WO2016043242A1 - Film laminate and polarization plate - Google Patents

Film laminate and polarization plate Download PDF

Info

Publication number
WO2016043242A1
WO2016043242A1 PCT/JP2015/076355 JP2015076355W WO2016043242A1 WO 2016043242 A1 WO2016043242 A1 WO 2016043242A1 JP 2015076355 W JP2015076355 W JP 2015076355W WO 2016043242 A1 WO2016043242 A1 WO 2016043242A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
acrylate
group
low moisture
Prior art date
Application number
PCT/JP2015/076355
Other languages
French (fr)
Japanese (ja)
Inventor
将臣 桑原
雅康 鈴木
村田 力
後藤 誠
加藤 昌央
亮 村田
Original Assignee
株式会社巴川製紙所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社巴川製紙所 filed Critical 株式会社巴川製紙所
Priority to JP2016548924A priority Critical patent/JPWO2016043242A1/en
Publication of WO2016043242A1 publication Critical patent/WO2016043242A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a film laminate in which a low moisture-permeable layer is laminated, and a polarizing plate provided with the laminate on the film.
  • a polarizing plate is adhered to both sides of a polarizing film made of a polyvinyl alcohol film uniaxially stretched by adsorbing iodine with an adhesive such as an optical film such as triacetyl cellulose (hereinafter referred to as TAC) as a protective film. It has a combined configuration. In order to bond the TAC film to the polarizing film, a hydrophilic adhesive is used.
  • Such a conventional polarizing plate has a high moisture permeability of a TAC film as a protective film and a large expansion and contraction due to moisture absorption and dehumidification.
  • a TAC film as a protective film
  • a large expansion and contraction due to moisture absorption and dehumidification When exposed to a long period of time, there are problems that the optical function as a polarizing plate is impaired, and physical troubles due to curling and warping of the polarizing plate occur.
  • a protective film of a polarizing plate not a TAC film but an amorphous polyolefin resin film, a polyester resin film, an acrylic resin film, a polycarbonate resin film, a polysulfone resin It is described that the moisture permeability of the protective film can be reduced by using a film, an alicyclic polyimide resin film, or the like.
  • the amorphous polyolefin resin film, the polyester resin film, the acrylic resin film, the polycarbonate resin film, the polysulfone resin film, the alicyclic polyimide resin film, etc. have fewer polar groups than the TAC film. For this reason, even if surface modification such as plasma treatment, corona treatment, or saponification treatment is performed in order to improve the adhesion, it cannot be sufficiently adhered to the polarizing film using a hydrophilic adhesive. That is, there is a problem that bonding using a hydrophilic adhesive, which is widely performed as a general-purpose manufacturing method for polarizing plates, cannot be performed.
  • an object of the present invention is to provide a film laminate having low moisture permeability by providing a low moisture-permeable layer on a cellulose-based film that can be bonded with a hydrophilic adhesive. .
  • the present inventors have provided a low moisture-permeable layer with a urethane (meth) acrylate monomer having a plurality of types of saturated cyclic aliphatic groups on a cellulose-based film. It has been found that a film laminate having a low thickness can be obtained.
  • the present invention includes the following forms. ⁇ 1> In a film laminate in which a low moisture-permeable layer is laminated on a cellulose-based film, The low moisture-permeable layer is formed by a repeating unit having a structure derived from a bifunctional urethane (meth) acrylate, The repeating unit has a plurality of types of saturated cycloaliphatic groups. ⁇ 2> The repeating unit is The following structure A containing a saturated cycloaliphatic group R 1 , and The film laminate according to ⁇ 1>, comprising the following structure C containing a saturated cycloaliphatic group R 3 .
  • the repeating unit is Further characterized in that it comprises the following structure B containing saturated aliphatic chain R 2 film laminate according to ⁇ 2>. —O—R 2 —CO— (Structure B) ⁇ 4> The film laminate according to ⁇ 3>, wherein the repeating unit has a structure represented by the following general formula (1).
  • R 1 represents a saturated cycloaliphatic group
  • R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms
  • R 3 represents R 1 and Each represents a different saturated cycloaliphatic group
  • R 4 represents a hydrogen atom or a methyl group
  • R 5 represents a hydrogen atom, a methyl group or an ethyl group
  • m represents an integer of 1 to 4
  • An integer from 0 to 2 is shown, and the sum of r and s is 1 to 2
  • x is an integer from 0 to 3
  • ⁇ 6> The film laminate according to any one of ⁇ 1> to ⁇ 5>, wherein the moisture permeability is 150 g / (m 2 ⁇ 24 hours) or less.
  • a polarizing plate comprising the film laminate according to any one of ⁇ 1> to ⁇ 6> on at least one surface of a polarizing film.
  • the film laminate according to the present invention has a plurality of types of saturated cycloaliphatic groups in the low moisture permeable layer, even when the low moisture permeable layer is provided on a cellulose film having high moisture permeability, A film laminate having a low moisture permeability can be provided.
  • the film laminate, the low moisture permeable layer, and the polarizing plate according to the present invention will be described, but the present invention is not construed as being limited to the following description.
  • the film laminate according to the present invention is (1) On at least one side of the cellulosic film, (2) In the film laminate in which the low moisture permeability layer is laminated, The low moisture-permeable layer is formed by a repeating unit having a structure derived from a bifunctional urethane (meth) acrylate, The repeating unit has a plurality of types of saturated cycloaliphatic groups.
  • the structural member of a film laminated body is demonstrated.
  • the cellulose film is preferably a colorless and transparent film composed of a cellulose resin.
  • the cellulose resin include cellulose acetate, cellulose propionate, cellulose butyrate, and cellulose acetate propio.
  • examples thereof include a film composed of acrylate and cellulose acetate butyrate.
  • a TAC film made of triacetyl cellulose as a raw material can be more preferably used.
  • the thickness of the TAC film is not particularly limited, but since it can be easily processed even if it is thin, a thickness of 10 to 80 ⁇ m is generally suitably used.
  • the moisture permeability of the TAC film is not particularly limited. However, in view of the problem of the present invention, the effect becomes more remarkable by providing the low moisture permeability layer on the film having a high moisture permeability. Is preferably 300 g / (m 2 ⁇ 24 hours) or more.
  • the low moisture permeable layer is a layer obtained by polymerizing a radiation curable composition derived from (meth) acrylate as described later, in other words, it can be said to be a radiation curable resin layer.
  • the low moisture-permeable layer according to the present invention is formed by a repeating unit having a structure derived from a urethane (meth) acrylate that is a monomer, and the repeating unit has a plurality of types of saturated cycloaliphatic groups. That is, in the low moisture permeable layer, the matrix forming the polymer is formed of repeating units having a structure derived from urethane (meth) acrylate.
  • the low moisture-permeable layer according to the present invention is composed of at least the above repeating unit.
  • the basic configuration (1) will be described, and will be described in the order (2).
  • the low moisture-permeable layer according to the present invention is formed by a repeating unit having a structure derived from a bifunctional urethane (meth) acrylate, and the repeating unit has a plurality of types of saturated cycloaliphatic groups. . That is, in the low moisture permeable layer, the matrix forming the polymer is formed of repeating units having a structure derived from urethane (meth) acrylate.
  • the structure derived from the urethane (meth) acrylate means a urethane (meth) acrylate monomer unit, that is, a structure in which a double bond of a (meth) acrylate group is cleaved in a urethane (meth) acrylate monomer. Since the double bond of the (meth) acrylate group is cleaved at both ends, it is bifunctional.
  • the above repeating unit has a urethane bond (—NH—CO—O—).
  • the number of urethane bonds is not particularly limited and is, for example, 1-8.
  • the urethane bond is a polar group, and the urethane bonds in each repeating unit are close to each other by intermolecular force.
  • saturated cycloaliphatic groups are nonpolar cyclic structures and have a high molecular weight. It is considered that the intermolecular force generates a high cohesive force due to the high molecular weight of the saturated cycloaliphatic group contributing to the intermolecular interaction between the urethane bonds.
  • the low moisture permeability layer constituted by the repeating unit has low moisture permeability in a thin layer state.
  • the urethane (meth) acrylate monomer unit has a plurality of types of saturated cycloaliphatic groups. Although it does not specifically limit as a saturated cycloaliphatic group, From a viewpoint of raising the cohesion force resulting from molecular weight, it is preferable that it is a saturated cycloaliphatic group 5 or more membered ring. Although the upper limit of the number of member rings is not particularly limited, it is, for example, 15-membered ring or less, preferably 10-membered ring or less, from the viewpoint of easy synthesis of a monomer that is a raw material for the low moisture-permeable layer.
  • the number of member rings represents the maximum number of member rings of the cyclic structure, and the saturated cyclic aliphatic group has a bicyclo ring or a tricyclo ring.
  • the number of member rings is nine.
  • the main chain of the cyclic structure of the saturated cycloaliphatic group may be formed only by carbon atoms, or may be formed by oxygen atoms and / or nitrogen atoms in addition to carbon atoms.
  • a linear and / or branched structure having 1 to 10 carbon atoms may be added to the carbon atom of the cyclic structure.
  • saturated cycloaliphatic group examples include a 3,5,5-trimethylcyclohexane ring, a tricyclodecane ring, an adamantane ring, and the like.
  • the saturated cycloaliphatic group may be bonded to a urethane bonding group via a saturated aliphatic chain, and the rigidity of the repeating unit can be suitably adjusted by changing the carbon number of the saturated aliphatic chain.
  • the saturated aliphatic chain includes a straight chain structure and a branched chain structure, and an example of the straight chain structure is — (CH 2 ) n — (n is an integer of 1 to 10), From the viewpoint of reducing the flexibility and increasing the rigidity, it is particularly preferably — (CH 2 ) — or — (CH 2 ) 2 —.
  • examples of the branched structure include structures in which hydrogen on at least one carbon of the linear structure is substituted with a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, or the like.
  • the 3-methylene-3,5,5-trimethylcyclohexane ring and the dimethylenetricyclodecane ring are preferable ring structures, and low moisture permeability is suitably exhibited in a low moisture-permeable layer containing the ring structure in a polymer chain. Is done.
  • the main chain of the repeating unit preferably contains a saturated aliphatic chain having 5 to 10 carbon atoms in addition to the saturated cyclic aliphatic group.
  • the saturated aliphatic chain has 5 or more carbon atoms, flexibility is imparted to the repeating unit by the saturated aliphatic chain having a long chain length and flexibility, and the brittleness of the low moisture permeable layer is reduced.
  • the carbon number is 10 or less, an increase in moisture permeability in the low moisture permeable layer can be suppressed.
  • the saturated aliphatic chain may have a straight chain structure or a branched chain structure.
  • the saturated aliphatic chain constitutes a part of the repeating unit, for example, in a structure via a urethane bond or an ester bond.
  • linear structure is — (CH 2 ) n1 — (where n1 is an integer of 5 to 10), and — (CH 2 ) 5 — is particularly preferable.
  • examples of the branched structure include structures in which hydrogen on at least one carbon of the linear structure is substituted with a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, or the like.
  • a structure including the following structure A including a saturated cycloaliphatic group R 1 and a structure including the following structure C including a saturated cycloaliphatic group R 3 can be exemplified.
  • the repeating unit for example, diisocyanates containing R 1, diols containing R 3, and can be obtained from the urethane (meth) acrylate obtained by using a (meth) acrylate, it can be easily manufactured.
  • the ratio of the structure A and the structure C can be m + 1: m or m: m + 1, where m is an integer of 1 to 4.
  • repeating units may further comprise the following structure B containing saturated aliphatic chain R 2. —O—R 2 —CO— (Structure B)
  • the repeating unit is, for example, an isocyanate having a (meth) acrylate or (meth) acryl group in addition to a diisocyanate containing R 1 , an ester containing R 2 (optionally used), a diol containing R 3 And can be easily manufactured.
  • the ratio of the structure A, the structure B, and the structure C can be m + 1: m (r + s): m, m + 1: k + n: m, m: m (r + s): m + 1, m: k + n: m + 1.
  • M represents an integer of 1 to 4, r and s each represents an integer of 0 to 2, and the sum of r and s is 1 to 2, k represents an integer of 0 to 2, n Represents an integer of 0-2.
  • the structure derived from (meth) acrylate is a (meth) acrylate structure H 2 C ⁇ CH—CO 2 — (or H 2 C ⁇ C (CH 3 ) —CO 2 —. ) In which a carbon-carbon double bond is cleaved to form a single bond.
  • R 1 represents a saturated cycloaliphatic group
  • R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms
  • R 3 represents R 1 and Each represents a different saturated cycloaliphatic group
  • R 4 represents a hydrogen atom or a methyl group
  • R 5 represents a hydrogen atom, a methyl group or an ethyl group
  • m represents an integer of 1 to 4
  • An integer from 0 to 2 is shown, and the sum of r and s is 1 to 2, and x is an integer from 0 to 3
  • m in the general formula (1) is an integer of 1 to 4, the moisture permeability of the low moisture permeable layer can be further reduced.
  • m is more preferably 1 or 2, and even more preferably 1. The same applies to general formulas (2), (3), and (4) described later.
  • R 1 is a 3-methylene-3,5,5-trimethylcyclohexane ring
  • R 2 is — (CH 2 ) 5 —
  • R 3 is a dimethylenetricyclodecane ring.
  • R 4 and R 5 are hydrogen atoms, r and s are 1 and x is 1 is shown below.
  • R 1 represents a saturated cycloaliphatic group
  • R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms
  • R 3 represents R 1 and R 4 represents a different saturated cycloaliphatic group
  • R 4 represents a hydrogen atom or a methyl group
  • R 5 represents a hydrogen atom, a methyl group or an ethyl group
  • m represents an integer of 1 to 4
  • k represents 0 to 2 N represents an integer from 0 to 2
  • x represents an integer from 0 to 3
  • R 1 is a 3-methylene-3,5,5-trimethylcyclohexane ring
  • R 2 is — (CH 2 ) 5 —
  • R 3 is a dimethylenetricyclodecane ring.
  • R 4 and R 5 are hydrogen atoms, k and n are 1, and x is 1 are shown below.
  • R 1 represents a saturated cycloaliphatic group
  • R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms
  • R 3 represents R 1 and Each represents a different saturated cycloaliphatic group
  • R 4 represents a hydrogen atom or a methyl group
  • R 5 represents a hydrogen atom, a methyl group or an ethyl group
  • m represents an integer of 1 to 4
  • An integer from 0 to 2 is shown, and the sum of r and s is 1 to 2, and x is an integer from 0 to 3
  • R 1 is a 3-methylene-3,5,5-trimethylcyclohexane ring
  • R 2 is — (CH 2 ) 5 —
  • R 3 is a dimethylene tricyclodecane ring.
  • R 4 and R 5 are hydrogen atoms, r and s are 1 and x is 1 are shown below.
  • R 1 represents a saturated cycloaliphatic group
  • R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms
  • R 3 represents R 1 and R 4 represents a different saturated cycloaliphatic group
  • R 4 represents a hydrogen atom or a methyl group
  • R 5 represents a hydrogen atom, a methyl group or an ethyl group
  • m represents an integer of 1 to 4
  • k represents 0 to 2 N represents an integer from 0 to 2
  • x represents an integer from 0 to 3
  • R 1 is a 3-methylene-3,5,5-trimethylcyclohexane ring
  • R 2 is — (CH 2 ) 5 —
  • R 3 is a dimethylenetricyclodecane ring.
  • R 4 and R 5 are hydrogen atoms, k and n are 1, and x is 1 are shown below.
  • the isomer of the structure represented by the general formula (1a), the general formula (2a), the general formula (3a), and the general formula (4a) is also included in the repeating unit according to the present invention.
  • the repeating unit is not necessarily determined to be one structure. That is, for example, in the adjacent repeating unit of the general formula (1), even if one m is 1, the other m is not limited to 1, and may be any one of 1 to 4. The same applies to r, s, x, k, n, y, z, and p in other general formulas.
  • the low moisture-permeable layer according to the present embodiment contains the above repeating unit as the block A and the block B including a structure derived from a bifunctional (meth) acrylate having one kind of saturated cycloaliphatic group. It is comprised by the made copolymer.
  • the low moisture-permeable layer according to the copolymer comprises a block A (repeating unit) comprising a bifunctional urethane (meth) acrylate monomer unit having a plurality of types of saturated cycloaliphatic groups, and 1 It can be said that it comprises a copolymer containing a block B containing a bifunctional (meth) acrylate monomer unit having a kind of saturated cycloaliphatic group.
  • Block B comprises a bifunctional (meth) acrylate monomer unit having one type of saturated cycloaliphatic group.
  • This block B contains a (meth) acrylate monomer unit and does not contain a urethane bond.
  • the acrylate-derived site of block A is bonded to the other acrylate-derived site of block A or block B (-block A-block A- or -block A-block B-).
  • the —CO—O— of the (meth) acrylate moiety in Block B is more linear and less flexible than —CO—NH—, which is the nonlinear structure of the urethane (meth) acrylate moiety.
  • the block B since the block B has only one type of saturated cycloaliphatic group, it has a linear structure and higher rigidity than the block A.
  • the low moisture permeable layer containing the polymer containing only the block A has a low moisture permeability even in a thin layer state, but the polarizing film resulting from moisture absorption and dehumidification by using the block B having high rigidity in combination.
  • the film laminated body which can suppress the expansion-contraction of can be provided.
  • the bifunctional (meth) acrylate monomer unit according to Block B has one kind of saturated cycloaliphatic group.
  • the saturated cycloaliphatic group is not particularly limited, but is preferably a 5-membered or higher saturated cycloaliphatic group from the viewpoint of obtaining a moisture permeability lowering effect due to molecular weight.
  • the upper limit of the number of member rings is not particularly limited, but is, for example, 15-membered ring or less, preferably 10-membered ring or less, from the viewpoint of easy synthesis of the monomer that is the raw material of block B.
  • the number of member rings represents the maximum number of member rings of the cyclic structure, and the saturated cyclic aliphatic group has a bicyclo ring or a tricyclo ring.
  • the number of member rings is nine.
  • the main chain of the cyclic structure of the saturated cycloaliphatic group may be formed only by carbon atoms, or may be formed by oxygen atoms and / or nitrogen atoms in addition to carbon atoms.
  • a linear and / or branched structure having 1 to 10 carbon atoms may be added to the carbon atom of the cyclic structure.
  • saturated cycloaliphatic group examples include a tricyclodecane ring, a 3,5,5-trimethylcyclohexane ring, an adamantane ring, and the like.
  • the saturated cycloaliphatic group may be bonded to the structure derived from (meth) acrylate via a saturated aliphatic chain, and the rigidity of the repeating unit is suitably improved by changing the carbon number of the saturated aliphatic chain. Can be adjusted.
  • the saturated aliphatic chain includes a straight chain structure and a branched chain structure.
  • An example of the straight chain structure is — (CH 2 ) n — (n is an integer of 1 to 10), and a copolymer From the viewpoint of reducing the flexibility of the resin and increasing the rigidity, it is particularly preferably — (CH 2 ) — or — (CH 2 ) 2 —.
  • the block B is a structure which does not have a linear structure, rigidity is increased (the above n is 0).
  • examples of the branched structure include structures in which hydrogen on at least one carbon of the linear structure is substituted with a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, or the like.
  • each 3-methylene-3,5,5-trimethylcyclohexane ring is (
  • each dimethylenetricyclodecane ring is bonded to each ( It is combined with a structure derived from (meth) acrylate.
  • the dimethylene tricyclodecane ring is a preferred ring structure, and low moisture permeability is suitably expressed in a low moisture permeability layer containing the ring structure in a polymer chain.
  • Block B has a structure derived from (meth) acrylate at both ends, and the structure derived from (meth) acrylate is bonded to another block B or to block A (-block B-block B-, Or -Block B-Block A-).
  • the acrylate-derived site is a structure in which the carbon-carbon double bond of the acrylate structure H 2 C ⁇ HC—CO 2 — is cleaved to form a single bond (methacrylate).
  • the structure is the same).
  • R 6 represents a saturated cycloaliphatic group
  • R 7 represents a hydrogen atom or a methyl group
  • y and z are integers of 0 to 2
  • R 6 is a tricyclodecane ring
  • R 7 is a hydrogen atom
  • y and z are 1
  • the proportion of the copolymer in the low moisture-permeable layer according to the present invention is preferably high from the viewpoint of reducing the moisture permeability of the low-moisture permeable layer, and is 70% by mass or more based on the total mass of the low moisture-permeable layer. 99.5% by mass or less, more preferably 80% by mass or more and 99.5% by mass or less.
  • the structure of the polymer chain (repeating unit (block A), block B) of the low moisture-permeable layer according to the present invention is determined by pyrolysis GC-MS and FT-IR. Can be determined by analyzing the above.
  • pyrolysis GC-MS is useful because it can detect monomer units contained in the low moisture-permeable layer as monomer components.
  • the low moisture-permeable layer may contain various additives such as an ultraviolet absorber, a leveling agent, and an antistatic agent as long as the film-forming property of the low moisture-permeable layer and the low moisture permeability are not impaired. Thereby, it is possible to give an ultraviolet absorption characteristic, surface smoothness, and an antistatic characteristic to a low moisture-permeable layer.
  • the low moisture permeability layer may contain a thiol material. Thereby, it is possible to provide toughness to a low moisture-permeable layer.
  • UV absorber known ones can be used.
  • benzophenone series such as 2-hydroxy-4-octoxybenzophenone and 2-hydroxy-4-methoxy-5-sulfobenzophenone
  • 2- (2′-hydroxy) Benzotriazoles such as -5-methylphenyl) benzotriazole
  • hindered amines such as phenyl salsylate, pt-butylphenyl salsylate, and the like.
  • leveling agents and antistatic agents can also be used.
  • the low moisture-permeable layer according to the present invention is formed into a thin film (in order to reduce the film thickness of the film laminate), for example, the upper limit value of the film thickness is 50 ⁇ m, more preferably 30 ⁇ m.
  • a lower limit is not specifically limited, From a viewpoint of ensuring low moisture permeability reliably, it is preferable that it is 5 micrometers, and it is more preferable that it is 10 micrometers.
  • the low moisture permeability layer according to the present invention is a layer having a low moisture permeability, and is preferably 150 g / (m 2 ⁇ 24 hours) or less in a 30 ⁇ m thin layer (thickness of 30 ⁇ m or less), more It is preferably 120 g / (m 2 ⁇ 24 hours) or less, and particularly preferably 100 g / (m 2 ⁇ 24 hours) or less.
  • the lower limit of moisture permeability is not particularly limited, it is, for example, 15 g / (m 2 ⁇ 24 o'clock) or more.
  • the water vapor transmission rate as a film laminated body satisfy
  • ⁇ Functional layer> The film laminate according to the present invention, on the low moisture permeable layer, (1) A hard coat layer having scratch resistance, (2) an antiglare layer that scatters light, and (3) You may provide either the antireflective layer comprised by the high refractive index layer provided on the said low moisture-permeable layer, and the low refractive index layer provided in the said high refractive index layer.
  • (1) to (3) will be described.
  • the hard coat layer has a hard coat property (abrasion resistance).
  • the hard coat property in the present invention is based on JIS K5600: 1999, and the scratch hardness according to the pencil method under a load of 500 g and a speed of 1 mm / s is 2H or more.
  • radiation curable resin is suitable because it can be efficiently cured by a simple processing operation, and radiation that gives a film having sufficient strength and transparency after curing.
  • a curable resin can be used without particular limitation.
  • a monomer or oligomer having a radical polymerizable functional group such as an acryloyl group, a methacryloyl group, an acryloyloxy group or a methacryloyloxy group, or a cationic polymerizable functional group such as an epoxy group, a vinyl ether group or an oxetane group,
  • a prepolymer or a composition obtained by mixing the polymers alone or as appropriate is used.
  • Examples of monomers include methyl acrylate, methyl methacrylate, methoxy polyethylene methacrylate, cyclohexyl methacrylate, phenoxyethyl methacrylate, ethylene glycol dimethacrylate, dipentaerythritol hexaacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate, and the like. it can.
  • polystyrene resin examples include polyacrylate, polyurethane acrylate, and polyester acrylate. These can be used alone or in combination.
  • these radiation curable resins especially a polyfunctional monomer having 3 or more functional groups can increase the curing speed and improve the hardness of the cured product.
  • polyfunctional urethane acrylate the hardness and flexibility of the cured product can be imparted.
  • the radiation curable resin can be cured by radiation irradiation as it is, but when curing by ultraviolet irradiation, it is necessary to add a photopolymerization initiator.
  • Photopolymerization initiators include radical polymerization initiators such as acetophenone, benzophenone, thioxanthone, benzoin, and benzoin methyl ether, and cationic polymerization starts such as aromatic diazonium salts, aromatic sulfonium salts, aromatic iodonium salts, and metallocene compounds.
  • the agents can be used alone or in appropriate combination.
  • the film thickness of the hard coat layer is not particularly limited as long as the hard coat property is exhibited, but is generally 2 ⁇ m or more and 10 ⁇ m or less.
  • various additives can be added to the hard coat layer.
  • fluorine or silicone leveling agents added to improve the smoothness of the coated surface
  • electron conjugated, metal oxide or ionic antistatic agents added to prevent dust adhesion.
  • An agent or the like may be appropriately selected and used depending on the required function. The point which can use an additive agent is the same also about the following glare-proof layer and a low refractive index layer.
  • the antiglare layer has an antiglare function that scatters light, and realizes the antiglare function by external haze and / or internal haze. It contains translucent particulates or both.
  • the shape of the surface unevenness of the antiglare layer is determined by the required antiglare property.
  • a more preferable uneven shape can be defined by the roughness parameter Ra, and Ra: 0.01 ⁇ m or more, Sm: 50 ⁇ m to 500 ⁇ m, and average inclination angle: 0.1 ° to 3.0 °. More preferred.
  • the film thickness of the antiglare layer is not particularly limited as long as the antiglare property is exhibited, but is generally 2 ⁇ m or more and 10 ⁇ m or less.
  • the antiglare layer can also have a hard coat property. In this case, the hard coat property is imparted by adjusting the resin component used.
  • the antireflection layer is composed of a low refractive index layer and a high refractive index layer.
  • a low refractive index layer is a layer having a refractive index lower than that of an adjacent high refractive index layer (for example, a hard coat layer, an antiglare layer, or a protective layer), and is low when laminated with a high refractive index layer. This contributes to preventing reflection of light from the refractive index layer side.
  • the high refractive index and the low refractive index do not define an absolute refractive index, but rather specify that the refractive indices of the two layers are relatively high or low compared.
  • the reflectance is said to be lowest when both have the relationship of the following formula 1.
  • n2 (n1) 1/2 (Formula 1) (N1 is the refractive index of the high refractive index layer, n2 is the refractive index of the low refractive index layer)
  • the refractive index of the low refractive index layer is preferably 1.45 or less.
  • the fluorine-based fluorine-containing material is excellent in antifouling property, and therefore, it is preferable in terms of preventing contamination when the low refractive index layer becomes the surface.
  • fluorine-containing material examples include vinylidene fluoride copolymers, fluoroolefin / hydrocarbon copolymers, fluorine-containing epoxy resins, fluorine-containing epoxy acrylates, fluorine-containing silicones, which are easily dissolved in organic solvents. , Fluorine-containing alkoxysilane, fluorine-containing polysiloxane, and the like. These can be used alone or in combination.
  • the fluorine-containing polysiloxane is obtained by curing a hydrolyzable silane compound and / or a mixture containing at least a hydrolyzate thereof and a curing accelerator, as a hydrolyzable silane compound, as a film forming agent and an antistatic agent.
  • a cation-modified silane compound having the above function can also be contained.
  • the film thickness of the low refractive index layer is not particularly limited as long as the antireflection function is exhibited in relation to the high refractive index layer, but is generally 0.05 ⁇ m or more and 0.2 ⁇ m or less. In general, the thickness is preferably 0.05 ⁇ m or more and 10 ⁇ m or less.
  • the low refractive index layer exhibits an antireflection function in relation to the high refractive index layer, but can also have a hard coat property by selecting a raw material. Further, the high refractive index layer may have a hard coat property or may have an antiglare property depending on the selection of raw materials. Similarly, each layer can have other functions.
  • the polarizing plate which concerns on this invention equips the at least single side
  • the polarizing film is made of a polyvinyl alcohol resin (PVA resin), and has a property of transmitting light having a vibration surface in a certain direction out of light incident on the polarizing film and absorbing light having a vibration surface orthogonal to the direction.
  • a dichroic dye is typically adsorbed and oriented on a PVA resin.
  • the PVA resin constituting the polarizing film can be obtained by saponifying a polyvinyl acetate resin.
  • the polyvinyl acetate resin used as the raw material for the PVA resin may be a copolymer of polyvinyl acetate, which is a homopolymer of vinyl acetate, or a copolymer of vinyl acetate and other monomers copolymerizable therewith. Good.
  • a polarizing film can be produced by subjecting the film made of the PVA resin to uniaxial stretching, dyeing with a dichroic dye, and boric acid crosslinking treatment after dyeing.
  • a dichroic dye iodine or a dichroic organic dye is used.
  • Uniaxial stretching may be performed before dyeing with a dichroic dye, may be performed simultaneously with dyeing with a dichroic dye, or after dyeing with a dichroic dye, for example, during a boric acid crosslinking treatment. May be.
  • the polarizing film which consists of PVA resin which is manufactured and the dichroic dye adsorbs and becomes one of the constituent materials of a polarizing plate.
  • a hydrophilic adhesive is preferably used for laminating the polarizing film and the cellulose-based film of the film laminate, but is not limited thereto.
  • a known adhesive conventionally used in the production of polarizing plates can be used.
  • PVA can be used from the viewpoint of weather resistance and polymerizability.
  • Those containing a resin are preferred.
  • the polarizing plate according to the present invention includes the above-described film laminate on at least one surface, and includes a configuration in which the film laminate is provided on both surfaces of the polarizing plate. Since the film laminate has a low moisture permeability even if it is a thin layer, the polarizing film is difficult to absorb moisture even under a high temperature and high humidity environment, and the expansion and contraction of the polarizing film is suppressed.
  • the radiation curable composition contains urethane (meth) acrylate as an essential component.
  • the urethane (meth) acrylate which is a monomer, is a raw material for the low moisture-permeable layer, and the monomer is polymerized to form the repeating unit described in ⁇ Low moisture-permeable layer>.
  • the radiation curable composition includes a urethane (meth) acrylate that generates the repeating unit (block A) and a (meth) acrylate that generates the block B as a raw material for the low moisture-permeable layer.
  • a urethane (meth) acrylate that generates the repeating unit (block A)
  • a (meth) acrylate that generates the block B as a raw material for the low moisture-permeable layer.
  • the radiation curable composition contains (meth) acrylate that generates block B in addition to urethane (meth) acrylate that generates the repeating unit (block A).
  • Urethane (meth) acrylates are polymerized, or urethane (meth) acrylate and (meth) acrylate are copolymerized to form a polymer chain, thereby forming the polymer chain described in ⁇ Low moisture permeability layer> above. A low moisture permeable layer is formed.
  • the urethane (meth) acrylate is different from the above repeating unit in that the structure derived from (meth) acrylate at both ends is a (meth) acrylate group, but the monomer is a plurality of types or one type of saturated cyclic aliphatic group.
  • the structure other than both ends, such as having a point, is common, and the same applies to (meth) acrylates.
  • Specific examples of the saturated cycloaliphatic group, saturated aliphatic chain and the like are the same as the description of the repeating unit (block A) and block B, and thus the description thereof is omitted.
  • Examples of the urethane (meth) acrylate include the following structure A having a saturated cycloaliphatic group R 1 , structure B (optionally included) having the following saturated aliphatic chain R 2 , and a saturated cycloaliphatic group R.
  • the structure B is an optional component. —CO—NH—R 1 —NH—CO— (Structure A) —O—R 2 —CO— (Structure B) —O—R 3 —O— (Structure C)
  • the urethane (meth) acrylate includes, for example, a diisocyanate containing R 1 , an ester containing R 2 (optionally used), a diol containing R 3 , a (meth) acrylate, or a (meth) acrylic group. It can be obtained by using an isocyanate having, and can be easily produced.
  • the ratio of the structure A, the structure B, and the structure C is m + 1: m (r + s): m, m + 1: k + n: m, m: m (r + s): m + 1, or m: k + n: m + 1.
  • M represents an integer of 1 to 4
  • r and s each represents an integer of 0 to 2
  • the sum of r and s is 1 to 2
  • k represents an integer of 0 to 2
  • the method for synthesizing the urethane (meth) acrylate is not particularly limited. As an example, first, a bifunctional intermediate is synthesized, and an isocyanate having a (meth) acrylate or (meth) acryl group is attached to both ends of the intermediate. A method of synthesizing is mentioned.
  • R 1 represents a saturated cycloaliphatic group
  • R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms
  • R 3 represents R 1 and Each represents a different saturated cycloaliphatic group
  • R 4 represents a hydrogen atom or a methyl group
  • R 5 represents a hydrogen atom, a methyl group or an ethyl group
  • m represents an integer of 1 to 4
  • An integer from 0 to 2 is shown, and the sum of r and s is 1 to 2, and x is an integer from 0 to 3
  • An example of a method for synthesizing a urethane (meth) acrylate corresponding to the repeating unit of the general formula (2) is as follows: [1] A diisocyanate having R 1 and a diol having R 3 are reacted at a molar ratio of m + 1: m. Thus, an intermediate having —N ⁇ C ⁇ O groups at both ends is obtained. [2-1] Thereafter, 2 mol of (meth) acrylate is reacted with 1 mol of the above intermediate, or [2-2] k + n mol of R 2 is added with respect to 1 mol of the above intermediate.
  • R 1 represents a saturated cycloaliphatic group
  • R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms
  • R 3 represents R 1 and R 4 represents a different saturated cycloaliphatic group
  • R 4 represents a hydrogen atom or a methyl group
  • R 5 represents a hydrogen atom, a methyl group or an ethyl group
  • m represents an integer of 1 to 4
  • k represents 0 to 2 N represents an integer from 0 to 2
  • x represents an integer from 0 to 3)
  • An example of a method for synthesizing a urethane (meth) acrylate corresponding to the repeating unit of the general formula (3) is as follows: [1] A diisocyanate having R 1 and an ester having R 2 are converted into m: m (r + s) moles. The reaction is carried out in a ratio, and further m + 1 mol of diol having R 3 is reacted to obtain an intermediate having hydroxyl groups at both ends. [2] Thereafter, urethane (meth) acrylate corresponding to the repeating unit represented by the general formula (8) is obtained by reacting 2 mol of an isocyanate having a (meth) acryl group with 1 mol of an intermediate. Is obtained.
  • R 1 represents a saturated cycloaliphatic group
  • R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms
  • R 3 represents R 1 and Each represents a different saturated cycloaliphatic group
  • R 4 represents a hydrogen atom or a methyl group
  • R 5 represents a hydrogen atom, a methyl group or an ethyl group
  • m represents an integer of 1 to 4
  • An integer from 0 to 2 is shown, and the sum of r and s is 1 to 2, and x is an integer from 0 to 3
  • An example of a method for synthesizing a urethane (meth) acrylate corresponding to the repeating unit of the general formula (4) is as follows: [1] A diisocyanate having R 1 and a diol having R 3 are reacted at a molar ratio of m: m + 1. Thus, an intermediate having hydroxyl groups at both ends is obtained. [2-1] Then, 2 mol of an isocyanate having a (meth) acryl group is reacted with 1 mol of the intermediate, or [2-2] k + n mol with respect to 1 mol of the intermediate.
  • R 1 represents a saturated cycloaliphatic group
  • R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms
  • R 3 represents R 1 and R 4 represents a different saturated cycloaliphatic group
  • R 4 represents a hydrogen atom or a methyl group
  • R 5 represents a hydrogen atom, a methyl group or an ethyl group
  • m represents an integer of 1 to 4
  • k represents 0 to 2 N represents an integer from 0 to 2
  • x represents an integer from 0 to 3)
  • R 6 represents a saturated cycloaliphatic group
  • R 7 represents a hydrogen atom or a methyl group
  • y and z are integers of 0 to 2
  • Preparation of the radiation curable composition is performed by adding a photopolymerization initiator that initiates polymerization of the monomer to the monomer that generates the repeating unit.
  • the radiation curable composition is prepared by adding a photopolymerization initiator to the monomer that generates the block B in addition to the monomer that generates the repeating unit (block A).
  • Photopolymerization initiators include radical polymerization initiators such as acetophenone, benzophenone, thioxanthone, benzoin, and benzoin methyl ether, and cationic polymerization starts such as aromatic diazonium salts, aromatic sulfonium salts, aromatic iodonium salts, and metallocene compounds.
  • the agents can be used alone or in appropriate combination.
  • additives and thiol-based materials such as the ultraviolet absorber, leveling agent and antistatic agent described above in ⁇ Low moisture permeable layer> may be added to the radiation curable composition.
  • each ratio of the monomer (the total amount of the monomer that generates the repeating unit (block A) and the monomer that generates the block B), the photopolymerization initiator, and any of the various additives depends on the type of each material. However, it is difficult to define uniquely, but as an example, the total amount of monomers is 50% by mass or more and 99% by mass or less, the photopolymerization initiator is 0.5% by mass or more and 10% by mass or less, various additions An agent can be 0.01 mass% or more and 50 mass% or less. Further, an organic solvent such as toluene may be added to the radiation curable composition.
  • the radiation curable composition can be applied so as to form a thin layer, for example, a low moisture permeability layer of 50 ⁇ m or less, preferably 30 ⁇ m or less.
  • Curing in the step (A2) can be performed by irradiating ultraviolet rays from an ultraviolet irradiation device.
  • the ultraviolet light source to be used is not particularly limited, but has a light emission distribution at a wavelength of 400 nm or less, such as a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, a metal halide lamp, etc. Can be used.
  • a high-pressure mercury lamp or metal halide lamp having a lot of light of 400 nm or less is preferably used as an ultraviolet light source in consideration of an absorption wavelength exhibited by a general polymerization initiator.
  • a low moisture-permeable layer is formed on the cellulose film, and a film laminate in which the low moisture-permeable layer is laminated on the cellulose film is obtained.
  • the functional layer is not particularly limited, and examples thereof include the hard coat layer, the antiglare layer, and the antireflection layer described above.
  • the radiation curable composition that is a raw material of the functional layer includes the resin described above in the description of the hard coat layer, the antiglare layer, and the antireflection layer.
  • An organic solvent such as methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone (MIBK), isopropyl alcohol (IPA), or toluene may be added.
  • the radiation curable composition which is a raw material of the functional layer, on the film laminate
  • a coating method such as a roll coating method or a gravure coating method in consideration of continuous productivity.
  • a method of arbitrarily heating and then crosslinking and curing by ultraviolet irradiation or the like may be used.
  • the antiglare layer on the film laminate, for example, it can be suitably obtained by applying a radiation curable composition containing translucent fine particles on the film laminate.
  • the antiglare layer thus obtained has an antiglare function for scattering light because the surface has irregularities.
  • the shape of the unevenness is determined by the required antiglare property, and a more preferable uneven shape can be defined by the roughness parameter Ra, Ra: 0.01 ⁇ m or more, Sm: 50 ⁇ m to 500 ⁇ m, average slope Angle: More preferably from 0.1 ° to 3.0 °.
  • a plurality of layers can be formed. For example, when a plurality of hard coat layers are formed, a first hard coat layer is formed on the film laminate, and a second hard coat layer is formed on the first hard coat layer. An antiglare layer may be formed in place of the second hard coat layer.
  • the antireflection layer when forming the antireflection layer, a high refractive index layer is formed on the film laminate, and a low refractive index layer is formed on the high refractive index layer. Thereby, the film laminated body laminated
  • the method for producing a film laminate according to the present invention is not limited to the method described above, and may be formed by the following method. That is, (1) a method of forming a low moisture-permeable layer on a release film, transferring the low moisture-permeable layer to a TAC film, and then removing the release film, (2) forming a functional layer on the release film, After forming a low moisture permeable layer and transferring the low moisture permeable layer to the TAC film, (3) After forming the low moisture permeable layer on the peeled film and forming the functional layer thereon The method of bonding the surface which peeled the peeling film to the TAC film is mentioned.
  • the polarizing plate according to the present invention includes the film laminate according to the present invention on at least one surface of a polarizing film.
  • the point which bonds the said film laminated body to a polarizing film is important, What is necessary is just to employ
  • the polarizing plate according to the present invention is obtained. can get.
  • the process related to the method for producing a polarizing plate will be described more specifically.
  • the following steps (C1) to (C3) are performed after the film laminate forming step or after the film laminate forming step and the functional layer forming step.
  • (C1) a coating step of applying a hydrophilic adhesive to the cellulose-based film side (or polarizing film) of the film laminate
  • (C2) A bonding step in which a polarizing film (or a cellulose-based film side of the film laminate) is applied to the hydrophilic adhesive surface applied in the coating step and pressed.
  • (C3) A curing step in which the hydrophilic adhesive is cured by heating and drying with a dryer on the film laminate in which the film laminate is bonded to the polarizing film via the hydrophilic adhesive.
  • a hydrophilic adhesive is applied to the cellulose-based film side of the film laminate, which becomes the bonding surface of the polarizing film (or instead of the cellulose-based film side of the film laminate, polarized light is applied).
  • Apply a hydrophilic adhesive to the film As a coating machine used here, a well-known thing can be used suitably, for example, the coating machine using a gravure roll etc. are mentioned.
  • the cellulose-based film surface may be appropriately subjected to surface treatment such as plasma treatment, corona treatment, and saponification treatment in advance.
  • the saponification treatment is performed by immersing the film in an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide.
  • the bonding step (C2) after passing through the coating step (C1), the polarizing film is laminated on the adhesive-coated surface of the film laminate, and the bonding is performed while pressing (polarization in the coating step (C1)).
  • a hydrophilic adhesive is applied to the film, bonding is performed while pressing the cellulose-based film side of the film laminate on the hydrophilic adhesive surface).
  • a known means can be used for pressurization in the bonding step, but from the viewpoint that pressurization while continuous conveyance is possible, a method of sandwiching between a pair of nip rolls is preferably used. Is preferably about 150 to 500 N / cm as a linear pressure when sandwiched between a pair of nip rolls.
  • the solvent is volatilized and the hydrophilic adhesive is cured by heating and drying with a dryer.
  • the polarizing film is bonded to the cellulose-based film side of the film laminate.
  • the cellulose-based film used in the ⁇ film laminate manufacturing method >> has a polarizing film bonded in advance. It may be used.
  • a low moisture-permeable layer is formed on the cellulose film with a polarizing film.
  • the obtained film laminate was measured, and the moisture permeability of the film laminate was measured by the following measurement method.
  • Compound 1a which is a monomer that produces repeating units, is obtained in the same manner as in Production Example 1 except that the amount of diol (1) synthesized is changed to twice and the amount of isophorone diisocyanate used is changed from 2 mol to 3 mol. It was.
  • Compound 1a is a raw material for the low moisture-permeable layer formed by the repeating unit in which m is 2 in the general formula (1a).
  • Compound 1b was obtained in the same manner as in Production Example 1, except that the amount of diol (1) synthesized was changed to 3 times and the amount of isophorone diisocyanate used was changed from 2 mol to 4 mol.
  • Compound 1b is a raw material for the low moisture-permeable layer formed by the repeating unit having m of 3 in the general formula (1a).
  • Example 1 TAC film substrate / low moisture-permeable layer
  • the following radiation curable composition for forming a low moisture permeable layer (P1) was applied to a TAC film KC2UAW (25 ⁇ m thickness, moisture permeability 1060 g / (m 2 ⁇ 24 h)) manufactured by Konica Minolta using an applicator.
  • the radiation curable composition (P1) for forming a low moisture permeable layer contains toluene and has a solid content (NV) of 60%.
  • the coating thickness of the radiation curable composition (P1) for forming a low moisture permeable layer was adjusted so that the film thickness after drying was 20 ⁇ m to 30 ⁇ m.
  • the coating film is dried in a clean oven set at a drying oven temperature of 100 ° C, and then UV-cured under a nitrogen atmosphere under conditions of peak illuminance of 326 mW / cm 2 and integrated light intensity of 192 mJ / cm 2 , A film laminate having a low moisture permeability layer formed on one side was obtained.
  • the evaluation results for this film laminate are shown in Table 6.
  • Example 2 TAC film substrate / low moisture permeability layer / HC layer
  • the following radiation curable composition for HC layer formation (HC1) was applied to the low moisture permeable layer side of the film laminate obtained in Example 1 by a reverse coating method.
  • the formed coating film is dried at 100 ° C. for 1 minute, and then irradiated with ultraviolet rays using a 120W / cm condensing high-pressure mercury lamp in a nitrogen atmosphere (irradiation distance 10 cm, irradiation time 30 seconds).
  • the film was cured to form a hard coat layer (HC layer) having a thickness of 2.5 ⁇ m and a refractive index of 1.52.
  • Table 6 The evaluation results for this film laminate are shown in Table 6.
  • Example 3 TAC film substrate / low moisture-permeable layer / AG layer (containing filler)]
  • the following radiation curable composition for AG layer formation (AG1) was applied to the low moisture-permeable layer side of the film laminate obtained in Example 1 by a reverse coating method.
  • the formed coating film is dried at 100 ° C. for 1 minute, and then irradiated with ultraviolet rays using a 120W / cm condensing high-pressure mercury lamp in a nitrogen atmosphere (irradiation distance 10 cm, irradiation time 30 seconds).
  • the film was cured to form an antiglare layer (AG layer) having a thickness of 6 ⁇ m.
  • the evaluation results for this film laminate are shown in Table 6.
  • Example 4 TAC film substrate / low moisture permeability layer / high refractive index layer / AG layer / low refractive index layer]
  • the following low refractive index paint (LR1) was applied to the AG layer side of the film laminate obtained in Example 3 by a reverse coating method, and the coating film was dried at 100 ° C. for 1 minute to obtain a thickness of 0.1 ⁇ m, An uneven low refractive index layer having a refractive index of 1.38 was formed. Then, it left still at 60 degreeC for 120 hours for hardening of a low refractive index layer.
  • Table 6 The evaluation results for this film laminate are shown in Table 6.
  • Example 5 TAC film substrate / low moisture permeability layer / high refractive index layer / HC layer / low refractive index layer
  • the following radiation curable composition for forming a high refractive index layer and HC layer was applied to the low moisture permeable layer side of the film laminate obtained in Example 1 by a reverse coating method. After drying at 100 ° C for 1 minute, UV irradiation (irradiation distance 10cm, irradiation time 30 seconds) is performed with one 120W / cm condensing type high-pressure mercury lamp in nitrogen atmosphere, the coating film is cured, and the thickness is 2.5 ⁇ m. An HC layer having a refractive index of 1.64 was formed.
  • the low refractive index paint (LR1) described in Example 4 was applied onto the high refractive index layer, and the coating film was dried at 100 ° C. for 1 minute, and then cured to be thick.
  • a low refractive index layer having a thickness of 0.1 ⁇ m and a refractive index of 1.38 was formed. Then, it left still at 60 degreeC for 120 hours for hardening of a low refractive index layer.
  • Table 6 The evaluation results for this film laminate are shown in Table 6.
  • Example 6 TAC film substrate / low moisture-permeable layer
  • Compound 1 was changed to Compound 2
  • Compound 1 was changed to Compound 1a
  • Compound 1 was changed to Compound 1b.
  • Example 1 A cured film was formed on one side of the TAC film in the same manner as in Example 1 except that Compound 1 was changed to Compound 3 (manufactured by Arkema) represented by the following general formula (11) to obtain a film laminate.
  • the evaluation results for this film laminate are shown in Table 6.
  • Example 6 As shown in Table 6, when the compounds 1 of Examples 1 to 5 and the compound 2 of Example 6 were used, a film laminate having a very low moisture permeability was obtained. In Examples 2 to 5, the moisture permeability was lower due to the functional layer. Although the film laminated body which uses the compound 1a, 1b in Example 7 and 8 as a raw material is inferior to Example 1 (compound 1), the low water vapor transmission required for the film laminated body of the present invention was achieved.
  • the film laminate formed in Comparative Example 1 had very high moisture permeability. Since the repeating unit of Compound 3 does not contain a urethane bond (—NH—CO—O—) or a saturated cycloaliphatic group, the cohesive force between the repeating units becomes excessively low, thereby increasing the water vapor permeability. It is thought.
  • the film laminate according to the present invention has a low moisture permeability in a thin layer state, and is useful as a constituent member of a polarizing plate, particularly in applications where low moisture permeability is required, and can be used in various fields. .

Abstract

[Problem] To provide a film laminate that has low moisture permeability by forming a low moisture-permeable layer on a cellulose film that has high moisture permeability. [Solution] This film laminate comprises a low moisture-permeable layer formed by repeating units that have a structure derived from a bifunctional urethane (meth)acrylate on a cellulose film. The repeating unit has a plurality of types of saturated cyclic aliphatic groups. Even if the moisture-permeable layer is thin, a polarization film to which the film laminate is adhered does not easily absorb moisture even in a high-temperature and high-humidity environment, and expansion and contraction of the polarization film is suppressed.

Description

フィルム積層体および偏光板Film laminate and polarizing plate
 本発明は、低透湿層が積層されてなるフィルム積層体、および当該フィルムへ積層体を備える偏光板に関する。 The present invention relates to a film laminate in which a low moisture-permeable layer is laminated, and a polarizing plate provided with the laminate on the film.
 近年、TVやモバイル機器に用いられる液晶ディスプレイは、益々薄型化されており、これらのディスプレイに用いられる構成部品、特に偏光板も究極の薄さを目指して技術開発が進められている。偏光板は、一般的には、ヨウ素を吸着させ一軸延伸したポリビニルアルコール系フィルムからなる偏光フィルムの両面に、トリアセチルセルロース(以下、TACと称する)等の光学フィルムを保護フィルムとして接着剤により貼合した構成となっている。TACフィルムを偏光フィルムに貼合するためには親水性の接着剤が用いられる。 In recent years, liquid crystal displays used for TVs and mobile devices are becoming thinner and thinner, and the components used in these displays, especially polarizing plates, are being developed for the ultimate thinness. In general, a polarizing plate is adhered to both sides of a polarizing film made of a polyvinyl alcohol film uniaxially stretched by adsorbing iodine with an adhesive such as an optical film such as triacetyl cellulose (hereinafter referred to as TAC) as a protective film. It has a combined configuration. In order to bond the TAC film to the polarizing film, a hydrophilic adhesive is used.
 このような従来型の偏光板は、保護フィルムとしてのTACフィルムの透湿度が高いことや、吸湿脱湿による伸縮が大きいことに起因して、偏光板を高湿環境、特に高温高湿環境下に長期間晒すと、偏光板としての光学機能が損なわれたり、偏光板のカール、反りによる物理的なトラブルが発生したりするという問題があった。 Such a conventional polarizing plate has a high moisture permeability of a TAC film as a protective film and a large expansion and contraction due to moisture absorption and dehumidification. When exposed to a long period of time, there are problems that the optical function as a polarizing plate is impaired, and physical troubles due to curling and warping of the polarizing plate occur.
 これらを改善する為に、特許文献1では、偏光板の保護フィルムとして、TACフィルムではなく、非晶性ポリオレフィン系樹脂フィルム、ポリエステル系樹脂フィルム、アクリル系樹脂フィルム、ポリカーボネート系樹脂フィルム、ポリサルフォン系樹脂フィルム、脂環式ポリイミド系樹脂フィルムなどを用いることで、保護フィルムの透湿度を低下することができると記載されている。 In order to improve these, in patent document 1, as a protective film of a polarizing plate, not a TAC film but an amorphous polyolefin resin film, a polyester resin film, an acrylic resin film, a polycarbonate resin film, a polysulfone resin It is described that the moisture permeability of the protective film can be reduced by using a film, an alicyclic polyimide resin film, or the like.
特開2004-245925号公報JP 2004-245925 A
 しかしながら、上記非晶性ポリオレフィン系樹脂フィルム、ポリエステル系樹脂フィルム、アクリル系樹脂フィルム、ポリカーボネート系樹脂フィルム、ポリサルフォン系樹脂フィルム、脂環式ポリイミド系樹脂フィルムなどは、TACフィルムと比べて極性基が少ないことから、接着性を高めるために、例えばプラズマ処理やコロナ処理やケン化処理などの表面改質を施したとしても、親水性の接着剤を用いて前記偏光フィルムと十分に接着できない。即ち、偏光板の汎用的な製造方法として広く実施されている、親水性の接着剤を用いた貼合ができないという問題がある。 However, the amorphous polyolefin resin film, the polyester resin film, the acrylic resin film, the polycarbonate resin film, the polysulfone resin film, the alicyclic polyimide resin film, etc. have fewer polar groups than the TAC film. For this reason, even if surface modification such as plasma treatment, corona treatment, or saponification treatment is performed in order to improve the adhesion, it cannot be sufficiently adhered to the polarizing film using a hydrophilic adhesive. That is, there is a problem that bonding using a hydrophilic adhesive, which is widely performed as a general-purpose manufacturing method for polarizing plates, cannot be performed.
 上記問題点を鑑み、本発明の課題は、親水性の接着剤にて貼合可能なセルロース系フィルム上に低透湿層を設けることによって、透湿度の低いフィルム積層体を提供することにある。 In view of the above problems, an object of the present invention is to provide a film laminate having low moisture permeability by providing a low moisture-permeable layer on a cellulose-based film that can be bonded with a hydrophilic adhesive. .
 上記課題に対し、本発明者らは鋭意検討を重ねた結果、セルロース系フィルム上に複数種類の飽和環状脂肪族基を有するウレタン(メタ)アクリレートモノマーを低透湿層として設けることで、透湿度の低いフィルム積層体が得られることを見出した。 As a result of intensive studies on the above problems, the present inventors have provided a low moisture-permeable layer with a urethane (meth) acrylate monomer having a plurality of types of saturated cyclic aliphatic groups on a cellulose-based film. It has been found that a film laminate having a low thickness can be obtained.
 本発明には以下の形態が含まれる。
<1>セルロース系フィルム上に低透湿層が積層されてなるフィルム積層体において、
 前記低透湿層は2官能性のウレタン(メタ)アクリレート由来の構造を有する繰り返し単位によって形成されており、
 上記繰り返し単位は、複数種類の飽和環状脂肪族基を有することを特徴とするフィルム積層体。
<2>上記繰り返し単位は、
 飽和環状脂肪族基Rを含む下記構造A、および、
 飽和環状脂肪族基Rを含む下記構造Cを含むことを特徴とする<1>に記載のフィルム積層体。
-CO-NH-R-NH-CO-・・・(構造A)
-O-R-O-・・・(構造C)
<3>上記繰り返し単位は、
 さらに、飽和脂肪族鎖Rを含む下記構造Bを含むことを特徴とする<2>に記載のフィルム積層体。
-O-R-CO-・・・(構造B)
<4>上記繰り返し単位が、下記一般式(1)で表される構造であることを特徴とする<3>に記載のフィルム積層体。
Figure JPOXMLDOC01-appb-C000002
(一般式(1)中、Rは飽和環状脂肪族基を示し、Rは炭素数5~10の直鎖または分鎖構造を含む飽和脂肪族鎖を示し、Rは、Rと異なる飽和環状脂肪族基を示し、Rは水素原子またはメチル基を示し、Rは、水素原子、メチル基またはエチル基を示し、mは1~4の整数を示し、rおよびsはそれぞれ0~2の整数を示し、かつ、rとsとの和は1~2であり、xは0~3の整数を示す)
<5>前記セルロース系フィルムが、膜厚10~80μmであり、かつ、透湿度300g/(m・24時間)以上であることを特徴とする<1>~<4>に記載のフィルム積層体。
<6>透湿度が150g/(m・24時間)以下であることを特徴とする<1>~<5>の何れか1項に記載のフィルム積層体。
<7>偏光フィルムの少なくとも片面に、<1>~<6>の何れか1項に記載のフィルム積層体を備えることを特徴とする偏光板。
The present invention includes the following forms.
<1> In a film laminate in which a low moisture-permeable layer is laminated on a cellulose-based film,
The low moisture-permeable layer is formed by a repeating unit having a structure derived from a bifunctional urethane (meth) acrylate,
The repeating unit has a plurality of types of saturated cycloaliphatic groups.
<2> The repeating unit is
The following structure A containing a saturated cycloaliphatic group R 1 , and
The film laminate according to <1>, comprising the following structure C containing a saturated cycloaliphatic group R 3 .
—CO—NH—R 1 —NH—CO— (Structure A)
—O—R 3 —O— (Structure C)
<3> The repeating unit is
Further characterized in that it comprises the following structure B containing saturated aliphatic chain R 2 film laminate according to <2>.
—O—R 2 —CO— (Structure B)
<4> The film laminate according to <3>, wherein the repeating unit has a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002
(In the general formula (1), R 1 represents a saturated cycloaliphatic group, R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms, and R 3 represents R 1 and Each represents a different saturated cycloaliphatic group; R 4 represents a hydrogen atom or a methyl group; R 5 represents a hydrogen atom, a methyl group or an ethyl group; m represents an integer of 1 to 4; An integer from 0 to 2 is shown, and the sum of r and s is 1 to 2, and x is an integer from 0 to 3)
<5> The film laminate according to <1> to <4>, wherein the cellulose-based film has a thickness of 10 to 80 μm and a moisture permeability of 300 g / (m 2 · 24 hours) or more. body.
<6> The film laminate according to any one of <1> to <5>, wherein the moisture permeability is 150 g / (m 2 · 24 hours) or less.
<7> A polarizing plate comprising the film laminate according to any one of <1> to <6> on at least one surface of a polarizing film.
 本発明に係るフィルム積層体は、低透湿層に複数種類の飽和環状脂肪族基を有するので、高い透湿度を有するセルロース系フィルム上に上記低透湿層を設けた場合であっても、低透湿度のフィルム積層体を提供できる。 Since the film laminate according to the present invention has a plurality of types of saturated cycloaliphatic groups in the low moisture permeable layer, even when the low moisture permeable layer is provided on a cellulose film having high moisture permeability, A film laminate having a low moisture permeability can be provided.
 以下、本発明に係るフィルム積層体、低透湿層、および偏光板について説明するが、本発明は以下の説明に限定して解釈されるものではない。 Hereinafter, the film laminate, the low moisture permeable layer, and the polarizing plate according to the present invention will be described, but the present invention is not construed as being limited to the following description.
 《フィルム積層体》
 本発明に係るフィルム積層体は、
(1)セルロース系フィルムの少なくとも片面に、
(2)低透湿層が積層されているフィルム積層体において、
 前記低透湿層は2官能のウレタン(メタ)アクリレート由来の構造を有する繰り返し単位によって形成されており、
 上記繰り返し単位は、複数種類の飽和環状脂肪族基を有するものである。以下、フィルム積層体の構成部材について説明する。
<Film laminate>
The film laminate according to the present invention is
(1) On at least one side of the cellulosic film,
(2) In the film laminate in which the low moisture permeability layer is laminated,
The low moisture-permeable layer is formed by a repeating unit having a structure derived from a bifunctional urethane (meth) acrylate,
The repeating unit has a plurality of types of saturated cycloaliphatic groups. Hereafter, the structural member of a film laminated body is demonstrated.
 <セルロース系フィルム>
 前記セルロース系フィルムとは、セルロース系樹脂から構成された無色透明なフィルムであることが好適であり、セルロース系樹脂としては、例えば、セルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレートから構成されたフィルムなどを挙げることができ、偏光フィルムとの接着性の観点から、トリアセチルセルロースが原料であるTACフィルムをより好適に使用することができる。前記TACフィルムの厚みは特に制約はないが、薄くても加工し易いことから、一般的に厚さ10~80μmが好適に用いられる。厚さが10μm未満の場合は薄すぎるため加工が難しく、厚さが80μmを超える場合は近年の液晶ディスプレイの薄型化要求に応じられなくなるため、好ましくない。また、前記TACフィルムの透湿度は特に制約はないが、本発明の課題を鑑みると、透湿度が高いフィルムの上に低透湿層を設けることで効果がより顕著となることから、透湿度は300g/(m・24時間)以上であることが好ましい。
<Cellulose film>
The cellulose film is preferably a colorless and transparent film composed of a cellulose resin. Examples of the cellulose resin include cellulose acetate, cellulose propionate, cellulose butyrate, and cellulose acetate propio. Examples thereof include a film composed of acrylate and cellulose acetate butyrate. From the viewpoint of adhesiveness with a polarizing film, a TAC film made of triacetyl cellulose as a raw material can be more preferably used. The thickness of the TAC film is not particularly limited, but since it can be easily processed even if it is thin, a thickness of 10 to 80 μm is generally suitably used. If the thickness is less than 10 μm, processing is difficult because it is too thin, and if the thickness exceeds 80 μm, it is not preferable because the demand for thinner liquid crystal displays in recent years cannot be met. Further, the moisture permeability of the TAC film is not particularly limited. However, in view of the problem of the present invention, the effect becomes more remarkable by providing the low moisture permeability layer on the film having a high moisture permeability. Is preferably 300 g / (m 2 · 24 hours) or more.
 <低透湿層>
 前記低透湿層は、後述するように(メタ)アクリレート由来の放射線硬化型組成物を重合せしめてなる層であるため、換言すると放射線硬化型樹脂層といえる。本発明に係る低透湿層は、モノマーであるウレタン(メタ)アクリレート由来の構造を有する繰り返し単位によって形成されており、上記繰り返し単位は、複数種類の飽和環状脂肪族基を有するものである。すなわち、当該低透湿層において、高分子を形成するマトリックスは、ウレタン(メタ)アクリレート由来の構造を有する繰り返し単位によって形成されている。
<Low moisture permeability layer>
Since the low moisture permeable layer is a layer obtained by polymerizing a radiation curable composition derived from (meth) acrylate as described later, in other words, it can be said to be a radiation curable resin layer. The low moisture-permeable layer according to the present invention is formed by a repeating unit having a structure derived from a urethane (meth) acrylate that is a monomer, and the repeating unit has a plurality of types of saturated cycloaliphatic groups. That is, in the low moisture permeable layer, the matrix forming the polymer is formed of repeating units having a structure derived from urethane (meth) acrylate.
 本発明に係る低透湿層は、少なくとも上記繰り返し単位によって構成されており、構成の基本態様を大別すると、(1)上記繰り返し単位を主とする態様、(2)上記繰り返し単位をブロックAとし、他のブロックBとの共重合体を主とする態様がある。まず、基本的な(1)の構成を説明し、(2)の順で説明する。 The low moisture-permeable layer according to the present invention is composed of at least the above repeating unit. When the basic aspect of the structure is roughly divided, (1) an aspect mainly including the above repeating unit, and (2) the above repeating unit is represented by block A. And a copolymer mainly with other block B is available. First, the basic configuration (1) will be described, and will be described in the order (2).
 本発明に係る低透湿層は、2官能性のウレタン(メタ)アクリレート由来の構造を有する繰り返し単位によって形成されており、上記繰り返し単位は、複数種類の飽和環状脂肪族基を有するものである。すなわち、当該低透湿層において、高分子を形成するマトリックスは、ウレタン(メタ)アクリレート由来の構造を有する繰り返し単位によって形成されている。 The low moisture-permeable layer according to the present invention is formed by a repeating unit having a structure derived from a bifunctional urethane (meth) acrylate, and the repeating unit has a plurality of types of saturated cycloaliphatic groups. . That is, in the low moisture permeable layer, the matrix forming the polymer is formed of repeating units having a structure derived from urethane (meth) acrylate.
 上記ウレタン(メタ)アクリレート由来の構造とは、ウレタン(メタ)アクリレート単量体単位、すなわち、モノマーであるウレタン(メタ)アクリレートにおける、(メタ)アクリレート基の2重結合が開裂した構造を意味し、(メタ)アクリレート基の2重結合が開裂した部位を両末端に有しているため、2官能性である。 The structure derived from the urethane (meth) acrylate means a urethane (meth) acrylate monomer unit, that is, a structure in which a double bond of a (meth) acrylate group is cleaved in a urethane (meth) acrylate monomer. Since the double bond of the (meth) acrylate group is cleaved at both ends, it is bifunctional.
 上記繰り返し単位はウレタン結合(-NH-CO-O-)を有している。当該ウレタン結合の数は特に限定されず、例えば、1~8である。上記ウレタン結合は極性基であり、各繰り返し単位中のウレタン結合同士が分子間力によって近接する。一方、飽和環状脂肪族基は非極性な環状構造であり、分子量が高い。このウレタン結合同士の分子間相互作用において飽和環状脂肪族基の高い分子量が寄与することにより、上記分子間力は高い凝集力を生ぜしめることとなると考えられる。その結果、上記繰り返し単位によって構成された低透湿層は、薄層の状態で低透湿性を備えることとなる。 The above repeating unit has a urethane bond (—NH—CO—O—). The number of urethane bonds is not particularly limited and is, for example, 1-8. The urethane bond is a polar group, and the urethane bonds in each repeating unit are close to each other by intermolecular force. On the other hand, saturated cycloaliphatic groups are nonpolar cyclic structures and have a high molecular weight. It is considered that the intermolecular force generates a high cohesive force due to the high molecular weight of the saturated cycloaliphatic group contributing to the intermolecular interaction between the urethane bonds. As a result, the low moisture permeability layer constituted by the repeating unit has low moisture permeability in a thin layer state.
 上記ウレタン(メタ)アクリレート単量体単位は、複数種類の飽和環状脂肪族基を有している。飽和環状脂肪族基としては、特に限定されるものではないが、分子量に起因する凝集力を高める観点から、5員環以上の飽和環状脂肪族基であることが好ましい。員環数の上限は特に限定されないが、低透湿層の原料となるモノマーの合成し易さから、例えば、15員環以下であり、好ましくは10員環以下である。上記員環数とは、飽和環状脂肪族基が複数の環状構造を有する場合、最大の環状構造の員環数を表すものとし、飽和環状脂肪族基が、ビシクロ環、またはトリシクロ環を有する場合、橋頭炭素を結ぶ橋の炭素を除いた環状構造の員環数を意味する。例えば、トリシクロデカン環の場合、員環数は9である。 The urethane (meth) acrylate monomer unit has a plurality of types of saturated cycloaliphatic groups. Although it does not specifically limit as a saturated cycloaliphatic group, From a viewpoint of raising the cohesion force resulting from molecular weight, it is preferable that it is a saturated cycloaliphatic group 5 or more membered ring. Although the upper limit of the number of member rings is not particularly limited, it is, for example, 15-membered ring or less, preferably 10-membered ring or less, from the viewpoint of easy synthesis of a monomer that is a raw material for the low moisture-permeable layer. When the saturated cyclic aliphatic group has a plurality of cyclic structures, the number of member rings represents the maximum number of member rings of the cyclic structure, and the saturated cyclic aliphatic group has a bicyclo ring or a tricyclo ring. This means the number of ring members in the ring structure excluding the bridge carbon connecting the bridgehead carbon. For example, in the case of a tricyclodecane ring, the number of member rings is nine.
 飽和環状脂肪族基の環状構造の主鎖は、炭素原子のみによって形成されていてもよいし、炭素原子に加え、酸素原子および/または窒素原子によって形成されていてもよい。また、上記環状構造の炭素原子には、炭素数1~10の直鎖および/または分鎖構造が付加していてもよい。 The main chain of the cyclic structure of the saturated cycloaliphatic group may be formed only by carbon atoms, or may be formed by oxygen atoms and / or nitrogen atoms in addition to carbon atoms. In addition, a linear and / or branched structure having 1 to 10 carbon atoms may be added to the carbon atom of the cyclic structure.
 上記飽和環状脂肪族基の一例としては、3,5,5-トリメチルシクロヘキサン環、トリシクロデカン環、アダマンタン環などが挙げられる。上記飽和環状脂肪族基は、飽和脂肪族鎖を介してウレタン結合基と結合していてもよく、飽和脂肪族鎖の炭素数を変更することで、繰り返し単位の剛性を好適に調整できる。飽和脂肪族鎖としては、直鎖構造および分鎖構造があり、直鎖構造の一例としては、-(CH-(nは1~10の整数である)が挙げられ、繰り返し単位の屈曲性を低下させ、剛性を高める観点から、特に、-(CH)-または-(CH-であることが好ましい。一方、分鎖構造としては、上記直鎖構造の少なくとも1つの炭素上の水素が、メチル基、エチル基、プロピル基、ブチル基、ペンチル基などによって置換された構造が例示される。 Examples of the saturated cycloaliphatic group include a 3,5,5-trimethylcyclohexane ring, a tricyclodecane ring, an adamantane ring, and the like. The saturated cycloaliphatic group may be bonded to a urethane bonding group via a saturated aliphatic chain, and the rigidity of the repeating unit can be suitably adjusted by changing the carbon number of the saturated aliphatic chain. The saturated aliphatic chain includes a straight chain structure and a branched chain structure, and an example of the straight chain structure is — (CH 2 ) n — (n is an integer of 1 to 10), From the viewpoint of reducing the flexibility and increasing the rigidity, it is particularly preferably — (CH 2 ) — or — (CH 2 ) 2 —. On the other hand, examples of the branched structure include structures in which hydrogen on at least one carbon of the linear structure is substituted with a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, or the like.
 上述した3,5,5-トリメチルシクロヘキサン環が、メチレン鎖を介して2つのウレタン結合と結合している場合、3-メチレン-3,5,5-トリメチルシクロヘキサン環が各ウレタン結合と結合していることとなり、トリシクロデカン環が、メチレン鎖を介して2つのウレタン結合と結合している場合、ジメチレントリシクロデカン環が各ウレタン結合と結合していることとなる。 When the 3,5,5-trimethylcyclohexane ring described above is bonded to two urethane bonds via a methylene chain, the 3-methylene-3,5,5-trimethylcyclohexane ring is bonded to each urethane bond. Thus, when the tricyclodecane ring is bonded to two urethane bonds via a methylene chain, the dimethylene tricyclodecane ring is bonded to each urethane bond.
 上記3-メチレン-3,5,5-トリメチルシクロヘキサン環およびジメチレントリシクロデカン環は好ましい環構造であり、当該環構造を高分子鎖に含む低透湿層において、低透湿性が好適に発現される。 The 3-methylene-3,5,5-trimethylcyclohexane ring and the dimethylenetricyclodecane ring are preferable ring structures, and low moisture permeability is suitably exhibited in a low moisture-permeable layer containing the ring structure in a polymer chain. Is done.
 繰り返し単位の主鎖には、飽和環状脂肪族基以外に、炭素数5~10の飽和脂肪族鎖が含まれることが好ましい。飽和脂肪族鎖の炭素数が5以上であることにより、鎖長が長く、屈曲性を有する飽和脂肪族鎖によって繰り返し単位に柔軟性が付与され、低透湿層の脆性が低減される。一方、炭素数が10以下であることにより、低透湿層における透湿度の増加を抑制できる。飽和脂肪族鎖は直鎖構造であってもよく、分鎖構造であってもよい。上記飽和脂肪族鎖は、例えば、ウレタン結合、または、エステル結合を介した構造にて繰り返し単位の一部を構成している。 The main chain of the repeating unit preferably contains a saturated aliphatic chain having 5 to 10 carbon atoms in addition to the saturated cyclic aliphatic group. When the saturated aliphatic chain has 5 or more carbon atoms, flexibility is imparted to the repeating unit by the saturated aliphatic chain having a long chain length and flexibility, and the brittleness of the low moisture permeable layer is reduced. On the other hand, when the carbon number is 10 or less, an increase in moisture permeability in the low moisture permeable layer can be suppressed. The saturated aliphatic chain may have a straight chain structure or a branched chain structure. The saturated aliphatic chain constitutes a part of the repeating unit, for example, in a structure via a urethane bond or an ester bond.
 上記直鎖構造の一例としては、-(CHn1-(n1は5~10の整数)が挙げられ、特に、-(CH-であることが好ましい。一方、分鎖構造としては、上記直鎖構造の少なくとも1つの炭素上の水素が、メチル基、エチル基、プロピル基、ブチル基、ペンチル基などによって置換された構造が例示される。 An example of the linear structure is — (CH 2 ) n1 — (where n1 is an integer of 5 to 10), and — (CH 2 ) 5 — is particularly preferable. On the other hand, examples of the branched structure include structures in which hydrogen on at least one carbon of the linear structure is substituted with a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, or the like.
 上記繰り返し単位の一例として、飽和環状脂肪族基Rを含む下記構造A、および、飽和環状脂肪族基Rを含む下記構造Cを含む構造を例示できる。
-CO-NH-R-NH-CO-・・・(構造A)
-O-R-O-・・・(構造C)
As an example of the repeating unit, a structure including the following structure A including a saturated cycloaliphatic group R 1 and a structure including the following structure C including a saturated cycloaliphatic group R 3 can be exemplified.
—CO—NH—R 1 —NH—CO— (Structure A)
—O—R 3 —O— (Structure C)
 当該繰り返し単位は、例えば、Rを含むジイソシアネート、Rを含むジオール、および、(メタ)アクリレートを用いて得たウレタン(メタ)アクリレートから得ることができ、容易に製造可能である。一例として、上記構造A、および構造Cの割合は、m+1:m、または、m:m+1とすることができ、上記mは1~4の整数を示す。 The repeating unit, for example, diisocyanates containing R 1, diols containing R 3, and can be obtained from the urethane (meth) acrylate obtained by using a (meth) acrylate, it can be easily manufactured. As an example, the ratio of the structure A and the structure C can be m + 1: m or m: m + 1, where m is an integer of 1 to 4.
 また、上記繰り返し単位は、さらに、飽和脂肪族鎖Rを含む下記構造Bを含んでいてもよい。
-O-R-CO-・・・(構造B)
Further, the repeating units may further comprise the following structure B containing saturated aliphatic chain R 2.
—O—R 2 —CO— (Structure B)
 当該繰り返し単位は、例えば、Rを含むジイソシアネート、Rを含むエステル(任意に使用される)、Rを含むジオールに加えて、(メタ)アクリレート、または、(メタ)アクリル基を有するイソシアネートを用いて得ることができ、容易に製造可能である。一例として、上記構造A、構造Bおよび構造Cの割合は、m+1:m(r+s):m、m+1:k+n:m、m:m(r+s):m+1、m:k+n:m+1とすることができる。上記mは1~4の整数を示し、rおよびsはそれぞれ0~2の整数を示し、かつ、rとsとの和は1~2であり、kは0~2の整数を示し、nは0~2の整数を示す。 The repeating unit is, for example, an isocyanate having a (meth) acrylate or (meth) acryl group in addition to a diisocyanate containing R 1 , an ester containing R 2 (optionally used), a diol containing R 3 And can be easily manufactured. As an example, the ratio of the structure A, the structure B, and the structure C can be m + 1: m (r + s): m, m + 1: k + n: m, m: m (r + s): m + 1, m: k + n: m + 1. . M represents an integer of 1 to 4, r and s each represents an integer of 0 to 2, and the sum of r and s is 1 to 2, k represents an integer of 0 to 2, n Represents an integer of 0-2.
 上述した飽和環状脂肪族基および飽和脂肪族鎖を有する繰り返し単位の具体例を以下に示す。一般式(1)に示すように、(メタ)アクリレート由来の構造とは、(メタ)アクリレート構造HC=CH-CO-(または、HC=C(CH)-CO-)の炭素-炭素2重結合が開裂して単結合となった構造である。
Figure JPOXMLDOC01-appb-C000003
(一般式(1)中、Rは飽和環状脂肪族基を示し、Rは炭素数5~10の直鎖または分鎖構造を含む飽和脂肪族鎖を示し、Rは、Rと異なる飽和環状脂肪族基を示し、Rは水素原子またはメチル基を示し、Rは、水素原子、メチル基またはエチル基を示し、mは1~4の整数を示し、rおよびsはそれぞれ0~2の整数を示し、かつ、rとsとの和は1~2であり、xは0~3の整数を示す)
Specific examples of the repeating unit having the saturated cycloaliphatic group and saturated aliphatic chain described above are shown below. As shown in the general formula (1), the structure derived from (meth) acrylate is a (meth) acrylate structure H 2 C═CH—CO 2 — (or H 2 C═C (CH 3 ) —CO 2 —. ) In which a carbon-carbon double bond is cleaved to form a single bond.
Figure JPOXMLDOC01-appb-C000003
(In the general formula (1), R 1 represents a saturated cycloaliphatic group, R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms, and R 3 represents R 1 and Each represents a different saturated cycloaliphatic group; R 4 represents a hydrogen atom or a methyl group; R 5 represents a hydrogen atom, a methyl group or an ethyl group; m represents an integer of 1 to 4; An integer from 0 to 2 is shown, and the sum of r and s is 1 to 2, and x is an integer from 0 to 3)
 上記一般式(1)中のmが1~4の整数であることにより、低透湿層の透湿度をより低減できる。mは1または2であることがより好ましく、さらに好ましくは1である。後述する一般式(2)、(3)および(4)においても同様である。 When the m in the general formula (1) is an integer of 1 to 4, the moisture permeability of the low moisture permeable layer can be further reduced. m is more preferably 1 or 2, and even more preferably 1. The same applies to general formulas (2), (3), and (4) described later.
 上記一般式(1)において、Rが、3-メチレン-3,5,5-トリメチルシクロヘキサン環であり、Rが-(CH-であり、Rがジメチレントリシクロデカン環であり、RおよびRが水素原子であり、rおよびsが1であり、xが1である好適な構造を以下に示す。
Figure JPOXMLDOC01-appb-C000004
In the general formula (1), R 1 is a 3-methylene-3,5,5-trimethylcyclohexane ring, R 2 is — (CH 2 ) 5 —, and R 3 is a dimethylenetricyclodecane ring. A preferred structure in which R 4 and R 5 are hydrogen atoms, r and s are 1 and x is 1 is shown below.
Figure JPOXMLDOC01-appb-C000004
 繰り返し単位の他の具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000005
(一般式(2)中、Rは飽和環状脂肪族基を示し、Rは炭素数5~10の直鎖または分鎖構造を含む飽和脂肪族鎖を示し、Rは、Rと異なる飽和環状脂肪族基を示し、Rは水素原子またはメチル基を示し、Rは、水素原子、メチル基またはエチル基を示し、mは1~4の整数を示し、kは0~2の整数を示し、nは0~2の整数を示し、xは0~3の整数を示す)
Other specific examples of the repeating unit are shown below.
Figure JPOXMLDOC01-appb-C000005
(In the general formula (2), R 1 represents a saturated cycloaliphatic group, R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms, and R 3 represents R 1 and R 4 represents a different saturated cycloaliphatic group, R 4 represents a hydrogen atom or a methyl group, R 5 represents a hydrogen atom, a methyl group or an ethyl group, m represents an integer of 1 to 4, and k represents 0 to 2 N represents an integer from 0 to 2, and x represents an integer from 0 to 3)
 上記一般式(2)において、Rが、3-メチレン-3,5,5-トリメチルシクロヘキサン環であり、Rが-(CH-であり、Rがジメチレントリシクロデカン環であり、RおよびRが水素原子であり、kおよびnが1であり、xが1である好適な繰り返し単位を以下に示す。
Figure JPOXMLDOC01-appb-C000006
In the general formula (2), R 1 is a 3-methylene-3,5,5-trimethylcyclohexane ring, R 2 is — (CH 2 ) 5 —, and R 3 is a dimethylenetricyclodecane ring. Preferred repeating units in which R 4 and R 5 are hydrogen atoms, k and n are 1, and x is 1 are shown below.
Figure JPOXMLDOC01-appb-C000006
 また、繰り返し単位の他の具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000007
(一般式(3)中、Rは飽和環状脂肪族基を示し、Rは炭素数5~10の直鎖または分鎖構造を含む飽和脂肪族鎖を示し、Rは、Rと異なる飽和環状脂肪族基を示し、Rは水素原子またはメチル基を示し、Rは、水素原子、メチル基またはエチル基を示し、mは1~4の整数を示し、rおよびsはそれぞれ0~2の整数を示し、かつ、rとsとの和は1~2であり、xは0~3の整数を示す)
Other specific examples of the repeating unit are shown below.
Figure JPOXMLDOC01-appb-C000007
(In General Formula (3), R 1 represents a saturated cycloaliphatic group, R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms, and R 3 represents R 1 and Each represents a different saturated cycloaliphatic group; R 4 represents a hydrogen atom or a methyl group; R 5 represents a hydrogen atom, a methyl group or an ethyl group; m represents an integer of 1 to 4; An integer from 0 to 2 is shown, and the sum of r and s is 1 to 2, and x is an integer from 0 to 3)
 上記一般式(3)において、Rが、3-メチレン-3,5,5-トリメチルシクロヘキサン環であり、Rが-(CH-であり、Rがジメチレントリシクロデカン環であり、RおよびRが水素原子であり、rおよびsが1であり、xが1である好適な繰り返し単位を以下に示す。
Figure JPOXMLDOC01-appb-C000008
In the general formula (3), R 1 is a 3-methylene-3,5,5-trimethylcyclohexane ring, R 2 is — (CH 2 ) 5 —, and R 3 is a dimethylene tricyclodecane ring. Preferred repeating units in which R 4 and R 5 are hydrogen atoms, r and s are 1 and x is 1 are shown below.
Figure JPOXMLDOC01-appb-C000008
 繰り返し単位の他の具体例を以下に示す。
Figure JPOXMLDOC01-appb-C000009
(一般式(4)中、Rは飽和環状脂肪族基を示し、Rは炭素数5~10の直鎖または分鎖構造を含む飽和脂肪族鎖を示し、Rは、Rと異なる飽和環状脂肪族基を示し、Rは水素原子またはメチル基を示し、Rは、水素原子、メチル基またはエチル基を示し、mは1~4の整数を示し、kは0~2の整数を示し、nは0~2の整数を示し、xは0~3の整数を示す)
Other specific examples of the repeating unit are shown below.
Figure JPOXMLDOC01-appb-C000009
(In General Formula (4), R 1 represents a saturated cycloaliphatic group, R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms, and R 3 represents R 1 and R 4 represents a different saturated cycloaliphatic group, R 4 represents a hydrogen atom or a methyl group, R 5 represents a hydrogen atom, a methyl group or an ethyl group, m represents an integer of 1 to 4, and k represents 0 to 2 N represents an integer from 0 to 2, and x represents an integer from 0 to 3)
 上記一般式(4)において、Rが、3-メチレン-3,5,5-トリメチルシクロヘキサン環であり、Rが-(CH-であり、Rがジメチレントリシクロデカン環であり、RおよびRが水素原子であり、kおよびnが1であり、xが1である好適な繰り返し単位を以下に示す。
Figure JPOXMLDOC01-appb-C000010
In the general formula (4), R 1 is a 3-methylene-3,5,5-trimethylcyclohexane ring, R 2 is — (CH 2 ) 5 —, and R 3 is a dimethylenetricyclodecane ring. Preferred repeating units in which R 4 and R 5 are hydrogen atoms, k and n are 1, and x is 1 are shown below.
Figure JPOXMLDOC01-appb-C000010
 なお、上記一般式(1a)、一般式(2a)、一般式(3a)および一般式(4a)で表される構造の異性体も本発明に係る繰り返し単位に含まれる。さらに、上記繰り返し単位は必ずしもひとつの構造に決定されるとは限らない。すなわち、例えば一般式(1)の隣り合う繰り返し単位において、一方のmが1であったとしても、他方のmは1に限定されるものでは無く、1~4のいずれであってもよい。これは、その他の一般式におけるr、s、x、k、n、y、z、pについても同様である。 In addition, the isomer of the structure represented by the general formula (1a), the general formula (2a), the general formula (3a), and the general formula (4a) is also included in the repeating unit according to the present invention. Furthermore, the repeating unit is not necessarily determined to be one structure. That is, for example, in the adjacent repeating unit of the general formula (1), even if one m is 1, the other m is not limited to 1, and may be any one of 1 to 4. The same applies to r, s, x, k, n, y, z, and p in other general formulas.
 次に、本発明の低透湿層のうち共重合体に関する形態について説明する。本形態に係る低透湿層は、ブロックAである上記繰り返し単位と、1種類の飽和環状脂肪族基を有する2官能性の(メタ)アクリレート由来の構造を含んでなるブロックBと、を含有した共重合体によって構成されている。換言すると、共重合体に係る低透湿層は、複数種類の飽和環状脂肪族基を有する2官能性のウレタン(メタ)アクリレート単量体単位を含んでなるブロックA(繰り返し単位)と、1種類の飽和環状脂肪族基を有する2官能性の(メタ)アクリレート単量体単位を含んでなるブロックBとを含有した共重合体を含んでなる、といえる。 Next, the mode related to the copolymer in the low moisture-permeable layer of the present invention will be described. The low moisture-permeable layer according to the present embodiment contains the above repeating unit as the block A and the block B including a structure derived from a bifunctional (meth) acrylate having one kind of saturated cycloaliphatic group. It is comprised by the made copolymer. In other words, the low moisture-permeable layer according to the copolymer comprises a block A (repeating unit) comprising a bifunctional urethane (meth) acrylate monomer unit having a plurality of types of saturated cycloaliphatic groups, and 1 It can be said that it comprises a copolymer containing a block B containing a bifunctional (meth) acrylate monomer unit having a kind of saturated cycloaliphatic group.
 ブロックAである繰り返し単位については、上述した通りである。ブロックBは、1種類の飽和環状脂肪族基を有する2官能性の(メタ)アクリレート単量体単位を含んでなる。このブロックBは(メタ)アクリレート単量体単位を含み、ウレタン結合を含まない。ブロックAのアクリレート由来の部位は、他のブロックA、またはブロックBのアクリレート由来の部位と結合している(-ブロックA-ブロックA-、または、-ブロックA-ブロックB-)。 The repeating unit that is block A is as described above. Block B comprises a bifunctional (meth) acrylate monomer unit having one type of saturated cycloaliphatic group. This block B contains a (meth) acrylate monomer unit and does not contain a urethane bond. The acrylate-derived site of block A is bonded to the other acrylate-derived site of block A or block B (-block A-block A- or -block A-block B-).
 ブロックBにおける(メタ)アクリレート部位の-CO-O-は、ウレタン(メタ)アクリレート部位の非直線構造である-CO-NH-よりも直線的であり、屈曲性が低い。また、ブロックBは、1種類の飽和環状脂肪族基しか有しないため、ブロックAよりも直線的な構造であり、剛性が高い。ブロックAのみを含有した重合体を含有する低透湿層は、薄層の状態であっても透湿度が低いが、剛性が高いブロックBを併用することで、吸湿脱湿に起因する偏光フィルムの伸縮を抑制できるフィルム積層体を提供できる。 The —CO—O— of the (meth) acrylate moiety in Block B is more linear and less flexible than —CO—NH—, which is the nonlinear structure of the urethane (meth) acrylate moiety. Further, since the block B has only one type of saturated cycloaliphatic group, it has a linear structure and higher rigidity than the block A. The low moisture permeable layer containing the polymer containing only the block A has a low moisture permeability even in a thin layer state, but the polarizing film resulting from moisture absorption and dehumidification by using the block B having high rigidity in combination. The film laminated body which can suppress the expansion-contraction of can be provided.
 ブロックBに係る上記2官能性の(メタ)アクリレート単量体単位は、1種類の飽和環状脂肪族基を有している。飽和環状脂肪族基としては、特に限定されるものではないが、分子量に起因する透湿度の低下効果を得る観点から、5員環以上の飽和環状脂肪族基であることが好ましい。員環数の上限は特に限定されないが、ブロックBの原料となるモノマーの合成し易さから、例えば、15員環以下であり、好ましくは10員環以下である。上記員環数とは、飽和環状脂肪族基が複数の環状構造を有する場合、最大の環状構造の員環数を表すものとし、飽和環状脂肪族基が、ビシクロ環、またはトリシクロ環を有する場合、橋頭炭素を結ぶ橋の炭素を除いた環状構造の員環数を意味する。例えば、トリシクロデカン環の場合、員環数は9である。 The bifunctional (meth) acrylate monomer unit according to Block B has one kind of saturated cycloaliphatic group. The saturated cycloaliphatic group is not particularly limited, but is preferably a 5-membered or higher saturated cycloaliphatic group from the viewpoint of obtaining a moisture permeability lowering effect due to molecular weight. The upper limit of the number of member rings is not particularly limited, but is, for example, 15-membered ring or less, preferably 10-membered ring or less, from the viewpoint of easy synthesis of the monomer that is the raw material of block B. When the saturated cyclic aliphatic group has a plurality of cyclic structures, the number of member rings represents the maximum number of member rings of the cyclic structure, and the saturated cyclic aliphatic group has a bicyclo ring or a tricyclo ring. This means the number of ring members in the ring structure excluding the bridge carbon connecting the bridgehead carbon. For example, in the case of a tricyclodecane ring, the number of member rings is nine.
 飽和環状脂肪族基の環状構造の主鎖は、炭素原子のみによって形成されていてもよいし、炭素原子に加え、酸素原子および/または窒素原子によって形成されていてもよい。また、上記環状構造の炭素原子には、炭素数1~10の直鎖および/または分鎖構造が付加していてもよい。 The main chain of the cyclic structure of the saturated cycloaliphatic group may be formed only by carbon atoms, or may be formed by oxygen atoms and / or nitrogen atoms in addition to carbon atoms. In addition, a linear and / or branched structure having 1 to 10 carbon atoms may be added to the carbon atom of the cyclic structure.
 上記飽和環状脂肪族基の一例としては、トリシクロデカン環、3,5,5-トリメチルシクロヘキサン環、アダマンタン環などが挙げられる。上記飽和環状脂肪族基は、(メタ)アクリレート由来の構造と飽和脂肪族鎖を介して結合していてもよく、飽和脂肪族鎖の炭素数を変更することで、繰り返し単位の剛性を好適に調整できる。飽和脂肪族鎖としては、直鎖構造および分鎖構造があり、直鎖構造の一例としては、-(CH-(nは1~10の整数である)が挙げられ、共重合体の屈曲性を低下させ、剛性を高める観点から、特に、-(CH)-または-(CH-であることが好ましい。また、ブロックBが直鎖構造を有さない構造の場合も、剛性が高まる(上記、nが0)。一方、分鎖構造としては、上記直鎖構造の少なくとも1つの炭素上の水素が、メチル基、エチル基、プロピル基、ブチル基、ペンチル基などによって置換された構造が例示される。 Examples of the saturated cycloaliphatic group include a tricyclodecane ring, a 3,5,5-trimethylcyclohexane ring, an adamantane ring, and the like. The saturated cycloaliphatic group may be bonded to the structure derived from (meth) acrylate via a saturated aliphatic chain, and the rigidity of the repeating unit is suitably improved by changing the carbon number of the saturated aliphatic chain. Can be adjusted. The saturated aliphatic chain includes a straight chain structure and a branched chain structure. An example of the straight chain structure is — (CH 2 ) n — (n is an integer of 1 to 10), and a copolymer From the viewpoint of reducing the flexibility of the resin and increasing the rigidity, it is particularly preferably — (CH 2 ) — or — (CH 2 ) 2 —. Moreover, also when the block B is a structure which does not have a linear structure, rigidity is increased (the above n is 0). On the other hand, examples of the branched structure include structures in which hydrogen on at least one carbon of the linear structure is substituted with a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, or the like.
 上述した3,5,5-トリメチルシクロヘキサン環が、メチレン鎖を介して2つの(メタ)アクリレート由来の構造と結合している場合、3-メチレン-3,5,5-トリメチルシクロヘキサン環が各(メタ)アクリレート由来の構造と結合していることとなり、トリシクロデカン環が、メチレン鎖を介して2つの(メタ)アクリレート由来の構造と結合している場合、ジメチレントリシクロデカン環が各(メタ)アクリレート由来の構造と結合していることとなる。 When the 3,5,5-trimethylcyclohexane ring mentioned above is linked to two (meth) acrylate-derived structures via a methylene chain, each 3-methylene-3,5,5-trimethylcyclohexane ring is ( When the tricyclodecane ring is bonded to two (meth) acrylate-derived structures via a methylene chain, each dimethylenetricyclodecane ring is bonded to each ( It is combined with a structure derived from (meth) acrylate.
 上記ジメチレントリシクロデカン環は好ましい環構造であり、当該環構造を高分子鎖に含む低透湿層において、低透湿性が好適に発現される。 The dimethylene tricyclodecane ring is a preferred ring structure, and low moisture permeability is suitably expressed in a low moisture permeability layer containing the ring structure in a polymer chain.
 上述した飽和環状脂肪族基および飽和脂肪族鎖を有するブロックBの具体例を以下に示す。ブロックBは、両末端に(メタ)アクリレート由来の構造を有し、(メタ)アクリレート由来の構造は、他のブロックBと、またはブロックAと結合している(-ブロックB-ブロックB-、または、-ブロックB-ブロックA-)。一般式(5)に示すように、アクリレート由来の部位とは、アクリレート構造HC=HC-CO-の炭素-炭素2重結合が開裂して1重結合となった構造である(メタクリレート構造も同様)。
Figure JPOXMLDOC01-appb-C000011
(一般式(5)中、Rは飽和環状脂肪族基を示し、Rは水素原子またはメチル基を示し、yおよびzは、0~2の整数である)
Specific examples of the block B having the saturated cycloaliphatic group and the saturated aliphatic chain described above are shown below. Block B has a structure derived from (meth) acrylate at both ends, and the structure derived from (meth) acrylate is bonded to another block B or to block A (-block B-block B-, Or -Block B-Block A-). As shown in the general formula (5), the acrylate-derived site is a structure in which the carbon-carbon double bond of the acrylate structure H 2 C═HC—CO 2 — is cleaved to form a single bond (methacrylate). The structure is the same).
Figure JPOXMLDOC01-appb-C000011
(In the general formula (5), R 6 represents a saturated cycloaliphatic group, R 7 represents a hydrogen atom or a methyl group, and y and z are integers of 0 to 2)
 上記一般式(5)において、Rが、トリシクロデカン環であり、Rが水素原子であり、
yおよびzが1である好適な構造を以下に示す。
Figure JPOXMLDOC01-appb-C000012
In the general formula (5), R 6 is a tricyclodecane ring, R 7 is a hydrogen atom,
A preferred structure in which y and z are 1 is shown below.
Figure JPOXMLDOC01-appb-C000012
 共重合体におけるブロックAとブロックBとの質量比は、特に限定されないが、ブロックBに起因する低透湿層の透湿度低下の程度を好適なものとすべく、ブロックA:ブロックB=70:30~15:85であることが好ましく、60:40~15:85であることがより好ましく、50:50~15:85であることが特に好ましい。 The mass ratio of the block A to the block B in the copolymer is not particularly limited, but in order to make the degree of moisture permeability reduction of the low moisture permeable layer due to the block B suitable, the block A: block B = 70. : 30 to 15:85 is preferable, 60:40 to 15:85 is more preferable, and 50:50 to 15:85 is particularly preferable.
 また、本発明に係る低透湿層中の共重合体の割合は、低透湿層の透湿度を低下させる観点から高いことが望ましく、低透湿層の総質量に対し、70質量%以上、99.5質量%以下であることが好ましく、80質量%以上、99.5質量%以下であることがより好ましい。 Further, the proportion of the copolymer in the low moisture-permeable layer according to the present invention is preferably high from the viewpoint of reducing the moisture permeability of the low-moisture permeable layer, and is 70% by mass or more based on the total mass of the low moisture-permeable layer. 99.5% by mass or less, more preferably 80% by mass or more and 99.5% by mass or less.
 本発明に係る低透湿層が、どのような構造の高分子鎖(繰り返し単位(ブロックA)、ブロックB)によって形成されているかは、熱分解GC-MSおよびFT-IRによって低透湿層を分析することによって判断可能である。特に、熱分解GC-MSは、低透湿層に含まれる単量体単位をモノマー成分として検知できるため有用である。 The structure of the polymer chain (repeating unit (block A), block B) of the low moisture-permeable layer according to the present invention is determined by pyrolysis GC-MS and FT-IR. Can be determined by analyzing the above. In particular, pyrolysis GC-MS is useful because it can detect monomer units contained in the low moisture-permeable layer as monomer components.
 低透湿層には、低透湿層の成膜性、低透湿度を損なわなければ、紫外線吸収剤、レベリング剤や帯電防止剤等、各種添加剤を含有させてもよい。これにより、低透湿層に紫外線吸収特性、面平滑性、帯電防止特性を付与することが可能である。 The low moisture-permeable layer may contain various additives such as an ultraviolet absorber, a leveling agent, and an antistatic agent as long as the film-forming property of the low moisture-permeable layer and the low moisture permeability are not impaired. Thereby, it is possible to give an ultraviolet absorption characteristic, surface smoothness, and an antistatic characteristic to a low moisture-permeable layer.
 さらに低透湿層には、チオール系材料を含有させてもよい。これにより、低透湿層に強靭性を付与することが可能である。 Furthermore, the low moisture permeability layer may contain a thiol material. Thereby, it is possible to provide toughness to a low moisture-permeable layer.
 紫外線吸収剤としては、公知のものを使用でき、例えば、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルフォベンゾフェノン等のベンゾフェノン系、2-(2’-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール等のベンゾトリアゾール系、フェニルサルシレート、p-t-ブチルフェニルサルシレート等のヒンダートアミン系等が挙げられる。レベリング剤、帯電防止剤についても公知のものを使用可能である。 As the ultraviolet absorber, known ones can be used. For example, benzophenone series such as 2-hydroxy-4-octoxybenzophenone and 2-hydroxy-4-methoxy-5-sulfobenzophenone, 2- (2′-hydroxy) Benzotriazoles such as -5-methylphenyl) benzotriazole, hindered amines such as phenyl salsylate, pt-butylphenyl salsylate, and the like. Known leveling agents and antistatic agents can also be used.
 本発明に係る低透湿層は薄膜に形成されるため(フィルム積層体の膜厚を薄くするため)、例えば、膜厚の上限値は、50μmであり、より好ましくは30μmである。下限値は特に限定されないが、低透湿度を確実に担保する観点から5μmであることが好ましく、10μmであることがより好ましい。 Since the low moisture-permeable layer according to the present invention is formed into a thin film (in order to reduce the film thickness of the film laminate), for example, the upper limit value of the film thickness is 50 μm, more preferably 30 μm. Although a lower limit is not specifically limited, From a viewpoint of ensuring low moisture permeability reliably, it is preferable that it is 5 micrometers, and it is more preferable that it is 10 micrometers.
 本発明に係る低透湿層とは低い透湿度を有する層であり、30μmの薄層(30μm以下の厚さ)の状態で150g/(m・24時)以下であることが好ましく、より好ましくは120g/(m・24時)以下であり、特に好ましくは100g/(m・24時)以下である。透湿度の下限値は特に限定されないが、例えば、15g/(m・24時)以上である。なお、フィルム積層体としての透湿度も同様の値を満たすことが好ましい。 The low moisture permeability layer according to the present invention is a layer having a low moisture permeability, and is preferably 150 g / (m 2 · 24 hours) or less in a 30 μm thin layer (thickness of 30 μm or less), more It is preferably 120 g / (m 2 · 24 hours) or less, and particularly preferably 100 g / (m 2 · 24 hours) or less. Although the lower limit of moisture permeability is not particularly limited, it is, for example, 15 g / (m 2 · 24 o'clock) or more. In addition, it is preferable that the water vapor transmission rate as a film laminated body satisfy | fills the same value.
 <機能層>
 本発明に係るフィルム積層体は、低透湿層の上に、
 (1)耐擦傷性を有するハードコート層、
 (2)光を散乱させる防眩層、および、
 (3)上記低透湿層上に備えられた高屈折率層と、上記高屈折率層に備えられた低屈折率層とで構成された反射防止層、の何れかを備えても良い。以下、(1)~(3)について説明する。なお、本発明の効果を阻害しない範囲において、公知のその他の層を設けても良い。
<Functional layer>
The film laminate according to the present invention, on the low moisture permeable layer,
(1) A hard coat layer having scratch resistance,
(2) an antiglare layer that scatters light, and
(3) You may provide either the antireflective layer comprised by the high refractive index layer provided on the said low moisture-permeable layer, and the low refractive index layer provided in the said high refractive index layer. Hereinafter, (1) to (3) will be described. In addition, you may provide a well-known other layer in the range which does not inhibit the effect of this invention.
 〔ハードコート層〕
 ハードコート層はハードコート性(耐擦傷性)を有する。本発明におけるハードコート性とは、JIS K5600:1999に準拠し、荷重500g、速度1mm/sの条件下での鉛筆法による引っかき硬度が2H以上である。
[Hard coat layer]
The hard coat layer has a hard coat property (abrasion resistance). The hard coat property in the present invention is based on JIS K5600: 1999, and the scratch hardness according to the pencil method under a load of 500 g and a speed of 1 mm / s is 2H or more.
 ハードコート層を構成する樹脂成分としては、放射線硬化型樹脂が簡易な加工操作で効率よく硬化することができるため好適であり、硬化後に、十分な強度を持ち、透明性を有する被膜を与える放射線硬化型樹脂を特に制限なく使用できる。 As the resin component constituting the hard coat layer, radiation curable resin is suitable because it can be efficiently cured by a simple processing operation, and radiation that gives a film having sufficient strength and transparency after curing. A curable resin can be used without particular limitation.
 放射線硬化型樹脂としては、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基等のラジカル重合性官能基や、エポキシ基、ビニルエーテル基、オキセタン基等のカチオン重合性官能基を有するモノマー、オリゴマー、プレポリマー、ポリマーを単独で、または適宜混合した組成物が用いられる。モノマーの例としては、アクリル酸メチル、メチルメタクリレート、メトキシポリエチレンメタクリレート、シクロヘキシルメタクリレート、フェノキシエチルメタクリレート、エチレングリコールジメタクリレート、ジペンタエリスリトールヘキサアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリアクリレート等を挙げることができる。オリゴマー、プレポリマーとしては、ポリエステルアクリレート、ポリウレタンアクリレート、多官能ウレタンアクリレート、エポキシアクリレート、ポリエーテルアクリレート、アルキットアクリレート、メラミンアクリレート、シリコーンアクリレート等のアクリレート化合物、不飽和ポリエステル、テトラメチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ビスフェノールAジグリシジルエーテルや各種脂環式エポキシ等のエポキシ系化合物、3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン、ジ[1-エチル(3-オキセタニル)]メチルエーテル等のオキセタン化合物を挙げることができる。ポリマーとしては、ポリアクリレート、ポリウレタンアクリレート、ポリエステルアクリレート等を挙げることができる。これらは単独、もしくは複数混合して使用することができる。これら放射線硬化型樹脂の中で、特に官能基数が3個以上の多官能モノマーは、硬化速度が上がることや硬化物の硬度が向上させることができる。さらに、多官能ウレタンアクリレートを使用することにより、硬化物の硬度や柔軟性などを付与することができる。 As the radiation curable resin, a monomer or oligomer having a radical polymerizable functional group such as an acryloyl group, a methacryloyl group, an acryloyloxy group or a methacryloyloxy group, or a cationic polymerizable functional group such as an epoxy group, a vinyl ether group or an oxetane group, A prepolymer or a composition obtained by mixing the polymers alone or as appropriate is used. Examples of monomers include methyl acrylate, methyl methacrylate, methoxy polyethylene methacrylate, cyclohexyl methacrylate, phenoxyethyl methacrylate, ethylene glycol dimethacrylate, dipentaerythritol hexaacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate, and the like. it can. As oligomers and prepolymers, polyester acrylate, polyurethane acrylate, polyfunctional urethane acrylate, epoxy acrylate, polyether acrylate, acrylate compounds such as alkit acrylate, melamine acrylate, silicone acrylate, unsaturated polyester, tetramethylene glycol diglycidyl ether, Epoxy compounds such as propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, bisphenol A diglycidyl ether and various alicyclic epoxies, 3-ethyl-3-hydroxymethyloxetane, 1,4-bis {[((3- Oxeta such as ethyl-3-oxetanyl) methoxy] methyl} benzene, di [1-ethyl (3-oxetanyl)] methyl ether Mention may be made of the compound. Examples of the polymer include polyacrylate, polyurethane acrylate, and polyester acrylate. These can be used alone or in combination. Among these radiation curable resins, especially a polyfunctional monomer having 3 or more functional groups can increase the curing speed and improve the hardness of the cured product. Furthermore, by using polyfunctional urethane acrylate, the hardness and flexibility of the cured product can be imparted.
 放射線硬化型樹脂は、そのままで放射線照射により硬化可能であるが、紫外線照射による硬化を行う場合は、光重合開始剤の添加が必要である。光重合開始剤としては、アセトフェノン系、ベンゾフェノン系、チオキサントン系、ベンゾイン、ベンゾインメチルエーテル等のラジカル重合開始剤、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、メタロセン化合物等のカチオン重合開始剤を単独または適宜組み合わせて使用することができる。 The radiation curable resin can be cured by radiation irradiation as it is, but when curing by ultraviolet irradiation, it is necessary to add a photopolymerization initiator. Photopolymerization initiators include radical polymerization initiators such as acetophenone, benzophenone, thioxanthone, benzoin, and benzoin methyl ether, and cationic polymerization starts such as aromatic diazonium salts, aromatic sulfonium salts, aromatic iodonium salts, and metallocene compounds. The agents can be used alone or in appropriate combination.
 ハードコート層の膜厚はハードコート性が発揮されれば特に制限されないが、概して、2μm以上、10μm以下である。 The film thickness of the hard coat layer is not particularly limited as long as the hard coat property is exhibited, but is generally 2 μm or more and 10 μm or less.
 ハードコート性以外の機能を付与するために、上記ハードコート層には各種添加剤を添加することができる。例として、塗工面の平滑性を向上させるために添加するフッ素系またはシリコーン系のレベリング剤や、埃付着などを防止するために添加する、電子共役系、金属酸化物系またはイオン系の帯電防止剤などを、必要とされる機能に応じて適宜選択して使用してもよい。添加剤を使用できる点は、下記防眩層および低屈折率層についても同様である。 In order to impart functions other than hard coat properties, various additives can be added to the hard coat layer. For example, fluorine or silicone leveling agents added to improve the smoothness of the coated surface, and electron conjugated, metal oxide or ionic antistatic agents added to prevent dust adhesion. An agent or the like may be appropriately selected and used depending on the required function. The point which can use an additive agent is the same also about the following glare-proof layer and a low refractive index layer.
 〔防眩層〕
 防眩層は、光を散乱させる防眩機能を有し、外部ヘイズおよび/または内部ヘイズによって防眩機能を実現するものであり、防眩層は、表面に凹凸が形成されているか、内部に透光性微粒子を含有しているか、または、その両方である。
(Anti-glare layer)
The antiglare layer has an antiglare function that scatters light, and realizes the antiglare function by external haze and / or internal haze. It contains translucent particulates or both.
 防眩層の表面の凹凸を形成する方法に特に制限はないが、透光性微粒子を含有する放射線硬化型樹脂を塗布し、塗布後、硬化する方法が、凹凸の形状をコントロールし易いことから好ましい。 Although there is no particular limitation on the method for forming irregularities on the surface of the antiglare layer, it is easy to control the shape of the irregularities by applying a radiation curable resin containing translucent fine particles and curing after application. preferable.
 防眩層の表面凹凸の形状は、求められる防眩性によって決定される。より好適な凹凸の形状は粗さパラメータRaによって規定することが可能であり、Ra:0.01μm以上、Sm:50μm~500μm、平均傾斜角:0.1°~3.0°であることがより好ましい。 The shape of the surface unevenness of the antiglare layer is determined by the required antiglare property. A more preferable uneven shape can be defined by the roughness parameter Ra, and Ra: 0.01 μm or more, Sm: 50 μm to 500 μm, and average inclination angle: 0.1 ° to 3.0 °. More preferred.
 防眩層の膜厚は防眩性が発揮されれば特に制限されないが、概して2μm以上、10μm以下である。なお、上記防眩層は防眩性に加え、ハードコート性を兼ね備えることも可能であり、この場合、使用する樹脂成分を調整することでハードコート性が付与される。 The film thickness of the antiglare layer is not particularly limited as long as the antiglare property is exhibited, but is generally 2 μm or more and 10 μm or less. In addition to the antiglare property, the antiglare layer can also have a hard coat property. In this case, the hard coat property is imparted by adjusting the resin component used.
 〔反射防止層〕
 反射防止層は、低屈折率層と高屈折率層とから構成される。低屈折率層とは、隣接する高屈折率層(例えば、ハードコート層、防眩層、または、保護層)よりも屈折率が低い層であり、高屈折率層と積層された状態で低屈折率層側からの光の反射防止に寄与する。なお、ここで高屈折率、低屈折率というのは絶対的な屈折率を規定するものではなく、2つの層の屈折率を相対的に比較して高い、または、低いと規定しているのであり、両者が下記式1の関係を有する時に最も反射率が低くなるとされている。
(Antireflection layer)
The antireflection layer is composed of a low refractive index layer and a high refractive index layer. A low refractive index layer is a layer having a refractive index lower than that of an adjacent high refractive index layer (for example, a hard coat layer, an antiglare layer, or a protective layer), and is low when laminated with a high refractive index layer. This contributes to preventing reflection of light from the refractive index layer side. Here, the high refractive index and the low refractive index do not define an absolute refractive index, but rather specify that the refractive indices of the two layers are relatively high or low compared. The reflectance is said to be lowest when both have the relationship of the following formula 1.
n2=(n1)1/2・・・(式1)
(n1は高屈折率層の屈折率、n2は低屈折率層の屈折率)
n2 = (n1) 1/2 (Formula 1)
(N1 is the refractive index of the high refractive index layer, n2 is the refractive index of the low refractive index layer)
 好適に反射防止機能が発揮されるために、低屈折率層の屈折率は1.45以下であることが好ましい。これらの特徴を有する材料としては、例えばLiF(屈折率n=1.4)、MgF(n=1.4)、3NaF・AlF(n=1.4)、AlF(n=1.4)、NaAlF(n=1.33)等の無機材料を微粒子化し、アクリル系樹脂やエポキシ系樹脂等に含有させた無機系低反射材料、フッ素系、シリコーン系の有機化合物、熱可塑性樹脂、熱硬化型樹脂、放射線硬化型樹脂等の有機低反射材料を挙げることができる。その中で、特に、フッ素系の含フッ素材料が防汚性に優れるため、低屈折率層が表面となった際の汚れ防止の点において好ましい。 In order to suitably exhibit the antireflection function, the refractive index of the low refractive index layer is preferably 1.45 or less. Examples of the material having these characteristics include LiF (refractive index n = 1.4), MgF 2 (n = 1.4), 3NaF · AlF 3 (n = 1.4), AlF 3 (n = 1. 4) Inorganic low-reflective material in which inorganic material such as Na 3 AlF 6 (n = 1.33) is finely divided and contained in acrylic resin or epoxy resin, fluorine-based, silicone-based organic compound, heat Examples thereof include organic low reflection materials such as plastic resins, thermosetting resins, and radiation curable resins. Among them, in particular, the fluorine-based fluorine-containing material is excellent in antifouling property, and therefore, it is preferable in terms of preventing contamination when the low refractive index layer becomes the surface.
 上記含フッ素材料としては、有機溶剤に溶解し、その取り扱いが容易であるフッ化ビニリデン系共重合体や、フルオロオレフィン/炭化水素共重合体、含フッ素エポキシ樹脂、含フッ素エポキシアクリレート、含フッ素シリコーン、含フッ素アルコキシシラン、含フッ素ポリシロキサン等を挙げることができる。これらは単独でも複数組み合わせて使用することも可能である。含フッ素ポリシロキサンは、加水分解性シラン化合物および/またはその加水分解物と硬化促進剤とを少なくとも含有する混合物が硬化したものであり、加水分解性シラン化合物として、皮膜形成剤および帯電防止剤としての機能を有するカチオン変性シラン化合物を含有させることもできる。 Examples of the fluorine-containing material include vinylidene fluoride copolymers, fluoroolefin / hydrocarbon copolymers, fluorine-containing epoxy resins, fluorine-containing epoxy acrylates, fluorine-containing silicones, which are easily dissolved in organic solvents. , Fluorine-containing alkoxysilane, fluorine-containing polysiloxane, and the like. These can be used alone or in combination. The fluorine-containing polysiloxane is obtained by curing a hydrolyzable silane compound and / or a mixture containing at least a hydrolyzate thereof and a curing accelerator, as a hydrolyzable silane compound, as a film forming agent and an antistatic agent. A cation-modified silane compound having the above function can also be contained.
 低屈折率層の膜厚は、高屈折率層との関係で反射防止機能が発揮されれば特に制限されないが、概して、0.05μm以上、0.2μm以下であり、高屈折率層の膜厚は、概して、0.05μm以上、10μm以下であることが好ましい。上記低屈折率層は高屈折率層との関係で反射防止機能を発揮するが、原料選定により、ハードコート性を兼ね備えることも可能である。また、高屈折率層は、原料選定により、ハードコート性を有していてもよいし、さらに防眩性を備えていてもよい。同様に、それぞれの層は他の機能を兼ね備えることができる。 The film thickness of the low refractive index layer is not particularly limited as long as the antireflection function is exhibited in relation to the high refractive index layer, but is generally 0.05 μm or more and 0.2 μm or less. In general, the thickness is preferably 0.05 μm or more and 10 μm or less. The low refractive index layer exhibits an antireflection function in relation to the high refractive index layer, but can also have a hard coat property by selecting a raw material. Further, the high refractive index layer may have a hard coat property or may have an antiglare property depending on the selection of raw materials. Similarly, each layer can have other functions.
 《偏光板》
 次に、本発明の偏光板について説明する。本発明に係る偏光板は、偏光フィルムの少なくとも片面に、上記フィルム積層体を備えるものである。
"Polarizer"
Next, the polarizing plate of the present invention will be described. The polarizing plate which concerns on this invention equips the at least single side | surface of a polarizing film with the said film laminated body.
 偏光フィルムは、ポリビニルアルコール系樹脂(PVA樹脂)からなり、偏光フィルムに入射する光のうち、ある方向の振動面を有する光を透過し、それと直交する振動面を有する光を吸収する性質を有するフィルムであり、典型的には、PVA樹脂に二色性色素が吸着配向している。偏光フィルムを構成するPVA樹脂は、ポリ酢酸ビニル系樹脂をケン化することにより得られる。PVA樹脂の原料となるポリ酢酸ビニル系樹脂は、酢酸ビニルの単独重合体であるポリ酢酸ビニルの他、酢酸ビニルおよびこれと共重合可能な他の単量体との共重合体であってもよい。上記PVA樹脂からなるフィルムに、一軸延伸、二色性色素による染色、および染色後のホウ酸架橋処理を施すことによって、偏光フィルムを製造できる。二色性色素としては、ヨウ素や二色性の有機染料が用いられる。一軸延伸は、二色性色素による染色の前に行なってもよいし、二色性色素による染色と同時に行なってもよいし、二色性色素による染色の後、たとえばホウ酸架橋処理中に行なってもよい。かくして製造され、二色性色素が吸着配向しているPVA樹脂からなる偏光フィルムが、偏光板の構成材料の一つとなる。 The polarizing film is made of a polyvinyl alcohol resin (PVA resin), and has a property of transmitting light having a vibration surface in a certain direction out of light incident on the polarizing film and absorbing light having a vibration surface orthogonal to the direction. A dichroic dye is typically adsorbed and oriented on a PVA resin. The PVA resin constituting the polarizing film can be obtained by saponifying a polyvinyl acetate resin. The polyvinyl acetate resin used as the raw material for the PVA resin may be a copolymer of polyvinyl acetate, which is a homopolymer of vinyl acetate, or a copolymer of vinyl acetate and other monomers copolymerizable therewith. Good. A polarizing film can be produced by subjecting the film made of the PVA resin to uniaxial stretching, dyeing with a dichroic dye, and boric acid crosslinking treatment after dyeing. As the dichroic dye, iodine or a dichroic organic dye is used. Uniaxial stretching may be performed before dyeing with a dichroic dye, may be performed simultaneously with dyeing with a dichroic dye, or after dyeing with a dichroic dye, for example, during a boric acid crosslinking treatment. May be. Thus, the polarizing film which consists of PVA resin which is manufactured and the dichroic dye adsorbs and becomes one of the constituent materials of a polarizing plate.
 偏光フィルムと、フィルム積層体のセルロース系フィルムとの貼合には、好ましくは親水性の接着剤が用いられるが、これに限定されるものではない。親水性の接着剤は、液状の塗布可能な状態で供給される限りにおいて、従来から偏光板の製造に使用されている公知のものを使用できるが、耐候性や重合性などの観点から、PVA樹脂を含有するものが好ましい。 A hydrophilic adhesive is preferably used for laminating the polarizing film and the cellulose-based film of the film laminate, but is not limited thereto. As long as the hydrophilic adhesive is supplied in a liquid-applicable state, a known adhesive conventionally used in the production of polarizing plates can be used. From the viewpoint of weather resistance and polymerizability, PVA can be used. Those containing a resin are preferred.
 本発明に係る偏光板は、少なくとも一方の面に上記フィルム積層体を備えており、偏光板の両面にフィルム積層体を備える構成が含まれる。当該フィルム積層体は、薄層であっても低透湿度であるため、高温高湿環境下であっても、偏光フィルムが吸湿し難く、偏光フィルムの伸縮が抑制される。 The polarizing plate according to the present invention includes the above-described film laminate on at least one surface, and includes a configuration in which the film laminate is provided on both surfaces of the polarizing plate. Since the film laminate has a low moisture permeability even if it is a thin layer, the polarizing film is difficult to absorb moisture even under a high temperature and high humidity environment, and the expansion and contraction of the polarizing film is suppressed.
 《フィルム積層体の製造方法》
 本発明に係るフィルム積層体の製造方法は、上記フィルム積層体を製造できれば特に限定されないが、一例として、以下の工程(A1)および(A2)を含むフィルム積層体形成工程を含む方法が挙げられる。
 工程(A1):放射線硬化型組成物を、セルロース系フィルム上に塗布する。
 工程(A2):塗布後、上記放射線硬化型組成物を硬化させてフィルム積層体を形成する。
<< Method for producing film laminate >>
Although the manufacturing method of the film laminated body which concerns on this invention will not be specifically limited if the said film laminated body can be manufactured, The method including the film laminated body formation process containing the following processes (A1) and (A2) as an example is mentioned. .
Step (A1): A radiation curable composition is applied on a cellulosic film.
Step (A2): After coating, the radiation curable composition is cured to form a film laminate.
 放射線硬化型組成物は、必須成分としてウレタン(メタ)アクリレートを含んでいる。モノマーである上記ウレタン(メタ)アクリレートは、低透湿層の原料であり、当該モノマーが重合することで上記<低透湿層>にて述べた繰り返し単位が形成される。 The radiation curable composition contains urethane (meth) acrylate as an essential component. The urethane (meth) acrylate, which is a monomer, is a raw material for the low moisture-permeable layer, and the monomer is polymerized to form the repeating unit described in <Low moisture-permeable layer>.
 他の実施形態では、低透湿層の原料として、上記放射線硬化型組成物は、上記繰り返し単位(ブロックA)を生じるウレタン(メタ)アクリレート、およびブロックBを生じる(メタ)アクリレートを含む。これらのモノマーが共重合することで上記<低透湿層>にて述べた共重合体が形成される。 In another embodiment, the radiation curable composition includes a urethane (meth) acrylate that generates the repeating unit (block A) and a (meth) acrylate that generates the block B as a raw material for the low moisture-permeable layer. By copolymerizing these monomers, the copolymer described in the above <low moisture permeable layer> is formed.
 さらに、他の実施形態では、上記放射線硬化型組成物は、上記繰り返し単位(ブロックA)を生じるウレタン(メタ)アクリレートに加えて、ブロックBを生じる(メタ)アクリレートを含む。ウレタン(メタ)アクリレート同士が重合、または、ウレタン(メタ)アクリレートと(メタ)アクリレートとが共重合して高分子鎖を形成することで上記<低透湿層>にて述べた高分子鎖を含む低透湿層が形成される。 Furthermore, in another embodiment, the radiation curable composition contains (meth) acrylate that generates block B in addition to urethane (meth) acrylate that generates the repeating unit (block A). Urethane (meth) acrylates are polymerized, or urethane (meth) acrylate and (meth) acrylate are copolymerized to form a polymer chain, thereby forming the polymer chain described in <Low moisture permeability layer> above. A low moisture permeable layer is formed.
 上記ウレタン(メタ)アクリレートは、両末端の(メタ)アクリレート由来の構造が(メタ)アクリレート基である点で上記繰り返し単位と異なっているが、モノマーが複数種類または1種類の飽和環状脂肪族基を有する点など、両末端以外の構造は共通し、(メタ)アクリレートについても同様である。飽和環状脂肪族基、および、飽和脂肪族鎖等の具体例については繰り返し単位(ブロックA)、およびブロックBについての説明と共通するため、記載を省略する。 The urethane (meth) acrylate is different from the above repeating unit in that the structure derived from (meth) acrylate at both ends is a (meth) acrylate group, but the monomer is a plurality of types or one type of saturated cyclic aliphatic group. The structure other than both ends, such as having a point, is common, and the same applies to (meth) acrylates. Specific examples of the saturated cycloaliphatic group, saturated aliphatic chain and the like are the same as the description of the repeating unit (block A) and block B, and thus the description thereof is omitted.
 上記ウレタン(メタ)アクリレートの一例としては、飽和環状脂肪族基Rを有する下記構造A、下記飽和脂肪族鎖Rを有する構造B(任意に含まれる)、および、飽和環状脂肪族基Rを有する下記構造Cを含む構造を例示できる。上記構造Bは任意成分である。
-CO-NH-R-NH-CO-・・・(構造A)
-O-R-CO-・・・(構造B)
-O-R-O-・・・(構造C)
Examples of the urethane (meth) acrylate include the following structure A having a saturated cycloaliphatic group R 1 , structure B (optionally included) having the following saturated aliphatic chain R 2 , and a saturated cycloaliphatic group R. The structure containing the following structure C which has 3 can be illustrated. The structure B is an optional component.
—CO—NH—R 1 —NH—CO— (Structure A)
—O—R 2 —CO— (Structure B)
—O—R 3 —O— (Structure C)
 当該ウレタン(メタ)アクリレートは、例えば、Rを含むジイソシアネート、Rを含むエステル(任意に使用される)、Rを含むジオールに加えて、(メタ)アクリレート、または、(メタ)アクリル基を有するイソシアネートを用いて得ることができ、容易に製造可能である。 The urethane (meth) acrylate includes, for example, a diisocyanate containing R 1 , an ester containing R 2 (optionally used), a diol containing R 3 , a (meth) acrylate, or a (meth) acrylic group. It can be obtained by using an isocyanate having, and can be easily produced.
 一例として、上記構造A、構造Bおよび構造Cの割合は、m+1:m(r+s):m、m+1:k+n:m、m:m(r+s):m+1、または、m:k+n:m+1とすることができる。上記mは1~4の整数を示し、rおよびsはそれぞれ0~2の整数を示し、かつ、rとsとの和は1~2であり、kは0~2の整数を示し、nは0~2の整数を示す。 As an example, the ratio of the structure A, the structure B, and the structure C is m + 1: m (r + s): m, m + 1: k + n: m, m: m (r + s): m + 1, or m: k + n: m + 1. Can do. M represents an integer of 1 to 4, r and s each represents an integer of 0 to 2, and the sum of r and s is 1 to 2, k represents an integer of 0 to 2, n Represents an integer of 0-2.
 ウレタン(メタ)アクリレートを合成する手法は特に限定されないが、一例として、まず、2官能性の中間体を合成し、(メタ)アクリレートまたは(メタ)アクリル基を有するイソシアネートを中間体の両末端に合成する手法が挙げられる。 The method for synthesizing the urethane (meth) acrylate is not particularly limited. As an example, first, a bifunctional intermediate is synthesized, and an isocyanate having a (meth) acrylate or (meth) acryl group is attached to both ends of the intermediate. A method of synthesizing is mentioned.
 具体的に、上述した一般式(1)の繰り返し単位に対応するウレタン(メタ)アクリレートを合成する手法を例示すると、〔1〕Rを有するエステルと、Rを有するジオールとを、m(r+s):mのモル比で反応させて、さらに、m+1モルのRを有するジイソシアネートを反応させて、両末端に-N=C=O基を有する中間体を得る。〔2〕その後、1モルの上記中間体に対して、2モルの(メタ)アクリレートを反応させることで、下記一般式(6)で表されるウレタン(メタ)アクリレートが得られる。
Figure JPOXMLDOC01-appb-C000013
(一般式(6)中、Rは飽和環状脂肪族基を示し、Rは炭素数5~10の直鎖または分鎖構造を含む飽和脂肪族鎖を示し、Rは、Rと異なる飽和環状脂肪族基を示し、Rは水素原子またはメチル基を示し、Rは、水素原子、メチル基またはエチル基を示し、mは1~4の整数を示し、rおよびsはそれぞれ0~2の整数を示し、かつ、rとsとの和は1~2であり、xは0~3の整数を示す)
Specifically, when a method for synthesizing a urethane (meth) acrylate corresponding to the repeating unit of the general formula (1) described above is exemplified, [1] an ester having R 2 and a diol having R 3 are represented by m ( r + s): m is reacted at a molar ratio, and further m + 1 mole of diisocyanate having R 1 is reacted to obtain an intermediate having —N═C═O groups at both ends. [2] Thereafter, urethane (meth) acrylate represented by the following general formula (6) is obtained by reacting 1 mol of the intermediate with 2 mol of (meth) acrylate.
Figure JPOXMLDOC01-appb-C000013
(In the general formula (6), R 1 represents a saturated cycloaliphatic group, R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms, and R 3 represents R 1 and Each represents a different saturated cycloaliphatic group; R 4 represents a hydrogen atom or a methyl group; R 5 represents a hydrogen atom, a methyl group or an ethyl group; m represents an integer of 1 to 4; An integer from 0 to 2 is shown, and the sum of r and s is 1 to 2, and x is an integer from 0 to 3)
 一般式(2)の繰り返し単位に対応するウレタン(メタ)アクリレートを合成する手法を例示すると、〔1〕Rを有するジイソシアネートと、Rを有するジオールとをm+1:mのモル比で反応させて、両末端に-N=C=O基を有する中間体を得る。〔2-1〕その後、1モルの上記中間体に対して、2モルの(メタ)アクリレートを反応させるか、〔2-2〕1モルの上記中間体に対して、k+nモルのRを有するエステルを反応させた後、2モルの(メタ)アクリレートを反応させるか、〔2-3〕2モルの(メタ)アクリレートに対して、k+nモルのRを有するエステルを反応させて得られた(メタ)アクリレートを、1モルの上記中間体に対して反応させる、何れかの手法によって一般式(7)で表される繰り返し単位に対応するウレタン(メタ)アクリレートが得られる。
Figure JPOXMLDOC01-appb-C000014
(一般式(7)中、Rは飽和環状脂肪族基を示し、Rは炭素数5~10の直鎖または分鎖構造を含む飽和脂肪族鎖を示し、Rは、Rと異なる飽和環状脂肪族基を示し、Rは水素原子またはメチル基を示し、Rは、水素原子、メチル基またはエチル基を示し、mは1~4の整数を示し、kは0~2の整数を示し、nは0~2の整数を示し、xは0~3の整数を示す)
An example of a method for synthesizing a urethane (meth) acrylate corresponding to the repeating unit of the general formula (2) is as follows: [1] A diisocyanate having R 1 and a diol having R 3 are reacted at a molar ratio of m + 1: m. Thus, an intermediate having —N═C═O groups at both ends is obtained. [2-1] Thereafter, 2 mol of (meth) acrylate is reacted with 1 mol of the above intermediate, or [2-2] k + n mol of R 2 is added with respect to 1 mol of the above intermediate. Obtained by reacting 2 moles of (meth) acrylate, or [2-3] reacting 2 moles of (meth) acrylate with an ester having k + n moles of R 2. The urethane (meth) acrylate corresponding to the repeating unit represented by the general formula (7) can be obtained by any method in which (meth) acrylate is reacted with 1 mol of the above intermediate.
Figure JPOXMLDOC01-appb-C000014
(In General Formula (7), R 1 represents a saturated cycloaliphatic group, R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms, and R 3 represents R 1 and R 4 represents a different saturated cycloaliphatic group, R 4 represents a hydrogen atom or a methyl group, R 5 represents a hydrogen atom, a methyl group or an ethyl group, m represents an integer of 1 to 4, and k represents 0 to 2 N represents an integer from 0 to 2, and x represents an integer from 0 to 3)
 一般式(3)の繰り返し単位に対応するウレタン(メタ)アクリレートを合成する手法を例示すると、〔1〕Rを有するジイソシアネートと、Rを有するエステルとを、m:m(r+s)のモル比で反応させ、さらに、m+1モルのRを有するジオールを反応させて、両末端に水酸基を有する中間体を得る。〔2〕その後、1モルの中間体に対して、2モルの(メタ)アクリル基を有するイソシアネートを反応させることで、一般式(8)で表される繰り返し単位に対応するウレタン(メタ)アクリレートが得られる。
Figure JPOXMLDOC01-appb-C000015
(一般式(8)中、Rは飽和環状脂肪族基を示し、Rは炭素数5~10の直鎖または分鎖構造を含む飽和脂肪族鎖を示し、Rは、Rと異なる飽和環状脂肪族基を示し、Rは水素原子またはメチル基を示し、Rは、水素原子、メチル基またはエチル基を示し、mは1~4の整数を示し、rおよびsはそれぞれ0~2の整数を示し、かつ、rとsとの和は1~2であり、xは0~3の整数を示す)
An example of a method for synthesizing a urethane (meth) acrylate corresponding to the repeating unit of the general formula (3) is as follows: [1] A diisocyanate having R 1 and an ester having R 2 are converted into m: m (r + s) moles. The reaction is carried out in a ratio, and further m + 1 mol of diol having R 3 is reacted to obtain an intermediate having hydroxyl groups at both ends. [2] Thereafter, urethane (meth) acrylate corresponding to the repeating unit represented by the general formula (8) is obtained by reacting 2 mol of an isocyanate having a (meth) acryl group with 1 mol of an intermediate. Is obtained.
Figure JPOXMLDOC01-appb-C000015
(In the general formula (8), R 1 represents a saturated cycloaliphatic group, R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms, and R 3 represents R 1 and Each represents a different saturated cycloaliphatic group; R 4 represents a hydrogen atom or a methyl group; R 5 represents a hydrogen atom, a methyl group or an ethyl group; m represents an integer of 1 to 4; An integer from 0 to 2 is shown, and the sum of r and s is 1 to 2, and x is an integer from 0 to 3)
 一般式(4)の繰り返し単位に対応するウレタン(メタ)アクリレートを合成する手法を例示すると、〔1〕Rを有するジイソシアネートと、Rを有するジオールとをm:m+1のモル比で反応させて、両末端に水酸基を有する中間体を得る。〔2-1〕その後、1モルの上記中間体に対して、2モルの(メタ)アクリル基を有するイソシアネートを反応させるか、〔2-2〕1モルの上記中間体に対して、k+nモルのRを有するエステルを反応させた後、2モルの(メタ)アクリル基を有するイソシアネートを反応させるか、〔2-3〕2モルの(メタ)アクリル基を有するイソシアネートに対して、k+nモルのRを有するエステルを反応させて得られたウレタン(メタ)アクリルアクリレートを、1モルの上記中間体に対して反応させる、何れかの手法によって一般式(9)で表される繰り返し単位に対応するウレタン(メタ)アクリレートが得られる。
Figure JPOXMLDOC01-appb-C000016
(一般式(9)中、Rは飽和環状脂肪族基を示し、Rは炭素数5~10の直鎖または分鎖構造を含む飽和脂肪族鎖を示し、Rは、Rと異なる飽和環状脂肪族基を示し、Rは水素原子またはメチル基を示し、Rは、水素原子、メチル基またはエチル基を示し、mは1~4の整数を示し、kは0~2の整数を示し、nは0~2の整数を示し、xは0~3の整数を示す)
An example of a method for synthesizing a urethane (meth) acrylate corresponding to the repeating unit of the general formula (4) is as follows: [1] A diisocyanate having R 1 and a diol having R 3 are reacted at a molar ratio of m: m + 1. Thus, an intermediate having hydroxyl groups at both ends is obtained. [2-1] Then, 2 mol of an isocyanate having a (meth) acryl group is reacted with 1 mol of the intermediate, or [2-2] k + n mol with respect to 1 mol of the intermediate. After reacting the ester having R 2 , react with an isocyanate having 2 mol of a (meth) acryl group, or [2-3] k + n mol with respect to an isocyanate having 2 mol of a (meth) acryl group. The urethane (meth) acryl acrylate obtained by reacting the ester having R 2 is reacted with 1 mol of the above intermediate, and the repeating unit represented by the general formula (9) is produced by any method. The corresponding urethane (meth) acrylate is obtained.
Figure JPOXMLDOC01-appb-C000016
(In the general formula (9), R 1 represents a saturated cycloaliphatic group, R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms, and R 3 represents R 1 and R 4 represents a different saturated cycloaliphatic group, R 4 represents a hydrogen atom or a methyl group, R 5 represents a hydrogen atom, a methyl group or an ethyl group, m represents an integer of 1 to 4, and k represents 0 to 2 N represents an integer from 0 to 2, and x represents an integer from 0 to 3)
 ブロックBを生じさせる代表的なモノマーの構造を以下に示す。
Figure JPOXMLDOC01-appb-C000017
(一般式(10)中、Rは飽和環状脂肪族基を示し、Rは水素原子またはメチル基を示し、yおよびzは、0~2の整数である)
The structure of a typical monomer that gives rise to block B is shown below.
Figure JPOXMLDOC01-appb-C000017
(In the general formula (10), R 6 represents a saturated cycloaliphatic group, R 7 represents a hydrogen atom or a methyl group, and y and z are integers of 0 to 2)
 放射線硬化型組成物の調製は、繰り返し単位を生じさせるモノマーに、モノマーの重合を開始する光重合開始剤を添加して行う。他の形態においては、放射線硬化型組成物の調製は、繰り返し単位(ブロックA)を生じさせるモノマーに加え、ブロックBを生じさせるモノマーに、光重合開始剤を添加して行う。 Preparation of the radiation curable composition is performed by adding a photopolymerization initiator that initiates polymerization of the monomer to the monomer that generates the repeating unit. In another embodiment, the radiation curable composition is prepared by adding a photopolymerization initiator to the monomer that generates the block B in addition to the monomer that generates the repeating unit (block A).
 光重合開始剤としては、アセトフェノン系、ベンゾフェノン系、チオキサントン系、ベンゾイン、ベンゾインメチルエーテル等のラジカル重合開始剤、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、メタロセン化合物等のカチオン重合開始剤を単独または適宜組み合わせて使用することができる。 Photopolymerization initiators include radical polymerization initiators such as acetophenone, benzophenone, thioxanthone, benzoin, and benzoin methyl ether, and cationic polymerization starts such as aromatic diazonium salts, aromatic sulfonium salts, aromatic iodonium salts, and metallocene compounds. The agents can be used alone or in appropriate combination.
 放射線硬化型組成物に、<低透湿層>にて上述した紫外線吸収剤、レベリング剤や帯電防止剤等、各種添加剤、チオール系材料を添加してもよい。 Various additives and thiol-based materials such as the ultraviolet absorber, leveling agent and antistatic agent described above in <Low moisture permeable layer> may be added to the radiation curable composition.
 放射線硬化型組成物における、モノマー(繰り返し単位(ブロックA)を生じさせるモノマーおよびブロックBを生じさせるモノマーの総量)、光重合開始剤および任意の各種添加剤の各割合は、各材料の種類によって異なり、一義的に規定することは困難であるが、一例として、モノマーの合計が50質量%以上、99質量%以下、光重合開始剤が0.5質量%以上、10質量%以下、各種添加剤が0.01質量%以上、50質量%以下とすることができる。また、トルエンなどの有機溶剤を放射線硬化型組成物に添加してもよい。 In the radiation curable composition, each ratio of the monomer (the total amount of the monomer that generates the repeating unit (block A) and the monomer that generates the block B), the photopolymerization initiator, and any of the various additives depends on the type of each material. However, it is difficult to define uniquely, but as an example, the total amount of monomers is 50% by mass or more and 99% by mass or less, the photopolymerization initiator is 0.5% by mass or more and 10% by mass or less, various additions An agent can be 0.01 mass% or more and 50 mass% or less. Further, an organic solvent such as toluene may be added to the radiation curable composition.
 ブロックAを生じさせるモノマーAと、ブロックBを生じさせるモノマーBとの質量比は、ブロックBに起因する低透湿層の透湿度低下の程度を好適なものとすべく、モノマーA:モノマーB=70:30~15:85の範囲であることが好ましく、60:40~15:85であることがさらに好ましく、50:40~15:85であることが特に好ましい。 The mass ratio of the monomer A that generates the block A and the monomer B that generates the block B is such that the lowering of the moisture permeability of the low moisture permeable layer due to the block B is suitable. = 70: 30 to 15:85 is preferable, 60:40 to 15:85 is more preferable, and 50:40 to 15:85 is particularly preferable.
 調製した放射線硬化型組成物を、セルロース系フィルム上に塗布するには、連続生産性を考えると、ロールコーティング法、グラビアコーティング法等のコーティング法を用いることが好ましい。当該コーティング法によって、薄層、例えば、50μm以下、好ましくは30μm以下の低透湿層を形成するよう放射線硬化型組成物を塗布できる。 In order to apply the prepared radiation curable composition on the cellulose film, it is preferable to use a coating method such as a roll coating method or a gravure coating method in consideration of continuous productivity. By the coating method, the radiation curable composition can be applied so as to form a thin layer, for example, a low moisture permeability layer of 50 μm or less, preferably 30 μm or less.
 工程(A2)における硬化は、紫外線照射装置から紫外線を照射することで行うことができる。用いる紫外線光源は特に限定されないが、波長400nm以下に発光分布を有する、たとえば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプなどを用いることができる。エポキシ化合物を活性放射線硬化性成分とする接着剤を用いる場合、一般的な重合開始剤が示す吸収波長を考慮すると、400nm以下の光を多く有する高圧水銀灯またはメタルハライドランプが、紫外線光源として好ましく用いられる。 Curing in the step (A2) can be performed by irradiating ultraviolet rays from an ultraviolet irradiation device. The ultraviolet light source to be used is not particularly limited, but has a light emission distribution at a wavelength of 400 nm or less, such as a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, a metal halide lamp, etc. Can be used. When using an adhesive containing an epoxy compound as an actinic radiation curable component, a high-pressure mercury lamp or metal halide lamp having a lot of light of 400 nm or less is preferably used as an ultraviolet light source in consideration of an absorption wavelength exhibited by a general polymerization initiator. .
 放射線硬化型組成物を硬化することで、セルロース系フィルム上に低透湿層が形成され、セルロース系フィルムに低透湿層が積層されたフィルム積層体が得られる。 By curing the radiation curable composition, a low moisture-permeable layer is formed on the cellulose film, and a film laminate in which the low moisture-permeable layer is laminated on the cellulose film is obtained.
 [機能層形成工程]
 フィルム積層体の製造方法のバリエーションとして、フィルム積層体形成工程(A1)および(A2)の後に、機能層形成工程(B)を含む製造方法が挙げられる。機能層形成工程(B)は、フィルム積層体上に、《機能層》にて上述した機能層の原料である放射線硬化型組成物を塗布し、硬化させてフィルム積層体上に機能層を形成する。
[Functional layer formation process]
As a variation of the manufacturing method of a film laminated body, the manufacturing method which contains a functional layer formation process (B) after a film laminated body formation process (A1) and (A2) is mentioned. In the functional layer formation step (B), the radiation curable composition that is the raw material of the functional layer described above in << functional layer >> is applied on the film laminate and cured to form the functional layer on the film laminate. To do.
 上記機能層としては特に限定されないが、上述したハードコート層、防眩層および反射防止層が挙げられる。機能層の原料である放射線硬化型組成物は、ハードコート層、防眩層、および反射防止層の説明にて上述した樹脂等を含む。また、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン(MIBK)、イソプロピルアルコール(IPA)、トルエンなどの有機溶剤が添加されていてもよい。 The functional layer is not particularly limited, and examples thereof include the hard coat layer, the antiglare layer, and the antireflection layer described above. The radiation curable composition that is a raw material of the functional layer includes the resin described above in the description of the hard coat layer, the antiglare layer, and the antireflection layer. An organic solvent such as methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone (MIBK), isopropyl alcohol (IPA), or toluene may be added.
 機能層の原料である放射線硬化型組成物を、フィルム積層体上に塗布するには、連続生産性を考えると、ロールコーティング法、グラビアコーティング法等のコーティング法を用いることが好ましい。使用する放射線硬化型組成物に応じて、任意に加熱を行った後、紫外線照射等によって架橋、硬化する方法を用いればよい。 In order to apply the radiation curable composition, which is a raw material of the functional layer, on the film laminate, it is preferable to use a coating method such as a roll coating method or a gravure coating method in consideration of continuous productivity. According to the radiation curable composition to be used, a method of arbitrarily heating and then crosslinking and curing by ultraviolet irradiation or the like may be used.
 フィルム積層体上に防眩層を形成するには、例えば、透光性微粒子を含有する放射線硬化型組成物をフィルム積層体上に塗布することによって、好適に得られる。この様にして得られた防眩層は、表面に凹凸が形成されているため、光を散乱させる防眩機能を有している。上記凹凸の形状は、求められる防眩性によって決定され、より好適な凹凸の形状は粗さパラメータRaによって規定することが可能であり、Ra:0.01μm以上、Sm:50μm~500μm、平均傾斜角:0.1°~3.0°であることがより好ましい。 In order to form the antiglare layer on the film laminate, for example, it can be suitably obtained by applying a radiation curable composition containing translucent fine particles on the film laminate. The antiglare layer thus obtained has an antiglare function for scattering light because the surface has irregularities. The shape of the unevenness is determined by the required antiglare property, and a more preferable uneven shape can be defined by the roughness parameter Ra, Ra: 0.01 μm or more, Sm: 50 μm to 500 μm, average slope Angle: More preferably from 0.1 ° to 3.0 °.
 機能層を形成する際、複数層を形成することもできる。例えば、複数のハードコート層を形成する場合、フィルム積層体上に第1ハードコート層を形成し、第1ハードコート層上に第2ハードコート層を形成する。上記第2ハードコート層に代えて、防眩層を形成してもよい。 When forming the functional layer, a plurality of layers can be formed. For example, when a plurality of hard coat layers are formed, a first hard coat layer is formed on the film laminate, and a second hard coat layer is formed on the first hard coat layer. An antiglare layer may be formed in place of the second hard coat layer.
 また、反射防止層を形成する場合、フィルム積層体上に高屈折率層を形成し、上記高屈折率層上に低屈折率層を形成する。これにより、フィルム積層体、反射防止層の順で積層されたフィルム積層体が得られる。 Further, when forming the antireflection layer, a high refractive index layer is formed on the film laminate, and a low refractive index layer is formed on the high refractive index layer. Thereby, the film laminated body laminated | stacked in order of the film laminated body and the antireflection layer is obtained.
 本発明に係るフィルム積層体の製造方法は、前述した方法に限らず、次の方法で形成されてもよい。即ち、(1)剥離フィルムに低透湿層を形成し、低透湿層をTACフィルムに転写させた後、剥離フィルムを剥がす方法、(2)剥離フィルムに機能層を形成し、その上に低透湿層を形成し、低透湿層をTACフィルムに転写させた後、剥離フィルムを剥がす方法、(3)剥離フィルムに低透湿層を形成し、その上に機能層を形成した後、剥離フィルムを剥がした面をTACフィルムへ貼合させる方法、が挙げられる。 The method for producing a film laminate according to the present invention is not limited to the method described above, and may be formed by the following method. That is, (1) a method of forming a low moisture-permeable layer on a release film, transferring the low moisture-permeable layer to a TAC film, and then removing the release film, (2) forming a functional layer on the release film, After forming a low moisture permeable layer and transferring the low moisture permeable layer to the TAC film, (3) After forming the low moisture permeable layer on the peeled film and forming the functional layer thereon The method of bonding the surface which peeled the peeling film to the TAC film is mentioned.
 《偏光板の製造方法》
 本発明に係る偏光板は、偏光フィルムの少なくとも片面に本発明に係るフィルム積層体を備える。本発明に係る偏光板の製造方法では、上記フィルム積層体を偏光フィルムに貼合する点が重要であり、貼合手法は公知の手法を採用すればよく、特に限定されるものではない。
<< Polarizing plate manufacturing method >>
The polarizing plate according to the present invention includes the film laminate according to the present invention on at least one surface of a polarizing film. In the manufacturing method of the polarizing plate which concerns on this invention, the point which bonds the said film laminated body to a polarizing film is important, What is necessary is just to employ | adopt a well-known method as a bonding method, and it is not specifically limited.
 例えば、フィルム積層体形成工程の後、または、フィルム積層体形成工程および機能層形成工程の後、上記フィルム積層体のセルロース系フィルム側を偏光フィルムに貼合すれば、本発明に係る偏光板が得られる。 For example, after the film laminate forming step, or after the film laminate forming step and the functional layer forming step, if the cellulose film side of the film laminate is bonded to a polarizing film, the polarizing plate according to the present invention is obtained. can get.
 偏光板の製造方法に係る工程をより具体的に説明する。下記工程(C1)~(C3)は、フィルム積層体形成工程の後、または、フィルム積層体形成工程および機能層形成工程の後に実施される。 The process related to the method for producing a polarizing plate will be described more specifically. The following steps (C1) to (C3) are performed after the film laminate forming step or after the film laminate forming step and the functional layer forming step.
(C1)フィルム積層体のセルロース系フィルム側(または偏光フィルム)に親水性の接着剤を塗布する塗工工程、
(C2)塗工工程で塗布された親水性の接着剤面に偏光フィルム(またはフィルム積層体のセルロース系フィルム側)を重ねて加圧する貼合工程、
(C3)偏光フィルムに親水性の接着剤を介してフィルム積層体が貼合されたフィルム積層体に対して、ドライヤーで加熱乾燥させることにより、親水性の接着剤を硬化させる硬化工程。
(C1) a coating step of applying a hydrophilic adhesive to the cellulose-based film side (or polarizing film) of the film laminate,
(C2) A bonding step in which a polarizing film (or a cellulose-based film side of the film laminate) is applied to the hydrophilic adhesive surface applied in the coating step and pressed.
(C3) A curing step in which the hydrophilic adhesive is cured by heating and drying with a dryer on the film laminate in which the film laminate is bonded to the polarizing film via the hydrophilic adhesive.
 塗工工程(C1)では、偏光フィルムの貼合面となる、フィルム積層体のセルロース系フィルム側に親水性の接着剤を塗布する(または、フィルム積層体のセルロース系フィルム側に代えて、偏光フィルムに親水性の接着剤を塗布する)。ここで用いる塗工機としては、公知のものを適宜用いることができ、例えば、グラビアロールを用いる塗工機などが挙げられる。このとき、セルロース系フィルムと親水性の接着剤との接着性を高めるために、事前にセルロース系フィルム面をプラズマ処理、コロナ処理、ケン化処理などの表面処理を適宜施してもよい。ケン化処理は、水酸化ナトリウムや水酸化カリウムのようなアルカリ水溶液にフィルムを浸漬することによって行われる。 In the coating step (C1), a hydrophilic adhesive is applied to the cellulose-based film side of the film laminate, which becomes the bonding surface of the polarizing film (or instead of the cellulose-based film side of the film laminate, polarized light is applied). Apply a hydrophilic adhesive to the film). As a coating machine used here, a well-known thing can be used suitably, for example, the coating machine using a gravure roll etc. are mentioned. At this time, in order to improve the adhesiveness between the cellulose-based film and the hydrophilic adhesive, the cellulose-based film surface may be appropriately subjected to surface treatment such as plasma treatment, corona treatment, and saponification treatment in advance. The saponification treatment is performed by immersing the film in an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide.
 貼合工程(C2)では、塗工工程(C1)を経た後、フィルム積層体の接着剤塗布面に、偏光フィルムを重ねて加圧しながら貼合が行なわれる(塗工工程(C1)で偏光フィルムに親水性の接着剤を塗布した場合、親水性の接着剤面にフィルム積層体のセルロース系フィルム側を重ねて加圧しながら貼合が行なわれる)。貼合工程での加圧には、公知の手段を用いることができるが、連続搬送しながらの加圧が可能であるという観点からは、一対のニップロールにより挟む方式が好ましく用いられ、加圧時の圧力は、一対のニップロールにより挟む場合の線圧で150~500N/cm程度とするのが好ましい。 In the bonding step (C2), after passing through the coating step (C1), the polarizing film is laminated on the adhesive-coated surface of the film laminate, and the bonding is performed while pressing (polarization in the coating step (C1)). When a hydrophilic adhesive is applied to the film, bonding is performed while pressing the cellulose-based film side of the film laminate on the hydrophilic adhesive surface). A known means can be used for pressurization in the bonding step, but from the viewpoint that pressurization while continuous conveyance is possible, a method of sandwiching between a pair of nip rolls is preferably used. Is preferably about 150 to 500 N / cm as a linear pressure when sandwiched between a pair of nip rolls.
 硬化工程(C3)では、偏光フィルムにフィルム積層体を貼合した後、ドライヤーで加熱乾燥せることで、溶媒が揮発し、親水性の接着剤が硬化せしめられる。 In the curing step (C3), after the film laminate is bonded to the polarizing film, the solvent is volatilized and the hydrophilic adhesive is cured by heating and drying with a dryer.
 上記では、フィルム積層体のセルロース系フィルム側に偏光フィルムを貼合すると説明したが、変形例として《フィルム積層体の製造方法》で用いるセルロース系フィルムに、予め偏光フィルムが貼合されたものを用いてもよい。この場合、偏光フィルム付きのセルロース系フィルムに低透湿層を形成する。これにより、本発明に係る偏光板が得られる。 In the above description, the polarizing film is bonded to the cellulose-based film side of the film laminate. However, as a modification, the cellulose-based film used in the << film laminate manufacturing method >> has a polarizing film bonded in advance. It may be used. In this case, a low moisture-permeable layer is formed on the cellulose film with a polarizing film. Thereby, the polarizing plate which concerns on this invention is obtained.
 以下、実施例および比較例に基づき、本発明を説明するが、本発明は実施例の内容に限定されるものではない。得られたフィルム積層体を測定対象とし、当該フィルム積層体の透湿度は以下の測定方法にて測定した。 Hereinafter, the present invention will be described based on examples and comparative examples, but the present invention is not limited to the contents of the examples. The obtained film laminate was measured, and the moisture permeability of the film laminate was measured by the following measurement method.
 〔膜厚〕
 デジタルリニアゲージD-10HSおよびデジタルカウンタC-7HS(株式会社尾崎製作所製)を用いて、セルロース系フィルムおよびフィルム積層体の膜厚を測定し、フィルム積層体の膜厚からセルロース系フィルムの膜厚を除することで、低透湿層の膜厚を得た。
[Film thickness]
Using a digital linear gauge D-10HS and a digital counter C-7HS (manufactured by Ozaki Mfg. Co., Ltd.), the film thickness of the cellulose film and the film laminate is measured, and the film thickness of the cellulose film is determined from the film laminate thickness. The film thickness of the low moisture-permeable layer was obtained.
 〔透湿度〕
 JIS Z0208の透湿度試験法(カップ法)に準じて、フィルム積層体に対し、温度40℃、湿度90%RHの雰囲気中、試験片の面積1mあたりの24時間に通過する水蒸気のグラム数を測定した。
[Moisture permeability]
According to the moisture permeability test method (cup method) of JIS Z0208, the number of grams of water vapor that passes through the film laminate in 24 hours per 1 m 2 area of the test piece in an atmosphere of a temperature of 40 ° C. and a humidity of 90% RH. Was measured.
 〔製造例1〕
 化合物1の合成:
 トリシクロデカンジメタノール196.29g(1モル)とε-カプロラクトン228.29g(2モル)をフラスコに仕込み、120℃まで昇温し、触媒としてモノブチルスズオキシド50ppmを添加した。その後、窒素気流下で、残存したε-カプロラクトンがガスクロマトグラフィーで1%以下になるまで反応を行い、ジオール(1)を得た。
[Production Example 1]
Synthesis of Compound 1:
196.29 g (1 mol) of tricyclodecane dimethanol and 228.29 g (2 mol) of ε-caprolactone were charged into a flask, the temperature was raised to 120 ° C., and 50 ppm of monobutyltin oxide was added as a catalyst. Thereafter, the reaction was carried out under a nitrogen stream until the remaining ε-caprolactone was 1% or less by gas chromatography to obtain diol (1).
 別のフラスコにイソホロンジイソシアネート444.58g(2モル)を仕込み、反応温度70℃で、ジオール(1)425.57g(1モル)を加え、残存したイソシアネート基が5.7%となった時点で2-ヒドロキシエチルアクリレート232.24g(2モル)、ジブチルスズラウリレート0.35gを加え、残存したイソシアネート基が0.1%になるまで反応を行い、繰り返し単位(ブロックA)を生じさせるモノマーであるウレタンアクリレート(化合物1)を得た。化合物1は、一般式(1a)においてmが1の繰り返し単位によって形成される低透湿層の原料である。 Charge 445.58 g (2 mol) of isophorone diisocyanate to another flask, add 425.57 g (1 mol) of diol (1) at a reaction temperature of 70 ° C., and when the remaining isocyanate group becomes 5.7%, 2-hydroxyethyl Add 232.24 g (2 mol) of acrylate and 0.35 g of dibutyltin laurate and react until the remaining isocyanate group is 0.1% to obtain urethane acrylate (compound 1) which is a monomer that generates repeating units (block A). It was. Compound 1 is a raw material for the low moisture-permeable layer formed by the repeating unit in which m is 1 in the general formula (1a).
 〔製造例2〕
 化合物2の合成:
 ε-カプロラクトン114.14g(1モル)、および2-ヒドロキシエチルアクリレート116.12g(1モル)を窒素気流下、120℃で反応させ、100質量部のε-カプロラクトン114.14g(1モル)に対して、触媒として株式会社クレハ製球状活性炭BACを5質量部添加し、2-ヒドロキシエチルアクリレートのラジカル重合を抑制するため、4-メトキシフェノールを重合系全体に対して500mg/Kg添加した。その後、ε-カプロラクトンがガスクロマトグラフィーで1%以下になるまで反応を行い、ε-カプロラクトン変性ヒドロキシエチルアクリレート(2)を得た。
[Production Example 2]
Synthesis of compound 2:
114.14 g (1 mol) of ε-caprolactone and 116.12 g (1 mol) of 2-hydroxyethyl acrylate were reacted at 120 ° C. under a nitrogen stream, and with respect to 100 parts by mass of 114.14 g (1 mol) of ε-caprolactone, As a catalyst, 5 parts by mass of spherical activated carbon BAC manufactured by Kureha Co., Ltd. was added, and in order to suppress radical polymerization of 2-hydroxyethyl acrylate, 500 mg / kg of 4-methoxyphenol was added to the entire polymerization system. Thereafter, the reaction was performed until ε-caprolactone became 1% or less by gas chromatography to obtain ε-caprolactone-modified hydroxyethyl acrylate (2).
 フラスコにイソホロンジイソシアネート444.58g(2モル)を仕込み、反応温度70℃で、トリシクロデカンジメタノール196.29g(1モル)を加え、残存イソシアネート基が5.7%になった時点でε-カプロラクトン変性ヒドロキシエチルアクリレート(2) 2モル 460.52gを加え、残存イソシアネート基が0.1%になるまで反応を行い、繰り返し単位を生じさせるモノマーであるウレタンアクリレート(化合物2)を得た。化合物2は、一般式(2a)においてmが1の繰り返し単位によって形成される低透湿層の原料である。 Charge 44.58 g (2 mol) of isophorone diisocyanate to the flask, add 196.29 g (1 mol) of tricyclodecane dimethanol at a reaction temperature of 70 ° C., and ε-caprolactone-modified hydroxyethyl when the residual isocyanate group becomes 5.7%. Acrylate (2) 2 mol 460.52 g was added, and the reaction was continued until the residual isocyanate group became 0.1% to obtain urethane acrylate (compound 2) which is a monomer for generating repeating units. Compound 2 is a raw material for the low moisture-permeable layer formed by the repeating unit in which m is 1 in the general formula (2a).
 〔製造例3〕
 ジオール(1)の合成量を2倍に変更し、イソホロンジイソシアネートの使用量を2モルから3モルに変更した以外は製造例1と同様にして、繰り返し単位を生じさせるモノマーである化合物1aを得た。化合物1aは、一般式(1a)においてmが2の繰り返し単位によって形成される低透湿層の原料である。
[Production Example 3]
Compound 1a, which is a monomer that produces repeating units, is obtained in the same manner as in Production Example 1 except that the amount of diol (1) synthesized is changed to twice and the amount of isophorone diisocyanate used is changed from 2 mol to 3 mol. It was. Compound 1a is a raw material for the low moisture-permeable layer formed by the repeating unit in which m is 2 in the general formula (1a).
 〔製造例4〕
 ジオール(1)の合成量を3倍に変更し、イソホロンジイソシアネートの使用量を2モルから4モルに変更した以外は製造例1と同様にして、化合物1bを得た。化合物1bは、一般式(1a)においてmが3の繰り返し単位によって形成される低透湿層の原料である。
[Production Example 4]
Compound 1b was obtained in the same manner as in Production Example 1, except that the amount of diol (1) synthesized was changed to 3 times and the amount of isophorone diisocyanate used was changed from 2 mol to 4 mol. Compound 1b is a raw material for the low moisture-permeable layer formed by the repeating unit having m of 3 in the general formula (1a).
 〔実施例1:TACフィルム基材/低透湿層〕
 アプリケーターを用いて、コニカミノルタ社製TACフィルム KC2UAW(25μm厚さ、透湿度1060g/(m・24h))に下記低透湿層形成用放射線硬化型組成物(P1)を塗布した。低透湿層形成用放射線硬化型組成物(P1)はトルエンを含有しており、固形分率(NV)が60%である。
[Example 1: TAC film substrate / low moisture-permeable layer]
The following radiation curable composition for forming a low moisture permeable layer (P1) was applied to a TAC film KC2UAW (25 μm thickness, moisture permeability 1060 g / (m 2 · 24 h)) manufactured by Konica Minolta using an applicator. The radiation curable composition (P1) for forming a low moisture permeable layer contains toluene and has a solid content (NV) of 60%.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 低透湿層形成用放射線硬化型組成物(P1)の塗布厚は、乾燥後の膜厚が20μm~30μmとなるよう調整した。乾燥炉内温度100℃に設定したクリーンオーブン内で、塗工膜を乾燥させ、その後、窒素雰囲気下でピーク照度326mW/cm2、積算光量192mJ/cm2の条件で紫外線硬化させ、TACフィルムの片面に低透湿層が形成されたフィルム積層体を得た。このフィルム積層体に対する評価結果を表6に示す。 The coating thickness of the radiation curable composition (P1) for forming a low moisture permeable layer was adjusted so that the film thickness after drying was 20 μm to 30 μm. The coating film is dried in a clean oven set at a drying oven temperature of 100 ° C, and then UV-cured under a nitrogen atmosphere under conditions of peak illuminance of 326 mW / cm 2 and integrated light intensity of 192 mJ / cm 2 , A film laminate having a low moisture permeability layer formed on one side was obtained. The evaluation results for this film laminate are shown in Table 6.
 〔実施例2:TACフィルム基材/低透湿層/HC層〕
 実施例1で得たフィルム積層体の低透湿層側に、リバースコーティング法によって、下記HC層形成用放射線硬化型組成物(HC1)を塗布した。形成した塗工膜を100℃で1分間乾燥し、窒素雰囲気中で、1灯の120W/cm集光型高圧水銀灯を用いて紫外線照射を行い(照射距離10cm、照射時間30秒)、塗工膜を硬化し、厚さ2.5μm、屈折率1.52のハードコート層(HC層)を形成した。このフィルム積層体に対する評価結果を表6に示す。
[Example 2: TAC film substrate / low moisture permeability layer / HC layer]
The following radiation curable composition for HC layer formation (HC1) was applied to the low moisture permeable layer side of the film laminate obtained in Example 1 by a reverse coating method. The formed coating film is dried at 100 ° C. for 1 minute, and then irradiated with ultraviolet rays using a 120W / cm condensing high-pressure mercury lamp in a nitrogen atmosphere (irradiation distance 10 cm, irradiation time 30 seconds). The film was cured to form a hard coat layer (HC layer) having a thickness of 2.5 μm and a refractive index of 1.52. The evaluation results for this film laminate are shown in Table 6.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 〔実施例3:TACフィルム基材/低透湿層/AG層(フィラー含有)〕
 実施例1で得たフィルム積層体の低透湿層側に、リバースコーティング法によって、下記AG層形成用放射線硬化型組成物(AG1)を塗布した。形成した塗工膜を100℃で1分間乾燥し、窒素雰囲気中で、1灯の120W/cm集光型高圧水銀灯を用いて紫外線照射を行い(照射距離10cm、照射時間30秒)、塗工膜を硬化し、厚さ6μmの防眩層(AG層)を形成した。このフィルム積層体に対する評価結果を表6に示す。
[Example 3: TAC film substrate / low moisture-permeable layer / AG layer (containing filler)]
The following radiation curable composition for AG layer formation (AG1) was applied to the low moisture-permeable layer side of the film laminate obtained in Example 1 by a reverse coating method. The formed coating film is dried at 100 ° C. for 1 minute, and then irradiated with ultraviolet rays using a 120W / cm condensing high-pressure mercury lamp in a nitrogen atmosphere (irradiation distance 10 cm, irradiation time 30 seconds). The film was cured to form an antiglare layer (AG layer) having a thickness of 6 μm. The evaluation results for this film laminate are shown in Table 6.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 〔実施例4:TACフィルム基材/低透湿層/高屈折率層兼AG層/低屈折率層〕
 実施例3で得たフィルム積層体のAG層側に、リバースコーティング法によって以下の低屈折率塗料(LR1)を塗布し、100℃で1分間、塗工膜を乾燥させ、厚さ0.1μm、屈折率1.38の凹凸のある低屈折率層を形成した。その後、低屈折率層の硬化のため、60℃で120時間静置した。このフィルム積層体に対する評価結果を表6に示す。
[Example 4: TAC film substrate / low moisture permeability layer / high refractive index layer / AG layer / low refractive index layer]
The following low refractive index paint (LR1) was applied to the AG layer side of the film laminate obtained in Example 3 by a reverse coating method, and the coating film was dried at 100 ° C. for 1 minute to obtain a thickness of 0.1 μm, An uneven low refractive index layer having a refractive index of 1.38 was formed. Then, it left still at 60 degreeC for 120 hours for hardening of a low refractive index layer. The evaluation results for this film laminate are shown in Table 6.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 〔実施例5:TACフィルム基材/低透湿層/高屈折率層兼HC層/低屈折率層〕
 実施例1で得たフィルム積層体の低透湿層側に、リバースコーティング法によって下記の高屈折率層兼HC層形成用放射線硬化型組成物(HC2)を塗布した。100℃で1分間乾燥後、窒素雰囲気中で120W/cm集光型高圧水銀灯1灯で紫外線照射(照射距離10cm、照射時間30秒)を行い、塗工膜を硬化させ、厚さ2.5μm、屈折率1.64のHC層を形成した。
[Example 5: TAC film substrate / low moisture permeability layer / high refractive index layer / HC layer / low refractive index layer]
The following radiation curable composition for forming a high refractive index layer and HC layer (HC2) was applied to the low moisture permeable layer side of the film laminate obtained in Example 1 by a reverse coating method. After drying at 100 ° C for 1 minute, UV irradiation (irradiation distance 10cm, irradiation time 30 seconds) is performed with one 120W / cm condensing type high-pressure mercury lamp in nitrogen atmosphere, the coating film is cured, and the thickness is 2.5μm. An HC layer having a refractive index of 1.64 was formed.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 続いて、アプリケーターを用いて、上記高屈折率層上に実施例4に記載した低屈折率塗料(LR1)を塗工し、塗工膜を100℃で1分間乾燥した後、硬化させて厚さ0.1μm、屈折率1.38の低屈折率層を形成した。その後、低屈折率層の硬化のため、60℃で120時間静置した。このフィルム積層体に対する評価結果を表6に示す。 Subsequently, using the applicator, the low refractive index paint (LR1) described in Example 4 was applied onto the high refractive index layer, and the coating film was dried at 100 ° C. for 1 minute, and then cured to be thick. A low refractive index layer having a thickness of 0.1 μm and a refractive index of 1.38 was formed. Then, it left still at 60 degreeC for 120 hours for hardening of a low refractive index layer. The evaluation results for this film laminate are shown in Table 6.
 〔実施例6~8:TACフィルム基材/低透湿層〕
 実施例6では化合物1を化合物2に変更し、実施例7では化合物1を化合物1aに変更し、実施例8では化合物1を化合物1bに変更し、当該変更以外は実施例1と同様にしてTACフィルムの片面に低透湿層が形成されたフィルム積層体を得た。このフィルム積層体に対する評価結果を表6に示す。
[Examples 6 to 8: TAC film substrate / low moisture-permeable layer]
In Example 6, Compound 1 was changed to Compound 2, in Example 7, Compound 1 was changed to Compound 1a, and in Example 8, Compound 1 was changed to Compound 1b. A film laminate in which a low moisture-permeable layer was formed on one side of the TAC film was obtained. The evaluation results for this film laminate are shown in Table 6.
 〔比較例1〕
 化合物1を下記一般式(11)で示される化合物3(アルケマ社製)に変更した以外は、実施例1と同様にしてTACフィルムの片面に硬化膜を形成し、フィルム積層体を得た。このフィルム積層体に対する評価結果を表6に示す。
Figure JPOXMLDOC01-appb-C000023
[Comparative Example 1]
A cured film was formed on one side of the TAC film in the same manner as in Example 1 except that Compound 1 was changed to Compound 3 (manufactured by Arkema) represented by the following general formula (11) to obtain a film laminate. The evaluation results for this film laminate are shown in Table 6.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 表6に示すように、実施例1~5の化合物1、実施例6の化合物2を用いた場合に、非常に低透湿度のフィルム積層体が得られた。また、実施例2~5では、機能層により透湿度がより低くなっていた。実施例7、8における化合物1a、1bを原料とするフィルム積層体は、実施例1(化合物1)には劣るものの、本発明のフィルム積層体に要求される低透湿度を達成していた。 As shown in Table 6, when the compounds 1 of Examples 1 to 5 and the compound 2 of Example 6 were used, a film laminate having a very low moisture permeability was obtained. In Examples 2 to 5, the moisture permeability was lower due to the functional layer. Although the film laminated body which uses the compound 1a, 1b in Example 7 and 8 as a raw material is inferior to Example 1 (compound 1), the low water vapor transmission required for the film laminated body of the present invention was achieved.
 一方、比較例1で形成したフィルム積層体は非常に透湿度が高くなった。化合物3の繰り返し単位にはウレタン結合(-NH-CO-O-)や飽和環状脂肪族基が含まれないため、繰り返し単位間の凝集力が過度に低くなることで、水蒸気の透過性が高まったと考えられる。 On the other hand, the film laminate formed in Comparative Example 1 had very high moisture permeability. Since the repeating unit of Compound 3 does not contain a urethane bond (—NH—CO—O—) or a saturated cycloaliphatic group, the cohesive force between the repeating units becomes excessively low, thereby increasing the water vapor permeability. It is thought.
 本発明に係るフィルム積層体は、薄層の状態で低透湿であり、低透湿性が要求される用途、特に、偏光板の構成部材として有用であり、種々の分野にて利用可能である。 The film laminate according to the present invention has a low moisture permeability in a thin layer state, and is useful as a constituent member of a polarizing plate, particularly in applications where low moisture permeability is required, and can be used in various fields. .

Claims (7)

  1.  セルロース系フィルム上に低透湿層が積層されてなるフィルム積層体において、
     前記低透湿層は2官能性のウレタン(メタ)アクリレート由来の構造を有する繰り返し単位によって形成されており、
     上記繰り返し単位は、複数種類の飽和環状脂肪族基を有することを特徴とするフィルム積層体。
    In a film laminate in which a low moisture-permeable layer is laminated on a cellulose film,
    The low moisture-permeable layer is formed by a repeating unit having a structure derived from a bifunctional urethane (meth) acrylate,
    The repeating unit has a plurality of types of saturated cycloaliphatic groups.
  2.  上記繰り返し単位は、
     飽和環状脂肪族基Rを含む下記構造A、および、
     飽和環状脂肪族基Rを含む下記構造Cを含むことを特徴とする請求項1に記載のフィルム積層体。
    -CO-NH-R-NH-CO-・・・(構造A)
    -O-R-O-・・・(構造C)
    The above repeating unit is
    The following structure A containing a saturated cycloaliphatic group R 1 , and
    Film laminate according to claim 1, characterized in that it comprises the following structure C that includes a saturated cyclic aliphatic group R 3.
    —CO—NH—R 1 —NH—CO— (Structure A)
    —O—R 3 —O— (Structure C)
  3.  上記繰り返し単位は、
     さらに、飽和脂肪族鎖Rを含む下記構造Bを含むことを特徴とする請求項2に記載のフィルム積層体。
    -O-R-CO-・・・(構造B)
    The above repeating unit is
    The film laminate according to claim 2, further comprising the following structure B containing a saturated aliphatic chain R 2 .
    —O—R 2 —CO— (Structure B)
  4.  上記繰り返し単位が、下記一般式(1)で表される構造であることを特徴とする請求項3に記載のフィルム積層体。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、Rは飽和環状脂肪族基を示し、Rは炭素数5~10の直鎖または分鎖構造を含む飽和脂肪族鎖を示し、Rは、Rと異なる飽和環状脂肪族基を示し、Rは水素原子またはメチル基を示し、Rは、水素原子、メチル基またはエチル基を示し、mは1~4の整数を示し、rおよびsはそれぞれ0~2の整数を示し、かつ、rとsとの和は1~2であり、xは0~3の整数を示す)
    The said laminated unit is a structure represented by following General formula (1), The film laminated body of Claim 3 characterized by the above-mentioned.
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), R 1 represents a saturated cycloaliphatic group, R 2 represents a saturated aliphatic chain having a linear or branched structure having 5 to 10 carbon atoms, and R 3 represents R 1 and Each represents a different saturated cycloaliphatic group; R 4 represents a hydrogen atom or a methyl group; R 5 represents a hydrogen atom, a methyl group or an ethyl group; m represents an integer of 1 to 4; An integer from 0 to 2 is shown, and the sum of r and s is 1 to 2, and x is an integer from 0 to 3)
  5.  前記セルロース系フィルムが、膜厚10~80μmであり、かつ、透湿度300g/(m・24時間)以上であることを特徴とする請求項1~4の何れか1項に記載のフィルム積層体。 The film lamination according to any one of claims 1 to 4, wherein the cellulose-based film has a thickness of 10 to 80 µm and a moisture permeability of 300 g / (m 2 · 24 hours) or more. body.
  6.  透湿度が150g/(m・24時間)以下であることを特徴とする請求項1~5の何れか1項に記載のフィルム積層体。 The film laminate according to any one of claims 1 to 5, wherein the moisture permeability is 150 g / (m 2 · 24 hours) or less.
  7.  偏光フィルムの少なくとも片面に、請求項1~6の何れか1項に記載のフィルム積層体を備えることを特徴とする偏光板。 A polarizing plate comprising the film laminate according to any one of claims 1 to 6 on at least one surface of a polarizing film.
PCT/JP2015/076355 2014-09-19 2015-09-16 Film laminate and polarization plate WO2016043242A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016548924A JPWO2016043242A1 (en) 2014-09-19 2015-09-16 Film laminate and polarizing plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-190959 2014-09-19
JP2014190959 2014-09-19

Publications (1)

Publication Number Publication Date
WO2016043242A1 true WO2016043242A1 (en) 2016-03-24

Family

ID=55533278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076355 WO2016043242A1 (en) 2014-09-19 2015-09-16 Film laminate and polarization plate

Country Status (2)

Country Link
JP (1) JPWO2016043242A1 (en)
WO (1) WO2016043242A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018016015A (en) * 2016-07-29 2018-02-01 富士フイルム株式会社 Laminate, optical film, polarizing plate protective film, polarizing plate, and image display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083225A (en) * 2004-09-14 2006-03-30 Fuji Photo Film Co Ltd Functional film
JP2007131837A (en) * 2005-10-12 2007-05-31 Dainippon Ink & Chem Inc Active energy ray-curable resin composition for film-protective layer, and film and optical sheet using the composition
JP2010083959A (en) * 2008-09-30 2010-04-15 Dic Corp Active energy ray-curable resin composition for coating, and film substrate
JP2011093133A (en) * 2009-10-28 2011-05-12 Toppan Printing Co Ltd Low moisture vapor transmissive hard coat film, polarizing plate, and transmission type liquid crystal display
JP2011208097A (en) * 2010-03-30 2011-10-20 Dainippon Printing Co Ltd Electron beam-curable resin composition and laminate obtained using the same
WO2013118655A1 (en) * 2012-02-07 2013-08-15 昭和電工株式会社 Urethane (meth)acrylate and moisture-proof insulating coating material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083225A (en) * 2004-09-14 2006-03-30 Fuji Photo Film Co Ltd Functional film
JP2007131837A (en) * 2005-10-12 2007-05-31 Dainippon Ink & Chem Inc Active energy ray-curable resin composition for film-protective layer, and film and optical sheet using the composition
JP2010083959A (en) * 2008-09-30 2010-04-15 Dic Corp Active energy ray-curable resin composition for coating, and film substrate
JP2011093133A (en) * 2009-10-28 2011-05-12 Toppan Printing Co Ltd Low moisture vapor transmissive hard coat film, polarizing plate, and transmission type liquid crystal display
JP2011208097A (en) * 2010-03-30 2011-10-20 Dainippon Printing Co Ltd Electron beam-curable resin composition and laminate obtained using the same
WO2013118655A1 (en) * 2012-02-07 2013-08-15 昭和電工株式会社 Urethane (meth)acrylate and moisture-proof insulating coating material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018016015A (en) * 2016-07-29 2018-02-01 富士フイルム株式会社 Laminate, optical film, polarizing plate protective film, polarizing plate, and image display device

Also Published As

Publication number Publication date
JPWO2016043242A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
KR101415840B1 (en) Hard coating film
KR101051226B1 (en) Optical film
KR101686644B1 (en) Plastic film laminate
KR102025965B1 (en) Protective film, film layered product and polarizer
KR20140027019A (en) Hard coating film
WO2016171187A1 (en) Photocurable resin composition, method for manufacturing cured film using same, and laminate containing said cured film
JP2010228314A (en) Hard coat film and polarizing plate and image display device using the same
KR101886589B1 (en) Protective film, film layered body, and polarizing plate
JP6577768B2 (en) Hard coat film, polarizing plate, display member and display device using the same
KR20180101463A (en) A hard coating film, a polarizing plate using the same, a hard coated film processed product, a display member
JP5616036B2 (en) Laminate formed by laminating a substrate, an intermediate film, and a fine relief structure film
WO2016043240A1 (en) Protective film, film layered body, and polarizing plate
JP6721410B2 (en) Protective film, film laminate, and polarizing plate
WO2016043241A1 (en) Polarizing plate
TWI601971B (en) Protection film, film laminate, and polarizing plate
WO2016043242A1 (en) Film laminate and polarization plate
JP6757177B2 (en) Protective film, film laminate and polarizing plate
TWI572886B (en) Protection film, film laminate and polarizing plate
JP2017078840A (en) Protective film, film laminate and polarizing plate
WO2016043239A1 (en) Protective film, film laminate, and polarizing plate
JP2017009886A (en) Resin composition, protective film, and polarizing plate
KR102312479B1 (en) Radical curable adhesive composition, adhesive layer, polarizing plate and image display apparatus
JP2023135469A (en) Polarizing plate, display member, method of manufacturing polarizing plate
JP2024035100A (en) Laminate, method for manufacturing the laminate, optical member, and image display device
JP2016216618A (en) Resin composition, protective film, and polarizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841895

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016548924

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15841895

Country of ref document: EP

Kind code of ref document: A1