The operation is separated. Therefore, the method can combine the dispersed solid phase extraction technology with the activated graphene material as a solid phase extracting agent, which simplifies the cumbersome operation in the conventional solid phase extraction, and only needs to be oscillated and The pretreatment of the chemical sample can be completed by centrifugation, and the operation is relatively simple.
  • the target component to be detected has no adsorption capacity, thereby effectively removing the chemical sample, thereby making it possible to remove the chemical sample.
  • the target component to be tested can be determined in a specific chromatographic analysis. Therefore, the separation effect of the above-described dispersed solid phase extraction method based on graphene material is better.
  • the above-mentioned dispersive rapid solid phase extraction method based on graphene material has simple operation, short extraction time and high efficiency.
  • a graphene material-based dispersed fast solid phase extraction method includes the following steps 210 to 230 .
  • Step 210 performing pore activation on the graphene material to obtain an activated graphene material, and the graphene material is graphene or modified graphene.
  • Step 210 is the same as step 110 of the graphene material-based dispersion fast solid phase extraction method of the above embodiment.
  • Activation of the graphene material by means of water vapor activation improves the strong adsorption between graphene or modified graphene and the target component to be detected, which is beneficial to improve the separation effect. Moreover, after activation, the degree of cross-linking between the grids of the graphene material is increased, making it easier to separate in the centrifugation or filtration operation, overcoming the difficulty of sufficiently separating the graphene from the sample.
  • the graphene material can be applied to the dispersion rapid extraction technique.
  • Step 220 Adding the activated graphene material to the chemical sample to be treated to obtain a first mixture, subjecting the first mixture to shock extraction, and then performing centrifugation to obtain a first precipitate and a first supernatant.
  • step 220 the activated graphene material adsorbs the target component to be detected, and the first precipitate is an activated graphene material adsorbing the target component to be detected, and the first supernatant contains impurities.
  • the first supernatant is discarded, and the first precipitate is subjected to subsequent treatment to collect the target component to be detected with higher purity.
  • the time of the shock extraction is preferably from 0.5 min to 5 min.
  • the rotational speed of the centrifugation is from 3000 r/min to 4000 r/min, and the centrifugation time is from 1 min to 3 min.
  • Step 230 mixing the first precipitate and the eluent to obtain a second mixture, oscillating and filtering the second mixture to obtain a second precipitate and a second supernatant, wherein the second supernatant contains the target component to be detected .
  • the eluent is selected from the group consisting of deionized water, methanol, ethanol, isopropanol, acetonitrile, ethyl acetate, chloroform, dichloromethane, carbon tetrachloride, diethyl ether, toluene, benzene, cyclohexane, petroleum ether, hexane, At least one of pentane, hydrochloric acid having a mass fraction of 37%, a 40% by mass aqueous solution of sodium hydroxide, and deionized water.
  • the target component to be detected adsorbed in the activated graphene material is eluted using an eluent.
  • the mass ratio of the first precipitate to the eluent is 1 mg: 1 to 50 mL to ensure complete elution of the target component to be detected.
  • Oscillating facilitates elution of the target component to be detected.
  • the oscillating time is from 0.5 min to 5 min.
  • the second precipitate is an activated graphene material from which the target component to be detected is desorbed, and the second supernatant contains the target component to be detected.
  • the second supernatant was filtered through a 0.22 ⁇ m microporous membrane and stored in a vial for subsequent analysis, such as liquid chromatography calibration.
  • the activated graphene material from which the target component to be detected is desorbed can also be recycled, for example, by re-treating the chemical sample as a solid phase extracting agent.
  • the above-mentioned graphene material-based dispersive rapid solid phase extraction method uses the activated graphene material as a solid phase extracting agent, and the degree of cross-linking between the grids of the activated graphene material is increased, making it easier to centrifuge or filter. The operation is separated. Therefore, the method can combine the dispersed solid phase extraction technology with the activated graphene material as a solid phase extracting agent, which simplifies the cumbersome operation in the conventional solid phase extraction, and only needs to be oscillated and The pretreatment of the chemical sample can be completed by filtration, and the operation is relatively simple.
  • the adsorption target is fixed to a specific target component to be detected, and the non-target impurity is not adsorbed.
  • the trace amount or the trace target component to be detected in the chemical sample is effectively captured, so that the target component to be detected is determined in a specific chromatographic analysis. Therefore, the separation effect of the above-described dispersed solid phase extraction method based on graphene material is better.
  • the above-mentioned dispersive rapid solid phase extraction method based on graphene material has simple operation, short extraction time and high efficiency.
  • the solid phase extracting agent-activated graphene material in the graphene material-based dispersed fast solid phase extraction method of the above two embodiments can only selectively adsorb impurities in the same chemical sample to be treated or to be detected.
  • the target component cannot simultaneously adsorb the impurities in the same chemical sample to be treated and the target component to be detected, that is, the properties of the target component to be detected and the impurities of the chemical sample to be treated are different, so that the activated graphene material can be selected.
  • the modified graphene in the graphene material-based dispersed fast solid phase extraction method of the above two embodiments adopts LomedaJR, DoyleCD, Kosynkin DV, HwangWF, TourJ.
  • the diazonium salt method reported in M.J. Am. Chem. Soc., 2008, 130: 16201-16206 is functionalized.
  • dodecylated graphene is obtained by modifying graphene with a dodecylphenyldiazonium salt as an alkylating agent, and carboxylation is carried out by hydrolysis of a diazoformate to carry out carboxylation on graphite.
  • the olefin is modified.
  • aminated graphene is additionally used Krabbenborg S, Naber W J M , Velders A H, Reinhoudt D N, Wiel W G. Chem- Eur J., In 2009, 15:8235-8240, the azidation-reduction is carried out to obtain amination; the hydroxylated graphene is obtained by modifying the graphene by hydroxylation using sodium borohydride for selective reduction of graphene oxide.
  • the single-layer graphene is charged into a tube furnace, nitrogen gas is introduced, heated to 300 ° C in a nitrogen atmosphere, nitrogen gas is stopped, and water vapor is introduced into the tube furnace for activation for 3 hours, wherein the flow rate of the water vapor It is 5 mL/min. Then, the water vapor was stopped, the nitrogen gas was purged, and the heating was stopped after 5 minutes.
  • the graphene material was taken out, rinsed three times with deionized water, and dried at 60 ° C for 2 hours to obtain a single layer graphene after activation.
  • the first precipitate and petroleum ether are placed in an Erlenmeyer flask and mixed to obtain a second mixture.
  • the mass ratio of the first precipitate to the petroleum ether is 1 mg: 2 mL.
  • the conical flask was shaken in a shaker for 0.5 min, and then filtered to obtain a second precipitate and a second supernatant.
  • the second supernatant was filtered through a 0.22 ⁇ m microporous membrane, and 20 ⁇ L of the filtered second was taken.
  • the supernatant was injected for liquid chromatography (using an Agilent 1100 HPLC workstation, the mobile phase was a mixture of acetonitrile and water at a volume ratio of 1:1, flow rate of 0.5 mL/min).
  • the aminated graphene is charged into a tube furnace, nitrogen gas is introduced, heated to 500 ° C in a nitrogen atmosphere, nitrogen gas is stopped, and water vapor is introduced into the tube furnace for activation for 1 hour, wherein the flow rate of water vapor It is 0.5 mL/min. Then, the water vapor was stopped, the nitrogen gas was turned on, and the heating was stopped after 1 minute.
  • the graphene material was taken out, rinsed three times with deionized water, and dried at 80 ° C for 1 hour to obtain activated aminated graphene.
  • the first precipitate is mixed with ethanol in an Erlenmeyer flask to obtain a second mixture.
  • the mass ratio of the first precipitate to the ethanol is 1 mg: 1 mL.
  • the conical flask was shaken in a shaker for 5 min, and then filtered to obtain a second precipitate and a second supernatant.
  • the second supernatant was filtered through a 0.22 ⁇ m microporous membrane, and 20 ⁇ L of the filtered second supernatant was taken.
  • the liquid sample was subjected to liquid chromatography analysis (using an Agilent 1100 high performance liquid chromatography workstation, the mobile phase was a mixed solvent of methanol and water at a volume ratio of 4:1, and the flow rate was 0.5 mL/min), and the obtained spectrum is shown in Fig. 4. Show.
  • the carboxylated graphene is charged into a tube furnace, nitrogen gas is introduced, heated to 400 ° C in a nitrogen atmosphere, nitrogen gas is stopped, and water vapor is introduced into the tube furnace for activation for 2 hours, wherein the flow rate of water vapor It is 2 mL/min. Then, the water vapor was stopped, the nitrogen gas was turned on, and the heating was stopped after 3 minutes.
  • the graphene material was taken out, rinsed three times with deionized water, and dried at 70 ° C for 1.5 hours to obtain activated carboxylated graphene.
  • the berberine was pulverized with a food pulverizer and passed through a 100 mesh sieve to obtain coptis powder. Then, 0.5 g of coptis powder was added to 200 ml of a mixed solvent of hydrochloric acid-methanol (a ratio of hydrochloric acid to methanol: 1:100), and extracted at 60 ° C in a water bath. 2h, then ultrasonically crushed the remaining Coptis residue. Finally, the Coptidis residue was removed by filtration to obtain a Coptidis extract solution as a working solution.
  • the above-mentioned carboxylated graphene based on the fast solid phase extraction method of graphene material can effectively remove the impurities in the extract of Coptidis Rhizoma, and has no adsorption effect on the alkaloids to be detected, which can be effective.
  • the natural product to be analyzed is purified.
  • the dodecylated graphene is charged into a tube furnace, nitrogen gas is introduced, heated to 450 ° C in a nitrogen atmosphere, nitrogen gas is stopped, and water vapor is introduced into the tube furnace for activation for 1.5 hours.
  • the flow rate of water vapor was 3 mL/min.
  • the water vapor was stopped, the nitrogen gas was purged, the heating was stopped after 2 minutes, the graphene material was taken out, rinsed three times with deionized water, and dried at 75 ° C for 1 hour to obtain activated dodecylated graphene.
  • the first precipitate was mixed with ethyl acetate and ethanol in an Erlenmeyer flask to obtain a second mixture.
  • the first precipitate, the mass ratio of ethyl acetate to ethanol was 1 mg: 10 mL: 10 mL.
  • the conical flask was shaken in a shaker for 4 min, and then filtered to obtain a second precipitate and a second supernatant.
  • the second supernatant was filtered through a 0.22 ⁇ m microporous membrane, and 20 ⁇ L of the filtered second supernatant was taken.
  • the liquid sample was subjected to liquid chromatography analysis (using an Agilent 1100 high performance liquid chromatography workstation, the mobile phase was a mixed solvent of methanol and water at a volume ratio of 4:1, and the flow rate was 0.5 mL/min), and the obtained spectrum is shown in Fig. 6. Show.
  • the hydroxylated graphene is charged into a tube furnace, nitrogen gas is introduced, heated to 350 ° C in a nitrogen atmosphere, nitrogen gas is stopped, and water vapor is introduced into the tube furnace for activation for 2.5 h, wherein water vapor The flow rate was 4 mL/min. Then, the water vapor was stopped and the nitrogen gas was purged. After 4 minutes, the heating was stopped, the graphene material was taken out, rinsed three times with deionized water, and dried at 65 ° C for 2 hours to obtain activated hydroxylated graphene.
  • Estradiol, progesterone, cholesterol, aldosterone are mixed and formulated into a working solution having a concentration of 100 ⁇ g/L for each component, the solvent is tetrahydrofuran, and hematoxylin is added as an impurity component, hematoxylin The concentration is 1 mg/L.
  • the first precipitate was mixed with dichloromethane in an Erlenmeyer flask to obtain a second mixture.
  • the mass ratio of the first precipitate to the dichloromethane was 1 mg: 15 mL.
  • the conical flask was shaken in a shaker for 2 min, and then filtered to obtain a second precipitate and a second supernatant.
  • the second supernatant was filtered through a 0.22 ⁇ m microporous membrane, and 20 ⁇ L of the filtered second supernatant was taken.
  • the liquid sample was subjected to liquid chromatography (using an Agilent 1100 high performance liquid chromatography workstation, the mobile phase was a mixed solvent of acetonitrile and water at a volume ratio of 1:1, and the flow rate was 0.5 mL/min), and the obtained spectrum is shown in Fig. 7. Show.

Abstract

一种基于石墨烯材料的分散快速固相萃取方法,包括对石墨烯材料进行造孔活化,得到活化后的石墨烯材料,石墨烯材料为石墨烯或经过修饰的石墨烯;及将活化后的石墨烯材料加入待处理的化学样品中得到混合物,将混合物震荡萃取,离心分离后上清液中含有待检测目标组分的步骤。该方法操作较为简单,分离效果较好。

Description

基于石墨烯材料的分散快速固相萃取方法
【技术领域】
本发明涉及化学样品前处理技术领域,特别是涉及一种基于石墨烯材料的分散快速固相萃取方法。
【背景技术】
为了较好地进行色谱分析,目前最常用的样品前处理技术是固相萃取(SPE)技术,即通过组分中的特定成分与固相萃取剂间的亲和力来实现吸附萃取,从而实现特定成分的分离。因此,对于固相萃取剂选择显得极为重要。
传统的固相萃取技术需要活化、上柱、洗脱等一系列操作,使检测流程变得复杂。因此,改进后的高效的分散快速固相萃取(DSPE)技术正逐渐取代SPE的地位。DSPE操作流程短,通过简单的操作使固相萃取剂萃取完成后固相萃取剂直接从溶液中脱离,大大简化了操作。
采用石墨烯材料作为改良的固相萃取剂,有利于实现较好的分离效果。然而,直接利用石墨烯进行分散快速固相萃取在操作上并不是非常合适,主要是因为石墨烯的密度过小,在离心过程中较难将石墨烯充分地从样品中分离下来。并且,在目前的技术中,仅仅是将石墨烯作为一种强非极性的固相萃取剂来使用,尚未充分地利用石墨烯的优势,以获得较好的分离效果。
【发明内容】
基于此,有必要提供一种操作简单、分离效果较好的基于石墨烯材料的分散快速固相萃取方法。
一种基于石墨烯材料的分散快速固相萃取方法,包括如下步骤:
对石墨烯材料进行造孔活化,得到活化后的石墨烯材料,所述石墨烯材料为石墨烯或经过修饰的石墨烯;及
将所述活化后的石墨烯材料加入待处理的化学样品中得到混合物,将所述混合物进行震荡萃取,然后进行离心,得到沉淀和上清液,所述上清液中含有待检测目标组分。
在其中一个实施例中,所述对石墨烯材料进行造孔活化的方法具体为:
将石墨烯材料装入反应器中,在保护气体氛围中加热至300℃~500℃,再向所述反应器中通入水蒸气进行活化1h~3h,然后改通入保护气体,1min~5min后停止加热,取出所述石墨烯材料,洗涤、干燥得到活化后的石墨烯材料。
在其中一个实施例中,所述水蒸气的流速为0.5mL/min~5mL/min。
在其中一个实施例中,所述石墨烯为单层石墨烯或寡层石墨烯,所述经过修饰的石墨烯选自氨基化石墨烯、羧基化石墨烯、氰基石墨烯、硝基石墨烯、硼酸基石墨烯、磷酸基石墨烯、羟基化石墨烯、巯基化石墨烯、甲基化石墨烯、烯丙基化石墨烯、三氟甲基化石墨烯、十二烷基化石墨烯、十八烷基化石墨烯、氟化石墨烯、溴化石墨烯、氯化石墨烯及碘化石墨烯中的至少一种。
在其中一个实施例中,所述活化后的石墨烯材料与所述待处理的化学样品的质量比为1~20:200。
在其中一个实施例中,所述震荡萃取的时间为0.5min~5min。
在其中一个实施例中,所述离心的转速为3000r/min~4000r/min,离心的时间为1min~3min。
上述基于石墨烯材料的分散快速固相萃取方法使用活化后的石墨烯材料作为固相萃取剂,活化后的石墨烯材料的网格间的交联度增大,使其更容易在离心或过滤的操作中被分离下来,因此,该方法能够将分散固相萃取技术与活化后的石墨烯材料作为固相萃取剂相结合,简化了传统的固相萃取中的繁琐操作,仅需要进行震荡和离心即可完成化学样品的前处理,操作较为简单。
并且,通过活化后的石墨烯材料与杂质间的强吸附作用,使其对特定的杂质有吸附固定能力,而对待检测目标组分没有吸附能力,从而有效地将化学样品进行了除杂,使得待检测目标组分在后续的色谱分析中得到具体含量的测定。因此,上述基于石墨烯材料的分散快速固相萃取方法的分离效果较好。
一种基于石墨烯材料的分散快速固相萃取方法,包括如下步骤:
对石墨烯材料进行造孔活化,得到活化后的石墨烯材料,所述石墨烯材料为石墨烯或经过修饰的石墨烯;
将所述活化后的石墨烯材料加入待处理的化学样品中得到第一混合物,将所述第一混合物进行震荡萃取,然后进行离心,得到第一沉淀和第一上清液;及
将所述第一沉淀和洗脱剂进行混合得到第二混合物,将所述第二混合物进行震荡、过滤,得到第二沉淀和第二上清液,所述第二上清液中含有待检测目标组分。
在其中一个实施例中,所述洗脱剂选自去离子水、甲醇、乙醇、异丙醇、乙腈、乙酸乙酯、氯仿、二氯甲烷、四氯化碳、乙醚、甲苯、苯、环己烷、石油醚、己烷、戊烷、质量分数为37%的盐酸、质量分数为40%氢氧化钠的水溶液及去离子水中的至少一种。
在其中一个实施例中,其特征在于,所述第一沉淀与所述洗脱剂的质量体积比为1mg:1~50mL。
上述基于石墨烯材料的分散快速固相萃取方法使用活化后的石墨烯材料作为固相萃取剂,活化后的石墨烯材料的网格间的交联度增大,使其更容易在离心或过滤的操作中被分离下来,因此,该方法能够将分散固相萃取技术与活化后的石墨烯材料作为固相萃取剂相结合,简化了传统的固相萃取中的繁琐操作,仅需要进行震荡和过滤即可完成化学样品的前处理,操作较为简单。
并且,通过活化后的石墨烯材料与待检测目标组分的强吸附作用,使其对特定的待检测目标组分有吸附固定能力,而对杂质没有吸附能力,从而有效地将化学样品进行了除杂,使得待检测目标组分在后续的色谱分析中得到具体含量的测定。因此,上述基于石墨烯材料的分散快速固相萃取方法的分离效果较好。
【附图说明】
图1为一实施方式的基于石墨烯材料的分散快速固相萃取方法的流程图;
图2为另一实施方式的基于石墨烯材料的分散快速固相萃取方法的流程图;
图3为实施例1的液相色谱图;
图4为实施例2的液相色谱图;
图5为实施例3的液相色谱图;
图6为实施例4的液相色谱图;
图7为实施例5的液相色谱图。
【具体实施方式】
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
请参阅图1,一实施方式的基于石墨烯材料的分散快速固相萃取方法,包括如下步骤110和步骤120。
步骤110:对石墨烯材料进行造孔活化,得到活化后的石墨烯材料,石墨烯材料为石墨烯或经过修饰的石墨烯。
石墨烯为单层石墨烯或寡层石墨烯。石墨烯表面由共轭的大π键组成,具有极强的非极性,且能与含有芳环的有机分子实现强的π-π相互作用,从而实现可逆吸附。因此,石墨烯是优良的固相萃取剂。
经过修饰的石墨烯选自氨基化石墨烯、羧基化石墨烯、氰基石墨烯、硝基石墨烯、硼酸基石墨烯、磷酸基石墨烯、羟基化石墨烯、巯基化石墨烯、甲基化石墨烯、烯丙基化石墨烯、三氟甲基化石墨烯、十二烷基化石墨烯、十八烷基化石墨烯、氟化石墨烯、溴化石墨烯、氯化石墨烯及碘化石墨烯中的至少一种。
上述经过修饰的石墨烯是指官能化的石墨烯。例如,氨基化石墨烯是指将氨基引入石墨烯中,羧基化石墨烯是指将羧基引入石墨烯中,氟化石墨烯是指将氟原子引入石墨烯中。对石墨烯进行修饰,就能有效地改变其表面的极性特征,甚至使极性反转,从而适用于分离更多的样品。在石墨烯的表面引入特定的官能团,实现对目标分子的扑捉,提高吸附性能,充分利用石墨烯的优势,而不仅仅将石墨烯作为一种强非极性的固相萃取剂,有助于扩展待处理的化学样品的种类。
优选地,对石墨烯材料进行造孔活化的方法具体为:
将石墨烯材料装入反应器中,在保护气体氛围中加热至300℃~500℃,再向反应器中通入水蒸气进行活化1h~3h,然后改通入保护气体,1min~5min后停止加热,取出石墨烯材料,洗涤、干燥得到活化后的石墨烯材料。
反应器可以为管式炉、马沸炉等。保护气体可以为氮气或惰性气体。
上述对石墨烯材料进行造孔活化的方法通过水蒸气活化的方式在石墨烯或经过修饰的石墨烯上引入孔隙,增大其表面积,提高了石墨烯或经过修饰的石墨烯与杂质间的强吸附作用,有利于提高分离效果。并且,进行活化后,石墨烯材料的网格间的交联度增大,使其更容易在离心或过滤的操作中被分离下来,克服了难以将石墨烯充分地从样品中分离下来的难题,从而能够将石墨烯材料应用于分散快速萃取技术。
而且,上述对石墨烯材料进行造孔活化的方法仅通过加热和使用水蒸气活化,无需使用其他化学活化剂,较为环保。
优选地,水蒸气的流速为0.5mL/min~5mL/min。
优选地,上述洗涤的方法为将石墨烯材料用去离子水漂洗2~3次。干燥是于60℃~80℃下干燥1h~2h。
可以理解,在其他实施方式中,可以采用其他的造孔活化方法。例如,采用化学活化剂如氢氧化钾等在石墨烯材料上进行造孔而实现对石墨烯材料的活化。
步骤120:将活化后的石墨烯材料加入待处理的化学样品中得到混合物,将混合物进行震荡萃取,然后进行离心,得到沉淀和上清液,上清液中含有待检测目标组分。
优选地,活化后的石墨烯材料与待处理的化学样品的质量比为1~20:200,以保证能够完全吸附杂质而又不会造成石墨烯材料的浪费。
将混合物进行震荡萃取,实现活化后的石墨烯材料对杂质的吸附。活化后的石墨烯材料具有较大的比表面积而具有较强的吸附能力,因此,震荡萃取较短的时间即能保证活化后的石墨烯材料对杂质的完全吸附,提高效率。优选地,震荡萃取的时间为0.5min~5min。
优选地,离心的转速为3000r/min~4000r/min,离心的时间为1min~3min。
离心后,得到沉淀和上清液。
活化后的石墨烯材料吸附的是杂质,沉淀为吸附了杂质的活化后的石墨烯材料,上清液中含有待检测目标组分。将上清液用0.22μm的微孔滤膜过滤并存于进样瓶中,用于后续分析,如进行液相色谱标定等。将沉淀进行后续处理,以脱附所吸附的杂质而回收石墨烯材料。例如,可以用洗脱剂对沉淀进行洗脱以使杂质脱附。
上述基于石墨烯材料的分散快速固相萃取方法使用活化后的石墨烯材料作为固相萃取剂,活化后的石墨烯材料的网格间的交联度增大,使其更容易在离心或过滤的操作中被分离下来,因此,该方法能够将分散固相萃取技术与活化后的石墨烯材料作为固相萃取剂相结合,简化了传统的固相萃取中的繁琐操作,仅需要进行震荡和离心即可完成化学样品的前处理,操作较为简单。
并且,通过活化后的石墨烯材料与杂质间的强吸附作用,使其对特定的杂质有吸附固定能力,而对待检测目标组分没有吸附能力,从而有效地将化学样品进行了除杂,使得待检测目标组分能在后续的色谱分析中得到具体含量的测定。因此,上述基于石墨烯材料的分散快速固相萃取方法的分离效果较好。
上述基于石墨烯材料的分散快速固相萃取方法操作简单,萃取时间短,效率高。
请参阅图2,另一实施方式的基于石墨烯材料的分散快速固相萃取方法,包括如下步骤210至步骤230。
步骤210:对石墨烯材料进行造孔活化,得到活化后的石墨烯材料,石墨烯材料为石墨烯或经过修饰的石墨烯。
步骤210与上述的实施方式的基于石墨烯材料的分散快速固相萃取方法的步骤110相同。
采用水蒸气活化的方式对石墨烯材料进行活化,提高了石墨烯或经过修饰的石墨烯与待检测目标组分间的强吸附作用,有利于提高分离效果。并且,进行活化后,石墨烯材料的网格间的交联度增大,使其更容易在离心或过滤的操作中被分离下来,克服了难以将石墨烯充分地从样品中分离下来的难题,从而能够将石墨烯材料应用于分散快速萃取技术。
步骤220:将活化后的石墨烯材料加入待处理的化学样品中得到第一混合物,将第一混合物进行震荡萃取,然后进行离心,得到第一沉淀和第一上清液。
步骤220中,活化后的石墨烯材料吸附的是待检测目标组分,第一沉淀为吸附了待检测目标组分的活化后的石墨烯材料,第一上清液中含有杂质。弃去第一上清液,将第一沉淀进行后续处理,以收集纯度较高的待检测目标组分。
震荡萃取的时间优选为0.5min~5min。
优选地,离心的转速为3000r/min~4000r/min,离心的时间为1min~3min。
步骤230:将第一沉淀和洗脱剂进行混合得到第二混合物,将第二混合物进行震荡、过滤,得到第二沉淀和第二上清液,第二上清液中含有待检测目标组分。
洗脱剂选自去离子水、甲醇、乙醇、异丙醇、乙腈、乙酸乙酯、氯仿、二氯甲烷、四氯化碳、乙醚、甲苯、苯、环己烷、石油醚、己烷、戊烷、质量分数为37%的盐酸、质量分数为40%氢氧化钠水溶液及去离子水中的至少一种。
使用洗脱剂洗脱吸附于活化后的石墨烯材料中的待检测目标组分。优选地,第一沉淀与洗脱剂的质量体积比为1mg:1~50mL,以保证将待检测目标组分完全洗脱。
进行震荡有利于待检测目标组分的洗脱。优选地,震荡的时间为0.5min~5min。
震荡后进行过滤,得到第二沉淀和第二上清液。
第二沉淀为脱附了待检测目标组分的活化后的石墨烯材料,第二上清液中含有待检测目标组分。将第二上清液用0.22μm的微孔滤膜过滤并存进样瓶中,用于后续分析,如进行液相色谱标定等。
脱附了待检测目标组分的活化后的石墨烯材料还可以回收利用,例如,重新作为固相萃取剂对化学样品进行前处理。
上述基于石墨烯材料的分散快速固相萃取方法使用活化后的石墨烯材料作为固相萃取剂,活化后的石墨烯材料的网格间的交联度增大,使其更容易在离心或过滤的操作中被分离下来,因此,该方法能够将分散固相萃取技术与活化后的石墨烯材料作为固相萃取剂相结合,简化了传统的固相萃取中的繁琐操作,仅需要进行震荡和过滤即可完成化学样品的前处理,操作较为简单。
并且,通过活化后的石墨烯或经过修饰的石墨烯与待检测目标组分的强吸附作用,使其对特定的待检测目标组分有吸附固定能力,而对非目标的杂质没有吸附能力,从而有效地捕捉了化学样品中的痕量或微量的待检测目标组分,使得待检测目标组分在后续的色谱分析中得到具体含量的测定。因此,上述基于石墨烯材料的分散快速固相萃取方法的分离效果较好。
上述基于石墨烯材料的分散快速固相萃取方法操作简单,萃取时间短,效率高。
可以理解,上述两种实施方式的基于石墨烯材料的分散快速固相萃取方法中的固相萃取剂-活化后的石墨烯材料只能选择性吸附同一待处理的化学样品中的杂质或待检测目标组分,而不能同时吸附同一待处理的化学样品中的杂质和待检测目标组分,即待处理的化学样品的待检测目标组分和杂质的性质不同使得活化后的石墨烯材料能够选择性吸附待检测目标组分和杂质中的一种。
上述两种实施方式的基于石墨烯材料的分散快速固相萃取方法中的经过修饰的石墨烯基皆采用LomedaJR,DoyleCD,KosynkinDV,HwangWF,TourJ M.J.Am.Chem. Soc., 2008, 130:16201—16206中报道的重氮盐方法进行官能化。
例如,十二烷基化石墨烯为采用对十二烷基苯基重氮盐作为烷基化试剂对石墨烯进行修饰得到,羧基化即采用重氮甲酸酯反应后水解进行羧基化对石墨烯进行修饰得到。
其中氨基化石墨烯另采用Krabbenborg S,Naber W J M ,Velders A H,Reinhoudt D N,Wiel W G. Chem- Eur J., 2009,15:8235—8240中报道的叠氮化-还原进行氨基化得到;羟基化石墨烯则采用硼氢化钠选择性还原氧化石墨烯的方法进行羟基化对石墨烯进行修饰得到。
以下通过具体实施例对上述基于石墨烯材料的分散快速固相萃取方法进一步阐述。
实施例1
1、将单层石墨烯装入管式炉中,通入氮气,在氮气气氛中加热至300℃,停止通入氮气,向管式炉中通入水蒸气进行活化3h,其中,水蒸气的流速为5mL/min。然后,停止通入水蒸气,改通入氮气,5min后停止加热,取出石墨烯材料,用去离子水漂洗3次,并于60℃下干燥2h,得到活化后的单层石墨烯。
2、将苯酚、4,4’-二氯联苯、联苯、萘和芘混合并配制成每种组分的浓度均为100μg/Kg的工作溶液,溶剂为二氯甲烷,再加入卟啉作为杂质组分,卟啉的浓度为1mg/L。
3、取5g上述工作溶液,按每克每种组分中加入30mg固相萃取剂的比例将上述活化后的单层石墨烯加入5g上述工作溶液中得到第一混合物,将第一混合物于摇床上进行震荡萃取0.5min,然后于3000r/min下离心3min,得到第一沉淀和第一上清液。
4、将该第一沉淀与石油醚置于锥形瓶中进行混合得到第二混合物,第一沉淀与石油醚的质量体积比为1mg:2mL。将锥形瓶置于摇床中震荡0.5min,然后过滤,得到第二沉淀和第二上清液,用0.22μm的微孔滤膜过滤第二上清液,取20μL过滤后的第二上清液进样进行液相色谱分析(使用安捷伦1100高效液相色谱工作站,流动相为乙腈和水按体积比1:1混合的混合溶剂,流速为0.5mL/min),
所得谱图如图3所示。
由图3可看出,上述基于石墨烯材料的分散快速固相萃取方法能对各项组分能够很好的捕捉并解离,能够较好地除去大环的卟啉杂质。
实施例2
1、将氨基化石墨烯装入管式炉中,通入氮气,在氮气气氛中加热至500℃,停止通入氮气,向管式炉中通入水蒸气进行活化1h,其中,水蒸气的流速为0.5mL/min。然后,停止通入水蒸气,改通入氮气,1min后停止加热,取出石墨烯材料,用去离子水漂洗3次,并于80℃下干燥1h,得到活化后的氨基化石墨烯。
2、将苯丙氨酸、亮氨酸、组氨酸、赖氨酸混合并配制成每种组分的浓度均为100μg/L的工作溶液,溶剂为乙腈,再加入甲基紫作为杂质组分,甲基紫的浓度为1mg/L。
3、取5g上述工作溶液,按每克每种组分中加入5mg固相萃取剂的比例将上述活化后的氨基化石墨烯加入5g上述工作溶液中得到第一混合物,将第一混合物于摇床上进行震荡萃取5min,然后于4000r/min下离心1min,得到第一沉淀和第一上清液。
4、将该第一沉淀与乙醇置于锥形瓶中进行混合得到第二混合物,第一沉淀与乙醇的质量体积比为1mg:1mL。将锥形瓶置于摇床中震荡5min,然后过滤,得到第二沉淀和第二上清液,用0.22μm的微孔滤膜过滤第二上清液,取20μL过滤后的第二上清液进样进行液相色谱分析(使用安捷伦1100高效液相色谱工作站,流动相为甲醇和水按体积比4:1混合的混合溶剂,流速为0.5mL/min),所得谱图如图4所示。
由图4可看出,上述基于石墨烯材料的分散快速固相萃取方法能对各项组分能够很好的捕捉并解离,能够较好地除去甲基紫。
实施例3
1、将羧基化石墨烯装入管式炉中,通入氮气,在氮气气氛中加热至400℃,停止通入氮气,向管式炉中通入水蒸气进行活化2h,其中,水蒸气的流速为2mL/min。然后,停止通入水蒸气,改通入氮气,3min后停止加热,取出石墨烯材料,用去离子水漂洗3次,并于70℃下干燥1.5h,得到活化后的羧基化石墨烯。
2、将黄连用食品粉碎机粉碎后过100目筛得到黄连粉末,再取0.5g黄连粉末加入盐酸-甲醇(盐酸和甲醇的体积比为1:100)的混合溶剂200ml中,60℃水浴提取2h,再超声破碎剩余黄连残渣。最后过滤去除黄连残渣,得到黄连提取物溶液作为工作溶液。
3、取5g上述工作溶液,按每克每种组分中加入100mg固相萃取剂的比例将上述活化后的羧基化石墨烯加入5g上述工作溶液中得到混合物,将混合物于摇床上进行震荡萃取3min,然后于3500r/min下离心1min,得到沉淀和上清液。
4、用0.22μm的微孔滤膜过滤上清液,取20μL过滤后的上清液进样进行液相色谱分析(使用安捷伦1100高效液相色谱工作站,流动相为乙腈和水按体积比1:1混合的混合溶剂,流速为0.5mL/min),所得谱图如图5所示。
由图5可看出,上述基于石墨烯材料的分散快速固相萃取方法的羧基化石墨烯能有效地将黄连提取物中的杂质,而对目标待检测组分生物碱没有吸附作用,能够有效纯化待分析的天然产物。
实施例4
1、将十二烷基化石墨烯装入管式炉中,通入氮气,在氮气气氛中加热至450℃,停止通入氮气,向管式炉中通入水蒸气进行活化1.5h,其中,水蒸气的流速为3mL/min。然后,停止通入水蒸气,改通入氮气,2min后停止加热,取出石墨烯材料,用去离子水漂洗3次,并于75℃下干燥1h,得到活化后的十二烷基化石墨烯。
2、将β-月桂烯、香叶醇、香兰素、α-柠檬醛混合并配制成每种组分的浓度均为100μg/L的工作溶液,溶剂为环己烷,再加入亚甲基蓝作为杂质组分,亚甲基蓝的浓度为1mg/L。
3、取5g上述工作溶液,按每克每种组分中加入75mg固相萃取剂的比例将上述活化后的十二烷基化石墨烯加入5g上述工作溶液中得到第一混合物,将第一混合物于摇床上进行震荡萃取2min,然后于3200r/min下离心1.5min,得到第一沉淀和第一上清液。
4、将该第一沉淀与乙酸乙酯及乙醇置于锥形瓶中进行混合得到第二混合物,第一沉淀、乙酸乙酯与乙醇的质量体积比为1mg:10mL:10mL。将锥形瓶置于摇床中震荡4min,然后过滤,得到第二沉淀和第二上清液,用0.22μm的微孔滤膜过滤第二上清液,取20μL过滤后的第二上清液进样进行液相色谱分析(使用安捷伦1100高效液相色谱工作站,流动相为甲醇和水按体积比4:1混合的混合溶剂,流速为0.5mL/min),所得谱图如图6所示。
由图6可看出,上述基于石墨烯材料的分散快速固相萃取方法能对各项组分能够很好的捕捉并解离,能够较好地除去亚甲基蓝。
实施例5
1、将羟基化石墨烯装入管式炉中,通入氮气,在氮气气氛中加热至350℃,停止通入氮气,向管式炉中通入水蒸气进行活化2.5h,其中,水蒸气的流速为4mL/min。然后,停止通入水蒸气,改通入氮气,4min后停止加热,取出石墨烯材料,用去离子水漂洗3次,并于65℃下干燥2h,得到活化后的羟基化石墨烯。
2、将雌二醇、孕酮、胆固醇、醛固酮混合并配制成每种组分的浓度均为100μg/L的工作溶液,溶剂为四氢呋喃,再加入苏木精作为杂质组分,苏木精的浓度为1mg/L。
3、取5g上述工作溶液,按每克每种组分中加入50mg固相萃取剂的比例将上述活化后的羟基化石墨烯加入5g上述工作溶液中得到第一混合物,将第一混合物于摇床上进行震荡萃取4min,然后于3800r/min下离心1.5min,得到第一沉淀和第一上清液。
4、将该第一沉淀与二氯甲烷置于锥形瓶中进行混合得到第二混合物,第一沉淀与二氯甲烷的质量体积比为1mg:15mL。将锥形瓶置于摇床中震荡2min,然后过滤,得到第二沉淀和第二上清液,用0.22μm的微孔滤膜过滤第二上清液,取20μL过滤后的第二上清液进样进行液相色谱分析(使用安捷伦1100高效液相色谱工作站,流动相为乙腈和水按体积比1:1混合的混合溶剂,流速为0.5mL/min),所得谱图如图7所示。
由图7可看出,上述基于石墨烯材料的分散快速固相萃取方法能对各项组分能够很好的捕捉并解离,能够较好地除去苏木精。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种基于石墨烯材料的分散快速固相萃取方法,包括如下步骤:
    对石墨烯材料进行造孔活化,得到活化后的石墨烯材料,所述石墨烯材料为石墨烯或经过修饰的石墨烯;及
    将所述活化后的石墨烯材料加入待处理的化学样品中得到混合物,将所述混合物进行震荡萃取,然后进行离心,得到沉淀和上清液,所述上清液中含有待检测目标组分。
  2. 根据权利要求1所述的基于石墨烯材料的分散快速固相萃取方法,其特征在于,所述对石墨烯材料进行造孔活化的方法具体为:
    将石墨烯材料装入反应器中,在保护气体氛围中加热至300℃~500℃,再向所述反应器中通入水蒸气进行活化1h~3h,然后改通入保护气体,1min~5min后停止加热,取出所述石墨烯材料,洗涤、干燥得到活化后的石墨烯材料。
  3. 根据权利要求1所述的基于石墨烯材料的分散快速固相萃取方法,其特征在于,所述水蒸气的流速为0.5mL/min~5mL/min。
  4. 根据权利要求1所述的基于石墨烯材料的分散快速固相萃取方法,其特征在于,所述石墨烯为单层石墨烯或寡层石墨烯,所述经过修饰的石墨烯选自氨基化石墨烯、羧基化石墨烯、氰基石墨烯、硝基石墨烯、硼酸基石墨烯、磷酸基石墨烯、羟基化石墨烯、巯基化石墨烯、甲基化石墨烯、烯丙基化石墨烯、三氟甲基化石墨烯、十二烷基化石墨烯、十八烷基化石墨烯、氟化石墨烯、溴化石墨烯、氯化石墨烯及碘化石墨烯中的至少一种。
  5. 根据权利要求1所述的基于石墨烯材料的分散快速固相萃取方法,其特征在于,所述活化后的石墨烯材料与所述待处理的化学样品的质量比为1~20:200。
  6. 根据权利要求1所述的基于石墨烯材料的分散快速固相萃取方法,其特征在于,所述震荡萃取的时间为0.5min~5min。
  7. 根据权利要求1所述的基于石墨烯材料的分散快速固相萃取方法,其特征在于,所述离心的转速为3000r/min~4000r/min,离心的时间为1min~3min。
  8. 一种基于石墨烯材料的分散快速固相萃取方法,包括如下步骤:
    对石墨烯材料进行造孔活化,得到活化后的石墨烯材料,所述石墨烯材料为石墨烯或经过修饰的石墨烯;
    将所述活化后的石墨烯材料加入待处理的化学样品中得到第一混合物,将所述第一混合物进行震荡萃取,然后进行离心,得到第一沉淀和第一上清液;及
    将所述第一沉淀和洗脱剂进行混合得到第二混合物,将所述第二混合物进行震荡、过滤,得到第二沉淀和第二上清液,所述第二上清液中含有待检测目标组分。
  9. 根据权利要求8所述的基于石墨烯材料的分散快速固相萃取方法,其特征在于,所述洗脱剂选自去离子水、甲醇、乙醇、异丙醇、乙腈、乙酸乙酯、氯仿、二氯甲烷、四氯化碳、乙醚、甲苯、苯、环己烷、石油醚、己烷、戊烷、质量分数为37%的盐酸、质量分数为40%氢氧化钠的水溶液及去离子水中的至少一种。
  10. 根据权利要求8所述的基于石墨烯材料的分散快速固相萃取方法,其特征在于,其特征在于,所述第一沉淀与所述洗脱剂的质量体积比为1mg:1~50mL。
PCT/CN2014/087385 2014-09-25 2014-09-25 基于石墨烯材料的分散快速固相萃取方法 WO2016045030A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/087385 WO2016045030A1 (zh) 2014-09-25 2014-09-25 基于石墨烯材料的分散快速固相萃取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/087385 WO2016045030A1 (zh) 2014-09-25 2014-09-25 基于石墨烯材料的分散快速固相萃取方法

Publications (1)

Publication Number Publication Date
WO2016045030A1 true WO2016045030A1 (zh) 2016-03-31

Family

ID=55580078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087385 WO2016045030A1 (zh) 2014-09-25 2014-09-25 基于石墨烯材料的分散快速固相萃取方法

Country Status (1)

Country Link
WO (1) WO2016045030A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106092717A (zh) * 2016-05-26 2016-11-09 苏州佰锐生物科技有限公司 一种新型固相萃取剂对牛血清白蛋白同步富集脱盐的方法
CN109336100A (zh) * 2018-09-28 2019-02-15 潍坊职业学院 一种具有核壳结构的磁性石墨烯、在农药残留检测中的应用及应用方法
CN110672580A (zh) * 2019-09-28 2020-01-10 上海如海光电科技有限公司 一种食品饮料和植物油中四氢大麻酚的拉曼快速检测方法
CN111389372A (zh) * 2020-05-15 2020-07-10 安阳工学院 全氟酸类化合物专用氧化石墨烯气凝胶固相萃取柱及其制备方法
CN113156042A (zh) * 2021-04-16 2021-07-23 陕西科技大学 一种筛查羊乳中磺胺类药物残留的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2315474A1 (en) * 1999-08-12 2001-02-12 Donald S. Forsyth Micro extraction technique
US20110210056A1 (en) * 2010-02-26 2011-09-01 Brigham Young University Gas phase approach to in-situ/ex-situ functionalization of porous graphitic carbon via radical-generated molecules
CN102608237A (zh) * 2012-03-15 2012-07-25 中国农业大学 利用石墨烯检测水体中烟碱类农药残留的方法
CN102872843A (zh) * 2012-10-27 2013-01-16 信阳师范学院 一种基于石墨烯键合硅胶固相萃取柱及其制备方法与应用
CN103833019A (zh) * 2012-11-23 2014-06-04 海洋王照明科技股份有限公司 石墨烯及其制备方法
CN104458975A (zh) * 2014-11-26 2015-03-25 嘉应学院医学院 一种应用于金花茶茶多酚、黄酮类成分检测的测试方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2315474A1 (en) * 1999-08-12 2001-02-12 Donald S. Forsyth Micro extraction technique
US20110210056A1 (en) * 2010-02-26 2011-09-01 Brigham Young University Gas phase approach to in-situ/ex-situ functionalization of porous graphitic carbon via radical-generated molecules
CN102608237A (zh) * 2012-03-15 2012-07-25 中国农业大学 利用石墨烯检测水体中烟碱类农药残留的方法
CN102872843A (zh) * 2012-10-27 2013-01-16 信阳师范学院 一种基于石墨烯键合硅胶固相萃取柱及其制备方法与应用
CN103833019A (zh) * 2012-11-23 2014-06-04 海洋王照明科技股份有限公司 石墨烯及其制备方法
CN104458975A (zh) * 2014-11-26 2015-03-25 嘉应学院医学院 一种应用于金花茶茶多酚、黄酮类成分检测的测试方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106092717A (zh) * 2016-05-26 2016-11-09 苏州佰锐生物科技有限公司 一种新型固相萃取剂对牛血清白蛋白同步富集脱盐的方法
CN109336100A (zh) * 2018-09-28 2019-02-15 潍坊职业学院 一种具有核壳结构的磁性石墨烯、在农药残留检测中的应用及应用方法
CN110672580A (zh) * 2019-09-28 2020-01-10 上海如海光电科技有限公司 一种食品饮料和植物油中四氢大麻酚的拉曼快速检测方法
CN110672580B (zh) * 2019-09-28 2023-05-30 上海如海光电科技有限公司 一种食品饮料和植物油中四氢大麻酚的拉曼快速检测方法
CN111389372A (zh) * 2020-05-15 2020-07-10 安阳工学院 全氟酸类化合物专用氧化石墨烯气凝胶固相萃取柱及其制备方法
CN111389372B (zh) * 2020-05-15 2023-03-24 安阳工学院 全氟酸类化合物专用氧化石墨烯气凝胶固相萃取柱及其制备方法
CN113156042A (zh) * 2021-04-16 2021-07-23 陕西科技大学 一种筛查羊乳中磺胺类药物残留的方法

Similar Documents

Publication Publication Date Title
WO2016045030A1 (zh) 基于石墨烯材料的分散快速固相萃取方法
WO2016045032A1 (zh) 固相萃取柱、其制备方法及基于固相萃取柱的化学样品前处理方法
CN104215727B (zh) 基于石墨烯材料的分散快速固相萃取方法
CN107860834B (zh) 一种利用磁性有机骨架材料分析痕量全氟类化合物的方法
Oukebdane et al. Comparison of hot Soxhlet and accelerated solvent extractions with microwave and supercritical fluid extractions for the determination of polycyclic aromatic hydrocarbons and nitrated derivatives strongly adsorbed on soot collected inside a diesel particulate filter
WO2023078376A1 (zh) 一种磁性羧基化共价有机骨架材料作为磁性固相萃取吸附剂的应用
CN109929117A (zh) 一种磷氮型刚性骨架多孔阻燃剂及其制备方法和应用
CN106744883B (zh) 石墨烯的制备方法
Barwise et al. High-performance liquid chromatographic analysis of free-base porphyrins: I. An improved method
WO1995030624A1 (en) Purification of fullerenes
CN106829937B (zh) 一种石墨烯的制备方法
WO2021060929A1 (ko) 기능화된 금속-유기 구조체, 이의 제조방법 및 이를 이용하는 이산화탄소의 선택적 분리방법
CN112730704A (zh) 一种他克莫司软膏有关物质测定的前处理方法
Zhang et al. Analysis of compounds in airborne dust collected in Beijing
CN107827898B (zh) 小檗碱型生物碱的制造方法
Hapke et al. On the Synthesis of Arylpropiolic Acids and Investigations towards the Formation of Vinyl Chlorides by HCl Addition During Esterification Reactions
CN102459072A (zh) 从多种杂质中提纯富勒烯衍生物
CN106814156A (zh) 一种利用基质固相分散萃取分析土壤中多环芳烃的方法
Ciganek et al. Intramolecular Diels-Alder Reactions. 5. Approaches to the Pyrrolo [3, 4-c] carbazole and Pyrido [4, 3-c] carbazole Systems1
Berezkin et al. A Comparative Study of the Sorption Capacity of Activated Charcoal, Soot, and Fullerenes for Organochlorine Compounds.
Hussain et al. Bisbenzylisoquinoline alkaloids from Thalictrum cultratum. The structures of thalrugosinone and thalpindione
CN1704405A (zh) 一种分析与分离制备石杉碱甲和石杉碱乙的方法
CA2144746A1 (en) Process for separating fullerenes
CN113578262B (zh) 羧酸根功能化磁性碳基材料及其制备方法和应用
Lamberton et al. Alkaloids of Hovea linearis R. Br. The isolation of Ormosia group alkaloids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14902779

Country of ref document: EP

Kind code of ref document: A1