WO2016043094A1 - 冷却設備、これを備えるコンバインドサイクルプラント、及び冷却方法 - Google Patents

冷却設備、これを備えるコンバインドサイクルプラント、及び冷却方法 Download PDF

Info

Publication number
WO2016043094A1
WO2016043094A1 PCT/JP2015/075493 JP2015075493W WO2016043094A1 WO 2016043094 A1 WO2016043094 A1 WO 2016043094A1 JP 2015075493 W JP2015075493 W JP 2015075493W WO 2016043094 A1 WO2016043094 A1 WO 2016043094A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
cooling
condenser
intermediate refrigerant
steam
Prior art date
Application number
PCT/JP2015/075493
Other languages
English (en)
French (fr)
Inventor
和徳 藤田
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to US15/504,531 priority Critical patent/US11300010B2/en
Priority to KR1020177005624A priority patent/KR20170039705A/ko
Priority to KR1020187021847A priority patent/KR20180088524A/ko
Publication of WO2016043094A1 publication Critical patent/WO2016043094A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/224Heating fuel before feeding to the burner
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the present invention relates to a cooling facility, a combined cycle plant including the same, and a cooling method.
  • This application claims priority in Japanese Patent Application No. 2014-189910 for which it applied on September 18, 2014, and uses the content here.
  • a combined cycle plant configured by combining a gas turbine and a steam turbine
  • steam is generated using the exhaust heat of high-temperature exhaust gas discharged from the gas turbine.
  • the steam turbine is driven by this steam.
  • a configuration in which the intake air (mass flow rate) of the compressor of the gas turbine is increased to cool the intake air of the gas turbine may be used.
  • a liquefied natural gas combined cycle power plant described in Patent Document 1 combustion air supplied to a compressor of a gas turbine is passed through an intake air cooler. Thereby, the combustion air is heat-exchanged with the methane hydrate slurry and water in the methane hydrate storage tank. Therefore, in this liquefied natural gas combined cycle power plant, the combustion air is cooled to a certain temperature, and the intake air amount of the compressor is increased. Therefore, in this liquefied natural gas combined cycle power plant, the output of the gas turbine is improved by increasing the intake air amount.
  • the present invention provides a cooling facility capable of improving the output of a steam turbine, a combined cycle plant including the same, and a cooling method.
  • the cooling facility includes a refrigerant supply line that supplies a condenser refrigerant that cools the steam that drives the steam turbine and returns the water to the condenser, and the refrigerant supply line.
  • a liquefied gas used as a turbine fuel and the condenser refrigerant are heat-exchanged to heat and vaporize the liquefied gas and to cool the condenser refrigerant.
  • the condenser refrigerant is cooled by using the liquefied gas in the cooling section, and the cooled condenser refrigerant is sent to the condenser through the refrigerant supply line.
  • the steam used for driving the steam turbine can be cooled. Therefore, by cooling the steam with the condenser refrigerant cooled by the liquefied gas, the vacuum degree of the condenser can be improved and the work of the steam turbine can be increased. Thereby, the cold energy of liquefied gas can be collect
  • the cooling unit includes a liquefied gas heat exchange unit that cools the first intermediate refrigerant by exchanging heat with the liquefied gas, and the liquefied gas heat.
  • a first intermediate cooling unit that cools the refrigerant.
  • the condenser refrigerant is used in the first intermediate cooling unit using the cooled first intermediate refrigerant.
  • the condenser refrigerant can be indirectly cooled using the liquefied gas. Therefore, the temperature difference between the liquefied gas and the first intermediate refrigerant, and the first intermediate refrigerant and the condenser refrigerant can be reduced. Therefore, it is possible to provide a means for cooling the condenser refrigerant while preventing the condenser refrigerant from freezing. Thereby, the cold energy of liquefied gas can be collect
  • the first intermediate cooling section cools the second intermediate refrigerant by exchanging heat with the cooled first intermediate refrigerant.
  • a refrigerant heat exchange section, a second intermediate refrigerant distribution line connected to the first intermediate refrigerant heat exchange section and through which the cooled second intermediate refrigerant flows, and a second intermediate refrigerant distribution line provided and distributed in the second intermediate refrigerant distribution line A second intermediate cooling section that cools the condenser refrigerant using a second intermediate refrigerant.
  • the second intermediate refrigerant is cooled by the first intermediate refrigerant heat exchanger, and then the second intermediate cooling is performed by the cooled second intermediate refrigerant.
  • the condenser refrigerant can be cooled in the section. That is, before the condenser refrigerant is cooled using the liquefied gas, it can be indirectly cooled through the two-stage refrigerant.
  • the temperature difference between the two fluids which flow through each heat exchange part can be made still smaller.
  • the heat load per each heat exchange part can be made small, and the thing of a compact structure can be used as each heat exchange part.
  • seawater is used as the condenser refrigerant, and after cooling the steam, the seawater is discharged to the sea. May be.
  • a combined cycle plant provides exhaust heat that generates steam from the cooling equipment according to any one of the first to fourth aspects, the gas turbine, and exhaust gas discharged from the gas turbine.
  • the output of the steam turbine can be improved without increasing the fuel consumption of the gas turbine.
  • the thermal efficiency of the combined cycle plant as a whole can be improved.
  • a cooling method includes a refrigerant supply step of supplying a condenser refrigerant that cools steam that has driven a steam turbine and returns the water to the condenser, and before the refrigerant supply step, a gas And a cooling step of heating and vaporizing the liquefied gas and cooling the condenser refrigerant while exchanging heat between the liquefied gas used for turbine fuel and the condenser refrigerant.
  • the cooled condenser refrigerant can be sent to the condenser in the refrigerant supply process using the heat generated when the liquefied gas is vaporized in the cooling process.
  • the steam used for driving the steam turbine can be cooled. Therefore, by cooling the steam with the condenser refrigerant cooled by the liquefied gas, the vacuum degree of the condenser can be improved and the work of the steam turbine can be increased.
  • the cooled condenser refrigerant is supplied to the condenser to cool the steam. ing. Thereby, the cold energy of liquefied gas can be collect
  • the cooling step includes a liquefied gas heat exchange step of cooling the first intermediate refrigerant by exchanging heat with the liquefied gas, and the liquefied gas heat.
  • a first intermediate refrigerant circulation step for distributing the first intermediate refrigerant cooled in the exchange step, and a cooling of the condenser refrigerant using the first intermediate refrigerant flowing after the first intermediate refrigerant circulation step.
  • a first intermediate cooling step for distributing the first intermediate refrigerant cooled in the exchange step, and a cooling of the condenser refrigerant using the first intermediate refrigerant flowing after the first intermediate refrigerant circulation step.
  • the condenser refrigerant using the first intermediate refrigerant cooled in the first intermediate cooling step can be cooled.
  • the condenser refrigerant can be indirectly cooled using the liquefied gas. Therefore, the temperature differences between the liquefied gas and the first intermediate refrigerant and between the first intermediate refrigerant and the condenser refrigerant can be reduced. Therefore, it is possible to provide a means for cooling the condenser refrigerant while preventing the condenser refrigerant from freezing. Thereby, the cold energy of liquefied gas can be collect
  • the first intermediate cooling step is a first intermediate cooling the second intermediate refrigerant by exchanging heat with the cooled first intermediate refrigerant.
  • a refrigerant heat exchange step, a second intermediate refrigerant circulation step for circulating the second intermediate refrigerant cooled in the first intermediate refrigerant heat exchange step, and a second intermediate refrigerant flowing after the second intermediate refrigerant circulation step And a second intermediate cooling step for cooling the condenser refrigerant.
  • the second intermediate cooling is performed by the cooled second intermediate refrigerant.
  • the condenser refrigerant can be cooled in the process. That is, before the condenser refrigerant is cooled using the liquefied gas, it can be indirectly cooled through the two-stage refrigerant.
  • the temperature difference between the two fluids which flow through each heat exchange part can be made still smaller.
  • the heat load per each heat exchange part can be made small, and the thing of a compact structure can be used as each heat exchange part.
  • the output of the steam turbine can be improved without increasing the fuel consumption of the gas turbine.
  • the combined cycle plant 1 includes a gas turbine 2, a fuel supply unit 3, an exhaust heat recovery boiler 4, a steam turbine 5, a condenser 6, a feed water pump 7, and a cooling facility 8.
  • the gas turbine 2 is operated using liquefied gas as fuel.
  • the fuel supply unit 3 supplies fuel to the gas turbine 2.
  • the exhaust heat recovery boiler 4 generates steam Sa by using exhaust heat of exhaust gas discharged from the gas turbine 2.
  • the steam turbine 5 is driven by the steam Sa generated by the exhaust heat recovery boiler 4.
  • the condenser 6 returns the steam Sb that has driven the steam turbine 5 to the water W.
  • the water supply pump 7 sends the water W returned in the condenser 6 to the exhaust heat recovery boiler 4.
  • the cooling facility 8 supplies a condenser refrigerant for cooling the steam Sb to the condenser 6.
  • the gas turbine 2 includes a compressor 21 that compresses air, a plurality of combustors 22 that generate combustion gas by burning fuel in the air compressed by the compressor 21, and a turbine that is driven by high-temperature and high-pressure combustion gas. 23.
  • the turbine rotor of the turbine 23 and the compressor rotor of the compressor 21 rotate around the same axis.
  • the turbine rotor of the turbine 23 and the compressor rotor of the compressor 21 are connected to each other to form a gas turbine rotor 24.
  • a generator rotor of a generator (not shown) is connected to the gas turbine rotor 24, and the generator is driven by rotating.
  • the combustion gas exhausted from the turbine 23 is supplied to the exhaust heat recovery boiler 4 as exhaust gas.
  • the fuel supply unit 3 supplies fuel to the combustor 22.
  • the fuel supply unit 3 of the present embodiment vaporizes liquefied natural gas (LNG) G having a low temperature of about ⁇ 160 ° C. among the liquefied gas and supplies it to the combustor 22.
  • the fuel supply unit 3 according to the present embodiment includes a storage tank 31, a fuel supply line 32, and a fuel heating unit 33.
  • the storage tank 31 stores the liquefied natural gas G.
  • the fuel supply line 32 supplies the liquefied natural gas G from the storage tank 31 to the combustor 22.
  • the fuel heating unit 33 is provided in the fuel supply line 32 to heat and vaporize the liquefied natural gas G.
  • the storage tank 31 stores liquefied natural gas G at about ⁇ 160 ° C. in a liquefied state.
  • the fuel supply line 32 is a pipe connected from the storage tank 31 to the combustor 22.
  • the fuel heating unit 33 is provided in the middle of the fuel supply line 32 to evaporate and vaporize the liquefied natural gas G.
  • the fuel heating unit 33 of the present embodiment is also used as the cooling unit 80 in the cooling facility 8 described later.
  • the exhaust heat recovery boiler 4 heats the water W sent by the feed water pump 7 with the exhaust gas and generates steam Sa.
  • the exhaust heat recovery boiler 4 supplies the generated steam Sa to the steam turbine 5.
  • the steam turbine 5 performs expansion work with the steam Sa supplied from the exhaust heat recovery boiler 4 to rotate the steam turbine rotor 51.
  • the steam turbine rotor 51 is configured on a separate axis from the gas turbine rotor 24 and rotates independently.
  • the steam turbine 5 discharges the steam Sa that has rotated the steam turbine rotor 51 to the condenser 6.
  • the steam turbine rotor 51 is not limited to the structure of another shaft as in the present embodiment.
  • the steam turbine rotor 51 may be connected to the gas turbine rotor 24 and rotate around the same axis.
  • the condenser 6 cools the steam Sb discharged from the steam turbine 5 and returns it to the water W.
  • the condenser 6 exchanges heat between the condenser refrigerant supplied from the cooling facility 8 and the steam Sb, cools the steam Sb, condenses it, and returns it to the water W.
  • the feed water pump 7 pumps the water W returned from the steam Sb by the condenser 6 to the exhaust heat recovery boiler 4.
  • the cooling facility 8 supplies the condenser refrigerant cooled to the condenser 6.
  • the cooling facility 8 includes a refrigerant supply line 81 that supplies condenser refrigerant to the condenser 6, and a cooling unit 80 that is provided in the refrigerant supply line 81 and cools the condenser refrigerant using the liquefied natural gas G. Is provided.
  • the refrigerant supply line 81 supplies a condenser refrigerant that cools the steam Sb that has driven the steam turbine 5 to the condenser 6.
  • the refrigerant supply line 81 of the present embodiment takes seawater A from the sea as a condenser refrigerant and feeds it into the condenser 6.
  • the refrigerant supply line 81 cools the steam Sb supplied from the steam turbine 5 and then discharges the seawater A sent to the condenser 6 to the sea again.
  • the refrigerant supply line 81 of the present embodiment includes a refrigerant supply line main body 811, a water intake pump 812, a condenser refrigerant booster pump 813, and a supply bypass line 814.
  • the refrigerant supply line main body 811 is a pipe.
  • the intake pump 812 pumps the seawater A taken upstream from the cooling unit 80 toward the cooling unit 80.
  • the condenser refrigerant booster pump 813 pumps the seawater A cooled by the cooling unit 80 downstream of the cooling unit 80 toward the condenser 6.
  • the supply bypass line 814 bypasses the cooling unit 80 and connects the refrigerant supply line main body 811 so as not to pass the cooling unit 80.
  • the supply bypass line 814 is provided with a supply bypass valve 814a that adjusts the flow rate of the seawater A to be circulated.
  • the cooling unit 80 is provided in the middle of the refrigerant supply line main body 811.
  • the cooling unit 80 cools the seawater A using the liquefied natural gas G used for the operation of the gas turbine 2.
  • the cooling unit 80 of the present embodiment is a fuel heating unit 33 that vaporizes the liquefied natural gas G. That is, the fuel heating unit 33 of the first embodiment is disposed across the fuel supply line 32 and the refrigerant supply line 81.
  • the cooling unit 80 heats the liquefied natural gas G and cools the seawater A by exchanging heat between the liquefied natural gas G and the seawater A when the liquefied natural gas G is vaporized.
  • the liquefied natural gas G in the storage tank 31 of the fuel supply unit 3 is sent to the fuel heating unit 33 via the fuel supply line 32 and vaporized.
  • the vaporized liquefied natural gas G is supplied from the fuel heating unit 33 to the combustor 22 via the fuel supply line 32.
  • combustion gas is generated by the supplied liquefied natural gas G and the compressed air generated by the compressor 21.
  • the generated combustion gas is sent to the turbine 23 to drive the turbine 23.
  • the gas turbine rotor 24 rotates, and power is generated by a generator (not shown).
  • the combustion gas after driving the turbine 23 is discharged from the turbine 23 as exhaust gas and sent to the exhaust heat recovery boiler 4.
  • the water W supplied from the condenser 6 is heated by the exhaust gas to generate steam Sa.
  • the generated steam Sa is sent to the steam turbine 5 to drive the steam turbine 5.
  • the steam Sb after driving the steam turbine 5 is sent to the condenser 6 and cooled by the seawater A which is the condenser refrigerant, and is condensed and returned to the water W.
  • the water W condensed and returned from the steam Sb is sent again to the exhaust heat recovery boiler 4 by the feed water pump 7.
  • the cooling method S100 for cooling the condenser refrigerant supplied to the condenser 6 will be described.
  • the cooling method S100 of the first embodiment includes a cooling step S10, a refrigerant supply step S80, and a steam cooling step S90.
  • the cooling step S ⁇ b> 10 cools the condenser refrigerant using the liquefied natural gas G used for the operation of the gas turbine 2.
  • a condenser refrigerant that cools the steam Sb that drives the steam turbine 5 is supplied to the condenser 6.
  • the steam cooling step S90 the steam Sb is cooled by the condenser 6 using the cooled condenser refrigerant.
  • Cooling step S10 cools the condenser refrigerant in advance using low-temperature liquefied natural gas G.
  • the cooling step S10 of the first embodiment cools the condenser refrigerant by exchanging heat between the liquefied natural gas G and the condenser refrigerant using the fuel heating unit 33 that is the cooling unit 80.
  • the water intake pump 812 is driven to take the seawater A from the sea via the refrigerant supply line main body 811 and supply it to the fuel heating unit 33.
  • the liquefied natural gas G is supplied from the storage tank 31 to the fuel heating unit 33 via the fuel supply line 32.
  • the supplied liquefied natural gas G and seawater A are subjected to heat exchange to heat and vaporize the liquefied natural gas G and to cool the seawater A.
  • the condenser refrigerant cooled by the cooling unit 80 is sent to the condenser 6.
  • the seawater A cooled by the fuel heating unit 33 is pumped to the condenser 6 via the refrigerant supply line main body 811 by the condenser refrigerant booster pump 813.
  • the steam Sb is cooled and condensed by the condenser 6 by the cooled condenser refrigerant.
  • the seawater A supplied to the condenser 6 via the refrigerant supply line main body 811 and the steam Sb sent from the steam turbine 5 are subjected to heat exchange.
  • the steam Sb is returned to the water W, and the seawater A is heated.
  • the heated seawater A is discharged from the condenser 6 and discharged to the sea through the refrigerant supply line main body 811.
  • the seawater A can be cooled using the heat generated when the liquefied natural gas G is vaporized by the fuel heating unit 33 that is the cooling unit 80 in the cooling step S10. it can.
  • the steam Sb used for driving the steam turbine 5 can be cooled using the liquefied natural gas G. Therefore, by cooling the steam Sb with the seawater A cooled by the liquefied natural gas G, the degree of vacuum of the condenser 6 can be improved, and a pressure difference can be generated between the inlet side and the outlet side of the steam turbine 5. it can.
  • the work of the steam turbine can be increased.
  • the cold energy of the liquefied natural gas G is recovered as energy for cooling the steam Sb, and can be effectively used as energy for cooling the steam Sb that has driven the steam turbine 5.
  • the output of the steam turbine 5 can be improved.
  • seawater A that is cooled as a condenser refrigerant after being cooled by the cooling unit 80 is used, and the steam Sb that drives the steam turbine 5 is cooled by the condenser 6 and then again. Returning to the sea.
  • the seawater temperature returned to the sea can be suppressed. Therefore, the condenser refrigerant can be supplied to the condenser 6 while suppressing the environmental load.
  • the intake amount (mass flow rate) of the gas turbine 2 increases. Therefore, as long as the combustion temperature is maintained at the same temperature, the amount of fuel used increases and the amount of heat of the exhaust gas from the turbine 23 also increases. As the amount of heat of the exhaust gas increases, the amount of heat (basically, the amount of evaporation) of the steam Sa generated by the exhaust heat recovery boiler 4 using the exhaust gas also increases. Therefore, in order to cool the steam Sb that has driven the steam turbine 5, the temperature of the seawater A after being used in the condenser 6 also rises. As a result, the temperature of the seawater A discharged to the sea also increases, and the environmental load becomes even higher.
  • the output of the steam turbine 5 can be improved without increasing the amount of fuel used in the gas turbine 2.
  • the thermal efficiency of the combined cycle plant 1 as a whole can be improved.
  • Second Embodiment the combined cycle plant 1a of 2nd embodiment is demonstrated with reference to FIG.3 and FIG.4.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the combined cycle plant 1a of the second embodiment is different from the first embodiment with respect to the configuration of the cooling unit 80a of the cooling facility 8a.
  • the cooling unit 80a of the second embodiment indirectly cools the seawater A, which is a condenser refrigerant, using the first intermediate refrigerant B without directly cooling it with the liquefied natural gas G.
  • the cooling unit 80a of the second embodiment includes a liquefied gas heat exchange unit 82, a first intermediate refrigerant circulation line 83, and a first intermediate cooling unit 84, as shown in FIG.
  • the liquefied gas heat exchange unit 82 cools the first intermediate refrigerant B by exchanging heat with the liquefied natural gas G.
  • the first intermediate refrigerant circulation line 83 is connected to the liquefied gas heat exchange unit 82, and the cooled first intermediate refrigerant B flows therethrough.
  • the first intermediate cooling unit 84 is provided in the first intermediate refrigerant circulation line 83 and cools the seawater A using the circulating first intermediate refrigerant B.
  • the liquefied gas heat exchange unit 82 is the fuel heating unit 33 used as the cooling unit 80 in the first embodiment. That is, the fuel heating unit 33a of the second embodiment is disposed across the fuel supply line 32 and the first intermediate refrigerant circulation line 83.
  • the liquefied gas heat exchange unit 82 exchanges heat between the liquefied natural gas G and the first intermediate refrigerant B when the liquefied natural gas G is vaporized. Thereby, the liquefied gas heat exchange unit 82 heats the liquefied natural gas G and cools the first intermediate refrigerant B.
  • ethylene glycol or the like that is an antifreeze liquid is used for the first intermediate refrigerant B of the present embodiment.
  • the first intermediate refrigerant circulation line 83 sends the first intermediate refrigerant B cooled by the fuel heating unit 33a which is the liquefied gas heat exchange unit 82 to the first intermediate cooling unit 84 and is discharged from the first intermediate cooling unit 84.
  • the first intermediate refrigerant B is sent again to the fuel heating unit 33a. That is, the first intermediate refrigerant circulation line 83 connects between the fuel heating unit 33a and the first intermediate cooling unit 84, and circulates the first intermediate refrigerant B.
  • the first intermediate refrigerant distribution line 83 of the present embodiment includes a first intermediate refrigerant distribution line main body 831, a first intermediate booster pump 832, and a first intermediate bypass line 833.
  • the first intermediate refrigerant distribution line main body 831 is a pipe.
  • the first intermediate booster pump 832 pumps the cooled first intermediate refrigerant B toward the first intermediate cooling unit 84.
  • the first intermediate bypass line 833 bypasses the first intermediate cooling part 84 and connects the first intermediate refrigerant circulation line main body 831 so as not to pass the first intermediate cooling part 84.
  • the first intermediate bypass line 833 is provided with a first intermediate bypass valve 833a that adjusts the flow rate of the first intermediate refrigerant B to be circulated, and an air heater 833b that heats the first intermediate refrigerant B using air. .
  • the first intermediate cooling section 84 is provided in the middle of the first intermediate refrigerant circulation line main body 831 so as to straddle the first intermediate refrigerant circulation line 83 and the refrigerant supply line 81.
  • the first intermediate cooling unit 84 cools the seawater A taken in using the first intermediate refrigerant B cooled by the liquefied gas heat exchange unit 82.
  • the first intermediate cooling unit 84 of the present embodiment is a heat exchanger that exchanges heat between the first intermediate refrigerant B and the seawater A.
  • the first intermediate cooling unit 84 heats the first intermediate refrigerant B and cools the seawater A by exchanging heat between the first intermediate refrigerant B and the seawater A.
  • the supply bypass line 814 of the second embodiment is connected to the refrigerant supply line main body 811 so as to bypass the first intermediate cooling unit 84 so as not to pass through the first intermediate cooling unit 84.
  • cooling process S11 differs from cooling process S10 of 1st embodiment.
  • the cooling step S11 of the second embodiment cools the condenser refrigerant by indirectly using the low-temperature liquefied natural gas G.
  • the cooling step S11 of the second embodiment includes a liquefied gas heat exchange step S20, a first intermediate refrigerant circulation step S30, and a first intermediate cooling step S40.
  • the liquefied gas heat exchange step S20 cools the first intermediate refrigerant B by exchanging heat with the liquefied natural gas G.
  • the first intermediate refrigerant circulation step S30 the first intermediate refrigerant B cooled in the liquefied gas heat exchange step S20 is circulated.
  • 1st intermediate cooling process S40 cools seawater A using the 1st intermediate refrigerant B which distribute
  • the liquefied gas heat exchange step S20 cools the first intermediate refrigerant B by exchanging heat between the liquefied natural gas G and the first intermediate refrigerant B using the fuel heating unit 33a which is the liquefied gas heat exchange unit 82. . Specifically, in the liquefied gas heat exchange step S20, the first intermediate refrigerant B circulating in the first intermediate refrigerant circulation line 83 is supplied to the fuel heating unit 33a.
  • the liquefied natural gas G is supplied from the storage tank 31 to the fuel heating unit 33a via the fuel supply line 32.
  • heat exchange is performed between the first intermediate refrigerant B and the liquefied natural gas G supplied to the fuel heating unit 33a.
  • the liquefied gas heat exchange step S20 heats and vaporizes the liquefied natural gas G and cools the first intermediate refrigerant B.
  • the first intermediate refrigerant B cooled by the liquefied gas heat exchange unit 82 is sent to the first intermediate cooling unit 84.
  • the first intermediate refrigerant B cooled by the fuel heating unit 33a is passed through the first intermediate refrigerant circulation line main body 831 by the first intermediate booster pump 832 to the first intermediate cooling part. Pump to 84.
  • the first intermediate cooling step S40 cools the seawater A by exchanging heat between the first intermediate refrigerant B and the seawater A using the first intermediate cooling section 84 that is a heat exchanger. Specifically, in the first intermediate cooling step S ⁇ b> 40, water is taken in at sea via the first intermediate refrigerant B sent to the first intermediate cooling unit 84 and the refrigerant supply line main body 811, and the first intermediate cooling unit 84. Heat exchange with the seawater A supplied to. Thus, the first intermediate cooling step S40 heats the first intermediate refrigerant B and cools the seawater A.
  • the coolant supply step S80 and the steam cooling step S90 are performed, so that the cooled seawater A is used to cool the steam Sb by the condenser 6.
  • the first intermediate refrigerant B is cooled by the liquefied gas heat exchange section 82 using the liquefied natural gas G in the liquefied gas heat exchange step S20. Thereafter, the seawater A is cooled by the first intermediate cooling section 84 using the first intermediate refrigerant B cooled in the first intermediate cooling step S40. Thereby, the seawater A can be indirectly cooled using the liquefied natural gas G. Therefore, the temperature difference between the liquefied natural gas G and the first intermediate refrigerant B, and the first intermediate refrigerant B and the seawater A can be reduced.
  • the liquefied natural gas G is at a low temperature of ⁇ 160 ° C.
  • the heat load on the fuel heating unit 33a and the first intermediate cooling unit 84 can be reduced.
  • the cold energy generated when the liquefied natural gas G is vaporized can be recovered, and can be effectively used as energy for cooling the steam Sb.
  • the first intermediate cooling unit 84b of the third embodiment further cools indirectly by using the second intermediate refrigerant C without directly cooling the seawater A, which is a condenser refrigerant, with the first intermediate refrigerant B. .
  • the first intermediate cooling section 84b of the third embodiment includes a first intermediate refrigerant heat exchange section 85, a second intermediate refrigerant circulation line 86, and a second intermediate cooling section 87. And having.
  • the first intermediate refrigerant heat exchanger 85 cools the second intermediate refrigerant C by exchanging heat with the cooled first intermediate refrigerant B.
  • the cooled second intermediate refrigerant C flows through the second intermediate refrigerant distribution line 86.
  • the second intermediate cooling unit 87 cools the seawater A using the circulating second intermediate refrigerant C.
  • the first intermediate refrigerant heat exchange unit 85 is provided in the middle of the first intermediate refrigerant distribution line main body 831.
  • the first intermediate refrigerant heat exchange unit 85 cools the second intermediate refrigerant C using the first intermediate refrigerant B cooled by the liquefied gas heat exchange unit 82.
  • the first intermediate refrigerant heat exchanger 85 of the present embodiment is a heat exchanger that exchanges heat between the first intermediate refrigerant B and the second intermediate refrigerant C.
  • the first intermediate refrigerant heat exchange unit 85 of the present embodiment is disposed across the first intermediate refrigerant circulation line 83 and the second intermediate refrigerant circulation line 86.
  • the first intermediate refrigerant heat exchanger 85 exchanges heat between the first intermediate refrigerant B and the second intermediate refrigerant C.
  • the first intermediate refrigerant heat exchange unit 85 heats the first intermediate refrigerant B and cools the second intermediate refrigerant C. Circulating water is used for the second intermediate refrigerant C of the present embodiment.
  • the second intermediate refrigerant distribution line 86 sends the second intermediate refrigerant C cooled by the first intermediate refrigerant heat exchange unit 85 to the second intermediate cooling unit 87 and is discharged from the second intermediate cooling unit 87. C is sent again to the first intermediate refrigerant heat exchanger 85. That is, the second intermediate refrigerant circulation line 86 connects the first intermediate refrigerant heat exchange unit 85 and the second intermediate cooling unit 87 to circulate the second intermediate refrigerant C.
  • the second intermediate refrigerant circulation line 86 of the present embodiment includes a second intermediate refrigerant circulation line main body 861 that is a pipe, and a second intermediate booster that pumps the cooled second intermediate refrigerant C toward the second intermediate cooling unit 87. And a pump 862.
  • the second intermediate cooling section 87 is provided in the middle of the second intermediate refrigerant distribution line main body 861 so as to straddle the second intermediate refrigerant distribution line main body 861 and the refrigerant distribution line main body.
  • the second intermediate cooling unit 87 cools the seawater A taken in using the second intermediate refrigerant C cooled by the first intermediate refrigerant heat exchange unit 85.
  • the second intermediate cooling unit 87 of the present embodiment is a heat exchanger that exchanges heat between the second intermediate refrigerant C and the seawater A.
  • the second intermediate cooling part 87 heats the second intermediate refrigerant C and cools the seawater A by exchanging heat between the second intermediate refrigerant C and the seawater A.
  • the cooling method S102 of the third embodiment will be described.
  • the first intermediate cooling step S41 of the cooling step S12 is different from the first intermediate cooling step S40 of the second embodiment.
  • the condenser refrigerant is cooled by indirectly using the low temperature first intermediate refrigerant B cooled by the liquefied natural gas G.
  • the first intermediate cooling step S41 of the third embodiment includes a first intermediate refrigerant heat exchange step S50, a second intermediate refrigerant circulation step S60, and a second intermediate cooling step S70.
  • the first intermediate refrigerant heat exchange step S50 the second intermediate refrigerant C is cooled by exchanging heat with the cooled first intermediate refrigerant B.
  • the second intermediate refrigerant circulation step S60 the cooled second intermediate refrigerant C is circulated.
  • 2nd intermediate cooling process S70 cools seawater A using the 2nd intermediate
  • the first intermediate refrigerant heat exchange step S50 the first intermediate refrigerant B and the second intermediate refrigerant C are subjected to heat exchange using the first intermediate refrigerant heat exchanging unit 85, which is a heat exchanger, so that the second intermediate refrigerant is exchanged. C is cooled.
  • the first intermediate refrigerant heat exchange step S50 includes the first intermediate refrigerant B supplied from the first intermediate refrigerant circulation line main body 831 to the first intermediate refrigerant heat exchange unit 85, and the second intermediate refrigerant distribution line main body. Heat exchange is performed with the second intermediate refrigerant C supplied to the first intermediate refrigerant heat exchanging unit 85 via 861.
  • the first intermediate refrigerant heat exchange step S50 heats the first intermediate refrigerant B and cools the second intermediate refrigerant C.
  • the second intermediate refrigerant C cooled by the first intermediate refrigerant heat exchange unit 85 is sent to the second intermediate cooling unit 87.
  • the second intermediate refrigerant circulation step S60 of the present embodiment the second intermediate refrigerant C cooled by the first intermediate refrigerant heat exchanging portion 85 is secondly passed by the second intermediate booster pump 862 via the second intermediate refrigerant circulation line main body 861. Pump to the second intermediate cooling section 87.
  • the second intermediate cooling step S70 cools the seawater A by exchanging heat between the second intermediate refrigerant C and the seawater A using the second intermediate cooling portion 87 that is a heat exchanger. Specifically, in the second intermediate cooling step S70, water is taken in at sea via the second intermediate refrigerant C supplied from the second intermediate refrigerant distribution line main body 861 to the second intermediate cooling portion 87 and the refrigerant supply line main body 811. Then, the seawater A supplied to the second intermediate cooling section 87 is heat-exchanged. Thus, the second intermediate cooling step S70 heats the second intermediate refrigerant C and cools the seawater A.
  • the coolant supply step S80 and the steam cooling step S90 are performed, so that the cooled seawater A is used to cool the steam Sb by the condenser 6.
  • the first intermediate refrigerant heat exchange unit 85 uses the first intermediate refrigerant B cooled by the liquefied natural gas G in the first intermediate refrigerant heat exchange step S50.
  • the second intermediate refrigerant C is cooled.
  • the seawater A is cooled by the second intermediate cooling portion 87 in the second intermediate cooling step S70 by the cooled second intermediate refrigerant C. That is, before the seawater A is cooled using the liquefied natural gas G, it can be indirectly cooled through the two-stage refrigerant.
  • the temperature difference between the two fluids which flow through each heat exchange part can further be reduced.
  • the heat load per each heat exchange part can be made small, and the thing of a compact structure can be used as each heat exchange part.
  • the temperature difference between the two fluids flowing through each heat exchanger can be reduced. That is, the heat load on the fuel heating unit 33a, the first intermediate refrigerant heat exchange unit 85, and the second intermediate cooling unit 87 can be reduced. Thereby, the cold energy generated when the liquefied natural gas G is vaporized can be recovered, and can be effectively used as energy for cooling the steam Sb.
  • the condenser refrigerant of the present invention is not limited to seawater A as in the present embodiment, and any refrigerant that can cool the steam Sb with the condenser 6 may be used.
  • the condenser refrigerant may be circulating water supplied from a cooling tower, or river water taken from a river or the like.
  • the first intermediate refrigerant B and the second intermediate refrigerant C are not limited to this embodiment, and may be used as a refrigerant.
  • the second intermediate refrigerant C may be glycol used as the first intermediate refrigerant B in the present embodiment.
  • the liquefied gas heat exchanger 82 is not limited to the fuel heaters 33 and 33a as in the present embodiment, but is a heat exchanger capable of exchanging heat between the first intermediate refrigerant B and the liquefied natural gas G. I just need it.
  • the condenser refrigerant is cooled using the liquefied gas, so that the output of the steam turbine can be improved without increasing the fuel consumption of the gas turbine.

Abstract

 冷却設備は、蒸気タービン(5)を駆動した蒸気(Sb)を冷却して水(W)に戻す復水器冷媒を復水器(6)に供給する冷媒供給ライン(81)と、冷媒供給ライン(81)に設けられ、ガスタービン(2)の燃料として用いられる液化ガスと前記復水器冷媒とを熱交換させて前記液化ガスを加熱及び気化すると共に前記復水器冷媒を冷却する冷却部(80)とを備える。

Description

冷却設備、これを備えるコンバインドサイクルプラント、及び冷却方法
 本発明は、冷却設備、これを備えるコンバインドサイクルプラント、及び冷却方法に関する。
 本願は、2014年9月18日に出願された特願2014-189910号について優先権を主張し、その内容をここに援用する。
 ガスタービンと蒸気タービンとを組み合わせて構成されるコンバインドサイクルプラントでは、ガスタービンから排出される高温の排ガスの排熱を利用して蒸気を生成する。コンバインドサイクルプラントでは、この蒸気によって蒸気タービンが駆動されている。
 このようなコンバインドサイクルプラントでは、出力を向上させるために、ガスタービンの吸気を冷却し、ガスタービンの圧縮機の吸気量(質量流量)を増大させる構成が用いられる場合がある。例えば、特許文献1に記載の液化天然ガス複合サイクル発電プラントでは、ガスタービンの圧縮機に供給される燃焼用空気が吸気冷却器に通される。これにより、燃焼用空気が、メタンハイドレート貯蔵槽内のメタンハイドレードスラリーや水と熱交換される。そのため、この液化天然ガス複合サイクル発電プラントでは、一定温度まで燃焼用空気が冷却され、圧縮機の吸気量が増大される。したがって、この液化天然ガス複合サイクル発電プラントでは、吸気量が増大することで、ガスタービンの出力が向上する。
特開平11-200884号公報
 ところで、ガスタービンの圧縮機の燃焼用空気を冷却させて吸気量を増大させた場合、燃焼温度を同じ温度に維持しようとする限り、燃焼器で用いられる燃料の消費量も増加してしまう。その結果、コンバインドサイクルプラントとして熱効率の向上は見込み難い。そのため、ガスタービンの燃料消費量を増加させずに蒸気タービンの出力を向上させることで、コンバインドサイクルプラントでの発電効率を向上させたいという要望がある。
 本発明は、蒸気タービンの出力を向上させることが可能な冷却設備、これを備えるコンバインドサイクルプラント、及び冷却方法を提供する。
 上記課題を解決するために、本発明は以下の手段を提案している。
 本発明の第一の態様の冷却設備は、蒸気タービンを駆動した蒸気を冷却して水に戻す復水器冷媒を復水器に供給する冷媒供給ラインと、前記冷媒供給ラインに設けられ、ガスタービンの燃料として用いられる液化ガスと前記復水器冷媒とを熱交換させて前記液化ガスを加熱及び気化すると共に前記復水器冷媒を冷却する冷却部とを備える。
 このような構成によれば、冷却部で液化ガスを利用して復水器冷媒を冷却し、冷却した復水器冷媒を冷媒供給ラインで復水器まで送っている。これにより、蒸気タービンの駆動に用いられた蒸気を冷却することができる。したがって、液化ガスによって冷却された復水器冷媒で蒸気を冷却することで、復水器の真空度を向上させ、蒸気タービンの仕事量を増加させることができる。これにより、液化ガスの冷熱エネルギーを回収して、蒸気タービンを駆動した蒸気を冷却するためのエネルギーとして有効に利用することができる。
 本発明の第二の態様の冷却設備では、第一の態様において、前記冷却部は、前記液化ガスと熱交換することで第一中間冷媒を冷却する液化ガス熱交換部と、前記液化ガス熱交換部と接続され、冷却された前記第一中間冷媒が流通する第一中間冷媒流通ラインと、前記第一中間冷媒流通ラインに設けられ、流通する前記第一中間冷媒を利用して前記復水器冷媒を冷却する第一中間冷却部とを有していてもよい。
 このような構成によれば、液化ガスを利用して液化ガス熱交換部で第一中間冷媒を冷却した後に、冷却された第一中間冷媒を利用して第一中間冷却部で復水器冷媒を冷却することができる。これにより、液化ガスを利用して間接的に復水器冷媒を冷却することができる。そのため、液化ガス及び第一中間冷媒と、第一中間冷媒及び復水器冷媒とのそれぞれの温度差を小さくすることができる。したがって、復水器冷媒が凍結してしまうことを防ぎながら、復水器冷媒を冷却する一手段を提供することができる。これにより、液化ガスの冷熱エネルギーを回収することができ、蒸気タービンを駆動した蒸気を冷却するためのエネルギーとして有効に利用することができる。
 本発明の第三の態様の冷却設備では、第二の態様において、前記第一中間冷却部は、冷却された前記第一中間冷媒と熱交換することで第二中間冷媒を冷却する第一中間冷媒熱交換部と、第一中間冷媒熱交換部に接続され、冷却された前記第二中間冷媒が流通する第二中間冷媒流通ラインと、前記第二中間冷媒流通ラインに設けられ、流通する第二中間冷媒を利用して前記復水器冷媒を冷却する第二中間冷却部と、を有していてもよい。
 このような構成によれば、液化ガスによって冷却された第一中間冷媒を利用し、第一中間冷媒熱交換部で第二中間冷媒を冷却した後に、冷却した第二中間冷媒によって第二中間冷却部で復水器冷媒を冷却することができる。即ち、液化ガスを利用して復水器冷媒を冷却するまでに、二段階の冷媒を介して間接的に冷却することができる。このように、運用温度帯が異なる複数の中間冷媒サイクルから構成することで、各熱交換部を流れる二流体間の温度差をさらに小さくすることができる。これにより、各熱交換部あたりの熱負荷を小さくすることができ、各熱交換部としてコンパクトな構成のものを使用できる。運用温度帯が異なる複数の中間冷媒サイクルから構成することで、例えばプラント補機向け軸冷水(あるいはその冷却)等のプラントサイクルへの流用も可能とし得る。したがって、復水器冷媒が凍結してしまうことを防ぎながら、復水器冷媒を冷却する一手段を提供することができる。これにより、液化ガスを気化させる際に生じる冷熱エネルギーを回収することができ、蒸気タービンを駆動した蒸気を冷却するためのエネルギーとして有効に利用することができる。
 本発明の第四の態様の冷却設備では、第一から第三の態様の何れか一つにおいて、前記復水器冷媒として海水を利用し、前記蒸気を冷却した後に前記海水を海へ排出してもよい。
 本発明の第五の態様のコンバインドサイクルプラントは、第一から第四の態様の何れか一つの前記冷却設備と、前記ガスタービンと、前記ガスタービンから排出される排ガスによって蒸気を生成させる排熱回収ボイラと、前記排熱回収ボイラで生成された前記蒸気で駆動する前記蒸気タービンと、前記復水器と、を備える。
 このような構成によれば、ガスタービンの燃料消費量を増加させずに蒸気タービンの出力を向上させることができる。その結果、コンバインドサイクルプラント全体としての熱効率を向上させることができる。
 本発明の第六の態様の冷却方法は、蒸気タービンを駆動した蒸気を冷却して水に戻す復水器冷媒を復水器に供給する冷媒供給工程と、前記冷媒供給工程の前に、ガスタービンの燃料に用いられる液化ガスと前記復水器冷媒とを熱交換させて前記液化ガスを加熱及び気化すると共に前記復水器冷媒を冷却する冷却工程とを含む。
 このような構成によれば、冷却工程で液化ガスを気化させる際の熱を利用し、冷却された復水器冷媒を冷媒供給工程で復水器まで送ることができる。これにより、蒸気タービンの駆動に用いられた蒸気を冷却することができる。したがって、液化ガスによって冷却された復水器冷媒で蒸気を冷却することで、復水器の真空度を向上させ、蒸気タービンの仕事量を増加させることができる。液化ガスを復水器に直接供給して蒸気を冷却するのではなく、液化ガスで復水器冷媒を冷却した後に、冷却された復水器冷媒を復水器に供給して蒸気を冷却している。これにより、液化ガスの冷熱エネルギーを回収して、蒸気タービンを駆動した蒸気を冷却するためのエネルギーとして有効に利用することができる。
 本発明の第七の態様の冷却方法では、第六の態様において、前記冷却工程は、前記液化ガスと熱交換することで第一中間冷媒を冷却する液化ガス熱交換工程と、前記液化ガス熱交換工程で冷却された前記第一中間冷媒を流通させる第一中間冷媒流通工程と、前記第一中間冷媒流通工程の後に、流通する前記第一中間冷媒を利用して前記復水器冷媒を冷却する第一中間冷却工程とを有していてもよい。
 このような構成によれば、液化ガス熱交換工程で液化ガスを利用して第一中間冷媒を冷却した後に、第一中間冷却工程で冷却された第一中間冷媒を利用して復水器冷媒を冷却することができる。これにより、液化ガスを利用して間接的に復水器冷媒を冷却することができる。そのため、液化ガスと第一中間冷媒、第一中間冷媒と復水器冷媒とのそれぞれの温度差を小さくすることができる。したがって、復水器冷媒が凍結してしまうことを防ぎながら、復水器冷媒を冷却する一手段を提供することができる。これにより、液化ガスの冷熱エネルギーを回収することができ、蒸気タービンを駆動した蒸気を冷却するためのエネルギーとして有効に利用することができる。
 本発明の第七の態様の冷却方法では、第七の態様において、前記第一中間冷却工程は、冷却された前記第一中間冷媒と熱交換することで第二中間冷媒を冷却する第一中間冷媒熱交換工程と、前記第一中間冷媒熱交換工程で冷却された前記第二中間冷媒を流通させる第二中間冷媒流通工程と、前記第二中間冷媒流通工程の後に、流通する第二中間冷媒を利用して前記復水器冷媒を冷却する第二中間冷却工程と、を有していてもよい。
 このような構成によれば、液化ガスによって冷却された第一中間冷媒を利用し、第一中間冷媒熱交換工程で第二中間冷媒を冷却した後に、冷却した第二中間冷媒によって第二中間冷却工程で復水器冷媒を冷却することができる。即ち、液化ガスを利用して復水器冷媒を冷却するまでに、二段階の冷媒を介して間接的に冷却することができる。このように、運用温度帯が異なる複数の中間冷媒サイクルから構成することで、各熱交換部を流れる二流体間の温度差をさらに小さくすることができる。これにより、各熱交換部あたりの熱負荷を小さくすることができ、各熱交換部としてコンパクトな構成のものを使用できる。運用温度帯が異なる複数の中間冷媒サイクルから構成することで、例えばプラント補機向け軸冷水(あるいはその冷却)等のプラントサイクルへの流用も可能とし得る。したがって、復水器冷媒が凍結してしまうことを防ぎながら、復水器冷媒を冷却する一手段を提供することができる。これにより、液化ガスを気化させる際に生じる冷熱エネルギーを回収することができ、蒸気タービンを駆動した蒸気を冷却するためのエネルギーとして有効に利用することができる。
 この発明によれば、液化ガスを利用して復水器冷媒を冷却することで、ガスタービンの燃料消費量を増加させずに蒸気タービンの出力を向上させることができる。
本発明の第一実施形態におけるコンバインドサイクルプラントを示す系統図である。 本発明の第一実施形態における冷却方法を説明するフロー図である。 本発明の第二実施形態におけるコンバインドサイクルプラントを示す系統図である。 本発明の第二実施形態における冷却方法を説明するフロー図である。 本発明の第三実施形態におけるコンバインドサイクルプラントを示す系統図である。 本発明の第三実施形態における冷却方法を説明するフロー図である。
《第一実施形態》
 以下、本発明に係る第一実施形態について図1及び図2を参照して説明する。
 コンバインドサイクルプラント1は、ガスタービン2と、燃料供給部3と、排熱回収ボイラ4と、蒸気タービン5と、復水器6と、給水ポンプ7と、冷却設備8と、を備えている。ガスタービン2は、液化ガスを燃料として運転される。燃料供給部3は、ガスタービン2に燃料を供給する。排熱回収ボイラ4は、ガスタービン2から排出される排ガスの排熱を利用することによって蒸気Saを生成する。蒸気タービン5は、排熱回収ボイラ4で生成された蒸気Saで駆動する。復水器6は、蒸気タービン5を駆動した蒸気Sbを水Wに戻す。給水ポンプ7は、復水器6中で戻された水Wを排熱回収ボイラ4に送る。冷却設備8は、復水器6に蒸気Sbを冷却するための復水器冷媒を供給する。
 ガスタービン2は、空気を圧縮する圧縮機21と、圧縮機21で圧縮された空気中で燃料を燃焼させて燃焼ガスを生成する複数の燃焼器22と、高温高圧の燃焼ガスにより駆動するタービン23とを備えている。タービン23のタービンロータと圧縮機21の圧縮機ロータとは、同一の軸線を中心として回転するものである。タービン23のタービンロータと圧縮機21の圧縮機ロータとは、相互に連結されて、ガスタービンロータ24をなしている。このガスタービンロータ24には、例えば、不図示の発電機の発電機ロータが接続され、回転することで発電機を駆動させる。タービン23から排気された燃焼ガスは、排気ガスとして排熱回収ボイラ4に供給される。
 燃料供給部3は、燃焼器22に燃料を供給する。本実施形態の燃料供給部3は、液化ガスの中でも-160℃程度の低温の液化天然ガス(LNG)Gを気化させて燃焼器22に供給する。本実施形態の燃料供給部3は、貯蔵タンク31と、燃料供給ライン32と、燃料加熱部33とを有している。貯蔵タンク31は、液化天然ガスGを貯蔵する。燃料供給ライン32は、貯蔵タンク31から燃焼器22まで液化天然ガスGを供給する。燃料加熱部33は、燃料供給ライン32に設けられて液化天然ガスGを加熱して気化させる。
 貯蔵タンク31は、-160℃程度の液化天然ガスGを液化した状態で貯蔵している。
 燃料供給ライン32は、貯蔵タンク31から燃焼器22まで接続される配管である。
 燃料加熱部33は、燃料供給ライン32の途中に設けられて、液化天然ガスGを蒸発させて気化させる。本実施形態の燃料加熱部33は、後述する冷却設備8で冷却部80としても利用される。
 排熱回収ボイラ4は、給水ポンプ7によって送られてきた水Wを排ガスによって加熱して蒸気Saを発生させる。排熱回収ボイラ4は、発生させた蒸気Saを蒸気タービン5に供給する。
 蒸気タービン5は、排熱回収ボイラ4より供給された蒸気Saにより、膨張仕事をして蒸気タービンロータ51を回転させる。蒸気タービンロータ51は、ガスタービンロータ24とは別軸で構成され、独立して回転する。蒸気タービン5は、蒸気タービンロータ51を回転させた蒸気Saを復水器6に排出する。
 なお、蒸気タービンロータ51は、本実施形態のように別軸の構造であることに限定されるものではない。蒸気タービンロータ51は、ガスタービンロータ24と相互に連結され、同一の軸線を中心として回転する構造であってもよい。
 復水器6は、蒸気タービン5から排出される蒸気Sbを冷却して水Wに戻す。復水器6は、冷却設備8から供給される復水器冷媒と蒸気Sbとを熱交換させて、蒸気Sbを冷却することで凝縮させて水Wに戻す。
 給水ポンプ7は、復水器6で蒸気Sbから戻された水Wを排熱回収ボイラ4へ圧送する。
 冷却設備8は、復水器6に冷却された復水器冷媒を供給する。冷却設備8は、復水器冷媒を復水器6に供給する冷媒供給ライン81と、冷媒供給ライン81に設けられて液化天然ガスGを利用して復水器冷媒を冷却する冷却部80とを備える。
 冷媒供給ライン81は、蒸気タービン5を駆動した蒸気Sbを冷却する復水器冷媒を復水器6に供給する。本実施形態の冷媒供給ライン81は、復水器冷媒として海水Aを海から取水して復水器6に送り込む。冷媒供給ライン81は、蒸気タービン5から供給された蒸気Sbを冷却した後に、復水器6に送り込んだ海水Aを再び海へ排出する。
 本実施形態の冷媒供給ライン81は、冷媒供給ライン本体811と、取水ポンプ812と、復水器冷媒ブースターポンプ813と、供給バイパスライン814とを有する。冷媒供給ライン本体811は、配管である。取水ポンプ812は、冷却部80よりも上流側で取水した海水Aを冷却部80に向けて圧送する。復水器冷媒ブースターポンプ813は、冷却部80よりも下流側で冷却部80によって冷却された海水Aを復水器6に向けて圧送する。供給バイパスライン814は、冷却部80を通過させないように冷却部80を迂回して冷媒供給ライン本体811を接続する。供給バイパスライン814には、流通させる海水Aの流量を調整する供給バイパス弁814aが設けられている。
 冷却部80は、冷媒供給ライン本体811の途中に設けられている。冷却部80は、ガスタービン2の運転に用いられる液化天然ガスGを利用して海水Aを冷却する。本実施形態の冷却部80は、液化天然ガスGを気化させる燃料加熱部33である。即ち、第一実施形態の燃料加熱部33は、燃料供給ライン32と冷媒供給ライン81とに跨って配置されている。冷却部80は、液化天然ガスGを気化させる際に液化天然ガスGと海水Aとを熱交換することで、液化天然ガスGを加熱すると共に、海水Aを冷却する。
 次に、上記コンバインドサイクルプラント1の作用について説明する。
 第一実施形態のコンバインドサイクルプラント1によれば、燃料供給部3の貯蔵タンク31内の液化天然ガスGが、燃料供給ライン32を介して燃料加熱部33に送られて気化される。気化された液化天然ガスGは、燃料加熱部33から燃料供給ライン32を介して燃焼器22に供給される。燃焼器22では、供給された液化天然ガスGと圧縮機21で生成された圧縮空気とによって燃焼ガスが生成される。生成された燃焼ガスは、タービン23に送られて、タービン23を駆動させる。タービン23が駆動することで、ガスタービンロータ24が回転し、不図示の発電機によって発電が行われる。
 タービン23を駆動させた後の燃焼ガスは、排ガスとしてタービン23から排出されて排熱回収ボイラ4に送られる。排熱回収ボイラ4では、復水器6から供給される水Wが排ガスによって加熱されて蒸気Saが生成される。生成された蒸気Saは、蒸気タービン5に送られて、蒸気タービン5を駆動させる。蒸気タービン5を駆動した後の蒸気Sbは、復水器6に送られて復水器冷媒である海水Aによって冷却されることで、凝縮されて水Wに戻る。凝縮されて蒸気Sbから戻された水Wは給水ポンプ7によって再び排熱回収ボイラ4に送られる。
 次に、復水器6に供給される復水器冷媒を冷却する冷却方法S100について説明する。
 第一実施形態の冷却方法S100では、図2に示すように、冷却工程S10と、冷媒供給工程S80と、蒸気冷却工程S90とを含んでいる。冷却工程S10は、ガスタービン2の運転に用いられる液化天然ガスGを利用して復水器冷媒を冷却する。冷媒供給工程S80は、蒸気タービン5を駆動した蒸気Sbを冷却する復水器冷媒を復水器6に供給する。蒸気冷却工程S90は、冷却された復水器冷媒を用いて復水器6で蒸気Sbを冷却する。
 冷却工程S10は、事前に復水器冷媒を低温の液化天然ガスGを利用して冷却する。第一実施形態の冷却工程S10は、冷却部80である燃料加熱部33を用いて、液化天然ガスGと復水器冷媒とを熱交換させることで、復水器冷媒を冷却する。具体的には、冷却工程S10では、取水ポンプ812を駆動させることで、冷媒供給ライン本体811を介して海から海水Aを取水し、燃料加熱部33に供給する。
 冷却工程S10では、燃料供給ライン32を介して液化天然ガスGを貯蔵タンク31から燃料加熱部33に供給する。冷却工程S10では、供給された液化天然ガスGと海水Aとを熱交換し、液化天然ガスGを加熱及び気化させると共に、海水Aを冷却する。
 冷媒供給工程S80は、冷却部80で冷却された復水器冷媒を復水器6まで送る。本実施形態の冷媒供給工程S80は、燃料加熱部33で冷却された海水Aを復水器冷媒ブースターポンプ813で冷媒供給ライン本体811を介して復水器6まで圧送する。
 蒸気冷却工程S90は、冷却された復水器冷媒によって、復水器6で蒸気Sbを冷却して凝縮させる。本実施形態の蒸気冷却工程S90は、冷媒供給ライン本体811を介して復水器6に供給された海水Aと、蒸気タービン5から送られてきた蒸気Sbとを熱交換させる。これにより、蒸気冷却工程S90は、蒸気Sbを水Wに戻すと共に、海水Aが加熱される。蒸気冷却工程S90では、加熱された海水Aが復水器6から排出され、冷媒供給ライン本体811を介して海に排出される。
 上記のような冷却設備8や冷却方法S100によれば、冷却工程S10において冷却部80である燃料加熱部33で液化天然ガスGを気化させる際の熱を利用して海水Aを冷却することができる。冷却された海水Aを冷媒供給ライン81で復水器6まで送ることで、液化天然ガスGを利用して蒸気タービン5の駆動に用いられた蒸気Sbを冷却することができる。したがって、液化天然ガスGによって冷却された海水Aで蒸気Sbを冷却することで、復水器6の真空度を向上させ、蒸気タービン5の入口側と出口側とに圧力差を生じさせることができる。その結果、蒸気タービンの仕事量を増加させることができる。これにより、蒸気Sbを冷却するためのエネルギーとして液化天然ガスGの冷熱エネルギーを回収して、蒸気タービン5を駆動した蒸気Sbを冷却するためのエネルギーとして有効に利用できる。その結果、蒸気タービン5の出力を向上させることができる。
 冷却設備8や冷却方法S100では、冷却部80で冷却された上で復水器冷媒として供される海水Aを利用し、蒸気タービン5を駆動した蒸気Sbを復水器6で冷却した後に再び海に戻している。これにより、冷却部80が無い場合に比べて、海に戻す海水温度を抑えることができる。そのため、環境負荷を抑えながら復水器冷媒を復水器6に供給することができる。
 例えば、蒸気タービン5だけではなく、ガスタービン2の吸気も冷却させた場合には、ガスタービン2の吸気量(質量流量)が増加する。そのため、燃焼温度を同じ温度に維持しようとする限り、使用される燃料の消費量が増加してタービン23の排ガスの熱量も増加してしまう。排ガスの熱量が増加することで、排ガスを利用して排熱回収ボイラ4で生成される蒸気Saの保有熱量(基本的には、蒸発量)も上昇してしまう。そのため、蒸気タービン5を駆動した蒸気Sb冷却するために、復水器6で用いられた後の海水Aの温度も上昇してしまう。その結果、海へ排出する海水Aの温度も高くなってしまい、環境負荷がより一層高くなってしまう。
 上記のようなコンバインドサイクルプラント1によれば、ガスタービン2で使用される燃料の消費量を増加させずに、蒸気タービン5の出力を向上させることができる。その結果、コンバインドサイクルプラント1全体としての熱効率を向上させることができる。
 仮に、ガスタービン2の吸気を冷却させてガスタービン2の出力を増大させる場合には、ガスタービン2で使用される燃料の消費量も増加してしまう。そのため、ガスタービン2の出力を増加させても、コンバインドサイクルプラント1の熱効率を向上させることは見込み難い。
 一方、ガスタービン2ではなく、復水器冷媒の温度を下げて復水器真空度を向上させることによって蒸気タービン5の出力を向上させることにおいては、ガスタービン2で使用される燃料の消費量を変化させる必要はない。これにより、コンバインドサイクルプラント1全体としての熱効率を向上させることができる。
《第二実施形態》
 次に、図3及び図4を参照して第二実施形態のコンバインドサイクルプラント1aについて説明する。
 第二実施形態においては第一実施形態と同様の構成要素には同一の符号を付して詳細な説明を省略する。この第二実施形態のコンバインドサイクルプラント1aは、冷却設備8aの冷却部80aの構成について第一実施形態と相違する。
 第二実施形態の冷却部80aは、復水器冷媒である海水Aを液化天然ガスGで直接冷却せずに、第一中間冷媒Bを利用して間接的に冷却する。具体的には、第二実施形態の冷却部80aは、図3に示すように、液化ガス熱交換部82と、第一中間冷媒流通ライン83と、第一中間冷却部84とを有する。液化ガス熱交換部82は、液化天然ガスGと熱交換することで第一中間冷媒Bを冷却する。第一中間冷媒流通ライン83は、液化ガス熱交換部82と接続され、冷却された第一中間冷媒Bが流通する。第一中間冷却部84は、第一中間冷媒流通ライン83に設けられ、流通する第一中間冷媒Bを利用して海水Aを冷却する。
 液化ガス熱交換部82は、第一実施形態で冷却部80として利用された燃料加熱部33である。即ち、第二実施形態の燃料加熱部33aは、燃料供給ライン32と第一中間冷媒流通ライン83とに跨って配置されている。液化ガス熱交換部82は、液化天然ガスGを気化させる際に液化天然ガスGと第一中間冷媒Bとを熱交換させる。これにより、液化ガス熱交換部82は、液化天然ガスGを加熱すると共に、第一中間冷媒Bを冷却する。本実施形態の第一中間冷媒Bには、不凍液であるエチレングリコール等が用いられる。
 第一中間冷媒流通ライン83は、液化ガス熱交換部82である燃料加熱部33aで冷却された第一中間冷媒Bを第一中間冷却部84に送り、第一中間冷却部84から排出された第一中間冷媒Bを再び燃料加熱部33aに送り込む。即ち、第一中間冷媒流通ライン83は、燃料加熱部33aと第一中間冷却部84との間を接続し、第一中間冷媒Bを循環させている。
 本実施形態の第一中間冷媒流通ライン83は、第一中間冷媒流通ライン本体831と、第一中間ブースターポンプ832と、第一中間バイパスライン833とを有する。第一中間冷媒流通ライン本体831は、配管である。第一中間ブースターポンプ832は、冷却された第一中間冷媒Bを第一中間冷却部84に向けて圧送する。第一中間バイパスライン833は、第一中間冷却部84を通過させないように第一中間冷却部84を迂回して第一中間冷媒流通ライン本体831を接続する。第一中間バイパスライン833には、流通させる第一中間冷媒Bの流量を調整する第一中間バイパス弁833aと、空気を利用して第一中間冷媒Bを加熱するエアヒータ833bとが設けられている。
 第一中間冷却部84は、第一中間冷媒流通ライン83と冷媒供給ライン81とを跨ぐように第一中間冷媒流通ライン本体831の途中に設けられている。第一中間冷却部84は、液化ガス熱交換部82で冷却された第一中間冷媒Bを利用して取水した海水Aを冷却する。本実施形態の第一中間冷却部84は、第一中間冷媒Bと海水Aとを熱交換させる熱交換器である。第一中間冷却部84は、第一中間冷媒Bと海水Aとを熱交換させることで、第一中間冷媒Bを加熱すると共に、海水Aを冷却する。
 第二実施形態の供給バイパスライン814は、第一中間冷却部84を通過させないように第一中間冷却部84を迂回して冷媒供給ライン本体811と接続される。
 次に、第二実施形態の冷却方法S101について説明する。
 第二実施形態の冷却方法S101では、図4に示すように、冷却工程S11が第一実施形態の冷却工程S10と異なっている。第二実施形態の冷却工程S11は、低温の液化天然ガスGを間接的に利用して復水器冷媒を冷却する。
 具体的には、第二実施形態の冷却工程S11は、液化ガス熱交換工程S20と、第一中間冷媒流通工程S30と、第一中間冷却工程S40とを有する。液化ガス熱交換工程S20は、液化天然ガスGと熱交換することで第一中間冷媒Bを冷却する。第一中間冷媒流通工程S30は、液化ガス熱交換工程S20で冷却された第一中間冷媒Bを流通させる。第一中間冷却工程S40は、流通する第一中間冷媒Bを利用して海水Aを冷却する。
 液化ガス熱交換工程S20は、液化ガス熱交換部82である燃料加熱部33aを用いて、液化天然ガスGと第一中間冷媒Bとを熱交換させることで、第一中間冷媒Bを冷却する。具体的には、液化ガス熱交換工程S20では、第一中間冷媒流通ライン83を循環している第一中間冷媒Bを燃料加熱部33aに供給する。
 液化ガス熱交換工程S20では、燃料供給ライン32を介して液化天然ガスGを貯蔵タンク31から燃料加熱部33aに供給する。液化ガス熱交換工程S20は、燃料加熱部33aに供給された第一中間冷媒Bと液化天然ガスGとを熱交換させる。これにより、液化ガス熱交換工程S20は、液化天然ガスGを加熱して気化させると共に、第一中間冷媒Bを冷却する。
 第一中間冷媒流通工程S30は、液化ガス熱交換部82で冷却された第一中間冷媒Bを第一中間冷却部84まで送る。本実施形態の第一中間冷媒流通工程S30は、燃料加熱部33aで冷却された第一中間冷媒Bを第一中間ブースターポンプ832で第一中間冷媒流通ライン本体831を介して第一中間冷却部84まで圧送する。
 第一中間冷却工程S40は、熱交換器である第一中間冷却部84を用いて、第一中間冷媒Bと海水Aとを熱交換させることで、海水Aを冷却する。具体的には、第一中間冷却工程S40は、第一中間冷却部84に送られてきた第一中間冷媒Bと、冷媒供給ライン本体811を介して海で取水されて第一中間冷却部84に供給された海水Aとを熱交換させる。これにより、第一中間冷却工程S40は、第一中間冷媒Bを加熱すると共に、海水Aを冷却する。
 第一実施形態と同様に、冷媒供給工程S80及び蒸気冷却工程S90が実施されることで、冷却された海水Aは復水器6で蒸気Sbを冷却するために使用される。
 上記のような冷却設備8a及び冷却方法S101によれば、液化ガス熱交換工程S20において液化天然ガスGを利用して液化ガス熱交換部82で第一中間冷媒Bを冷却している。その後に、第一中間冷却工程S40において冷却された第一中間冷媒Bを利用して第一中間冷却部84で海水Aを冷却している。これにより、液化天然ガスGを利用して間接的に海水Aを冷却できる。そのため、液化天然ガスGと第一中間冷媒B、第一中間冷媒Bと海水Aとのそれぞれの温度差を小さくすることができる。
 したがって、液化天然ガスGが-160℃のような低温であっても、海水Aが凍結してしまうことを防ぎながら、海水Aを冷却する一手段を提供することができる。各熱交換部を流れる二流体間の温度差が小さくなることで、燃料加熱部33aや第一中間冷却部84への熱負荷を小さくすることができる。これにより、液化天然ガスGを気化させる際に生じる冷熱エネルギーを回収することができ、蒸気Sbを冷却するためのエネルギーとして有効に利用することができる。
《第三実施形態》
 次に、図5及び図6を参照して第三実施形態のコンバインドサイクルプラント1bについて説明する。
 第三実施形態においては第一実施形態や第二実施形態と同様の構成要素には同一の符号を付して詳細な説明を省略する。この第三実施形態のコンバインドサイクルプラント1bは、冷却部80bの第一中間冷却部84bの構成について第二実施形態と相違する。
 第三実施形態の第一中間冷却部84bは、復水器冷媒である海水Aを第一中間冷媒Bで直接冷却せずに、第二中間冷媒Cを利用して、さらに間接的に冷却する。具体的には、第三実施形態の第一中間冷却部84bは、図5に示すように、第一中間冷媒熱交換部85と、第二中間冷媒流通ライン86と、第二中間冷却部87と、を有する。第一中間冷媒熱交換部85は、冷却された第一中間冷媒Bと熱交換することで第二中間冷媒Cを冷却する。第二中間冷媒流通ライン86は、冷却された第二中間冷媒Cが流通する。第二中間冷却部87は、流通する第二中間冷媒Cを利用して海水Aを冷却する。
 第一中間冷媒熱交換部85は、第一中間冷媒流通ライン本体831の途中に設けられている。第一中間冷媒熱交換部85は、液化ガス熱交換部82で冷却された第一中間冷媒Bを利用して第二中間冷媒Cを冷却する。本実施形態の第一中間冷媒熱交換部85は、第一中間冷媒Bと第二中間冷媒Cとを熱交換させる熱交換器である。
 本実施形態の第一中間冷媒熱交換部85は、第一中間冷媒流通ライン83と第二中間冷媒流通ライン86とに跨って配置されている。第一中間冷媒熱交換部85は、第一中間冷媒Bと第二中間冷媒Cとを熱交換させる。これにより、第一中間冷媒熱交換部85は、第一中間冷媒Bを加熱すると共に、第二中間冷媒Cを冷却する。本実施形態の第二中間冷媒Cには、循環水が用いられる。
 第二中間冷媒流通ライン86は、第一中間冷媒熱交換部85で冷却された第二中間冷媒Cを第二中間冷却部87に送り、第二中間冷却部87から排出された第二中間冷媒Cを再び第一中間冷媒熱交換部85に送り込む。即ち、第二中間冷媒流通ライン86は、第一中間冷媒熱交換部85と第二中間冷却部87との間を接続し、第二中間冷媒Cを循環させている。
 本実施形態の第二中間冷媒流通ライン86は、配管である第二中間冷媒流通ライン本体861と、冷却された第二中間冷媒Cを第二中間冷却部87に向けて圧送する第二中間ブースターポンプ862と、を有する。
 第二中間冷却部87は、第二中間冷媒流通ライン本体861と冷媒流通ライン本体とを跨ぐように第二中間冷媒流通ライン本体861の途中に設けられている。第二中間冷却部87は、第一中間冷媒熱交換部85で冷却された第二中間冷媒Cを利用して取水した海水Aを冷却する。本実施形態の第二中間冷却部87は、第二中間冷媒Cと海水Aとを熱交換させる熱交換器である。第二中間冷却部87は、第二中間冷媒Cと海水Aとを熱交換させることで、第二中間冷媒Cを加熱すると共に、海水Aを冷却する。
 次に、第三実施形態の冷却方法S102について説明する。
 第三実施形態の冷却方法S102では、図6に示すように、冷却工程S12の第一中間冷却工程S41が第二実施形態の第一中間冷却工程S40と異なっている。第三実施形態の第一中間冷却工程S41は、液化天然ガスGによって冷却された低温の第一中間冷媒Bを間接的に利用して、復水器冷媒を冷却する。
 具体的には、第三実施形態の第一中間冷却工程S41は、第一中間冷媒熱交換工程S50と、第二中間冷媒流通工程S60と、第二中間冷却工程S70とを有する。第一中間冷媒熱交換工程S50は、冷却された第一中間冷媒Bと熱交換することで第二中間冷媒Cを冷却する。第二中間冷媒流通工程S60は、冷却された第二中間冷媒Cを流通させる。第二中間冷却工程S70は、流通する第二中間冷媒Cを利用して海水Aを冷却する。
 第一中間冷媒熱交換工程S50は、熱交換器である第一中間冷媒熱交換部85を用いて、第一中間冷媒Bと第二中間冷媒Cとを熱交換させることで、第二中間冷媒Cを冷却する。具体的には、第一中間冷媒熱交換工程S50は、第一中間冷媒流通ライン本体831から第一中間冷媒熱交換部85に供給された第一中間冷媒Bと、第二中間冷媒流通ライン本体861を介して第一中間冷媒熱交換部85に供給された第二中間冷媒Cとを熱交換させる。これにより、第一中間冷媒熱交換工程S50は、第一中間冷媒Bを加熱すると共に、第二中間冷媒Cを冷却する。
 第二中間冷媒流通工程S60は、第一中間冷媒熱交換部85で冷却された第二中間冷媒Cを第二中間冷却部87まで送る。本実施形態の第二中間冷媒流通工程S60は、第一中間冷媒熱交換部85で冷却された第二中間冷媒Cを第二中間ブースターポンプ862で第二中間冷媒流通ライン本体861を介して第二中間冷却部87まで圧送する。
 第二中間冷却工程S70は、熱交換器である第二中間冷却部87を用いて、第二中間冷媒Cと海水Aとを熱交換させることで、海水Aを冷却する。具体的には、第二中間冷却工程S70は、第二中間冷媒流通ライン本体861から第二中間冷却部87に供給された第二中間冷媒Cと、冷媒供給ライン本体811を介して海で取水されて第二中間冷却部87に供給された海水Aとを熱交換させる。これにより、第二中間冷却工程S70は、第二中間冷媒Cを加熱すると共に、海水Aを冷却する。
 第一実施形態や第二実施形態と同様に、冷媒供給工程S80及び蒸気冷却工程S90が実施されることで、冷却した海水Aは復水器6で蒸気Sbを冷却するために使用される。
 上記のような冷却設備8b及び冷却方法S102によれば、液化天然ガスGによって冷却された第一中間冷媒Bを利用し、第一中間冷媒熱交換工程S50において第一中間冷媒熱交換部85で第二中間冷媒Cを冷却している。その後に、冷却した第二中間冷媒Cによって第二中間冷却工程S70において第二中間冷却部87で海水Aを冷却している。即ち、液化天然ガスGを利用して海水Aを冷却するまでに、二段階の冷媒を介して間接的に冷却することができる。このように、運用温度帯が異なる複数の中間冷媒サイクルから構成することで、各熱交換部を流れる二流体間の温度差をさらに低減することができる。これにより、各熱交換部あたりの熱負荷を小さくすることができ、各熱交換部としてコンパクトな構成のものを使用できる。運用温度帯が異なる複数の中間冷媒サイクルから構成することで、例えばプラント補機向け軸冷水(あるいはその冷却)等のプラントサイクルへの流用も可能とし得る。したがって、液化天然ガスGが-160℃程度のような低温であっても海水Aが凍結してしまうことを防ぎながら、現有設備構成にフレキシブルに対応させつつ、海水Aを冷却する一手段を提供することができる。
 各熱交換部を流れる二流体間の温度差を小さくすることができる。即ち、燃料加熱部33aや第一中間冷媒熱交換部85や第二中間冷却部87への熱負荷を小さくすることができる。これにより、液化天然ガスGを気化させる際に生じる冷熱エネルギーを回収することができ、蒸気Sbを冷却するためのエネルギーとして有効に利用することができる。
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。
 なお、本発明の復水器冷媒は、本実施形態のように海水Aに限定されるものでなく、復水器6で蒸気Sbを冷却可能な冷媒であればよい。例えば、復水器冷媒は、冷却塔から供給される循環水でもよく、河川等から取水した河川水であってもよい。
 第一中間冷媒Bや第二中間冷媒Cは、本実施形態に限定されるものではなく、冷媒として使用可能であればよい。例えば、第二中間冷媒Cは、本実施形態で第一中間冷媒Bとして使用されるグリコールでもよい。
 液化ガス熱交換部82は本実施形態のように燃料加熱部33、33aに限定されるものではなく、第一中間冷媒Bと液化天然ガスGとを熱交換させることが可能な熱交換器であればよい。
 上記冷却設備及び冷却方法によれば、液化ガスを利用して復水器冷媒を冷却することで、ガスタービンの燃料消費量を増加させずに蒸気タービンの出力を向上させることができる。
1、1a、1b       コンバインドサイクルプラント
2            ガスタービン
21          圧縮機
22          燃焼器
23          タービン
24          ガスタービンロータ
G            液化天然ガス
3            燃料供給部
31          貯蔵タンク
32          燃料供給ライン
33、33a  燃料加熱部
4            排熱回収ボイラ
S            蒸気
5            蒸気タービン
51          蒸気タービンロータ
6            復水器
W            水
7            給水ポンプ
8            冷却設備
81          冷媒供給ライン
811        冷媒供給ライン本体
812        取水ポンプ
813        復水器冷媒ブースターポンプ
814        供給バイパスライン
814a      供給バイパス弁
A            海水
80、80a、80b 冷却部
S100,S101,S102       冷却方法
S10、S11、S12      冷却工程
S80        冷媒供給工程
S90        蒸気冷却工程
82          液化ガス熱交換部
B            第一中間冷媒
83          第一中間冷媒流通ライン
831        第一中間冷媒流通ライン本体
832        第一中間ブースターポンプ
833        第一中間バイパスライン
833a      第一中間バイパス弁
833b      エアヒータ
84、84b  第一中間冷却部
S20        液化ガス熱交換工程
S30        第一中間冷媒流通工程
S40、S41       第一中間冷却工程
C            第二中間冷媒
85          第一中間冷媒熱交換部
86          第二中間冷媒流通ライン
861        第二中間冷媒流通ライン本体
862        第二中間ブースターポンプ
87          第二中間冷却部
S50        第一中間冷媒熱交換工程
S60        第二中間冷媒流通工程
S70        第二中間冷却工程

Claims (8)

  1.  蒸気タービンを駆動した蒸気を冷却して水に戻す復水器冷媒を復水器に供給する冷媒供給ラインと、
     前記冷媒供給ラインに設けられ、ガスタービンの燃料として用いられる液化ガスと前記復水器冷媒とを熱交換させて前記液化ガスを加熱及び気化すると共に前記復水器冷媒を冷却する冷却部とを備える冷却設備。
  2.  前記冷却部は、
     前記液化ガスと熱交換することで第一中間冷媒を冷却する液化ガス熱交換部と、
     前記液化ガス熱交換部と接続され、冷却された前記第一中間冷媒が流通する第一中間冷媒流通ラインと、
     前記第一中間冷媒流通ラインに設けられ、流通する前記第一中間冷媒を利用して前記復水器冷媒を冷却する第一中間冷却部とを有する請求項1に記載の冷却設備。
  3.  前記第一中間冷却部は、
     冷却された前記第一中間冷媒と熱交換することで第二中間冷媒を冷却する第一中間冷媒熱交換部と、
     第一中間冷媒熱交換部に接続され、冷却された前記第二中間冷媒が流通する第二中間冷媒流通ラインと、
     前記第二中間冷媒流通ラインに設けられ、流通する第二中間冷媒を利用して前記復水器冷媒を冷却する第二中間冷却部と、を有する請求項2に記載の冷却設備。
  4.  前記復水器冷媒として海水を利用し、
     前記蒸気を冷却した後に前記海水を海へ排出する請求項1から請求項3のいずれか一項に記載の冷却設備。
  5.  請求項1から請求項4のいずれか一項に記載のガスタービンの冷却設備と、
     前記ガスタービンと、
     前記ガスタービンから排出される排ガスによって蒸気を生成させる排熱回収ボイラと、
     前記排熱回収ボイラで生成された前記蒸気で駆動する前記蒸気タービンと、
     前記復水器と、を備えるコンバインドサイクルプラント。
  6.  蒸気タービンを駆動した蒸気を冷却して水に戻す復水器冷媒を復水器に供給する冷媒供給工程と、
     前記冷媒供給工程の前に、ガスタービンの燃料に用いられる液化ガスと前記復水器冷媒とを熱交換させて前記液化ガスを加熱及び気化すると共に前記復水器冷媒を冷却する冷却工程とを含む冷却方法。
  7.  前記冷却工程は、
     前記液化ガスと熱交換することで第一中間冷媒を冷却する液化ガス熱交換工程と、
     前記液化ガス熱交換工程で冷却された前記第一中間冷媒を流通させる第一中間冷媒流通工程と、
     前記第一中間冷媒流通工程の後に、流通する前記第一中間冷媒を利用して前記復水器冷媒を冷却する第一中間冷却工程とを有する請求項6に記載の冷却方法。
  8.  前記第一中間冷却工程は、
     冷却された前記第一中間冷媒と熱交換することで第二中間冷媒を冷却する第一中間冷媒熱交換工程と、
     前記第一中間冷媒熱交換工程で冷却された前記第二中間冷媒を流通させる第二中間冷媒流通工程と、
     前記第二中間冷媒流通工程の後に、流通する第二中間冷媒を利用して前記復水器冷媒を冷却する第二中間冷却工程と、を有する請求項7に記載の冷却方法。
PCT/JP2015/075493 2014-09-18 2015-09-08 冷却設備、これを備えるコンバインドサイクルプラント、及び冷却方法 WO2016043094A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/504,531 US11300010B2 (en) 2014-09-18 2015-09-08 Cooling equipment, combined cycle plant comprising same, and cooling method
KR1020177005624A KR20170039705A (ko) 2014-09-18 2015-09-08 냉각 설비, 이를 구비하는 콤바인드 사이클 플랜트, 및 냉각 방법
KR1020187021847A KR20180088524A (ko) 2014-09-18 2015-09-08 냉각 설비, 이를 구비하는 콤바인드 사이클 플랜트, 및 냉각 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-189910 2014-09-18
JP2014189910A JP6519839B2 (ja) 2014-09-18 2014-09-18 冷却設備、及びこれを備えるコンバインドサイクルプラント

Publications (1)

Publication Number Publication Date
WO2016043094A1 true WO2016043094A1 (ja) 2016-03-24

Family

ID=55533133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075493 WO2016043094A1 (ja) 2014-09-18 2015-09-08 冷却設備、これを備えるコンバインドサイクルプラント、及び冷却方法

Country Status (4)

Country Link
US (1) US11300010B2 (ja)
JP (1) JP6519839B2 (ja)
KR (2) KR20170039705A (ja)
WO (1) WO2016043094A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102460996B1 (ko) * 2017-08-25 2022-11-01 삼성중공업(주) 복합발전 플랜트
KR102391283B1 (ko) * 2017-09-15 2022-04-27 삼성중공업(주) 복합발전 플랜트
JP6981727B2 (ja) * 2017-11-13 2021-12-17 一般財団法人電力中央研究所 産業設備
CA3143050A1 (en) * 2019-06-10 2020-12-17 U.S. Well Services, LLC Integrated fuel gas heater for mobile fuel conditioning equipment
CN110107368B (zh) * 2019-06-11 2024-04-19 赫普科技发展(北京)有限公司 蒸汽冷凝方法、蒸汽冷凝系统及发电系统
WO2023176050A1 (ja) * 2022-03-16 2023-09-21 株式会社Ihi ガスタービンシステム
WO2023248542A1 (ja) * 2022-06-24 2023-12-28 株式会社Ihi 発電システム
US20240026824A1 (en) * 2022-07-22 2024-01-25 Raytheon Technologies Corporation Cryogenic assisted bottoming cycle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648304A (en) * 1987-07-01 1989-01-12 Hitachi Ltd Cooling water equipment for steam prime mover plant
JPH01219465A (ja) * 1988-02-26 1989-09-01 Mitsui Constr Co Ltd 冷却空気発生装置
JPH033902A (ja) * 1989-05-31 1991-01-10 Yokogawa Electric Corp 火力発電所システム
JPH07119487A (ja) * 1993-10-29 1995-05-09 Hitachi Ltd ガスタービン吸気冷却設備及びその運転方法
JPH07139370A (ja) * 1993-11-18 1995-05-30 Kobe Steel Ltd 液化天然ガスの気化供給方法および気化供給装置
JPH08506643A (ja) * 1993-12-10 1996-07-16 キャボット コーポレイション 液化天然ガスを燃料とする改良された共同サイクルプラント
JP2001323807A (ja) * 2000-03-09 2001-11-22 Mitsubishi Heavy Ind Ltd タービン設備

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3726085A (en) * 1971-06-07 1973-04-10 Back Sivalls & Bryson Inc Preventing thermal pollution of ambient water used as a process cooling medium
US4696156A (en) * 1986-06-03 1987-09-29 United Technologies Corporation Fuel and oil heat management system for a gas turbine engine
JPH0625532B2 (ja) 1987-01-30 1994-04-06 株式会社丸山製作所 二サイクルエンジンの消音方法とその装置
CN1112505C (zh) * 1995-06-01 2003-06-25 特雷克特贝尔Lng北美公司 液化天然气作燃料的混合循环发电装置及液化天然气作燃料的燃气轮机
DE19745272C2 (de) * 1997-10-15 1999-08-12 Siemens Ag Gas- und Dampfturbinenanlage und Verfahren zum Betreiben einer derartigen Anlage
JPH11200884A (ja) 1998-01-19 1999-07-27 Mitsubishi Heavy Ind Ltd ガスタービン設備、及び同ガスタービン設備を含む液化天然ガス複合サイクル発電プラント
US6626635B1 (en) * 1998-09-30 2003-09-30 General Electric Company System for controlling clearance between blade tips and a surrounding casing in rotating machinery
US6269626B1 (en) * 2000-03-31 2001-08-07 Duk M. Kim Regenerative fuel heating system
JP4554641B2 (ja) 2001-03-06 2010-09-29 三井造船株式会社 メタンハイドレート冷熱利用発電システム
JP4343703B2 (ja) * 2002-02-27 2009-10-14 エクセルレイト・エナジー・リミテッド・パートナーシップ 運搬体上におけるlngの再ガス化装置及びその方法
US6598408B1 (en) * 2002-03-29 2003-07-29 El Paso Corporation Method and apparatus for transporting LNG
US6968696B2 (en) * 2003-09-04 2005-11-29 Siemens Westinghouse Power Corporation Part load blade tip clearance control
JP2005098240A (ja) * 2003-09-25 2005-04-14 Tokyo Electric Power Co Inc:The 発電システム
US20070214805A1 (en) * 2006-03-15 2007-09-20 Macmillan Adrian Armstrong Onboard Regasification of LNG Using Ambient Air
JP4986664B2 (ja) * 2007-03-22 2012-07-25 中国電力株式会社 ガスタービン燃焼用空気の冷却システム
WO2008047489A1 (en) * 2007-04-11 2008-04-24 Hitachi, Ltd. Power supply equipment for natural gas liquefaction plant
US20090313999A1 (en) * 2008-05-13 2009-12-24 Scott Hunter Method and apparatus for controlling fuel in a gas turbine engine
US8140427B2 (en) 2009-04-16 2012-03-20 Itg Software Solutions, Inc. Systems, methods and computer program products for adaptive transaction cost estimation
US20100307157A1 (en) * 2009-06-08 2010-12-09 General Electric Company Methods relating to turbine engine control and operation
GB2510654B (en) * 2013-05-15 2016-09-07 Rolls Royce Plc Method and system for monitoring the performance of a heat exchanger
JP6320228B2 (ja) * 2014-07-31 2018-05-09 三菱日立パワーシステムズ株式会社 太陽熱空気タービン発電システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648304A (en) * 1987-07-01 1989-01-12 Hitachi Ltd Cooling water equipment for steam prime mover plant
JPH01219465A (ja) * 1988-02-26 1989-09-01 Mitsui Constr Co Ltd 冷却空気発生装置
JPH033902A (ja) * 1989-05-31 1991-01-10 Yokogawa Electric Corp 火力発電所システム
JPH07119487A (ja) * 1993-10-29 1995-05-09 Hitachi Ltd ガスタービン吸気冷却設備及びその運転方法
JPH07139370A (ja) * 1993-11-18 1995-05-30 Kobe Steel Ltd 液化天然ガスの気化供給方法および気化供給装置
JPH08506643A (ja) * 1993-12-10 1996-07-16 キャボット コーポレイション 液化天然ガスを燃料とする改良された共同サイクルプラント
JP2001323807A (ja) * 2000-03-09 2001-11-22 Mitsubishi Heavy Ind Ltd タービン設備

Also Published As

Publication number Publication date
KR20180088524A (ko) 2018-08-03
KR20170039705A (ko) 2017-04-11
US11300010B2 (en) 2022-04-12
JP6519839B2 (ja) 2019-05-29
US20180223696A1 (en) 2018-08-09
JP2016061227A (ja) 2016-04-25

Similar Documents

Publication Publication Date Title
WO2016043094A1 (ja) 冷却設備、これを備えるコンバインドサイクルプラント、及び冷却方法
US11519303B2 (en) Waste heat recovery system, gas turbine plant provided with same, waste heat recovery method, and installation method for waste heat recovery system
KR101619393B1 (ko) 복합 발전 시스템
US8752382B2 (en) Dual reheat rankine cycle system and method thereof
JP2012149541A (ja) 排熱回収発電装置および船舶
JP2009221961A (ja) バイナリー発電システム
MX2014011444A (es) Sistema y metodo para recuperar calor residual de fuentes de calor dual.
KR20120026569A (ko) 흡기 온도 조절 장치 및 그의 작동 방법
JP5766927B2 (ja) 発電システム
JP2014034924A (ja) 内燃機関の排熱回収装置及びコジェネレーション・システム
US7730712B2 (en) System and method for use in a combined cycle or rankine cycle power plant using an air-cooled steam condenser
CN102575531A (zh) 用于生成高压蒸汽的方法和系统
KR102011859B1 (ko) 선박의 폐열을 이용한 에너지 절감시스템
US7748210B2 (en) System and method for use in a combined or rankine cycle power plant
JP4666641B2 (ja) エネルギー供給システム、エネルギー供給方法、及びエネルギー供給システムの改造方法
JP2013019303A (ja) 発電システム
JP2016151191A (ja) 発電システム
KR20140085003A (ko) 선박의 폐열을 이용한 에너지 절감시스템
WO2013136606A1 (ja) 蒸気発生システム
US20150369084A1 (en) System for preheating boiler feedwater and cooling condenser water
KR20150098163A (ko) Orc 분산발전시스템
JP6137858B2 (ja) 熱供給装置
WO2021106986A1 (ja) 蒸気発生装置及び排熱回収プラント
JP2018017131A (ja) ランキンサイクルシステム
KR20140085002A (ko) 선박의 폐열을 이용한 에너지 절감시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842379

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15504531

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177005624

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15842379

Country of ref document: EP

Kind code of ref document: A1