WO2016043213A1 - ミネラル機能水及びその製造方法、並びに単細胞生物及び/又はウィルスの防除方法 - Google Patents

ミネラル機能水及びその製造方法、並びに単細胞生物及び/又はウィルスの防除方法 Download PDF

Info

Publication number
WO2016043213A1
WO2016043213A1 PCT/JP2015/076267 JP2015076267W WO2016043213A1 WO 2016043213 A1 WO2016043213 A1 WO 2016043213A1 JP 2015076267 W JP2015076267 W JP 2015076267W WO 2016043213 A1 WO2016043213 A1 WO 2016043213A1
Authority
WO
WIPO (PCT)
Prior art keywords
mineral
water
weight
virus
plant
Prior art date
Application number
PCT/JP2015/076267
Other languages
English (en)
French (fr)
Inventor
孝一 古▲崎▼
Original Assignee
株式会社理研テクノシステム
株式会社Santa Mineral
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社理研テクノシステム, 株式会社Santa Mineral filed Critical 株式会社理研テクノシステム
Priority to JP2016548907A priority Critical patent/JP6664707B2/ja
Priority to CN201580028229.9A priority patent/CN106458662A/zh
Publication of WO2016043213A1 publication Critical patent/WO2016043213A1/ja
Priority to US15/370,192 priority patent/US20170118995A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/10Animals; Substances produced thereby or obtained therefrom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N61/00Biocides, pest repellants or attractants, or plant growth regulators containing substances of unknown or undetermined composition, e.g. substances characterised only by the mode of action
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • A01N65/12Asteraceae or Compositae [Aster or Sunflower family], e.g. daisy, pyrethrum, artichoke, lettuce, sunflower, wormwood or tarragon
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • A01N65/34Rosaceae [Rose family], e.g. strawberry, hawthorn, plum, cherry, peach, apricot or almond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/02Medicinal preparations containing materials or reaction products thereof with undetermined constitution from inanimate materials
    • A61K35/08Mineral waters; Sea water
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/13Coniferophyta (gymnosperms)
    • A61K36/14Cupressaceae (Cypress family), e.g. juniper or cypress
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/20Aceraceae (Maple family)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/28Asteraceae or Compositae (Aster or Sunflower family), e.g. chamomile, feverfew, yarrow or echinacea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/73Rosaceae (Rose family), e.g. strawberry, chokeberry, blackberry, pear or firethorn
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/005Systems or processes based on supernatural or anthroposophic principles, cosmic or terrestrial radiation, geomancy or rhabdomancy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/026Treating water for medical or cosmetic purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a mineral functional water having a beneficial effect such as a control action against single-cell organisms and viruses, a method for producing the same, and an application of the mineral functional water.
  • viruses with high infectivity such as influenza and a wide spread virus
  • viruses with high lethality such as Ebola hemorrhagic fever, etc. have been reported.
  • Foot-and-mouth disease (Foot and Mouth Disease) is a contagious disease that causes great damage to livestock that are prevalent in various parts of the world, and has recently occurred in Japan. Since the transmission of foot-and-mouth disease virus is extremely strong, it is very difficult to prevent the transmission of foot-and-mouth disease. For this reason, great efforts have been made to prevent and treat foot-and-mouth disease worldwide.
  • water containing mineral components may have effects such as soil improvement, plant growth, harmful chemical decomposition, deodorization, air purification, etc.
  • Production facilities for mineral water and mineral water have been developed.
  • the inventor immerses the conductive wire and the mineral-imparting material (A) coated with an insulator in water, causes a direct current to flow through the conductive wire, and the water around the conductive wire has the same direction as the direct current.
  • Means for forming a raw mineral aqueous solution (A) by applying ultrasonic vibration to the water, and irradiating the formed raw mineral aqueous solution (A) with far infrared rays to contain mineral-containing water (A) Has developed a mineral-containing water production apparatus (A) comprising a far-infrared ray generating means for forming (see Patent Document 1).
  • the present inventors communicate the mineral-containing water production apparatus (A), a plurality of water containers filled with different types of mineral imparting materials (B), and the plurality of water containers in series.
  • Mineral functional water production equipment equipped with a mineral-containing water production apparatus (B) has been developed (see Patent Document 2). And if the said mineral functional water manufacturing facility is used, it has been reported that the mineral functional water (far infrared generation water) which has the function to generate
  • an object of the present invention is to provide a mineral functional water that exhibits beneficial effects such as a control action against single cell organisms and viruses.
  • the present inventor has used the mineral-functional water production facility disclosed in Patent Document 2 and, as a result of repeated studies focusing on the types and blending ratios of mineral-imparting materials, the mineral-functional water produced under certain specific conditions is a single cell. It has been found that it exerts a control action against organisms and a control action against viruses, and has led to the present invention.
  • the present invention relates to the following mineral functional water inventions.
  • Mineral functional water that satisfies all of the following requirements (i) to (iii).
  • the mineral functional water has a pH of 12 or more
  • iii) exhibits a control action against at least one of single-cell organisms and viruses.
  • this invention concerns on invention of the control method by the following mineral functional water.
  • the single cell organism to be controlled is one or more selected from Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Candita, O-157, Mycoplasma and Vibrio parahaemolyticus.
  • ⁇ 4> The control according to ⁇ 2> or ⁇ 3>, wherein the virus to be controlled is one or more selected from an RNA type without envelope, an RNA type with envelope, a DNA type without envelope, and a DNA type with envelope Method.
  • the virus to be controlled is one or more viruses selected from the group consisting of foot-and-mouth disease virus, bovine rhinitis virus B, bovine parainfluenza virus, bovine adenovirus and bovine infectious rhinotracheitis virus, ⁇ 2> or ⁇ The control method according to 3>.
  • Viruses to be controlled include influenza virus, Ebola virus, foot-and-mouth disease virus, norovirus, poliovirus, human immunodeficiency virus, SARS coronavirus, hepatitis A virus, hepatitis C virus, rubella virus, measles virus, Japan
  • the control method according to ⁇ 2> or ⁇ 3> which is one or more viruses selected from the group consisting of encephalitis virus, tick-borne encephalitis virus, rabies virus, dengue virus, arena virus, and hantavirus.
  • this invention concerns on invention of the use of the following mineral functional water.
  • this invention concerns on invention of the composition containing the following mineral functional water.
  • the mineral-containing water (A) formed in the following step (1) and the mineral-containing water (B) formed in the following step (2) are 1: 5 to 1:20 (weight ratio) ) Is a method for producing mineral functional water.
  • Step (1) Conductive wire covered with an insulator, a vegetation plant material composed of a plant of the family Asteraceae and a plant of the family Rosaceae, and a tree of a plant composed of at least one kind selected from maple, birch, pine and cedar Mineral-imparting material (A) containing a plant raw material is immersed in water, a direct current is conducted to the conductive wire, a water flow in the same direction as the direct current is generated in the water around the conductive wire, Forming raw mineral aqueous solution (A) by applying ultrasonic vibration to water, and then irradiating the raw mineral aqueous solution (A) with far infrared rays (wavelength 6-14 ⁇ m) to form mineral-containing water (A) Step (2): Filled with mineral limestone, fossilized coral, shells and activated carbon at 65-75 wt%, 12-18 wt%, 12-18 wt%, 0.5-5 wt% as inorganic mineral imparting material (B) Forming mineral-
  • the mineral-imparting material (B1) in the first water container contains limestone, fossilized coral and shell, respectively, 65 to 75% by weight, 12.5 to 17.5% by weight, and 12.5 to 17.5% by weight. blend,
  • the mineral-imparting material (B2) in the second water-container is limestone, fossilized coral, shell, activated carbon, 37 to 43% by weight, 12.5 to 17.5% by weight, 37 to 43% by weight, 2.5%, respectively.
  • the mineral-imparting material (B3) in the third water container contains limestone, fossilized coral and shell, respectively, 75 to 85% by weight, 12.5 to 17.5% by weight, and 2.5 to 7.5% by weight. blend,
  • the mineral-imparting material (B4) in the fourth water container contains limestone, fossilized coral, and shell, respectively, 85 to 95% by weight, 2.5 to 7.5% by weight, and 2.5 to 7.5% by weight. blend,
  • the mineral-imparting material (B5) in the fifth water container contains limestone, fossilized coral, and shell, respectively, 75 to 85% by weight, 7.5 to 12.5% by weight, and 7.5 to 12.5% by weight.
  • the mineral-imparting material (A) is As the plant material, wild thistle (leaves, stems and flowers): 8 to 12% by weight, mugwort (leaves and stems), and camellia (leaves and stems) are 8 to 12% by weight, respectively.
  • a plant material (A1) obtained by mixing the dried pulverized product of the Asteraceae plant and the dried pulverized product of the Rosaceae plant at a ratio of 1: 0.8 to 1: 1.2 (weight ratio);
  • a woody plant raw material (A2) comprising a dried pulverized product mixed at a ratio of 22 to 28% by weight and 45 to 55% by weight
  • the present invention relates to the following barn control method invention.
  • a method for controlling a barn comprising a step of spraying the mineral functional water according to ⁇ 1> in a mist form in the space of the barn.
  • Preferred embodiments of the functional mineral water of the present invention are the inventions ⁇ X1> and ⁇ X2> specified by the production method as follows.
  • the mineral functional water of invention ⁇ X2> is corresponded to the mineral functional water of Example 1 mentioned later.
  • the mineral-containing water (A) formed in the following step (1) and the mineral-containing water (B) formed in the following step (2) are 1: 5 to 1:20 (weight ratio) )
  • wild thistle (leaf, stem and flower), mugwort (leaf and stem), and camellia (leaf and stem) are 10% by weight, 60% by weight and 30% by weight, respectively.
  • a dried pulverized product of the Asteraceae plant that was mixed and dried and then crushed, and roses (leaves, flowers), radish (leaves and stems), raspberries (leaves, stems and Flower parts) were mixed at a ratio of 20% by weight, 10% by weight and 70% by weight, respectively, and dried and pulverized rose plant plants were mixed at a ratio of 1: 1 (weight ratio).
  • Plant and plant material (A1) As the woody plant material, maple (leaves and stems), birch (leaves, stems, and bark), and cedar (leaves, stems, and bark) are 25% by weight and 25% respectively. %, 50% by weight of the mixture, dried and pulverized, and then the woody plant material (A2) comprising the plant material (A1) and the woody plant material (A2)
  • a mineral functional water having a beneficial effect such as a control action against a single cell organism or a virus is provided.
  • FIG. 3 is a partially omitted cross-sectional view taken along line AA in FIG. 2.
  • FIG. 3 shows the storage container of the mineral provision material (A) used for the raw material mineral aqueous solution manufacturing means shown in FIG.
  • A the mineral provision material
  • FIG. 3 shows the reaction state of the conductive wire vicinity in the raw material mineral aqueous solution manufacturing means shown in FIG.
  • the mineral functional water of the present invention is a mineral functional water characterized by satisfying all of the following requirements (i) to (iii).
  • the mineral functional water has a pH of 12 or more
  • iii) exhibits a control action against at least one of single-cell organisms and viruses.
  • mineral functional water means a substance containing a mineral component and expressing at least one effective effect. Although details will be described later, the mineral functional water of the present invention has at least one of a single-cell biological control action and a virus as a beneficial effect.
  • mineral-containing water is raw material water at the previous stage in producing mineral functional water, and the mineral-containing water also contains mineral components. Details will be described later as the method for producing mineral functional water of the present invention.
  • the mineral-containing water itself may or may not have an effective effect.
  • mineral component does not mean “inorganic component (including trace elements) excluding four elements (carbon, hydrogen, nitrogen, oxygen)”, which is a definition of mineral in a narrow sense, As long as it coexists with an inorganic component, it may contain the four elements (carbon, hydrogen, nitrogen, oxygen) excluded in the narrowly defined definition. Therefore, for example, “a plant-derived mineral component” is a concept including a case where a plant-derived organic component is included together with a plant-derived inorganic component such as calcium.
  • an inorganic component for example, sodium, potassium, calcium, magnesium, phosphorus, and the like, and trace elements such as iron, zinc, copper, manganese, iodine, selenium, chromium, and molybdenum, respectively. Although it can illustrate, it is not limited to this.
  • the mineral functional water of the present invention will be described in more detail.
  • the method for producing mineral functional water of the present invention will be described below.
  • a suitable mineral functional water that satisfies all of the above requirements (i) to (iii) there is a mineral functional water CAC-717 manufactured by Riken Techno System Co., Ltd.
  • the mineral functional water of the present invention comprises (i) a sample having a wavelength of 5 to 7 ⁇ m and a wavelength in a sample in which 15 parts by weight or more (preferably 20 parts by weight or more) of the mineral functional water is fixed to 100 parts by weight of the ceramic carrier.
  • the requirement is that the average radiation ratio (measurement temperature: 25 ° C.) to the black body between 14 and 24 ⁇ m is 90% or more.
  • emissivity is the ratio of the radiant divergence of a radiator to the radiant divergence of a black body at the same temperature as that of the radiator (JIS Z 117 8117). Indicates the ratio of radiation of the sample when the emissivity of the black body at that temperature is 100%.
  • the sample to be evaluated has a characteristic spectral emissivity spectrum.
  • the “black body” means an object that absorbs 100% of incident light and has the maximum energy radiation ability. Theoretically, none has a radiation ability larger than that of a black body.
  • the measuring method of spectral emissivity spectrum is specified in JIS R 180, and it can be measured with an emissivity measuring system using Fourier transform infrared spectrophotometry (FTIR), which has a device configuration conforming to JIS R 180. it can.
  • FTIR Fourier transform infrared spectrophotometry
  • a suitable example of the emissivity measuring system is a far infrared emissivity measuring apparatus (JIR-E500) manufactured by JEOL Ltd.
  • spectral emissivity spectrum of the mineral functional water of the present invention is measured by immobilizing the mineral functional water on the supporting ceramic powder. Details will be described later in Examples.
  • Radiation at a wavelength of 5 to 7 ⁇ m and a wavelength of 14 to 24 ⁇ m with respect to a black body at 25 ° C. corresponds to mid-infrared light. It has the property to reach.
  • the mineral functional water of the present invention adds up the values between the wavelength of 5-7 ⁇ m and the wavelength of 14-24 ⁇ m in the radiation ratio profile for the black body at 25 ° C., and the average value is the wavelength (for the black body at 25 ° C.).
  • the average radiation ratio is 5 to 7 ⁇ m and the wavelength is 14 to 24 ⁇ m, the average radiation ratio is 90% or more. That is, the functional water of the present invention may have a beneficial effect due to this mid-infrared ray.
  • the mineral functional water of the present invention is required to be (ii) pH 12 or higher.
  • pH in the mineral functional water of this invention digitizes the pH which measured mineral functional water with the pH meter.
  • the pH meter is not limited to that shown in the examples.
  • the mineral functional water of the present invention can maintain an alkaline state with little pH fluctuation.
  • the reason why the mineral functional water of the present invention can maintain the alkali state with little pH fluctuation is not completely clear at this stage, but as will be described in the estimation mechanism described later, the plant material and woody plant that are raw materials There is a possibility that a complex of calcium and carbon derived from the above has a function as a pH buffering agent and suppresses pH fluctuation.
  • the mineral functional water of the present invention is required to have (iii) a control action against at least one of a single cell organism and a virus. And in the suitable aspect of the mineral functional water of this invention disclosed in an Example, it has been experimentally shown that it shows the control action with respect to both a unicellular organism and a virus. For target unicellular organisms and viruses, see ⁇ 2. This will be described later in “Use of functional mineral water of the present invention>.
  • the mineral component contained in the mineral functional water of the present invention may form a special structure.
  • a meso-scale structure (hereinafter referred to as “meso-structure”) is formed by evaluation with an electron microscope deposited by drying the mineral functional water of the present invention.
  • the mineral component after drying is an aggregated crystalline substance.
  • the mineral functional water of the present invention can maintain a strong alkaline state of pH 12 or higher without using irritating chemicals such as caustic soda. This may be based on the direct discharge action of mineral mesostructured fine particles dispersed in the liquid to water.
  • pH When pH is 12, it binds proteins that form the cell membranes of single-cell organisms and viruses due to hydrolysis (peptide bonds).
  • an electromagnetic wave radiated from the mineral component acts on this and synergistically exerts a control action on single cell organisms and viruses. That is, the mineral component contained in the mineral functional water of the present invention is likely to contain at least a part of the mineral component as mesostructured fine particles.
  • the mineral component is not a completely water-soluble component and is dispersed in the functional water as insoluble fine particles (mesostructured fine particles). It is presumed to exhibit the action it has.
  • the mesostructured fine particles which are aggregated crystal substances, are fine particles having a particle size of about 50 to 500 nm, have a negative potential self-generated power based on free electron trapping in the structure, and further have a hydrogen storage effect and terahertz electromagnetic wave. It is presumed to have generation ability.
  • Mesostructured fine particles can continuously generate a high voltage with a pulse, discharge into surrounding water molecules that come into contact, and electrolyze the water molecules into H + ions and OH ⁇ ions.
  • H + ions Since there are physical properties such as a negative potential and a hydrogen occlusion action, electrons are supplied to the H + ions from the mesostructured fine particles and returned to hydrogen atoms (H), and then accumulated and immobilized inside the mesostructured fine particles. As a result, H + ions are relatively decreased, and it is estimated that a strong alkali having a pH of 12 or more is obtained.
  • the pH may vary depending on the storage or use environment, but the mineral functional water of the present invention has a terahertz wavelength generated by a pulse electric field of mesostructured fine particles.
  • the wavelength is controlled to resonate with the vibrational motion acting on the water reducibility, enabling long-term stability in a strong alkaline state at pH 12 or higher.
  • virus control mechanism acts on the genome inside the virus and destroys it.
  • the estimation mechanism described above is only an estimation at the present time, and even if a mechanism different from the above is discovered in the future, the useful efficacy in the mineral functional water of the present invention is interpreted in a limited way. It shouldn't be.
  • the mineral functional water of the present invention may have a plurality of different useful effects, and the expression mechanism may be different for each effect.
  • the mineral functional water of the present invention may be diluted with a suitable solvent for dilution (water, alcohol, etc.) as long as the object of the present invention is not impaired.
  • a suitable solvent for dilution water, alcohol, etc.
  • the mineral functional water of the present invention may contain arbitrary components as long as the effect is not impaired.
  • the optional component is not particularly limited as long as it is an additive that does not impair the object of the present invention, and examples thereof include known suspending agents and emulsions. Further, the mixing ratio is arbitrary as long as the object of the present invention is not impaired.
  • the mineral functional water of the present invention when used for cleaning, it may be used by mixing with a known cleaning agent. Further, the mixing ratio is arbitrary as long as the object of the present invention is not impaired.
  • the mineral functional water of the present invention has a control action on at least one of single-cell organisms and viruses.
  • the case where the mineral functional water of this invention is used for the control of a single cell organism and the control of a virus is demonstrated.
  • the mineral functional water of the present invention can be applied to the following uses by utilizing the control action of single cell organisms and viruses.
  • single cell organism is a concept including bacteria, fungi, protozoa and the like.
  • the single-cell organism to be controlled by the mineral functional water of the present invention is a single-cell pathogen such as bacteria, fungi, protozoa, etc. that can be inactivated (killed) by the action caused by the components contained in the mineral functional water of the present invention.
  • Suitable examples include one or more unicellular organisms to be controlled selected from Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Candita, O-157, Mycoplasma and Vibrio parahaemolyticus.
  • control action on a single cell organism means that it has at least one of the action of killing the single cell organism and the action of suppressing the growth of the single cell organism.
  • unicellular organisms such as Escherichia coli and Staphylococcus aureus can control almost all of them in about 1 hour when using mineral functional water whose composition is optimized.
  • virus means a micro structure having either DNA or RNA as a genome without a cell as a structural unit and growing only in the host cell, and is a metabolic system in the host cell. Uses to proliferate. At that time, a disease that sometimes acts as a pathogen and is caused to the host as a result of the propagation of the virus is called a viral infection.
  • controlling action against viruses means having at least one of virus inactivating action and virus growth inhibiting action.
  • the virus control composition of the present invention has an inhibitory action on at least one of the above I to VI.
  • the virus to be controlled is not particularly limited as long as it can be inactivated (killed) by the action caused by the component of the mineral functional water of the present invention.
  • the mineral functional water of the present invention has a controlling action against any type of virus of RNA type without envelope, RNA type with envelope, DNA type without envelope, and DNA type with envelope. Therefore, according to the control method using the mineral functional water of the present invention, it is not limited to the type of virus, and can be applied to control any virus.
  • viruses to be controlled examples include influenza virus, Ebola virus, foot-and-mouth disease virus, norovirus, poliovirus, human immunodeficiency virus, SARS coronavirus, hepatitis A virus, hepatitis C virus, rubella virus, measles virus, Japan And one or more viruses selected from the group consisting of encephalitis virus, tick-borne encephalitis virus, rabies virus, dengue virus, arena virus, and hantavirus.
  • the preferred control target virus is one or more selected from the group consisting of foot-and-mouth disease virus, bovine rhinitis virus B, bovine parainfluenza virus, bovine adenovirus and bovine infectious rhinotracheitis virus. Of viruses.
  • the mineral functional water of the present invention is a characteristic component having a control action against single cell organisms such as bacteria and fungi as well as a virus control action.
  • most of the components having a control action against single-cell organisms such as bacteria and fungi are not effective against viruses.
  • the virus control composition of the present invention usually has a distinctly different mechanism of action from antibacterial agents, antifungal agents and the like.
  • (2-1a) Control method in which the mineral functional water of the present invention is applied to a single-cell organism and / or virus to be controlled and “( 2-1b) “Use of functional mineral water of the present invention for controlling single-cell organisms and / or viruses” is synonymous, and hereinafter, the method for controlling single-cell organisms and / or viruses of the present invention (hereinafter “this book”).
  • the control method of the present invention is characterized in that an effective amount of the mineral functional water of the present invention is applied to a single cell organism or virus to be controlled. Since the mineral functional water of the present invention has a control action against single cell organisms and viruses that cause infectious diseases to humans and / or animals, the control action is used to control single cell organisms and viruses.
  • the “effective amount of (mineral functional water)” in the control method of the present invention refers to the inactivating action of single cell organisms and viruses when the mineral functional water of the present invention is applied to target single cell organisms and viruses. Alternatively, it means an amount at which either a single cell organism or a virus growth inhibitory action is expressed.
  • the single cell to be controlled is maintained. The increase in organisms and viruses is not observed. The period during which the control effect lasts depends on the type of unicellular organism or virus to be controlled and the amount of mineral functional water applied, but if it is suitable, it can be controlled for several days to a week. .
  • livestock Although not only animals for livestock but also pets such as dogs and cats are included as animals that are subject to the control method of the present invention, application to livestock is particularly preferable. Although there is no restriction
  • the control method of the present invention is a control method applied to single-cell organisms and / or viruses to be controlled, the method of causing mineral functional water of the present invention to act directly on humans and / or animals, and the mineral of the present invention.
  • the method is roughly classified into a method of causing functional water to act indirectly on humans and / or animals. That is, direct or indirect action of the mineral functional water of the present invention to control unicellular organisms and viruses that cause infectious diseases, and to prevent infectious diseases in humans and animals where infection is a concern. Can do.
  • controlling single cell organisms and viruses is expected to improve infectious diseases and have therapeutic effects.
  • each method in the control method of the present invention will be described.
  • the mineral functional water of the present invention is preferably used as a liquid material.
  • This method can control unicellular organisms and viruses in human and / or animal skin and mucous membranes, and can be a fundamental infection prevention measure.
  • the method of washing the skin and mucous membrane with the mineral functional water of the present invention is also included in the method of directly acting.
  • a method of spraying on hands, feet, nails and the like to sterilize or inactivate while washing single cell organisms and viruses is one of the preferred methods.
  • a method of spraying the mineral functional water of the present invention so as to get wet on the body surface of livestock is one of the preferred methods.
  • it is effective to apply a sponge or the like to a site that is easily infected, or to create a puddle on the scaffold.
  • the mineral functional water of this invention is safe as mentioned above, there also exists an advantage that it is not necessary to wash away even after spraying to livestock.
  • the method of making the mineral functional water of this invention contact with the habitats of livestock, such as a livestock house, and the accumulation place of the excrement and garbage which livestock discharges is mentioned.
  • livestock such as a livestock house
  • a method of indirectly acting the mineral functional water of the present invention a method of spraying in a mist form on a space such as a building used by humans or animals or a livestock barn for raising livestock is also a suitable method. Since this method can prevent air infection, it is effective in preventing the generation of single-cell organisms and viruses to be controlled and in suppressing proliferation.
  • infectious diseases derived from unicellular organisms and viruses in humans and animals can be prevented, and further improvement of infectious diseases can be expected.
  • control composition of the present invention is a mineral of the present invention. Contains functional water.
  • the control composition of the present invention can be used as a quasi-drug or a pharmaceutical, and an effective amount thereof is blended with a pharmaceutically acceptable carrier, and is administered orally or parenterally as a solid preparation or a liquid preparation. can do.
  • the dosage form may be any dosage form used for normal oral administration or parenteral administration. Specific examples of dosage forms used for oral administration or parenteral administration include powders, granules, tablets, capsules, troches and the like as solid preparations.
  • liquid preparations include internal solutions, external solutions, suspensions, emulsions, syrups, injection solutions, infusions, and the like, and these dosage forms and other dosage forms are appropriately selected according to the purpose. These preparations can be prepared by conventional means on the preparation.
  • control composition of the present invention is not particularly limited as long as the mineral functional water as an active ingredient is contained in a sufficient ratio to express a control action against the target single cell organism or virus. It can take any form or type. Therefore, it can be used as, for example, functional foods, animal feeds, etc. in addition to quasi drugs or pharmaceuticals.
  • the production method of the mineral functional water containing a mineral component having an electromagnetic radiation action (hereinafter sometimes referred to as “the mineral functional water of the present invention”) is not particularly limited, but is preferably the above-mentioned Patent Document 2 (special feature).
  • the apparatus disclosed in Japanese Unexamined Patent Publication No. 2011-56366 it can be produced by a method according to the method disclosed in the same document.
  • the manufacturing method is not limited as long as mineral functional water containing a mineral component having electromagnetic wave radiation action can be obtained.
  • Patent Document 2 Japanese Patent Laid-Open No. 2011-56366
  • the functional mineral water manufacturing facility 1 is manufactured with a mineral-containing water (A) manufacturing device 2, a mineral-containing water (B) manufacturing device 3, and a mineral-containing water (A) manufacturing device 2.
  • a mixing tank 46 which is a mixing means for mixing the mineral-containing water (A) 44 with the mineral-containing water (B) 45 manufactured by the mineral-containing water (B) manufacturing apparatus 3 to form the mineral functional water 47. ing.
  • the mineral-containing water (A) production apparatus 2 produces a raw mineral aqueous solution (A) 41 that forms raw mineral aqueous solution (A) 41 using raw water 11 supplied from water and a mineral-imparting material (A) 12 (see FIG. 4) described later as raw materials.
  • the mineral-containing water (B) production device 3 forms mineral-containing water (B) 45 containing mineral components eluted from the mineral-imparting material by passing water W supplied from outside through the water containers 51 to 56.
  • the mineral-containing water (A) production apparatus 2 constituting the mineral functional water production facility 1 shown in FIG. 1 will be described with reference to FIGS.
  • the mineral-containing water (A) production apparatus 2 is a raw mineral aqueous solution (A) 41 using water 11 supplied from water and a mineral-imparting material (A) 12 (see FIG. 4) described later as raw materials.
  • the raw mineral water producing means 10 (see FIG. 2) for forming the water and the mineral-containing water (A) solution 41 obtained by the raw mineral aqueous solution producing means 10 are irradiated with far-infrared rays to change into mineral-containing water (A) 44.
  • far-infrared light generating means 43 see FIG. 6).
  • the raw mineral aqueous solution production means 10 includes a reaction vessel 13 that can contain water 11 and a mineral-imparting material (A) 12, and a reaction vessel 13 that is covered with an insulator 14.
  • 17 and circulation paths 18a and 18b and a circulation pump P which are means for generating a water flow R in the same direction as the direct current DC in the water 11 around the conductive wire 15.
  • the DC power supply device 17, the ultrasonic wave generating means 16, and the circulation pump P are all operated by feeding from a general commercial power source.
  • the reaction vessel 13 has an inverted conical cylinder shape with an open top surface, and a drain port 19 is provided at the bottom corresponding to the apex thereof.
  • the drain port 19 has a circulation path 18a communicating with the suction port P1 of the circulation pump P.
  • an opening degree adjusting valve 20 for adjusting the amount of drainage to the circulation path 18a and a drainage valve 21 for discharging water in the reaction vessel 13 and the like.
  • the base end of the circulation path 18 b is connected to the discharge port P ⁇ b> 2 of the circulation pump P, and the distal end of the circulation path 18 b is connected to the storage tank 22.
  • a base end of a circulation path 18 c for feeding the water 11 in the storage tank 22 into the reaction container 13 is connected, and the distal end of the circulation path 18 c is an opening of the reaction container 13. It is piped at the position facing.
  • the circulation path 18 c is provided with an opening degree adjusting valve 23 for adjusting the amount of water fed from the storage tank 22 to the reaction vessel 13.
  • a drain pipe 24 having a drain valve 25 and a water temperature gauge 26 is connected to the bottom of the storage tank 22 in a hanging manner. If the drain valve 25 is opened as necessary, the water in the storage tank 22 can be discharged from the lower end of the drain pipe 24. At this time, the temperature of the water 11 passing through the drain pipe 24 is measured by the water thermometer 26. be able to.
  • a plurality of conductive cables 29 comprising the conductive wire 15 and the insulator 14 covering the conductive wire 15 form an annular shape at a plurality of positions having different depths in the reaction vessel 13, respectively.
  • These circular conductive cables 29a to 29g are wired and arranged substantially coaxially with the reaction vessel 13.
  • the inner diameter of each of the conductive cables 29a to 29g is gradually reduced in accordance with the inner diameter of the inverted conical cylindrical reaction vessel 13, and has an inner diameter corresponding to each arrangement location. Since each of the conductive cables 29a to 29g is detachably connected to an insulating terminal 30 provided on the wall 13a of the reaction vessel 13, an annular portion can be removed from the terminal 30 as necessary. Can be attached.
  • a portion of the reaction vessel 13 corresponding to the axial center is provided with a bottomed cylindrical storage container 31 formed of an insulating network, and the storage container 31 is filled with a mineral-imparting material (A) 12.
  • A mineral-imparting material
  • conductive cables 29s and 29t are spirally wound around the outer circumferences of the circulation paths 18a and 18b, respectively, and a DC current DC is supplied from the DC power supply device 17 to these conductive cables 29s and 29t.
  • the direction of the direct current DC flowing through the conductive cables 29s and 29t is set so as to substantially coincide with the direction of the water flow flowing through the circulation paths 18a and 18b.
  • the circulation pump P is operated, and the opening degree adjusting valve 20 at the bottom of the reaction vessel 13 and the opening degree adjusting valve 23 of the circulation path 18c are adjusted so that the drain port 19, the circulation path 18a, and the circulation pump P from the reaction container 13 are adjusted.
  • the water 11 is circulated so as to return to the upper part of the reaction vessel 13 again via the circulation path 18b, the storage tank 22 and the circulation path 18c.
  • the DC power supply device 17 and the ultrasonic wave generation means 16 are operated, the elution reaction of the mineral component from the mineral applying material (A) 12 in the storage container 31 to the water 11 starts.
  • the working conditions for producing the raw mineral aqueous solution (A) using the raw mineral aqueous solution production means 10 are not particularly limited, but in this embodiment, the raw mineral aqueous solution (A) was produced under the following working conditions. .
  • a DC current DC having a voltage of 8000 to 8600 V and a current of 0.05 to 0.1 A was conducted to the conductive cables 29, 29s, and 29t.
  • the insulator 14 constituting the conductive cable 29 and the like is made of polytetrafluoroethylene resin.
  • the mineral-imparting material (A) 12 filled in the reaction vessel 13 is filled with water at a mass ratio of 10 to 15%. Specific description of the mineral-imparting material (A) 12 will be described later.
  • the water 11 should just contain an electrolyte so that direct current DC may act.
  • an electrolyte For example, about 10 g of sodium carbonate, which is an electrolyte, is used for 100 liters of water. However, ground water can be used as it is.
  • the ultrasonic wave generation means 16 generates ultrasonic waves having a frequency of 30 to 100 kHz, and the ultrasonic vibration part (not shown) directly touches the water 11 in the reaction vessel 13 and vibrates. Ultrasonic wave generation means 16 is arranged.
  • the mineral component from the mineral-imparting material (A) 12 is quickly brought into the water 11 by the stirring action by the water flow R, the action of the direct current flowing through the conductive cable 29 and the ultrasonic vibration applied to the water 11 by the ultrasonic wave generation means 16.
  • the raw mineral aqueous solution (A) in which the required mineral components are appropriately dissolved can be efficiently produced.
  • a plurality of annular conductive cables 29 a to 29 g are wired substantially coaxially in the reaction vessel 13, and a water flow R that rotates in the left-handed screw direction in the reaction vessel 13 is generated. ing. Therefore, a relatively dense electric energy field can be formed in the reaction container 13 having a constant volume, and the raw mineral aqueous solution (A) can be efficiently produced in the reaction container 13 having a relatively small volume. .
  • the reaction vessel 13 has an inverted conical cylindrical shape, the water flow R flowing along the plurality of annular conductive cables 29a to 29g can be generated relatively easily and stably. Is promoted. Further, since the flow rate of the water flow R flowing in the inverted conical cylindrical reaction vessel 13 increases toward the drain port 19 at the bottom of the reaction vessel 13, the contact frequency with the mineral imparting material (A) 12 also increases. It is possible to increase the amount of mineral that captures and ionizes the free electrons e present in the water 11.
  • the storage tank 22 for discharging the water 11 while storing it is provided between the circulation paths 18b and 18c, the mineral elution reaction can be advanced while circulating the amount of water 11 exceeding the volume of the reaction vessel 13. Is possible. For this reason, raw material mineral aqueous solution (A) can be mass-produced efficiently.
  • the raw mineral aqueous solution (A) from which the mineral components are finally eluted is generated.
  • the appearance state of the electrons e can be controlled, and the water solubility of the mineral component is influenced by the action of the free electrons e on the mineral-imparting material (A) 12.
  • the raw mineral aqueous solution (A) 41 is transferred into the processing container 40 shown in FIG.
  • the residue of the mineral-imparting material (A) 12 leaked from the storage container 31 in the reaction container 13 can be discharged from the drain valve 21 at the bottom of the reaction container 13.
  • the raw mineral aqueous solution (A) 41 accommodated in the processing container 40 is irradiated with far-infrared rays by the far-infrared light generating means 43 disposed inside the processing container 40 while being slowly stirred by the stirring blade 42.
  • the far infrared ray generating means 43 is not particularly limited as long as it generates far infrared rays having a wavelength of about 6 to 14 ⁇ m, and any material or means may be used. However, it is desirable to have a radiation ratio of 85% or more with respect to black body radiation in the wavelength range of 6 to 14 ⁇ m at 25 ° C.
  • the mineral component contained in the mineral-imparting material (A) 12 is quickly brought about by the stirring action by the water flow R, the action of the direct current DC flowing through the conductive wire 15 and the ultrasonic vibration.
  • the required mineral components are appropriately dissolved, and the mineral aqueous solution 41 can be produced efficiently.
  • the mineral-containing water (A) 44 whose electronegativity is increased by irradiating the mineral aqueous solution 41 with far-infrared rays to fuse dissolved mineral components and water molecules. Is formed.
  • the mineral-containing water (A) 44 formed by the above-described process is fed into the mixing tank 46 via the water supply path 57y as shown in FIG. In 46, it mixes with the mineral containing water (B) 45 sent from the mineral containing water (B) manufacturing apparatus 3.
  • FIG. 1 the mineral-containing water (A) production apparatus 2
  • the mineral-imparting material (A) is a vegetative plant material consisting of a plant family of asteraceae and a plant family of rose family, and a vegetation plant material consisting of one or more kinds of tree plants selected from maple, birch, pine and cedar. Containing.
  • a site where mineral components such as leaves, stems, flowers, and bark are easy to elute is appropriately selected and may be used as it is, or may be used as a dried product.
  • other plant plants may be included, but it is preferable that only the plants of the Asteraceae and Rose family are included.
  • the addition of cruciferous and pine family plants greatly reduces the control effect of single-cell organisms, which is one of the useful effects of the mineral functional water of the present invention.
  • mineral imparting material (A) is a mineral imparting material (A ′).
  • Mineral-imparting material (A ′) is a material of the plant or plant, such as wild thistle (leaves, stems and flower parts): 8 to 12% by weight, mugwort (leaves and stems), camellia (leaves and stems) ), In a ratio of 8-12 wt%, 55-65 wt%, 27-33 wt%, dried and pulverized Asteraceae plants crushed after drying, and 17-23% by weight, 8-12% by weight, 65-75% by weight of Neubara (leaves, flower parts), Japanese radish (leaves and stems), and raspberry (leaves, stems and flower parts), respectively Use a dry pulverized product of a rose family plant mixed and dried at a ratio of A plant material (A1) obtained by mixing the dried pulverized product of the Asteraceae plant and the dried pulverized product of the Rosaceae plant at a ratio of 1:
  • mineral-providing materials (A ′) in particular, as the plant plant material, field thistle (leaves, stems and flowers), mugwort (leaves and stems), and camellia (leaves and stems), 10% by weight, 60% by weight, and 30% by weight of each mixture, dried and pulverized Asteraceae plants crushed, dried roses (leaves, flowers), radish (leaves and leaves) Stem part), raspberry (leaf part, stem part and flower part) were mixed at a ratio of 20% by weight, 10% by weight and 70% by weight, respectively, dried and pulverized after drying, Plant and plant material (A1) obtained by mixing at 1: 1 (weight ratio); As the woody plant material, maple (leaves and stems), birch (leaves, stems, and bark), and cedar (leaves, stems, and bark) are 25% by weight and 25% respectively.
  • the woody plant material (A2) comprising the plant material (A1) and the woody plant material (A2) It is preferable that it is a mineral provision material obtained by mixing so that it may become 1: 3.
  • the mineral-containing water (B) production apparatus 3 includes a first water flow container 51 to a sixth water flow container 56 filled with different types of mineral imparting materials (B), A water supply path 57 that connects the first water flow container 51 to the sixth water flow container 56 in series, and a detour connected to the water flow path 57 in parallel with the first water flow container 51 to the sixth water flow container 56, respectively.
  • Water channels 51p to 56p, and water flow switching valves 51v to 56v respectively provided at branch portions of the bypass water channels 51p to 56p and the water supply channel 57 are provided.
  • the switching operation of the water flow switching valves 51v to 56v is executed by operating the six switching buttons 51b to 56b provided on the operation panel 58 connected to the water flow switching valves 51v to 56v by the signal cable 59. Can do. Since the six switching buttons 51b to 56b and the six water flow switching valves 51v to 56v correspond to each number, if one of the switching buttons 51b to 56b is operated, the water flow corresponding to that number is operated. The switching valves 51v to 56v are switched to change the water flow direction.
  • the mineral-imparting materials (B) 51m to 56m can be preferably produced by mixing raw materials based on limestone, fossilized corals and shells. First, components contained in limestone, fossil coral, and shells are analyzed, and the amounts of silicon dioxide, iron oxide, activated carbon, titanium nitride, calcium carbonate, magnesium carbonate, and calcium phosphate are evaluated. Then, based on the content of each component, limestone, fossilized coral, and shells are mixed to produce the mineral-imparting material (B) 51m to 56m.
  • the mineral imparting material (B) 51m to 56m is preferably controlled by the mixing ratio of limestone, fossil coral and shell, but the limestone, fossil coral and shell as raw materials are contained depending on the production area.
  • silicon dioxide, iron oxide, activated carbon, titanium nitride, calcium carbonate, magnesium carbonate, and calcium phosphate may be added.
  • activated carbon is usually added separately because it is hardly contained in limestone, fossilized coral, and shells.
  • Mineral imparting material (B) 51m-56m A mixture in which the mineral-imparting material (B1) in the first water flow container 51 contains limestone, fossilized coral, and shells by 70 wt%, 15 wt%, and 15 wt%, respectively; A mixture in which the mineral-imparting material (B2) in the second water flow container 52 contains limestone, fossilized coral, shell, activated carbon, 40% by weight, 15% by weight, 40% by weight, and 5% by weight, A mixture containing 80% by weight, 15% by weight, and 5% by weight of limestone, fossilized coral, and shell, respectively, in the mineral-imparting material (B3) in the third water flow container 53; A mixture in which the mineral-imparting material (B4) in the fourth water flow container 54 contains limestone, fossilized coral, and shell, respectively 90% by weight, 5% by weight, and 5% by weight; A mixture in which the mineral-imparting material (B5) in the fifth water flow container 55 contains limestone, fossilized coral, and shell, respectively 80% by weight, 10% by weight,
  • limestone, fossilized corals and shells used for the mineral-imparting materials (B1) to (B6) are preferably the following (1-1) to (1-3).
  • Fossil coral The following two types of fossil corals are mixed at a weight ratio of 1: 9, and the granular material is crushed to 3-5 mm. Fossil corals produced from about 100 meters underground and modified in crystal composition by heavy pressure. Fossilized coral from land near Okinawa Amami Oshima (including calcium carbonate, calcium phosphate and other trace elements) As such a fossil coral, “CC-300 (product number)” manufactured by Riken Techno System Co., Ltd. can be suitably used.
  • Shells Granules obtained by mixing abalone, ground beetles, and barnacles at the same weight and pulverizing them to 3 to 5 mm
  • “CC-400 (product number)” manufactured by Riken Techno System Co., Ltd. can be suitably used.
  • the activated carbon can be produced from any raw material, and preferably activated carbon produced from coconut shells.
  • CC-500 product number
  • Riken Techno System Co., Ltd. which is made from palm ginger from Thailand.
  • the switching buttons 51b to 56b of the operation panel 58 described above are operated to switch the water flow switching valves 51v to 56v to the water container side, the water flowing through the water supply path 57 is located downstream of the operated water flow switching valve. If the water flows into the first water flow container 51 to the sixth water flow container 56 and switches the water flow switching valves 51v to 56v to the detour water channel side, the water flowing through the water flow path 57 is transferred from the operated water flow switching valve. It flows into the detour channels 51p to 56p on the downstream side.
  • the mineral-containing water (B) production apparatus 3 includes a substantially cylindrical first water flow container 51 to a sixth water flow container 56 mounted on the gantry 60, and the first of these.
  • a water supply path 57 that connects the water flow container 51 to the sixth water flow container 56 in series, and a raw water tank 63 for storing the water W supplied from the water supply is disposed at the top of the gantry 60.
  • an inorganic porous body 64 having a function of adsorbing impurities in the water W is accommodated.
  • a plurality of casters 61 and level adjusters 62 are provided at the bottom of the gantry 60.
  • the substantially cylindrical first water flow container 51 to sixth water flow container 56 are mounted on a gantry 60 having a rectangular parallelepiped lattice structure in a state where the respective shaft centers 51c to 56c (see FIG. 9) are kept in the horizontal direction. Yes.
  • the first water container 51 to the sixth water container 56 can be attached to and detached from the gantry 60.
  • the first water flow container 51 to the sixth water flow container 56 all have the same structure, and the flanges 51f to 56f provided at both ends of the cylindrical main body parts 51a to 56a are circular.
  • An airtight structure is formed by attaching plate-like lids 51d to 56d.
  • a water inlet 57a communicating with the water supply path 57 is provided at a position located at the lowermost part of the main body portions 51a to 56a, and the lid bodies 51d to 56d far from the water inlet 57a are provided.
  • a water outlet 57b communicating with the water supply path 57 is provided at the top, and a mesh strainer 57c is attached to the water outlet 57b.
  • An automatic air valve 57d for releasing the air in the first water flow container 51 to the sixth water flow container 56 is attached to a portion directly above the water outlet 57b on the outer periphery of the main body portions 51a to 56a.
  • the water supplied from the upstream water supply path 57 passes through the water inlet 57a and flows into the first water flow container 51 to the sixth water flow container 56, and the mineral-imparting material (B) filled in each of them. Since each mineral component elutes into water by contacting 51m to 56m, water containing mineral components corresponding to each mineral imparting material (B) 51m to 56m becomes water downstream from the outlet 57b. To 57.
  • any one of the switching buttons 51b to 56b of the operation panel 58 shown in FIG. By passing through one or more of the water flow containers 51 to the sixth water flow container 56, the mineral imparting materials (B) 51m to 56m filled in the first water flow container 51 to the sixth water flow container 56, respectively.
  • Mineral-containing water (B) 45 in which the characteristic mineral components contained therein are selectively dissolved can be formed.
  • the mineral-containing water (B) production apparatus 3 since the first water flow container 51 to the sixth water flow container 56 are connected in series by the water flow path 57, water is continuously supplied to the water flow path 57. By flowing, it is possible to mass-produce mineral-containing water (B) 45 in which mineral components corresponding to the mineral-imparting materials (B) 51 m to 56 m in the first water flow container 51 to the sixth water flow container 56 are dissolved. .
  • the mineral-containing water (B) 45 formed in the mineral-containing water (B) production apparatus 3 is sent into the mixing tank 46 via the water supply path 57x downstream from the sixth water flow container 56, and Inside, mineral functional water 47 is formed by being mixed with mineral-containing water (A) 44 manufactured by the mineral-containing water (A) manufacturing apparatus 2 shown in FIG.
  • the mixing ratio of the mineral-containing water (A) and the mineral-containing water (B) is appropriately determined in consideration of the types of raw materials contained in the mineral-containing water (A) and the mineral-containing water (B) and the concentration of components to be eluted.
  • mineral functional water When there is too little mineral-containing water (A) (too much mineral-containing water (B)) and too much mineral-containing water (A) (too little mineral-containing water (B)), mineral functional water
  • the active ingredient may be diluted and the intended action may be insufficient.
  • Example 1 Production of mineral functional water> Using the mineral functional water production apparatus described in the embodiment of the present invention as the mineral functional water, the mineral functional water of Example 1 produced by the following raw materials and methods was used by the production method described above. 1. Manufacture of mineral-containing water (A) As a raw material for the mineral imparting material (A), as a plant and plant material (A1), “P-100 (product number)” manufactured by Riken Techno System Co., Ltd., and as a woody plant material (A2), “P-200 (product number)” manufactured by Riken Techno System Co., Ltd. was used.
  • A1 As a raw material for the mineral imparting material (A), as a plant and plant material (A1), “P-100 (product number)” manufactured by Riken Techno System Co., Ltd., and as a woody plant material (A2), “P-200 (product number)” manufactured by Riken Techno System Co., Ltd. was used.
  • P-100 is a plant material (A1) obtained by mixing the following dry pulverized plant of Asteraceae and dry pulverized plant of Rosaceae at 1: 1 (weight ratio), and “P-200” is The woody plant raw material (A2) described below.
  • A1 Plant and plant material (dried plant plant) A1-1) Dry ground pulverized product of Asteraceae Wild thistle (leaves, stems and flowers), mugwort (leaves and stems), camellia (leaves and stems), 10% by weight, 60% respectively Mixed in a ratio of 30% by weight and 30% by weight, dried and then pulverized.
  • (A2) Woody plant raw material (dried woody plant) Maple (leaves and stems), birch (leaves, stems, and bark) and cedar (leaves, stems, and bark) are 25%, 25%, and 50% by weight, respectively. Mixed in proportion, dried and then crushed.
  • the raw mineral aqueous solution manufacturing means 10 (see FIG. 2) is placed so as to be 10 to 15% by weight with respect to water.
  • a water flow in the same direction as the direct current was generated in the water around the water, and ultrasonic vibration (oscillation frequency 50 kHz, amplitude 1.5 / 1000 mm) was applied to the water to form a raw mineral aqueous solution (A).
  • the mineral-containing water (A) of Example 1 was obtained by irradiating the raw mineral aqueous solution (A) supplied to the far-infrared ray generating means 43 in the latter stage with far infrared rays (wavelength 6 to 14 ⁇ m).
  • Mineral-imparting material (B2) Mixed limestone, fossilized coral, shell, activated carbon 40%, 15%, 40%, 5% by weight, respectively (equivalent to silicon dioxide and activated carbon) ⁇
  • Third water container Mineral-imparting material (B3): A mixture of limestone, fossilized coral and shell, 80% by weight, 15% by weight and 5% by weight, respectively.
  • Mineral-imparting material (B4) Mixed limestone, fossilized coral and shells by 90 wt%, 5 wt% and 5 wt%, respectively.
  • Mineral-imparting material (B6) Mixed limestone, fossilized coral and shell by 60%, 30% and 10% by weight, respectively.
  • the mineral-containing water (B) is obtained by circulating water through the first to sixth water flow containers using the mineral imparting materials (B1) to (B6).
  • Each of (B1) to (B6) was 50 kg (total 300 kg), the amount of water to be circulated was set at 1000 kg, and the flow rate was set at 500 mL / 40 s.
  • the mineral-containing water (A) and mineral-containing water (B) of Example 1 formed by the above method were mixed at a ratio of 1:10 (weight ratio) to obtain mineral functional water of Example 1.
  • the mineral functional water of Example 1 was measured with a pH meter (glass electrode type hydrogen ion concentration indicator TPX-90, manufactured by Toko Chemical Laboratories) and found to have a pH of 12.5.
  • the mineral functional water of Example 1 corresponds to the mineral functional water CAC-717 (Tera Protect (product name), CAC-717 (product number), developed product number CA-C-01) manufactured by Riken Techno System Co., Ltd. To do.
  • the spectral emissivity of the sample in which the mineral functional water of Example 1 was immobilized on the ceramic carrier was measured with a far-infrared emissivity measuring apparatus (JIR-E500 manufactured by JEOL Ltd.).
  • the apparatus includes a Fourier transform infrared spectrophotometer (FTIR) main body, a black body furnace, a sample heating furnace, a temperature controller, and attached optical systems.
  • FTIR Fourier transform infrared spectrophotometer
  • a sample for evaluation of spectral emissivity was prepared by the following procedure. 20 parts by weight of the mineral functional water of Example 1 was added to 100 parts by weight of the supporting ceramic powder (rock powder from Amakusa Oyanojima) to make a clay state.
  • FIG. 12 shows a spectral emissivity spectrum (measurement temperature: 25 ° C., wavelength range: 4 to 24 ⁇ m) of mineral functional water of Example 1 as a measurement sample.
  • FIG. 12 also shows the spectral emissivity spectrum (theoretical value) of the black body.
  • the vertical axis scale indicates the intensity of radiant energy, which is indicated by the number of W per square centimeter. Further, the curve of “sample” means that the closer to the black body curve, the higher the radiation ability.
  • FIG. 13 shows the emission ratio (wavelength range: 4 to 24 ⁇ m) obtained from the spectral emissivity spectrum of the measurement sample and the spectral emissivity spectrum (theoretical value) of the black body. From FIG. 13, the average radiation ratio between the wavelengths of 5 to 7 ⁇ m and between the wavelengths of 14 to 24 ⁇ m was calculated to be 91.7%.
  • Comparative Example 1 The mineral functional water of Comparative Example 1 was obtained in the same manner as the mineral functional water of Example 1 except that the mineral-containing water (A) was used instead of the raw material plant of the mineral-containing water (A).
  • the mineral-containing water (A) formed by the above method and the mineral-containing water (B) were mixed at a ratio of 1:10 (weight ratio) to obtain the mineral functional water of Comparative Example 1. It was pH 5.5 when the mineral function water of the comparative example 1 was measured with the pH meter. The average radiation ratio between the wavelengths of 5 and 7 ⁇ m and between the wavelengths of 14 and 24 ⁇ m was 92.1%.
  • Comparative Example 2 The mineral functional water of Comparative Example 2 was obtained in the same manner as the mineral functional water of Example 1, except that the mineral-containing water (A) was used instead of the raw material plant of the mineral-containing water (A).
  • the mineral-containing water (A) formed by the above method and the mineral-containing water (B) were mixed at a ratio of 1:10 (weight ratio) to obtain mineral functional water of Comparative Example 2. It was pH 3.5 when the mineral functional water of the comparative example 2 was measured with the pH meter. The average radiation ratio between the wavelengths of 5 and 7 ⁇ m and between the wavelengths of 14 and 24 ⁇ m was 89.4%.
  • Single-cell organism control test Using the mineral functional water (undiluted sample) of Example 1 as the composition for controlling single-cell organisms of Example 1, the following bacteria (single-cell organisms) control test was conducted.
  • Evaluation 1 Staphylococcus aureus
  • a sterilized 1/500 normal bouillon medium prepared from Staphylococcus aureus to a bacterial solution concentration of 2.5 ⁇ 10 6 cells / mL was used as a test bacterial solution.
  • 100 mL of the mineral functional water of Example 1 was put into a sterilized Erlenmeyer flask, 1 mL of the test bacterial solution was dropped, and the mixture was allowed to stand at room temperature of about 25 ° C. for 1 hour.
  • the aqueous solution in the Erlenmeyer flask was shaken by hand, diluted appropriately with phosphate buffered saline, and the number of viable bacteria per mL per sample was measured by the pour plate culture method. .
  • 1 mL of the test bacterial solution dropped into 100 mL of sterilized ion exchange water was used.
  • Table 1 shows the number of viable bacteria per mL immediately after dropping 1 mL of the test bacterial solution and in 1 hour in Example 1 and the comparative example (control).
  • the comparative example (control) containing no mineral functional water there was almost no difference in the viable cell count immediately after dropping the bacteria and after 1 hour.
  • the example containing mineral functional water almost no viable bacteria were observed 1 hour after the dropping of the bacteria. From this result, it was confirmed that the mineral functional water of Example 1 has an excellent control action against Staphylococcus aureus.
  • Evaluation 2 Escherichia coli
  • Evaluation 2-1 Escherichia coli prepared at a bacterial solution concentration of 2.3 ⁇ 10 6 cells / mL using a sterilized 1/500 normal broth medium was used as a test bacterial solution. 100 mL of the mineral functional water of Example 1 was put into a sterilized Erlenmeyer flask, 1 mL of the test bacterial solution was dropped, and the mixture was allowed to stand at room temperature of about 25 ° C. for 1 hour.
  • the aqueous solution in the Erlenmeyer flask is stirred by hand, diluted as appropriate with phosphate buffered saline, and the number of viable bacteria per mL per sample is measured by the pour plate culture method. It was.
  • Table 2 shows the number of viable bacteria per mL immediately after 1 mL of the test bacterial solution was dropped in Example 1 and the comparative example (control) and after 1 hour.
  • the comparative example (control) containing no mineral functional water there was almost no difference in the viable cell count immediately after dropping the bacteria and after 1 hour.
  • the example containing mineral functional water almost no viable bacteria were observed 1 hour after the dropping of the bacteria. From this result, it was confirmed that the mineral functional water of the example has an excellent control action against E. coli.
  • Evaluation 2-2 The number of viable bacteria was measured by the same method as in Evaluation 2-1, except that the mineral functional water of Comparative Example 1 was used. The number of viable bacteria was measured immediately after dropping, 1 day, 3 days, and 1 week later. The results are shown in Table 3. Although a slight decrease was observed on the first day, the viable count of E. coli increased and returned to the pre-inoculation count within one week.
  • Evaluation 3 Candida albicans
  • a test bacterial solution was prepared by using a sterilized 1/500 normal bouillon medium and preparing Candida to a bacterial solution concentration of 1 ⁇ 10 6 cells / mL. 100 mL of the mineral functional water of Example 1 was put into a sterilized Erlenmeyer flask, 1 mL of the test bacterial solution was dropped, and the mixture was allowed to stand at room temperature of about 25 ° C. for 1 hour.
  • Evaluation 4 Pseudomonas aeruginosa
  • a test bacterial solution was prepared by using a sterilized 1/500 normal bouillon medium and preparing Candida to a bacterial solution concentration of 1 ⁇ 10 6 cells / mL. 100 mL of the mineral functional water of Example 1 was put into a sterilized Erlenmeyer flask, 1 mL of the test bacterial solution was dropped, and the mixture was allowed to stand at room temperature of about 25 ° C. for 1 hour.
  • the aqueous solution in the Erlenmeyer flask is stirred by hand, diluted as appropriate with phosphate buffered saline, and the number of viable bacteria per mL per sample is measured by the pour plate culture method. It was. The number of viable bacteria was measured immediately after dropping, 1 day, 3 days, and 1 week later. The results are shown in Table 5.
  • FIG. 14 is a schematic diagram showing the principle of the hemagglutination activity method.
  • the aggregation means that when an antigenic protein present on the outer membrane of a virus typified by influenza virus is in an active state, it binds to the membrane of blood cells and the cells gather together to disperse the surface of the microplate. It is in a state of adhering to.
  • non-aggregation means that the antigenic protein of influenza virus becomes inactive and cannot bind to the blood cell membrane, and the blood belly simply precipitates. That is, if the center of the red color is recognized, it can be determined that non-aggregation and the cell infection of the virus has been lost.
  • influenza virus activity inhibition test (hemagglutination activity method) was performed according to the following procedure. Purification influenza virus A / Memphis / 1/1971 ( HA3 type NA2 type (hereinafter, H3N2)) strain (i) mineral functional water of Example 1), (ii) distilled water, or (iii) 2 with tap water 7 The virus suspension was diluted to 128 times (128 times) and allowed to stand at room temperature for 30 minutes. Subsequently, each virus suspension was mixed with 2 times concentration of phosphate buffered saline (PBS) in an equal volume, and then diluted with PBS 2 times in series to obtain respective diluted solutions.
  • PBS phosphate buffered saline
  • FIG. 15 shows the results of the influenza virus activity inhibition test (hemagglutination activity method). Note that C in FIG. 15 is a result of using PBS instead of virus dilution as a negative control.
  • FIG. 16 shows a reference image in the influenza virus activity inhibition test (hemagglutination activity method). In addition, Table 6 shows the HAU measurement results obtained from FIG.
  • Example 2 Using the mineral functional water of Example 1 (undiluted sample) as the virus control composition of Example 1, the antiviral activity against the following respiratory disease-related viruses in cattle was evaluated. These viruses are respectively an RNA type without an envelope, an RNA type with an envelope, a DNA type without an envelope, and a DNA type with an envelope, and correspond to a model of each virus. [Evaluation 2] evaluates the presence or absence of the antiviral effect of the virus control composition of Example 1 on any of these four types.
  • Virus 1 Bovine rhinitis virus B (Picornaviridae aphtovirus genus) RNA type without envelope (2)
  • Virus 2 Bovine parainfluenza virus (Paramixoviridae respirovirus genus) Envelope RNA type (3)
  • Virus 3 Bovine adenovirus (Adenoviridae) DNA type without envelope (4)
  • Virus 4 Bovine infectious rhinotracheitis virus (Herpesviridae genus Waricellovirus) DNA type with envelope
  • the rhinosinitis B virus has similar properties to the foot-and-mouth disease virus (each of which belongs to the Acorn virus family Picornaviridae), and can be used as an alternative virus for evaluating the antiviral effect on foot-and-mouth disease virus.
  • Inactivation test 180 ⁇ L of mineral functional water and 20 ⁇ L of virus solution were mixed and allowed to act at room temperature (25 ° C.) for a certain period of time, and then 100 ⁇ L was applied to Sephadix LH20 with a pedal volume of 800 ⁇ L and gel filtered. The filtrate was diluted 10 times with MEM, and virus 1 and virus 3 were inoculated into a primary culture cell of calf testis and virus 2 and virus 3 were inoculated into a 96-well plate monolayer culture of bovine kidney cell line (MDBK) at 37 ° C. Adsorbed for 1 hour.
  • MDBK bovine kidney cell line
  • a maintenance medium (MEM supplemented with 2% fetal bovine serum and 20 mM HEPES (pH 7.2)) was added and cultured at 37 ° C. The presence or absence of virus growth is determined using cytopathic effect (CPE) as an index. Virus 1 is determined after 6 days, Virus 2 is determined after 9 days, Virus 3 is determined after 6 days, and Virus 4 is determined after 9 days. Virus titer (TCID50 / mL) ) As controls, tap water (pH 7.2) and a maintenance medium were used instead of mineral functional water.
  • CPE cytopathic effect
  • Virus inactivity was assessed from the difference in Log 10 exponents relative to the control maintenance medium treatment titer. That is, the greater the index difference value, the greater the virus inactivation effect.
  • the results are summarized in Table 7.
  • Table 7 shows the results of evaluating the time course and antiviral activity of virus 1 after mixing mineral functional water and virus. The mineral functional water of Example 1 showed a high antiviral effect immediately after mixing.
  • Real-time PCR uses cDNA and primers set in the RNA polymerase region and SYBR Premix EX Taq (TAKARA) for one cycle of reaction by heat denaturation at 95 ° C (15 seconds), annealing at 60 ° C (30 seconds), and extension reaction. The temperature was set to 72 ° C. (12 seconds), and 45 cycles were performed using a Light Cycler (Roche Diagnostics). The gene amount of the sample was quantified based on a standard with a known concentration.
  • TAKARA SYBR Premix EX Taq
  • Table 9 is a relative value when the amount of genome for 1 minute after the maintenance medium treatment is defined as 100. As can be seen from Table 9, about 90% of genomes were destroyed in 1 minute after mixing, and 99% or more of genomes were destroyed in 15 minutes.
  • the mineral functional water of the present invention has four types of viruses, namely, an RNA type without an envelope, an RNA type with an envelope, a DNA type without an envelope, and a DNA type with an envelope, regardless of acidity or alkalinity. It was found to show a significant antiviral effect. And it was suggested that the effect is exhibited immediately after contact with the virus. Furthermore, it was suggested that the virus works as a mechanism for controlling the virus, up to and destroying the genome inside the virus.
  • the mineral functional water of the present invention is industrially promising because it has a control action against single cell organisms and viruses.

Abstract

 単細胞生物やウィルスの防除に有用なミネラル機能水を提供する。当該ミネラル機能水は、以下の要件(i)~(iii)のすべてを満たし、単細胞生物やウィルスに対する優れた防除作用を発現する。 (i)セラミック担体100重量部に対し、当該ミネラル機能水15重量部以上を固定化した試料における、波長5~7μm間及び波長14~24μm間での黒体に対する平均放射比率(測定温度:25℃)が90%以上であること (ii)当該ミネラル機能水のpH12以上であること (iii)単細胞生物及びウィルスの少なくとも一方に対する防除作用を示すこと

Description

ミネラル機能水及びその製造方法、並びに単細胞生物及び/又はウィルスの防除方法
 本発明は、単細胞生物やウィルスに対する防除作用等の有益な効能を有するミネラル機能水およびその製造方法、並びに当該ミネラル機能水の応用用途に関する。
 従来より、黄色ブドウ球菌等の病原性の単細胞生物や、ウィルスに起因する感染症の予防・治療は、国内外で重要な課題となっている。例えば、インフルエンザ等の感染性が高く広範囲に広がるウィルス、エボラ出血熱等の致死率が高いウィルス等が報告されている。
 また、家畜においても病原性の単細胞生物による感染症や、口蹄疫や鳥インフルエンザなどのウィルスによる感染症等により大きな被害が報告されている。口蹄疫(Foot and Mouth Disease)は、世界各地に広く流行している家畜に大きな被害を与える伝染病であり、近年、日本でも発生している。口蹄疫ウィルスの伝染性が極めて強いため、口蹄疫の伝播を防ぐには多大な困難を伴う。そのため、世界的に口蹄疫の予防および治療には多大な努力が払われている。
 ウィルスの対抗策として、ワクチンによる抗ウィルス剤の開発がされているが、ワクチンの場合、その特異性により、感染を防ぐことができるのは特定のウィルスに限定される。また、ウィルスの突然変異によって、従来のワクチンが十分に効力を発揮しないこともある。そのため、様々なウィルスに有効なウィルス防除組成物の開発が強く望まれている。また、上述のように病原性の単細胞生物による感染症の問題があるが、単細胞生物とウィルスの両方に対する有意な防除作用を有する成分はほとんど存在せず、また、そのような組成物は、ヒトへ家畜への毒性が高いのが通常である。
 一方、ミネラル成分を含有する水には、土壌改質作用、植物育成作用、有害化学物質分解作用、消臭作用、空気浄化作用等の効能がある可能性があるとされ、従来より様々なミネラル含有水やミネラル含有水の製造設備が開発されている。
 本発明者は、絶縁体で被覆された導電線及びミネラル付与材(A)を水に浸漬し、前記導電線に直流電流を導通させ、前記導電線の周囲の水に前記直流電流と同方向の水流を発生させ、前記水に超音波振動を付与して原料ミネラル水溶液(A)を形成する手段と、形成された原料ミネラル水溶液(A)に遠赤外線を照射してミネラル含有水(A)を形成する遠赤外線発生手段と、を備えたミネラル含有水製造装置(A)を開発している(特許文献1参照)。
 また、本発明者らは、ミネラル含有水製造装置(A)と、互いに種類の異なるミネラル付与材(B)が充填された複数の通水容器と、複数の前記通水容器を直列に連通する送水経路と、複数の前記通水容器とそれぞれ並列した状態で前記送水経路に連結された迂回水路と、前記送水経路と前記迂回水路との分岐部にそれぞれ設けられた水流切替弁と、を備えたミネラル含有水製造装置(B)を備えたミネラル機能水製造設備を開発している(特許文献2参照)。そして、当該ミネラル機能水製造設備を用いると特徴的な波長の遠赤外線を発生する機能を有するミネラル機能水(遠赤外線発生水)が製造できることを報告している。
特許第4817817号公報 特開2011-56366号公報
 上述のように、従来から様々なミネラル含有水が報告されているが、ミネラル含有水の効果は科学的に実証されていないものも多くあり、ミネラル含有水の真の作用に付いては、未だ明確にされていない部分も多い。そのため、従来のミネラル含有水には、その効能を謳いながら実際には効能を有していないものや、効能を有しても実用には不十分であったり、効能の再現性が乏しいものも少なくない。
 特許文献2で報告している装置を用いて製造されるミネラル機能水においても、目標とする有益な効能を発現するミネラル機能水を確実に生産できているとはいえなかった。特にミネラル含有水製造装置(A)及び(B)で使用するミネラル成分の原料(ミネラル付与材)の種類や配合割合が複雑に関与しており、どのようなミネラル付与材を用いれば、どのような効能を発現するミネラル機能水を得られるかは必ずしも判明していなかったのが実状である。
 かかる状況下、本発明の目的は、単細胞生物やウィルスに対する防除作用等の有益な効能を発現するミネラル機能水を提供することである。
 本発明者は、特許文献2で開示したミネラル機能水製造設備を使用し、ミネラル付与材の種類や配合割合を中心に検討を重ねた結果、ある特定の条件で製造されたミネラル機能水が単細胞生物に対する防除作用とウィルスに対する防除作用を発現することを見出し、本発明に至った。
 すなわち、本発明は、以下のミネラル機能水の発明に係るものである。
 <1> 以下の要件(i)~(iii)のすべてを満たす、ミネラル機能水。
(i)セラミック担体100重量部に対し、当該ミネラル機能水15重量部以上を固定化した試料における、波長5~7μm間及び波長14~24μm間での黒体に対する平均放射比率(測定温度:25℃)が90%以上であること
(ii)当該ミネラル機能水のpH12以上であること
(iii)単細胞生物及びウィルスの少なくとも一方に対する防除作用を示すこと
 また、本発明は、以下のミネラル機能水による防除方法の発明に係るものである。
 <2> <1>に記載のミネラル機能水を、防除対象の単細胞生物及び/又はウィルスに施用する、防除方法。
 <3> 防除対象の単細胞生物が、大腸菌、黄色ブドウ球菌、枯草菌、緑膿菌、カンジタ、O-157、マイコプラズマ及び腸炎ビブリオから選択される1種以上である、<2>に記載の防除方法。
 <4> 防除対象のウィルスが、エンベロープなしRNA型、エンベロープありRNA型、エンベロープなしDNA型、及びエンベロープありDNA型から選択される1種以上である、<2>または<3>に記載の防除方法。
 <5> 防除対象のウィルスが、口蹄疫ウィルス、牛鼻炎Bウィルス、牛パラインフルエンザウィルス、牛アデノウィルスおよび牛伝染性鼻気管炎ウィルスからなる群より選ばれる1以上のウィルスである、<2>または<3>に記載の防除方法。
 <6> 防除対象のウィルスが、インフルエンザウィルス、エボラウィルス、口蹄疫ウィルス、ノロウィルス、ポリオウィルス、ヒト免疫不全ウィルス、SARSコロナウィルス、A型肝炎ウィルス、C型肝炎ウィルス、風疹ウィルス、麻疹ウィルス、日本脳炎ウィルス、ダニ媒介性脳炎ウィルス、狂犬病ウィルス、デングウィルス、アレナウィルス、およびハンタウィルスからなる群より選ばれる1以上のウィルスである、<2>または<3>に記載の防除方法。
 また、本発明は、以下のミネラル機能水の使用の発明に係るものである。
 <7> <1>に記載のミネラル機能水の、単細胞生物及び/又はウィルスの防除のための使用。
 また、本発明は、以下のミネラル機能水を含有する組成物の発明に係るものである。
 <8> <1>に記載のミネラル機能水を含有する、単細胞生物及び/又はウィルスの防除用の組成物。
 また、本発明は、以下のミネラル機能水の製造方法の発明に係るものである。
 <9> 下記の工程(1)で形成されたミネラル含有水(A)と、下記の工程(2)で形成されたミネラル含有水(B)とを、1:5~1:20(重量比)となる割合で混合する、ミネラル機能水の製造方法。
 工程(1):
 絶縁体で被覆された導電線と、キク科の草木植物及びバラ科の草木植物からなる草木植物原料、並びにカエデ、白樺、松及び杉から選択される1種以上の木本植物からなる木本植物原料を含有するミネラル付与材(A)と、を水に浸漬し、前記導電線に直流電流を導通させ、前記導電線の周囲の水に前記直流電流と同方向の水流を発生させ、前記水に超音波振動を付与して原料ミネラル水溶液(A)を形成し、次いで、原料ミネラル水溶液(A)に遠赤外線(波長6~14μm)を照射してミネラル含有水(A)を形成する工程

 工程(2):
 無機系のミネラル付与材(B)として、石灰石、化石サンゴ、貝殻及び活性炭がそれぞれ65~75重量%、12~18重量%、12~18重量%、0.5~5重量%の割合で充填された通水容器に水を通過させてミネラル含有水(B)を形成するミネラル含有水(B)を形成する工程
 <10> 水に対するミネラル付与材(A)の添加量が10~15重量%であり、前記導電線に導通させる直流電流における電流値及び電圧値が、それぞれ0.05~0.1A及び8000~8600Vの範囲である、<9>に記載のミネラル機能水の製造方法。
 <11> 前記工程(2)が、互いに種類の異なる無機系のミネラル付与材(B)が充填され、直列に接続された第1通水容器から第6通水容器に至る6個の通水容器に水を通過させてミネラル含有水(B)を形成する工程であって、
 当該6個の通水容器おける、
 第1通水容器内のミネラル付与材(B1)が、石灰石、化石サンゴ、貝殻をそれぞれ65~75重量%、12.5~17.5重量%、12.5~17.5重量%を含む混合物、
 第2通水容器内のミネラル付与材(B2)が、石灰石、化石サンゴ、貝殻、活性炭をそれぞれ37~43重量%、12.5~17.5重量%、37~43重量%、2.5~7.5重量%を含む混合物、
 第3通水容器内のミネラル付与材(B3)が、石灰石、化石サンゴ、貝殻をそれぞれ75~85重量%、12.5~17.5重量%、2.5~7.5重量%を含む混合物、
 第4通水容器内のミネラル付与材(B4)が、石灰石、化石サンゴ、貝殻をそれぞれ85~95重量%、2.5~7.5重量%、2.5~7.5重量%を含む混合物、
 第5通水容器内のミネラル付与材(B5)が、石灰石、化石サンゴ、貝殻をそれぞれ75~85重量%、7.5~12.5重量%、7.5~12.5重量%を含む混合物、
 第6通水容器内のミネラル付与材(B6)が、石灰石、化石サンゴ、貝殻を55~65重量%、27~33重量%、7.5~12.5重量%を含む混合物、
である、<9>または<10>に記載のミネラル機能水の製造方法。
 <12> 前記6個の通水容器おける、
 第1通水容器内のミネラル付与材(B1)が、石灰石、化石サンゴ、貝殻をそれぞれ70重量%、15重量%、15重量%を含む混合物、
 第2通水容器内のミネラル付与材(B2)が、石灰石、化石サンゴ、貝殻、活性炭をそれぞれ40重量%、15重量%、40重量%、5重量%を含む混合物、
 第3通水容器内のミネラル付与材(B3)が、石灰石、化石サンゴ、貝殻をそれぞれ80重量%、15重量%、5重量%を含む混合物、
 第4通水容器内のミネラル付与材(B4)が、石灰石、化石サンゴ、貝殻をそれぞれ90重量%、5重量%、5重量%を含む混合物、
 第5通水容器内のミネラル付与材(B5)が、石灰石、化石サンゴ、貝殻をそれぞれ80重量%、10重量%、10重量%を含む混合物、
 第6通水容器内のミネラル付与材(B6)が、石灰石、化石サンゴ、貝殻を60重量%、30重量%、10重量%を含む混合物、
である、<11>に記載のミネラル機能水の製造方法。
 <13> 前記ミネラル付与材(A)が、
 前記草木植物原料として、野アザミ(葉部、茎部及び花部):8~12重量%、ヨモギ(葉部及び茎部)、ツワブキ(葉部及び茎部)を、それぞれ8~12重量%、55~65重量%、27~33重量%となる割合で混合し、乾燥させた後に粉砕したキク科植物の乾燥粉砕物、及び、
 ノイバラ(葉部、花部)、ダイコンソウ(葉部及び茎部)、キイチゴ(葉部、茎部及び花部)を、それぞれ17~23重量%、8~12重量%、65~75重量%の割合で混合し、乾燥させた後に粉砕したバラ科植物の乾燥粉砕物を使用し、
 当該キク科植物の乾燥粉砕物とバラ科植物の乾燥粉砕物とを、1:0.8~1:1.2(重量比)で混合して得られる草木植物原料(A1)と、
 前記木本植物原料として、カエデ(葉部及び茎部)、白樺(葉部、茎部、及び樹皮部)、杉(葉部、茎部、及び樹皮部)を、それぞれ22~28重量%、22~28重量%、45~55重量%となる割合で混合し、乾燥させた後に粉砕した乾燥粉砕物からなる木本植物原料(A2)とを、
 草木植物原料(A1)と木本植物原料(A2)の重量比で1:2.7~1:3.3となるように混合して得られるミネラル付与材(A’)である、<9>から<12>のいずれかに記載のミネラル機能水の製造方法。
 <14> ミネラル含有水(A)とミネラル含有水(B)との混合割合が、1:7~1:12(重量比)である、<13>に記載のミネラル機能水の製造方法。
 本発明は、以下の畜舎の防除方法の発明に係るものである。
 <15> <1>に記載のミネラル機能水を、畜舎の空間にミスト状に噴霧する工程を含む、畜舎の防除方法。
 本発明のミネラル機能水の好適な態様は以下の通り、製造方法にて特定される発明<X1>、<X2>である。なお、発明<X2>のミネラル機能水は、後述する実施例1のミネラル機能水に相当する。
 <X1> 下記の工程(1)で形成されたミネラル含有水(A)と、下記の工程(2)で形成されたミネラル含有水(B)とを、1:5~1:20(重量比)となる割合で含有するミネラル機能水。
 工程(1):
 絶縁体で被覆された導電線と、キク科の草木植物及びバラ科の草木植物からなる草木植物原料、並びにカエデ、白樺、松及び杉から選択される1種以上の木本植物からなる木本植物原料を含有するミネラル付与材(A)と、を水に浸漬し、前記導電線に直流電流を導通させ、前記導電線の周囲の水に前記直流電流と同方向の水流を発生させ、前記水に超音波振動を付与して原料ミネラル水溶液(A)を形成し、次いで、原料ミネラル水溶液(A)に遠赤外線(波長6~14μm)を照射してミネラル含有水(A)を形成する工程であって、
 水に対するミネラル付与材(A)の添加量が10~15重量%であり、前記導電線に導通させる直流電流における電流値及び電圧値が、それぞれ0.05~0.1A及び8000~8600Vの範囲であり、かつ、
 前記草木植物原料として、野アザミ(葉部、茎部及び花部)、ヨモギ(葉部及び茎部)、ツワブキ(葉部及び茎部)を、それぞれ10重量%、60重量%、30重量%となる割合で混合し、乾燥させた後に粉砕したキク科植物の乾燥粉砕物、及び、ノイバラ(葉部、花部)、ダイコンソウ(葉部及び茎部)、キイチゴ(葉部、茎部及び花部)を、それぞれ20重量%、10重量%、70重量%の割合で混合し、乾燥させた後に粉砕したバラ科植物の乾燥粉砕物を、1:1(重量比)で混合して得られる草木植物原料(A1)と、
 前記木本植物原料として、カエデ(葉部及び茎部)、白樺(葉部、茎部、及び樹皮部)、杉(葉部、茎部、及び樹皮部)を、それぞれ25重量%、25重量%、50重量%となる割合で混合し、乾燥させた後に粉砕した乾燥粉砕物からなる木本植物原料(A2)とを、草木植物原料(A1)と木本植物原料(A2)の重量比で1:3となるように混合して得られるミネラル付与材(A’)である工程
 工程(2):
 互いに種類の異なる無機系のミネラル付与材(B)が充填され、直列に接続された第1通水容器から第6通水容器に至る6個の通水容器おける、
 第1通水容器内のミネラル付与材(B1)が、石灰石、化石サンゴ、貝殻をそれぞれ70重量%、15重量%、15重量%を含む混合物、
 第2通水容器内のミネラル付与材(B2)が、石灰石、化石サンゴ、貝殻、活性炭をそれぞれ40重量%、15重量%、40重量%、5重量%を含む混合物、
 第3通水容器内のミネラル付与材(B3)が、石灰石、化石サンゴ、貝殻をそれぞれ80重量%、15重量%、5重量%を含む混合物、
 第4通水容器内のミネラル付与材(B4)が、石灰石、化石サンゴ、貝殻をそれぞれ90重量%、5重量%、5重量%を含む混合物、
 第5通水容器内のミネラル付与材(B5)が、石灰石、化石サンゴ、貝殻をそれぞれ80重量%、10重量%、10重量%を含む混合物、
 第6通水容器内のミネラル付与材(B6)が、石灰石、化石サンゴ、貝殻を60重量%、30重量%、10重量%を含む混合物、
であって、当該6個の通水容器に水を通過させてミネラル含有水(B)を製造するミネラル含有水(B)を形成する工程
 <X2> ミネラル含有水(A)とミネラル含有水(B)との混合割合が、1:10(重量比)である前記<X1>に記載のミネラル機能水。
 本発明によれば、単細胞生物やウィルスに対する防除作用等の有益な効能を有するミネラル機能水が提供される。
ミネラル機能水製造設備の概略構成を示すブロック図である。 図1に示すミネラル機能水製造設備を構成するミネラル含有水(A)製造装置の一部をなすミネラル含有水溶液製造手段の模式図である。 図2のA-A線における一部省略断面図である。 図2に示す原料ミネラル水溶液製造手段に使用するミネラル付与材(A)の収納容器を示す斜視図である。 図2に示す原料ミネラル水溶液製造手段における導電線付近の反応状態を示す模式図である。 図1に示すミネラル機能水製造設備を構成するミネラル含有水(A)製造装置の一部をなす遠赤外線照射装置の概略断面図である。 図1に示すミネラル機能水製造設備を構成するミネラル含有水(B)製造装置のブロック図である。 図1に示すミネラル機能水製造設備を構成するミネラル含有水(B)製造装置を示す正面図である。 図8に示すミネラル含有水(B)製造装置の側面図である。 図8に示すミネラル含有水製造装置(B)の構成を示す一部省略斜視図である。 図8に示すミネラル含有水製造装置(B)を構成する通水容器の側面図である。 セラミック担体100重量部に対し、実施例1のミネラル機能水20重量部を固定化した試料の分光放射率スペクトル、及び黒体の分光放射率スペクトル(理論値)である(測定温度:25℃、波長範囲:4~24μm、担体:セラミック粉末)。 セラミック担体100重量部に対し、実施例1のミネラル機能水20重量部を固定化した試料の黒体に対する放射比率(測定温度:25℃)を示す図である。 赤血球凝集活性法の原理を示す模式図である。 インフルエンザウィルス活性阻害試験(赤血球凝集活性法)の結果である。 インフルエンザウィルス活性阻害試験における参考画像である。
 1 ミネラル機能水製造設備
 2 ミネラル含有水(A)製造装置
 3 ミネラル含有水(B)製造装置
 10 原料ミネラル水溶液製造手段
 11,W 水
 12 ミネラル付与材(A)
 13 反応容器
 13a 壁体
 14 絶縁体
 15 導電線
 16 超音波発生手段
 17 直流電源装置
 18a,18b,18c 循環経路
 19 排水口
 20,23 開度調節バルブ
 21,25 排水バルブ
 22 収容槽
 24 排水管
 26 水温計
 29,29a~29g,29s,29t 導電ケーブル
 30 ターミナル
 31 収納容器
 31f フック
 40 処理容器
 41 原料ミネラル水溶液(A)
 42 撹拌羽根
 43 遠赤外線発生手段
 44 ミネラル含有水(A)
 45 ミネラル含有水(B)
 46 混合槽
 47 ミネラル機能水
 51 第1通水容器
 52 第2通水容器
 53 第3通水容器
 54 第4通水容器
 55 第5通水容器
 56 第6通水容器
 51a~56a 本体部
 51b~56b 切替ボタン
 51c~56c 軸心
 51d~56d 蓋体
 51f~56f フランジ部
 51m~56m ミネラル付与材(B)
 51p~56p 迂回水路
 51v~56v 水流切替弁
 57,57x,57y 送水経路
 57a 入水口
 57b 出水口
 57c メッシュストレーナ
 57d 自動エア弁
 58 操作盤
 59 信号ケーブル
 60 架台
 61 キャスタ
 62 レベルアジャスタ
 63 原水タンク
 DC 直流電流
 DW 水道水
 R 水流
 以下、本発明について例示物等を示して詳細に説明するが、本発明は以下の例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。なお、本明細書において、「~」とはその前後の数値又は物理量を含む表現として用いるものとする。
<1.本発明のミネラル機能水>
 本発明のミネラル機能水は、以下の要件(i)~(iii)のすべてを満たすことを特徴とするミネラル機能水である。
(i)セラミック担体100重量部に対し、当該ミネラル機能水15重量部以上を固定化した試料における、波長5~7μm間及び波長14~24μm間での黒体に対する平均放射比率(測定温度:25℃)が90%以上であること
(ii)当該ミネラル機能水のpH12以上であること
(iii)単細胞生物及びウィルスの少なくとも一方に対する防除作用を示すこと
 本明細書において、「ミネラル機能水」とは、ミネラル成分を含有し、少なくとも一種以上の有効な効能を発現するものを意味する。詳細は後述するが、本発明のミネラル機能水は有益な効能として、単細胞生物防除作用及びウィルスの少なくとも一方を有する。
 また、本明細書において、「ミネラル含有水」とは、ミネラル機能水を製造する際における、前段階の原料水であり、ミネラル含有水もミネラル成分を含有する。詳細は本発明のミネラル機能水の製造方法として後述する。なお、ミネラル含有水はそれ自身が有効な効能を有していても、有していなくてもよい。
 なお、本明細書において、「ミネラル成分」は、狭義のミネラルの定義である「4元素(炭素・水素・窒素・酸素)を除外した無機成分(微量元素含む)」を意味するものではなく、無機成分と共存する態様であれば、狭義の定義で除外されている前記4元素(炭素・水素・窒素・酸素)を含んでいてもよい。そのため、例えば、「植物由来のミネラル成分」は、カルシウム等の植物由来の無機成分と共に、植物由来の有機成分が含まれる場合も含む概念である。
 また、(ミネラル成分を構成する)無機成分としては、例えば、ナトリウム、カリウム、カルシウム、マグネシウム、及びリン等、微量元素として鉄、亜鉛、銅、マンガン、ヨウ素、セレン、クロム、及びモリブデン等がそれぞれ例示できるがこれに限定されない。
 以下、本発明のミネラル機能水についてさらに詳しく説明する。なお、本発明のミネラル機能水の原料、製造条件については、<3.本発明のミネラル機能水の製造方法>において説明する。また、上記要件(i)~(iii)のすべてを満たす好適なミネラル機能水として、株式会社理研テクノシステム製ミネラル機能水CAC-717が挙げられる。
要件(i)
 本発明のミネラル機能水は、(i)セラミック担体100重量部に対し、当該ミネラル機能水15重量部以上(好適には20重量部以上)を固定化した試料における、波長5~7μm間及び波長14~24μm間での黒体に対する平均放射比率(測定温度:25℃)が90%以上であること、を要件とする。
 本明細書において、「放射率」とは、放射体の放射発散度とその放射体と同温度の黒体の放射発散度との比」(JIS Z 8117)であり、「分光放射率」とは、その温度における黒体の放射率を100%としたときの試料の放射の割合を示すものである。評価される試料は、特有の分光放射率スペクトルを有する。なお、「黒体」とは、入射する光を100%吸収し、エネルギー放射能力が最大の物体のことであり、理論的には黒体よりも大きい放射能力を示すものはない。
 分光放射率スペクトルの測定方法はJIS R 180に規定されており、JIS R 180に準じる装置構成を有する、フーリエ変換型赤外線分光光度測定法(FTIR)を使用した放射率測定システムで測定することができる。放射率測定システムとしては、日本電子(株)製遠赤外線輻射率測定装置(JIR-E500)を好適な一例として挙げることができる。
 なお、液体試料の分光放射率は、直接測定することが困難であるため、通常、参照用担体に固定して測定する方法が取られる。本発明のミネラル機能水の分光放射率スペクトルは、ミネラル機能水を担持用のセラミック粉末に固定化して測定される。詳細は実施例にて後述する。
 25℃における黒体に対する波長5~7μm間及び波長14~24μm間での放射線は、中赤外線に相当し、中赤外線は近赤外線に比べ、光子エネルギーは小さいが浸透力が強く、生体内部にまで到達する性質を有する。
 本発明のミネラル機能水は、25℃における黒体に対する放射比率プロファイルにおける、波長5~7μm間及び波長14~24μm間での値を合計し、その平均値を(25℃における黒体に対する)波長5~7μm間及び波長14~24μm間での平均放射比率としたときに、その平均放射比率が90%以上である。すなわち、本発明の機能水は、この中赤外線により、有益な効能を発現している可能性がある。
要件(ii)
 本発明のミネラル機能水は、(ii)pH12以上であること、を要件とする。なお、本発明のミネラル機能水におけるpHは、ミネラル機能水をpHメータで測定したpHを数値化したものである。なお、pHメータは、実施例で示すものには限定されない。
 また、本発明のミネラル機能水は、pH変動が少なくアルカリ状態を保つことができる。本発明のミネラル機能水が、pH変動が少なくアルカリ状態を保てる理由は現段階ではその詳細は完全に明らかではないが、後述する推定メカニズムで説明するように、原料である草木植物や木本植物に由来するカルシウム及び炭素の複合体がpH緩衝剤としての機能を有し、pH変動を抑制している可能性がある。
 なお、pH12以上の強アルカリは、通常、アルカリの溶質イオンに基づく化学作用により、細胞膜を形成するタンパク質を腐食させ或いは刺激性や毒性の危険性を有するのが通常であるが、アルカリ性であるにもかかわらず、ヒト及び動物に対する安全性に優れるという優れた性質を有する。そのため、本発明のミネラル機能水の従来の消毒剤にあるような有害性はなく吸引しても肌に付着しても問題がないため、ゴム手袋、ゴーグル、マスクなど保護具の必要としない。
要件(iii)
 本発明のミネラル機能水は、(iii)単細胞生物及びウィルスの少なくとも一方に対する防除作用を示すこと、を要件とする。そして、実施例で開示する本発明のミネラル機能水の好適態様では、単細胞生物及びウィルスの両方に対する防除作用を示すことが実験的にしめされている。
 対象となる単細胞生物及びウィルスについては、<2.本発明のミネラル機能水の用途>にて後述する。
 本発明のミネラル機能水が、単細胞生物やウィルスに対する防除作用を発現する理由についてはいまだ明らかでない点が多いが、推定メカニズムを説明する。
 まず、本発明のミネラル機能水に含まれるミネラル成分は、特殊な構造体を形成している可能性がある。間接的な証拠であるが、本発明のミネラル機能水を乾燥させて析出した電子顕微鏡による評価により、メゾスケール(Meso-Scale)の構造体(以下、「メゾ構造体」を形成されていることが示唆されている。なお、乾燥後のミネラル成分は集成した結晶状物質である。
 上述の通り、本発明のミネラル機能水は、苛性ソーダなど刺激性の化学薬品を使用しなくとも、pH12以上の強アルカリ状態を維持できる。これは液中に分散するミネラルのメゾ構造微粒子の水に対する直接的放電作用に基づく可能性があり、pH12の場合に加水分解性により単細胞生物やウィルスの細胞膜を形成するタンパク質の結合(ペプチド結合)を緩めて、これにミネラル成分が放射する電磁波が作用し、相乗的に単細胞生物やウィルスの防除作用を発現している可能性がある。
 すなわち、本発明のミネラル機能水に含まれるミネラル成分は、ミネラル成分の少なくとも一部をメゾ構造微粒子として含有している可能性が高い。現段階ではその詳細は完全に明らかではないが、ミネラル成分が完全に水溶性の成分でなく、溶解しない微粒子(メゾ構造微粒子)として機能水中に分散していることにより、本発明の機能水の有する作用を発現するものと推測される。
 なお、集成結晶物質であるメゾ構造微粒子は、粒径が50~500nm程度の微粒子であり、構造内に自由電子補足性に基づくマイナス電位の自己発電力を持ち、更に水素吸蔵作用及びテラヘルツ電磁波の発生能力を有するものと推測される。メゾ構造微粒子は、高い電圧をパルスで継続的に発生させることが可能で、接触する周囲の水分子に放電し電気分解により水分子をH+イオンとOH-イオンに分解するが、メゾ構造微粒子にマイナス電位と水素吸蔵作用の物性があることから、H+イオンにメゾ構造微粒子から電子を与え水素原子(H)に戻した上で、メゾ構造微粒子内部に蓄積し固定化する。これによりH+イオンが相対的に減少することになり、pH12以上の強アルカリの状態となる、と推測される。
 塩基性化合物を溶解させた通常の強アルカリ水溶液では、保存時や使用環境によってpHに変動がある場合があるが、本発明のミネラル機能水は、メゾ構造微粒子のパルス電場により発生するテラヘルツ波長を、水の還元性に働く振動運動に共鳴する波長に制御しておりpH12以上の強アルカリ状態の長期安定を可能にしている。
 また、ウィルスの防除メカニズムとして、実施例にて後述するように、ウィルス内部のゲノムまで作用し、これを破壊する。
 上述した推定メカニズムは、あくまで現時点での推定されるものであり、将来的に上記と異なるメカニズムが発見された場合であっても、本発明のミネラル機能水における有用な効能が制限的に解釈されるべきものではない。また、本発明のミネラル機能水には、複数の異なる有用な効能を有している可能性があり、それぞれの効能について発現メカニズムが異なる可能性もある。
(他の成分)
 本発明のミネラル機能水は、本発明の目的を損なわない範囲で、適当な希釈用溶媒(水やアルコールなど)で希釈されていてもよい。
 本発明のミネラル機能水には、その効能を損なわない範囲で、任意の成分を含んでいてもよい。任意の成分としては、本発明の目的を損なわない添加物であれば特に限定はないが、例えば、公知の懸濁剤、乳剤等が挙げられる。また、混合割合は、本願発明の目的を損なわない範囲であれば任意である。
 また、本発明のミネラル機能水を洗浄用に使用する場合には、公知の洗浄剤と混合して用いてもよい。また、混合割合は、本願発明の目的を損なわない範囲であれば任意である。
<2.本発明のミネラル機能水の用途>
 本発明のミネラル機能水は、単細胞生物及びウィルスの少なくとも一方に対する防除作用を有している。以下、本発明のミネラル機能水を、単細胞生物の防除、ウィルスの防除の用途に使用する場合について説明する。
 本発明のミネラル機能水は、単細胞生物及びウィルスの防除作用を利用して以下の用途に適用できる。
(2-1a)本発明のミネラル機能水を、防除対象の単細胞生物及び/又はウィルスに施用する、防除方法。
(2-1b)本発明のミネラル機能水の、単細胞生物及び/又はウィルスの防除のための使用。
(2-2)本発明のミネラル機能水を含有する、単細胞生物及び/又はウィルスの防除用の組成物。
 本明細書において「単細胞生物」は細菌、真菌、原虫等を含む概念である。本発明のミネラル機能水による防除の対象となる単細胞生物は、本発明のミネラル機能水の含有成分に起因する作用によって、不活化(死滅)できる細菌、真菌、原虫等の単細胞病源菌であれば特に限定はない。好適な対象としては、防除対象の単細胞生物が、大腸菌、黄色ブドウ球菌、枯草菌、緑膿菌、カンジタ、O-157、マイコプラズマ及び腸炎ビブリオから選択される1種以上が挙げられる。
 また、本明細書において、「単細胞生物に対する防除作用」とは、少なくとも、単細胞生物を死滅する作用および単細胞生物の増殖抑制作用のいずれかを有することを意味する。後述する実施例で示すように、特に大腸菌、黄色ブドウ球菌等の単細胞生物は、組成を好適化したミネラル機能水を使用すると、1時間程度でほとんどすべてを防除することができる。
 本明細書において、「ウィルス」は、細胞を構成単位とせずにDNAかRNAのいずれかをゲノムとして有し、宿主細胞内だけで増殖する微小構造体を意味であり、宿主細胞内の代謝系を利用して増殖する。その際、病原体としてふるまうことがあり、ウィルスが増殖した結果として宿主に惹起される疾病をウィルス感染症という。
 また、「ウィルスに対する防除作用」とは、少なくとも、ウィルスの不活性化作用およびウィルスの増殖抑制作用のいずれかを有することを意味する。
 なお、ウィルスの感染には、I「細胞表面への吸着」、II「細胞内への侵入」、III「脱殻」、IV「ウィルスゲノムやウィルスタンパク質などのウィルス部品の合成」、V「ウィルス部品の集合」、VI「細胞からの放出」の、I~VIのステップがある。すなわち、本発明のウィルス防除用組成物は、上記I~VIの少なくとも一つに対する阻害作用を有する。
 防除対象となるウィルスは、本発明のミネラル機能水の含有成分に起因する作用によって、不活化(死滅)できるウィルスであれば特に限定はない。本発明のミネラル機能水は、エンベロープなしRNA型、エンベロープありRNA型、エンベロープなしDNA型、及びエンベロープありDNA型のいずれのタイプのウィルスに対しても防除作用を有する。そのため、本発明のミネラル機能水を使用する防除方法によれば、ウィルスのタイプに制限されず、任意のウィルスの防除に適用できる。
 好適な防除対象ウィルスを例示すると、インフルエンザウィルス、エボラウィルス、口蹄疫ウィルス、ノロウィルス、ポリオウィルス、ヒト免疫不全ウィルス、SARSコロナウィルス、A型肝炎ウィルス、C型肝炎ウィルス、風疹ウィルス、麻疹ウィルス、日本脳炎ウィルス、ダニ媒介性脳炎ウィルス、狂犬病ウィルス、デングウィルス、アレナウィルス、およびハンタウィルスからなる群より選ばれる1以上のウィルスが挙げられる。
 また、家畜への伝染病の観点からは、好適な防除対象ウィルスは、口蹄疫ウィルス、牛鼻炎Bウィルス、牛パラインフルエンザウィルス、牛アデノウィルスおよび牛伝染性鼻気管炎ウィルスからなる群より選ばれる1以上のウィルスが挙げられる。
 本発明のミネラル機能水は、ウィルス防除作用と共に、細菌や真菌等の単細胞生物に対する防除作用も有する特徴的な成分である。なお、一般に細菌や真菌等の単細胞生物に対する防除作用を有する成分は、ウィルスに対する効力を有していないことがほとんどである。そのため、本発明のウィルス防除用組成物は、通常、抗菌剤、抗カビ剤等とその作用機序が明確に異なるものと推測される。
(2-1):単細胞生物及び/又はウィルスの防除方法
 上記「(2-1a)本発明のミネラル機能水を、防除対象の単細胞生物及び/又はウィルスに施用する、防除方法」、及び「(2-1b)本発明のミネラル機能水の、単細胞生物及び/又はウィルスの防除のための使用。」は同義であり、以下、本発明の単細胞生物及び/又はウィルスの防除方法(以下、「本発明の防除方法」)と称す。
 本発明の防除方法は、上記本発明のミネラル機能水の有効量を、防除対象の単細胞生物やウィルスに施用することを特徴とする。本発明のミネラル機能水は、ヒト及び/又は動物に対する感染性疾病の原因となる単細胞生物やウィルスに対する防除作用を有するため、この防除作用を利用して単細胞生物やウィルスを防除する。
 なお、本発明の防除方法における「(ミネラル機能水の)有効量」は、本発明のミネラル機能水を、対象となる単細胞生物やウィルスに施用した際に、単細胞生物やウィルスの不活性化作用、又は、単細胞生物やウィルスの増殖抑制作用のいずれかが発現する量を意味する。
 また、本発明のミネラル機能水の特徴のひとつとして、防除対象の単細胞生物やウィルスの生息場所に施用した直後のみならず、その後の有為な期間、防除効果が持続し、防除対象となる単細胞生物やウィルスの増加が認められないことが挙げられる。防除効果が持続する期間は、防除対象となる単細胞生物やウィルスの種類や、ミネラル機能水の施用量にもよるが、好適な条件であれば、数日間から一週間程度の防除作用が認められる。
 なお、本発明の防除方法の対象となる動物として、家畜用動物のみならず、イヌ、ネコなどの愛玩動物も含まれるが、特に家畜への適用が好ましい。家畜として特に制限はないが、例えばウシ、ウマ、ブタ、ヒツジ、ヤギ、ニワトリ等が挙げられる。
 本発明の防除方法は、防除対象の単細胞生物及び/又はウィルスに施用する、防除方法であり、本発明のミネラル機能水をヒト及び/又は動物に直接的に作用させる方法と、本発明のミネラル機能水をヒト及び/又は動物に間接的に作用させる方法とに大別される。
 すなわち、本発明のミネラル機能水を直接あるいは間接的に作用させて、感染性疾病の原因となる単細胞生物やウィルスを防除し、感染が懸念されるヒトや動物への感染性疾病の予防することができる。また、単細胞生物やウィルスを防除することにより、感染性疾病の改善、治療効果も期待される。
 以下、本発明の防除方法におけるそれぞれの方法について説明する。
(直接的に作用させる方法)
 本発明のミネラル機能水をヒト及び/又は動物に直接的に作用させる方法として、より具体的には、本発明のミネラル機能水をヒト及び/又は動物の皮膚や粘膜に直接噴霧する方法や皮膚や粘膜に塗布する方法などが挙げられる。この場合、本発明のミネラル機能水は液状物として使用することが好ましい。
 当該方法では、ヒト及び/又は動物の皮膚や粘膜の単細胞生物やウィルスを防除することができ、根本的な感染防止対策とすることができる。
 なお、本発明のミネラル機能水によって皮膚や粘膜を洗浄する方法についても、直接的に作用させる方法に含まれるものとする。特に対象がヒトの場合には、手や足、爪などにスプレー塗布し、単細胞生物やウィルスを洗浄しつつ、殺菌や不活性化する方法は好適な方法の一つである。
 特に家畜に用いる場合には、本発明のミネラル機能水を家畜の体表に濡れるほど噴霧する方法は好適な方法の一つである。また、感染しやすい部位などにはスポンジなどで塗布したり、足場に水たまりを作り浸漬する方法も効果的である。また、上述のように本発明のミネラル機能水は安全であるため、家畜に噴霧した後でも、洗い流す必要はないという利点もある。
(間接的に作用させる方法)
 本発明のミネラル機能水をヒト及び/又は動物に間接的に作用させる方法としては、対象がヒトの場合には、ヒトが使用する用具や機材、例えば、農機具、車両、長靴、作業服等に本発明のミネラル機能水を接触させる方法が挙げられる。本発明のミネラル機能水を接触させる方法は特に限定はないが、噴霧、散布、塗布などが挙げられる。
 また、対象が家畜の場合は、家畜舎等の家畜の生息場所や、家畜の排出される糞尿、ゴミ類等の集積場所にたいして、本発明のミネラル機能水を接触させる方法が挙げられる。
 また、対象がイヌ、ネコ等の愛玩動物の場合には、ヒトの場合と同様の用具や機材及びペット用の遊戯具、小屋などが挙げられる。
 また、本発明のミネラル機能水を間接的に作用させる方法としてヒトや動物が使用する建物や、家畜を飼育する家畜舎などの空間にミスト状に噴霧する方法も好適な方法である。この方法では、空気感染の予防をおこなうことができるので、防除対象の単細胞生物やウィルスの発生の予防や増殖抑制に効果的である。
 このように、本発明の防除方法によれば、ヒトや動物への単細胞生物やウィルスに由来する感染性疾病を予防することができ、さらには感染性疾病の改善が期待できる。
(2-2)単細胞生物及び/又はウィルスの防除用の組成物
 本発明の単細胞生物及び/又はウィルスの防除用組成物(以下、「本発明の防除用組成物」)は、本発明のミネラル機能水を含有する。
 本発明の防除用組成物は、医薬部外品又は医薬品として使用することができ、その有効量を薬学的に許容される担体とともに配合し、固形製剤又は液状製剤として経口又は非経口的に投与することができる。剤形は通常の経口投与または非経口投与に使用されるものならどのような剤形でもよい。
 経口投与または非経口投与に利用される剤形としては、具体的には、固形製剤として、粉末剤、顆粒剤、錠剤、カプセル剤、トローチ等が挙げられる。また、液状製剤として内用液剤、外用液剤、懸濁剤、乳剤、シロップ剤、注射液、輸液等が例示され、これら剤形やその他の剤形が目的に応じて適宜選択される。これらの製剤は製剤上の常套手段により調製することができる。
 また、本発明の防除用組成物は、有効成分であるミネラル機能水が、対象となる単細胞生物やウィルスに対する防除作用を発現するのに十分な割合含まれていればよく、特に制限されず、任意の形態または種類をとることができる。そのため、医薬部外品又は医薬品以外にも、例えば、機能性食品、動物用飼料等として用いることができる。
<3.ミネラル機能水の製造方法>
 電磁波放射作用を有するミネラル成分を含有するミネラル機能水(以下、「本発明のミネラル機能水」と称する場合がある。)は、製造方法は特に限定されないが、好適には上記特許文献2(特開2011-56366号公報)で開示された装置を使用して、同文献で開示された方法に準じる方法で製造することができる。
 なお、この製造装置を使用する製造方法以外にも、電磁波放射作用を有するミネラル成分を含有するミネラル機能水を得られるならば、製造方法は限定されない。
 以下、特許文献2(特開2011-56366号公報)で開示された装置を使用する、本発明のミネラル機能水の製造方法の好適な実施形態について、図面を参照して説明する。
 図1に示すように、ミネラル機能水製造設備1は、ミネラル含有水(A)製造装置2と、ミネラル含有水(B)製造装置3と、ミネラル含有水(A)製造装置2で製造されたミネラル含有水(A)44にミネラル含有水(B)製造装置3で製造されたミネラル含有水(B)45を混合してミネラル機能水47を形成する混合手段である混合槽46と、を備えている。
 ミネラル含有水(A)製造装置2は、水道から供給される水11と後述するミネラル付与材(A)12(図4参照)を原料として原料ミネラル水溶液(A)41を形成する原料ミネラル水溶液製造手段10と、原料ミネラル水溶液製造手段10で得られた原料ミネラル水溶液(A)41に遠赤外線を照射してミネラル含有水(A)44に変化させる遠赤外線発生手段43と、を備えている。
 ミネラル含有水(B)製造装置3は、外部から供給される水Wを通水容器51~56に通過させることによってミネラル付与材から溶出したミネラル成分を含有するミネラル含有水(B)45を形成する機能を有する。
 以下、ミネラル含有水(A)製造装置2及びミネラル含有水(B)製造装置3について詳細に説明する。
(3-1:ミネラル含有水(A)製造装置)
 次に、図2~図6に基づいて、図1に示すミネラル機能水製造設備1を構成するミネラル含有水(A)製造装置2について説明する。図1に示すように、ミネラル含有水(A)製造装置2は、水道から供給される水11と後述するミネラル付与材(A)12(図4参照)を原料として原料ミネラル水溶液(A)41を形成する原料ミネラル水溶液製造手段10(図2参照)と、原料ミネラル水溶液製造手段10で得られたミネラル含有水(A)溶液41に遠赤外線を照射してミネラル含有水(A)44に変化させる遠赤外線発生手段43(図6参照)と、を備えている。
 図2,図3に示すように、原料ミネラル水溶液製造手段10は、水11及びミネラル付与材(A)12を収容可能な反応容器13と、絶縁体14で被覆された状態で反応容器13内の水11に浸漬された導電線15と、反応容器13内の水11に超音波振動を付与するための超音波発生手段16と、導電線15に直流電流DCを導通させるための直流電源装置17と、導電線15の周囲の水11に直流電流DCと同方向の水流Rを発生させる手段である循環経路18a,18b及び循環ポンプPと、を備えている。直流電源装置17、超音波発生手段16及び循環ポンプPはいずれも一般の商用電源からの給電により作動する。
 反応容器13は、上面が開口した倒立円錐筒状であり、その頂点に相当する底部には排水口19が設けられ、この排水口19には循環ポンプPの吸込口P1に連通する循環経路18aが接続され、排水口19直下には循環経路18aへの排水量を調節するための開度調節バルブ20と、反応容器13内の水などを排出するための排水バルブ21が設けられている。
 循環ポンプPの吐出口P2には循環経路18bの基端部が接続され、循環経路18bの先端部は収容槽22に接続されている。収容槽22外周の底部付近には、収容槽22内の水11を反応容器13内へ送り込むための循環経路18cの基端部が接続され、循環経路18cの先端部は反応容器13の開口部に臨む位置に配管されている。循環経路18cには、収容槽22から反応容器13へ送り込む水量を調節するための開度調節バルブ23が設けられている。
 収容槽22の底部には、排水バルブ25及び水温計26を有する排水管24が垂下状に接続されている。必要に応じて排水バルブ25を開くと、収容槽22内の水が排水管24の下端部から排出することができ、このとき排水管24を通過する水11の温度を水温計26で計測することができる。
 図5に示すように、導電線15とこれを被覆する絶縁体14からなる複数の導電ケーブル29(29a~29g)はそれぞれ反応容器13内の深さの異なる複数位置に円環状をなすように配線され、これらの円環状の導電ケーブル29a~29gはいずれも反応容器13と略同軸上に配置されている。それぞれの導電ケーブル29a~29gの内径は倒立円錐筒状の反応容器13の内径に合わせて段階的に縮径しており、それぞれの配置箇所に対応した内径となっている。各導電ケーブル29a~29gは、反応容器13の壁体13aに設けられた絶縁性のターミナル30に着脱可能に結線されているため、必要に応じて、円環状の部分をターミナル30から取り外したり、取り付けたりすることができる。
 反応容器13内の軸心に相当する部分には、絶縁性の網状体で形成された有底円筒状の収納容器31が配置され、この収納容器31内にミネラル付与材(A)12が充填されている。この収納容器31はその上部に設けられたフック31fにより、反応容器13の壁体13a上縁部に着脱可能に係止されている。
 図2に示すように、循環経路18a,18bの外周にはそれぞれ導電ケーブル29s,29tが螺旋状に巻き付けられ、これらの導電ケーブル29s,29tに対し、直流電源装置17から直流電流DCが供給される。導電ケーブル29s,29tを流れる直流電流DCの向きは循環経路18a,18b内を流動する水流の向きと略一致するように設定されている。
 原料ミネラル水溶液製造手段10において、反応容器13内及び収容槽22内に所定量の水11を入れ、ミネラル付与材(A)12が充填された収納容器31を反応容器13内の中心にセットした後、循環ポンプPを作動させるとともに、反応容器13底部の開度調節バルブ20及び循環経路18cの開度調節バルブ23を調節して、反応容器13から排水口19、循環経路18a、循環ポンプP、循環経路18b、収容槽22及び循環経路18cを経由して再び反応容器13の上部に戻るように水11を循環させる。そして、直流電源装置17、超音波発生手段16を作動させると、収納容器31内のミネラル付与材(A)12から水11へのミネラル成分の溶出反応が始まる。
 原料ミネラル水溶液製造手段10を使用して原料ミネラル水溶液(A)を製造する際の作業条件は特に限定しないが、本実施形態では、以下の作業条件で原料ミネラル水溶液(A)の製造を行った。
(1)導電ケーブル29,29s,29tには電圧8000~8600V、電流0.05~0.1Aの直流電流DCを導通させた。なお、導電ケーブル29などを構成する絶縁体14はポリテトラフルオロエチレン樹脂で形成されている。
(2)反応容器13内に充填されたミネラル付与材(A)12は、水11に対し質量比で10~15%充填されている。ミネラル付与材(A)12の具体的な説明は後述する。
(3)水11は、直流電流DCが作用するように電解質を含むものであればよい。例えば、水100リットルに対して、電解質である炭酸ナトリウムを10g程度溶解したものなどを使用しているが、地下水であればそのまま使用することができる。
(4)超音波発生手段16は周波数30~100kHzの超音波を発生するものであり、その超音波振動部(図示せず)が反応容器13内の水11に直接触れて加振するように超音波発生手段16を配置している。
 このような条件で原料ミネラル水溶液製造手段10を稼働させると、反応容器13内には、左ねじ方向に回転しながら排水口19に吸い込まれる水流Rが発生し、排水口19から排出された水11は、前述した循環経路18a,18bなどを経由して、再び、反応容器13内へ戻るという状態が継続される。
 従って、水流Rによる撹拌作用、導電ケーブル29を流れる直流電流の作用及び超音波発生手段16が水11に付与する超音波振動により、ミネラル付与材(A)12からミネラル成分が速やかに水11中に溶出して、必要とするミネラル成分が適度に溶け込んだ原料ミネラル水溶液(A)を効率良く製造することができる。
 原料ミネラル水溶液製造手段10においては、円環状をした複数の導電ケーブル29a~29gを反応容器13内に略同軸上に配線するとともに、反応容器13内で左ねじ方向に回転する水流Rを発生させている。従って、一定容積の反応容器13内に比較的密状態の電気エネルギーの場を形成することができ、比較的小さな容積の反応容器13内で効率良く原料ミネラル水溶液(A)を製造することができる。
 また、反応容器13は倒立円錐筒状であるため、円環状をした複数の導電ケーブル29a~29gに沿って流動する水流Rを比較的容易且つ安定的に発生させることができ、これによってミネラル成分の溶出が促進される。また、倒立円錐筒状の反応容器13内を流動する水流Rは、反応容器13底部の排水口19に向かうにつれて流速が増大するため、ミネラル付与材(A)12との接触頻度も増大し、水11中に存在する自由電子eを捕捉してイオン化するミネラル量を増加させることができる。
 さらに、循環経路18b,18cの間に水11を貯留しながら排出する収容槽22を設けているため、反応容器13の容積を超える分量の水11を循環させながらミネラル溶出反応を進行させることが可能である。このため、原料ミネラル水溶液(A)を効率良く大量生産することができる。
 循環ポンプPを連続運転して、これらの反応を継続させると、最終的にはミネラル成分が溶出した原料ミネラル水溶液(A)が生成される。反応容器13底部の排水口19の大きさ、循環水量の多少、反応容器13の形状(特に、図2に示す軸心Cと壁体13aとの成す角度γ)などにより、水11中における自由電子eの出現状況をコントロールすることができ、ミネラル付与材(A)12に自由電子eが与える作用により、ミネラル成分の水溶性が左右される。
 原料ミネラル水溶液(A)が形成されたら、この原料ミネラル水溶液(A)41を、図6に示す処理容器40内へ移す。この場合、反応容器13内において収納容器31から漏出したミネラル付与材(A)12の残留物は反応容器13の底部にある排水バルブ21から排出することができる。処理容器40内に収容した原料ミネラル水溶液(A)41は、撹拌羽根42でゆっくりと撹拌しながら、処理容器40内部に配置された遠赤外線発生手段43により遠赤外線を照射する。
 なお、遠赤外線発生手段43は、波長6~14μm程度の遠赤外線を発生するものであれば良く、材質や発生手段などは問わないので、加熱方式であってもよい。ただし、25℃において、6~14μm波長域の黒体放射に対して85%以上の放射比率を有するものが望ましい。
 図2に示す原料ミネラル水溶液製造手段10においては、水流Rによる撹拌作用、導電線15を流れる直流電流DCの作用及び超音波振動により、ミネラル付与材(A)12に含まれるミネラル成分が速やかに水11中に溶出して、必要とするミネラル成分が適度に溶け込みミネラル水溶液41を効率良く製造することができる。
 そして、図6に示す遠赤外線発生手段43において、ミネラル水溶液41に遠赤外線を照射することにより、溶解したミネラル成分と水分子とが融合して電気陰性度の高まったミネラル含有水(A)44が形成される。
 ミネラル含有水(A)製造装置2において、前述した工程により形成されたミネラル含有水(A)44は、図1に示すように、送水経路57yを経由して混合槽46へ送り込まれ、混合槽46内において、ミネラル含有水(B)製造装置3から送り込まれたミネラル含有水(B)45と混合される。
 以下、ミネラル付与材(A)について説明する。
 ミネラル付与材(A)は、キク科の草木植物及びバラ科の草木植物からなる草木植物原料、並びにカエデ、白樺、松及び杉から選択される1種以上の木本植物からなる木本植物原料を含有する。使用される部位は、葉部、茎部、花部、樹皮部等のミネラル成分が溶出しやすい部位が適宜選択され、そのまま用いてもよいが、乾燥物として用いてもよい。
 なお、キク科及びバラ科以外の草木植物以外にも他の草木植物を含んでもよいが、キク科及びバラ科の草木植物のみであることが好ましい。例えば、理由は不明であるが、アブラナ科やマツ科の草木植物を加えると、本発明のミネラル機能水の有用な効能のひとつである単細胞生物の防除作用が大きく低下する。
 ミネラル付与材(A)として、ミネラル付与材(A')が挙げられる。ミネラル付与材(A')は、前記草木植物原料として、野アザミ(葉部、茎部及び花部):8~12重量%、ヨモギ(葉部及び茎部)、ツワブキ(葉部及び茎部)を、それぞれ8~12重量%、55~65重量%、27~33重量%となる割合で混合し、乾燥させた後に粉砕したキク科植物の乾燥粉砕物、及び、
 ノイバラ(葉部、花部)、ダイコンソウ(葉部及び茎部)、キイチゴ(葉部、茎部及び花部)を、それぞれ17~23重量%、8~12重量%、65~75重量%の割合で混合し、乾燥させた後に粉砕したバラ科植物の乾燥粉砕物を使用し、
 当該キク科植物の乾燥粉砕物とバラ科植物の乾燥粉砕物とを、1:0.8~1:1.2(重量比)で混合して得られる草木植物原料(A1)と、
 前記木本植物原料として、カエデ(葉部及び茎部)、白樺(葉部、茎部、及び樹皮部)、杉(葉部、茎部、及び樹皮部)を、それぞれ22~28重量%、22~28重量%、45~55重量%となる割合で混合し、乾燥させた後に粉砕した乾燥粉砕物からなる木本植物原料(A2)とを、
 草木植物原料(A1)と木本植物原料(A2)の重量比で1:2.7~1:3.3となるように混合して得られるミネラル付与材である。
 ミネラル付与材(A')の中でも、特には前記草木植物原料として、野アザミ(葉部、茎部及び花部)、ヨモギ(葉部及び茎部)、ツワブキ(葉部及び茎部)を、それぞれ10重量%、60重量%、30重量%となる割合で混合し、乾燥させた後に粉砕したキク科植物の乾燥粉砕物、及び、ノイバラ(葉部、花部)、ダイコンソウ(葉部及び茎部)、キイチゴ(葉部、茎部及び花部)を、それぞれ20重量%、10重量%、70重量%の割合で混合し、乾燥させた後に粉砕したバラ科植物の乾燥粉砕物を、1:1(重量比)で混合して得られる草木植物原料(A1)と、
 前記木本植物原料として、カエデ(葉部及び茎部)、白樺(葉部、茎部、及び樹皮部)、杉(葉部、茎部、及び樹皮部)を、それぞれ25重量%、25重量%、50重量%となる割合で混合し、乾燥させた後に粉砕した乾燥粉砕物からなる木本植物原料(A2)とを、草木植物原料(A1)と木本植物原料(A2)の重量比で1:3となるように混合して得られるミネラル付与材であることが好ましい。
 このような草木植物原料(A1)として、株式会社理研テクノシステム製「P-100(品番)」、木本植物原料(A2)として、株式会社理研テクノシステム製「P-200(品番)」を好適に使用することができる。
(3-2:ミネラル含有水(B)製造装置)
 次に、図1,図7に基づいて、ミネラル含有水(B)製造装置3の構造、機能などについて説明する。
 図1,図7に示すように、ミネラル含有水(B)製造装置3は、互いに種類の異なるミネラル付与材(B)が充填された第1通水容器51~第6通水容器56と、第1通水容器51~第6通水容器56を直列に連通する送水経路57と、第1通水容器51~第6通水容器56とそれぞれ並列した状態で送水経路57に連結された迂回水路51p~56pと、各迂回水路51p~56pと送水経路57との分岐部にそれぞれ設けられた水流切替弁51v~56vと、を備えている。
 水流切替弁51v~56vの切替操作は、これらの水流切替弁51v~56vと信号ケーブル59で結ばれた操作盤58に設けられた6個の切替ボタン51b~56bを操作することによって実行することができる。6個の切替ボタン51b~56bと6個の水流切替弁51v~56vとがそれぞれの番号ごとに対応しているので、切替ボタン51b~56bの何れかを操作すれば、それと対応する番号の水流切替弁51v~56vが切り替わり、水流方向を変えることができる。
 ここで、ミネラル付与材(B)51m~56mは、好適には石灰石、化石サンゴ、貝殻をベースとした原料を混合して製造することができる。
 まず、石灰石、化石サンゴ、貝殻に含まれる成分を分析し、それぞれに二酸化ケイ素、酸化鉄、活性炭、窒化チタン、炭酸カルシウム、炭酸マグネシウム、リン酸カルシウムの量を評価する。そして、各成分の含有量を基に、石灰石、化石サンゴ、貝殻を混合し、ミネラル付与材(B)51m~56mを製造する。
 なお、上記ミネラル付与材(B)51m~56mは、石灰石、化石サンゴ、貝殻の混合比によって含有する成分をコントロールすることが望ましいが、原料とする石灰石、化石サンゴ、貝殻は、産地によって含有される成分が不足する場合があるので、必要に応じて二酸化ケイ素、酸化鉄、活性炭、窒化チタン、炭酸カルシウム、炭酸マグネシウム、リン酸カルシウムを追加してもよい。特に活性炭は、石灰石、化石サンゴ、貝殻にほとんど含まれないため、通常、別途追加する。
 ミネラル付与材(B)51m~56mとして、
 第1通水容器51内のミネラル付与材(B1)が、石灰石、化石サンゴ、貝殻をそれぞれ70重量%、15重量%、15重量%を含む混合物、
 第2通水容器52内のミネラル付与材(B2)が、石灰石、化石サンゴ、貝殻、活性炭をそれぞれ40重量%、15重量%、40重量%、5重量%を含む混合物、
 第3通水容器53内のミネラル付与材(B3)が、石灰石、化石サンゴ、貝殻をそれぞれ80重量%、15重量%、5重量%を含む混合物、
 第4通水容器54内のミネラル付与材(B4)が、石灰石、化石サンゴ、貝殻をそれぞれ90重量%、5重量%、5重量%を含む混合物、
 第5通水容器55内のミネラル付与材(B5)が、石灰石、化石サンゴ、貝殻をそれぞれ80重量%、10重量%、10重量%を含む混合物、
 第6通水容器56内のミネラル付与材(B6)が、石灰石、化石サンゴ、貝殻を60重量%、30重量%、10重量%を含む混合物、であると、ミネラル含有水(A)と混合させた際に優れた防除作用を発現するミネラル含有水(B)を得ることができる。
 特に、ミネラル付与材(B1)~(B6)に使用される、石灰石、化石サンゴ、貝殻が、以下の(1-1)~(1-3)であることが好ましい。
(1-1)石灰石:
下記成分を含む火山性鉱床が混在する石灰岩を粉砕した、3cm程度の小石状物
   炭酸カルシウム:50重量%以上
   酸化鉄:3~9重量%の鉄
   酸化チタン、炭化チタン、窒化チタンの合計:0.8重量%以上
   炭酸マグネシウム:7~10重量%
 このような石灰石として、株式会社理研テクノシステム製「CC-200(品番)」を好適に使用することができる。
(1-2)化石サンゴ:
下記2種類の化石サンゴを1:9の重量比で混合し、3~5mmに粉砕した粒状物
   地下約100メートルより産出し重圧により結晶組成が変性した化石サンゴ。
   沖縄奄美大島付近の陸地から産出する化石サンゴ(炭酸カルシウムやリン酸カルシウムその他微量元素を含む)
 このような化石サンゴとして、株式会社理研テクノシステム製「CC-300(品番)」を好適に使用することができる。
(1-3)貝殻:
   アワビ、トコブシ、フジツボを同じ重量で混合し3~5mmに粉砕した粒状物
 このような貝殻として、株式会社理研テクノシステム製「CC-400(品番)」を好適に使用することができる。
(1-4)活性炭
   活性炭は、任意の原料から製造したものを使用することができるが、好ましくはヤシガラを原料として製造した活性炭が挙げられる。例えば、タイ産のヤシガラを原料とした、株式会社理研テクノシステム製「CC-500(品番)」が挙げられる。
 前述した操作盤58の切替ボタン51b~56bを操作して、水流切替弁51v~56vを通水容器側へ切り替えれば、送水経路57を流れてきた水は、操作された水流切替弁より下流側にある第1通水容器51~第6通水容器56内へ流れ込み、水流切替弁51v~56vを迂回水路側へ切り替えれば、送水経路57を流れてきた水は、操作された水流切替弁より下流側の迂回水路51p~56pへ流れ込む。従って、切替ボタン51b~56bの何れかを操作して水流切替弁51v~56vを選択的に切り替えることにより、第1通水容器51~第6通水容器56ごとに異なるミネラル付与材(B)51m~56mから溶出するミネラル成分を選択的に溶け込ませたミネラル含有水(B)45を形成することができる。
 次に、図8~図11に基づいて、実際のミネラル含有水(B)製造装置3の構造、機能などについて説明する。なお、図8~図10においては、前述した迂回水路51p~56p,水流切替弁51v~56v,操作盤58及び信号ケーブル59を省略している。
 図8,図9に示すように、ミネラル含有水(B)製造装置3は、架台60に搭載された略円筒形状の第1通水容器51~第6通水容器56と、これらの第1通水容器51~第6通水容器56を直列に連通する送水経路57と、を備え、水道から供給される水Wを貯留するための原水タンク63が架台60の最上部に配置されている。原水タンク63内には、水W中の不純物を吸着する機能を有する無機質多孔体64が収容されている。架台60の底部には複数のキャスタ61及びレベルアジャスタ62が設けられている。略円筒形状の第1通水容器51~第6通水容器56は、それぞれの軸心51c~56c(図9参照)を水平方向に保った状態で、直方体格子構造の架台60に搭載されている。第1通水容器51~第6通水容器56は架台60対し着脱可能である。
 図10に示すように、第1通水容器51~第6通水容器56はいずれも同じ構造であり、円筒形状の本体部51a~56aの両端部に設けられたフランジ部51f~56fに円板状の蓋体51d~56dを取り付けることにより気密構造が形成されている。軸心51c~56cが水平状態のとき本体部51a~56aの最下部に位置する箇所に、送水経路57と連通する入水口57aが設けられ、入水口57aから遠い方の蓋体51d~56dの最上部に、送水経路57と連通する出水口57bが設けられ、出水口57bにはメッシュストレーナ57cが取り付けられている。本体部51a~56a外周の出水口57b直上部分には、第1通水容器51~第6通水容器56内のエアを逃がすための自動エア弁57dが取り付けられている。
 上流側の送水経路57から供給された水は入水口57aを通過して第1通水容器51~第6通水容器56内へ流入し、それぞれの内部に充填されたミネラル付与材(B)51m~56mと接触することにより各ミネラル成分が水中へ溶出するので、それぞれのミネラル付与材(B)51m~56mに応じたミネラル成分を含有した水となって出水口57bから下流側の送水経路57へ流出する。
 図8~図10に示すミネラル含有水(B)製造装置3においては、図7に示す操作盤58の切替ボタン51b~56bの何れかを操作して、原水タンク63の水Wを、第1通水容器51~第6通水容器56の1個以上に通過させことにより、第1通水容器51から第6通水容器56にそれぞれ充填されたミネラル付与材(B)51m~56mにそれぞれ含まれている特徴あるミネラル成分を選択的に溶け込ませたミネラル含有水(B)45を形成することができる。
 また、ミネラル含有水(B)製造装置3においては、第1通水容器51~第6通水容器56が送水経路57で直列に連結されているため、当該送水経路57に連続的に水を流すことにより、第1通水容器51~第6通水容器56内のミネラル付与材(B)51m~56mに応じたミネラル成分が溶け込んだミネラル含有水(B)45を大量生産することができる。
 なお、ミネラル含有水(B)製造装置3において形成されたミネラル含有水(B)45は、第6通水容器56より下流側の送水経路57xを経由して混合槽46内へ送り込まれ、その内部において、図1に示すミネラル含有水(A)製造装置2で製造されたミネラル含有水(A)44と混合されることによってミネラル機能水47が形成される。
 ミネラル含有水(A)とミネラル含有水(B)の配合割合は、ミネラル含有水(A)及びミネラル含有水(B)に含まれる原料の種類、溶出する成分濃度を考慮して適宜決定されるが、ミネラル含有水(A)とミネラル含有水(B)との重量比([ミネラル含有水(A)]:[ミネラル含有水(B)])で、1:5~1:20の範囲であり、好適には1:7~1:12の範囲、より好適には1:10の範囲である。
 ミネラル含有水(A)が少なすぎる(ミネラル含有水(B)が多すぎる)場合、及びミネラル含有水(A)が多すぎる(ミネラル含有水(B)が少なすぎる)場合には、ミネラル機能水の有効成分が希釈されて目的とする作用が不十分になるおそれがある。
 以上、本発明のミネラル機能水の製造方法の好適な実施形態を説明したが、上述した構成を有する本発明のミネラル機能水が製造できればよく、上記好適な実施形態以外にも様々な構成を採用することもでき、制限的なものではないと考えられるべきである。特に、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
<1.ミネラル機能水の製造>
 ミネラル機能水として上記本発明の実施形態で説明したミネラル機能水製造装置を用い、上述した製造方法にて、以下の原料及び方法で製造した実施例1のミネラル機能水を用いた。
1.ミネラル含有水(A)の製造
 ミネラル付与材(A)の原料として、草木植物原料(A1)として、株式会社理研テクノシステム製「P-100(品番)」、木本植物原料(A2)として、株式会社理研テクノシステム製「P-200(品番)」を使用した。
 「P-100」は、以下のキク科植物の乾燥粉砕物及びバラ科植物の乾燥粉砕物を1:1(重量比)で混合した草木植物原料(A1)であり、「P-200」は、以下に記載の木本植物原料(A2)である。

(A1)草木植物原料(草木植物の乾燥物)
(A1-1)キク科植物の乾燥粉砕物
 野アザミ(葉部、茎部及び花部)、ヨモギ(葉部及び茎部)、ツワブキ(葉部及び茎部)を、それぞれ10重量%、60重量%、30重量%となる割合で混合し、乾燥させた後に粉砕させたもの。
(A1-2)バラ科植物の乾燥粉砕物
 ノイバラ(葉部、花部)、ダイコンソウ(葉部及び茎部)、キイチゴ(葉部、茎部及び花部)を、それぞれ20重量%、10重量%、70重量%の割合で混合し、乾燥させた後に粉砕させたもの。

(A2)木本植物原料(木本植物の乾燥物)
 カエデ(葉部及び茎部)、白樺(葉部、茎部、及び樹皮部)、杉(葉部、茎部、及び樹皮部)を、それぞれ25重量%、25重量%、50重量%となる割合で混合し、乾燥させた後に粉砕させたもの。
 上記草木植物原料(A1)と木本植物原料(A2)を、1:3(重量比)で混合したミネラル付与材(A)を、図1に示すミネラル含有水(A)製造装置2における、原料ミネラル水溶液製造手段10(図2参照)に水に対して10~15重量%になるように入れ、原料ミネラル水溶液製造手段10の導電線に直流電流(DC8300V、100mA)を導通させ、導電線の周囲の水に直流電流と同方向の水流を発生させ、前記水に超音波振動(発振周波数50kHz、振幅1.5/1000mm)を付与して原料ミネラル水溶液(A)を形成した。次いで、後段の遠赤外線発生手段43に供給された原料ミネラル水溶液(A)に遠赤外線(波長6~14μm)を照射することにより実施例1のミネラル含有水(A)を得た。
2.ミネラル含有水(B)の製造
 ミネラル付与材(B)の原料としては、石灰石、化石サンゴ、貝殻、活性炭を粉砕・混合した混合物を使用した。ミネラル付与材(B)の原料及び第1~6通水容器で使用した混合物(ミネラル付与材(B1)~(B6))は、以下の通りである。

(1)原料
(1-1)石灰石:株式会社理研テクノシステム製「CC-200(品番)」
下記成分を含む火山性鉱床が混在する石灰岩を粉砕した、3cm程度の小石状物
   炭酸カルシウム:50重量%以上
   酸化鉄:3~9重量%の鉄
   酸化チタン、炭化チタン、窒化チタンの合計:0.8重量%以上
   炭酸マグネシウム:7~10重量%

(1-2)化石サンゴ:株式会社理研テクノシステム製「CC-300(品番)」
下記2種類の化石サンゴを1:9の重量比で混合し、3~5mmに粉砕した粒状物
・地下約100メートルより産出し重圧により結晶組成が変性した化石サンゴ。
・沖縄奄美大島付近の陸地から産出する化石サンゴ(炭酸カルシウムやリン酸カルシウムその他微量元素を含む)

(1-3)貝殻:株式会社理研テクノシステム製「CC-400(品番)」
・アワビ、トコブシ、フジツボを同じ重量で混合し3~5mmに粉砕した粒状物

(1-4)活性炭(第2通水容器のみ使用):株式会社理研テクノシステム製「CC-500(品番)」

(2)第1~6通水容器での使用割合
・第1通水容器: 
 ミネラル付与材(B1):石灰石、化石サンゴ、貝殻をそれぞれ70重量%、15重量%、15重量%混合したもの
・第2通水容器: 
 ミネラル付与材(B2):石灰石、化石サンゴ、貝殻、活性炭をそれぞれ40重量%、15重量%、40重量%、5重量%混合したもの(二酸化ケイ素と活性炭に相当)
・第3通水容器: 
 ミネラル付与材(B3):石灰石、化石サンゴ、貝殻をそれぞれ80重量%、15重量%、5重量%混合したもの
・第4通水容器: 
 ミネラル付与材(B4):石灰石、化石サンゴ、貝殻をそれぞれ90重量%、5重量%、5重量%混合したもの
・第5通水容器: 
 ミネラル付与材(B5):石灰石、化石サンゴ、貝殻をそれぞれ80重量%、10重量%、10重量%混合したもの
・第6通水容器: 
 ミネラル付与材(B6):石灰石、化石サンゴ、貝殻をそれぞれ60重量%、30重量%、10重量%混合したもの
 図1の構成のミネラル含有水(B)製造装置3において、上記ミネラル付与材(B1)~(B6)を使用した第1~6通水容器に水を流通させることにより、ミネラル含有水(B)を得た。(B1)~(B6)はそれぞれ50kg(合計300kg)であり、流通させる水の量は1000kg、流速は500mL/40sで設定した。
 上記方法で形成した実施例1のミネラル含有水(A)とミネラル含有水(B)とを1:10(重量比)となるように混合して、実施例1のミネラル機能水を得た。実施例1のミネラル機能水をpHメータ(東興化学研究所製 ガラス電極式水素イオン濃度指示計 TPX-90)で測定したところ、pH12.5であった。
 なお、実施例1のミネラル機能水は、株式会社理研テクノシステム製ミネラル機能水CAC-717(テラ・プロテクト(商品名)、CAC-717(品番)、開発品番号CA-C-01)に相当する。
(分光放射率の評価)
 セラミック担体に対し、実施例1のミネラル機能水を固定化した試料の分光放射率は、遠赤外線輻射率測定装置(日本電子(株)製JIR-E500)で測定した。当該装置は、フーリエ変換型赤外線分光光度計(FTIR)本体と、黒体炉、試料加熱炉、温度コントローラおよび付属光学系から構成される。
 分光放射率の評価試料は以下の手順で作製した。
 担持用のセラミック粉末(天草大矢野島産出の岩石粉末)100重量部に対し、実施例1のミネラル機能水20重量部を含水させ粘土状態にした。これを厚み5mm程度、直径2cmの円形の表面が平らな板状に加工し、1000℃で焼成することにより、試料(ミネラル機能水)に含まれるミネラル成分が固定化された評価試料を得た。
 図12に、測定試料である実施例1のミネラル機能水の分光放射率スペクトル(測定温度:25℃、波長範囲:4~24μm)を示す。また、図12には、黒体の分光放射率スペクトル(理論値)も併せて示している。なお、図12において、縦軸目盛は放射エネルギーの強さであり、1平方cm当たりのW数で示している。また、「試料」の曲線は、黒体の曲線に近接しているほど放射能力が高いことを意味する。
 また、図13に、測定試料の分光放射率スペクトルと黒体の分光放射率スペクトル(理論値)から求めた放射比率(波長範囲:4~24μm)を示す。
 図13から、波長5~7μm間及び波長14~24μm間の平均放射比率を算出したところ、91.7%であった。
「比較例1」
 ミネラル含有水(A)の原料植物を代えたミネラル含有水(A)を使用した以外は、実施例1のミネラル機能水と同様にして比較例1のミネラル機能水を得た。
1.(比較例1用)ミネラル含有水(A)の製造
 ミネラル付与材(A)の原料として、草木植物原料(A1)として、カタバミ科 カタバミ(葉部)、ユキノシタ科 ユキノシタ(葉部、茎部及び花部)、アブラナ科 ニラ(葉部)の乾燥物をそれぞれ20重量%、20重量%、20重量%、木本植物原料(A2)として、銀杏科の銀杏(葉部)の乾燥物40重量%を混合してミネラル付与材(A)を得た。このように得られたミネラル付与材(A)を用いた以外は実施例1と同様にして、比較例1用のミネラル含有水(A)を得た。
 2.ミネラル含有水(B)の製造
 実施例1と同様の原料、方法でミネラル含有水(B)を得た。
 上記方法で形成したミネラル含有水(A)とミネラル含有水(B)とを1:10(重量比)となるように混合して、比較例1のミネラル機能水を得た。
 比較例1のミネラル機能水をpHメータで測定したところ、pH5.5であった。また、波長5~7μm間及び波長14~24μm間の平均放射比率は92.1%であった。
「比較例2」
 ミネラル含有水(A)の原料植物を代えたミネラル含有水(A)を使用した以外は、実施例1のミネラル機能水と同様にして比較例2のミネラル機能水を得た。
1.(比較例2用)ミネラル含有水(A)の製造
 ミネラル付与材(A)の原料として、草木植物原料(A1)として、キク科 ヨモギ(葉部及び茎部)、ツワブキ(葉部及び茎部)の乾燥物をそれぞれ10重量%、10重量%と、バラ科のヤマブキ(葉部、茎部、及び花部)、キンミズヒキ(葉部、茎部、及び花部)の乾燥物をそれぞれ10重量%、10重量%と、アブラナ科 ニラ(葉部)、クレソン(葉部)の乾燥物をそれぞれ10重量%、10重量%と、木本植物原料(A2)として、マツ科のマツ(葉部)の乾燥物20重量%を混合してミネラル付与材(A)を得た。
 このように得られたミネラル付与材(A)を用いた以外は実施例1と同様にして、比較例2用のミネラル含有水(A)を得た。
 2.ミネラル含有水(B)の製造
 実施例1と同様の原料、方法でミネラル含有水(B)を得た。
 上記方法で形成したミネラル含有水(A)とミネラル含有水(B)とを1:10(重量比)となるように混合して、比較例2のミネラル機能水を得た。
 比較例2のミネラル機能水をpHメータで測定したところ、pH3.5であった。また、波長5~7μm間及び波長14~24μm間の平均放射比率は89.4%であった。
<2.単細胞生物の防除試験>
  実施例1の単細胞生物防除用組成物として、実施例1のミネラル機能水(未希釈試料)を使用して、以下の菌(単細胞生物)の防除試験を行った。
 「評価1:黄色ブドウ球菌(Staphylococcus aureus)」
 滅菌済み1/500普通ブイヨン培地を用いて、黄色ブドウ球菌を、菌液濃度2.5×106個/mLに調製したものを試験菌液とした。
 実施例1のミネラル機能水100mLを滅菌済み三角フラスコに入れ、試験菌液を1mL滴下し、室温約25℃で1時間静置した。1時間静置後、三角フラスコ内の水溶液を手振りにて撹拌しりん酸緩衝生理食塩水にて適宜希釈し、混釈平板培養法にて1検体中1mL当たりの生菌数の測定を行った。比較例(対照)として、滅菌済みイオン交換水100mLに試験菌液を1mL滴下したものを用いた。
 実施例1及び比較例(対照)における、試験菌液を1mL滴下した直後、及び1時間後の1mL当たりの生菌数を表1に示す。
 ミネラル機能水を含まない比較例(対照)では、菌滴下直後と1時間後で生菌数にほとんど差異が認められなかった。一方、ミネラル機能水を含む実施例では菌滴下1時間後には生菌はほとんど認められなかった。この結果から、実施例1のミネラル機能水には、黄色ブドウ球菌に対する優れた防除作用があることが確認された。
Figure JPOXMLDOC01-appb-T000001
 「評価2:大腸菌(Escherichia coli)」
(評価2-1)
 滅菌済み1/500普通ブイヨン培地を用いて、大腸菌を、菌液濃度2.3×106個/mLに調製したものを試験菌液とした。
 実施例1のミネラル機能水100mLを滅菌済み三角フラスコに入れ、試験菌液を1mL滴下し、室温約25℃で1時間静置した。1時間静置後、三角フラスコ内の水溶液を手振りにて撹拌し、りん酸緩衝生理食塩水にて適宜希釈し、混釈平板培養法にて1検体中1mL当たりの生菌数の測定を行った。比較例(対照)として、滅菌済みイオン交換水100mLに試験菌液を1mL滴下したものを用いた。
 実施例1及び比較例(対照)における、試験菌液を1mL滴下した直後、及び1時間後の1mL当たりの生菌数を表2に示す。
 ミネラル機能水を含まない比較例(対照)では、菌滴下直後と1時間後で生菌数にほとんど差異が認められなかった。一方、ミネラル機能水を含む実施例では菌滴下1時間後には生菌はほとんど認められなかった。この結果から、実施例のミネラル機能水には、大腸菌に対する優れた防除作用があることが確認された。
Figure JPOXMLDOC01-appb-T000002
(評価2-2)
 比較例1のミネラル機能水を用いた以外は、評価2-1と同様の方法で生菌数の測定を行った。生菌数の測定は滴下直後、1日後、3日後、1週間後に行った。結果を表3に示す。1日目に少しの減少を認めたが、その後1週間には大腸菌の生菌数は増加し接種前の菌数に戻った。
Figure JPOXMLDOC01-appb-T000003
 「評価3:カンジダ(Candida albicans)」
 評価1,2と同様の方法で、実施例1のミネラル機能水のカンジダに対する防除作用を評価した。
滅菌済み1/500普通ブイヨン培地を用いて、カンジダを、菌液濃度1×106個/mLに調製したものを試験菌液とした。
 実施例1のミネラル機能水100mLを滅菌済み三角フラスコに入れ、試験菌液を1mL滴下し、室温約25℃で1時間静置した。1時間静置後、三角フラスコ内の水溶液を手振りにて撹拌し、りん酸緩衝生理食塩水にて適宜希釈し、混釈平板培養法にて1検体中1mL当たりの生菌数の測定を行った。生菌数の測定は滴下直後、1日後、3日後、1週間後に行った。また、比較例2のミネラル機能水を用いた同様の試験を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 「評価4:緑膿菌(Pseudomonas aeruginosa)」
 評価1,2と同様の方法で、実施例1のミネラル機能水の緑膿菌に対する防除作用を評価した。
滅菌済み1/500普通ブイヨン培地を用いて、カンジダを、菌液濃度1×106個/mLに調製したものを試験菌液とした。
 実施例1のミネラル機能水100mLを滅菌済み三角フラスコに入れ、試験菌液を1mL滴下し、室温約25℃で1時間静置した。1時間静置後、三角フラスコ内の水溶液を手振りにて撹拌し、りん酸緩衝生理食塩水にて適宜希釈し、混釈平板培養法にて1検体中1mL当たりの生菌数の測定を行った。生菌数の測定は滴下直後、1日後、3日後、1週間後に行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
<3.皮膚炎賞反応試験>
 実施例1のミネラル機能水の人体皮膚への接触による炎症診断を行った。
判定基準として、2009(平21) 日本皮膚科学会 接触皮膚炎診療ガイドライン委員会による基準(下記参考基準)に準じた。具体的には、実施例1のミネラル機能水を上腕皮膚に充分塗布し、その後6時間経過後に皮膚の状態を観察した。
 その結果、接触性皮膚炎及びアトピー性皮膚炎による疾患の発生は、パッチテスト結果や視覚観察等の総合判断により無いものと判断する。
 なお、実施例1のミネラル機能水の原料であるバラ科植物やキク科植物との皮膚接触で、皮膚炎症を起こすことがあるが、実施例1のミネラル機能水では皮膚炎症を起こさない。
<4.ウィルス活性阻害試験>
[評価1]
 実施例1のウィルス防除用組成物として、実施例1のミネラル機能水(未希釈試料)を使用して、以下の手順でインフルエンザウィルス活性阻害試験(赤血球凝集活性法)を行った。
 図14に赤血球凝集活性法の原理を示す模式図を示す。図14において、凝集とはインフルエンザウィルスに代表されるウィルス外膜に存在する抗原性夕ンパクが活性状態の場合、血液細胞の膜にこれが結合して細胞が互いに集まり、分散的にマイクロプレートの表面に付着する状態である。一方、非凝集とはインフルエンザウィルスの抗原性蛋白質が不活性となり、血液細胞の膜に結合できない状態となり、血腹は単に沈殿することを意味する。すなわち、赤い色の中心が認められれば非凝集と判断されウィルスの細胞感染が失われたと判断できる。
 インフルエンザウィルス活性阻害試験(赤血球凝集活性法)は、以下の手順で行った。
 精製インフルエンザウィルスA/Memphis/1/1971(HA3型NA2型(以下、H3N2))株を(i)実施例1のミネラル機能水)、(ii)蒸留水、又は(iii)水道水で27倍(128倍)に希釈してウィルス懸濁水とし、室温で30分間静置した。次いで、各ウィルス懸濁水を2倍濃度のリン酸緩衝生理食塩水(PBS)と等量で混合後、PBSにより2倍系列で希釈し、それぞれの希釈溶液を得た。
 次いで、得られた希釈溶液50μLに0.5%モルモット赤血球懸濁PBS溶腋50μLをマイクロプレートに添加し、プレートシェーカーで震盪し、4℃、2時間静置後に後に赤血球凝集像を観察した。また、対照実験として、実施例1のミネラル機能水の代わりにPBSを用いて同様に評価を行った。
 図15にインフルエンザウィルス活性阻害試験(赤血球凝集活性法)の結果を示す。なお、図15におけるCは、陰性コントロールとしてウィルス希釈の代わりにPBSを用いた結果である。また、図16にインフルエンザウィルス活性阻害試験(赤血球凝集活性法)における参考画像を示す。
 また、図15から得られたHAU測定結果を表6に示す
Figure JPOXMLDOC01-appb-T000006
 図15、表6より(i)実施例1のミネラル機能水では、ウィルスの赤血球凝集能(HA活性)が顕著に阻害され、PBSと比較して、HA活性は26(64)分の1に低下した。また、(i)未希釈の試料のHA不活作用は(ii)蒸留水希釈、(iii)水道水希釈した試料より25倍高かった。
[評価2]
 実施例1のウィルス防除用組成物として、実施例1のミネラル機能水(未希釈試料)を使用して、以下の牛の呼吸器病関連ウィルスに対する抗ウィルス作用を評価した。これらのウィルスは、それぞれエンベロープなしRNA型、エンベロープありRNA型、エンベロープなしDNA型、及びエンベロープありDNA型であり、それぞれのウィルスのモデルに相当する。[評価2]は、実施例1のウィルス防除用組成物が、これらの4つのタイプの何れに対しての抗ウィルス作用の有無を評価するものである。
(1)ウィルス1
 牛鼻炎Bウィルス(ピコルナウィルス科アフトウィルス属)
 エンベロープなしRNA型
(2)ウィルス2
 牛パラインフルエンザウィルス(パラミキソウイルス科レスピロウィルス属)
 エンベロープありRNA型
(3)ウィルス3
 牛アデノウィルス(アデノウィルス科アデノウィルス属)
 エンベロープなしDNA型
(4)ウィルス4
 牛伝染性鼻気管炎ウィルス(ヘルペスウィルス科ワリセロウィルス属)
 エンベロープありDNA型
 なお、牛鼻炎Bウィルスは、口蹄疫ウィルスと性状が類似しており(それぞれピコルナウィルス科アフトウィルス属)、口蹄疫ウィルスへの抗ウィルス作用評価の代替ウィルスとなりうる。
1)不活性化試験
 ミネラル機能水180μLとウィルス液20μLを混和し、室温(25℃)で一定時間作用させた後、100μLをペッドボリューム800μLのセファディックスLH20にアプライし、ゲル濾過した。濾液をMEMで10段階希釈し、ウィルス1及びウィルス3を子牛精巣初代培養細胞、ウィルス2及びウィルス3を牛腎株化(MDBK)細胞の96ウエルプレート単層培養に接種し、37℃で1時間吸着させた。その後、維持培地(2%牛胎子血清、20mM HEPES(pH7.2)加MEM)を加え、37℃で培養した。ウィルス増殖の有無は、細胞変性効果(CPE)を指標に、ウィルス1は6日後、ウィルス2は9日後、ウィルス3は6日後、ウィルス4は9日後に判定し、ウィルス力価(TCID50/mL)を求めた。対照としては、ミネラル機能水の代わりに水道水(pH7.2)と維持培地を用いた。
 ウィルス不活性作用は、対照の維持培地処理の力価を基準としたときのLog10の指数差から評価した。すなわち、指数差の値が大きいほどウィルス不活性化効果が大きい。結果を表7にまとめて示す。
 実施例1のミネラル機能水を室温でウィルス1~4に接触させた結果、ウィルス1に対しては99.8%以上、ウィルス2~4に対しては、99.99%以上のウィルスの不活性化作用が確認された。対象となる水道水ではウィルスの不活性化作用は確認されなかったことから、実施例1のミネラル機能水は、4つのタイプの何れに対しても、優れた高ウィルス作用を示すことが確認された。
 また、ウィルス1についてミネラル機能水とウィルスとを混和した後の時間経過と抗ウィルス作用について評価した結果を表8に示す。実施例1のミネラル機能水は混和直後から高い抗ウィルス作用を示した。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
2)リアルタイムPCR
 本発明のミネラル機能水の不活性化機序を調べる目的で、ウィルスを混和した後の時間経過とウィルスゲノム量の関係を評価した。
 実施例1のミネラル機能水180μLとウィルス液20μLを混和し、室温(25℃)で一定時間作用させた後、1M HEPES(pH7.2)を20μL加えて中和した。その後、QIAamp Viral RNA Minikit(QIAGEN社)を用いてRNAを抽出し、ReverTra Ace(東洋紡)にてcDNAを合成した。リアルタイムPCRは、cDNA、RNAポリメラーゼ領域に設定したプライマーとSYBR Premix EX Taq(TAKARA社)を用いて、1サイクルの反応を熱変性95℃(15秒)、アニーリング60℃(30秒)、伸長反応72℃(12秒)とし、Light Cycler(RochieDiagnostic社)を用いて45サイクル行った。既知濃度のスタンダードを基にサンプルの遺伝子量を定量した。
 結果を表9に示す。なお、表9における値は、維持培地処理後1分のゲノム量を100としたときの相対値である。
 表9からわかるように、混和後の1分で約90%、15分で99%以上のゲノムが破壊されていることが認められた。
Figure JPOXMLDOC01-appb-T000009
 以上の結果より、本発明のミネラル機能水は、酸性、アルカリ性を問わず、エンベロープなしRNA型、エンベロープありRNA型、エンベロープなしDNA型、及びエンベロープありDNA型の4つのタイプのウィルスに対して、有意な抗ウィルス作用を示すことが判明した。そして、その作用はウィルスと接触した直後から発揮されることが示唆された。さらに、ウィルスの防除メカニズムとして、ウィルス内部のゲノムまで作用し、これを破壊することが示唆された。
 本発明のミネラル機能水は、単細胞生物やウィルスに対する防除作用を有するため、産業的に有望である。

Claims (15)

  1.  以下の要件(i)~(iii)のすべてを満たすことを特徴とするミネラル機能水。
    (i)セラミック担体100重量部に対し、当該ミネラル機能水15重量部以上を固定化した試料における、波長5~7μm間及び波長14~24μm間での黒体に対する平均放射比率(測定温度:25℃)が90%以上であること
    (ii)当該ミネラル機能水のpH12以上であること
    (iii)単細胞生物及びウィルスの少なくとも一方に対する防除作用を示すこと
  2.  請求項1に記載のミネラル機能水を、防除対象の単細胞生物及び/又はウィルスに施用する、防除方法。
  3.  防除対象の単細胞生物が、大腸菌、黄色ブドウ球菌、枯草菌、緑膿菌、カンジタ、O-157、マイコプラズマ及び腸炎ビブリオから選択される1種以上である、請求項2に記載の防除方法。
  4.  防除対象のウィルスが、エンベロープなしRNA型、エンベロープありRNA型、エンベロープなしDNA型、及びエンベロープありDNA型から選択される1種以上である、請求項2または3に記載の防除方法。
  5.  防除対象のウィルスが、口蹄疫ウィルス、牛鼻炎Bウィルス、牛パラインフルエンザウィルス、牛アデノウィルスおよび牛伝染性鼻気管炎ウィルスからなる群より選ばれる1以上のウィルスである、請求項2または3に記載の防除方法。
  6.  防除対象のウィルスが、インフルエンザウィルス、エボラウィルス、口蹄疫ウィルス、ノロウィルス、ポリオウィルス、ヒト免疫不全ウィルス、SARSコロナウィルス、A型肝炎ウィルス、C型肝炎ウィルス、風疹ウィルス、麻疹ウィルス、日本脳炎ウィルス、ダニ媒介性脳炎ウィルス、狂犬病ウィルス、デングウィルス、アレナウィルス、およびハンタウィルスからなる群より選ばれる1以上のウィルスである、請求項2または3に記載の防除方法。
  7.  請求項1に記載のミネラル機能水の、単細胞生物及び/又はウィルスの防除のための使用。
  8.  請求項1に記載のミネラル機能水を含有する、単細胞生物及び/又はウィルスの防除用の組成物。
  9.  下記の工程(1)で形成されたミネラル含有水(A)と、下記の工程(2)で形成されたミネラル含有水(B)とを、1:5~1:20(重量比)となる割合で混合する、ミネラル機能水の製造方法。
     工程(1):
     絶縁体で被覆された導電線と、キク科の草木植物及びバラ科の草木植物からなる草木植物原料、並びにカエデ、白樺、松及び杉から選択される1種以上の木本植物からなる木本植物原料を含有するミネラル付与材(A)と、を水に浸漬し、前記導電線に直流電流を導通させ、前記導電線の周囲の水に前記直流電流と同方向の水流を発生させ、前記水に超音波振動を付与して原料ミネラル水溶液(A)を形成し、次いで、原料ミネラル水溶液(A)に遠赤外線(波長6~14μm)を照射してミネラル含有水(A)を形成する工程

     工程(2):
     無機系のミネラル付与材(B)として、石灰石、化石サンゴ、貝殻及び活性炭がそれぞれ65~75重量%、12~18重量%、12~18重量%、0.5~5重量%の割合で充填された通水容器に水を通過させてミネラル含有水(B)を形成するミネラル含有水(B)を形成する工程
  10.  水に対するミネラル付与材(A)の添加量が10~15重量%であり、前記導電線に導通させる直流電流における電流値及び電圧値が、それぞれ0.05~0.1A及び8000~8600Vの範囲である、請求項9に記載のミネラル機能水の製造方法。
  11.  前記工程(2)が、互いに種類の異なる無機系のミネラル付与材(B)が充填され、直列に接続された第1通水容器から第6通水容器に至る6個の通水容器に水を通過させてミネラル含有水(B)を形成する工程であって、
     当該6個の通水容器おける、
     第1通水容器内のミネラル付与材(B1)が、石灰石、化石サンゴ、貝殻をそれぞれ65~75重量%、12.5~17.5重量%、12.5~17.5重量%を含む混合物、
     第2通水容器内のミネラル付与材(B2)が、石灰石、化石サンゴ、貝殻、活性炭をそれぞれ37~43重量%、12.5~17.5重量%、37~43重量%、2.5~7.5重量%を含む混合物、
     第3通水容器内のミネラル付与材(B3)が、石灰石、化石サンゴ、貝殻をそれぞれ75~85重量%、12.5~17.5重量%、2.5~7.5重量%を含む混合物、
     第4通水容器内のミネラル付与材(B4)が、石灰石、化石サンゴ、貝殻をそれぞれ85~95重量%、2.5~7.5重量%、2.5~7.5重量%を含む混合物、
     第5通水容器内のミネラル付与材(B5)が、石灰石、化石サンゴ、貝殻をそれぞれ75~85重量%、7.5~12.5重量%、7.5~12.5重量%を含む混合物、
     第6通水容器内のミネラル付与材(B6)が、石灰石、化石サンゴ、貝殻を55~65重量%、27~33重量%、7.5~12.5重量%を含む混合物、
    である、請求項9または10に記載のミネラル機能水の製造方法。
  12.  前記6個の通水容器おける、
     第1通水容器内のミネラル付与材(B1)が、石灰石、化石サンゴ、貝殻をそれぞれ70重量%、15重量%、15重量%を含む混合物、
     第2通水容器内のミネラル付与材(B2)が、石灰石、化石サンゴ、貝殻、活性炭をそれぞれ40重量%、15重量%、40重量%、5重量%を含む混合物、
     第3通水容器内のミネラル付与材(B3)が、石灰石、化石サンゴ、貝殻をそれぞれ80重量%、15重量%、5重量%を含む混合物、
     第4通水容器内のミネラル付与材(B4)が、石灰石、化石サンゴ、貝殻をそれぞれ90重量%、5重量%、5重量%を含む混合物、
     第5通水容器内のミネラル付与材(B5)が、石灰石、化石サンゴ、貝殻をそれぞれ80重量%、10重量%、10重量%を含む混合物、
     第6通水容器内のミネラル付与材(B6)が、石灰石、化石サンゴ、貝殻を60重量%、30重量%、10重量%を含む混合物、
    である、請求項11に記載のミネラル機能水の製造方法。
  13.  前記ミネラル付与材(A)が、
     前記草木植物原料として、野アザミ(葉部、茎部及び花部):8~12重量%、ヨモギ(葉部及び茎部)、ツワブキ(葉部及び茎部)を、それぞれ8~12重量%、55~65重量%、27~33重量%となる割合で混合し、乾燥させた後に粉砕したキク科植物の乾燥粉砕物、及び、
     ノイバラ(葉部、花部)、ダイコンソウ(葉部及び茎部)、キイチゴ(葉部、茎部及び花部)を、それぞれ17~23重量%、8~12重量%、65~75重量%の割合で混合し、乾燥させた後に粉砕したバラ科植物の乾燥粉砕物を使用し、
     当該キク科植物の乾燥粉砕物とバラ科植物の乾燥粉砕物とを、1:0.8~1:1.2(重量比)で混合して得られる草木植物原料(A1)と、
     前記木本植物原料として、カエデ(葉部及び茎部)、白樺(葉部、茎部、及び樹皮部)、杉(葉部、茎部、及び樹皮部)を、それぞれ22~28重量%、22~28重量%、45~55重量%となる割合で混合し、乾燥させた後に粉砕した乾燥粉砕物からなる木本植物原料(A2)とを、
     草木植物原料(A1)と木本植物原料(A2)の重量比で1:2.7~1:3.3となるように混合して得られるミネラル付与材(A’)である、請求項9から12のいずれかに記載のミネラル機能水の製造方法。
  14.  ミネラル含有水(A)とミネラル含有水(B)との混合割合が、1:7~1:12(重量比)である、請求項13に記載のミネラル機能水の製造方法。
  15.  請求項1に記載のミネラル機能水を、畜舎の空間にミスト状に噴霧する工程を含む、畜舎の防除方法。
PCT/JP2015/076267 2014-09-17 2015-09-16 ミネラル機能水及びその製造方法、並びに単細胞生物及び/又はウィルスの防除方法 WO2016043213A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016548907A JP6664707B2 (ja) 2014-09-17 2015-09-16 ミネラル機能水及びその製造方法、並びに単細胞生物及び/又はウィルスの防除方法
CN201580028229.9A CN106458662A (zh) 2014-09-17 2015-09-16 矿物质功能水及其制造方法、以及单细胞生物和/或病毒的防除方法
US15/370,192 US20170118995A1 (en) 2014-09-17 2016-12-06 Mineral functional water, method for producing the same, and method for controlling unicellular organisms and/or viruses

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014189332 2014-09-17
JP2014189335 2014-09-17
JP2014-189335 2014-09-17
JP2014-189332 2014-09-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/370,192 Continuation US20170118995A1 (en) 2014-09-17 2016-12-06 Mineral functional water, method for producing the same, and method for controlling unicellular organisms and/or viruses

Publications (1)

Publication Number Publication Date
WO2016043213A1 true WO2016043213A1 (ja) 2016-03-24

Family

ID=55533249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076267 WO2016043213A1 (ja) 2014-09-17 2015-09-16 ミネラル機能水及びその製造方法、並びに単細胞生物及び/又はウィルスの防除方法

Country Status (5)

Country Link
US (1) US20170118995A1 (ja)
JP (2) JP2016065036A (ja)
CN (1) CN106458662A (ja)
TW (1) TW201615559A (ja)
WO (1) WO2016043213A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148136A1 (ja) * 2015-03-16 2016-09-22 株式会社理研テクノシステム ミネラル機能水およびその製造方法、並びに炭化水素類の燃焼促進方法
WO2016148202A1 (ja) * 2015-03-17 2016-09-22 株式会社理研テクノシステム ミネラル機能水およびその製造方法
WO2017195780A1 (ja) * 2016-05-09 2017-11-16 株式会社理研テクノシステム 異常化したタンパク質立体構造の復元方法
KR20190005348A (ko) * 2017-07-06 2019-01-16 주식회사 회라이스 반려동물 수소수 세정장치
JP2022084323A (ja) * 2020-11-26 2022-06-07 株式会社山正 抗ウイルス作用を有するヨモギ抽出組成物、及びこれを用いたマスク又はフィルター
WO2022270478A1 (ja) * 2021-06-21 2022-12-29 国立大学法人北海道大学 抗ウイルス剤
JP7381147B1 (ja) 2023-01-16 2023-11-15 株式会社Santa Mineral 底質水質浄化材及びその製造方法、並びに底質及び水質の浄化方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6664714B2 (ja) * 2016-05-09 2020-03-13 株式会社理研テクノシステム 異常型プリオンタンパク質の感染力低減方法及びプリオン病の予防治療用医薬組成物
CN106865687A (zh) * 2017-02-28 2017-06-20 李磊 一种太赫兹超电水及其制备方法与应用
WO2018193644A1 (ja) * 2017-04-17 2018-10-25 シャープ株式会社 超音波除菌洗浄機
JP6898650B2 (ja) * 2018-03-15 2021-07-07 株式会社ウエルネス 水処理装置
KR102141731B1 (ko) * 2018-07-19 2020-08-05 전주대학교 산학협력단 이온화 및 나노화 미네랄을 함유하는 돼지유행성설사바이러스와 돼지생식기 호흡기증후군바이러스의 소독제 조성물의 제조방법
KR102143274B1 (ko) * 2018-07-19 2020-08-10 전주대학교 산학협력단 이온화 및 나노화 미네랄을 함유하는 고병원성 조류독감 바이러스 소독제 조성물의 제조방법
KR102143273B1 (ko) * 2018-07-19 2020-08-10 전주대학교 산학협력단 이온화 및 나노화 미네랄을 함유하는 저병원성 조류독감 바이러스 소독제 조성물의 제조방법
CN110038115A (zh) * 2019-04-18 2019-07-23 北京和生康医疗科技有限公司 矿物质型碱性组合物及其制备方法与用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104609A (ja) * 1994-08-11 1996-04-23 Taisuke Hori 遠赤外線放射体及び遠赤外線を放射する組成物
JPH10338583A (ja) * 1997-06-02 1998-12-22 Tanabe Kensetsu Kk 土壌菌群代謝産物を含む液肥の製法
JP2001152129A (ja) * 1999-11-22 2001-06-05 Chitoshi Fujiwara 鉱物粉末組成物
JP2007144313A (ja) * 2005-11-28 2007-06-14 Riken Techno System:Kk ミネラル水製造方法およびミネラル水溶液製造装置
JP2008308573A (ja) * 2007-06-14 2008-12-25 Hotta Koichi 浄化剤
JP2011056366A (ja) * 2009-09-08 2011-03-24 Riken Techno System:Kk ミネラル含有水製造装置、遠赤外線発生水製造設備及び遠赤外線発生水製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003144821A (ja) * 2001-11-09 2003-05-20 Inax Corp 活性炭フィルタ、浄水カートリッジ及び浄水器
US20080311059A1 (en) * 2007-06-15 2008-12-18 National Applied Research Laboratories Composition for skin care and method for the same
JP2011167665A (ja) * 2010-02-22 2011-09-01 Meiko Shoji Kk アルカリイオン水スプレー装置
JPWO2013073644A1 (ja) * 2011-11-14 2015-04-02 基市 塚原 多種類のミネラルを含む複合健康機能性食品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104609A (ja) * 1994-08-11 1996-04-23 Taisuke Hori 遠赤外線放射体及び遠赤外線を放射する組成物
JPH10338583A (ja) * 1997-06-02 1998-12-22 Tanabe Kensetsu Kk 土壌菌群代謝産物を含む液肥の製法
JP2001152129A (ja) * 1999-11-22 2001-06-05 Chitoshi Fujiwara 鉱物粉末組成物
JP2007144313A (ja) * 2005-11-28 2007-06-14 Riken Techno System:Kk ミネラル水製造方法およびミネラル水溶液製造装置
JP4817817B2 (ja) * 2005-11-28 2011-11-16 株式会社理研テクノシステム ミネラル水製造方法およびミネラル水溶液製造装置
JP2008308573A (ja) * 2007-06-14 2008-12-25 Hotta Koichi 浄化剤
JP2011056366A (ja) * 2009-09-08 2011-03-24 Riken Techno System:Kk ミネラル含有水製造装置、遠赤外線発生水製造設備及び遠赤外線発生水製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148136A1 (ja) * 2015-03-16 2016-09-22 株式会社理研テクノシステム ミネラル機能水およびその製造方法、並びに炭化水素類の燃焼促進方法
JPWO2016148136A1 (ja) * 2015-03-16 2017-04-27 株式会社理研テクノシステム ミネラル機能水およびその製造方法、並びに炭化水素類の燃焼促進方法
WO2016148202A1 (ja) * 2015-03-17 2016-09-22 株式会社理研テクノシステム ミネラル機能水およびその製造方法
JPWO2016148202A1 (ja) * 2015-03-17 2017-04-27 株式会社理研テクノシステム ミネラル機能水およびその製造方法
US10450210B2 (en) 2015-03-17 2019-10-22 Riken Techno System Co., Ltd. Mineral functional water, method for producing the same
JPWO2017195780A1 (ja) * 2016-05-09 2019-04-11 株式会社理研テクノシステム 異常化したタンパク質立体構造の復元方法
WO2017195780A1 (ja) * 2016-05-09 2017-11-16 株式会社理研テクノシステム 異常化したタンパク質立体構造の復元方法
KR20190005348A (ko) * 2017-07-06 2019-01-16 주식회사 회라이스 반려동물 수소수 세정장치
KR101957495B1 (ko) * 2017-07-06 2019-06-19 주식회사 회라이스 반려동물 수소수 세정장치
JP2022084323A (ja) * 2020-11-26 2022-06-07 株式会社山正 抗ウイルス作用を有するヨモギ抽出組成物、及びこれを用いたマスク又はフィルター
JP7162818B2 (ja) 2020-11-26 2022-10-31 株式会社山正 抗ウイルス作用を有するヨモギ抽出組成物、及びこれを用いたマスク又はフィルター
WO2022270478A1 (ja) * 2021-06-21 2022-12-29 国立大学法人北海道大学 抗ウイルス剤
JP7381147B1 (ja) 2023-01-16 2023-11-15 株式会社Santa Mineral 底質水質浄化材及びその製造方法、並びに底質及び水質の浄化方法

Also Published As

Publication number Publication date
JPWO2016043213A1 (ja) 2017-09-07
CN106458662A (zh) 2017-02-22
TW201615559A (zh) 2016-05-01
JP2016065036A (ja) 2016-04-28
JP6664707B2 (ja) 2020-03-13
US20170118995A1 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
WO2016043213A1 (ja) ミネラル機能水及びその製造方法、並びに単細胞生物及び/又はウィルスの防除方法
JP7422137B2 (ja) 抗病原性組成物およびその方法
CN101744005A (zh) 水基二氧化氯杀菌消毒剂
JP5864010B1 (ja) ミネラル機能水の製造方法
CN109568341A (zh) 一种高效纳米光触媒消毒液及其制备方法
CN108002806A (zh) 一种用于非接触净水的远红外线辐射体、制备方法及净水装置
JP2022529137A (ja) 官能基化された二酸化チタンのナノ粒子化合物の様々な使用方法
CN102669253A (zh) 一种蔬菜杀菌方法
EP2207572A2 (de) Verfahren zur desinfektion von geflügel- und viehställen mit ozon, elektrolytisch oxidativen radikalen, uv-c bestrahlung, elektrostatischer spraytechnologie, überdruck-ventilation und luft-befeuchtungs-technik
JP2017154992A (ja) 害虫の防除作用を有する液状組成物およびその製造方法、並びに害虫の防除剤及び害虫の防除方法
JP5778328B1 (ja) ミネラル機能水および単細胞生物の防除方法
Verma et al. Recent development and importance of nanoparticles in disinfection and pathogen control
CN112111199B (zh) 一种畜禽养殖场所消毒用纳米消毒涂料及其应用
GB2550902A (en) Self-sanitising compositions and method for the production thereof
CN106342833B (zh) 一种含氟嘧菌酯和蛇床子素的杀菌组合物
JP7398807B2 (ja) 微生物吸着材およびこれを用いた微生物殺菌方法
JP5963143B2 (ja) きゅうりうどん粉病の防除薬及び防除方法
CN109380223A (zh) 一种促进内吸、传导的桶混农药专用增效剂
CN106386795A (zh) 一种精甲霜灵与霜霉威盐酸盐复配的水剂及其用途
RU2660164C1 (ru) Биоцидная композиция и способы обработки растений и животных с ее использованием
CN107047577A (zh) 一种含氟嘧菌酯和三唑酮的杀菌组合物
Ismană et al. Results on fungicidal activity of Virkon'S decontaminant on Aspergillus genus.
CN102939969A (zh) 一种含有丁香菌酯与乙嘧酚的农用杀菌组合物
JP2011173882A (ja) 畜舎用消毒剤
CN112352788A (zh) 一种用于菌棒上的杂菌霉菌防治剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842464

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016548907

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15842464

Country of ref document: EP

Kind code of ref document: A1