WO2016171187A1 - Photocurable resin composition, method for manufacturing cured film using same, and laminate containing said cured film - Google Patents

Photocurable resin composition, method for manufacturing cured film using same, and laminate containing said cured film Download PDF

Info

Publication number
WO2016171187A1
WO2016171187A1 PCT/JP2016/062552 JP2016062552W WO2016171187A1 WO 2016171187 A1 WO2016171187 A1 WO 2016171187A1 JP 2016062552 W JP2016062552 W JP 2016062552W WO 2016171187 A1 WO2016171187 A1 WO 2016171187A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
cured film
polyrotaxane
acrylate
resin composition
Prior art date
Application number
PCT/JP2016/062552
Other languages
French (fr)
Japanese (ja)
Inventor
未央 安井
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2017514171A priority Critical patent/JPWO2016171187A1/en
Priority to KR1020177033427A priority patent/KR20170139600A/en
Publication of WO2016171187A1 publication Critical patent/WO2016171187A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers

Definitions

  • the present invention relates to a photocurable resin composition, a method for producing a cured film using the same, and a laminate including the cured film.
  • a photocurable resin composition for forming a hard coat layer on a transparent substrate film for example, a photocurable resin composition containing a bifunctional or higher polyfunctional (meth) acrylate, a polyrotaxane, and a photopolymerization initiator.
  • Patent Document 1 a photocurable resin composition containing a bifunctional or higher polyfunctional (meth) acrylate, a polyrotaxane, and a photopolymerization initiator.
  • the photocurable resin composition described in Patent Document 1 described above was not necessarily satisfactory in surface hardness (pencil hardness) of the cured film obtained.
  • the present invention includes the following inventions [1] to [5].
  • [1] A bifunctional or higher polyfunctional (meth) acrylate, polyrotaxane, silica particles, and a photopolymerization initiator are contained, the content of the polyfunctional (meth) acrylate is X parts by mass, and the polyrotaxane is contained.
  • Laminate [5] The laminate according to [4], wherein the base material has a multilayer structure. [6] The laminate according to [4] or [5], wherein the base material contains a (meth) acrylic resin. [7] A display device comprising the laminate according to [5] or [6].
  • (meth) acrylate represents a generic name of acrylate and methacrylate
  • (meth) acryloyl group represents a generic name of acryloyl group and methacryloyl group
  • (meth) acrylic resin Represents a general term for acrylic resin and methacrylic resin.
  • the photocurable resin composition of this embodiment contains bifunctional or higher polyfunctional (meth) acrylate, polyrotaxane, silica particles, and a photopolymerization initiator.
  • bifunctional or higher polyfunctional (meth) acrylate examples include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and ethylene glycol diacrylate.
  • (Meth) acrylate triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, 3-methylpentanediol di (meth) acrylate, diethylene glycol bis ⁇ - (meth) Acryloyloxypropionate, trimethylolethane tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa ( ) Acrylate, tri (2-hydroxyethyl) isocyanate di (meth) acrylate, pentaerythritol tetra (meth) acrylate, 2,3-bis (meth) acryloyloxyethyloxymethyl [2.2.1] heptane, poly 1 , 2-butadiene di (meth) acrylate, 1,2-bis
  • Polyrotaxane is a pseudopolyrotaxane in which the openings of multiple cyclic molecules are skewered by linear molecules, and the multiple cyclic molecules include the linear molecules (both ends of the linear molecules). Further, a blocking group is arranged so that the cyclic molecule is not released.
  • the linear molecule contained in the polyrotaxane is not particularly limited as long as it is a molecule or substance that is included in a cyclic molecule and can be integrated non-covalently and is linear. In the present specification, the “linear molecule” means a molecule including a polymer and all other substances satisfying the above requirements.
  • linear of “linear molecule” means substantially “linear”. That is, the linear molecule may have a branched chain as long as the cyclic molecule as a rotor is rotatable or the cyclic molecule is slidable or movable on the linear molecule. Further, the length of the “straight chain” is not particularly limited as long as the cyclic molecule can slide or move on the linear molecule.
  • linear molecules examples include polyvinyl alcohol, polyvinyl pyrrolidone, poly (meth) acrylic acid, cellulose resins (carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, etc.), polyacrylamide, polyethylene oxide, polyethylene glycol, polyvinyl acetal type.
  • Hydrophilic polymers such as resin, polyvinyl methyl ether, polyamine, polyethyleneimine, casein, gelatin, starch, or copolymers thereof; polyolefin resins (polyethylene, polypropylene, copolymer resins with other olefin monomers, etc.) , Polyester resin, polyvinyl chloride resin, polystyrene resin (polystyrene, acrylonitrile-styrene copolymer resin, etc.), acrylic resin (polymethyl) Hydrophobic polymers such as tacrylate, (meth) acrylic acid ester copolymer, acrylonitrile-methyl acrylate copolymer resin, polycarbonate resin, polyurethane resin, vinyl chloride-vinyl acetate copolymer resin, polyvinyl butyral resin; and their derivatives Or a modified body can be mentioned.
  • hydrophilic polymers polyethylene glycol, polypropylene glycol, and a copolymer of polyethylene glycol and polypropylene glycol are preferable.
  • hydrophobic polymers polyisoprene, polyisobutylene, polybutadiene, polytetrahydrofuran, polydimethylsiloxane, polyethylene and polypropylene are preferable.
  • linear molecule a hydrophilic polymer is more preferable, and polyethylene glycol is more preferable.
  • the linear molecule has a molecular weight of 1,000 or more, such as 1,000 to 1,000,000, preferably 5,000 or more, such as 5,000 to 1,000,000 or 5,000 to 500,000. More preferably, it is 10,000 or more, for example, 10,000 to 1,000,000, 10,000 to 500,000, or 10,000 to 300,000. In addition, it is preferable that the linear molecule is a biodegradable molecule in terms of “environmentally friendly (ecological)” because the load on the environment is small.
  • the linear molecule preferably has reactive groups at both ends. By having this reactive group, it can react easily with a blocking group.
  • the reactive group depends on the block group to be used, and examples thereof include a hydroxyl group, an amino group, a carboxyl group, and a thiol group.
  • cyclic molecule refers to various cyclic substances including cyclic molecules.
  • cyclic molecule refers to a molecule or substance that is substantially cyclic. That is, “substantially ring-shaped” means that the letter “C” is not completely closed, such as the letter “C”, and one end and the other end of the letter “C” are not joined. It is intended to include those having overlapping spiral structures.
  • a ring for a “bicyclo molecule” to be described later can be defined in the same manner as “substantially cyclic” in “cyclic molecule”. That is, one or both rings of the “bicyclo molecule” may not be completely closed like the letter “C”, and one end and the other end of the letter “C” are connected to each other. It may have a spiral structure that is not overlapped.
  • Examples of the cyclic molecule include various cyclodextrins (for example, ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin, dimethylcyclodextrin and glucosylcyclodextrin, derivatives or modified products thereof), crown ethers, benzo Examples include crowns, dibenzocrowns, and dicyclohexanocrowns, and derivatives or modified products thereof.
  • cyclodextrins for example, ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin, dimethylcyclodextrin and glucosylcyclodextrin, derivatives or modified products thereof
  • crown ethers for example, ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin, dimethylcyclodextrin and glucosylcyclodextrin, derivatives or modified products thereof
  • the above-mentioned cyclodextrins and crown ethers differ in the size of the opening of the cyclic molecule depending on the type. Therefore, the type of linear molecule to be used, specifically, when the linear molecule to be used is assumed to be cylindrical, the cyclic molecule to be used depends on the diameter of the cross section of the cylinder, the hydrophobicity or hydrophilicity of the linear molecule, etc. Can be selected. When a cyclic molecule having a relatively large opening and a cylindrical linear molecule having a relatively small diameter are used, two or more linear molecules can be included in the opening of the cyclic molecule. . Among these, cyclodextrins are preferable from the above-mentioned “environmentally friendly” point because they have biodegradability.
  • ⁇ -cyclodextrin As the cyclic molecule.
  • the number of cyclic molecules that include the linear molecule is preferably 0.05 to 0.60, and preferably 0.10 to 0.50 is more preferable, and 0.20 to 0.40 is still more preferable. If it is less than 0.05, the pulley effect may not be exhibited. If it exceeds 0.60, cyclodextrin, which is a cyclic molecule, may be arranged too densely, and the mobility of cyclodextrin may be reduced. Insolubility in the organic solvent may be strengthened, and the solubility of the resulting polyrotaxane in the organic solvent may be reduced.
  • the cyclic molecule preferably has a reactive group outside the ring.
  • the reactive group depends on the crosslinking agent used, and examples thereof include a hydroxyl group, an amino group, a carboxyl group, a thiol group, and an aldehyde group. Moreover, it is good to use the group which does not react with a block group in the case of reaction (blocking reaction) with a linear molecule.
  • any group may be used as long as the cyclic molecule maintains a form in which the cyclic molecule is skewered with a linear molecule.
  • examples of such a group include a group having “bulkiness” and / or a group having “ionicity”.
  • the “group” means various groups including a molecular group and a polymer group.
  • the “ionicity” of the group having “ionicity” and the “ionicity” of the cyclic molecule influence each other, for example, by repulsion, the cyclic molecule is skewered by linear molecules. It is possible to retain the form.
  • the blocking group may be a polymer main chain or a side chain as long as it retains the skewered shape as described above.
  • the blocking group is the polymer A
  • the compound according to the present embodiment is used as a matrix on the contrary, even if the polymer A is used as a matrix and the compound according to the present embodiment (polyrotaxane) is included in a part of the block group.
  • the polymer A is included in a part thereof.
  • dinitrophenyl groups such as 2,4-dinitrophenyl group and 3,5-dinitrophenyl group, cyclodextrins, adamantane groups, trityl groups, fluoresceins and pyrene And derivatives or modified products thereof.
  • cyclodextrins for example, as a blocking group when ⁇ -cyclodextrin is used as a cyclic molecule and polyethylene glycol is used as a linear molecule, cyclodextrins, 2,4-dinitrophenyl group, 3,5-dinitrophenyl And dinitrophenyl groups such as a group, adamantane groups, trityl groups, fluoresceins and pyrenes, and derivatives or modified products thereof.
  • a modified polyrotaxane that can be preferably used in the photocurable resin composition of the present embodiment will be described.
  • a polyrotaxane in which a plurality of modifications described below are used in combination can be preferably used.
  • a crosslinked polyrotaxane refers to a compound in which two or more polyrotaxanes are chemically bonded to each other, and the two cyclic molecules may be the same or different.
  • the chemical bond may be a simple bond or a bond via various atoms or molecules.
  • a molecule in which a cyclic molecule has a bridged ring structure, that is, a “bicyclo molecule” having first and second rings can be used.
  • a “bicyclo molecule” and a linear molecule can be mixed, and the crosslinked polyrotaxane can be obtained by including the linear molecule in a skewered manner in the first and second rings of the “bicyclo molecule”.
  • This crosslinked polyrotaxane has viscoelasticity because the cyclic molecules penetrating the linear molecule in a skewered manner can move along the linear shape (pulley effect). The tension can be uniformly dispersed by the effect, and the internal stress can be relaxed.
  • cyclic molecule of the polyrotaxane is a cyclodextrin such as ⁇ -cyclodextrin
  • at least one hydroxyl group of the cyclodextrin is substituted with another organic group (hydrophobic group). Since solubility in the solvent contained in the forming composition is improved, it is more preferably used.
  • hydrophobic groups include, for example, alkyl groups, benzyl groups, benzene derivative-containing groups, acyl groups, silyl groups, trityl groups, nitrate ester groups, tosyl groups, alkyl-substituted ethylenically unsaturated groups as photocuring sites, and thermosetting sites.
  • hydrophobic modification polyrotaxane you may have 1 type of the above-mentioned hydrophobic group individually or in combination of 2 or more types.
  • the degree of modification with the hydrophobic group is preferably 0.02 or more, more preferably 0.04 or more, and more preferably 0.06 or more, assuming that the maximum number of cyclodextrin hydroxyl groups that can be modified is 1. More preferably. If it is less than 0.02, the solubility in an organic solvent will not be sufficient, and insoluble bumps (protrusions derived from adhesion of foreign matter, etc.) may be generated.
  • the maximum number that the hydroxyl groups of cyclodextrin can be modified is, in other words, the total number of hydroxyl groups that cyclodextrin had before modification.
  • the degree of modification is the ratio of the number of modified hydroxyl groups to the total number of hydroxyl groups.
  • hydrophobic group may be used, in that case, it is preferable to have one hydrophobic group for each cyclodextrin ring. Further, by introducing a hydrophobic group having a functional group, the reactivity with other polymers can be improved.
  • An unsaturated bond group can be introduced into the portion corresponding to the cyclic molecule. By introducing this group, polymerization with a polymerizable compound becomes possible.
  • the unsaturated bond group can be introduced, for example, by substituting at least a part of a cyclic molecule having a hydroxyl group (—OH) such as cyclodextrin with an unsaturated bond group, preferably an unsaturated double bond group. .
  • unsaturated bond groups such as unsaturated double bond groups include olefinyl groups (groups having olefinic double bonds), such as acrylic groups, (meth) acryloyl groups, vinyl ether groups, and styryl groups. Although it can mention, it is not limited to this.
  • the following methods can be used for introduction of the unsaturated double bond group. That is, a method by carbamate bond formation with an isocyanate compound or the like; a method by ester bond formation by a carboxylic acid compound, an acid chloride compound or an acid anhydride; a method by silyl ether bond formation by a silane compound or the like; a carbonate bond formation by a chlorocarbonic acid compound or the like And the like.
  • the polyrotaxane When a (meth) acryloyl group is introduced as an unsaturated double bond group via a carbamoyl bond, the polyrotaxane is dissolved in a dehydrating solvent such as DMSO or DMF, and a (meth) acryloyl reagent having an isocyanate group is added. .
  • a dehydrating solvent such as DMSO or DMF
  • a (meth) acryloyl reagent having an isocyanate group is added.
  • transduces via an ether bond or an ester bond the (meth) acryloyl reagent which has active groups, such as a glycidyl group and an acid chloride, can also be used.
  • the step of substituting the hydroxyl group of the cyclic molecule with an unsaturated double bond group may be before the step of preparing the pseudopolyrotaxane, between the steps, or after the step. Further, it may be before the step of preparing the polyrotaxane by blocking the pseudopolyrotaxane, between the steps, or after the step. Furthermore, when the polyrotaxane is a crosslinked polyrotaxane, it may be before the step of crosslinking the polyrotaxanes, between the steps, or after the step. It can also be provided at these two or more times.
  • the substitution step is preferably performed after the polyrotaxane is prepared by blocking the pseudopolyrotaxane and before the crosslinking of the polyrotaxane.
  • the conditions used in the substitution step depend on the unsaturated double bond group to be substituted, but are not particularly limited, and various reaction methods and reaction conditions can be used.
  • the polyrotaxane used in the present embodiment is preferably a hydrophobized modified polyrotaxane, more preferably a polyrotaxane having an unsaturated double bond, and further preferably a polyrotaxane having a (meth) acryloyl group.
  • polyrotaxane having such a (meth) acryloyl group examples include Celum (registered trademark) Key Mixture SM3400C, SA3400C, SA2400C manufactured by Advanced Soft Materials Co., Ltd.
  • silica particles powder silica, organosilica sol in which silica particles are dispersed in a solvent, or the like can be used. These silica particles are generally commercially available. Examples of the powder silica include Aerosil (registered trademark) 130, Aerosil (registered trademark) 300, Aerosil (registered trademark) 380, Aerosil (registered trademark) TT600, Aerosil (registered trademark) OX50, etc. (above, manufactured by Nippon Aerosil Co., Ltd.).
  • organosilica sol examples include isopropyl alcohol-dispersed silica sol (IPA-ST, IPA-ST-L, IPA-ST-UP, IPA-ST-ZL), methanol-dispersed silica sol (MA-ST-M, MA-ST-L, MA).
  • the average primary particle diameter of the silica particles is preferably 100 nm or less, more preferably 30 nm or less. When the average primary particle diameter exceeds 100 nm, the transparency of the resulting coating film tends to be impaired.
  • the average primary particle diameter of a silica particle shows the value measured by JISZ8828 dynamic light scattering method.
  • the content of bifunctional or higher polyfunctional (meth) acrylate is X parts by mass
  • the content of polyrotaxane is Y parts by mass
  • the content of silica particles is Z parts by mass.
  • the bifunctional or higher polyfunctional (meth) acrylate content is 50 with respect to 100 parts by mass in total of the bifunctional or higher polyfunctional (meth) acrylate, polyrotaxane and silica particles. It represents that it is at least part by mass.
  • X is preferably 70 or less.
  • the formula (2) is more preferably the formula (2 ′). More preferably, X is greater than 50.
  • the content of the polyrotaxane is 3 parts by mass or more and 20 parts by mass or less with respect to a total of 100 parts by mass of the bifunctional or higher polyfunctional (meth) acrylate, polyrotaxane and silica particles. Represents something. As Y becomes smaller than 3, cracks tend to occur in the resulting cured film and the appearance tends to be impaired. As Y is larger than 20, the surface hardness of the resulting cured film tends to decrease.
  • the formula (3) is preferably the formula (3 ′).
  • the silica particles are 25 parts by mass or more and 40 parts by mass or less with respect to a total of 100 parts by mass of the bifunctional or higher polyfunctional (meth) acrylate, polyrotaxane and silica particles. Represents. As Z becomes smaller than 25, the surface hardness of the resulting cured film tends to decrease. As Z is larger than 40, cracks are likely to occur in the resulting cured film and the appearance tends to be impaired.
  • the formula (4) is preferably the formula (4 ′).
  • a polymerization initiator that can exhibit photopolymerization initiating ability by light irradiation in the presence of an ultraviolet absorber is preferable.
  • the content of the photopolymerization initiator is preferably 1 to 15 parts by mass, more preferably 2 to 10 parts by mass with respect to 100 parts by mass in total of the polyfunctional (meth) acrylate having two or more functions, polyrotaxane and silica particles. It is.
  • the content of the photopolymerization initiator is more than the above range, the photopolymerization initiator that has not been used for initiating the photopolymerization may remain, which may cause a problem such as a decrease in visible light transmittance.
  • the amount is less than the above range, the photopolymerization initiating ability is not sufficiently exhibited, and the curing of the ultraviolet curable resin may be insufficient.
  • the photocurable resin composition of the present embodiment may further contain an antistatic agent.
  • an antistatic agent metal oxides and metal salts are preferred.
  • the metal oxide include ITO (indium-tin composite oxide), ATO (antimony-tin composite oxide), tin oxide, antimony pentoxide, zinc oxide, zirconium oxide, titanium oxide, and aluminum oxide.
  • the metal salt include zinc antimonate.
  • the content of the antistatic agent depends on the antistatic performance to be obtained, but is preferably 1 to 100 parts by mass with respect to a total of 100 parts by mass of the bifunctional or higher polyfunctional (meth) acrylate, polyrotaxane, silica particles and photopolymerization initiator. 100 parts by mass.
  • the particle size of the antistatic agent is preferably 0.001 to 0.1 ⁇ m. When the particle size is too small, industrial production is difficult, and when the particle size is too large, the transparency of the resulting cured film tends to decrease.
  • additives such as an ultraviolet absorber, an antioxidant, a colorant, a fluorine additive that imparts water and oil repellency, and a leveling agent are added as necessary. It may be included. By containing the leveling agent, the smoothness and scratch resistance of the cured film can be improved.
  • the photocurable resin composition of the present embodiment preferably further contains a solvent in that it is subjected to a coating step described later.
  • solvents include methanol, ethanol, 1-propanol, 2-propanol (isopropyl alcohol), 1-butanol, 2-butanol (sec-butyl alcohol), 2-methyl-1-propanol (isobutyl alcohol), 2 Alcohol solvents such as methyl-2-propanol (tert-butyl alcohol); 2-ethoxyethanol, 2-butoxyethanol, 3-methoxy-1-propanol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol Alkoxy alcohol solvents such as diacetone alcohol; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbon solvents such as toluene and xylene; ester solvents such as ethyl acetate and butyl acetate; And the like.
  • the content of the solvent is preferably 20 to 10,000 parts by mass with respect to 100 parts by mass in total of the bifunctional or higher polyfunctional (meth) acrylate, polyrotaxane, silica particles and photopolymerization initiator.
  • the photocurable resin composition of the present embodiment includes a bifunctional or higher polyfunctional (meth) acrylate, a polyrotaxane, silica particles, a photopolymerization initiator, and optionally a solvent, an antistatic agent, and other additives. And the order of mixing is not particularly limited.
  • the method for producing the cured film includes the following steps (1) and (2).
  • (1) A step of obtaining the composition layer by applying the above-mentioned photocurable resin composition on a substrate (2)
  • (meth) acrylic resin As the resin constituting the substrate, (meth) acrylic resin, polyester resin, polycarbonate resin, polycyclic olefin resin, polystyrene resin, methacryl-styrene copolymer (MS resin), acrylonitrile-styrene copolymer (AS resin) ), Polyvinylidene fluoride resin (PVDF resin), and the like.
  • a (meth) acrylic resin is preferable because it has a high transparency, a high surface hardness, and a cured film having high scratch resistance.
  • a methacrylic resin is more preferable.
  • the thickness of the substrate is preferably 30 to 300 ⁇ m, more preferably 50 to 200 ⁇ m. When this thickness is thinner than the above range, the strength of the resulting laminate of the cured film and the substrate may not be maintained. On the other hand, when it is thicker than the above range, the transparency of the substrate is lowered or the flexibility is lowered, which is not preferable.
  • Various additives may be contained in the base material. Examples of such additives include stabilizers, plasticizers, lubricants, flame retardants, and the like.
  • the substrate may have a flat surface such as a normal plate (sheet) or film, or may have a curved surface such as a convex lens or a concave lens. Further, a fine structure such as fine irregularities may be provided on the surface.
  • the base material may be colored with a dye or a pigment, if necessary, or may contain an antioxidant, an ultraviolet absorber, rubber particles, or the like.
  • the thickness of the resin substrate is preferably 0.1 mm or more, and preferably 3.0 mm or less.
  • the substrate may be a single layer or a multilayer structure.
  • the resin base material having a multilayer structure one in which a (meth) acrylic resin layer is laminated on at least one surface of the main resin layer is preferable.
  • the optical laminated body containing a polarizing plate, a phase difference plate, etc. is also preferable.
  • the substrate may be in the form of a plate (sheet), a film, a multilayer structure or the like, and the substrate surface may be flat or curved.
  • the substrate may have an adhesive layer on its surface.
  • the adhesive layer is for adhering the cured film to the substrate and is formed according to a conventional method.
  • the adhesive for forming the adhesive layer is appropriately selected according to the material of the substrate or the cured film. For example, an acrylic adhesive (adhesive), a silicone adhesive (adhesive), a polyester adhesive, etc. Is used. If the thickness of the adhesive layer is too thin, sufficient adhesive force cannot be obtained, and if it is too thick, the resulting laminate of the cured film and the substrate becomes too hard and lacks flexibility as a film. The range of 1 to 1 ⁇ m is preferable.
  • Examples of the method for applying the above-mentioned photocurable resin composition on a substrate include a roll coating method, a spin coating method, a coil bar method, a dip coating method, and a die coating method.
  • a method that can be applied continuously, such as a roll coating method, is preferred in terms of productivity and production cost.
  • the obtained composition layer contains a solvent
  • solvent removal is performed, for example, by evaporating the solvent from the composition layer by a heating means using a heating device such as a hot plate or a decompression means using a decompression device, or by combining these means. Is called.
  • the conditions for the heating means and the decompression means can be selected according to the type of the solvent contained in the composition layer.
  • the surface temperature of the hot plate is preferably in the range of about 50 to 200 ° C. .
  • the internal pressure of the decompressor may be set to about 1 to 1.0 ⁇ 10 5 Pa.
  • ⁇ Step (2)> The exposure is usually performed by irradiation with ultraviolet rays.
  • ultraviolet rays include light in the visible light region, and the photopolymerization initiator develops photopolymerization initiating ability by light irradiation and cures the composition layer obtained in the step (1).
  • the ultraviolet ray preferably has a wavelength of 200 to 450 nm, and the photopolymerization initiator preferably has an absorption region at a light wavelength of 220 to 450 nm. In general, the wavelength of ultraviolet light is shorter than 380 nm, and the wavelength of visible light is 380 to 780 nm.
  • the wavelength of the ultraviolet light is less than 200 nm, the ultraviolet light is easily absorbed by the ultraviolet absorber, and the photopolymerization initiating ability of the photopolymerization initiator is not sufficiently expressed, and the curability of the composition layer tends to be lowered, When it exceeds 450 nm, the function as ultraviolet rays is reduced.
  • the wavelength of light is less than 220 nm as the absorption region of the photopolymerization initiator, the ultraviolet absorber is easily absorbed by ultraviolet rays, and the photopolymerization initiation ability is reduced.
  • the wavelength exceeds 450 nm the corresponding photopolymerization initiator is used. And there is a possibility that the photopolymerization initiating ability due to ultraviolet rays is insufficient.
  • the thickness of the cured film thus formed is preferably 2 to 30 ⁇ m, more preferably 5 to 25 ⁇ m. If the thickness is 2 ⁇ m or more, the surface hardness tends to be further improved. If the thickness is too large, cracks are likely to occur immediately after curing or when exposed to high temperature and high humidity.
  • the thickness of the cured film can be adjusted by adjusting the amount per area and solid content concentration of the photocurable resin composition applied to the surface of the substrate.
  • the laminated body of this embodiment is demonstrated.
  • a cured film obtained by the production method is laminated on at least one surface of the substrate.
  • the laminated body of this embodiment can also be called a laminated body provided with a base material and the cured film containing the hardened
  • Such a laminate is preferably a laminate in a state where a cured film is formed on the surface of the base material obtained through the steps (1) and (2) of the above production method. It may be a laminate obtained by peeling the cured film obtained through the steps (1) and (2) from the base material and sticking to another base material through the adhesive layer as necessary, The composition layer obtained in the step (1) of the production method is peeled off from the substrate, and is attached to another substrate via the adhesive layer as necessary, and then the step (2) of the production method is used. It may be a laminate obtained by curing the composition layer.
  • the laminate of the present embodiment thus obtained has a cured film having excellent surface hardness formed on at least one surface of the substrate, and is suitable as a display window protection plate for portable information terminals typified by mobile phones. Can be used. It can also be used as various members in fields requiring surface hardness, such as viewfinders for digital cameras and handy video cameras, and display window protection plates for portable game machines.
  • a display window protection plate for a portable information terminal in order to produce a display window protection plate for a portable information terminal from a high-hardness resin plate, first, if necessary, processing such as printing, drilling, and the like may be performed. . After that, if it is set on the display window of the portable information terminal, it can be made a display window with excellent surface hardness.
  • FIG. 1 is a cross-sectional view schematically showing the layer structure of the laminate of the present embodiment.
  • a laminate 5 shown in FIG. 1 has a base material 1 and a cured film 3 formed on one surface of the base material 1.
  • the substrate 1 may be a resin sheet, a resin film, or a multilayer structure.
  • the laminate 5 can be used as a hard coat film, and can be suitably used as a member constituting a display device together with a polarizing plate, for example.
  • the laminate of this embodiment may further have a layer other than the base material and the cured film.
  • the laminated body may be provided with a functional layer on the cured film.
  • the functional layer include a hard coat layer, an antireflection layer, an antiglare layer, and an anti-fingerprint layer.
  • the functional layer may be laminated via an adhesive or a pressure-sensitive adhesive. What is necessary is just to select a well-known thing suitably as an adhesive agent and an adhesive.
  • the cured film is excellent in hardness and flexibility, even if a functional layer is further provided, sufficient flexibility and high hardness can be achieved.
  • FIG. 2 is a cross-sectional view schematically showing a first layer configuration example of the display device of the present embodiment.
  • the liquid crystal display device 30 includes a liquid crystal panel 25 and a cured film 3 laminated on one surface of the liquid crystal panel 25.
  • the liquid crystal panel 25 is obtained by laminating the polarizing plate 10 on both surfaces of the liquid crystal cell 20 with the adhesive layer 15 interposed therebetween.
  • the polarizing plates 10 arranged on both surfaces of the liquid crystal cell 20 are described as being the same, but they may be different.
  • the polarizing plate 10 includes a polarizing film 13 and protective films 11 laminated on both surfaces thereof.
  • the polarizing plate 10 should just be provided with the polarizing film 13, and the protective film 11 does not necessarily need to be laminated
  • the cured film 3 is disposed on the viewing side of the liquid crystal panel 25 and plays a role of protecting the liquid crystal panel 25.
  • the liquid crystal panel 25 can be regarded as a base material having a multilayer structure. Further, a part of the liquid crystal panel 25 (for example, the polarizing plate 10) can be regarded as a base material.
  • FIG. 3 is a cross-sectional view schematically showing a second layer configuration example of the display device of the present embodiment.
  • a liquid crystal display device 31 shown in FIG. 3 includes a liquid crystal panel 25 and a stacked body 5 stacked on one surface of the liquid crystal panel 25.
  • the liquid crystal panel 25 and the laminated body 5 can be laminated
  • the laminate 5 is disposed on the viewing side of the liquid crystal panel 25 and plays a role of protecting the liquid crystal panel 25.
  • the display device is not limited to this.
  • the display device may be a liquid crystal display (LCD), an organic EL display, or the like, and the laminate of the present embodiment can be suitably used for these display devices.
  • each physical property was measured as follows. ⁇ Pencil hardness> The measurement was performed according to JIS K5600-5-4. However, the load was 1 kg. ⁇ Appearance> The appearance of the obtained laminate of the cured film and the substrate was visually observed and evaluated according to the following criteria. Good appearance with no cracks: ⁇ One to four cracks occurred: ⁇
  • Example 1 4-functional acrylate (Shin-Nakamura Chemical Co., Ltd., A-TMMT) 55.2 parts by mass, tri-functional acrylate (Shin Nakamura Chemical Co., Ltd., A-TMPT) 13.8 parts by mass, reactive polyrotaxane (Advanced 3.4 parts by mass of Soft Materials Co., Ltd., SA-3400C), 27.6 parts by mass of silica particles (Nissan Chemical Co., Ltd., PGM-AC-2140Y: particle size 10-15 nm), the above tetrafunctional acrylate And 7% by mass of a photopolymerization initiator (manufactured by Ciba Specialty Chemicals Co., Ltd., IRGACURE (registered trademark) 184) based on the total of the trifunctional acrylate and 0.1% of the total of the tetrafunctional acrylate and trifunctional acrylate % By weight of leveling agent (BYK-307, manufactured by BYK Japan) and propylene in the same amount
  • a PMMA plate (Sumitomo Chemical Co., Ltd., thickness: 1 mm) was used as the transparent substrate, and the photocurable resin composition was applied onto the substrate with a bar coater so as to have a dry film thickness of 20 ⁇ m. A composition layer was obtained. Then, it dried for 3 minutes in 80 degreeC oven, and irradiated the ultraviolet-ray with the energy of 500 mJ / cm ⁇ 2 > to the composition layer after drying, and obtained the laminated body of the cured film and the base material. The pencil hardness and appearance of the resulting laminate were measured as described above. The results are shown in Table 1.
  • Example 2 tetrafunctional acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-TMMT), trifunctional acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-TMPT), polyrotaxane (manufactured by Advanced Soft Materials Co., Ltd.) SA-3400C) and silica particles (manufactured by Nissan Chemical Co., Ltd., PGM-AC-2140Y: particle size 10 to 15 nm), respectively, except that the amounts are respectively described in Tables 1 to 4, respectively.
  • Tables 1 to 4 show the results of evaluating the pencil hardness and appearance (visually) of the obtained laminate.
  • a photocurable resin composition of the present invention, a method for producing a cured film using the same, and a laminate are, for example, ultraviolet absorption provided on a display screen of an electronic image display device such as a plasma display (PD) or a liquid crystal display (LCD) It can use for manufacture of the hard coat film which has property.
  • a plasma display PD
  • LCD liquid crystal display

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Laminated Bodies (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

Provided is a photocurable resin composition comprising: a multifunctional (meth)acrylate having two or more functions; a polyrotaxane; silica particles; and a photopolymerization initiator. The photocurable resin composition fulfills all of the relationships in formulas (1) through (4), where X represents the multifunctional (meth)acrylate content in parts by mass, Y represents the polyrotaxane content in parts by mass, and Z represents the silica particle content in parts by mass. Formula (1): X + Y + Z = 100, formula (2): X ≥ 50, formula (3): 3 ≤ Y ≤ 20, formula (4): 25 ≤ Z ≤ 40

Description

光硬化性樹脂組成物、これを用いる硬化膜の製造方法及び該硬化膜を含む積層体Photocurable resin composition, method for producing cured film using the same, and laminate comprising the cured film
 本発明は、光硬化性樹脂組成物、これを用いる硬化膜の製造方法及び該硬化膜を含む積層体に関する。 The present invention relates to a photocurable resin composition, a method for producing a cured film using the same, and a laminate including the cured film.
 透明基材フィルムにハードコート層を形成するための光硬化性樹脂組成物としては、例えば、二官能以上の多官能(メタ)アクリレートとポリロタキサンと光重合開始剤とを含む光硬化性樹脂組成物が知られていた(特許文献1)。 As a photocurable resin composition for forming a hard coat layer on a transparent substrate film, for example, a photocurable resin composition containing a bifunctional or higher polyfunctional (meth) acrylate, a polyrotaxane, and a photopolymerization initiator. (Patent Document 1).
特開2009-204725号公報JP 2009-204725 A
 上記特許文献1記載の光硬化性樹脂組成物は、得られる硬化膜の表面硬度(鉛筆硬度)が必ずしも十分に満足できるものではなかった。 The photocurable resin composition described in Patent Document 1 described above was not necessarily satisfactory in surface hardness (pencil hardness) of the cured film obtained.
 本発明は、以下の〔1〕~〔5〕記載の発明を含む。
〔1〕二官能以上の多官能(メタ)アクリレートと、ポリロタキサンと、シリカ粒子と、光重合開始剤とを含有し、前記多官能(メタ)アクリレートの含有量をX質量部、前記ポリロタキサンの含有量をY質量部、前記シリカ粒子の含有量をZ質量部としたときに下記式(1)~(4)の関係を全て満たす、光硬化性樹脂組成物。
 式(1): X+Y+Z=100
 式(2): X≧50
 式(3): 3≦Y≦20
 式(4): 25≦Z≦40
〔2〕前記ポリロタキサンが、(メタ)アクリロイル基を有する、〔1〕記載の光硬化性樹脂組成物。
〔3〕〔1〕又は〔2〕記載の光硬化性樹脂組成物を基材上に塗布して組成物層を得る工程と、前記組成物層に露光して前記組成物層を硬化させる工程と、を含む硬化膜の製造方法。
〔4〕基材と、前記基材の少なくとも一方の面に積層された硬化膜と、を備え、前記硬化膜が〔1〕又は〔2〕記載の光硬化性樹脂組成物の硬化物を含む、積層体。
〔5〕前記基材が、多層構造である〔4〕記載の積層体。
〔6〕前記基材が、(メタ)アクリル樹脂を含む〔4〕又は〔5〕記載の積層体。
〔7〕〔5〕又は〔6〕記載の積層体を備える表示装置。
The present invention includes the following inventions [1] to [5].
[1] A bifunctional or higher polyfunctional (meth) acrylate, polyrotaxane, silica particles, and a photopolymerization initiator are contained, the content of the polyfunctional (meth) acrylate is X parts by mass, and the polyrotaxane is contained. A photocurable resin composition satisfying all the relationships of the following formulas (1) to (4) when the amount is Y parts by mass and the content of the silica particles is Z parts by mass.
Formula (1): X + Y + Z = 100
Formula (2): X ≧ 50
Formula (3): 3 ≦ Y ≦ 20
Formula (4): 25 ≦ Z ≦ 40
[2] The photocurable resin composition according to [1], wherein the polyrotaxane has a (meth) acryloyl group.
[3] A step of applying a photocurable resin composition according to [1] or [2] on a substrate to obtain a composition layer, and a step of exposing the composition layer to cure the composition layer And a method for producing a cured film.
[4] A substrate and a cured film laminated on at least one surface of the substrate, and the cured film includes a cured product of the photocurable resin composition according to [1] or [2]. , Laminate.
[5] The laminate according to [4], wherein the base material has a multilayer structure.
[6] The laminate according to [4] or [5], wherein the base material contains a (meth) acrylic resin.
[7] A display device comprising the laminate according to [5] or [6].
 本発明の光硬化性樹脂組成物を用いれば、十分な表面硬度を有し、かつ外観が良好な硬化膜が得られる。 If the photocurable resin composition of the present invention is used, a cured film having sufficient surface hardness and good appearance can be obtained.
積層体の層構成例を模式的に示す断面図である。It is sectional drawing which shows the layer structural example of a laminated body typically. 表示装置の第一の層構成例を模式的に示す断面図である。It is sectional drawing which shows typically the 1st layer structural example of a display apparatus. 表示装置の第二の層構成例を模式的に示す断面図である。It is sectional drawing which shows the 2nd example of a layer structure of a display apparatus typically.
 以下、本発明の好適な実施形態について詳細に説明する。本明細書中、「(メタ)アクリレート」とはアクリレートとメタクリレートとの総称を表し、「(メタ)アクリロイル基」とはアクリロイル基とメタクリロイル基との総称を表し、「(メタ)アクリル樹脂」とはアクリル樹脂とメタクリル樹脂との総称を表す。 Hereinafter, preferred embodiments of the present invention will be described in detail. In the present specification, “(meth) acrylate” represents a generic name of acrylate and methacrylate, “(meth) acryloyl group” represents a generic name of acryloyl group and methacryloyl group, and “(meth) acrylic resin” Represents a general term for acrylic resin and methacrylic resin.
[光硬化性樹脂組成物]
 本実施形態の光硬化性樹脂組成物は、二官能以上の多官能(メタ)アクリレートと、ポリロタキサンと、シリカ粒子と、光重合開始剤とを含有する。
[Photocurable resin composition]
The photocurable resin composition of this embodiment contains bifunctional or higher polyfunctional (meth) acrylate, polyrotaxane, silica particles, and a photopolymerization initiator.
 二官能以上の多官能(メタ)アクリレートとしては、例えば1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、3-メチルペンタンジオールジ(メタ)アクリレート、ジエチレングリコールビスβ-(メタ)アクリロイルオキシプロピネート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリ(2-ヒドロキシエチル)イソシアネートジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、2,3-ビス(メタ)アクリロイルオキシエチルオキシメチル[2.2.1]ヘプタン、ポリ1,2-ブタジエンジ(メタ)アクリレート、1,2-ビス(メタ)アクリロイルオキシメチルヘキサン、ノナエチレングリコールジ(メタ)アクリレート、テトラデカンエチレングリコールジ(メタ)アクリレート、10-デカンジオール(メタ)アクリレート、3,8-ビス(メタ)アクリロイルオキシメチルトリシクロ[5.2.10]デカン、水素添加ビスフェノールAジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロイルオキシジエトキシフェニル)プロパン、1,4-ビス((メタ)アクリロイルオキシメチル)シクロヘキサン、ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルジ(メタ)アクリレート、エポキシ変性ビスフェノールAジ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional or higher polyfunctional (meth) acrylate include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and ethylene glycol diacrylate. (Meth) acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, 3-methylpentanediol di (meth) acrylate, diethylene glycol bis β- (meth) Acryloyloxypropionate, trimethylolethane tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa ( ) Acrylate, tri (2-hydroxyethyl) isocyanate di (meth) acrylate, pentaerythritol tetra (meth) acrylate, 2,3-bis (meth) acryloyloxyethyloxymethyl [2.2.1] heptane, poly 1 , 2-butadiene di (meth) acrylate, 1,2-bis (meth) acryloyloxymethylhexane, nonaethylene glycol di (meth) acrylate, tetradecane ethylene glycol di (meth) acrylate, 10-decanediol (meth) acrylate, 3,8-bis (meth) acryloyloxymethyltricyclo [5.2.10] decane, hydrogenated bisphenol A di (meth) acrylate, 2,2-bis (4- (meth) acryloyloxydiethoxyphenyl) propane 1,4-bis ((Meth) acryloyloxymethyl) cyclohexane, hydroxypivalate ester neopentyl glycol di (meth) acrylate, bisphenol A diglycidyl ether di (meth) acrylate, epoxy-modified bisphenol A di (meth) acrylate, and the like.
<ポリロタキサン>
 ポリロタキサンは、複数の環状分子の開口部が直鎖状分子によって串刺し状に貫かれ、複数の環状分子が直鎖状分子を包接してなる擬ポリロタキサンの両末端(直鎖状分子の両末端)に、環状分子が遊離しないようにブロック基を配置してなる。
(直鎖状分子)
 ポリロタキサンに含まれる直鎖状分子は、環状分子に包接され、非共有結合的に一体化することができる分子又は物質であって、直鎖状のものであれば、特に限定されない。なお、本明細書において、「直鎖状分子」とは、高分子を含めた分子、及びその他上記の要件を満たす全ての物質をいう。また、本明細書において、「直鎖状分子」の「直鎖」は、実質的に「直鎖」であることを意味する。即ち、回転子である環状分子が回転可能、若しくは直鎖状分子上で環状分子が摺動又は移動可能であれば、直鎖状分子は分岐鎖を有していてもよい。また、「直鎖」の長さは、直鎖状分子上で環状分子が摺動又は移動可能であれば、その長さに特に制限はない。
<Polyrotaxane>
Polyrotaxane is a pseudopolyrotaxane in which the openings of multiple cyclic molecules are skewered by linear molecules, and the multiple cyclic molecules include the linear molecules (both ends of the linear molecules). Further, a blocking group is arranged so that the cyclic molecule is not released.
(Linear molecule)
The linear molecule contained in the polyrotaxane is not particularly limited as long as it is a molecule or substance that is included in a cyclic molecule and can be integrated non-covalently and is linear. In the present specification, the “linear molecule” means a molecule including a polymer and all other substances satisfying the above requirements. Further, in the present specification, “linear” of “linear molecule” means substantially “linear”. That is, the linear molecule may have a branched chain as long as the cyclic molecule as a rotor is rotatable or the cyclic molecule is slidable or movable on the linear molecule. Further, the length of the “straight chain” is not particularly limited as long as the cyclic molecule can slide or move on the linear molecule.
 直鎖状分子としては、例えば、ポリビニルアルコール、ポリビニルピロリドン、ポリ(メタ)アクリル酸、セルロース系樹脂(カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等)、ポリアクリルアミド、ポリエチレンオキサイド、ポリエチレングリコール、ポリビニルアセタール系樹脂、ポリビニルメチルエーテル、ポリアミン、ポリエチレンイミン、カゼイン、ゼラチン、でんぷん、又はこれらの共重合体等の親水性ポリマー;ポリオレフィン系樹脂(ポリエチレン、ポリプロピレン、その他オレフィン系単量体との共重合樹脂等)、ポリエステル樹脂、ポリ塩化ビニル樹脂、ポリスチレン系樹脂(ポリスチレン、アクリロニトリル-スチレン共重合樹脂等)、アクリル系樹脂(ポリメチルメタクリレート、(メタ)アクリル酸エステル共重合体、アクリロニトリル-メチルアクリレート共重合樹脂等)、ポリカーボネート樹脂、ポリウレタン樹脂、塩化ビニル-酢酸ビニル共重合樹脂、ポリビニルブチラール樹脂等の疎水性ポリマー;及びこれらの誘導体又は変性体を挙げることができる。 Examples of linear molecules include polyvinyl alcohol, polyvinyl pyrrolidone, poly (meth) acrylic acid, cellulose resins (carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, etc.), polyacrylamide, polyethylene oxide, polyethylene glycol, polyvinyl acetal type. Hydrophilic polymers such as resin, polyvinyl methyl ether, polyamine, polyethyleneimine, casein, gelatin, starch, or copolymers thereof; polyolefin resins (polyethylene, polypropylene, copolymer resins with other olefin monomers, etc.) , Polyester resin, polyvinyl chloride resin, polystyrene resin (polystyrene, acrylonitrile-styrene copolymer resin, etc.), acrylic resin (polymethyl) Hydrophobic polymers such as tacrylate, (meth) acrylic acid ester copolymer, acrylonitrile-methyl acrylate copolymer resin, polycarbonate resin, polyurethane resin, vinyl chloride-vinyl acetate copolymer resin, polyvinyl butyral resin; and their derivatives Or a modified body can be mentioned.
 親水性ポリマーの中では、ポリエチレングリコール、ポリプロピレングリコール及びポリエチレングリコールとポリプロピレングリコールとの共重合体が好ましい。疎水性ポリマーの中では、ポリイソプレン、ポリイソブチレン、ポリブタジエン、ポリテトラヒドロフラン、ポリジメチルシロキサン、ポリエチレン及びポリプロピレンが好ましい。直鎖状分子としては、親水性ポリマーがより好ましく、ポリエチレングリコールがさらに好ましい。 Among the hydrophilic polymers, polyethylene glycol, polypropylene glycol, and a copolymer of polyethylene glycol and polypropylene glycol are preferable. Among the hydrophobic polymers, polyisoprene, polyisobutylene, polybutadiene, polytetrahydrofuran, polydimethylsiloxane, polyethylene and polypropylene are preferable. As the linear molecule, a hydrophilic polymer is more preferable, and polyethylene glycol is more preferable.
 直鎖状分子は、その分子量が1,000以上、例えば1,000~1,000,000、好ましくは5,000以上、例えば5,000~1,000,000又は5,000~500,000、より好ましくは10,000以上、例えば10,000~1,000,000、10,000~500,000又は10,000~300,000であるのがよい。また、直鎖状分子が、生分解性分子であると、環境への負荷が少なく、「環境にやさしい(エコロジカル)」点で好ましい。 The linear molecule has a molecular weight of 1,000 or more, such as 1,000 to 1,000,000, preferably 5,000 or more, such as 5,000 to 1,000,000 or 5,000 to 500,000. More preferably, it is 10,000 or more, for example, 10,000 to 1,000,000, 10,000 to 500,000, or 10,000 to 300,000. In addition, it is preferable that the linear molecule is a biodegradable molecule in terms of “environmentally friendly (ecological)” because the load on the environment is small.
 直鎖状分子は、その両末端に反応基を有するのが好ましい。この反応基を有することにより、ブロック基と容易に反応することができる。反応基は、用いるブロック基に依存するが、例えば水酸基、アミノ基、カルボキシル基、チオール基などを挙げることができる。 The linear molecule preferably has reactive groups at both ends. By having this reactive group, it can react easily with a blocking group. The reactive group depends on the block group to be used, and examples thereof include a hydroxyl group, an amino group, a carboxyl group, and a thiol group.
(環状分子)
 環状分子は、上記直鎖状分子を包接可能な環状分子であれば、いずれの環状分子であっても用いることができる。
 なお、本明細書において、「環状分子」とは、環状分子を含めた種々の環状物質をいう。また、本明細書において、「環状分子」とは、実質的に環状である分子又は物質をいう。即ち、「実質的に環状である」とは、英字の「C」のように、完全に閉環ではないものを含む意であり、英字の「C」の一端と多端とが結合しておらず重なった螺旋構造を有するものも含む意である。さらに、後述する「ビシクロ分子」についての環についても、「環状分子」の「実質的に環状である」と同様に定義することができる。即ち、「ビシクロ分子」の一方の環又は双方の環は、英字の「C」のように、完全に閉環ではないものであってもよく、英字の「C」の一端と他端とが結合しておらず重なった螺旋構造を有するものであってもよい。
(Cyclic molecule)
Any cyclic molecule can be used as long as it is a cyclic molecule that can include the linear molecule.
In this specification, “cyclic molecule” refers to various cyclic substances including cyclic molecules. In the present specification, “cyclic molecule” refers to a molecule or substance that is substantially cyclic. That is, “substantially ring-shaped” means that the letter “C” is not completely closed, such as the letter “C”, and one end and the other end of the letter “C” are not joined. It is intended to include those having overlapping spiral structures. Furthermore, a ring for a “bicyclo molecule” to be described later can be defined in the same manner as “substantially cyclic” in “cyclic molecule”. That is, one or both rings of the “bicyclo molecule” may not be completely closed like the letter “C”, and one end and the other end of the letter “C” are connected to each other. It may have a spiral structure that is not overlapped.
 環状分子として、例えば、種々のシクロデキストリン類(例えばα-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリン、ジメチルシクロデキストリン及びグルコシルシクロデキストリン、これらの誘導体又は変性体など)、クラウンエーテル類、ベンゾクラウン類、ジベンゾクラウン類、及びジシクロヘキサノクラウン類、並びにこれらの誘導体又は変性体を挙げることができる。 Examples of the cyclic molecule include various cyclodextrins (for example, α-cyclodextrin, β-cyclodextrin, γ-cyclodextrin, dimethylcyclodextrin and glucosylcyclodextrin, derivatives or modified products thereof), crown ethers, benzo Examples include crowns, dibenzocrowns, and dicyclohexanocrowns, and derivatives or modified products thereof.
 上述のシクロデキストリン類及びクラウンエーテル類などは、その種類により環状分子の開口部の大きさが異なる。したがって、用いる直鎖状分子の種類、具体的には用いる直鎖状分子を円柱状と見立てた場合、その円柱の断面の直径、直鎖状分子の疎水性又は親水性などにより、用いる環状分子を選択することができる。また、開口部が相対的に大きな環状分子と、相対的に直径が小さな円柱状の直鎖状分子を用いた場合、環状分子の開口部に2以上の直鎖状分子を包接することもできる。このうち、シクロデキストリン類は、生分解性を有するため、上述の「環境にやさしい」点で好ましい。 The above-mentioned cyclodextrins and crown ethers differ in the size of the opening of the cyclic molecule depending on the type. Therefore, the type of linear molecule to be used, specifically, when the linear molecule to be used is assumed to be cylindrical, the cyclic molecule to be used depends on the diameter of the cross section of the cylinder, the hydrophobicity or hydrophilicity of the linear molecule, etc. Can be selected. When a cyclic molecule having a relatively large opening and a cylindrical linear molecule having a relatively small diameter are used, two or more linear molecules can be included in the opening of the cyclic molecule. . Among these, cyclodextrins are preferable from the above-mentioned “environmentally friendly” point because they have biodegradability.
 環状分子としてα-シクロデキストリンを用いるのが好ましい。 It is preferable to use α-cyclodextrin as the cyclic molecule.
 直鎖状分子を包接する環状分子の個数(包接量)は、環状分子がシクロデキストリンの場合、その最大包接量を1とすると、0.05~0.60が好ましく、0.10~0.50が更に好ましく、0.20~0.40が更に好ましい。0.05未満では滑車効果が発現しないことがあり、0.60を超えると、環状分子であるシクロデキストリンが密に配置され過ぎてシクロデキストリンの可動性が低下することがあり、またシクロデキストリン自体の有機溶剤に対する非溶解性が強化されてしまい、得られるポリロタキサンの有機溶剤への溶解性も低下することがある。 When the cyclic molecule is cyclodextrin, the number of cyclic molecules that include the linear molecule (inclusion amount) is preferably 0.05 to 0.60, and preferably 0.10 to 0.50 is more preferable, and 0.20 to 0.40 is still more preferable. If it is less than 0.05, the pulley effect may not be exhibited. If it exceeds 0.60, cyclodextrin, which is a cyclic molecule, may be arranged too densely, and the mobility of cyclodextrin may be reduced. Insolubility in the organic solvent may be strengthened, and the solubility of the resulting polyrotaxane in the organic solvent may be reduced.
 環状分子は、その環の外側に反応基を有するのが好ましい。環状分子同士を結合又は架橋する際、この反応基を用いて容易に反応を行うことができる。反応基は、用いる架橋剤などにも依存するが、例えば水酸基、アミノ基、カルボキシル基、チオール基、アルデヒド基などを挙げることができる。また、直鎖状分子とブロック基との反応(ブロック化反応)の際にブロック基と反応しない基を用いるのがよい。 The cyclic molecule preferably has a reactive group outside the ring. When the cyclic molecules are bonded or cross-linked, the reaction can be easily performed using this reactive group. The reactive group depends on the crosslinking agent used, and examples thereof include a hydroxyl group, an amino group, a carboxyl group, a thiol group, and an aldehyde group. Moreover, it is good to use the group which does not react with a block group in the case of reaction (blocking reaction) with a linear molecule.
(ブロック基)
 ブロック基は、環状分子が直鎖状分子により串刺し状になった形態を保持する基であれば、いかなる基を用いてもよい。このような基として、例えば「嵩高さ」を有する基及び/又は「イオン性」を有する基などを挙げることができる。ここで、「基」というのは、分子基及び高分子基を含めた種々の基を意味する。また、「イオン性」を有する基の「イオン性」と、環状分子の有する「イオン性」とが影響しあうことにより、例えば反発しあうことにより、環状分子が直鎖状分子により串刺し状になった形態を保持することができる。
(Block base)
As the blocking group, any group may be used as long as the cyclic molecule maintains a form in which the cyclic molecule is skewered with a linear molecule. Examples of such a group include a group having “bulkiness” and / or a group having “ionicity”. Here, the “group” means various groups including a molecular group and a polymer group. In addition, the “ionicity” of the group having “ionicity” and the “ionicity” of the cyclic molecule influence each other, for example, by repulsion, the cyclic molecule is skewered by linear molecules. It is possible to retain the form.
 また、ブロック基は、上述のように、串刺し状になった形態を保持するものであれば、高分子の主鎖であっても側鎖であってもよい。ブロック基が高分子Aである場合、マトリクスとして高分子Aがありその一部に本実施形態に係る化合物(ポリロタキサン)が含まれる形態であっても、逆にマトリクスとして本実施形態に係る化合物がありその一部に高分子Aが含まれる形態であってもよい。このように、種々の特性を有する高分子Aと組み合わせることにより、本実施形態に係る化合物の特性と高分子Aの特性とを組み合わせて有する複合材料を形成することができる。 The blocking group may be a polymer main chain or a side chain as long as it retains the skewered shape as described above. When the blocking group is the polymer A, the compound according to the present embodiment is used as a matrix on the contrary, even if the polymer A is used as a matrix and the compound according to the present embodiment (polyrotaxane) is included in a part of the block group. There may be a form in which the polymer A is included in a part thereof. Thus, by combining with the polymer A having various properties, a composite material having a combination of the properties of the compound according to the present embodiment and the properties of the polymer A can be formed.
 具体的には、分子基のブロック基として、2,4-ジニトロフェニル基、3,5-ジニトロフェニル基などのジニトロフェニル基類、シクロデキストリン類、アダマンタン基類、トリチル基類、フルオレセイン類及びピレン類、並びにこれらの誘導体又は変性体を挙げることができる。より具体的には、例えば、環状分子としてα-シクロデキストリン、及び直鎖状分子としてポリエチレングリコールを用いる場合のブロック基として、シクロデキストリン類、2,4-ジニトロフェニル基、3,5-ジニトロフェニル基などのジニトロフェニル基類、アダマンタン基類、トリチル基類、フルオレセイン類及びピレン類、並びにこれらの誘導体又は変性体を挙げることができる。 Specifically, as the blocking group of the molecular group, dinitrophenyl groups such as 2,4-dinitrophenyl group and 3,5-dinitrophenyl group, cyclodextrins, adamantane groups, trityl groups, fluoresceins and pyrene And derivatives or modified products thereof. More specifically, for example, as a blocking group when α-cyclodextrin is used as a cyclic molecule and polyethylene glycol is used as a linear molecule, cyclodextrins, 2,4-dinitrophenyl group, 3,5-dinitrophenyl And dinitrophenyl groups such as a group, adamantane groups, trityl groups, fluoresceins and pyrenes, and derivatives or modified products thereof.
 次に本実施形態の光硬化性樹脂組成物に好ましく用いることのできる変性ポリロタキサンについて説明する。本実施形態では以下に説明する変性を複数併用したポリロタキサンを好ましく用いることができる。 Next, a modified polyrotaxane that can be preferably used in the photocurable resin composition of the present embodiment will be described. In this embodiment, a polyrotaxane in which a plurality of modifications described below are used in combination can be preferably used.
<架橋ポリロタキサン>
 架橋ポリロタキサンは、2つ以上のポリロタキサンがその環状分子同士が化学結合されている化合物をいい、この2つの環状分子は同じでも異なっていてもよい。この際、化学結合は、単なる結合であっても、種々の原子又は分子を介する結合であってもよい。
 また、環状分子が架橋環構造を有する分子、即ち第1の及び第2の環を有する「ビシクロ分子」を用いることができる。この場合、例えば「ビシクロ分子」と直鎖状分子とを混合し、「ビシクロ分子」の第1環及び第2環に直鎖状分子を串刺し状に包接して架橋ポリロタキサンを得ることができる。
 この架橋ポリロタキサンは直鎖状分子に串刺し状に貫通されている環状分子が当該直鎖状に沿って移動可能なために(滑車効果)、粘弾性を有し、張力が加わっても、この滑車効果によって当該張力を均一に分散させ、内部応力を緩和できる。
<Cross-linked polyrotaxane>
A crosslinked polyrotaxane refers to a compound in which two or more polyrotaxanes are chemically bonded to each other, and the two cyclic molecules may be the same or different. At this time, the chemical bond may be a simple bond or a bond via various atoms or molecules.
In addition, a molecule in which a cyclic molecule has a bridged ring structure, that is, a “bicyclo molecule” having first and second rings can be used. In this case, for example, a “bicyclo molecule” and a linear molecule can be mixed, and the crosslinked polyrotaxane can be obtained by including the linear molecule in a skewered manner in the first and second rings of the “bicyclo molecule”.
This crosslinked polyrotaxane has viscoelasticity because the cyclic molecules penetrating the linear molecule in a skewered manner can move along the linear shape (pulley effect). The tension can be uniformly dispersed by the effect, and the internal stress can be relaxed.
<疎水化修飾ポリロタキサン>
 ポリロタキサンの環状分子がα-シクロデキストリンなどのシクロデキストリン類である場合、本実施形態ではシクロデキストリンの水酸基の少なくとも一つが他の有機基(疎水基)によって置換された疎水化修飾ポリロタキサンは、塗膜形成組成物に含まれる溶剤への溶解性が向上するため、さらに好ましく用いられる。
<Hydrophobic modified polyrotaxane>
When the cyclic molecule of the polyrotaxane is a cyclodextrin such as α-cyclodextrin, in this embodiment, at least one hydroxyl group of the cyclodextrin is substituted with another organic group (hydrophobic group). Since solubility in the solvent contained in the forming composition is improved, it is more preferably used.
 疎水基の具体例として、例えばアルキル基、ベンジル基、ベンゼン誘導体含有基、アシル基、シリル基、トリチル基、硝酸エステル基、トシル基、光硬化部位としてアルキル置換エチレン性不飽和基、熱硬化部位としてアルキル置換エポキシ基などを挙げることができるが、これに限定されるものではない。また、上記の疎水性修飾ポリロタキサンにおいては、上述の疎水基の1種を単独で又は2種以上を組み合わせて有していてもよい。 Specific examples of hydrophobic groups include, for example, alkyl groups, benzyl groups, benzene derivative-containing groups, acyl groups, silyl groups, trityl groups, nitrate ester groups, tosyl groups, alkyl-substituted ethylenically unsaturated groups as photocuring sites, and thermosetting sites. Examples thereof include, but are not limited to, an alkyl-substituted epoxy group. Moreover, in said hydrophobic modification polyrotaxane, you may have 1 type of the above-mentioned hydrophobic group individually or in combination of 2 or more types.
 上記疎水基による修飾度は、シクロデキストリンの水酸基が修飾され得る最大数を1とすると、0.02以上であることが好ましく、0.04以上であることがより好ましく、0.06以上であることが更に好ましい。
 0.02未満であると、有機溶剤への溶解性が十分なものとならず、不溶性ブツ(異物付着などに由来する突起部)が生成することがある。
 ここで、シクロデキストリンの水酸基が修飾され得る最大数とは、換言すれば、修飾する前にシクロデキストリンが有していた全水酸基数のことである。修飾度とは、換言すれば、修飾された水酸基数の全水酸基数に対する比のことである。
 なお、疎水基は少なくとも1つでよいが、その場合、シクロデキストリン環1つに対して1つの疎水基を有するのが好ましい。また、官能基を有している疎水基を導入することにより、他のポリマーとの反応性を向上させることが可能になる。
The degree of modification with the hydrophobic group is preferably 0.02 or more, more preferably 0.04 or more, and more preferably 0.06 or more, assuming that the maximum number of cyclodextrin hydroxyl groups that can be modified is 1. More preferably.
If it is less than 0.02, the solubility in an organic solvent will not be sufficient, and insoluble bumps (protrusions derived from adhesion of foreign matter, etc.) may be generated.
Here, the maximum number that the hydroxyl groups of cyclodextrin can be modified is, in other words, the total number of hydroxyl groups that cyclodextrin had before modification. In other words, the degree of modification is the ratio of the number of modified hydroxyl groups to the total number of hydroxyl groups.
Although at least one hydrophobic group may be used, in that case, it is preferable to have one hydrophobic group for each cyclodextrin ring. Further, by introducing a hydrophobic group having a functional group, the reactivity with other polymers can be improved.
<不飽和二重結合を有するポリロタキサン>
 環状分子相当部分に不飽和結合基を導入することができる。この基の導入により、重合性化合物との重合が可能となる。
 不飽和結合基の導入は、例えば、シクロデキストリン等の水酸基(-OH)を有する環状分子の少なくとも一部を不飽和結合基、好ましくは不飽和二重結合基で置換することにより行うことができる。
 不飽和結合基、例えば不飽和二重結合基として、オレフィニル基(オレフィン性二重結合を有する基)を挙げることができ、例えば、アクリル基、(メタ)アクリロイル基、ビニルエーテル基、スチリル基などを挙げることができるが、これに限定されない。
<Polyrotaxane having an unsaturated double bond>
An unsaturated bond group can be introduced into the portion corresponding to the cyclic molecule. By introducing this group, polymerization with a polymerizable compound becomes possible.
The unsaturated bond group can be introduced, for example, by substituting at least a part of a cyclic molecule having a hydroxyl group (—OH) such as cyclodextrin with an unsaturated bond group, preferably an unsaturated double bond group. .
Examples of unsaturated bond groups such as unsaturated double bond groups include olefinyl groups (groups having olefinic double bonds), such as acrylic groups, (meth) acryloyl groups, vinyl ether groups, and styryl groups. Although it can mention, it is not limited to this.
 不飽和二重結合基の導入は、次に挙げる方法を用いることができる。即ち、イソシアネート化合物等によるカルバメート結合形成による方法;カルボン酸化合物、酸クロリド化合物又は酸無水物等によるエステル結合形成による方法;シラン化合物等によるシリルエーテル結合形成による方法;クロロ炭酸化合物等によるカーボネート結合形成による方法等を挙げることができる。 The following methods can be used for introduction of the unsaturated double bond group. That is, a method by carbamate bond formation with an isocyanate compound or the like; a method by ester bond formation by a carboxylic acid compound, an acid chloride compound or an acid anhydride; a method by silyl ether bond formation by a silane compound or the like; a carbonate bond formation by a chlorocarbonic acid compound or the like And the like.
 カルバモイル結合を介して、不飽和二重結合基として(メタ)アクリロイル基を導入する場合、ポリロタキサンをDMSO、DMF等の脱水溶媒に溶解し、イソシアネート基を有する(メタ)アクリロイル試薬を加えることで行う。その他、エーテル結合やエステル結合を介して導入する場合、グリシジル基や酸クロライド等の活性基を有する(メタ)アクリロイル試薬を用いることもできる。 When a (meth) acryloyl group is introduced as an unsaturated double bond group via a carbamoyl bond, the polyrotaxane is dissolved in a dehydrating solvent such as DMSO or DMF, and a (meth) acryloyl reagent having an isocyanate group is added. . In addition, when it introduce | transduces via an ether bond or an ester bond, the (meth) acryloyl reagent which has active groups, such as a glycidyl group and an acid chloride, can also be used.
 環状分子が有する水酸基を不飽和二重結合基に置換する工程は、擬ポリロタキサンを調製する工程の前でも、工程間でも、工程の後でもよい。また、擬ポリロタキサンをブロック化してポリロタキサンを調製する工程の前でも、工程間でも、工程の後でもよい。さらには、ポリロタキサンが架橋ポリロタキサンの場合、ポリロタキサン同士を架橋させる工程の前でも、工程間でも、工程の後でもよい。これらの2以上の時期に設けることもできる。置換工程は、擬ポリロタキサンをブロック化してポリロタキサンを調製した後であって、ポリロタキサン同士の架橋前に設けるのが好ましい。置換工程において用いられる条件は、置換する不飽和二重結合基に依存するが、特に限定されず、種々の反応方法、反応条件を用いることができる。 The step of substituting the hydroxyl group of the cyclic molecule with an unsaturated double bond group may be before the step of preparing the pseudopolyrotaxane, between the steps, or after the step. Further, it may be before the step of preparing the polyrotaxane by blocking the pseudopolyrotaxane, between the steps, or after the step. Furthermore, when the polyrotaxane is a crosslinked polyrotaxane, it may be before the step of crosslinking the polyrotaxanes, between the steps, or after the step. It can also be provided at these two or more times. The substitution step is preferably performed after the polyrotaxane is prepared by blocking the pseudopolyrotaxane and before the crosslinking of the polyrotaxane. The conditions used in the substitution step depend on the unsaturated double bond group to be substituted, but are not particularly limited, and various reaction methods and reaction conditions can be used.
 本実施形態で用いるポリロタキサンは、疎水化修飾ポリロタキサンが好ましく、不飽和二重結合を有するポリロタキサンがより好ましく、(メタ)アクリロイル基を有するポリロタキサンがさらに好ましい。 The polyrotaxane used in the present embodiment is preferably a hydrophobized modified polyrotaxane, more preferably a polyrotaxane having an unsaturated double bond, and further preferably a polyrotaxane having a (meth) acryloyl group.
 かかる(メタ)アクリロイル基を有するポリロタキサンとしては、アドバンスト・ソフトマテリアルズ株式会社製のセルム(登録商標)キー・ミクスチャーSM3400C、SA3400C、SA2400C等が挙げられる。 Examples of the polyrotaxane having such a (meth) acryloyl group include Celum (registered trademark) Key Mixture SM3400C, SA3400C, SA2400C manufactured by Advanced Soft Materials Co., Ltd.
<シリカ粒子>
 シリカ粒子としては、粉体シリカや、シリカ粒子が溶媒に分散したオルガノシリカゾル等を用いることができる。これらシリカ粒子は、一般に市販されている。
 粉体シリカとしては、アエロジル(登録商標)130、アエロジル(登録商標)300、アエロジル(登録商標)380、アエロジル(登録商標)TT600、アエロジル(登録商標)OX50等(以上、日本アエロジル(株)製)、SYLYSIA470(富士シリシア(株)製)、SGフレ-ク(日本板硝子(株)製)等を挙げることができる。
 オルガノシリカゾルとしては、イソプロピルアルコール分散シリカゾル(IPA-ST、IPA-ST-L、IPA-ST-UP、IPA-ST-ZL)、メタノール分散シリカゾル(MA-ST-M、MA-ST-L、MA-ST-ZL、MA-ST-UP)、ジメチルアセトアミド分散シリカゾル(DMAC-ST、DMAC-ST-ZL)、エチレングリコール分散シリカゾル(EG-ST、EG-ST-ZL)、エチレングリコールモノn-プロピルエーテル分散シリカゾル(NPC-ST-30)、プロピレングリコールモノメチルエーテル分散シリカゾル(PGM-ST)、酢酸エチル分散シリカゾル(EAC-ST)、プロピレングリコールモノメチルエーテルアセテート分散シリカゾル(PMA-ST)、メチルエチルケトン分散シリカゾル(MEK-ST、MEK-ST-40、MEK-ST-L、MEK-ST-ZL、MEK-ST-UP、MEK-AC-2104Z、MEK-AC-2130Y、MEK-AC-4130Y、MEK-AC-5140Z)、メチルイソブチルケトン分散シリカゾル(MIBK-ST、MIBK-ST-L、MIBK-SD、MIBK-SD-L)(以上、日産化学工業(株)製)、OSCAL(登録商標)シリーズ(日揮触媒化成(株)製)等を挙げることができる。
<Silica particles>
As silica particles, powder silica, organosilica sol in which silica particles are dispersed in a solvent, or the like can be used. These silica particles are generally commercially available.
Examples of the powder silica include Aerosil (registered trademark) 130, Aerosil (registered trademark) 300, Aerosil (registered trademark) 380, Aerosil (registered trademark) TT600, Aerosil (registered trademark) OX50, etc. (above, manufactured by Nippon Aerosil Co., Ltd.). ), SYLYSIA470 (manufactured by Fuji Silysia Co., Ltd.), SG flake (manufactured by Nippon Sheet Glass Co., Ltd.), and the like.
Examples of the organosilica sol include isopropyl alcohol-dispersed silica sol (IPA-ST, IPA-ST-L, IPA-ST-UP, IPA-ST-ZL), methanol-dispersed silica sol (MA-ST-M, MA-ST-L, MA). -ST-ZL, MA-ST-UP), dimethylacetamide dispersed silica sol (DMAC-ST, DMAC-ST-ZL), ethylene glycol dispersed silica sol (EG-ST, EG-ST-ZL), ethylene glycol mono-n-propyl Ether dispersed silica sol (NPC-ST-30), propylene glycol monomethyl ether dispersed silica sol (PGM-ST), ethyl acetate dispersed silica sol (EAC-ST), propylene glycol monomethyl ether acetate dispersed silica sol (PMA-ST), methyl ethyl keto Dispersed silica sol (MEK-ST, MEK-ST-40, MEK-ST-L, MEK-ST-ZL, MEK-ST-UP, MEK-AC-2104Z, MEK-AC-2130Y, MEK-AC-4130Y, MEK -AC-5140Z), methyl isobutyl ketone-dispersed silica sol (MIBK-ST, MIBK-ST-L, MIBK-SD, MIBK-SD-L) (above, manufactured by Nissan Chemical Industries, Ltd.), OSCAL (registered trademark) series (JGC Catalysts & Chemicals Co., Ltd.).
 シリカ粒子の粒子径は、好ましくは平均一次粒子径が100nm以下、より好ましくは30nm以下である。平均一次粒子径が100nmを超えると、得られる塗膜の透明性が損なわれる傾向にある。
 なお、本明細書中、シリカ粒子の平均一次粒子径は、JIS Z 8828 動的光散乱法により測定される値を示す。
As for the particle diameter of the silica particles, the average primary particle diameter is preferably 100 nm or less, more preferably 30 nm or less. When the average primary particle diameter exceeds 100 nm, the transparency of the resulting coating film tends to be impaired.
In addition, in this specification, the average primary particle diameter of a silica particle shows the value measured by JISZ8828 dynamic light scattering method.
 本実施形態の光硬化性樹脂組成物は、二官能以上の多官能(メタ)アクリレートの含有量をX質量部、ポリロタキサンの含有量をY質量部、シリカ粒子の含有量をZ質量部としたときに下式(1)~(4)の関係を全て満たす。
式(1): X+Y+Z=100
式(2): X≧50
式(3): 3≦Y≦20
式(4): 25≦Z≦40
In the photocurable resin composition of the present embodiment, the content of bifunctional or higher polyfunctional (meth) acrylate is X parts by mass, the content of polyrotaxane is Y parts by mass, and the content of silica particles is Z parts by mass. Occasionally, all the relationships of the following expressions (1) to (4) are satisfied.
Formula (1): X + Y + Z = 100
Formula (2): X ≧ 50
Formula (3): 3 ≦ Y ≦ 20
Formula (4): 25 ≦ Z ≦ 40
 式(1)及び式(2)は、二官能以上の多官能(メタ)アクリレートとポリロタキサンとシリカ粒子との合計100質量部に対し、二官能以上の多官能(メタ)アクリレートの含有量が50質量部以上であることを表す。Xが50より小さくなるほど、得られる硬化膜の表面硬度が低下する傾向にある。Xは70以下であることが好ましい。式(2)は、式(2’)であることがより好ましい。Xは、50より大きいことがさらに好ましい。
式(2’): 50≦X≦70
In formula (1) and formula (2), the bifunctional or higher polyfunctional (meth) acrylate content is 50 with respect to 100 parts by mass in total of the bifunctional or higher polyfunctional (meth) acrylate, polyrotaxane and silica particles. It represents that it is at least part by mass. As X becomes smaller than 50, the surface hardness of the obtained cured film tends to decrease. X is preferably 70 or less. The formula (2) is more preferably the formula (2 ′). More preferably, X is greater than 50.
Formula (2 ′): 50 ≦ X ≦ 70
 式(1)及び式(3)は、二官能以上の多官能(メタ)アクリレートとポリロタキサンとシリカ粒子との合計100質量部に対し、ポリロタキサンの含有量が3質量部以上、20質量部以下であることを表す。Yが3より小さくなるほど、得られる硬化膜にクラックが生じ易くなり外観が損なわれる傾向にある。Yが20より大きくなるほど、得られる硬化膜の表面硬度が低下する傾向にある。式(3)は、式(3’)であることが好ましい。
式(3’): 5≦Y≦15
In formula (1) and formula (3), the content of the polyrotaxane is 3 parts by mass or more and 20 parts by mass or less with respect to a total of 100 parts by mass of the bifunctional or higher polyfunctional (meth) acrylate, polyrotaxane and silica particles. Represents something. As Y becomes smaller than 3, cracks tend to occur in the resulting cured film and the appearance tends to be impaired. As Y is larger than 20, the surface hardness of the resulting cured film tends to decrease. The formula (3) is preferably the formula (3 ′).
Formula (3 ′): 5 ≦ Y ≦ 15
 式(1)及び式(4)は、二官能以上の多官能(メタ)アクリレートとポリロタキサンとシリカ粒子との合計100質量部に対し、シリカ粒子が25質量部以上、40質量部以下であることを表す。Zが25より小さくなるほど、得られる硬化膜の表面硬度が低下する傾向にある。Zが40より大きくなるほど、得られる硬化膜にクラックが生じ易くなり外観が損なわれる傾向にある。式(4)は、式(4’)であることが好ましい。
式(4’): 25<Z<40
In formula (1) and formula (4), the silica particles are 25 parts by mass or more and 40 parts by mass or less with respect to a total of 100 parts by mass of the bifunctional or higher polyfunctional (meth) acrylate, polyrotaxane and silica particles. Represents. As Z becomes smaller than 25, the surface hardness of the resulting cured film tends to decrease. As Z is larger than 40, cracks are likely to occur in the resulting cured film and the appearance tends to be impaired. The formula (4) is preferably the formula (4 ′).
Formula (4 ′): 25 <Z <40
<光重合開始剤>
 光重合開始剤としては、紫外線吸収剤の存在下において光照射により光重合開始能を発現できる重合開始剤が好ましく、例えばアセトフェノン、アセトフェノンベンジルケタール、アントラキノン、1-(4-イソプロピルフェニル-2-ヒドロキシ-2-メチルプロパン-1-オン、カルバゾール、キサントン、4-クロロベンゾフェノン、4,4’-ジアミノベンゾフェノン、1,1-ジメトキシデオキシベンゾイン、3,3’-ジメチル-4-メトキシベンゾフェノン、チオキサントン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1-オン、トリフェニルアミン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、フルオレノン、フルオレン、ベンズアルデヒド、ベンゾインエチルエーテル、ベンゾイソプロピルエーテル、ベンゾフェノン、ミヒラーケトン、3-メチルアセトフェノン、3,3’,4,4’-テトラ-tert-ブチルパーオキシカルボニルベンゾフェノン(BTTB)、2-(ジメチルアミノ)-1-〔4-(モルフォリニル)フェニル〕-2-(フェニルメチル)-1-ブタノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、ベンジル等が挙げられる。
<Photopolymerization initiator>
As the photopolymerization initiator, a polymerization initiator that can exhibit photopolymerization initiating ability by light irradiation in the presence of an ultraviolet absorber is preferable. For example, acetophenone, acetophenone benzyl ketal, anthraquinone, 1- (4-isopropylphenyl-2-hydroxy) -2-Methylpropan-1-one, carbazole, xanthone, 4-chlorobenzophenone, 4,4′-diaminobenzophenone, 1,1-dimethoxydeoxybenzoin, 3,3′-dimethyl-4-methoxybenzophenone, thioxanthone, 2 , 2-dimethoxy-2-phenylacetophenone, 1- (4-dodecylphenyl) -2-hydroxy-2-methylpropan-1-one, 2-methyl-1- [4- (methylthio) phenyl] -2-morpho Linopropan-1-one, triphenylamino 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, fluorenone, fluorene, benzaldehyde, benzoin ethyl ether, benzoisopropyl ether , Benzophenone, Michler's ketone, 3-methylacetophenone, 3,3 ′, 4,4′-tetra-tert-butylperoxycarbonylbenzophenone (BTTB), 2- (dimethylamino) -1- [4- (morpholinyl) phenyl] Examples include -2- (phenylmethyl) -1-butanone, 4-benzoyl-4′-methyldiphenyl sulfide, and benzyl.
 光重合開始剤の含有量は、二官能以上の多官能(メタ)アクリレートとポリロタキサンとシリカ粒子との合計100質量部に対して、好ましくは1~15質量部、より好ましくは2~10質量部である。光重合開始剤の含有量が上記の範囲よりも多い場合、光重合開始に使用されなかった光重合開始剤が残存し、可視光線透過率が低下するなどの弊害が生ずるおそれがある。一方、上記の範囲より少ない場合、光重合開始能が十分に発現されず、紫外線硬化型樹脂の硬化が不十分になるおそれがある。 The content of the photopolymerization initiator is preferably 1 to 15 parts by mass, more preferably 2 to 10 parts by mass with respect to 100 parts by mass in total of the polyfunctional (meth) acrylate having two or more functions, polyrotaxane and silica particles. It is. When the content of the photopolymerization initiator is more than the above range, the photopolymerization initiator that has not been used for initiating the photopolymerization may remain, which may cause a problem such as a decrease in visible light transmittance. On the other hand, when the amount is less than the above range, the photopolymerization initiating ability is not sufficiently exhibited, and the curing of the ultraviolet curable resin may be insufficient.
<その他の成分>
 本実施形態の光硬化性樹脂組成物は、さらに帯電防止剤を含有していてもよい。かかる帯電防止剤としては、金属酸化物及び金属塩が好ましい。該金属酸化物としては、例えばITO(インジウム-錫複合酸化物)、ATO(アンチモン-錫複合酸化物)、酸化錫、五酸化アンチモン、酸化亜鉛、酸化ジルコニウム、酸化チタン、酸化アルミニウム等が挙げられる。金属塩としては、アンチモン酸亜鉛等が挙げられる。この帯電防止剤の含有量は求める帯電防止性能にもよるが、二官能以上の多官能(メタ)アクリレート、ポリロタキサン、シリカ粒子及び光重合開始剤の合計100質量部に対して、好ましくは1~100質量部である。帯電防止剤の含有量が上記の範囲より多いときには、光硬化性樹脂組成物の紫外線硬化性に支障をきたしたり、得られる硬化膜の可視光線透過率が低下する傾向がある。また、帯電防止剤の粒子径は0.001~0.1μmであるのが好ましい。粒子径があまり小さいものは、工業的な生産が難しく、粒子径があまり大きいものを用いると、得られる硬化膜の透明性が低下する傾向がある。
<Other ingredients>
The photocurable resin composition of the present embodiment may further contain an antistatic agent. As such an antistatic agent, metal oxides and metal salts are preferred. Examples of the metal oxide include ITO (indium-tin composite oxide), ATO (antimony-tin composite oxide), tin oxide, antimony pentoxide, zinc oxide, zirconium oxide, titanium oxide, and aluminum oxide. . Examples of the metal salt include zinc antimonate. The content of the antistatic agent depends on the antistatic performance to be obtained, but is preferably 1 to 100 parts by mass with respect to a total of 100 parts by mass of the bifunctional or higher polyfunctional (meth) acrylate, polyrotaxane, silica particles and photopolymerization initiator. 100 parts by mass. When the content of the antistatic agent is larger than the above range, there is a tendency that the ultraviolet curable property of the photocurable resin composition is hindered or the visible light transmittance of the obtained cured film is lowered. The particle size of the antistatic agent is preferably 0.001 to 0.1 μm. When the particle size is too small, industrial production is difficult, and when the particle size is too large, the transparency of the resulting cured film tends to decrease.
 さらに、本実施形態の光硬化性樹脂組成物には、必要に応じて、紫外線吸収剤、酸化防止剤、着色剤、撥水撥油性能を付与するフッ素添加剤、レベリング剤等の添加剤が含まれていてもよい。レベリング剤が含まれることにより、硬化被膜の平滑性や耐擦傷性を高めることができる。 Furthermore, in the photocurable resin composition of the present embodiment, additives such as an ultraviolet absorber, an antioxidant, a colorant, a fluorine additive that imparts water and oil repellency, and a leveling agent are added as necessary. It may be included. By containing the leveling agent, the smoothness and scratch resistance of the cured film can be improved.
 本実施形態の光硬化性樹脂組成物は、後述する塗布する工程に供する点において、さらに溶剤を含有することが好ましい。かかる溶剤としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール(イソプロピルアルコール)、1-ブタノール、2-ブタノール(sec-ブチルアルコール)、2-メチル-1-プロパノール(イソブチルアルコール)、2-メチル-2-プロパノール(tert-ブチルアルコール)等のアルコール溶剤;2-エトキシエタノール、2-ブトキシエタノール、3-メトキシ-1-プロパノール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール等のアルコキシアルコール溶剤;ジアセトンアルコール等のケトール溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン溶剤;トルエン、キシレン等の芳香族炭化水素溶剤;酢酸エチル、酢酸ブチル等のエステル溶剤;が挙げられる。 The photocurable resin composition of the present embodiment preferably further contains a solvent in that it is subjected to a coating step described later. Examples of such solvents include methanol, ethanol, 1-propanol, 2-propanol (isopropyl alcohol), 1-butanol, 2-butanol (sec-butyl alcohol), 2-methyl-1-propanol (isobutyl alcohol), 2 Alcohol solvents such as methyl-2-propanol (tert-butyl alcohol); 2-ethoxyethanol, 2-butoxyethanol, 3-methoxy-1-propanol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol Alkoxy alcohol solvents such as diacetone alcohol; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbon solvents such as toluene and xylene; ester solvents such as ethyl acetate and butyl acetate; And the like.
 溶剤の含有量は、二官能以上の多官能(メタ)アクリレート、ポリロタキサン、シリカ粒子及び光重合開始剤の合計100質量部に対して、好ましくは20~10000質量部である。 The content of the solvent is preferably 20 to 10,000 parts by mass with respect to 100 parts by mass in total of the bifunctional or higher polyfunctional (meth) acrylate, polyrotaxane, silica particles and photopolymerization initiator.
<光硬化性樹脂組成物の製造>
 本実施形態の光硬化性樹脂組成物は、二官能以上の多官能(メタ)アクリレートと、ポリロタキサンと、シリカ粒子と、光重合開始剤と、必要に応じて溶剤や帯電防止剤その他の添加剤とを混合して得られ、それらの混合順等は特に限定されない。
<Manufacture of a photocurable resin composition>
The photocurable resin composition of the present embodiment includes a bifunctional or higher polyfunctional (meth) acrylate, a polyrotaxane, silica particles, a photopolymerization initiator, and optionally a solvent, an antistatic agent, and other additives. And the order of mixing is not particularly limited.
[硬化膜の製造方法]
 次に、本実施形態の光硬化性樹脂組成物を用いる硬化膜の製造方法について説明する。該硬化膜の製造方法は、次の工程(1)及び(2)を含む。
(1)上記の光硬化性樹脂組成物を基材上に塗布して組成物層を得る工程
(2)組成物層に露光して該組成物層を硬化させる工程
[Method for producing cured film]
Next, the manufacturing method of the cured film using the photocurable resin composition of this embodiment is demonstrated. The method for producing the cured film includes the following steps (1) and (2).
(1) A step of obtaining the composition layer by applying the above-mentioned photocurable resin composition on a substrate (2) A step of exposing the composition layer to cure the composition layer
<工程(1)>
 上記基材を構成する樹脂としては、(メタ)アクリル樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリ環状オレフィン樹脂、ポリスチレン樹脂、メタクリル-スチレン共重合体(MS樹脂)、アクリロニトリル-スチレン共重合体(AS樹脂)、ポリフッ化ビニリデン樹脂(PVDF樹脂)等が挙げられる。中でも、(メタ)アクリル樹脂は、透明性が高く、表面硬度が高く、高い耐擦傷性を有する硬化被膜を設け易いので好ましい。メタクリル樹脂がより好ましい。
<Process (1)>
As the resin constituting the substrate, (meth) acrylic resin, polyester resin, polycarbonate resin, polycyclic olefin resin, polystyrene resin, methacryl-styrene copolymer (MS resin), acrylonitrile-styrene copolymer (AS resin) ), Polyvinylidene fluoride resin (PVDF resin), and the like. Among these, a (meth) acrylic resin is preferable because it has a high transparency, a high surface hardness, and a cured film having high scratch resistance. A methacrylic resin is more preferable.
 基材の厚さは、好ましくは30~300μm、さらに好ましくは50~200μmである。この厚さが上記の範囲より薄い場合には、得られる硬化膜と基材との積層体の強度が保てなくなるおそれがある。その一方、上記の範囲より厚い場合には、基材の透明性が低下したり、屈曲性が低下したりして好ましくない。基材には、各種の添加剤が含有されていてもよい。そのような添加剤として例えば、安定剤、可塑剤、滑剤、難燃剤等が挙げられる。 The thickness of the substrate is preferably 30 to 300 μm, more preferably 50 to 200 μm. When this thickness is thinner than the above range, the strength of the resulting laminate of the cured film and the substrate may not be maintained. On the other hand, when it is thicker than the above range, the transparency of the substrate is lowered or the flexibility is lowered, which is not preferable. Various additives may be contained in the base material. Examples of such additives include stabilizers, plasticizers, lubricants, flame retardants, and the like.
 基材は、通常の板(シート)やフィルムのように、表面が平面のものであってもよいし、凸レンズや凹レンズなどのように、表面が曲面になっているものであってもよい。また、表面に細かな凹凸などの微細な構造が設けられていてもよい。 The substrate may have a flat surface such as a normal plate (sheet) or film, or may have a curved surface such as a convex lens or a concave lens. Further, a fine structure such as fine irregularities may be provided on the surface.
 基材は、必要に応じて、染料や顔料などにより着色されていてもよいし、酸化防止剤や紫外線吸収剤、ゴム粒子などを含有していてもよい。樹脂基材の厚さは、好ましくは0.1mm以上であり、また好ましくは3.0mm以下である。 The base material may be colored with a dye or a pigment, if necessary, or may contain an antioxidant, an ultraviolet absorber, rubber particles, or the like. The thickness of the resin substrate is preferably 0.1 mm or more, and preferably 3.0 mm or less.
 基材は、単層のものであってもよいし、多層構造のものであってもよい。多層構造の樹脂基材としては、主層樹脂層の少なくとも一方の面に(メタ)アクリル樹脂層が積層されてなるものが好ましい。また、多層構造の基材としては、偏光板、位相差板等を含む光学積層体も好ましい。
 基材は、板(シート)状、フィルム状、多層構造体等であってよく、基材表面は平面状であっても曲面状であってもよい。
The substrate may be a single layer or a multilayer structure. As the resin base material having a multilayer structure, one in which a (meth) acrylic resin layer is laminated on at least one surface of the main resin layer is preferable. Moreover, as a base material of a multilayer structure, the optical laminated body containing a polarizing plate, a phase difference plate, etc. is also preferable.
The substrate may be in the form of a plate (sheet), a film, a multilayer structure or the like, and the substrate surface may be flat or curved.
 基材は、その表面に接着層を有していてもよい。接着層は、硬化膜を基材に密着させるためのもので、常法に従って形成される。接着層を形成する接着剤としては、基材や硬化膜の材質に応じて適宜選択されるが、例えばアクリル系接着剤(粘着剤)、シリコーン系接着剤(粘着剤)、ポリエステル系接着剤等が用いられる。接着層の厚さは、薄いと十分な接着力が得られず、厚くなり過ぎると得られる硬化膜と基材との積層体が硬くなりすぎてしまいフィルムとしての柔軟性に欠けるため、0.1~1μmの範囲が好ましい。 The substrate may have an adhesive layer on its surface. The adhesive layer is for adhering the cured film to the substrate and is formed according to a conventional method. The adhesive for forming the adhesive layer is appropriately selected according to the material of the substrate or the cured film. For example, an acrylic adhesive (adhesive), a silicone adhesive (adhesive), a polyester adhesive, etc. Is used. If the thickness of the adhesive layer is too thin, sufficient adhesive force cannot be obtained, and if it is too thick, the resulting laminate of the cured film and the substrate becomes too hard and lacks flexibility as a film. The range of 1 to 1 μm is preferable.
 上記の光硬化性樹脂組成物を基材上に塗布する方法としては、例えば、ロールコート法、スピンコート法、コイルバー法、ディップコート法、ダイコート法等が挙げられる。ロールコート法等、連続的に塗布することができる方法が生産性及び生産コストの点より好ましい。 Examples of the method for applying the above-mentioned photocurable resin composition on a substrate include a roll coating method, a spin coating method, a coil bar method, a dip coating method, and a die coating method. A method that can be applied continuously, such as a roll coating method, is preferred in terms of productivity and production cost.
 得られた組成物層が溶剤を含む場合は、さらに溶剤を除去する工程(1’)を含むことが好ましい。このような溶剤除去は、例えば、ホットプレート等の加熱装置を用いた加熱手段又は減圧装置を用いた減圧手段により、あるいはこれらの手段を組み合わせて、該組成物層から溶剤を蒸発させることにより行われる。加熱手段や減圧手段の条件は、組成物層に含まれる溶剤の種類等に応じて選択でき、例えばホットプレートの場合、該ホットプレートの表面温度を50~200℃程度の範囲にすることが好ましい。また、減圧手段では、適当な減圧機の中に、組成物層を有する基材を封入した後、該減圧機の内部圧力を1~1.0×10Pa程度にすればよい。かくして組成物層から溶剤を除去することにより、該基材上には溶媒を含まない組成物層が形成される。 When the obtained composition layer contains a solvent, it is preferable to further include a step (1 ′) for removing the solvent. Such solvent removal is performed, for example, by evaporating the solvent from the composition layer by a heating means using a heating device such as a hot plate or a decompression means using a decompression device, or by combining these means. Is called. The conditions for the heating means and the decompression means can be selected according to the type of the solvent contained in the composition layer. For example, in the case of a hot plate, the surface temperature of the hot plate is preferably in the range of about 50 to 200 ° C. . Further, in the decompression means, after the substrate having the composition layer is sealed in an appropriate decompressor, the internal pressure of the decompressor may be set to about 1 to 1.0 × 10 5 Pa. Thus, by removing the solvent from the composition layer, a composition layer containing no solvent is formed on the substrate.
<工程(2)>
 露光は、通常紫外線の照射によって行われる。この際、紫外線は可視光線領域の光線を含み、光重合開始剤は光照射によって光重合開始能を発現して工程(1)で得られた組成物層を硬化させる。紫外線は200~450nmの波長を有することが好ましく、光重合開始剤は光の波長220~450nmに吸収域を有することが好ましい。一般に紫外線の波長は380nmよりも短く、可視光線の波長は380~780nmである。
<Step (2)>
The exposure is usually performed by irradiation with ultraviolet rays. At this time, ultraviolet rays include light in the visible light region, and the photopolymerization initiator develops photopolymerization initiating ability by light irradiation and cures the composition layer obtained in the step (1). The ultraviolet ray preferably has a wavelength of 200 to 450 nm, and the photopolymerization initiator preferably has an absorption region at a light wavelength of 220 to 450 nm. In general, the wavelength of ultraviolet light is shorter than 380 nm, and the wavelength of visible light is 380 to 780 nm.
 紫外線の波長が200nm未満の場合には紫外線が紫外線吸収剤に吸収されやすくなり、光重合開始剤の光重合開始能が十分に発現されなくなって組成物層の硬化性が低下する傾向を示し、450nmを超える場合には紫外線としての機能が低下する。光重合開始剤の吸収域として光の波長が220nm未満の場合には紫外線吸収剤に紫外線が吸収されやすくなってその光重合開始能が低下し、450nmを超える場合には該当する光重合開始剤が少なく、また紫外線による光重合開始能の発現が不足するおそれがある。 When the wavelength of the ultraviolet light is less than 200 nm, the ultraviolet light is easily absorbed by the ultraviolet absorber, and the photopolymerization initiating ability of the photopolymerization initiator is not sufficiently expressed, and the curability of the composition layer tends to be lowered, When it exceeds 450 nm, the function as ultraviolet rays is reduced. When the wavelength of light is less than 220 nm as the absorption region of the photopolymerization initiator, the ultraviolet absorber is easily absorbed by ultraviolet rays, and the photopolymerization initiation ability is reduced. When the wavelength exceeds 450 nm, the corresponding photopolymerization initiator is used. And there is a possibility that the photopolymerization initiating ability due to ultraviolet rays is insufficient.
 こうして形成される硬化膜の厚さは、2~30μmが好ましく、5~25μmがより好ましい。この厚さが2μm以上であると表面硬度がより向上する傾向があり、この厚さがあまり大きいと、硬化直後あるいは高温高湿下に曝したときに、クラックが発生し易くなる。硬化膜の厚さは、基材の表面に塗布する光硬化性樹脂組成物の面積あたりの量や固形分濃度を調整することにより、調節することができる The thickness of the cured film thus formed is preferably 2 to 30 μm, more preferably 5 to 25 μm. If the thickness is 2 μm or more, the surface hardness tends to be further improved. If the thickness is too large, cracks are likely to occur immediately after curing or when exposed to high temperature and high humidity. The thickness of the cured film can be adjusted by adjusting the amount per area and solid content concentration of the photocurable resin composition applied to the surface of the substrate.
[積層体]
 次に、本実施形態の積層体について説明する。該積層体は、上記基材の少なくとも一方の面に上記製造方法で得られる硬化膜が積層されている。本実施形態の積層体は、基材と、基材の少なくとも一方の面に積層された光硬化性樹脂組成物の硬化物を含む硬化膜と、を備える積層体ということもできる。
[Laminate]
Next, the laminated body of this embodiment is demonstrated. In the laminate, a cured film obtained by the production method is laminated on at least one surface of the substrate. The laminated body of this embodiment can also be called a laminated body provided with a base material and the cured film containing the hardened | cured material of the photocurable resin composition laminated | stacked on the at least one surface of the base material.
 かかる積層体は、上記製造方法の工程(1)及び(2)を経て得られる基材の表面に硬化膜が形成された状態の積層体であることが好ましいが、その他に、上記製造方法の工程(1)及び(2)を経て得られる硬化膜を基材から剥がし、別の基材に、必要に応じて上記接着層を介して貼付して得られる積層体であってもよいし、上記製造方法の工程(1)で得られる組成物層を基材から剥がし、別の基材に、必要に応じて上記接着層を介して貼付し、次いで上記製造方法の工程(2)により該組成物層を硬化させて得られる積層体であってもよい。 Such a laminate is preferably a laminate in a state where a cured film is formed on the surface of the base material obtained through the steps (1) and (2) of the above production method. It may be a laminate obtained by peeling the cured film obtained through the steps (1) and (2) from the base material and sticking to another base material through the adhesive layer as necessary, The composition layer obtained in the step (1) of the production method is peeled off from the substrate, and is attached to another substrate via the adhesive layer as necessary, and then the step (2) of the production method is used. It may be a laminate obtained by curing the composition layer.
 かくして得られる本実施形態の積層体は、基材の少なくとも一方の面に、表面硬度に優れる硬化膜が形成されており、携帯電話などに代表される携帯型情報端末の表示窓保護板として好適に用いることができる。また、デジタルカメラやハンディ型ビデオカメラなどのファインダー部、携帯型ゲーム機の表示窓保護板など、表面硬度が要求される分野での各種部材としても使用できる。 The laminate of the present embodiment thus obtained has a cured film having excellent surface hardness formed on at least one surface of the substrate, and is suitable as a display window protection plate for portable information terminals typified by mobile phones. Can be used. It can also be used as various members in fields requiring surface hardness, such as viewfinders for digital cameras and handy video cameras, and display window protection plates for portable game machines.
 本実施形態において、高硬度樹脂板から、携帯型情報端末の表示窓保護板を作製するには、まず必要に応じ、印刷、穴あけなどの加工を行い、必要な大きさに切断処理すればよい。しかるのちに、携帯型情報端末の表示窓にセットすれば、表面硬度に優れる表示窓とすることができる。 In this embodiment, in order to produce a display window protection plate for a portable information terminal from a high-hardness resin plate, first, if necessary, processing such as printing, drilling, and the like may be performed. . After that, if it is set on the display window of the portable information terminal, it can be made a display window with excellent surface hardness.
 図1は、本実施形態の積層体の層構成を模式的に示す断面図である。図1に示す積層体5は、基材1と、基材1の一方面上に形成された硬化膜3とを有する。基材1は、樹脂シート、樹脂フィルム又は多層構造体であってよい。積層体5は、ハードコートフィルムとして利用でき、例えば、偏光板等とともに表示装置を構成する部材として好適に利用できる。 FIG. 1 is a cross-sectional view schematically showing the layer structure of the laminate of the present embodiment. A laminate 5 shown in FIG. 1 has a base material 1 and a cured film 3 formed on one surface of the base material 1. The substrate 1 may be a resin sheet, a resin film, or a multilayer structure. The laminate 5 can be used as a hard coat film, and can be suitably used as a member constituting a display device together with a polarizing plate, for example.
 本実施形態の積層体は、基材及び硬化膜以外の他の層を更に有していてもよい。例えば、積層体は、硬化膜上に機能層が設けられていてよい。機能層としては、ハードコート層、反射防止層、防眩層、耐指紋層等が挙げられる。機能層は、接着剤又は粘着剤を介して積層されていてもよい。接着剤及び粘着剤としては、公知のものを適宜選択すればよい。 The laminate of this embodiment may further have a layer other than the base material and the cured film. For example, the laminated body may be provided with a functional layer on the cured film. Examples of the functional layer include a hard coat layer, an antireflection layer, an antiglare layer, and an anti-fingerprint layer. The functional layer may be laminated via an adhesive or a pressure-sensitive adhesive. What is necessary is just to select a well-known thing suitably as an adhesive agent and an adhesive.
 本実施形態の積層体は、硬化膜が硬度及び屈曲性に優れるため、機能層を更に設けても、十分な屈曲性と高い硬度とを両立することができる。 In the laminate of the present embodiment, since the cured film is excellent in hardness and flexibility, even if a functional layer is further provided, sufficient flexibility and high hardness can be achieved.
<表示装置>
 図2は、本実施形態の表示装置の第一の層構成例を模式的に示す断面図である。液晶表示装置30は、液晶パネル25と、液晶パネル25の一方の面に積層された硬化膜3とを備えている。液晶パネル25は、液晶セル20の両面上に偏光板10が粘着剤層15を介して積層されたものである。なお、図2では、液晶セル20の両面に配置される偏光板10を同じものとして記載したが、これらは異なるものであってもよい。
<Display device>
FIG. 2 is a cross-sectional view schematically showing a first layer configuration example of the display device of the present embodiment. The liquid crystal display device 30 includes a liquid crystal panel 25 and a cured film 3 laminated on one surface of the liquid crystal panel 25. The liquid crystal panel 25 is obtained by laminating the polarizing plate 10 on both surfaces of the liquid crystal cell 20 with the adhesive layer 15 interposed therebetween. In FIG. 2, the polarizing plates 10 arranged on both surfaces of the liquid crystal cell 20 are described as being the same, but they may be different.
 偏光板10は、偏光フィルム13と、その両面に積層された保護フィルム11とを備えている。なお、偏光板10は、偏光フィルム13を備えていればよく、必ずしもその両面に保護フィルム11が積層されている必要はない。 The polarizing plate 10 includes a polarizing film 13 and protective films 11 laminated on both surfaces thereof. In addition, the polarizing plate 10 should just be provided with the polarizing film 13, and the protective film 11 does not necessarily need to be laminated | stacked on the both surfaces.
 硬化膜3は、液晶パネル25の視認側に配置され、液晶パネル25を保護する役割を担っている。この態様においては、液晶パネル25を多層構造の基材と見なすことができる。また、液晶パネル25の一部(例えば、偏光板10)を基材と見なすこともできる。 The cured film 3 is disposed on the viewing side of the liquid crystal panel 25 and plays a role of protecting the liquid crystal panel 25. In this embodiment, the liquid crystal panel 25 can be regarded as a base material having a multilayer structure. Further, a part of the liquid crystal panel 25 (for example, the polarizing plate 10) can be regarded as a base material.
 図3は、本実施形態の表示装置の第二の層構成例を模式的に示す断面図である。図3に示す液晶表示装置31は、液晶パネル25と、液晶パネル25の一方の面に積層された積層体5とを備える。液晶パネル25と積層体5とは、接着剤又は粘着剤を含む接着層7を介して積層されることができる。 FIG. 3 is a cross-sectional view schematically showing a second layer configuration example of the display device of the present embodiment. A liquid crystal display device 31 shown in FIG. 3 includes a liquid crystal panel 25 and a stacked body 5 stacked on one surface of the liquid crystal panel 25. The liquid crystal panel 25 and the laminated body 5 can be laminated | stacked through the contact bonding layer 7 containing an adhesive agent or an adhesive.
 積層体5は、液晶パネル25の視認側に配置され、液晶パネル25を保護する役割を担っている。 The laminate 5 is disposed on the viewing side of the liquid crystal panel 25 and plays a role of protecting the liquid crystal panel 25.
 図2及び図3では、液晶表示装置の例を示したが、本実施形態において、表示装置はこれに限定されない。例えば、表示装置は、液晶ディスプレイ(LCD)、有機ELディスプレイ等であってよく、本実施形態の積層体はこれらの表示装置にも好適に利用することができる。 2 and 3 show examples of the liquid crystal display device, but in the present embodiment, the display device is not limited to this. For example, the display device may be a liquid crystal display (LCD), an organic EL display, or the like, and the laminate of the present embodiment can be suitably used for these display devices.
 以下、実施例及び比較例を挙げて前記実施形態をさらに具体的に説明するが、本発明はそれら実施例の範囲に限定されるものではない。 Hereinafter, although the embodiment will be described more specifically with reference to examples and comparative examples, the present invention is not limited to the scope of the examples.
 以下の各実施例及び比較例において、各物性は次のように測定した。
<鉛筆硬度>
 JIS K5600-5-4に準拠して測定した。ただし、荷重は1kgとした。
<外観>
 得られた硬化膜と基材との積層体の外観を目視し、次の基準で評価した。
  ヒビ割れの入っていないものを外観良好:○
  ヒビ割れが1~4本生じたもの:×
In each of the following Examples and Comparative Examples, each physical property was measured as follows.
<Pencil hardness>
The measurement was performed according to JIS K5600-5-4. However, the load was 1 kg.
<Appearance>
The appearance of the obtained laminate of the cured film and the substrate was visually observed and evaluated according to the following criteria.
Good appearance with no cracks: ○
One to four cracks occurred: ×
実施例1
 4官能アクリレート(新中村化学(株)製、A-TMMT)55.2質量部、3官能アクリレート(新中村化学(株)製、A-TMPT)13.8質量部、反応性ポリロタキサン(アドバンスト・ソフトマテリアルズ(株)製、SA-3400C)3.4質量部、シリカ粒子(日産化学(株)製、PGM-AC-2140Y:粒子径10~15nm)27.6質量部、上記4官能アクリレート及び3官能アクリレートの合計に対して7質量%の光重合開始剤(チバスペシャリティケミカルズ(株)製、IRGACURE(登録商標)184)、上記4官能アクリレート及び3官能アクリレートの合計に対して0.1質量%のレベリング剤(ビックケミージャパン(株)製、BYK-307)、並びに、以上の各成分の合計量と同量のプロピレングリコールモノメチルエーテルを撹拌混合し、光硬化性樹脂組成物を得た。
Example 1
4-functional acrylate (Shin-Nakamura Chemical Co., Ltd., A-TMMT) 55.2 parts by mass, tri-functional acrylate (Shin Nakamura Chemical Co., Ltd., A-TMPT) 13.8 parts by mass, reactive polyrotaxane (Advanced 3.4 parts by mass of Soft Materials Co., Ltd., SA-3400C), 27.6 parts by mass of silica particles (Nissan Chemical Co., Ltd., PGM-AC-2140Y: particle size 10-15 nm), the above tetrafunctional acrylate And 7% by mass of a photopolymerization initiator (manufactured by Ciba Specialty Chemicals Co., Ltd., IRGACURE (registered trademark) 184) based on the total of the trifunctional acrylate and 0.1% of the total of the tetrafunctional acrylate and trifunctional acrylate % By weight of leveling agent (BYK-307, manufactured by BYK Japan) and propylene in the same amount as the total amount of the above components. It was mixed by stirring glycol monomethyl ether, to obtain a photocurable resin composition.
 透明基材としてPMMA板(住友化学(株)製、厚さ1mm)を用い、該基材上に、前記の光硬化性樹脂組成物を乾燥膜厚20μmとなるようにバーコーターで塗工し、組成物層を得た。その後、80℃のオーブンで3分間乾燥を行い、乾燥後の組成物層に500mJ/cmのエネルギーで紫外線を照射して硬化させることで、硬化膜と基材との積層体を得た。得られた積層体の鉛筆硬度と外観を上記のとおり測定した。結果を表1に示す。 A PMMA plate (Sumitomo Chemical Co., Ltd., thickness: 1 mm) was used as the transparent substrate, and the photocurable resin composition was applied onto the substrate with a bar coater so as to have a dry film thickness of 20 μm. A composition layer was obtained. Then, it dried for 3 minutes in 80 degreeC oven, and irradiated the ultraviolet-ray with the energy of 500 mJ / cm < 2 > to the composition layer after drying, and obtained the laminated body of the cured film and the base material. The pencil hardness and appearance of the resulting laminate were measured as described above. The results are shown in Table 1.
実施例2~13及び比較例1~5
 実施例1において、4官能アクリレート(新中村化学(株)製、A-TMMT)、3官能アクリレート(新中村化学(株)製、A-TMPT)、ポリロタキサン(アドバンスト・ソフトマテリアルズ(株)製、SA-3400C)及びシリカ粒子(日産化学(株)製、PGM-AC-2140Y:粒子径10~15nm)を、それぞれ表1~4にそれぞれ記載した量とする以外は、実施例1と同様にして硬化膜と基材との積層体を得た。得られた積層体の鉛筆硬度と外観(目視)とを評価した結果を表1~4に示す。
Examples 2 to 13 and Comparative Examples 1 to 5
In Example 1, tetrafunctional acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-TMMT), trifunctional acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., A-TMPT), polyrotaxane (manufactured by Advanced Soft Materials Co., Ltd.) SA-3400C) and silica particles (manufactured by Nissan Chemical Co., Ltd., PGM-AC-2140Y: particle size 10 to 15 nm), respectively, except that the amounts are respectively described in Tables 1 to 4, respectively. Thus, a laminate of the cured film and the substrate was obtained. Tables 1 to 4 show the results of evaluating the pencil hardness and appearance (visually) of the obtained laminate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明の光硬化性樹脂組成物、これを用いる硬化膜の製造方法及び積層体は、例えばプラズマディスプレイ(PD)、液晶ディスプレイ(LCD)等の電子画像表示装置の表示画面上に設けられる紫外線吸収性を有するハードコートフィルムの製造に用いることができる。 A photocurable resin composition of the present invention, a method for producing a cured film using the same, and a laminate are, for example, ultraviolet absorption provided on a display screen of an electronic image display device such as a plasma display (PD) or a liquid crystal display (LCD) It can use for manufacture of the hard coat film which has property.
1…基材、3…硬化膜、5…積層体、7…接着層、10…偏光板、11…保護フィルム、13…偏光フィルム、15…粘着剤層、20…液晶セル、25…液晶パネル、30,31…液晶表示装置。 DESCRIPTION OF SYMBOLS 1 ... Base material, 3 ... Cured film, 5 ... Laminated body, 7 ... Adhesive layer, 10 ... Polarizing plate, 11 ... Protective film, 13 ... Polarizing film, 15 ... Adhesive layer, 20 ... Liquid crystal cell, 25 ... Liquid crystal panel , 30, 31 ... Liquid crystal display device.

Claims (7)

  1.  二官能以上の多官能(メタ)アクリレートと、ポリロタキサンと、シリカ粒子と、光重合開始剤とを含有し、
     前記多官能(メタ)アクリレートの含有量をX質量部、前記ポリロタキサンの含有量をY質量部、前記シリカ粒子の含有量をZ質量部としたときに下記式(1)~(4)の関係を全て満たす、光硬化性樹脂組成物。
     式(1): X+Y+Z=100
     式(2): X≧50
     式(3): 3≦Y≦20
     式(4): 25≦Z≦40
    Containing a bifunctional or higher polyfunctional (meth) acrylate, a polyrotaxane, silica particles, and a photopolymerization initiator;
    When the content of the polyfunctional (meth) acrylate is X parts by mass, the content of the polyrotaxane is Y parts by mass, and the content of the silica particles is Z parts by mass, the following formulas (1) to (4) A photocurable resin composition satisfying all of the above.
    Formula (1): X + Y + Z = 100
    Formula (2): X ≧ 50
    Formula (3): 3 ≦ Y ≦ 20
    Formula (4): 25 ≦ Z ≦ 40
  2.  前記ポリロタキサンが、(メタ)アクリロイル基を有する、請求項1記載の光硬化性樹脂組成物。 The photocurable resin composition according to claim 1, wherein the polyrotaxane has a (meth) acryloyl group.
  3.  請求項1又は2記載の光硬化性樹脂組成物を基材上に塗布して組成物層を得る工程と、
     前記組成物層に露光して前記組成物層を硬化させる工程と、
    を含む硬化膜の製造方法。
    Applying the photocurable resin composition according to claim 1 or 2 onto a substrate to obtain a composition layer;
    Exposing the composition layer to cure the composition layer;
    The manufacturing method of the cured film containing this.
  4.  基材と、
     前記基材の少なくとも一方の面に積層された硬化膜と、
    を備え、
     前記硬化膜が、請求項1又は2記載の光硬化性樹脂組成物の硬化物を含む、積層体。
    A substrate;
    A cured film laminated on at least one surface of the substrate;
    With
    The laminated body in which the said cured film contains the hardened | cured material of the photocurable resin composition of Claim 1 or 2.
  5.  前記基材が、多層構造である請求項4記載の積層体。 The laminate according to claim 4, wherein the substrate has a multilayer structure.
  6.  前記基材が、(メタ)アクリル樹脂を含む請求項4又は5記載の積層体。 The laminate according to claim 4 or 5, wherein the base material contains a (meth) acrylic resin.
  7.  請求項5又は6記載の積層体を備える表示装置。 A display device comprising the laminate according to claim 5 or 6.
PCT/JP2016/062552 2015-04-21 2016-04-20 Photocurable resin composition, method for manufacturing cured film using same, and laminate containing said cured film WO2016171187A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017514171A JPWO2016171187A1 (en) 2015-04-21 2016-04-20 Photocurable resin composition, method for producing cured film using the same, and laminate comprising the cured film
KR1020177033427A KR20170139600A (en) 2015-04-21 2016-04-20 A photocurable resin composition, a process for producing a cured film using the same, and a laminate including the cured film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015086506 2015-04-21
JP2015-086506 2015-04-21

Publications (1)

Publication Number Publication Date
WO2016171187A1 true WO2016171187A1 (en) 2016-10-27

Family

ID=57144025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062552 WO2016171187A1 (en) 2015-04-21 2016-04-20 Photocurable resin composition, method for manufacturing cured film using same, and laminate containing said cured film

Country Status (4)

Country Link
JP (1) JPWO2016171187A1 (en)
KR (1) KR20170139600A (en)
TW (1) TW201704370A (en)
WO (1) WO2016171187A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018038124A1 (en) * 2016-08-23 2018-03-01 国立大学法人大阪大学 Polymerizable functional group-modified polyrotaxane and method for producing same, and polymeric material and method for producing same
WO2018135523A1 (en) * 2017-01-18 2018-07-26 住友化学株式会社 Molded article and method for producing same
JP2019065066A (en) * 2017-09-28 2019-04-25 株式会社ネオス Method for producing curable composition and cured coated film and resin molding article
JP2019104869A (en) * 2017-12-14 2019-06-27 日立化成株式会社 Adhesive composition for circuit connection and circuit connection structure
JP2019210437A (en) * 2018-06-08 2019-12-12 東洋スチレン株式会社 Styrene-based copolymer and its compact, sheet
WO2020003863A1 (en) * 2018-06-27 2020-01-02 日産化学株式会社 Photocurable composition for imprinting
WO2020129902A1 (en) * 2018-12-21 2020-06-25 日産化学株式会社 Photocurable composition for imprinting
JP2021066771A (en) * 2019-10-18 2021-04-30 リンテック株式会社 Adhesive, adhesive sheet, backlight unit and display device
WO2022123969A1 (en) * 2020-12-07 2022-06-16 住友電気工業株式会社 Resin composition, optical fiber, and method for producing optical fiber
WO2022202005A1 (en) * 2021-03-26 2022-09-29 日産化学株式会社 Photocurable composition for film formation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204832A (en) * 2008-02-27 2009-09-10 Fujifilm Corp Optical film, polarizing plate, image display device and manufacturing method of the optical film
JP2009204725A (en) * 2008-02-26 2009-09-10 Fujifilm Corp Hard coat film, polarizing plate and image display
WO2014030850A1 (en) * 2012-08-23 2014-02-27 주식회사 엘지화학 Hard coating film
WO2014035062A1 (en) * 2012-09-03 2014-03-06 주식회사 엘지화학 Polarizing plate comprising hard coating film
WO2014142583A1 (en) * 2013-03-15 2014-09-18 주식회사 엘지화학 Plastic film
EP2840110A1 (en) * 2012-05-31 2015-02-25 LG Chem, Ltd. Method for manufacturing hard coating film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204725A (en) * 2008-02-26 2009-09-10 Fujifilm Corp Hard coat film, polarizing plate and image display
JP2009204832A (en) * 2008-02-27 2009-09-10 Fujifilm Corp Optical film, polarizing plate, image display device and manufacturing method of the optical film
EP2840110A1 (en) * 2012-05-31 2015-02-25 LG Chem, Ltd. Method for manufacturing hard coating film
EP2843007A1 (en) * 2012-05-31 2015-03-04 LG Chem, Ltd. Hard coating composition
WO2014030850A1 (en) * 2012-08-23 2014-02-27 주식회사 엘지화학 Hard coating film
WO2014035062A1 (en) * 2012-09-03 2014-03-06 주식회사 엘지화학 Polarizing plate comprising hard coating film
WO2014142583A1 (en) * 2013-03-15 2014-09-18 주식회사 엘지화학 Plastic film

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018038124A1 (en) * 2016-08-23 2018-03-01 国立大学法人大阪大学 Polymerizable functional group-modified polyrotaxane and method for producing same, and polymeric material and method for producing same
US10941254B2 (en) 2017-01-18 2021-03-09 Sumitomo Chemical Company, Limited Molded article and method of producing the same
WO2018135523A1 (en) * 2017-01-18 2018-07-26 住友化学株式会社 Molded article and method for producing same
JPWO2018135523A1 (en) * 2017-01-18 2019-11-07 住友化学株式会社 Molded body and method for producing the same
JP2019065066A (en) * 2017-09-28 2019-04-25 株式会社ネオス Method for producing curable composition and cured coated film and resin molding article
JP2019104869A (en) * 2017-12-14 2019-06-27 日立化成株式会社 Adhesive composition for circuit connection and circuit connection structure
JP7039984B2 (en) 2017-12-14 2022-03-23 昭和電工マテリアルズ株式会社 Adhesive composition for circuit connection and circuit connection structure
JP2019210437A (en) * 2018-06-08 2019-12-12 東洋スチレン株式会社 Styrene-based copolymer and its compact, sheet
JP7179503B2 (en) 2018-06-08 2022-11-29 東洋スチレン株式会社 Styrene-based copolymers and molded articles thereof, sheets
WO2020003863A1 (en) * 2018-06-27 2020-01-02 日産化学株式会社 Photocurable composition for imprinting
KR20210023821A (en) * 2018-06-27 2021-03-04 닛산 가가쿠 가부시키가이샤 Photocurable composition for imprint
KR102422539B1 (en) 2018-06-27 2022-07-20 닛산 가가쿠 가부시키가이샤 Photocurable composition for imprint
CN112292749A (en) * 2018-06-27 2021-01-29 日产化学株式会社 Photocurable composition for imprinting
JPWO2020003863A1 (en) * 2018-06-27 2021-08-05 日産化学株式会社 Photocurable composition for imprint
JP7060849B2 (en) 2018-06-27 2022-04-27 日産化学株式会社 Photocurable composition for imprint
CN113195547A (en) * 2018-12-21 2021-07-30 日产化学株式会社 Photocurable composition for imprinting
JP7021710B2 (en) 2018-12-21 2022-02-17 日産化学株式会社 Photocurable composition for imprint
JPWO2020129902A1 (en) * 2018-12-21 2021-11-04 日産化学株式会社 Photocurable composition for imprint
WO2020129902A1 (en) * 2018-12-21 2020-06-25 日産化学株式会社 Photocurable composition for imprinting
CN113195547B (en) * 2018-12-21 2023-08-11 日产化学株式会社 Photocurable composition for imprinting
JP2021066771A (en) * 2019-10-18 2021-04-30 リンテック株式会社 Adhesive, adhesive sheet, backlight unit and display device
JP7383448B2 (en) 2019-10-18 2023-11-20 リンテック株式会社 Adhesives, adhesive sheets, backlight units and display devices
WO2022123969A1 (en) * 2020-12-07 2022-06-16 住友電気工業株式会社 Resin composition, optical fiber, and method for producing optical fiber
WO2022202005A1 (en) * 2021-03-26 2022-09-29 日産化学株式会社 Photocurable composition for film formation

Also Published As

Publication number Publication date
JPWO2016171187A1 (en) 2018-02-15
KR20170139600A (en) 2017-12-19
TW201704370A (en) 2017-02-01

Similar Documents

Publication Publication Date Title
WO2016171187A1 (en) Photocurable resin composition, method for manufacturing cured film using same, and laminate containing said cured film
KR101415841B1 (en) Hard coating film
KR101470463B1 (en) Hard coating film
KR101470464B1 (en) Hard coating film
KR101451848B1 (en) Method of preparing of hard coating film
CN104487494B (en) Hard coat film and preparation method thereof
JP6317746B2 (en) Polarizing plate including hard coating film
EP3144327A1 (en) Resin composition for polarizer protective film, polarizer protective film, and polarizing plate comprising same
KR20140027022A (en) Composition for hard coating
KR20100138811A (en) Polarizing plate, composite polarizing plate and liquid crystal display device
JP2016526705A (en) Polarizer protective film, method for producing the same, and polarizing plate including polarizer protective film
KR101656454B1 (en) Polarizer protecting film and polarizer plate comprising the same
KR101735690B1 (en) Polarizer protecting film and method for preparing the same
JP2009287017A (en) Active energy ray-curable resin composition, cured product and article
WO2014125976A1 (en) Resin laminate
WO2016024626A1 (en) Protective film, film layered body, and polarizing plate
JP6721410B2 (en) Protective film, film laminate, and polarizing plate
JP4808575B2 (en) Photo-curable adhesive film
WO2014204273A1 (en) Polarizer protection film, method for manufacturing same, and polarizing plate comprising polarizer protection film
TWI601971B (en) Protection film, film laminate, and polarizing plate
WO2016043242A1 (en) Film laminate and polarization plate
JP2016110025A (en) Photocurable resin molded body, polarizing plate using the same, and transmissive liquid crystal display
JP2017102407A (en) Hard coat film, polarizing plate and transmissive liquid crystal display using the same, and manufacturing method of hard coat film
JP2017198797A (en) Photocurable resin molded article, and polarizing plate and transmissive liquid crystal display using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783208

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017514171

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177033427

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16783208

Country of ref document: EP

Kind code of ref document: A1