WO2018038124A1 - Polymerizable functional group-modified polyrotaxane and method for producing same, and polymeric material and method for producing same - Google Patents

Polymerizable functional group-modified polyrotaxane and method for producing same, and polymeric material and method for producing same Download PDF

Info

Publication number
WO2018038124A1
WO2018038124A1 PCT/JP2017/029997 JP2017029997W WO2018038124A1 WO 2018038124 A1 WO2018038124 A1 WO 2018038124A1 JP 2017029997 W JP2017029997 W JP 2017029997W WO 2018038124 A1 WO2018038124 A1 WO 2018038124A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
functional group
polymerizable functional
polyrotaxane
polymerizable
Prior art date
Application number
PCT/JP2017/029997
Other languages
French (fr)
Japanese (ja)
Inventor
原田 明
浩靖 山口
義徳 ▲高▼島
昂平 小柳
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2018535712A priority Critical patent/JPWO2018038124A1/en
Publication of WO2018038124A1 publication Critical patent/WO2018038124A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen

Definitions

  • the present invention relates to a polyrotaxane modified with a polymerizable functional group and a production method thereof, and a polymer material and a production method thereof.
  • Polyrotaxane is a polymer compound having a structure in which a linear molecule penetrates through an opening of a cyclic molecule and is skewered, and is a material known as a kind of supramolecule. Since polyrotaxane has a wide variety of properties, for example, by introducing it into a polymer material, it is possible to exhibit an excellent function that could not be achieved conventionally.
  • the present invention has been made in view of the above, and is suitable as a raw material for producing various polymer materials that are transparent and have excellent elongation characteristics. Moreover, the polyrotaxane can be produced by a simple method, and An object of the present invention is to provide a production method thereof, a polymer material, and a production method thereof.
  • the present inventor has found that the above object can be achieved by introducing a polymerizable functional group and a non-polymerizable organic group into the polyrotaxane cyclic molecule.
  • the headline and the present invention were completed.
  • the present invention includes, for example, the inventions described in the following sections.
  • Item 1 A polyrotaxane modified with a polymerizable functional group,
  • the linear molecule penetrates through the opening of the cyclic molecule, and has a structure in which a blocking molecule for preventing the cyclic molecule from dropping off is bonded to both ends of the linear molecule;
  • the cyclic molecule has a polymerizable functional group and an organic group other than the polymerizable functional group,
  • the organic group is modified with a polymerizable functional group including at least one selected from the group consisting of a hydrocarbon group having 1 or more carbon atoms which may have a substituent and a group containing a C ⁇ O bond.
  • Polyrotaxane Polyrotaxane.
  • Item 2 Item 2.
  • Item 3 Item 3.
  • Item 4 Item 4.
  • Item 5 Item 5.
  • the polyrotaxane modified with the polymerizable functional group according to any one of Items 1 to 4, wherein the group containing a C ⁇ O bond is an acyl group.
  • Item 6 Item 6.
  • the cyclic molecule having the polymerizable functional group and the organic group is a cyclodextrin or a cyclodextrin derivative modified with the polymerizable functional group and the organic group.
  • Item 7-1 A method for producing a polyrotaxane modified with a polymerizable functional group from a raw material containing a polyrotaxane,
  • the polyrotaxane contained in the raw material has a structure in which a linear molecule passes through an opening of a cyclic molecule, and a blocking molecule for preventing the cyclic molecule from dropping off is bonded to both ends of the linear molecule.
  • Item 7-2 A method for producing the polyrotaxane according to Item 1-6, A step of reacting a raw material containing polyrotaxane with a compound having a polymerizable functional group and a compound having an organic group other than the polymerizable functional group; After reacting the raw material containing polyrotaxane and the compound having a polymerizable functional group to obtain a reaction product, a step B of reacting the reaction product with a compound having an organic group other than the polymerizable functional group; and Step C of reacting a raw material containing polyrotaxane with a compound having an organic group other than the polymerizable functional group to obtain a reaction product, and then reacting the reaction product with the compound having the polymerizable functional group, Comprising any of the steps
  • the organic group is modified with a polymerizable functional group including at least one selected from the group consisting of a hydrocarbon group having 1 or more carbon atoms which may have a substituent and a group containing a
  • Item 8 Item 7. The production method according to Item 7-1 or 7-2, wherein the compound having a polymerizable functional group is a compound having a functional group having radical polymerizable properties.
  • Item 9 Item 9. The production method according to Item 8, wherein the functional group having radical polymerizability is a group containing a carbon-carbon double bond.
  • Item 10 Item 10. The production method according to any one of Items 7-1, 7-2, 8, and 9, wherein the hydrocarbon group has 1 to 12 carbon atoms.
  • Item 11 Item 11. The production method according to any one of Items 7-1, 7-2, and 8 to 10, wherein the group containing a C ⁇ O bond is an acyl group.
  • Item 12 Item 12.
  • Item 13 Item 7. A polymer material having a polyrotaxane modified with a polymerizable functional group according to any one of Items 1 to 6 as a repeating unit.
  • Item 14 A method for producing the polymer material according to Item 13, A method for producing a polymer material, comprising a step of reacting a polyrotaxane modified with the polymerizable functional group and a polymerizable monomer.
  • the polyrotaxane modified with a polymerizable functional group according to the present invention is excellent in compatibility with a polymer material and can impart excellent elongation and swelling properties to the polymer material.
  • the polymerizable functional group can be modified with respect to the polyrotaxane by a simple method. Moreover, the obtained polyrotaxane modified with the polymerizable functional group is excellent in compatibility with the polymer material, and can impart excellent elongation and swelling properties to the polymer material.
  • the polymer material according to the present invention has excellent elongation and swelling properties by including the polyrotaxane modified with the polymerizable functional group as a repeating unit.
  • FIG. 1 It is a schematic diagram which shows an example of the structure of the polyrotaxane modified with the polymerizable functional group. It is the result summary of the stress-strain curve test of Example 1 and Comparative Example 1, (a) is the breaking strain, (b) is the result of breaking stress. It is a summary of the results of the stress-strain curve test of Example 2 and Comparative Example 2, where (a) is the breaking strain and (b) is the breaking stress result. The result of the swelling degree test of the polymeric material obtained by the Example and the comparative example is shown.
  • the polyrotaxane modified with the polymerizable functional group of the present embodiment has a structure in which the linear molecule passes through the opening of the cyclic molecule and the cyclic molecule is prevented from dropping at both ends of the linear molecule. It has a structure in which blocking molecules are bound.
  • the cyclic molecule has a polymerizable functional group and an organic group other than the polymerizable functional group.
  • the organic group includes at least one selected from the group consisting of a hydrocarbon group having 1 or more carbon atoms which may have a substituent and a group containing a C ⁇ O bond.
  • polymerizable polyrotaxane a polyrotaxane modified with a polymerizable functional group
  • the polymer material obtained by using the polymerizable polyrotaxane has excellent elongation and swelling properties.
  • linear molecule examples include molecules that can penetrate through a ring of a plurality of cyclic molecules.
  • linear molecule examples include polyalkylenes, polyesters, polyethers, polyamides, polyacryls, and linear molecules having a benzene ring. More specific linear molecules include, for example, polyethylene glycol, polyethylene oxide, polypropylene glycol, polycaprolactone, polyethylene, polypropylene, polyvinyl acetal, polyvinyl methyl ether, polyvinyl pyrrolidone, polyacrylamide, polymethyl acrylate, polymethacrylic acid. Examples include methyl and polystyrene.
  • the linear molecule may have a branched chain as long as it is configured to penetrate the ring of the cyclic molecule.
  • the weight average molecular weight Mw of the linear molecule is not particularly limited, but is preferably 3000 to 500,000, for example.
  • the mechanical property (for example, elongation property) of the polymer material obtained by using the polyrotaxane is more excellent, and the solubility in the solvent is also improved.
  • the weight average molecular weight as used in this specification is a polyethylene glycol conversion value by a gel permeation chromatography (GPC) measurement.
  • both ends of the linear molecule have a reactive group, so that a blocking group described later is easily bonded to both ends of the linear molecule.
  • the reactive group include a hydroxyl group, a carboxyl group, an amino group, and a thiol group.
  • the cyclic molecule has a polymerizable functional group and an organic group other than the polymerizable functional group.
  • the organic group other than the polymerizable functional group is simply abbreviated as “organic group” below.
  • a cyclic molecule has a polymerizable functional group and an organic group other than the polymerizable functional group means that one cyclic molecule does not necessarily have both a polymerizable functional group and an organic group. It is not limited to having.
  • one polymerizable polyrotaxane molecule one cyclic molecule has only one of a polymerizable functional group and an organic group, and the other cyclic molecule has only the other of the polymerizable functional group and the organic group.
  • the aspect which has is also called "the cyclic molecule has a polymerizable functional group and an organic group other than the polymerizable functional group”.
  • Examples of the cyclic molecule having a polymerizable functional group and an organic group include, for example, a cyclodextrin substituted with a polymerizable functional group and / or an organic group, a cyclodextrin derivative substituted with a polymerizable functional group and / or an organic group, and polymerization. And cyclic oligomers substituted with a functional functional group and / or an organic group.
  • the cyclodextrin may be any of ⁇ -cyclodextrin, ⁇ -cyclodextrin, and ⁇ -cyclodextrin, and ⁇ -cyclodextrin is particularly preferable.
  • the cyclodextrin derivative may be any of ⁇ -cyclodextrin derivative, ⁇ -cyclodextrin derivative and ⁇ -cyclodextrin derivative, and ⁇ -cyclodextrin derivative is particularly preferable.
  • the cyclodextrin derivative include compounds in which at least one hydroxyl group of cyclodextrin or a hydrogen atom of the hydroxyl group is substituted with a hydrocarbon group having a hydroxy group or a hydrocarbon group having an amino group.
  • the hydrocarbon group having a hydroxy group include a hydroxymethyl group, a hydroxyethyl group, and a hydroxypropyl group.
  • hydrocarbon group having an amino group examples include an aminomethyl group, an aminoethyl group, and an aminopropyl group.
  • the number of hydrocarbon groups having hydroxy groups or amino groups having amino groups per molecule of cyclodextrin can be 1 to 24.
  • the hydrogen atom of 10 or more of the total hydroxyl groups present in one molecule of the ⁇ -cyclodextrin derivative has a hydrocarbon group having a hydroxy group or a carbon group having an amino group More preferably, the hydrogen atom of at least 15 of the total hydroxyl groups is substituted with a hydrocarbon group having a hydroxy group or a hydrocarbon group having an amino group. preferable.
  • hydrogen atoms of 13 or more of the total hydroxyl groups present in one molecule of the ⁇ -cyclodextrin derivative have a hydrocarbon group having a hydroxy group or a carbon group having an amino group More preferably, it is substituted with a hydrogen group, and it is particularly preferred that hydrogen atoms of 18 or more of the total hydroxyl groups are substituted with a hydrocarbon group having a hydroxy group or a hydrocarbon group having an amino group. preferable.
  • the hydrogen atoms of 16 or more of the total hydroxyl groups present in one molecule of the ⁇ -cyclodextrin derivative are substituted with organic groups.
  • the hydrogen atom of 21 or more hydroxyl groups is substituted with a hydrocarbon group having a hydroxy group or a hydrocarbon group having an amino group.
  • Polymerizable functional group refers to a functional group that can be polymerized with a polymerizable monomer.
  • examples of the polymerization here include radical polymerization, ionic polymerization, polycondensation (condensation polymerization, condensation polymerization), addition condensation, living polymerization, living radical polymerization, and other various conventionally known polymerizations.
  • the polymerizable functional group examples include an alkenyl group and a vinyl group, as well as —OH, —SH, —NH 2 , —COOH, —SO 3 H, —PO 4 H, an isocyanate group, and the like. These may further have one or more substituents.
  • the polymerizable functional group is preferably a functional group having radical polymerizability.
  • Examples of the functional group having radical polymerizability include a group containing a carbon-carbon double bond. Specifically, an acryloyl group (CH 2 ⁇ CH (CO)), a methacryloyl group (CH 2 ⁇ CCH (CO) )), And other examples include styryl, vinyl, and allyl groups. These groups containing a carbon-carbon double bond may further have a substituent as long as radical polymerizability is not inhibited.
  • the organic group is a functional group other than the polymerizable functional group, and includes at least one selected from the group consisting of a hydrocarbon group having 1 or more carbon atoms which may have a substituent and a group containing a C ⁇ O bond. .
  • the hydrocarbon group which may have a substituent having 1 or more carbon atoms may be either linear or branched.
  • the upper limit of the number of carbon atoms of the hydrocarbon group can be set to 12 from the viewpoint that the elongation property of the obtained polymer material becomes better. That is, the hydrocarbon group preferably has 1 to 12 carbon atoms.
  • the upper limit of the carbon number of the hydrocarbon group is particularly preferably 6.
  • hydrocarbon group having 1 or more carbon atoms examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. These hydrocarbon groups may be either linear or branched. Moreover, these hydrocarbon groups may have a substituent.
  • substituents examples include a halogen atom, a carboxyl group, a carbonyl group, a sulfonyl group, a sulfone group, a cyano group, a perfluoro organic group (preferably a perfluoro organic group having 1 to 8 carbon atoms), a pentafluorosulfanyl group (F 5 S -) Is preferably exemplified.
  • Examples of the group containing a C ⁇ O bond include an acyl group, an ester group, an aldehyde group, a ketone, an amide group, a carbamoyl group, and a urea group.
  • the group containing a C ⁇ O bond is preferably an acyl group, and more preferably an acetyl group, from the viewpoint of improving the compatibility of the polyrotaxane with the polymer material.
  • the organic group may be bonded to any atom of the cyclic molecule, but is particularly preferably bonded to the oxygen atom of the cyclic molecule.
  • it is easy to introduce an organic group into the cyclic molecule, and the structure of the obtained polymerizable polyrotaxane is stable.
  • the polymerizable functional group and the organic group are preferably substituted as a hydroxyl group in the cyclodextrin as a cyclic molecule or a derivative thereof, or as a hydrogen atom in the hydroxyl group.
  • a cyclodextrin derivative in which the hydrogen atom of the hydroxyl group of cyclodextrin is substituted with a hydrocarbon group having a hydroxy group (for example, hydroxypropyl group-substituted cyclodextrin)
  • the hydroxy group in the hydrocarbon group having a hydroxy group it is preferable that the hydrogen atom is substituted with a polymerizable functional group and an organic group.
  • the polymerizable functional group preferably has 0 to 3 per one cyclic molecule in one polymerizable polyrotaxane molecule.
  • the density of the polymerizable functional group per molecule of the polymerizable polyrotaxane is high, it is easy to introduce the polymerizable polyrotaxane into the polymer material, and the resulting polymer material is easily transparent and has excellent elongation characteristics. It becomes easy to obtain a polymer material with special physical properties.
  • the polymerizable polyrotaxane has two or more polymerizable functional groups per molecule, the polymerizable polyrotaxane can exhibit a function as a so-called crosslinking agent.
  • the number of polymerizable functional groups introduced per molecule of polyrotaxane can be, for example, 5-150.
  • the organic group preferably has 0 to 24 per one cyclic molecule in the polymerizable polyrotaxane molecule.
  • the density of the organic group per molecule of the polymerizable polyrotaxane is high, it is easy to introduce the polymerizable polyrotaxane into the polymer material, and the obtained polymer material is easy to have a transparent and excellent elongation characteristic and has good physical properties. It becomes easy to obtain a polymer material.
  • the organic group has 1 to 18 (preferably 1 to 17) per cyclic molecule in one polymerizable polyrotaxane molecule.
  • the cyclic molecule may have a group other than the organic group, for example, may have a functional group (for example, a hydroxyl group) that the cyclic molecule itself has.
  • the number of cyclic molecules skewered into linear molecules that is, the number of cyclic molecules penetrated by one linear molecule (also referred to as the amount of inclusion). If the maximum inclusion amount is 1, then 0.15 to 0.4 is preferable. In this case, the self-healing performance of the polymer material is more easily exhibited.
  • a blocking molecule is bonded to both ends of the linear molecule. This prevents the drop-off of the cyclic molecule from the linear molecule.
  • a blocking molecule bonded to both ends of a linear molecule is referred to as a “blocking group”.
  • the blocking group examples include aryl groups such as adamantyl group, dinitrophenyl group, cyclodextrins, N-carbobenzoxy-L-tyrosine (ZL-tyrosine), trityl group, pyrenyl group, phenyl group and the like. , 2-butyldecyl group, fluoresceins, pyrenes, and derivatives or modified products thereof.
  • the blocking groups listed as examples above may have a substituent.
  • Such a blocking group can be bonded directly or indirectly to both ends of the linear molecule, for example, via an amide bond or an ester bond.
  • FIG. 1 is a schematic diagram showing an example of the structure of a polymerizable polyrotaxane having the above-described configuration.
  • the polymerizable polyrotaxane A shown in FIG. 1 has a linear molecule 1, a cyclic molecule 2, and a blocking group 3.
  • the linear molecule 1 is polyethylene glycol
  • the cyclic molecule 2 is a 2-hydroxypropyl group-substituted ⁇ -cyclodextrin derivative having a polymerizable functional group and an organic group
  • the blocking group 3 is an adamantyl group.
  • the adamantyl group and the end of polyethylene glycol are bonded via an amide bond, and both the adamantyl group and polyethylene glycol are directly bonded to the amide bond.
  • the polymerizable functional group is an acryloyl group
  • the organic group is an acetyl group (Ac).
  • n is 1 to 18, for example.
  • Both the acryloyl group and the acetyl group (Ac) are bonded to the oxygen atom derived from the hydroxyl group of the ⁇ -cyclodextrin derivative. That is, the hydrogen atom in the hydroxyl group of the ⁇ -cyclodextrin derivative is substituted with an acryloyl group or an acetyl group (Ac).
  • This hydroxyl group may be a hydroxyl group derived from ⁇ -cyclodextrin, or a hydroxyl group derived from a 2-hydroxypropyl group in an ⁇ -cyclodextrin derivative.
  • the weight average molecular weight Mw of the polymerizable polyrotaxane is not particularly limited, but can be, for example, 15,000 to 1,000,000. In this case, the elongation of the polymer material obtained using the polymerizable polyrotaxane is good, and the swelling property is also excellent.
  • the weight average molecular weight Mw of the polymerizable polyrotaxane molecule is preferably 20,000 to 500,000.
  • the polymerizable polyrotaxane Since the polymerizable polyrotaxane has a polymerizable functional group, it can be polymerized with various polymerizable monomers to form a polymer material. In particular, since the polymerizable polyrotaxane can have two or more polymerizable functional groups, it can also serve as a so-called crosslinking agent.
  • the polymerizable polyrotaxane since the above-mentioned polymerizable polyrotaxane also has an organic group, it has a high affinity with solvents and various polymerizable monomers. Therefore, the polymer material obtained using the polymerizable polyrotaxane can easily have a uniform distribution of the polyrotaxane component derived from the polymerizable polyrotaxane, and thus has excellent elongation characteristics, and is also swellable with various organic solvents. Also excellent.
  • the polymerizable polyrotaxane since the polymerizable polyrotaxane has an organic group, the polymerizable polyrotaxane is excellent in affinity with a hydrophobic polymerizable monomer (for example, (meth) acrylic acid ester or the like). Therefore, it is effective for use as a raw material for producing a polymer material such as a highly transparent acrylic polymer material.
  • a hydrophobic polymerizable monomer for example, (meth) acrylic acid
  • the distance between the polymerizable functional group and the cyclic molecule is preferably close.
  • a linker portion between the polymerizable functional group and the cyclic molecule for example, The polymer material is less susceptible to the influence of the polymer chains and long chain hydrocarbon groups described later, and as a result, the mechanical properties of the polymer material are likely to be improved.
  • a polymer chain or a long chain hydrocarbon group is not present between the polymerization site in the polymerizable functional group and the cyclic molecule.
  • the polymerization site in the polymerizable functional group means a site bonded by a polymerization reaction of the polymerizable monomer, and is, for example, a radical polymerizable carbon-carbon double bond.
  • the polymer chain here means, for example, a molecular chain having 3 or more repeating units.
  • the long-chain hydrocarbon group means a group having 6 hydrocarbon atoms in the skeleton. The number of atoms of the hydrocarbon group does not include the number of atoms of the substituents substituted with the atoms of the skeleton.
  • the number of atoms of the main chain bonded between the polymerization site and the cyclic molecule is preferably 1-6.
  • the number of atoms of the main chain here means the number of atoms of only the main chain (only the skeleton), and does not include the number of atoms of the side chain substituents bonded to the main chain atoms.
  • the polymerizable functional group is a (meth) acryloyl group
  • this (meth) acryloyl group is bonded to an oxygen atom derived from a hydroxyl group of cyclodextrin, which is a cyclic molecule, between the polymerization site and the cyclic molecule
  • the number of atoms in the bonded main chain is 1 (only one carbonyl carbon).
  • the polymerizable functional group is a (meth) acryloyl group, and this (meth) acryloyl group is bonded to an oxygen atom derived from the 2-hydroxypropyl group of a 2-hydroxypropyl group-substituted ⁇ -cyclodextrin derivative which is a cyclic molecule.
  • the number of atoms of the main chain bonded between the polymerization site and the cyclic molecule is 1 (only one carbonyl carbon).
  • a polyrotaxane modified with a polymerizable functional group for example, it can be produced from a raw material containing polyrotaxane.
  • the polyrotaxane contained in the raw material has a structure in which a linear molecule passes through an opening of a cyclic molecule and a blocking molecule for preventing the cyclic molecule from dropping off is bonded to both ends of the linear molecule.
  • the polymerizable polyrotaxane can be produced by any one of the following steps A to C.
  • Step A A step of reacting the raw material with a compound having the polymerizable functional group and a compound having an organic group other than the polymerizable functional group.
  • Step B a step of reacting the raw material with a compound having a polymerizable functional group to obtain a reaction product, and then reacting the reaction product with a compound having an organic group other than the polymerizable functional group.
  • Step C a step of reacting the raw material with a compound having an organic group other than the polymerizable functional group to obtain a reactant, and then reacting the reactant with a compound having the polymerizable functional group.
  • polymerizable functional group-containing compound a compound having a polymerizable functional group
  • organic group-containing compound a compound having an organic group other than the polymerizable functional group
  • the structure of the polyrotaxane contained in the raw material is the same as that of the polymerizable polyrotaxane described above except that the cyclic molecule does not have the polymerizable functional group and the organic group.
  • a polyrotaxane for example, a commercially available product can be used as it is.
  • the polyrotaxane which is a raw material can be manufactured by a well-known method.
  • the polyrotaxane contained in the raw material preferably has a cyclic molecule of cyclodextrin or a derivative thereof.
  • the cyclic molecule since the cyclic molecule has many hydroxyl groups, the polymerizable functional group-containing compound and the reactivity with the organic group-containing compound are excellent, and the modification of the polymerizable functional group and the organic group to the cyclic molecule is facilitated.
  • the cyclic molecule is cyclodextrin or a derivative thereof, an ⁇ -cyclodextrin or an ⁇ -cyclodextrin derivative is particularly preferable.
  • the cyclodextrin derivative is the same as described above, but in particular, the hydrogen atom of the hydroxyl group of cyclodextrin is replaced with a 2-hydroxypropyl group (ie, And 2-hydroxypropyl group-substituted ⁇ -cyclodextrin in which the hydroxyl atom of the cyclodextrin is substituted with a 2-hydroxyethyl group.
  • these cyclic molecules are excellent in the polymerizable functional group-containing compound and the reactivity with the organic group-containing compound, it is easy to modify the polymerizable functional group and the organic group into the cyclic molecule.
  • the above-mentioned 2-hydroxyethyl group-substituted ⁇ -cyclodextrin is particularly preferable as the cyclic molecule.
  • the raw material may contain, for example, a solvent other than the polyrotaxane.
  • the polymerizable functional group in the polymerizable functional group-containing compound is the same as the polymerizable functional group described in the above section ⁇ Polyrotaxane modified with polymerizable functional group>. Therefore, the polymerizable functional group is preferably a functional group having radical polymerizability, and specific examples thereof include a group containing a carbon-carbon double bond.
  • the polymerizable functional group-containing compound is not particularly limited as long as it has a polymerizable functional group.
  • the polymerizable functional group-containing compound include acryloyl chloride, methacryloyl chloride, acryloyl bromide, methacryloyl bromide, acrylic acid, methacrylic acid, acrylamide, methacrylamide, acrylic anhydride, methacrylic anhydride, 4-methyl chloride. Examples thereof include styrene and 4-vinylbenzoic acid. These polymerizable functional group-containing compounds may further have a substituent.
  • the polymerizable functional group-containing compound includes acid halides such as acryloyl chloride, methacryloyl chloride, acryloyl bromide, methacryloyl bromide, acrylic anhydride, methacrylic acid, and the like.
  • An acid anhydride such as an acid anhydride is preferable, and among them, acryloyl chloride, methacryloyl chloride and methacrylic anhydride are particularly preferable.
  • the organic group in the organic group-containing compound is the same as the organic group described in the section ⁇ Polyrotaxane modified with a polymerizable functional group> described above. Accordingly, the organic group includes at least one selected from the group consisting of a hydrocarbon group having 1 or more carbon atoms which may have a substituent and a group containing a C ⁇ O bond.
  • the organic group-containing compound is not particularly limited as long as it has the organic group.
  • the organic group-containing compound is preferably, for example, an acid anhydride having the above organic group, an alkyl halide having the above organic group, and a silyl halide having the above organic group, and among them, acetic anhydride, propionic anhydride, and the like.
  • Butyl anhydride, valeric anhydride, hexanoic anhydride, methyl iodide, ethyl iodide, trimethylsilyl chloride and the like are preferable.
  • step A a mixture of the raw material, the polymerizable functional group-containing compound and the organic group-containing compound is mixed and reacted.
  • the polyrotaxane cyclic molecule reacts with the polymerizable functional group-containing compound and the organic group-containing compound.
  • a polymerizable functional group and an organic group are introduced into the cyclic molecule of the polyrotaxane.
  • This reaction can be performed, for example, in the presence of iodine (I 2 ), whereby the reaction between the cyclic molecule, the polymerizable functional group-containing compound, and the organic group-containing compound is promoted.
  • I 2 iodine
  • This is particularly effective when introducing an acetyl group, a (meth) acryloyl group, or the like into a cyclic molecule.
  • (meth) acryl means “acryl or metacli”.
  • pyridine, dimethylaminopyridine or the like can be used instead of iodine. Moreover, these can also be used in combination.
  • the reaction in step A may be performed in a solvent as necessary.
  • the solvent is not particularly limited, and examples thereof include dimethylformamide, dimethylacetamide, and dimethyl sulfoxide.
  • reaction conditions for step A are not particularly limited.
  • the reaction temperature can be 0 to 80 ° C.
  • the reaction time can be 1 to 48 hours.
  • the amounts of the polyrotaxane, the polymerizable functional group-containing compound, and the organic group-containing compound can be appropriately determined according to the type of the polymerizable polyrotaxane that is the final product.
  • the amount of the polymerizable functional group-containing compound used may be 10 to 600 parts by weight and the amount of the organic group-containing compound used may be 200 to 1200 parts by weight per 100 parts by weight of the polyrotaxane.
  • the amount of iodine used may be a so-called catalytic amount, for example, 1 to 5 parts by weight per 100 parts by weight of the polyrotaxane.
  • purification, drying, etc. may be performed as necessary.
  • purification and drying is not limited, For example, a well-known method can be selected.
  • Step A the polymerizable functional group-containing compound and the organic group-containing compound are simultaneously reacted with the polyrotaxane contained in the raw material, and the target polymerizable polyrotaxane can be obtained by a one-step reaction.
  • Step B and Step C the target polymerizable polyrotaxane is obtained by a two-step reaction, not a one-step reaction. Specifically, in Step B and Step C, only one of the polymerizable functional group-containing compound and the organic group-containing compound is reacted with the polyrotaxane, and the reaction product obtained by this reaction and the other compound (polymerizable functional group). Containing compound or organic group-containing compound).
  • Step B the polymerizable functional group-containing compound is first reacted with polyrotaxane to obtain a reaction product, and then the reaction product is reacted with the organic group-containing compound.
  • Step C the organic group-containing compound is first reacted with polyrotaxane to obtain a reaction product, and then this reaction product is reacted with the polymerizable functional group-containing compound.
  • Any of Steps A to C can be appropriately selected according to the type of polyrotaxane contained in the raw material, the type of polymerizable functional group-containing compound, the type of organic group-containing compound, the reaction rate, and the like.
  • the step B or the step C may be adopted.
  • the step B or the step C may be adopted.
  • Steps B and C can be the same as those in Step A except that the polymerizable functional group-containing compound and the organic group-containing compound are reacted at the same time.
  • the polymerizable functional group and the organic group can be modified with respect to the polyrotaxane by a simple method.
  • a polyrotaxane modified with a polymerizable functional group and an organic group can be obtained by a single-step reaction, and the entire production process can be greatly shortened.
  • the polymer material according to the present embodiment has a polyrotaxane modified with the polymerizable functional group (polymerizable polyrotaxane) as a repeating unit.
  • the polymer material according to the present embodiment is a polymer having a structure containing a repeating unit derived from a polymerizable polyrotaxane as a constituent component.
  • the polymer material has a structure crosslinked with a polymerizable polyrotaxane.
  • the polymer material can contain various resin materials (that is, repeating units other than those derived from the polymerizable polyrotaxane) in addition to the polyrotaxane component.
  • the resin examples include acrylic resin, polyethylene, polypropylene, polystyrene, silicon resin, polyvinyl chloride, polyvinylidene chloride, polyalkylene terephthalate, polycarbonate, polyamide, and polyimide.
  • the resin may be a polymer obtained by polymerizing one or more of various polymerizable monomers having an ethylenically unsaturated group.
  • the resin may be a homopolymer composed of one type of repeating structural unit or a copolymer composed of two or more types of repeating structural units.
  • the resin is preferably a polymer of a polymerizable monomer having an ethylenically unsaturated group.
  • the polymerizable monomer having an ethylenically unsaturated group include vinyl compounds such as (meth) acrylic compounds, styrene, ⁇ -methylstyrene, chlorostyrene, methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, 1,4- Examples include butanediol divinyl ether, cyclohexane dimethanol divinyl ether, diethylene glycol divinyl ether, vinyl acetate, and vinyl chloride.
  • (Meth) acrylic compounds include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) Alkyl (meth) acrylates such as acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate Oxygen-containing (meth) acrylates such as glycidyl (meth) acrylate; nitrile-containing monomers such as (meth) acrylonitrile; trifluoromethyl (meth) acrylate, pentafur Roechiru (meth)
  • the polymerizable monomer includes a crosslinking agent other than the polymerizable polyrotaxane, that is, a polymerizable monomer having two or more ethylenically unsaturated groups, as long as the effect of the present invention is not inhibited. It may be.
  • the polymer material has a structure in which the various polymers are crosslinked with polyrotaxane. Therefore, the polymer material has excellent elongation and swelling properties.
  • the repeating unit derived from the polymerizable polyrotaxane can be 0.01 to 20 mol% with respect to the total number of repeating units constituting the polymer material, and 0.01 to 10 mol%. Preferably, 0.01 to 5 mol% is more preferable, and 0.02 to 1 mol% is particularly preferable.
  • the polymer of the polymerizable polyrotaxane has a high affinity for the polymer material, the polyrotaxane component is evenly distributed even if the content is larger than the repeating unit derived from the conventional chemical crosslinking agent or polyrotaxane-based crosslinking agent. It's easy to do. Therefore, it is possible to increase the amount of the repeating unit derived from the polymerizable polyrotaxane as compared with the conventional one, and thereby, the elongation property and swelling property of the polymer material can be further improved.
  • the polymer material can be produced, for example, by a method comprising a step of reacting a polyrotaxane modified with a polymerizable functional group (polymerizable polyrotaxane) and a polymerizable monomer.
  • the polymerizable monomer used here is other than the polymerizable polyrotaxane of the present invention, and is the same as the polymerizable monomer having an ethylenically unsaturated group described above.
  • the amount of polymerizable polyrotaxane and polymerizable monomer used in the above reaction is not limited.
  • the amount of the polymerizable polyrotaxane used can be 0.5 to 15% by weight with respect to the total weight of the polymerizable monomer.
  • the reaction between the polymerizable polyrotaxane and the polymerizable monomer is preferably a radical polymerization reaction when the polymerizable monomer has an ethylenically unsaturated group.
  • the conditions for the radical polymerization reaction are not particularly limited, and can be the same conditions as known methods.
  • the radical polymerization reaction may be performed by solution polymerization, suspension polymerization, dispersion polymerization, emulsion polymerization, precipitation polymerization, or the like performed in a solvent, or may be bulk polymerization (bulk polymerization).
  • a polymerization initiator can be used.
  • the polymerization initiator include ammonium persulfate (hereinafter also referred to as APS), azobisisobutyronitrile (hereinafter also referred to as AIBN), 2,2′-azobis [2- (2- Imidazolin-2-yl) propane] dihydrochloride (hereinafter sometimes referred to as VA-044), 1,1′-azobis (cyclohexanecarbonitrile), di-tert-butyl peroxide, tert-butyl hydroperoxide, peroxide Examples thereof include benzoyl and a photopolymerization initiator (Irgacure (registered trademark) series, etc.).
  • the amount of the polymerization initiator used is preferably 0.1 to 5 mol% with respect to the total amount of polymerizable monomers.
  • a polymerization accelerator in the radical polymerization reaction, a polymerization accelerator can be used.
  • the polymerization accelerator include [2- (dimethylamino) ethyl] dimethylamine (hereinafter sometimes referred to as TEMED).
  • the polymerization reaction varies depending on the type of polymerizable monomer used and the half-life temperature of the polymerization initiator, but is, for example, 0 to 100 ° C., preferably 20 to 25 ° C.
  • the time for the polymerization reaction is 1 to 24 hours, and preferably 12 to 24 hours.
  • the polymerization reaction may be performed by photopolymerization that irradiates ultraviolet rays or the like.
  • the polymerization conditions in this photopolymerization such as the type of ultraviolet rays and the irradiation time, are not particularly limited, and can be carried out under the same conditions as known photopolymerization.
  • the polymer material can have various shapes such as a film shape, a sheet shape, a plate shape, a particle shape, and a pellet shape.
  • the polymer material may be a so-called polymer gel containing a solvent.
  • the solvent may be an organic system other than an aqueous solvent such as water. That is, the polymeric material can take both hydrogel and organogel forms.
  • the polymer material may contain additives such as a light stabilizer, a colorant, a deterioration preventing agent, a light diffusing agent, and an antistatic agent as long as the effects of the present invention are not hindered.
  • the polymer material of the present embodiment has excellent elongation characteristics, it can be applied to various fields such as various electronic members, industrial members, and food containers.
  • a polymerizable polyrotaxane was synthesized according to Synthesis Scheme 1 schematically shown below.
  • the raw material polyrotaxane 500 mg, polymerizable functional group-containing compound 1550 mg acryloyl chloride, organic group-containing compound 3000 mg acetic anhydride (Ac 2 O) and iodine 14 mg were mixed and reacted at room temperature for 24 hours.
  • acetic anhydride (Ac 2 O) and iodine 14 mg were mixed and reacted at room temperature for 24 hours.
  • a polymerizable polyrotaxane was obtained.
  • the obtained polymerizable polyrotaxane has a cyclic molecule penetration rate of 33%, 61 acryloyl groups per molecule, an acetylation rate of 95% or more, and a calculated molecular weight of 190,000 according to 1 H-NMR measurement. I understood.
  • the number of introduced acetyl groups in one polymerizable polyrotaxane molecule was 1280 as a result of calculation assuming that 18 hydroxyl groups in the cyclic molecule, 75 cyclic molecules in one polymerizable polyrotaxane molecule, and 95% acetylation rate were calculated.
  • a polymerizable polyrotaxane was synthesized according to Synthesis Scheme 2 schematically shown below. After dissolving 1 g of polyrotaxane as a raw material in 20 mL of dimethylacetamide (DMAc), 1 g of methacrylic anhydride as a polymerizable functional group-containing compound and 540 mg of pyridine (Py) as a catalyst are added and reacted at room temperature for 6 hours. It was. Subsequently, 10 g of acetic anhydride (Ac 2 O) and 9.8 g of pyridine (Py) were mixed as the organic group-containing compound and reacted at room temperature for 34 hours. By this reaction, a polymerizable polyrotaxane was obtained.
  • DMAc dimethylacetamide
  • Ac 2 O acetic anhydride
  • Py pyridine
  • the obtained polymerizable polyrotaxane had a cyclic molecule penetration rate of 33%, 21 methacryloyl groups per molecule, an acetylation rate of 68% or more, and a calculated molecular weight of 190,000. It was.
  • the number of introduced acetyl groups in one polymerizable polyrotaxane molecule was 918 as a result of calculation assuming that 18 hydroxyl groups in the cyclic molecule, 75 cyclic molecules in one polymerizable polyrotaxane molecule and 68% acetylation rate were calculated.
  • Example 1 A solution was prepared by mixing 1900 mg of methyl acrylate with IRUGACURE 184 as a photopolymerization initiator so as to be 0.5 mol% based on the total amount of methyl acrylate.
  • the polymerizable polyrotaxane obtained in Synthesis Example 1 was added and dissolved so as to be 5% by weight with respect to methyl acrylate, and poured into a mold. Then, the polymer material was obtained by irradiating this mold with ultraviolet light of 365 nm for 1 hour to advance the polymerization reaction.
  • This polymer material was PMA-PRxOAC-Acryl (61).
  • the numerical value in parentheses means the number of acryloyl groups introduced per molecule of polymerizable polyrotaxane (61).
  • the obtained polymer material was calculated as 99.84 mol% methyl acrylate unit and 0.14 mol% polyrotaxane unit. This calculation was performed based on the molecular weight of the raw material polyrotaxane, the number of vinyl groups per molecule of polymerizable polyrotaxane, the amount of polymerizable polyrotaxane used, and the amount of methyl acrylate used.
  • Example 2 A polymer material was obtained in the same manner as in Example 1 except that n-butyl acrylate was used instead of methyl acrylate.
  • This polymer material is represented as PBA-PRxOAC-Acryl (61).
  • the numerical value in parentheses is the number of acryloyl groups introduced per molecule of polymerizable polyrotaxane (61).
  • the obtained polymer material was calculated as 99.8 mol% methyl acrylate units and 0.20 mol% polyrotaxane units. This calculation was performed in the same manner as in Example 1.
  • Comparative Example 2 A polymer material (PBA-BDA) was obtained in the same manner as in Comparative Example 1 except that n-butyl acrylate was used instead of methyl acrylate.
  • FIG. 2 is a summary of the results of stress-strain curves of Example 1 and Comparative Example 1, wherein (a) shows the breaking strain and (b) shows the result of the breaking stress.
  • FIG. 3 is a summary of the results of stress-strain curves of Example 2 and Comparative Example 2, wherein (a) shows the breaking strain and (b) shows the breaking stress result.
  • the polymer material obtained in the example has a higher fracture strain than the polymer material obtained in the comparative example. This result supports that the polymer material cross-linked with the polymerizable polyrotaxane has excellent elongation characteristics.
  • FIG. 4 shows the results of the swelling test of the polymer materials obtained in each of the examples and comparative examples. From this result, it was found that the polymer material crosslinked with the polymerizable polyrotaxane has an excellent degree of swelling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Polyethers (AREA)

Abstract

Provided are a polyrotaxane that exhibits an excellent compatibility with various polymeric materials and can be produced by a simple and convenient method, and a method for producing the polyrotaxane. Also provided are a polymeric material and a method for producing the same. The present invention provides a polymerizable functional group-modified polyrotaxane that has a structure in which a linear molecule passes through the opening of a cyclic molecule and a stopper molecule for preventing dethreading of the cyclic molecule is bonded at both terminals of the linear molecule. The cyclic molecule has a polymerizable functional group and an organic group other than the polymerizable functional group. The organic group includes at least one group selected from the group consisting of optionally substituted hydrocarbon groups having at least 1 carbon and groups containing the C=O bond.

Description

重合性官能基で修飾されたポリロタキサン及びその製造方法、並びに高分子材料及びその製造方法POLYROTAXAN MODIFIED WITH POLYMERIZABLE FUNCTIONAL GROUP, PROCESS FOR PRODUCING THE SAME, POLYMER MATERIAL AND PROCESS FOR PRODUCING THE SAME
 本発明は、重合性官能基で修飾されたポリロタキサン及びその製造方法、並びに高分子材料及びその製造方法に関する。 The present invention relates to a polyrotaxane modified with a polymerizable functional group and a production method thereof, and a polymer material and a production method thereof.
 ポリロタキサンは、直鎖状分子が環状分子の開口部を貫通して串刺し状に包接された構造を有する高分子化合物であり、超分子の一種として知られる材料である。ポリロタキサンは、多種多様な特性を有することから、例えば、高分子材料に導入することで、従来は成し得ることのできなかった優れた機能を発揮させることができる。 Polyrotaxane is a polymer compound having a structure in which a linear molecule penetrates through an opening of a cyclic molecule and is skewered, and is a material known as a kind of supramolecule. Since polyrotaxane has a wide variety of properties, for example, by introducing it into a polymer material, it is possible to exhibit an excellent function that could not be achieved conventionally.
 このようなポリロタキサンを種々の材料に導入するためには、ポリロタキサンと、材料との相溶性を高めることが重要である。材料に対するポリロタキサンの相溶性を高めるべく、種々のポリロタキサンが検討されている。例えば、ポリロタキサンが有する環状分子を疎水基や重合鎖で修飾することで、ポリロタキサンの材料に対する相溶性を改善する試みがなされている(例えば、特許文献1、2等を参照)。 In order to introduce such a polyrotaxane into various materials, it is important to improve the compatibility between the polyrotaxane and the material. Various polyrotaxanes have been investigated in order to increase the compatibility of the polyrotaxane with the material. For example, attempts have been made to improve the compatibility of polyrotaxanes with materials by modifying the cyclic molecules of polyrotaxanes with hydrophobic groups or polymer chains (see, for example, Patent Documents 1 and 2).
特開2007-091938号公報JP 2007-091938 A 国際公開第2015/041322号International Publication No. 2015/041322
 しかしながら、従来のポリロタキサンであっても高分子材料に対する相溶性には改善の余地が残されていた。例えば、高分子材料に対して相溶性の悪いポリロタキサンを使用して得られた高分子材料は、伸び、膨潤性、透明性等が十分でない場合が多く、良好な物性を発現しにくいものであった。しかも、従来のようなポリロタキサンを疎水基や重合鎖で修飾させる方法は、最終目的物を得るのに多段階の工程を要し、製造工程が煩雑であるという問題もあった。 However, even with conventional polyrotaxanes, there remains room for improvement in compatibility with polymer materials. For example, a polymer material obtained by using a polyrotaxane that is poorly compatible with the polymer material is often insufficient in elongation, swelling, transparency, etc., and does not easily exhibit good physical properties. It was. Moreover, the conventional method of modifying polyrotaxane with a hydrophobic group or a polymer chain has a problem that a multi-step process is required to obtain the final target product, and the production process is complicated.
 本発明は、上記に鑑みてなされたものであり、透明かつ優れた伸び特性を有する種々の高分子材料の製造用の原料に適しており、しかも、簡便な方法で製造することができるポリロタキサン及びその製造方法、並びに高分子材料及びその製造方法提供することを目的とする。 The present invention has been made in view of the above, and is suitable as a raw material for producing various polymer materials that are transparent and have excellent elongation characteristics. Moreover, the polyrotaxane can be produced by a simple method, and An object of the present invention is to provide a production method thereof, a polymer material, and a production method thereof.
 本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、ポリロタキサンの環状分子に、重合性を有する官能基及び重合性を有しない有機基を導入することにより、上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventor has found that the above object can be achieved by introducing a polymerizable functional group and a non-polymerizable organic group into the polyrotaxane cyclic molecule. The headline and the present invention were completed.
 すなわち、本発明は、例えば、以下の項に記載の発明を包含する。
項1
 重合性官能基で修飾されたポリロタキサンであって、
 直鎖状分子が環状分子の開口部を貫通し、かつ、前記直鎖状分子の両末端に前記環状分子の脱落を防止するための封鎖分子が結合した構造を有し、
 前記環状分子は、重合性官能基と、該重合性官能基以外の有機基とを有し、
 前記有機基は、置換基を有していてもよい炭素数1以上の炭化水素基及びC=O結合を含む基からなる群より選ばれる少なくとも1種を含む、重合性官能基で修飾されたポリロタキサン。
項2
 前記重合性官能基はラジカル重合性を有する官能基である、項1に記載の重合性官能基で修飾されたポリロタキサン。
項3
 前記ラジカル重合性を有する官能基は炭素-炭素二重結合を含む基である、項2に記載の重合性官能基で修飾されたポリロタキサン。
項4
 前記炭化水素基は炭素数が1~12である、項1~3のいずれか1項に記載の重合性官能基で修飾されたポリロタキサン。
項5
 前記C=O結合を含む基は、アシル基である、項1~4のいずれか1項に記載の重合性官能基で修飾されたポリロタキサン。
項6
 前記重合性官能基と前記有機基とを有する環状分子は、前記重合性官能基及び前記有機基で修飾されたシクロデキストリン又はシクロデキストリン誘導体である、項1~5のいずれか1項に記載の重合性官能基で修飾されたポリロタキサン。
項7-1
 ポリロタキサンを含む原料から、重合性官能基で修飾されたポリロタキサンを製造する方法であって、
 前記原料に含まれるポリロタキサンは、直鎖状分子が環状分子の開口部を貫通し、前記直鎖状分子の両末端に前記環状分子の脱落を防止するための封鎖分子が結合した構造を有し、
 前記原料と、前記重合性官能基を有する化合物及び該重合性官能基以外の有機基を有する化合物とを反応させる工程、前記原料と、前記重合性官能基を有する化合物とを反応させて反応物を得た後に、この反応物に前記重合性官能基以外の有機基を有する化合物を反応させる工程、又は、前記原料と、前記重合性官能基以外の有機基を有する化合物とを反応させて反応物を得た後に、この反応物に前記重合性官能基を有する化合物を反応させる工程、
を具備し、
 前記有機基は、置換基を有していてもよい炭素数1以上の炭化水素基及びC=O結合を含む基からなる群より選ばれる少なくとも1種を含む、重合性官能基で修飾されたポリロタキサンの製造方法。
項7-2
 項1~6に記載のポリロタキサンを製造する方法であって、
 ポリロタキサンを含む原料と、前記重合性官能基を有する化合物及び該重合性官能基以外の有機基を有する化合物とを反応させる工程A、
 ポリロタキサンを含む原料と、前記重合性官能基を有する化合物とを反応させて反応物を得た後に、この反応物に前記重合性官能基以外の有機基を有する化合物を反応させる工程B、及び、
 ポリロタキサンを含む原料と、前記重合性官能基以外の有機基を有する化合物とを反応させて反応物を得た後に、この反応物に前記重合性官能基を有する化合物を反応させる工程C、
のいずれかの工程を具備し、
 前記有機基は、置換基を有していてもよい炭素数1以上の炭化水素基及びC=O結合を含む基からなる群より選ばれる少なくとも1種を含む、重合性官能基で修飾されたポリロタキサンの製造方法。
項8
 前記重合性官能基を有する化合物は、ラジカル重合性を有する官能基を含む化合物である、項7-1又は7-2に記載の製造方法。
項9
 前記ラジカル重合性を有する官能基は炭素-炭素二重結合を含む基である、項8に記載の製造方法。
項10
 前記炭化水素基は炭素数が1~12である、項7-1、7-2、8及び9のいずれか1項に記載の製造方法。
項11
 前記C=O結合を含む基は、アシル基である、項7-1、7-2、8~10のいずれか1項に記載の製造方法。
項12
 前記原料に含まれるポリロタキサンが有する環状分子は、シクロデキストリン又はその誘導体である、項7-1、7-2、8~11のいずれか1項に記載の製造方法。
項13
 項1~6のいずれか1項に記載の重合性官能基で修飾されたポリロタキサンを繰り返し単位として有する、高分子材料。
項14
 項13に記載の高分子材料を製造する方法であって、
 前記重合性官能基で修飾されたポリロタキサンと、重合性単量体とを反応させる工程を具備する、高分子材料の製造方法。
That is, the present invention includes, for example, the inventions described in the following sections.
Item 1
A polyrotaxane modified with a polymerizable functional group,
The linear molecule penetrates through the opening of the cyclic molecule, and has a structure in which a blocking molecule for preventing the cyclic molecule from dropping off is bonded to both ends of the linear molecule;
The cyclic molecule has a polymerizable functional group and an organic group other than the polymerizable functional group,
The organic group is modified with a polymerizable functional group including at least one selected from the group consisting of a hydrocarbon group having 1 or more carbon atoms which may have a substituent and a group containing a C═O bond. Polyrotaxane.
Item 2
Item 2. The polyrotaxane modified with the polymerizable functional group according to Item 1, wherein the polymerizable functional group is a functional group having radical polymerizability.
Item 3
Item 3. The polyrotaxane modified with the polymerizable functional group according to Item 2, wherein the functional group having radical polymerizability is a group containing a carbon-carbon double bond.
Item 4
Item 4. The polyrotaxane modified with the polymerizable functional group according to any one of Items 1 to 3, wherein the hydrocarbon group has 1 to 12 carbon atoms.
Item 5
Item 5. The polyrotaxane modified with the polymerizable functional group according to any one of Items 1 to 4, wherein the group containing a C═O bond is an acyl group.
Item 6
Item 6. The cyclic molecule having the polymerizable functional group and the organic group is a cyclodextrin or a cyclodextrin derivative modified with the polymerizable functional group and the organic group. A polyrotaxane modified with a polymerizable functional group.
Item 7-1
A method for producing a polyrotaxane modified with a polymerizable functional group from a raw material containing a polyrotaxane,
The polyrotaxane contained in the raw material has a structure in which a linear molecule passes through an opening of a cyclic molecule, and a blocking molecule for preventing the cyclic molecule from dropping off is bonded to both ends of the linear molecule. ,
Reacting the raw material with a compound having a polymerizable functional group and a compound having an organic group other than the polymerizable functional group; reacting the raw material with a compound having a polymerizable functional group; After the reaction product is reacted with a compound having an organic group other than the polymerizable functional group, or by reacting the raw material with a compound having an organic group other than the polymerizable functional group. After obtaining the product, reacting the reaction product with a compound having a polymerizable functional group,
Comprising
The organic group is modified with a polymerizable functional group including at least one selected from the group consisting of a hydrocarbon group having 1 or more carbon atoms which may have a substituent and a group containing a C═O bond. A method for producing a polyrotaxane.
Item 7-2
A method for producing the polyrotaxane according to Item 1-6,
A step of reacting a raw material containing polyrotaxane with a compound having a polymerizable functional group and a compound having an organic group other than the polymerizable functional group;
After reacting the raw material containing polyrotaxane and the compound having a polymerizable functional group to obtain a reaction product, a step B of reacting the reaction product with a compound having an organic group other than the polymerizable functional group; and
Step C of reacting a raw material containing polyrotaxane with a compound having an organic group other than the polymerizable functional group to obtain a reaction product, and then reacting the reaction product with the compound having the polymerizable functional group,
Comprising any of the steps
The organic group is modified with a polymerizable functional group including at least one selected from the group consisting of a hydrocarbon group having 1 or more carbon atoms which may have a substituent and a group containing a C═O bond. A method for producing a polyrotaxane.
Item 8
Item 7. The production method according to Item 7-1 or 7-2, wherein the compound having a polymerizable functional group is a compound having a functional group having radical polymerizable properties.
Item 9
Item 9. The production method according to Item 8, wherein the functional group having radical polymerizability is a group containing a carbon-carbon double bond.
Item 10
Item 10. The production method according to any one of Items 7-1, 7-2, 8, and 9, wherein the hydrocarbon group has 1 to 12 carbon atoms.
Item 11
Item 11. The production method according to any one of Items 7-1, 7-2, and 8 to 10, wherein the group containing a C═O bond is an acyl group.
Item 12
Item 12. The production method according to any one of Items 7-1, 7-2, and 8 to 11, wherein the cyclic molecule contained in the polyrotaxane contained in the raw material is cyclodextrin or a derivative thereof.
Item 13
Item 7. A polymer material having a polyrotaxane modified with a polymerizable functional group according to any one of Items 1 to 6 as a repeating unit.
Item 14
A method for producing the polymer material according to Item 13,
A method for producing a polymer material, comprising a step of reacting a polyrotaxane modified with the polymerizable functional group and a polymerizable monomer.
 本発明に係る重合性官能基で修飾されたポリロタキサンは、高分子材料との相溶性に優れ、高分子材料に優れた伸び及び膨潤性を付与することができる。 The polyrotaxane modified with a polymerizable functional group according to the present invention is excellent in compatibility with a polymer material and can impart excellent elongation and swelling properties to the polymer material.
 本発明に係る重合性官能基で修飾されたポリロタキサンの製造方法によれば、簡便な方法でポリロタキサンに対して重合性官能基を修飾することができる。また、得られた重合性官能基で修飾されたポリロタキサンは、高分子材料との相溶性に優れ、高分子材料に優れた伸び及び膨潤性を付与することができる。 According to the method for producing a polyrotaxane modified with a polymerizable functional group according to the present invention, the polymerizable functional group can be modified with respect to the polyrotaxane by a simple method. Moreover, the obtained polyrotaxane modified with the polymerizable functional group is excellent in compatibility with the polymer material, and can impart excellent elongation and swelling properties to the polymer material.
 本発明に係る高分子材料は、前記重合性官能基で修飾されたポリロタキサンを繰り返し単位として含むことで、優れた伸び及び膨潤性を有する。 The polymer material according to the present invention has excellent elongation and swelling properties by including the polyrotaxane modified with the polymerizable functional group as a repeating unit.
重合性官能基で修飾されたポリロタキサンの構造の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of the polyrotaxane modified with the polymerizable functional group. 実施例1及び比較例1の応力-歪曲線試験の結果まとめであり、(a)は破断歪、(b)は破断応力の結果である。It is the result summary of the stress-strain curve test of Example 1 and Comparative Example 1, (a) is the breaking strain, (b) is the result of breaking stress. 実施例2及び比較例2の応力-歪曲線試験の結果まとめであり、(a)は破断歪、(b)は破断応力の結果である。It is a summary of the results of the stress-strain curve test of Example 2 and Comparative Example 2, where (a) is the breaking strain and (b) is the breaking stress result. 実施例及び比較例で得られた高分子材料の膨潤度試験の結果を示す。The result of the swelling degree test of the polymeric material obtained by the Example and the comparative example is shown.
 以下、本発明の実施形態について詳細に説明する。なお、本明細書中において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。 Hereinafter, embodiments of the present invention will be described in detail. In the present specification, the expressions “containing” and “including” include the concepts of “containing”, “including”, “consisting essentially of”, and “consisting only of”.
 <重合性官能基で修飾されたポリロタキサン>
 本実施形態の重合性官能基で修飾されたポリロタキサンは、直鎖状分子が環状分子の開口部を貫通し、かつ、前記直鎖状分子の両末端に前記環状分子の脱落を防止するための封鎖分子が結合した構造を有する。前記環状分子は、重合性官能基と、該重合性官能基以外の有機基とを有する。前記有機基は、置換基を有していてもよい炭素数1以上の炭化水素基及びC=O結合を含む基からなる群より選ばれる少なくとも1種を含む。
<Polyrotaxane modified with polymerizable functional group>
The polyrotaxane modified with the polymerizable functional group of the present embodiment has a structure in which the linear molecule passes through the opening of the cyclic molecule and the cyclic molecule is prevented from dropping at both ends of the linear molecule. It has a structure in which blocking molecules are bound. The cyclic molecule has a polymerizable functional group and an organic group other than the polymerizable functional group. The organic group includes at least one selected from the group consisting of a hydrocarbon group having 1 or more carbon atoms which may have a substituent and a group containing a C═O bond.
 なお、本明細書において、重合性官能基で修飾されたポリロタキサンを、以下では「重合性ポリロタキサン」と略記する。 In the present specification, a polyrotaxane modified with a polymerizable functional group is hereinafter abbreviated as “polymerizable polyrotaxane”.
 上記重合性ポリロタキサンを使用して得られる高分子材料は、優れた伸び及び膨潤性を有する。 The polymer material obtained by using the polymerizable polyrotaxane has excellent elongation and swelling properties.
 直鎖状分子としては、複数の環状分子の環内を貫通し得る分子が挙げられる。直鎖状分子としては、ポリアルキレン類、ポリエステル類、ポリエーテル類、ポリアミド類、ポリアクリル類及びベンゼン環を有する直鎖状分子を挙げることができる。さらに具体的な直鎖状分子としては、例えば、ポリエチレングリコール、ポリエチレンオキシド、ポリプロピレングリコール、ポリカプロラクトン、ポリエチレン、ポリプロピレン、ポリビニルアセタール、ポリビニルメチルエーテル、ポリビニルピロリドン、ポリアクリルアミド、ポリアクリル酸メチル、ポリメタクリル酸メチル、ポリスチレン等が挙げられる。直鎖状分子は、上記環状分子の環内を貫通できるように構成されている限りは、分岐鎖を有していてもよい。 Examples of the linear molecule include molecules that can penetrate through a ring of a plurality of cyclic molecules. Examples of the linear molecule include polyalkylenes, polyesters, polyethers, polyamides, polyacryls, and linear molecules having a benzene ring. More specific linear molecules include, for example, polyethylene glycol, polyethylene oxide, polypropylene glycol, polycaprolactone, polyethylene, polypropylene, polyvinyl acetal, polyvinyl methyl ether, polyvinyl pyrrolidone, polyacrylamide, polymethyl acrylate, polymethacrylic acid. Examples include methyl and polystyrene. The linear molecule may have a branched chain as long as it is configured to penetrate the ring of the cyclic molecule.
 直鎖状分子の重量平均分子量Mwは特に制限はないが、例えば、3000~500000であることが好ましい。この場合、ポリロタキサンを用いて得られる高分子材料の機械特性(例えば、伸び特性)がより優れ、また、溶媒への溶解性も良好となる。尚、本明細書でいう重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)測定によるポリエチレングリコール換算値である。 The weight average molecular weight Mw of the linear molecule is not particularly limited, but is preferably 3000 to 500,000, for example. In this case, the mechanical property (for example, elongation property) of the polymer material obtained by using the polyrotaxane is more excellent, and the solubility in the solvent is also improved. In addition, the weight average molecular weight as used in this specification is a polyethylene glycol conversion value by a gel permeation chromatography (GPC) measurement.
 直鎖状分子の両末端は、反応基を有していることが好ましく、これにより、後述の封鎖基が直鎖状分子の両末端に結合されやすくなる。反応基としては、水酸基、カルボキシル基、アミノ基及びチオール基等が例示される。 It is preferable that both ends of the linear molecule have a reactive group, so that a blocking group described later is easily bonded to both ends of the linear molecule. Examples of the reactive group include a hydroxyl group, a carboxyl group, an amino group, and a thiol group.
 環状分子は、重合性官能基と、該重合性官能基以外の有機基とを有する。なお、重合性官能基以外の有機基は、以下では単に「有機基」と略記する。 The cyclic molecule has a polymerizable functional group and an organic group other than the polymerizable functional group. The organic group other than the polymerizable functional group is simply abbreviated as “organic group” below.
 重合性ポリロタキサン1分子あたりにおいて、環状分子は二以上存在し得る。つまり、一本の直鎖状分子に、複数の環状分子が貫通されている。そして、本明細書において「環状分子は、重合性官能基と、該重合性官能基以外の有機基とを有する」とは、必ずしも1個の環状分子が重合性官能基及び有機基の両方を有することに限定されるものではない。例えば、重合性ポリロタキサン1分子において、一つの環状分子は重合性官能基及び有機基のうちの一方のみを有しており、他の環状分子が重合性官能基及び有機基のうちの他方のみを有している態様も、「環状分子は、重合性官能基と、該重合性官能基以外の有機基とを有する」という。 There may be two or more cyclic molecules per molecule of polymerizable polyrotaxane. That is, a plurality of cyclic molecules are penetrated by one linear molecule. In the present specification, “a cyclic molecule has a polymerizable functional group and an organic group other than the polymerizable functional group” means that one cyclic molecule does not necessarily have both a polymerizable functional group and an organic group. It is not limited to having. For example, in one polymerizable polyrotaxane molecule, one cyclic molecule has only one of a polymerizable functional group and an organic group, and the other cyclic molecule has only the other of the polymerizable functional group and the organic group. The aspect which has is also called "the cyclic molecule has a polymerizable functional group and an organic group other than the polymerizable functional group".
 重合性官能基及び有機基を有する環状分子としては、例えば、重合性官能基及び/又は有機基で置換されたシクロデキストリン、重合性官能基及び/又は有機基で置換されたシクロデキストリン誘導体、重合性官能基及び/又は有機基で置換された環状オリゴマー等が挙げられる。シクロデキストリンは、α-シクロデキストリン、β-シクロデキストリン及びγ-シクロデキストリンのいずれであってもよく、特にα-シクロデキストリンが好ましい。シクロデキストリン誘導体は、α-シクロデキストリン誘導体、β-シクロデキストリン誘導体及びγ-シクロデキストリン誘導体のいずれであってもよく、特にα-シクロデキストリン誘導体が好ましい。シクロデキストリン誘導体は、例えば、シクロデキストリンの少なくとも一以上の水酸基又は該水酸基の水素原子が、ヒドロキシ基を有する炭化水素基、アミノ基を有する炭化水素基で置換された化合物が挙げられる。ヒドロキシ基を有する炭化水素基の具体例としては、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基等が挙げられる。アミノ基を有する炭化水素基の具体例としては、アミノメチル基、アミノエチル基、アミノプロピル基等が挙げられる。シクロデキストリン誘導体において、シクロデキストリン1分子あたりのヒドロキシ基を有する炭化水素基又はアミノ基を有する炭化水素基の個数は1~24とすることができる。 Examples of the cyclic molecule having a polymerizable functional group and an organic group include, for example, a cyclodextrin substituted with a polymerizable functional group and / or an organic group, a cyclodextrin derivative substituted with a polymerizable functional group and / or an organic group, and polymerization. And cyclic oligomers substituted with a functional functional group and / or an organic group. The cyclodextrin may be any of α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin, and α-cyclodextrin is particularly preferable. The cyclodextrin derivative may be any of α-cyclodextrin derivative, β-cyclodextrin derivative and γ-cyclodextrin derivative, and α-cyclodextrin derivative is particularly preferable. Examples of the cyclodextrin derivative include compounds in which at least one hydroxyl group of cyclodextrin or a hydrogen atom of the hydroxyl group is substituted with a hydrocarbon group having a hydroxy group or a hydrocarbon group having an amino group. Specific examples of the hydrocarbon group having a hydroxy group include a hydroxymethyl group, a hydroxyethyl group, and a hydroxypropyl group. Specific examples of the hydrocarbon group having an amino group include an aminomethyl group, an aminoethyl group, and an aminopropyl group. In the cyclodextrin derivative, the number of hydrocarbon groups having hydroxy groups or amino groups having amino groups per molecule of cyclodextrin can be 1 to 24.
 シクロデキストリンがα-シクロデキストリンである場合、α-シクロデキストリン誘導体1分子中に存在する全水酸基のうちの10個以上の水酸基の水素原子が、ヒドロキシ基を有する炭化水素基又はアミノ基を有する炭化水素基で置換されていることがより好ましく、全水酸基のうちの15個以上の水酸基の水素原子が、ヒドロキシ基を有する炭化水素基又はアミノ基を有する炭化水素基で置換されていることが特に好ましい。 When the cyclodextrin is α-cyclodextrin, the hydrogen atom of 10 or more of the total hydroxyl groups present in one molecule of the α-cyclodextrin derivative has a hydrocarbon group having a hydroxy group or a carbon group having an amino group More preferably, the hydrogen atom of at least 15 of the total hydroxyl groups is substituted with a hydrocarbon group having a hydroxy group or a hydrocarbon group having an amino group. preferable.
 シクロデキストリンがβ-シクロデキストリンである場合、β-シクロデキストリン誘導体1分子中に存在する全水酸基のうちの13個以上の水酸基の水素原子が、ヒドロキシ基を有する炭化水素基又はアミノ基を有する炭化水素基で置換されていることがより好ましく、全水酸基のうちの18個以上の水酸基の水素原子が、ヒドロキシ基を有する炭化水素基又はアミノ基を有する炭化水素基で置換されていることが特に好ましい。 When the cyclodextrin is β-cyclodextrin, hydrogen atoms of 13 or more of the total hydroxyl groups present in one molecule of the β-cyclodextrin derivative have a hydrocarbon group having a hydroxy group or a carbon group having an amino group More preferably, it is substituted with a hydrogen group, and it is particularly preferred that hydrogen atoms of 18 or more of the total hydroxyl groups are substituted with a hydrocarbon group having a hydroxy group or a hydrocarbon group having an amino group. preferable.
 シクロデキストリンがγ-シクロデキストリンである場合、γ-シクロデキストリン誘導体1分子中に存在する全水酸基のうちの16個以上の水酸基の水素原子が有機基で置換されていることがより好ましく、全水酸基のうちの21個以上の水酸基の水素原子が、ヒドロキシ基を有する炭化水素基又はアミノ基を有する炭化水素基で置換されていることが特に好ましい。 When the cyclodextrin is γ-cyclodextrin, it is more preferable that the hydrogen atoms of 16 or more of the total hydroxyl groups present in one molecule of the γ-cyclodextrin derivative are substituted with organic groups. Of these, it is particularly preferred that the hydrogen atom of 21 or more hydroxyl groups is substituted with a hydrocarbon group having a hydroxy group or a hydrocarbon group having an amino group.
 重合性官能基は、重合性単量体と重合可能な官能基をいう。ここでいう重合は、例えば、ラジカル重合、イオン重合、重縮合(縮合重合、縮重合)、付加縮合、リビング重合、リビングラジカル重合等、その他、従来から知られている各種重合が挙げられる。 Polymerizable functional group refers to a functional group that can be polymerized with a polymerizable monomer. Examples of the polymerization here include radical polymerization, ionic polymerization, polycondensation (condensation polymerization, condensation polymerization), addition condensation, living polymerization, living radical polymerization, and other various conventionally known polymerizations.
 重合性官能基の具体例としては、アルケニル基、ビニル基等の他、-OH、-SH、-NH、-COOH、-SOH、-POH、イソシアネート基等が挙げられる。これらはさらに一以上の置換基を有していてもよい。重合性ポリロタキサンを用いて容易に高分子材料を得ることができるという観点から、重合性官能基はラジカル重合性を有する官能基であることが好ましい。 Specific examples of the polymerizable functional group include an alkenyl group and a vinyl group, as well as —OH, —SH, —NH 2 , —COOH, —SO 3 H, —PO 4 H, an isocyanate group, and the like. These may further have one or more substituents. From the viewpoint that a polymer material can be easily obtained using a polymerizable polyrotaxane, the polymerizable functional group is preferably a functional group having radical polymerizability.
 ラジカル重合性を有する官能基は、炭素-炭素二重結合を含む基を挙げることができ、具体的には、アクリロイル基(CH=CH(CO))、メタクリロイル基(CH=CCH(CO))、その他、スチリル基、ビニル基、アリル基等が挙げられる。これらの炭素-炭素二重結合を含む基は、ラジカル重合性が阻害されない程度であればさらに置換基を有していてもよい。 Examples of the functional group having radical polymerizability include a group containing a carbon-carbon double bond. Specifically, an acryloyl group (CH 2 ═CH (CO)), a methacryloyl group (CH 2 ═CCH (CO) )), And other examples include styryl, vinyl, and allyl groups. These groups containing a carbon-carbon double bond may further have a substituent as long as radical polymerizability is not inhibited.
 有機基は重合性官能基以外の官能基であり、置換基を有していてもよい炭素数1以上の炭化水素基及びC=O結合を含む基からなる群より選ばれる少なくとも1種を含む。 The organic group is a functional group other than the polymerizable functional group, and includes at least one selected from the group consisting of a hydrocarbon group having 1 or more carbon atoms which may have a substituent and a group containing a C═O bond. .
 炭素数1以上の置換基を有していてもよい炭化水素基としては、直鎖状、分岐鎖状のいずれであってもよい。炭化水素基の炭素数の上限は、得られる高分子材料の伸び特性がより良好になるという観点から、12とすることができる。つまり、炭化水素基は炭素数が1~12であることが好ましい。炭化水素基の炭素数の上限は6であることが特に好ましい。 The hydrocarbon group which may have a substituent having 1 or more carbon atoms may be either linear or branched. The upper limit of the number of carbon atoms of the hydrocarbon group can be set to 12 from the viewpoint that the elongation property of the obtained polymer material becomes better. That is, the hydrocarbon group preferably has 1 to 12 carbon atoms. The upper limit of the carbon number of the hydrocarbon group is particularly preferably 6.
 炭素数1以上の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等を挙げることができる。これらの炭化水素基は、直鎖状、分岐鎖状のいずれでもよい。また、これらの炭化水素基は、置換基を有していてもよい。置換基としては、ハロゲン原子、カルボキシル基、カルボニル基、スルホニル基、スルホン基、シアノ基、パーフルオロ有機基(好ましくは炭素数1~8のパーフルオロ有機基)、ペンタフルオロスルファニル基(FS-)が好適に例示される。 Examples of the hydrocarbon group having 1 or more carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. These hydrocarbon groups may be either linear or branched. Moreover, these hydrocarbon groups may have a substituent. Examples of the substituent include a halogen atom, a carboxyl group, a carbonyl group, a sulfonyl group, a sulfone group, a cyano group, a perfluoro organic group (preferably a perfluoro organic group having 1 to 8 carbon atoms), a pentafluorosulfanyl group (F 5 S -) Is preferably exemplified.
 C=O結合を含む基としては、例えば、アシル基、エステル基、アルデヒド基、ケトン、アミド基、カルバモイル基、ウレア基等が挙げられる。 Examples of the group containing a C═O bond include an acyl group, an ester group, an aldehyde group, a ketone, an amide group, a carbamoyl group, and a urea group.
 C=O結合を含む基としては、ポリロタキサンの高分子材料への相溶性が向上するという観点から、アシル基であることが好ましく、特に、アセチル基が好ましい。 The group containing a C═O bond is preferably an acyl group, and more preferably an acetyl group, from the viewpoint of improving the compatibility of the polyrotaxane with the polymer material.
 有機基は、環状分子のどの原子に結合していてもよいが、特に、環状分子の酸素原子に結合していることが好ましい。この場合、重合性ポリロタキサンの製造において、環状分子に有機基を導入しやすく、得られた重合性ポリロタキサンの構造も安定である。 The organic group may be bonded to any atom of the cyclic molecule, but is particularly preferably bonded to the oxygen atom of the cyclic molecule. In this case, in the production of the polymerizable polyrotaxane, it is easy to introduce an organic group into the cyclic molecule, and the structure of the obtained polymerizable polyrotaxane is stable.
 さらに具体的には、重合性官能基及び有機基は、環状分子であるシクロデキストリン又はその誘導体が有する水酸基代わりとして、又は、水酸基における水素原子の代わりとして置換されていることが好ましい。さらに、シクロデキストリンの水酸基の水素原子がヒドロキシ基を有する炭化水素基で置換されたシクロデキストリン誘導体(例えば、ヒドロキシプロピル基置換シクロデキストリン)である場合は、ヒドロキシ基を有する炭化水素基におけるヒドロキシ基の水素原子が、重合性官能基及び有機基で置換されていることが好ましい。 More specifically, the polymerizable functional group and the organic group are preferably substituted as a hydroxyl group in the cyclodextrin as a cyclic molecule or a derivative thereof, or as a hydrogen atom in the hydroxyl group. Furthermore, in the case of a cyclodextrin derivative in which the hydrogen atom of the hydroxyl group of cyclodextrin is substituted with a hydrocarbon group having a hydroxy group (for example, hydroxypropyl group-substituted cyclodextrin), the hydroxy group in the hydrocarbon group having a hydroxy group It is preferable that the hydrogen atom is substituted with a polymerizable functional group and an organic group.
 重合性官能基は、重合性ポリロタキサン1分子における環状分子1個あたりにつき、0~3個有していることが好ましい。この場合、重合性ポリロタキサン1分子あたりの重合性官能基の密度が高いので、重合性ポリロタキサンを高分子材料に導入しやすく、得られる高分子材料は透明かつ優れた伸び特性を有しやすく、良好な物性の高分子材料を得やすくなる。重合性ポリロタキサン1分子あたりに重合性官能基を2以上有していれば、この重合性ポリロタキサンは、いわゆる架橋剤としての機能を発揮することができる。 The polymerizable functional group preferably has 0 to 3 per one cyclic molecule in one polymerizable polyrotaxane molecule. In this case, since the density of the polymerizable functional group per molecule of the polymerizable polyrotaxane is high, it is easy to introduce the polymerizable polyrotaxane into the polymer material, and the resulting polymer material is easily transparent and has excellent elongation characteristics. It becomes easy to obtain a polymer material with special physical properties. If the polymerizable polyrotaxane has two or more polymerizable functional groups per molecule, the polymerizable polyrotaxane can exhibit a function as a so-called crosslinking agent.
 ポリロタキサン1分子あたりの重合性官能基の導入数としては、例えば、5-150個とすることができる。 The number of polymerizable functional groups introduced per molecule of polyrotaxane can be, for example, 5-150.
 有機基は、重合性ポリロタキサン1分子における環状分子1個あたりにつき、0~24個有していることが好ましい。この場合、重合性ポリロタキサン1分子あたりの有機基の密度が高いので、重合性ポリロタキサンを高分子材料に導入しやすく、得られる高分子材料は透明かつ優れた伸び特性を有しやすく、良好な物性の高分子材料を得やすくなる。有機基は、重合性ポリロタキサン1分子における環状分子1個あたりにつき、1~18個(好ましくは1~17個)有していることが特に好ましい。 The organic group preferably has 0 to 24 per one cyclic molecule in the polymerizable polyrotaxane molecule. In this case, since the density of the organic group per molecule of the polymerizable polyrotaxane is high, it is easy to introduce the polymerizable polyrotaxane into the polymer material, and the obtained polymer material is easy to have a transparent and excellent elongation characteristic and has good physical properties. It becomes easy to obtain a polymer material. It is particularly preferred that the organic group has 1 to 18 (preferably 1 to 17) per cyclic molecule in one polymerizable polyrotaxane molecule.
 なお、環状分子は有機基以外の基を有していてもよく、例えば、環状分子自身が有している官能基(例えば、水酸基等)を有していてもよい。 In addition, the cyclic molecule may have a group other than the organic group, for example, may have a functional group (for example, a hydroxyl group) that the cyclic molecule itself has.
 直鎖状分子に串刺し状にされる環状分子の個数、すなわち、一つの直鎖状分子が貫通する環状分子の個数(包接量ともいう)には特に制限はないが、環状分子がシクロデキストリンであれば、その最大包接量を1とすると、0.15~0.4が好ましい。この場合、高分子材料の自己修復の性能がより発揮されやすくなる。 There is no particular limitation on the number of cyclic molecules skewered into linear molecules, that is, the number of cyclic molecules penetrated by one linear molecule (also referred to as the amount of inclusion). If the maximum inclusion amount is 1, then 0.15 to 0.4 is preferable. In this case, the self-healing performance of the polymer material is more easily exhibited.
 直鎖状分子の両末端には、封鎖分子が結合している。これによって、直鎖状分子からの環状分子の脱落が防止される。直鎖状分子の両末端に結合した封鎖分子を「封鎖基」とする。 A blocking molecule is bonded to both ends of the linear molecule. This prevents the drop-off of the cyclic molecule from the linear molecule. A blocking molecule bonded to both ends of a linear molecule is referred to as a “blocking group”.
 封鎖基としては、例えば、アダマンチル基、ジニトロフェニル基類、シクロデキストリン類、N-カルボベンゾキシ-L-チロシン類(Z-L-チロシン類)、トリチル基、ピレニル基、フェニル基等のアリール基、2-ブチルデシル基、フルオレセイン類、ピレン類、並びにこれらの誘導体又は変性体を挙げることができる。上記例示列挙した封鎖基は置換基を有していてもよい。このような封鎖基は、直鎖状分子の両末端に、例えば、アミド結合、エステル結合等を介して直接的又は間接的に結合させることができる。 Examples of the blocking group include aryl groups such as adamantyl group, dinitrophenyl group, cyclodextrins, N-carbobenzoxy-L-tyrosine (ZL-tyrosine), trityl group, pyrenyl group, phenyl group and the like. , 2-butyldecyl group, fluoresceins, pyrenes, and derivatives or modified products thereof. The blocking groups listed as examples above may have a substituent. Such a blocking group can be bonded directly or indirectly to both ends of the linear molecule, for example, via an amide bond or an ester bond.
 図1は、上記構成を有する重合性ポリロタキサンの構造の一例を示す模式図である。図1に示す重合性ポリロタキサンAは、直鎖状分子1、環状分子2、封鎖基3を有する。この形態では、直鎖状分子1はポリエチレングリコール、環状分子2は、重合性官能基と有機基とを有する2-ヒドロキシプロピル基置換のα-シクロデキストリン誘導体、封鎖基3はアダマンチル基である。アダマンチル基と、ポリエチレングリコールの末端とはアミド結合を介して結合しており、アダマンチル基及びポリエチレングリコールはいずれもアミド結合に直接結合している。 FIG. 1 is a schematic diagram showing an example of the structure of a polymerizable polyrotaxane having the above-described configuration. The polymerizable polyrotaxane A shown in FIG. 1 has a linear molecule 1, a cyclic molecule 2, and a blocking group 3. In this form, the linear molecule 1 is polyethylene glycol, the cyclic molecule 2 is a 2-hydroxypropyl group-substituted α-cyclodextrin derivative having a polymerizable functional group and an organic group, and the blocking group 3 is an adamantyl group. The adamantyl group and the end of polyethylene glycol are bonded via an amide bond, and both the adamantyl group and polyethylene glycol are directly bonded to the amide bond.
 図1の形態では、重合性官能基は、アクリロイル基、有機基は、アセチル基(Ac)である。図1中、nは、例えば1~18である。アクリロイル基、アセチル基(Ac)はいずれも、α-シクロデキストリン誘導体の水酸基由来の酸素原子に結合している。つまり、α-シクロデキストリン誘導体の水酸基における水素原子がアクリロイル基又はアセチル基(Ac)に置換されている。この水酸基は、α-シクロデキストリンに由来する水酸基であってもよいし、あるいは、α-シクロデキストリン誘導体における2-ヒドロキシプロピル基に由来する水酸基であってもよい。 In the form of FIG. 1, the polymerizable functional group is an acryloyl group, and the organic group is an acetyl group (Ac). In FIG. 1, n is 1 to 18, for example. Both the acryloyl group and the acetyl group (Ac) are bonded to the oxygen atom derived from the hydroxyl group of the α-cyclodextrin derivative. That is, the hydrogen atom in the hydroxyl group of the α-cyclodextrin derivative is substituted with an acryloyl group or an acetyl group (Ac). This hydroxyl group may be a hydroxyl group derived from α-cyclodextrin, or a hydroxyl group derived from a 2-hydroxypropyl group in an α-cyclodextrin derivative.
 重合性ポリロタキサンの重量平均分子量Mwは、特に限定されないが、例えば、15000~1000000とすることができる。この場合、重合性ポリロタキサンを用いて得られる高分子材料の伸びが良好となり、また、膨潤性も優れる。重合性ポリロタキサン分子の重量平均分子量Mwは、20000~500000であることが好ましい。 The weight average molecular weight Mw of the polymerizable polyrotaxane is not particularly limited, but can be, for example, 15,000 to 1,000,000. In this case, the elongation of the polymer material obtained using the polymerizable polyrotaxane is good, and the swelling property is also excellent. The weight average molecular weight Mw of the polymerizable polyrotaxane molecule is preferably 20,000 to 500,000.
 上記重合性ポリロタキサンは、重合性官能基を有していることから、各種重合性単量体と重合反応することができ、高分子材料を形成することができる。特に、上記重合性ポリロタキサンは、二以上の重合性官能基を有し得るので、いわゆる架橋剤としての役割を果たすこともできる。 Since the polymerizable polyrotaxane has a polymerizable functional group, it can be polymerized with various polymerizable monomers to form a polymer material. In particular, since the polymerizable polyrotaxane can have two or more polymerizable functional groups, it can also serve as a so-called crosslinking agent.
 また、上記重合性ポリロタキサンは、有機基も有していることから、溶媒や各種重合性単量体との親和性も高い。そのため、重合性ポリロタキサンを使用して得られた高分子材料は、重合性ポリロタキサン由来のポリロタキサン成分が均一に分布しやすいため、優れた伸び特性を有することができ、また、各種有機溶媒に対する膨潤性にも優れる。特に、重合性ポリロタキサンが有機基を有することで、重合性ポリロタキサンは、疎水性の重合性単量体(例えば、(メタ)アクリル酸エステル等)との親和性に優れる。そのため、透明性の高いアクリル系高分子材料等の高分子材料を製造するための原料としての使用に有効である。 Moreover, since the above-mentioned polymerizable polyrotaxane also has an organic group, it has a high affinity with solvents and various polymerizable monomers. Therefore, the polymer material obtained using the polymerizable polyrotaxane can easily have a uniform distribution of the polyrotaxane component derived from the polymerizable polyrotaxane, and thus has excellent elongation characteristics, and is also swellable with various organic solvents. Also excellent. In particular, since the polymerizable polyrotaxane has an organic group, the polymerizable polyrotaxane is excellent in affinity with a hydrophobic polymerizable monomer (for example, (meth) acrylic acid ester or the like). Therefore, it is effective for use as a raw material for producing a polymer material such as a highly transparent acrylic polymer material.
 重合性ポリロタキサンにおいて、重合性官能基と環状分子との距離は近いことが好ましい。このような重合性ポリロタキサンを用いて高分子材料を得た場合、重合性官能基と環状分子との距離が長い場合に比べて、重合性官能基と環状分子との間のリンカー部(例えば、後記の重合鎖や長鎖炭化水素基)の影響を高分子材料が受けにくく、結果として、高分子材料の機械的特性が向上しやすい。 In the polymerizable polyrotaxane, the distance between the polymerizable functional group and the cyclic molecule is preferably close. When a polymer material is obtained using such a polymerizable polyrotaxane, compared to a case where the distance between the polymerizable functional group and the cyclic molecule is long, a linker portion between the polymerizable functional group and the cyclic molecule (for example, The polymer material is less susceptible to the influence of the polymer chains and long chain hydrocarbon groups described later, and as a result, the mechanical properties of the polymer material are likely to be improved.
 この観点から、例えば、重合性官能基における重合部位と環状分子との間には重合鎖や長鎖炭化水素基を有していないことが好ましい。重合性官能基における重合部位とは、重合性単量体の重合反応で結合する部位をいい、例えば、ラジカル重合性の炭素-炭素二重結合である。ここでいう重合鎖とは、例えば、繰り返し単位数が3以上の分子鎖をいう。また、長鎖炭化水素基とは、炭化水素基の骨格部の原子数が6の基をいう。炭化水素基の原子数には骨格部の原子に置換されている置換基の原子数は含めない。 From this viewpoint, for example, it is preferable that a polymer chain or a long chain hydrocarbon group is not present between the polymerization site in the polymerizable functional group and the cyclic molecule. The polymerization site in the polymerizable functional group means a site bonded by a polymerization reaction of the polymerizable monomer, and is, for example, a radical polymerizable carbon-carbon double bond. The polymer chain here means, for example, a molecular chain having 3 or more repeating units. The long-chain hydrocarbon group means a group having 6 hydrocarbon atoms in the skeleton. The number of atoms of the hydrocarbon group does not include the number of atoms of the substituents substituted with the atoms of the skeleton.
 重合部位と環状分子との間に結合している主鎖の原子数は1~6であることが好ましい。ここでいう主鎖の原子数とは、主鎖のみ(骨格部のみ)の原子数のことをいい、主鎖の原子に結合している側鎖の置換基の原子数は含めない。 The number of atoms of the main chain bonded between the polymerization site and the cyclic molecule is preferably 1-6. The number of atoms of the main chain here means the number of atoms of only the main chain (only the skeleton), and does not include the number of atoms of the side chain substituents bonded to the main chain atoms.
 例えば、重合性官能基が(メタ)アクリロイル基であり、この(メタ)アクリロイル基が環状分子であるシクロデキストリンの水酸基由来の酸素原子に結合している場合、重合部位と環状分子との間に結合している主鎖の原子数は1(カルボニル炭素1つのみ)である。また、重合性官能基が(メタ)アクリロイル基であり、この(メタ)アクリロイル基が環状分子である2-ヒドロキシプロピル基置換のα-シクロデキストリン誘導体の2-ヒドロキシプロピル基由来の酸素原子に結合している場合、重合部位と環状分子との間に結合している主鎖の原子数は1(カルボニル炭素1つのみ)である。 For example, when the polymerizable functional group is a (meth) acryloyl group, and this (meth) acryloyl group is bonded to an oxygen atom derived from a hydroxyl group of cyclodextrin, which is a cyclic molecule, between the polymerization site and the cyclic molecule, The number of atoms in the bonded main chain is 1 (only one carbonyl carbon). In addition, the polymerizable functional group is a (meth) acryloyl group, and this (meth) acryloyl group is bonded to an oxygen atom derived from the 2-hydroxypropyl group of a 2-hydroxypropyl group-substituted α-cyclodextrin derivative which is a cyclic molecule. In this case, the number of atoms of the main chain bonded between the polymerization site and the cyclic molecule is 1 (only one carbonyl carbon).
 <重合性官能基で修飾されたポリロタキサンの製造方法>
 重合性官能基で修飾されたポリロタキサン(重合性ポリロタキサン)の製造方法によれば、例えば、ポリロタキサンを含む原料から製造することができる。前記原料に含まれるポリロタキサンは、直鎖状分子が環状分子の開口部を貫通し、前記直鎖状分子の両末端に環状分子の脱落を防止するための封鎖分子が結合した構造を有する。
<Method for producing polyrotaxane modified with polymerizable functional group>
According to the method for producing a polyrotaxane modified with a polymerizable functional group (polymerizable polyrotaxane), for example, it can be produced from a raw material containing polyrotaxane. The polyrotaxane contained in the raw material has a structure in which a linear molecule passes through an opening of a cyclic molecule and a blocking molecule for preventing the cyclic molecule from dropping off is bonded to both ends of the linear molecule.
 重合性ポリロタキサンは、下記の工程A~Cのいずれかの工程によって製造することができる。
工程A:前記原料と、前記重合性官能基を有する化合物及び該重合性官能基以外の有機基を有する化合物とを反応させる工程。
工程B:前記原料と、前記重合性官能基を有する化合物とを反応させて反応物を得た後に、この反応物に前記重合性官能基以外の有機基を有する化合物を反応させる工程。
工程C:前記原料と、前記重合性官能基以外の有機基を有する化合物とを反応させて反応物を得た後に、この反応物に前記重合性官能基を有する化合物を反応させる工程。
The polymerizable polyrotaxane can be produced by any one of the following steps A to C.
Step A: A step of reacting the raw material with a compound having the polymerizable functional group and a compound having an organic group other than the polymerizable functional group.
Step B: a step of reacting the raw material with a compound having a polymerizable functional group to obtain a reaction product, and then reacting the reaction product with a compound having an organic group other than the polymerizable functional group.
Step C: a step of reacting the raw material with a compound having an organic group other than the polymerizable functional group to obtain a reactant, and then reacting the reactant with a compound having the polymerizable functional group.
 なお、以下では重合性官能基を有する化合物を「重合性官能基含有化合物」、重合性官能基以外の有機基を有する化合物を「有機基含有化合物」と略記する。 In the following, a compound having a polymerizable functional group is abbreviated as “polymerizable functional group-containing compound”, and a compound having an organic group other than the polymerizable functional group is abbreviated as “organic group-containing compound”.
 原料に含まれるポリロタキサンの構造は、環状分子が上記重合性官能基及び有機基を有していないこと以外、上述した重合性ポリロタキサンと同様である。このようなポリロタキサンは、例えば、市販の製品をそのまま使用することができる。あるいは、公知の方法で原料であるポリロタキサンを製造することができる。 The structure of the polyrotaxane contained in the raw material is the same as that of the polymerizable polyrotaxane described above except that the cyclic molecule does not have the polymerizable functional group and the organic group. As such a polyrotaxane, for example, a commercially available product can be used as it is. Or the polyrotaxane which is a raw material can be manufactured by a well-known method.
 原料に含まれるポリロタキサンは、環状分子がシクロデキストリン又はその誘導体であることが好ましい。この場合、環状分子は、多くの水酸基を有するので、重合性官能基含有化合及び有機基含有化合物との反応性に優れ、環状分子への重合性官能基及び有機基の修飾が容易になる。環状分子がシクロデキストリン又はその誘導体である場合は、特に、α-シクロデキストリン又はα-シクロデキストリン誘導体であることが好ましい。 The polyrotaxane contained in the raw material preferably has a cyclic molecule of cyclodextrin or a derivative thereof. In this case, since the cyclic molecule has many hydroxyl groups, the polymerizable functional group-containing compound and the reactivity with the organic group-containing compound are excellent, and the modification of the polymerizable functional group and the organic group to the cyclic molecule is facilitated. When the cyclic molecule is cyclodextrin or a derivative thereof, an α-cyclodextrin or an α-cyclodextrin derivative is particularly preferable.
 原料に含まれるポリロタキサンにおける環状分子がシクロデキストリン誘導体である場合、このシクロデキストリン誘導体としては、上記同様であるが、特に、シクロデキストリンの水酸基の水素原子が2-ヒドロキシプロピル基で置き換えられた(すなわち、水酸基の酸素原子に2-ヒドロキシプロピル基が結合した)、いわゆる2-ヒドロキシプロピル基置換のα-シクロデキストリンを例示することができ、その他、シクロデキストリンの水酸基の水素原子が2-ヒドロキシエチル基で置き換えられた(すなわち、水酸基の酸素原子に2-ヒドロキシエチル基が結合した)、いわゆる2-ヒドロキシエチル基置換のα-シクロデキストリン、シクロデキストリンの水酸基の水素原子がメチル基で置き換えられた(すなわち、水酸基の酸素原子にメチル基が結合した)、いわゆるメチル化α-シクロデキストリン、シクロデキストリンの水酸基の水素原子がトリメチルシリル基で置き換えられた(すなわち、水酸基の酸素原子にトリメチルシリル基が結合した)、いわゆるトリメチルシリル化α-シクロデキストリンを例示することができる。これらの環状分子では、重合性官能基含有化合及び有機基含有化合物との反応性に優れることから、環状分子への重合性官能基及び有機基の修飾が容易になる。中でも、環状分子は、上記2-ヒドロキシエチル基置換のα-シクロデキストリンが特に好ましい。 When the cyclic molecule in the polyrotaxane contained in the raw material is a cyclodextrin derivative, the cyclodextrin derivative is the same as described above, but in particular, the hydrogen atom of the hydroxyl group of cyclodextrin is replaced with a 2-hydroxypropyl group (ie, And 2-hydroxypropyl group-substituted α-cyclodextrin in which the hydroxyl atom of the cyclodextrin is substituted with a 2-hydroxyethyl group. (That is, a 2-hydroxyethyl group is bonded to an oxygen atom of a hydroxyl group), a so-called 2-hydroxyethyl group-substituted α-cyclodextrin, and a hydrogen atom of the hydroxyl group of cyclodextrin is replaced with a methyl group ( That is, hydroxyl acid So-called methylated α-cyclodextrin, the hydrogen atom of the hydroxyl group of cyclodextrin is replaced with a trimethylsilyl group (that is, the trimethylsilyl group is bonded to the oxygen atom of the hydroxyl group), so-called trimethylsilylation An example is α-cyclodextrin. Since these cyclic molecules are excellent in the polymerizable functional group-containing compound and the reactivity with the organic group-containing compound, it is easy to modify the polymerizable functional group and the organic group into the cyclic molecule. Among them, the above-mentioned 2-hydroxyethyl group-substituted α-cyclodextrin is particularly preferable as the cyclic molecule.
 原料には、ポリロタキサン以外に、例えば、溶媒等が含まれていてもよい。 The raw material may contain, for example, a solvent other than the polyrotaxane.
 重合性官能基含有化合物における、重合性官能基は、上述した<重合性官能基で修飾されたポリロタキサン>の項で説明した重合性官能基と同様である。従って、重合性官能基は、ラジカル重合性を有する官能基であることが好ましく、具体的には、炭素-炭素二重結合を含む基を挙げることができる。 The polymerizable functional group in the polymerizable functional group-containing compound is the same as the polymerizable functional group described in the above section <Polyrotaxane modified with polymerizable functional group>. Therefore, the polymerizable functional group is preferably a functional group having radical polymerizability, and specific examples thereof include a group containing a carbon-carbon double bond.
 重合性官能基含有化合物は、重合性官能基を有する限りは特に限定されない。重合性官能基含有化合物としては、例えば、塩化アクリロイル、塩化メタクリロイル、臭化アクリロイル、臭化メタクリロイル、アクリル酸、メタクリル酸、アクリルアミド、メタクリルアミド、アクリル酸無水物、メタクリル酸無水物、4-塩化メチルスチレン、4-ビニル安息香酸等が挙げられる。これらの重合性官能基含有化合物は、さらに置換基を有していてもよい。 The polymerizable functional group-containing compound is not particularly limited as long as it has a polymerizable functional group. Examples of the polymerizable functional group-containing compound include acryloyl chloride, methacryloyl chloride, acryloyl bromide, methacryloyl bromide, acrylic acid, methacrylic acid, acrylamide, methacrylamide, acrylic anhydride, methacrylic anhydride, 4-methyl chloride. Examples thereof include styrene and 4-vinylbenzoic acid. These polymerizable functional group-containing compounds may further have a substituent.
 特に、環状分子の水酸基との反応性に優れるという観点から、重合性官能基含有化合物は、塩化アクリロイル、塩化メタクリロイル、臭化アクリロイル、臭化メタクリロイル等の酸ハライド、及び、アクリル酸無水物、メタクリル酸無水物等の酸無水物であることが好ましく、中でも、塩化アクリロイル、塩化メタクリロイル及びメタクリル酸無水物が特に好ましい。 In particular, from the viewpoint of excellent reactivity with a hydroxyl group of a cyclic molecule, the polymerizable functional group-containing compound includes acid halides such as acryloyl chloride, methacryloyl chloride, acryloyl bromide, methacryloyl bromide, acrylic anhydride, methacrylic acid, and the like. An acid anhydride such as an acid anhydride is preferable, and among them, acryloyl chloride, methacryloyl chloride and methacrylic anhydride are particularly preferable.
 有機基含有化合物における、有機基は、上述した<重合性官能基で修飾されたポリロタキサン>の項で説明した有機基と同様である。従って、有機基は、置換基を有していてもよい炭素数1以上の炭化水素基及びC=O結合を含む基からなる群より選ばれる少なくとも1種を含む。 The organic group in the organic group-containing compound is the same as the organic group described in the section <Polyrotaxane modified with a polymerizable functional group> described above. Accordingly, the organic group includes at least one selected from the group consisting of a hydrocarbon group having 1 or more carbon atoms which may have a substituent and a group containing a C═O bond.
 有機基含有化合物は、上記有機基を有する限りは特に限定されない。有機基含有化合物としては、例えば、上記有機基を有する酸無水物、上記有機基を有するハロゲン化アルキル及び上記有機基を有するハロゲン化シリルであることが好ましく、中でも、無水酢酸、プロピオン酸無水物、酪酸無水物、吉草酸無水物、ヘキサン酸無水物、ヨウ化メチル、ヨウ化エチル、塩化トリメチルシリル等が好ましい。 The organic group-containing compound is not particularly limited as long as it has the organic group. The organic group-containing compound is preferably, for example, an acid anhydride having the above organic group, an alkyl halide having the above organic group, and a silyl halide having the above organic group, and among them, acetic anhydride, propionic anhydride, and the like. Butyl anhydride, valeric anhydride, hexanoic anhydride, methyl iodide, ethyl iodide, trimethylsilyl chloride and the like are preferable.
 工程Aの場合、前記原料と、前記重合性官能基含有化合物及び前記有機基含有化合物との混合物を混合させて反応させる。この反応では、ポリロタキサンの環状分子と、重合性官能基含有化合物及び有機基含有化合物とが反応する。これにより、ポリロタキサンの環状分子に重合性官能基及び有機基が導入される。 In the case of step A, a mixture of the raw material, the polymerizable functional group-containing compound and the organic group-containing compound is mixed and reacted. In this reaction, the polyrotaxane cyclic molecule reacts with the polymerizable functional group-containing compound and the organic group-containing compound. Thereby, a polymerizable functional group and an organic group are introduced into the cyclic molecule of the polyrotaxane.
 この反応は、例えば、ヨウ素(I)の存在下で行うことができ、これにより、環状分子と、重合性官能基含有化合物及び有機基含有化合物との反応が促進する。特に、環状分子にアセチル基、(メタ)アクリロイル基等を導入する場合に効果的である。なお、「(メタ)アクリ」とは「アクリもしくはメタクリ」を意味する。上記反応では、ヨウ素に代えて、ピリジン、ジメチルアミノピリジン等を使用することもできる。また、これらを組み合わせて使用することもできる。 This reaction can be performed, for example, in the presence of iodine (I 2 ), whereby the reaction between the cyclic molecule, the polymerizable functional group-containing compound, and the organic group-containing compound is promoted. This is particularly effective when introducing an acetyl group, a (meth) acryloyl group, or the like into a cyclic molecule. In addition, “(meth) acryl” means “acryl or metacli”. In the above reaction, pyridine, dimethylaminopyridine or the like can be used instead of iodine. Moreover, these can also be used in combination.
 工程Aの反応は必要に応じて溶媒中で行ってもよい。溶媒は特に限定されず、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシドが例示される。 The reaction in step A may be performed in a solvent as necessary. The solvent is not particularly limited, and examples thereof include dimethylformamide, dimethylacetamide, and dimethyl sulfoxide.
 工程Aの反応条件は特に限定されない。例えば、反応温度は0~80℃とすることができ、反応時間は、1~48時間とすることができる。 The reaction conditions for step A are not particularly limited. For example, the reaction temperature can be 0 to 80 ° C., and the reaction time can be 1 to 48 hours.
 工程Aの反応において、ポリロタキサン、重合性官能基含有化合物、有機基含有化合物の使用量は、最終生成物である重合性ポリロタキサンの種類に応じて適宜決定することができる。例えば、ポリロタキサン100重量部あたり、重合性官能基含有化合物の使用量は10~600重量部、有機基含有化合物の使用量は200~1200重量部とすることができる。 In the reaction of Step A, the amounts of the polyrotaxane, the polymerizable functional group-containing compound, and the organic group-containing compound can be appropriately determined according to the type of the polymerizable polyrotaxane that is the final product. For example, the amount of the polymerizable functional group-containing compound used may be 10 to 600 parts by weight and the amount of the organic group-containing compound used may be 200 to 1200 parts by weight per 100 parts by weight of the polyrotaxane.
 また、工程Aの反応でヨウ素を使用する場合、ヨウ素の使用量は、いわゆる触媒量でよく、例えば、ポリロタキサン100重量部あたり、1~5重量部とすることができる。 In addition, when iodine is used in the reaction of Step A, the amount of iodine used may be a so-called catalytic amount, for example, 1 to 5 parts by weight per 100 parts by weight of the polyrotaxane.
 工程Aの反応後は必要に応じて精製、乾燥等をしてもよい。精製や乾燥の方法は限定されず、例えば、公知の方法を選択することができる。 After the reaction in step A, purification, drying, etc. may be performed as necessary. The method of refinement | purification and drying is not limited, For example, a well-known method can be selected.
 工程Aの反応では、原料に含まれるポリロタキサンに対して、重合性官能基含有化合物及び有機基含有化合物を同時に反応させるものであり、一段階の反応で目的の重合性ポリロタキサンを得ることができる。 In the reaction of Step A, the polymerizable functional group-containing compound and the organic group-containing compound are simultaneously reacted with the polyrotaxane contained in the raw material, and the target polymerizable polyrotaxane can be obtained by a one-step reaction.
 これに対し、工程B及び工程Cでは、一段階の反応ではなく、二段階の反応で目的の重合性ポリロタキサンを得る。具体的に工程B及び工程Cでは、重合性官能基含有化合物及び有機基含有化合物のいずれか一方だけをポリロタキサンと反応させ、この反応で得られた反応物と、他方の化合物(重合性官能基含有化合物又は有機基含有化合物)とを反応させる。工程Bでは、重合性官能基含有化合物をまずポリロタキサンと反応させて反応物を得て、次いで、この反応物と有機基含有化合物とを反応させる。工程Cでは、有機基含有化合物をまずポリロタキサンと反応させて反応物を得て、次いで、この反応物と、重合性官能基含有化合物とを反応させる。原料に含まれるポリロタキサンの種類、重合性官能基含有化合物の種類、有機基含有化合物の種類、反応速度等に応じて工程A~Cのいずれかを適宜選択することができる。 On the other hand, in Step B and Step C, the target polymerizable polyrotaxane is obtained by a two-step reaction, not a one-step reaction. Specifically, in Step B and Step C, only one of the polymerizable functional group-containing compound and the organic group-containing compound is reacted with the polyrotaxane, and the reaction product obtained by this reaction and the other compound (polymerizable functional group). Containing compound or organic group-containing compound). In Step B, the polymerizable functional group-containing compound is first reacted with polyrotaxane to obtain a reaction product, and then the reaction product is reacted with the organic group-containing compound. In Step C, the organic group-containing compound is first reacted with polyrotaxane to obtain a reaction product, and then this reaction product is reacted with the polymerizable functional group-containing compound. Any of Steps A to C can be appropriately selected according to the type of polyrotaxane contained in the raw material, the type of polymerizable functional group-containing compound, the type of organic group-containing compound, the reaction rate, and the like.
 例えば、重合性官能基含有化合物が塩化メタクリロイル、メタクリル酸無水物等のように、環状分子との反応が比較的緩やかに起こる化合物を使用する場合には、工程B又は工程Cを採用することが好ましい。 For example, when the polymerizable functional group-containing compound is a compound in which a reaction with a cyclic molecule occurs relatively slowly, such as methacryloyl chloride or methacrylic anhydride, the step B or the step C may be adopted. preferable.
 なお、工程B,Cにおける反応条件は、重合性官能基含有化合物及び有機基含有化合物を同時に反応させる点を除いては、工程Aにおける反応条件と同様とすることができる。 The reaction conditions in Steps B and C can be the same as those in Step A except that the polymerizable functional group-containing compound and the organic group-containing compound are reacted at the same time.
 本発明の製造方法によれば、簡便な方法でポリロタキサンに対して重合性官能基及び有機基を修飾することができる。特に、工程Aを具備する製造方法では、1段階の反応にて、重合性官能基及び有機基で修飾されたポリロタキサンを得ることができ、全体の製造工程を大幅に短縮することができる。 According to the production method of the present invention, the polymerizable functional group and the organic group can be modified with respect to the polyrotaxane by a simple method. In particular, in the production method including the step A, a polyrotaxane modified with a polymerizable functional group and an organic group can be obtained by a single-step reaction, and the entire production process can be greatly shortened.
 <高分子材料及びその製造方法>
 本実施形態に係る高分子材料は、上記重合性官能基で修飾されたポリロタキサン(重合性ポリロタキサン)を繰り返し単位として有する。言い換えれば、本実施形態に係る高分子材料は、重合性ポリロタキサンに由来する繰り返し単位を構成成分として含有する構造を有する重合体である。特に、高分子材料は、重合性ポリロタキサンによって架橋された構造を有する。
<Polymer material and production method thereof>
The polymer material according to the present embodiment has a polyrotaxane modified with the polymerizable functional group (polymerizable polyrotaxane) as a repeating unit. In other words, the polymer material according to the present embodiment is a polymer having a structure containing a repeating unit derived from a polymerizable polyrotaxane as a constituent component. In particular, the polymer material has a structure crosslinked with a polymerizable polyrotaxane.
 上記高分子材料は、ポリロタキサン成分の他、各種の樹脂材料(すなわち、重合性ポリロタキサン由来以外の繰り返し単位)を含むことができる。 The polymer material can contain various resin materials (that is, repeating units other than those derived from the polymerizable polyrotaxane) in addition to the polyrotaxane component.
 樹脂としては、例えば、アクリル樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、シリコン樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアルキレンテレフタレート、ポリカーボネート、ポリアミド、ポリイミドが挙げられる。樹脂は、エチレン性不飽和基を有する種々の重合性単量体を1種もしくは2種以上重合させて得られる重合体であってもよい。 Examples of the resin include acrylic resin, polyethylene, polypropylene, polystyrene, silicon resin, polyvinyl chloride, polyvinylidene chloride, polyalkylene terephthalate, polycarbonate, polyamide, and polyimide. The resin may be a polymer obtained by polymerizing one or more of various polymerizable monomers having an ethylenically unsaturated group.
 樹脂は、1種の繰り返し構成単位で構成されるホモポリマーであってもよいし、2種以上の繰り返し構成単位で構成されるコポリマーであってもよい。 The resin may be a homopolymer composed of one type of repeating structural unit or a copolymer composed of two or more types of repeating structural units.
 特に、樹脂は、エチレン性不飽和基を有する重合性単量体の重合体であることが好ましい。エチレン性不飽和基を重合性単量体の具体例としては、ビニル化合物として、(メタ)アクリル化合物、スチレン、α-メチルスチレン、クロルスチレン、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、1,4-ブタンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、ジエチレングリコールジビニルエーテル、酢酸ビニル、塩化ビニル等が挙げられる。 In particular, the resin is preferably a polymer of a polymerizable monomer having an ethylenically unsaturated group. Specific examples of the polymerizable monomer having an ethylenically unsaturated group include vinyl compounds such as (meth) acrylic compounds, styrene, α-methylstyrene, chlorostyrene, methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, 1,4- Examples include butanediol divinyl ether, cyclohexane dimethanol divinyl ether, diethylene glycol divinyl ether, vinyl acetate, and vinyl chloride.
 (メタ)アクリル化合物としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート類;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート類;(メタ)アクリロニトリル等のニトリル含有単量体;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート等のハロゲン含有(メタ)アクリレート類;(メタ)アクリルアミド、窒素原子が置換された(メタ)アクリルアミド等の(メタ)アクリルアミド類が挙げられる。 (Meth) acrylic compounds include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) Alkyl (meth) acrylates such as acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate Oxygen-containing (meth) acrylates such as glycidyl (meth) acrylate; nitrile-containing monomers such as (meth) acrylonitrile; trifluoromethyl (meth) acrylate, pentafur Roechiru (meth) halogen-containing acrylates such as (meth) acrylate; (meth) acrylamide, a nitrogen atom is substituted (meth) acrylamide, (meth) acrylamide.
 なお、上記重合性単量体には、本発明の効果が阻害されない程度であれば、重合性ポリロタキサン以外の架橋剤、すなわち、エチレン性不飽和基を二以上有する重合性単量体が含まれていてもよい。 The polymerizable monomer includes a crosslinking agent other than the polymerizable polyrotaxane, that is, a polymerizable monomer having two or more ethylenically unsaturated groups, as long as the effect of the present invention is not inhibited. It may be.
 上記高分子材料は、上記各種重合体がポリロタキサンによって架橋された構造を有する。そのため、上記高分子材料は、優れた伸び及び膨潤性を有する。 The polymer material has a structure in which the various polymers are crosslinked with polyrotaxane. Therefore, the polymer material has excellent elongation and swelling properties.
 上記高分子材料において、重合性ポリロタキサン由来の繰り返し単位は、高分子材料を構成する全繰り返し単位数に対して、0.01~20モル%とすることができ、0.01~10モル%が好ましく、0.01~5モル%がより好ましく、0.02~1モル%が特に好ましい。特に、重合性ポリロタキサンの重合体は、高分子材料に対する親和性が大きいので、従来の化学架橋剤やポリロタキサン系架橋剤由来の繰り返し単位よりも含有量を多くしても、ポリロタキサン成分が均一に分布しやすい。そのため、重合性ポリロタキサン由来の繰り返し単位の量を従来よりも多くすることも可能であり、これによって、高分子材料の伸び特性及び膨潤性をより一層向上させることができる。 In the polymer material, the repeating unit derived from the polymerizable polyrotaxane can be 0.01 to 20 mol% with respect to the total number of repeating units constituting the polymer material, and 0.01 to 10 mol%. Preferably, 0.01 to 5 mol% is more preferable, and 0.02 to 1 mol% is particularly preferable. In particular, since the polymer of the polymerizable polyrotaxane has a high affinity for the polymer material, the polyrotaxane component is evenly distributed even if the content is larger than the repeating unit derived from the conventional chemical crosslinking agent or polyrotaxane-based crosslinking agent. It's easy to do. Therefore, it is possible to increase the amount of the repeating unit derived from the polymerizable polyrotaxane as compared with the conventional one, and thereby, the elongation property and swelling property of the polymer material can be further improved.
 上記高分子材料は、例えば、重合性官能基で修飾されたポリロタキサン(重合性ポリロタキサン)と、重合性単量体とを反応させる工程を具備する方法によって製造することができる。ここで使用する重合性単量体は、本発明の重合性ポリロタキサン以外であって、上述のエチレン性不飽和基を有する重合性単量体と同様である。 The polymer material can be produced, for example, by a method comprising a step of reacting a polyrotaxane modified with a polymerizable functional group (polymerizable polyrotaxane) and a polymerizable monomer. The polymerizable monomer used here is other than the polymerizable polyrotaxane of the present invention, and is the same as the polymerizable monomer having an ethylenically unsaturated group described above.
 上記反応における重合性ポリロタキサン及び重合性単量体の使用量は限定されない。例えば、重合性ポリロタキサンの使用量は、重合性単量体の全重量に対して、0.5~15重量%とすることができる。 The amount of polymerizable polyrotaxane and polymerizable monomer used in the above reaction is not limited. For example, the amount of the polymerizable polyrotaxane used can be 0.5 to 15% by weight with respect to the total weight of the polymerizable monomer.
 重合性ポリロタキサンと、重合性単量体との反応は、重合性単量体がエチレン性不飽和基を有する場合は、ラジカル重合反応が好適である。ラジカル重合反応の条件は特に限定されず、公知の方法と同様の条件とすることができる。 The reaction between the polymerizable polyrotaxane and the polymerizable monomer is preferably a radical polymerization reaction when the polymerizable monomer has an ethylenically unsaturated group. The conditions for the radical polymerization reaction are not particularly limited, and can be the same conditions as known methods.
 上記ラジカル重合反応は、溶媒中で行う溶液重合、懸濁重合、分散重合、乳化重合、沈殿重合等で行ってもよいし、あるいは、バルク重合(塊状重合)であってもよい。 The radical polymerization reaction may be performed by solution polymerization, suspension polymerization, dispersion polymerization, emulsion polymerization, precipitation polymerization, or the like performed in a solvent, or may be bulk polymerization (bulk polymerization).
 上記ラジカル重合反応では、重合開始剤を使用することができる。重合開始剤としては、例えば、過硫酸アンモニウム(以下、APSと称することもある)、アゾビスイソブチロニトリル(以下、AIBNと称することもある)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロライド(以下、VA-044と称することもある)、1,1’-アゾビス(シクロヘキサンカルボニトリル)、ジ-tert-ブチルペルオキシド、tert-ブチルヒドロペルオキシド、過酸化ベンゾイル、光重合開始剤(イルガキュア(登録商標)シリーズ等)等が挙げられる。 In the radical polymerization reaction, a polymerization initiator can be used. Examples of the polymerization initiator include ammonium persulfate (hereinafter also referred to as APS), azobisisobutyronitrile (hereinafter also referred to as AIBN), 2,2′-azobis [2- (2- Imidazolin-2-yl) propane] dihydrochloride (hereinafter sometimes referred to as VA-044), 1,1′-azobis (cyclohexanecarbonitrile), di-tert-butyl peroxide, tert-butyl hydroperoxide, peroxide Examples thereof include benzoyl and a photopolymerization initiator (Irgacure (registered trademark) series, etc.).
 重合開始剤の使用量は、重合性単量体量の総量に対し、0.1~5モル%とすることが好ましい。 The amount of the polymerization initiator used is preferably 0.1 to 5 mol% with respect to the total amount of polymerizable monomers.
 上記ラジカル重合反応では、重合促進剤を使用することができる。重合促進剤としては、例えば、[2-(ジメチルアミノ)エチル]ジメチルアミン(以下、TEMEDと称することもある)等が挙げられる。 In the radical polymerization reaction, a polymerization accelerator can be used. Examples of the polymerization accelerator include [2- (dimethylamino) ethyl] dimethylamine (hereinafter sometimes referred to as TEMED).
 重合反応は、使用する重合性単量体の種類や重合開始剤の半減期温度によって異なるが、例えば0~100℃、好ましくは、20~25℃である。重合反応の時間は、1~24時間であり、好ましくは、12~24時間である。 The polymerization reaction varies depending on the type of polymerizable monomer used and the half-life temperature of the polymerization initiator, but is, for example, 0 to 100 ° C., preferably 20 to 25 ° C. The time for the polymerization reaction is 1 to 24 hours, and preferably 12 to 24 hours.
 重合反応は、紫外線等を照射する光重合で行ってもよい。この光重合における重合条件、例えば、紫外線の種類や照射時間等は特に限定されず、公知の光重合と同様の条件で行うことができる。 The polymerization reaction may be performed by photopolymerization that irradiates ultraviolet rays or the like. The polymerization conditions in this photopolymerization, such as the type of ultraviolet rays and the irradiation time, are not particularly limited, and can be carried out under the same conditions as known photopolymerization.
 高分子材料は、例えば、フィルム状、シート状、板状、粒子状、ペレット状等の種々の形状となり得る。また、高分子材料は溶媒を含んだ、いわゆる高分子ゲルであってもよい。溶媒は、水等の水系溶媒の他、有機系であってもよい。すなわち、高分子材料は、ハイドロゲル及びオルガノゲルの両方の形態をとり得る。高分子材料には、本発明の効果が阻害されない程度であれば、光安定化剤、着色剤、劣化防止剤、光拡散剤、帯電防止剤等の添加剤を含んでいてもよい。 The polymer material can have various shapes such as a film shape, a sheet shape, a plate shape, a particle shape, and a pellet shape. The polymer material may be a so-called polymer gel containing a solvent. The solvent may be an organic system other than an aqueous solvent such as water. That is, the polymeric material can take both hydrogel and organogel forms. The polymer material may contain additives such as a light stabilizer, a colorant, a deterioration preventing agent, a light diffusing agent, and an antistatic agent as long as the effects of the present invention are not hindered.
 本実施形態の高分子材料は、優れた伸び特性を有することから、例えば、各種電子部材、工業部材、食品容器等の各種分野に応用することができる。 Since the polymer material of the present embodiment has excellent elongation characteristics, it can be applied to various fields such as various electronic members, industrial members, and food containers.
 以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例の態様に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the embodiments.
 (合成例1)
 両末端がアダマンタン基(封鎖基)で封鎖された重量平均分子量20000のポリエチレングリコール(直鎖状分子)と、2-ヒドロキシプロピル基で修飾されたα-シクロデキストリン(環状分子)とを有して形成される、一般に入手可能なポリロタキサン(HPPRx)を原料として準備した。
(Synthesis Example 1)
It has polyethylene glycol (linear molecule) having a weight average molecular weight of 20,000 blocked at both ends with an adamantane group (blocking group), and α-cyclodextrin (cyclic molecule) modified with a 2-hydroxypropyl group. A commonly available polyrotaxane (HPPRx) to be formed was prepared as a raw material.
 下記に模式的に表わした合成スキーム1に従って、重合性ポリロタキサンの合成を行った。上記原料であるポリロタキサン500mg、重合性官能基含有化合物として塩化アクリロイル1550mg、有機基含有化合物として無水酢酸(AcO)3000mg及びヨウ素14mgを混合して、室温下で24時間反応させた。この反応により、重合性ポリロタキサンが得られた。 A polymerizable polyrotaxane was synthesized according to Synthesis Scheme 1 schematically shown below. The raw material polyrotaxane 500 mg, polymerizable functional group-containing compound 1550 mg acryloyl chloride, organic group-containing compound 3000 mg acetic anhydride (Ac 2 O) and iodine 14 mg were mixed and reacted at room temperature for 24 hours. By this reaction, a polymerizable polyrotaxane was obtained.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 得られた重合性ポリロタキサンは、H-NMR測定から、環状分子の貫通率が33%、アクリロイル基は1分子あたり61個、アセチル化率95%以上、分子量の計算値は19万であることがわかった。重合性ポリロタキサン1分子におけるアセチル基の導入数は、環状分子の水酸基が18個、重合性ポリロタキサン1分子における環状分子が75個、アセチル化率が95%として計算した結果、1280個であった。 The obtained polymerizable polyrotaxane has a cyclic molecule penetration rate of 33%, 61 acryloyl groups per molecule, an acetylation rate of 95% or more, and a calculated molecular weight of 190,000 according to 1 H-NMR measurement. I understood. The number of introduced acetyl groups in one polymerizable polyrotaxane molecule was 1280 as a result of calculation assuming that 18 hydroxyl groups in the cyclic molecule, 75 cyclic molecules in one polymerizable polyrotaxane molecule, and 95% acetylation rate were calculated.
 (合成例2)
 合成例1と同様のポリロタキサン(HPPRx)を原料として準備した。
(Synthesis Example 2)
The same polyrotaxane (HPPRx) as in Synthesis Example 1 was prepared as a raw material.
 下記に模式的に表わした合成スキーム2に従って、重合性ポリロタキサンの合成を行った。上記原料であるポリロタキサン1gをジメチルアセトアミド(DMAc)20mLに溶解したのちに、重合性官能基含有化合物としてメタクリル酸無水物1g、及び触媒としてピリジン(Py)540mgを加え、室温下、6時間反応させた。続けて有機基含有化合物として無水酢酸(AcO)10g、及びピリジン(Py)9.8gを混合して室温下、34時間反応させた。この反応により、重合性ポリロタキサンが得られた。 A polymerizable polyrotaxane was synthesized according to Synthesis Scheme 2 schematically shown below. After dissolving 1 g of polyrotaxane as a raw material in 20 mL of dimethylacetamide (DMAc), 1 g of methacrylic anhydride as a polymerizable functional group-containing compound and 540 mg of pyridine (Py) as a catalyst are added and reacted at room temperature for 6 hours. It was. Subsequently, 10 g of acetic anhydride (Ac 2 O) and 9.8 g of pyridine (Py) were mixed as the organic group-containing compound and reacted at room temperature for 34 hours. By this reaction, a polymerizable polyrotaxane was obtained.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 得られた重合性ポリロタキサンは、H-NMR測定から、環状分子の貫通率が33%、メタクリロイル基は1分子あたり21個、アセチル化率は68%以上、分子量の計算値は19万であった。重合性ポリロタキサン1分子におけるアセチル基の導入数は、環状分子の水酸基が18個、重合性ポリロタキサン1分子における環状分子が75個、アセチル化率が68%として計算した結果、918個であった。 According to 1 H-NMR measurement, the obtained polymerizable polyrotaxane had a cyclic molecule penetration rate of 33%, 21 methacryloyl groups per molecule, an acetylation rate of 68% or more, and a calculated molecular weight of 190,000. It was. The number of introduced acetyl groups in one polymerizable polyrotaxane molecule was 918 as a result of calculation assuming that 18 hydroxyl groups in the cyclic molecule, 75 cyclic molecules in one polymerizable polyrotaxane molecule and 68% acetylation rate were calculated.
 (実施例1)
 アクリル酸メチル1900mgに、光重合開始剤としてIRUGACURE184をアクリル酸メチルの総量に対して0.5モル%となるように混合して溶液を調製した。この溶液に、合成例1で得られた重合性ポリロタキサンを、アクリル酸メチルに対して5重量%となるように添加して溶解させ、モールド中に注いだ。その後、このモールドに365nmの紫外光を1時間照射し、重合反応を進行させることで高分子材料を得た。この高分子材料を、PMA-PRxOAC-Acryl(61)とした。括弧内の数値は、重合性ポリロタキサン1分子あたりのアクリロイル基の導入数(61個)を意味する。
(Example 1)
A solution was prepared by mixing 1900 mg of methyl acrylate with IRUGACURE 184 as a photopolymerization initiator so as to be 0.5 mol% based on the total amount of methyl acrylate. To this solution, the polymerizable polyrotaxane obtained in Synthesis Example 1 was added and dissolved so as to be 5% by weight with respect to methyl acrylate, and poured into a mold. Then, the polymer material was obtained by irradiating this mold with ultraviolet light of 365 nm for 1 hour to advance the polymerization reaction. This polymer material was PMA-PRxOAC-Acryl (61). The numerical value in parentheses means the number of acryloyl groups introduced per molecule of polymerizable polyrotaxane (61).
 得られた高分子材料は、アクリル酸メチル単位が99.84モル%、ポリロタキサン単位が0.14モル%と算出された。この算出は、原料のポリロタキサンの分子量、重合性ポリロタキサン1分子あたりのビニル基の個数、重合性ポリロタキサンの使用量及びアクリル酸メチルの使用量に基づいて行った。 The obtained polymer material was calculated as 99.84 mol% methyl acrylate unit and 0.14 mol% polyrotaxane unit. This calculation was performed based on the molecular weight of the raw material polyrotaxane, the number of vinyl groups per molecule of polymerizable polyrotaxane, the amount of polymerizable polyrotaxane used, and the amount of methyl acrylate used.
 (実施例2)
 アクリル酸メチルの代わりにアクリル酸n-ブチルに変更したこと以外は実施例1と同様の方法で高分子材料を得た。この高分子材料を、PBA-PRxOAC-Acryl(61)と表記する。括弧内の数値は、重合性ポリロタキサン1分子あたりのアクリロイル基の導入数(61個)である。
(Example 2)
A polymer material was obtained in the same manner as in Example 1 except that n-butyl acrylate was used instead of methyl acrylate. This polymer material is represented as PBA-PRxOAC-Acryl (61). The numerical value in parentheses is the number of acryloyl groups introduced per molecule of polymerizable polyrotaxane (61).
 得られた高分子材料は、アクリル酸メチル単位が99.8モル%、ポリロタキサン単位が0.20モル%と算出された。この算出は、実施例1と同様の方法で行った。 The obtained polymer material was calculated as 99.8 mol% methyl acrylate units and 0.20 mol% polyrotaxane units. This calculation was performed in the same manner as in Example 1.
 (比較例1)
 アクリル酸メチル1900mg、ビスアクリロイルオキシブタン(BDA)6.3mg、及び光重合開始剤としてIRUGACURE184をアクリル酸メチルの総量に対して0.5モル%となるように混合して溶液を調製した。この溶液をモールド中に注ぎ、その後、このモールドに365nmの紫外光を1時間照射し、重合反応を進行させることで高分子材料(PMA-BDA)を得た。
(Comparative Example 1)
A solution was prepared by mixing 1900 mg of methyl acrylate, 6.3 mg of bisacryloyloxybutane (BDA), and IRUGACURE 184 as a photopolymerization initiator so as to be 0.5 mol% based on the total amount of methyl acrylate. This solution was poured into a mold, and then the mold was irradiated with ultraviolet light of 365 nm for 1 hour to advance the polymerization reaction, thereby obtaining a polymer material (PMA-BDA).
 (比較例2)
 アクリル酸メチルの代わりにアクリル酸n-ブチルに変更したこと以外は比較例1と同様の方法で高分子材料(PBA-BDA)を得た。
(Comparative Example 2)
A polymer material (PBA-BDA) was obtained in the same manner as in Comparative Example 1 except that n-butyl acrylate was used instead of methyl acrylate.
 (比較例3)
 無水酢酸を使用しなかったこと以外は合成例1と同様に重合性ポリロタキサンを合成した。この重合性ポリロタキサンは、アクリル酸メチルに溶解しなかったので、目的の高分子材料を得ることができなかった。
(Comparative Example 3)
A polymerizable polyrotaxane was synthesized in the same manner as in Synthesis Example 1 except that acetic anhydride was not used. Since this polymerizable polyrotaxane was not dissolved in methyl acrylate, the intended polymer material could not be obtained.
 <評価方法>
 (応力-歪曲線測定)
 各実施例及び比較例で得られた高分子材料について「ストローク-試験力曲線」試験(島津製作所社製「AUTOGRAPH」(型番:AGX-plus)を行い、高分子材料の破断点を観測した。また、この破断点を終点として、終点までの最大応力を高分子材料の破断応力とし、このときの歪を判断ひずみとした。この引張り試験は、高分子材料の下端を固定し上端を引張り速度1mm/minで稼動させるアップ方式で実施した。
<Evaluation method>
(Stress-strain curve measurement)
A “stroke-test force curve” test (“AUTOGRAPH” (model number: AGX-plus) manufactured by Shimadzu Corporation) was performed on the polymer materials obtained in each of the examples and comparative examples, and the breaking point of the polymer material was observed. In addition, with this breaking point as the end point, the maximum stress up to the end point was taken as the breaking stress of the polymer material, and the strain at this time was taken as the judgment strain. It was carried out by an up system that operates at 1 mm / min.
 (膨潤度試験)
 各実施例及び比較例で得られた高分子材料70~100mgの試験片を、ジメチルホルムアミド20mL中に24時間浸漬して膨潤試験を行った。その後、試験片を取り出して、その重量Wfを計測し、下記式により膨潤度を算出した。
[(Wf-Wi)×100]/Wi  
ここで、Wiは初期重量であり、Wfは膨潤試験後の試験片の重量である。
(Swelling degree test)
A test piece of 70 to 100 mg of the polymer material obtained in each Example and Comparative Example was immersed in 20 mL of dimethylformamide for 24 hours to perform a swelling test. Thereafter, the test piece was taken out, its weight Wf was measured, and the degree of swelling was calculated by the following formula.
[(Wf−Wi) × 100] / Wi
Here, Wi is the initial weight, and Wf is the weight of the test piece after the swelling test.
 図2は、実施例1及び比較例1の応力-歪曲線の結果まとめであり、(a)に破断歪、(b)に破断応力の結果を示している。 FIG. 2 is a summary of the results of stress-strain curves of Example 1 and Comparative Example 1, wherein (a) shows the breaking strain and (b) shows the result of the breaking stress.
 図3は、実施例2及び比較例2の応力-歪曲線の結果まとめであり、(a)に破断歪、(b)に破断応力の結果を示している。 FIG. 3 is a summary of the results of stress-strain curves of Example 2 and Comparative Example 2, wherein (a) shows the breaking strain and (b) shows the breaking stress result.
 図2及び図3より、実施例で得られた高分子材料の方が、比較例で得られた高分子材料よりも優れた破断歪を有していることがわかる。この結果は、重合性ポリロタキサンで架橋された高分子材料が優れた伸び特性を有することを支持するものである。 2 and 3, it can be seen that the polymer material obtained in the example has a higher fracture strain than the polymer material obtained in the comparative example. This result supports that the polymer material cross-linked with the polymerizable polyrotaxane has excellent elongation characteristics.
 図4は、各実施例及び比較例で得られた高分子材料の膨潤度試験の結果である。この結果から、重合性ポリロタキサンで架橋された高分子材料が優れた膨潤度を有していることがわかった。 FIG. 4 shows the results of the swelling test of the polymer materials obtained in each of the examples and comparative examples. From this result, it was found that the polymer material crosslinked with the polymerizable polyrotaxane has an excellent degree of swelling.
 また、実施例1及び2で得られた高分子材料の外観を(厚み約1mm)目視で観察したところ、いずれも高い透明性を有していた。この結果と、比較例3との対比より、重合性ポリロタキサンは重合性単量体との親和性が高く、透明性の高い高分子材料を製造するための原料として適していることがわかる。 Further, when the appearance of the polymer material obtained in Examples 1 and 2 was visually observed (thickness: about 1 mm), both had high transparency. From the comparison between this result and Comparative Example 3, it can be seen that the polymerizable polyrotaxane has a high affinity with the polymerizable monomer and is suitable as a raw material for producing a highly transparent polymer material.
  A:重合性ポリロタキサン
  1:直鎖状分子
  2:環状分子
  3:封鎖基
A: Polymerizable polyrotaxane 1: Linear molecule 2: Cyclic molecule 3: Blocking group

Claims (14)

  1.  重合性官能基で修飾されたポリロタキサンであって、
     直鎖状分子が環状分子の開口部を貫通し、かつ、前記直鎖状分子の両末端に前記環状分子の脱落を防止するための封鎖分子が結合した構造を有し、
     前記環状分子は、重合性官能基と、該重合性官能基以外の有機基とを有し、
     前記有機基は、置換基を有していてもよい炭素数1以上の炭化水素基及びC=O結合を含む基からなる群より選ばれる少なくとも1種を含む、重合性官能基で修飾されたポリロタキサン。
    A polyrotaxane modified with a polymerizable functional group,
    The linear molecule penetrates through the opening of the cyclic molecule, and has a structure in which a blocking molecule for preventing the cyclic molecule from dropping off is bonded to both ends of the linear molecule;
    The cyclic molecule has a polymerizable functional group and an organic group other than the polymerizable functional group,
    The organic group is modified with a polymerizable functional group including at least one selected from the group consisting of a hydrocarbon group having 1 or more carbon atoms which may have a substituent and a group containing a C═O bond. Polyrotaxane.
  2.  前記重合性官能基はラジカル重合性を有する官能基である、請求項1に記載の重合性官能基で修飾されたポリロタキサン。 The polyrotaxane modified with the polymerizable functional group according to claim 1, wherein the polymerizable functional group is a functional group having radical polymerizability.
  3.  前記ラジカル重合性を有する官能基は炭素-炭素二重結合を含む基である、請求項2に記載の重合性官能基で修飾されたポリロタキサン。 3. The polyrotaxane modified with a polymerizable functional group according to claim 2, wherein the radical polymerizable functional group is a group containing a carbon-carbon double bond.
  4.  前記炭化水素基は炭素数が1~12である、請求項1~3のいずれか1項に記載の重合性官能基で修飾されたポリロタキサン。 The polyrotaxane modified with a polymerizable functional group according to any one of claims 1 to 3, wherein the hydrocarbon group has 1 to 12 carbon atoms.
  5.  前記C=O結合を含む基は、アシル基である、請求項1~4のいずれか1項に記載の重合性官能基で修飾されたポリロタキサン。 The polyrotaxane modified with a polymerizable functional group according to any one of claims 1 to 4, wherein the group containing a C = O bond is an acyl group.
  6.  前記重合性官能基と前記有機基とを有する環状分子は、前記重合性官能基及び前記有機基で修飾されたシクロデキストリン又はシクロデキストリン誘導体である、請求項1~5のいずれか1項に記載の重合性官能基で修飾されたポリロタキサン。 The cyclic molecule having the polymerizable functional group and the organic group is a cyclodextrin or a cyclodextrin derivative modified with the polymerizable functional group and the organic group. A polyrotaxane modified with a polymerizable functional group.
  7.  ポリロタキサンを含む原料から、重合性官能基で修飾されたポリロタキサンを製造する方法であって、
     前記原料に含まれるポリロタキサンは、直鎖状分子が環状分子の開口部を貫通し、前記直鎖状分子の両末端に前記環状分子の脱落を防止するための封鎖分子が結合した構造を有し、
     前記原料と、前記重合性官能基を有する化合物及び該重合性官能基以外の有機基を有する化合物とを反応させる工程、前記原料と、前記重合性官能基を有する化合物とを反応させて反応物を得た後に、この反応物に前記重合性官能基以外の有機基を有する化合物を反応させる工程、又は、前記原料と、前記重合性官能基以外の有機基を有する化合物とを反応させて反応物を得た後に、この反応物に前記重合性官能基を有する化合物を反応させる工程、
    を具備し、
     前記有機基は、置換基を有していてもよい炭素数1以上の炭化水素基及びC=O結合を含む基からなる群より選ばれる少なくとも1種を含む、重合性官能基で修飾されたポリロタキサンの製造方法。
    A method for producing a polyrotaxane modified with a polymerizable functional group from a raw material containing a polyrotaxane,
    The polyrotaxane contained in the raw material has a structure in which a linear molecule passes through an opening of a cyclic molecule, and a blocking molecule for preventing the cyclic molecule from dropping off is bonded to both ends of the linear molecule. ,
    Reacting the raw material with a compound having a polymerizable functional group and a compound having an organic group other than the polymerizable functional group; reacting the raw material with a compound having a polymerizable functional group; After the reaction product is reacted with a compound having an organic group other than the polymerizable functional group, or by reacting the raw material with a compound having an organic group other than the polymerizable functional group. After obtaining the product, reacting the reaction product with a compound having a polymerizable functional group,
    Comprising
    The organic group is modified with a polymerizable functional group including at least one selected from the group consisting of a hydrocarbon group having 1 or more carbon atoms which may have a substituent and a group containing a C═O bond. A method for producing a polyrotaxane.
  8.  前記重合性官能基を有する化合物は、ラジカル重合性を有する官能基を含む化合物である、請求項7に記載の製造方法。 The production method according to claim 7, wherein the compound having a polymerizable functional group is a compound containing a functional group having radical polymerizability.
  9.  前記ラジカル重合性を有する官能基は炭素-炭素二重結合を含む基である、請求項8に記載の製造方法。 The production method according to claim 8, wherein the radical polymerizable functional group is a group containing a carbon-carbon double bond.
  10.  前記炭化水素基は炭素数が1~12である、請求項7~9のいずれか1項に記載の製造方法。 The method according to any one of claims 7 to 9, wherein the hydrocarbon group has 1 to 12 carbon atoms.
  11.  前記C=O結合を含む基は、アシル基である、請求項7~10のいずれか1項に記載の製造方法。 The production method according to any one of claims 7 to 10, wherein the group containing a C = O bond is an acyl group.
  12.  前記原料に含まれるポリロタキサンが有する環状分子は、シクロデキストリン又はその誘導体である、請求項7~11のいずれか1項に記載の製造方法。 The production method according to any one of claims 7 to 11, wherein the cyclic molecule of the polyrotaxane contained in the raw material is cyclodextrin or a derivative thereof.
  13.  請求項1~6のいずれか1項に記載の重合性官能基で修飾されたポリロタキサンを繰り返し単位として有する、高分子材料。 A polymer material having, as a repeating unit, the polyrotaxane modified with the polymerizable functional group according to any one of claims 1 to 6.
  14.  請求項13に記載の高分子材料を製造する方法であって、
     前記重合性官能基で修飾されたポリロタキサンと、重合性単量体とを反応させる工程を具備する、高分子材料の製造方法。
    A method for producing the polymer material according to claim 13,
    A method for producing a polymer material, comprising a step of reacting a polyrotaxane modified with the polymerizable functional group and a polymerizable monomer.
PCT/JP2017/029997 2016-08-23 2017-08-22 Polymerizable functional group-modified polyrotaxane and method for producing same, and polymeric material and method for producing same WO2018038124A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018535712A JPWO2018038124A1 (en) 2016-08-23 2017-08-22 Polymerizable functional group-modified polyrotaxane and method for producing the same, and polymeric material and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016163040 2016-08-23
JP2016-163040 2016-08-23

Publications (1)

Publication Number Publication Date
WO2018038124A1 true WO2018038124A1 (en) 2018-03-01

Family

ID=61246119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029997 WO2018038124A1 (en) 2016-08-23 2017-08-22 Polymerizable functional group-modified polyrotaxane and method for producing same, and polymeric material and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2018038124A1 (en)
WO (1) WO2018038124A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099607A (en) * 2017-11-29 2019-06-24 横浜ゴム株式会社 High molecule fine particle
WO2020256067A1 (en) * 2019-06-21 2020-12-24 王子ホールディングス株式会社 Adhesive sheet, adhesive sheet with release sheet, and multilayer body
JP2021001277A (en) * 2019-06-21 2021-01-07 王子ホールディングス株式会社 Adhesive sheet, adhesive sheet with release sheet, and laminate
JP2021001275A (en) * 2019-06-21 2021-01-07 王子ホールディングス株式会社 Adhesive sheet, adhesive sheet with release sheet, and laminate
JP2021001276A (en) * 2019-06-21 2021-01-07 王子ホールディングス株式会社 Adhesive sheet, adhesive sheet with release sheet, and laminate
JP2021001274A (en) * 2019-06-21 2021-01-07 王子ホールディングス株式会社 Adhesive sheet, adhesive sheet with release sheet, and laminate
WO2021176809A1 (en) 2020-03-03 2021-09-10 豊田合成株式会社 Polyrotaxane, method for manufacturing same, and crosslinked polyrotaxane

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008310286A (en) * 2007-05-14 2008-12-25 Fujifilm Corp Optical film containing polyrotaxane, antireflection film, method for manufacturing the antireflection film, polarizing plate and image display apparatus using the polarizing plate
JP2009120759A (en) * 2007-11-16 2009-06-04 Fujifilm Corp Polyrotaxane compound, composition containing the same, and manufacturing method of gelatinous material
JP2009204725A (en) * 2008-02-26 2009-09-10 Fujifilm Corp Hard coat film, polarizing plate and image display
JP2011046917A (en) * 2010-02-26 2011-03-10 Advanced Softmaterials Inc Photocrosslinkable polyrotaxane, composition containing the photocrosslinkable polyrotaxane, and crosslinked material derived from the composition, as well as method for manufacturing them
JP2014178670A (en) * 2013-02-18 2014-09-25 Fujifilm Corp Film mirror
JP2015521210A (en) * 2012-05-25 2015-07-27 エルジー・ケム・リミテッド Polyrotaxane compound, photocurable coating composition and coating film
JP2015522662A (en) * 2012-05-25 2015-08-06 エルジー・ケム・リミテッド Hard coating film
JP2015155530A (en) * 2014-01-14 2015-08-27 日東電工株式会社 Adhesive, polarization film, liquid crystal panel, optical film and image display unit
JP2015203037A (en) * 2014-04-11 2015-11-16 アドバンスト・ソフトマテリアルズ株式会社 Rubber composition, crosslinked product formed from rubber composition, and production method of said crosslinked product
JP2016069398A (en) * 2014-09-26 2016-05-09 ユーエムジー・エービーエス株式会社 Polyrotaxane-crosslinked polymer, and water dispersion thereof
WO2016072356A1 (en) * 2014-11-04 2016-05-12 アドバンスト・ソフトマテリアルズ株式会社 Photocurable composition, cured product formed from photocurable composition, and method for manufacturing said cured product
JP2016088878A (en) * 2014-11-04 2016-05-23 国立大学法人 東京医科歯科大学 Dental hardening composition
WO2016171187A1 (en) * 2015-04-21 2016-10-27 住友化学株式会社 Photocurable resin composition, method for manufacturing cured film using same, and laminate containing said cured film
JP2017048288A (en) * 2015-09-01 2017-03-09 Kjケミカルズ株式会社 Active energy ray curable resin composition
JP2017171834A (en) * 2016-03-25 2017-09-28 ユーエムジー・エービーエス株式会社 Method for producing polyrotaxane-crosslinked polymer

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008310286A (en) * 2007-05-14 2008-12-25 Fujifilm Corp Optical film containing polyrotaxane, antireflection film, method for manufacturing the antireflection film, polarizing plate and image display apparatus using the polarizing plate
JP2009120759A (en) * 2007-11-16 2009-06-04 Fujifilm Corp Polyrotaxane compound, composition containing the same, and manufacturing method of gelatinous material
JP2009204725A (en) * 2008-02-26 2009-09-10 Fujifilm Corp Hard coat film, polarizing plate and image display
JP2011046917A (en) * 2010-02-26 2011-03-10 Advanced Softmaterials Inc Photocrosslinkable polyrotaxane, composition containing the photocrosslinkable polyrotaxane, and crosslinked material derived from the composition, as well as method for manufacturing them
JP2015522662A (en) * 2012-05-25 2015-08-06 エルジー・ケム・リミテッド Hard coating film
JP2015521210A (en) * 2012-05-25 2015-07-27 エルジー・ケム・リミテッド Polyrotaxane compound, photocurable coating composition and coating film
JP2014178670A (en) * 2013-02-18 2014-09-25 Fujifilm Corp Film mirror
JP2015155530A (en) * 2014-01-14 2015-08-27 日東電工株式会社 Adhesive, polarization film, liquid crystal panel, optical film and image display unit
JP2015203037A (en) * 2014-04-11 2015-11-16 アドバンスト・ソフトマテリアルズ株式会社 Rubber composition, crosslinked product formed from rubber composition, and production method of said crosslinked product
JP2016069398A (en) * 2014-09-26 2016-05-09 ユーエムジー・エービーエス株式会社 Polyrotaxane-crosslinked polymer, and water dispersion thereof
WO2016072356A1 (en) * 2014-11-04 2016-05-12 アドバンスト・ソフトマテリアルズ株式会社 Photocurable composition, cured product formed from photocurable composition, and method for manufacturing said cured product
JP2016088878A (en) * 2014-11-04 2016-05-23 国立大学法人 東京医科歯科大学 Dental hardening composition
WO2016171187A1 (en) * 2015-04-21 2016-10-27 住友化学株式会社 Photocurable resin composition, method for manufacturing cured film using same, and laminate containing said cured film
JP2017048288A (en) * 2015-09-01 2017-03-09 Kjケミカルズ株式会社 Active energy ray curable resin composition
JP2017171834A (en) * 2016-03-25 2017-09-28 ユーエムジー・エービーエス株式会社 Method for producing polyrotaxane-crosslinked polymer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099607A (en) * 2017-11-29 2019-06-24 横浜ゴム株式会社 High molecule fine particle
JP7100310B2 (en) 2017-11-29 2022-07-13 横浜ゴム株式会社 Fine particles
WO2020256067A1 (en) * 2019-06-21 2020-12-24 王子ホールディングス株式会社 Adhesive sheet, adhesive sheet with release sheet, and multilayer body
JP2021001277A (en) * 2019-06-21 2021-01-07 王子ホールディングス株式会社 Adhesive sheet, adhesive sheet with release sheet, and laminate
JP2021001275A (en) * 2019-06-21 2021-01-07 王子ホールディングス株式会社 Adhesive sheet, adhesive sheet with release sheet, and laminate
JP2021001276A (en) * 2019-06-21 2021-01-07 王子ホールディングス株式会社 Adhesive sheet, adhesive sheet with release sheet, and laminate
JP2021001274A (en) * 2019-06-21 2021-01-07 王子ホールディングス株式会社 Adhesive sheet, adhesive sheet with release sheet, and laminate
WO2021176809A1 (en) 2020-03-03 2021-09-10 豊田合成株式会社 Polyrotaxane, method for manufacturing same, and crosslinked polyrotaxane

Also Published As

Publication number Publication date
JPWO2018038124A1 (en) 2019-06-24

Similar Documents

Publication Publication Date Title
WO2018038124A1 (en) Polymerizable functional group-modified polyrotaxane and method for producing same, and polymeric material and method for producing same
Mota-Morales et al. Free-radical polymerizations of and in deep eutectic solvents: Green synthesis of functional materials
JP7054244B2 (en) Polymer materials, methods for producing them, and polymerizable monomer compositions.
Hilburg et al. A universal route towards thermoplastic lignin composites with improved mechanical properties
JP6841530B2 (en) Polymerization composition, its polymer, and method for producing the polymer
FI95280B (en) Aqueous dispersion of an acrylate polymer and process for their preparation
Jiang et al. Narrow or monodisperse, highly cross-linked, and “living” polymer microspheres by atom transfer radical precipitation polymerization
JP6258228B2 (en) Composition for soft material and soft material
US10954331B2 (en) Method of preparing a polyrotaxane and polyrotaxane
Li et al. One‐pot synthesis of surface‐functionalized molecularly imprinted polymer microspheres by iniferter‐induced “living” radical precipitation polymerization
JP7337377B2 (en) Polymer composite material, polymerizable monomer composition, and method for producing polymer composite material
Jenkins et al. Heterogeneous graft copolymerization of chitosan powder with methyl acrylate using trichloroacetyl− manganese carbonyl co-initiation
Li et al. Controlled radical polymerization of styrene in the presence of a polymerizable nitroxide compound
Jiang et al. Ambient temperature synthesis of narrow or monodisperse, highly cross-linked, and “living” polymer microspheres by atom transfer radical precipitation polymerization
JP2020143220A (en) Polymer material and production method of the same
JP2010215921A (en) Inclusion complex of unsaturated monomer, its polymer, and method for preparing them
Najafi Moghaddam et al. Synthesis of biodegradable thermoplastic copolymers based on starch by atom transfer radical polymerization (ATRP): Monolayer chain growth on starch
Tai et al. Thermoresponsive hyperbranched polymers via In Situ RAFT copolymerization of peg‐based monomethacrylate and dimethacrylate monomers
Jiao et al. Efficient one-pot synthesis of uniform, surface-functionalized, and “living” polymer microspheres by reverse atom transfer radical precipitation polymerization
JP5611087B2 (en) Polymer cross-linking precursor, stimulus-responsive polymer cross-linked product, and production method thereof
JP2021175779A (en) Host group-containing polymerizable monomer and method for producing the same, polymer material and precursor for forming polymer material
US20190322814A1 (en) Method of preparing a polyrotaxane and polyrotaxane
JP5723638B2 (en) Crosslinked polymer and method for producing crosslinked polymer
Rabelero et al. Effects of the functionalizing agent, itaconic acid, on the mechanical properties of microemulsion‐made core/shell polymers
Moolsin et al. Natural rubber modification by vinyl monomers grafting: A review

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843602

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018535712

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843602

Country of ref document: EP

Kind code of ref document: A1