WO2016042687A1 - 送信装置及びその制御方法 - Google Patents
送信装置及びその制御方法 Download PDFInfo
- Publication number
- WO2016042687A1 WO2016042687A1 PCT/JP2015/002236 JP2015002236W WO2016042687A1 WO 2016042687 A1 WO2016042687 A1 WO 2016042687A1 JP 2015002236 W JP2015002236 W JP 2015002236W WO 2016042687 A1 WO2016042687 A1 WO 2016042687A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wireless terminal
- time
- base station
- radio
- content
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 228
- 238000000034 method Methods 0.000 title claims description 123
- 238000012545 processing Methods 0.000 claims abstract description 85
- 230000008569 process Effects 0.000 claims description 48
- 230000008859 change Effects 0.000 claims description 26
- 238000012546 transfer Methods 0.000 claims description 19
- 230000008929 regeneration Effects 0.000 claims 1
- 238000011069 regeneration method Methods 0.000 claims 1
- 230000015556 catabolic process Effects 0.000 abstract description 2
- 238000006731 degradation reaction Methods 0.000 abstract description 2
- 238000007726 management method Methods 0.000 description 122
- 230000006870 function Effects 0.000 description 115
- 238000013468 resource allocation Methods 0.000 description 108
- 238000004364 calculation method Methods 0.000 description 76
- 238000004891 communication Methods 0.000 description 64
- 230000010365 information processing Effects 0.000 description 18
- 238000013500 data storage Methods 0.000 description 14
- 238000012384 transportation and delivery Methods 0.000 description 9
- 238000009792 diffusion process Methods 0.000 description 8
- 230000003139 buffering effect Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000005653 Brownian motion process Effects 0.000 description 4
- 230000003044 adaptive effect Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000008571 general function Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/06—Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/10—Flow control between communication endpoints
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
Definitions
- the present invention relates to a transmission apparatus and its control method and program, and in particular, a transmission apparatus and its control when transmitting content addressed to a wireless terminal received via a network from a base station apparatus to the wireless terminal via a wireless line.
- the present invention relates to a method and a program.
- HTTP Hypertext Transfer Protocol
- ISO International Organization for Standardization
- MPEG-DASH Microving Picture Experts Group-DynamicAdaptiveHTP
- MPEG-DASH is a technology for dynamically switching the bit rate of content data so that playback of streaming content such as video does not stop due to a buffering state.
- the buffering state refers to a remaining playback time that is a time that can be played back with currently stored content data in a storage area that stores content data that has not yet been played back with streaming application software. Until it becomes, the reproduction of streaming content is stopped and content data is accumulated.
- FIG. 18 shows a content distribution system using MPEG-DASH.
- the streaming content is time-divided, and each is managed by content data encoded at a plurality of encoding rates having different bit rates.
- the bit rate represents the size of data necessary for reproducing streaming content at a constant speed (reproduction at 1 ⁇ speed) for a unit time.
- a playlist file called MPD Media Presentation Description
- the MPD describes information such as the reproduction start time and reproduction time length of each time-divided streaming content, the bit rate and resolution prepared in the server device 91, and the URL where the content data is stored.
- the client device 92 acquires the MPD from the server device 91, sequentially acquires the content data based on the URL of each content data described in the MPD, and reproduces the moving image content. .
- By dynamically switching the bit rate of the streaming content according to the network environment it is possible to avoid stopping the playback of the streaming content due to the buffering state.
- the wireless terminal passes through a blind area (coverage hole) where a signal from the base station does not reach, which is blocked by a high-rise building or the like.
- the radio channel quality of the radio terminal is significantly degraded in the dead area and the surrounding area.
- the reception bit rate of the wireless terminal (the transmission rate of the wireless channel between the base station and the wireless terminal connected to the base station) is lower than the content reproduction bit rate.
- the remaining playback time of the streaming content in the wireless terminal decreases, and eventually it is depleted and becomes a buffering state.
- the content reproduction bit rate is usually reduced to a minimum value that does not exceed the reception bit rate of the radio terminal.
- the reception bit rate is equal to or lower than the minimum reproduction bit rate of the content, an appropriate reproduction bit rate for the reception bit rate cannot be set, and thus the buffering state cannot be avoided.
- the reproduction of streaming content such as video and audio occurs in the wireless terminal, and the quality of experience (QoE: Quality of Experience) of the user deteriorates in the wireless terminal.
- the present invention has been made to solve such problems, and even when the quality of the radio channel is deteriorated, a transmission apparatus and a control method thereof for avoiding QoE deterioration due to streaming content reproduction stoppage or the like And to provide a program.
- the transmission device is: A transmitter that transmits content data addressed to a wireless terminal received via a network to the wireless terminal via a wireless line, An acquisition means for acquiring a process expected index that is an index indicating the likelihood of processing of the content executed by the wireless terminal; Control means for allocating radio resources to the radio terminal according to the processing expectation index; Have
- the control method of the transmission device is: A method for controlling a transmission device that transmits content data addressed to a wireless terminal received via a network to the wireless terminal via a wireless line, Obtaining a process expected index that is an index indicating the likelihood of processing of the content executed by the wireless terminal; A radio resource is allocated to the radio terminal according to the processing expectation index.
- the program of the control method of the transmission device concerning the 3rd mode of the present invention is A program that causes a computer to execute a control method of a transmission device that transmits content data addressed to a wireless terminal received via a network to the wireless terminal via a wireless line, Obtaining a process expected index that is an index indicating the likelihood of processing of the content executed by the wireless terminal; A radio resource is allocated to the radio terminal according to the processing expectation index.
- the present invention it is possible to provide a transmission apparatus, a control method thereof, and a program for avoiding QoE degradation due to streaming content reproduction stoppage or the like even when radio channel quality is degraded.
- FIG. 1 shows the configuration of a distribution system 1 according to the first embodiment of the present invention.
- the distribution system 1 includes a wireless communication system 2.
- an LTE communication system is assumed as the wireless communication system 2.
- a communication system other than LTE such as UMTS (Universal Mobile Telecommunication Systems) or GSM (registered trademark) (Global System for Mobile communications) may be assumed.
- the distribution system 1 includes a server device 10, a base station 20, and a wireless terminal 30.
- the base station 20 and the wireless terminal 30 are included in the wireless communication system 2.
- the server apparatus 10 and the base station 20 are configured to communicate via a communication line (for example, the Internet) NW.
- the base station 20 and the wireless terminal 30 are configured to communicate via the wireless interface N1.
- the distribution system 1 includes only one base station and one wireless terminal, but the number of base stations may be any number. Similarly, any number of wireless terminals may be used.
- the server device 10 includes an information processing device (not shown).
- the information processing apparatus includes a central processing unit (CPU; Central Processing Unit) (not shown) and a storage device (memory and hard disk drive (HDD)).
- the server device 10 may be configured to realize functions to be described later when the CPU executes a program stored in the storage device.
- the base station 20 includes an information processing device (not shown).
- the information processing apparatus includes a central processing unit (CPU) (not shown) and a storage device (memory and hard disk drive (HDD)).
- the base station 20 may be configured to realize functions to be described later when the CPU executes a program stored in the storage device.
- the wireless terminal 30 is a mobile phone terminal, personal computer, PHS (Personal Handyphone System) terminal, PDA (Personal Data Assistant, Personal Digital Assistant), smartphone, tablet terminal, car navigation terminal, or game terminal. is there.
- the wireless terminal 30 includes a CPU, a storage device (memory), an input device (key buttons and a microphone), and an output device (display and speaker).
- the wireless terminal 30 may be configured to realize a function included in the wireless terminal 30 when the CPU executes a program stored in the storage device.
- FIG. 2 is a block diagram showing functions of the distribution system 1 configured as described above.
- the functions of the server device 10 are a server operation unit 101 and a content data storage unit 102.
- the server operation unit 101 has a function of transmitting content data stored in the content data storage unit 102 to the wireless terminal 30 via the base station 20.
- Content data refers to audio data, video data, and the like.
- the content data storage unit 102 has a function of time-dividing streaming content at a predetermined time and storing (accumulating) content data encoded for each time-division.
- the content data storage unit 102 stores content data encoded at a specific (single) bit rate.
- the content data storage unit 102 has a function of creating a playlist file of stored streaming content.
- a playlist file corresponds to the MPD described above, for example.
- the content data storage unit 102 when receiving a streaming content transmission start request from the wireless terminal 30, the content data storage unit 102 transmits the above-described streaming content playlist file to the wireless terminal 30.
- the content data storage unit 102 has a function of transmitting stored content data to the wireless terminal 30.
- the content data storage unit 102 transmits content data specified from the content data transmission request transmitted by the wireless terminal 30 to the wireless terminal 30.
- the server device 10 distributes the content data of the streaming content, and the reproduction time and bit rate information per content data distributed from the server device 10 are the base station 20 and the wireless terminal 30. Is recognized as a known fact.
- the functions of the base station 20 are a base station operation unit 201, a buffer 202, a radio channel quality prediction unit 203, a remaining reproduction time calculation unit 204, and a radio resource allocation unit 205.
- the base station operation unit 201 has a function of transmitting and receiving radio signals between the base station 20 and the radio terminal 30 connected to the base station 20 (a communication link is established), and the radio terminal 30 is connected to the base station 20. And a function provided in a base station in a general wireless communication system, such as a function of generating a reference signal used for measuring the communication channel quality.
- a function provided in a base station in a general wireless communication system such as a function of generating a reference signal used for measuring the communication channel quality.
- movement part 201 is a well-known matter of those skilled in the art, description of each function with which the base station operation
- the buffer 202 has a function of accumulating transmission data addressed to each wireless terminal 30 that arrives via the communication line NW.
- the wireless channel quality prediction unit 203 is an example of a prediction unit.
- the radio channel quality prediction unit 203 is radio channel quality information (hereinafter referred to as “radio channel quality”) between the base station 20 and the radio terminal 30 that is connected to the base station 20 (a communication link is established). .) Is predicted from the current and past values of the radio channel quality, and a future value (future radio channel quality) of the radio channel quality is predicted based on the predicted change trend.
- the change tendency is an index indicating a change amount, change state, change transition of information, or a change amount (change width or change speed) in the change.
- the change tendency examples include an inclination obtained from at least two pieces of information, a differential value, a difference value, or an approximate function (such as an approximate line). Therefore, if it is a change tendency of radio channel quality, for example, it may be a change amount of radio channel quality per a plurality of predetermined times in a plurality of radio channel qualities respectively corresponding to a plurality of predetermined times.
- the radio channel quality is a CQI (Channel Quality Indicator) included in CSI (Channel State Information) periodically reported from the radio terminal 30.
- Information on the predicted future radio channel quality is used by the remaining reproduction time calculation unit 204 and the radio resource allocation unit 205.
- the radio channel quality prediction unit 203 predicts a change trend based on the current and past values of the transmission rate of the radio channel instead of the radio channel quality, and transmits a future radio channel predicted using the change trend.
- the rate may be used instead of the above-described future value of the radio channel quality.
- the remaining reproduction time calculation unit 204 is an example of an index calculation unit.
- the remaining reproduction time calculation unit 204 calculates a processing expectation index using the future value of the radio channel quality predicted by the radio channel quality prediction unit 203.
- the process expectation index is an index indicating the likelihood of processing the content data received by the wireless terminal 30.
- a future value of the remaining reproduction time is used as an example of a process expected index.
- the remaining reproduction time is the time required to reproduce the content data that is stored in the wireless terminal 30 and is not reproduced.
- the remaining playback time is the time required for playback of a portion of content data stored in the content playback unit 302 of the wireless terminal 30 that has not been played (unplayed data).
- the remaining reproduction time can be said to be an index of expectation for performing the process of reproducing the content data received in the wireless terminal 30.
- the remaining reproduction time calculation unit 204 has means for acquiring a current value of the remaining reproduction time. That is, the remaining reproduction time calculation unit 204 according to the present embodiment includes the time from when the size of the content data for which transmission to the wireless terminal 30 has been completed (received the ACK response) has reached a predetermined value to the present time, The current value of the remaining reproduction time is obtained by calculating using the value obtained by dividing the size of the content data that has been transmitted by the time by the bit rate of the content data data.
- the remaining reproduction time calculation unit 204 determines whether or not the size of content data (transmission completion data size) that has been transmitted to the wireless terminal 30 exceeds a predetermined value. When it is determined that the transmission completion data size exceeds a predetermined value, the remaining reproduction time calculation unit 204 starts measuring the elapsed time after determining that the transmission completion data size exceeds the predetermined value. Then, the remaining playback time calculation unit 204 calculates the current value of the remaining playback time using the transmission completion data size, the bit rate of the corresponding content data, and the elapsed time at a predetermined timing.
- an elapsed time after the size of the content data has reached a predetermined value (that is, a time elapsed since the wireless terminal 30 started playing the content data) is 2 [seconds] (hereinafter, a unit of physical quantity).
- the size of the content data that has been transmitted up to the current time is 8 [MB]
- the bit rate of the content data is 1 [Mbps]
- the bit rate of the content data is 2 [Mbps]
- the remaining playback time calculation unit 204 has a function of calculating a future remaining playback time using the calculated current value of the remaining playback time and information on the future radio channel quality predicted by the radio channel quality prediction unit 202. .
- the calculated future remaining reproduction time is used by the radio resource allocation unit 205.
- the remaining reproduction time calculation unit 204 acquires information indicating the characteristics of the content addressed to the wireless terminal 30.
- the information indicating the characteristics of the content is information regarding that the content is time-divided, and that each time-division content is encoded at a plurality of encoding rates with different bit rates.
- the information indicating the characteristics of the content is the above-described playlist file or the like, and includes the bit rate and the content data size. That is, it can be said that the remaining reproduction time calculation unit 204 calculates a process expected index using information indicating the characteristics of the content.
- information indicating content characteristics such as a playlist including the bit rate and content data size is recognized as a known fact by the base station 20 and the wireless terminal 30 as described above.
- the base station 20 has a DPI function and a function of proxying the protocol of the application layer of the OSI basic reference model, acquires a playlist file of streaming content addressed to the wireless terminal 30, and obtains a bit rate and content data from the playlist file.
- Information indicating the characteristics of the content including the size may be acquired.
- information indicating characteristics of the content may be directly received from the wireless terminal.
- the expected processing index there is a current value of the remaining reproduction time. Further, as another example of the process expected index, it may be a current value or a future value of the capacity of content data stored in the wireless terminal 30 and not reproduced. Further, the current value of the remaining playback time is, for example, the remaining playback time at a predetermined time when the remaining playback time calculation unit 204 determines that the remaining playback time is calculated.
- the radio resource allocation unit 205 is an example of a radio resource allocation unit.
- the radio resource allocation unit 205 preferentially allocates radio resources to the radio terminal 30 when the expected processing index does not satisfy the predetermined condition. That is, the radio resource allocation unit 205 has the following functions. First, the radio resource allocation unit 205 uses the information on the future radio channel quality predicted by the radio channel quality prediction unit 202 and the remaining playback time calculated by the remaining playback time calculation unit 204 to determine a future remaining playback time. It has a function of determining whether or not the value is below the value. Furthermore, the radio resource allocation unit 205 has a function of calculating an allocation index for each radio terminal 30 using the determination result.
- the allocation index is an index indicating a priority for allocating radio resources.
- the radio resource allocation unit 205 has a function of determining a frequency block to be allocated to each radio terminal 30 based on the calculated allocation index.
- the frequency block is RB (Resource Block)
- RBs are allocated in order from the wireless terminal 30 having the largest calculated allocation index. That is, the radio resource allocation unit 205 calculates an allocation index according to whether or not the process expected index satisfies a predetermined condition, and allocates radio resources based on the allocation index. At this time, the allocation index is calculated to have a higher priority for allocating radio resources when the process expected index does not satisfy the predetermined condition.
- the functions of the wireless terminal 30 are a wireless terminal operation unit 301 and a content reproduction unit 302.
- the wireless terminal operation unit 301 has a function of transmitting / receiving a wireless signal between the wireless terminal 30 and the base station 20 connected to the wireless terminal 30 (a communication link has been established), CQI and RSRP (General functions such as a function that measures channel quality such as Reference Signal Received Power (RSRQ) and Reference Signal Received Quality (RSRQ), and a function that generates a signal to notify the base station 20 of the measured channel quality information.
- CQI and RSRP General functions such as a function that measures channel quality such as Reference Signal Received Power (RSRQ) and Reference Signal Received Quality (RSRQ), and a function that generates a signal to notify the base station 20 of the measured channel quality information.
- RSRQ Reference Signal Received Power
- RSRQ Reference Signal Received Quality
- movement part 301 is provided is a well-known matter of those skilled in the art, description of each function with which
- the content playback unit 302 has a function of transmitting a streaming content transmission start request to the server device 10. Furthermore, the content reproduction unit 302 has a function of managing a playlist file of streaming content transmitted from the server device 10. Further, the content reproduction unit 302 has a function of referring to the playlist file of streaming content transmitted from the server device 10 and transmitting a content data transmission request to the server device 10. Further, the content playback unit 302 has a function of storing the content data transmitted from the server device 10 and a function of playing back the streaming content using the playlist file of the streaming content and the stored content data.
- the radio channel quality prediction unit 203 of the base station 20 indicates the future radio channel quality between the base station 20 and the radio terminal 30 that is connected to the base station 20 (a communication link is established). This represents an operation procedure to be predicted.
- the base station 20 performs the operation illustrated in FIG. 3 at every predetermined period. In the present embodiment, the base station 20 executes the operation of FIG. 3 every 1 [second]. Note that the operation of FIG. 3 may be executed at a cycle shorter than 1 [second] or may be executed at a cycle longer than 1 [second].
- the radio channel quality prediction unit 203 uses the least square method from the CQI reported from the radio terminal 30 during a period from the current time to a predetermined time before, and uses an approximate straight line (primary order) for CQI and time. Equation) is obtained (step S101). That is, the radio channel quality prediction unit 203 predicts future change trends based on the present and past values of the radio channel quality by calculating the approximate straight line.
- Equation (1) is a linear equation related to CQI and time obtained using the least square method.
- T is the time at which CQI is to be predicted
- T current is the current time.
- a and b are variables, and are calculated using Equation (2) and Equation (3), respectively.
- N is the total number of CQIs reported from the wireless terminal 30
- i is an identification number for identifying each of the CQIs reported from the wireless terminal 30
- T i Is the time when the CQI of identification number i is reported.
- the period from the current time to a predetermined time before is 10 [seconds], but may be a value larger than 10 [seconds] or may be a value smaller than 10 [seconds].
- the wireless channel quality prediction unit 203 predicts a future CQI using Equation (1) (step S102). That is, the radio channel quality prediction unit 203 predicts the future value of the radio channel quality based on the future change trend based on the current and past values of the radio channel quality predicted in step S101.
- CQI from the current time to 10 [seconds] later is predicted every 0.1 [seconds].
- the CQI to be predicted may be a CQI up to a time before 10 [seconds] from the current time, or a CQI from a current time to a time after 10 [seconds].
- the cycle of CQI to be predicted may be a cycle shorter than 0.1 [second], or may be a cycle longer than 0.1 [second].
- the radio channel quality prediction unit 203 performs the above process on all the radio terminals 30 connected to the base station 20. Thereafter, the wireless channel quality prediction unit 203 ends the process of FIG.
- the remaining playback time calculation unit 204 of the base station 20 acquires the remaining playback time in the content data stored in the content playback unit 302 of the wireless terminal 30 connected to the base station 20, and the remaining playback time. Represents an operational procedure for calculating future values of.
- the base station 20 executes the operation shown in FIG. 5 after the operation of the radio channel quality prediction unit 203 is completed.
- the remaining playback time calculation unit 204 acquires the current remaining playback time Tremain of the wireless terminal 30 using Equation (4) (step S201). Specifically, the time T elapse after the size of the content data that has been transmitted to the wireless terminal 30 (received the ACK response) has reached a predetermined value, and the content data that has been transmitted up to the current time The size and the bit rate of the content data data are used.
- Equation (4) j is an identification number for identifying content data that has been transmitted to the wireless terminal 30, and M is the total number of content data that has been transmitted to the wireless terminal 30.
- S j is the size of the content data with the identification number j.
- the size is the size of the SDU (Service Data Unit) of the PDCP (Packet Data Convergence Protocol) layer, but may be a value obtained by subtracting the IP (Internet Protocol) layer header size from the size of the PDCP SDU. It is also possible to further subtract the header size of the TCP (Transmission Control Protocol) layer.
- the header size of the IP layer and the TCP layer used at this time may be a minimum value of 20 [B], or may be a value acquired from the server device in advance.
- R j is the bit rate of the content data with the identification number j. In the present embodiment, R j is a fixed value and is recognized as a known fact by the base station 20.
- the remaining playback time calculation unit 204 calculates a future remaining playback time Test_remain using Equation (5) (step S202).
- Equation (5) the second term on the right side is the time that can be played back by the content data transmitted to the wireless terminal 30 by a certain future time
- the third term on the right side is the wireless terminal 30 by a certain future time. It is time to be played.
- the certain time in the future is 10 [seconds] after the current time, which is the same as the time when the wireless channel quality prediction unit 203 predicted the future wireless channel quality.
- Equation (5) L is the total number of CQIs predicted by the radio channel quality prediction unit 203, k is an identification number for identifying the CQI predicted by the radio channel quality prediction unit 203, and T k is an identification number. This is the time when the predicted CQI of k is predicted. T k when k is 0 is T current , and the time difference between T k and T current increases as k increases.
- TBS ( ⁇ ) is a function for deriving TBS (Transport Block Size), which is determined from the CQI and the number of RBs, which is the amount of data that can be transmitted per unit time. Since the TBS is determined from the bandwidth used at the time of transmission and the reception quality thereof, it can be derived using Equation (5).
- N RB is the number of RBs that can be assigned to the wireless terminal 30 and is 50 in this embodiment.
- N UE is the number of radio terminals 30 in which data to be transmitted to the buffer 202 is retained at the current time T current .
- the remaining reproduction time calculation unit 204 performs the above processing for all the wireless terminals 30 that are connected to the base station 20. The above process may be performed on a specific wireless terminal 30. Thereafter, the remaining reproduction time calculation unit 204 ends the process of FIG.
- the radio resource allocation unit 205 of the base station 20 determines whether or not the future remaining reproduction time of the radio terminal 30 is equal to or less than a predetermined value (first threshold), and wirelessly uses the determination result. This represents an operation procedure for calculating an allocation index of the radio terminal 30 used for determining a frequency block to be allocated to the terminal 30.
- the base station 20 performs the operation illustrated in FIG. 7 for each subframe that is a radio resource allocation unit time.
- the radio resource allocating unit 205 determines whether or not the future remaining reproduction time Test_remain is equal to or less than a predetermined value using Equation (6) (step S301).
- T thresh is a predetermined value (first threshold), and is 10 [seconds] in the present embodiment.
- the first threshold may be shorter than 10 [seconds] or may be longer than 10 [seconds].
- the base station 20 previously measures the time required for the handover process between the base stations 20 as log information (the no-communication time when the handover is performed between the base stations 20).
- a representative value calculated by statistically calculating the no-communication time may be used as the first threshold value.
- the log information may be an instantaneous interruption time that is a time from when the handover process fails and the connection with the base station 20 is interrupted until the base station 20 or another base station 20 is reconnected.
- the log information may be time spent in an area such as a coverage hole where a radio signal from the base station 20 does not reach.
- the radio resource allocation unit 205 calculates the application index M app of the wireless terminal 30 using the mathematical formula (7) (step S302).
- W app is a weighting coefficient larger than 1.
- W app is set to 10, but may be a value greater than 1 and less than 10, or a value greater than 10.
- the radio resource assignment unit 205 calculates the application index M app of the wireless terminal 30 using Expression (8) (Step S303).
- the radio resource allocation unit 205 calculates the allocation index Mx of the radio terminal 30 using Equation (9) (step S304).
- x is an RB identification number
- Mconv, x is an allocation index calculated from the quality of the radio channel and the type of traffic.
- Mconv, x is an index calculated using the Proportional Fairness (PF) method described in Non-Patent Document 2 and capable of realizing the fairness of the throughput of the wireless terminal 30.
- PF Proportional Fairness
- an allocation index calculated from a method other than the PF method may be used, or an allocation index calculated from QoS (Quality of Service) or QCI (QoS Class Identifier) may be added. .
- the radio resource allocation unit 205 performs the above processing for all the radio terminals 30 connected to the base station 20. Thereafter, the radio resource allocation unit 205 ends the processing of FIG.
- the first embodiment of the present invention it is possible to avoid the reproduction stop of the streaming content even when the wireless channel quality is deteriorated.
- the reason is that if the future radio channel quality is predicted and the remaining playback time of the streaming content is predicted to be less than or equal to a predetermined value from the prediction result, priority is given to radio resource allocation, and the remaining playback time is set to a predetermined value in advance by the wireless terminal. This is because the streaming content is accumulated so as to be super. In other words, if it is predicted that the quality of the future wireless channel will deteriorate, the wireless resource allocation is prioritized so that the wireless terminal 30 can accumulate the content more quickly. Playback stop can be avoided.
- the radio channel quality prediction unit 203 of the base station 20 predicts a future change trend of the radio channel quality, and predicts a CQI as a future radio channel quality based on the predicted change trend.
- CQI may be used.
- the radio channel quality prediction unit 203 of the base station 20 converts the predicted CQI into SINR (Signal-to-Interference plus Noise power Ratio), and derives the converted SINR and approximate straight line regarding time as a future change trend. May be.
- SINR Signal-to-Interference plus Noise power Ratio
- a target SINR that is a minimum SINR that can be set for each CQI and that can achieve a target error rate (BLER; Block Error Ratio) may be used.
- BLER Block Error Ratio
- the maximum CQI that satisfies the target SINR is calculated using the predicted SINR, and the TBS is derived from the CQI.
- the base station 20 uses the uplink signal from the radio terminal 30 instead of deriving the SINR from the CQI periodically reported from the radio terminal 30.
- the SINR may be derived.
- the SINR is preferably derived by acquiring channel information between the base station 20 and the radio terminal 30 from the uplink signal and deriving the SINR from the channel information. Further, in this case, information such as interference power necessary for derivation of SINR may be reported from the radio terminal 30, or may be calculated by the base station 20.
- RSRQ may be predicted.
- the residual reproduction time calculation unit 204 of the base station 20 derives SINR (Signal-to-Interference plus Noise power Ratio) from the predicted RSRQ, calculates the maximum CQI that satisfies the target SINR with the SINR, and Deriving the TBS from the CQI.
- Equation (10) is an equation for deriving SINR from RSRQ.
- N RB SC is the number of Subcarriers per RB.
- the radio channel quality prediction unit 203 of the base station 20 may predict RSRP as the future radio channel quality.
- the remaining reproduction time calculation unit 204 of the base station 20 derives SINR from RSRP using Equation (11).
- N ncell is the number of cells adjacent to a cell that is a communication area formed by the base station 20
- y is an identification number for identifying each of the adjacent cells.
- Noise is thermal noise. In an environment where base stations 20 are densely installed such as in urban areas, thermal noise is negligibly small as compared with RSRP, and therefore, the term of Noise can be deleted in Equation (11).
- the radio channel quality prediction unit 203 of the base station 20 may predict the number N UE of radio terminals 30 in which data to be transmitted remains in the buffer 202 as the future radio channel quality. At this time, CQI, RSRP, and RSRQ described above may be predicted simultaneously. In this case, the remaining reproduction time calculation unit 204 of the base station 20 derives a TBS using the predicted number of radio terminals 30.
- the residual reproduction time calculation unit 204 of the base station 20 uses the SINR derived using Equations (10) and (11) instead of deriving the TBS from the maximum CQI that satisfies the target SINR. May be used to derive the TBS.
- Equation (12) B is the system bandwidth.
- the radio channel quality prediction unit 203 of the base station 20 may predict the throughput (communication speed) as the future radio channel quality.
- the throughput may be a PDCP layer throughput, a RLC (Radio Link Control) layer throughput, or a MAC (Medium Access Control) layer throughput that can be measured by the base station 20.
- OTA Over-The-Air
- These throughputs are measured, for example, as the total number of bits of a PDU (Protocol Data Unit) in the layer in which transmission to the wireless terminal 30 is completed within a predetermined time.
- the remaining reproduction time calculation unit 204 of the base station 20 calculates the remaining reproduction time using TBS that is the amount of data that can be transmitted per unit time converted from the predicted throughput.
- the radio channel quality prediction unit 203 of the base station 20 predicts the future radio channel quality using the least square method, but other estimation methods such as a maximum likelihood estimation method are used. Also good.
- the remaining reproduction time calculation unit 204 of the base station 20 acquires the remaining reproduction time Tremain of the wireless terminal 30 using Equation (4) in step S201.
- the remaining reproduction time Tremain may be acquired from In this case, the wireless terminal 30 notifies the base station 20 of information related to the remaining reproduction time Tremain .
- the notification of the information to the base station 20 may be performed by piggybacking on uplink user data from the wireless terminal 30 to the base station 20.
- a new interface for notification of the information may be defined between the base station 20 and the wireless terminal 30 and notified using the interface.
- the notification may be performed periodically, or may be performed when requested by the base station 20.
- the radio resource allocation unit 205 of the base station 20 sets the condition for prioritizing radio resource allocation as the future residual reproduction time of the radio terminal 30 being a predetermined value or less.
- priority is not given to radio resource allocation for the radio terminal 30.
- this embodiment can be applied even when there are a plurality of server devices.
- the base station 20 since the base station 20 needs to identify each server device, the base station 20 has a function of DPI (Deep Packet Inspection), and the data addressed to the wireless terminal 30 transferred from the server device 10 via the communication line NW.
- DPI Deep Packet Inspection
- Each server device 10 is identified from the transmission source IP address described in the header area of the corresponding IP packet.
- the content data is encoded at a specific (single) bit rate, but may be encoded at each of a plurality of different bit rates.
- the content data storage unit 402 of the server device 10 time-divides the streaming content at a predetermined time, and stores (accumulates) each content data encoded at each of a plurality of different bit rates, and the streaming content In the playlist file, information regarding the bit rate is also described.
- the base station 20 has a DPI function, and acquires the playlist file of the streaming content transmitted from the server device 10. Playlist files acquired the streaming content at remaining reproduction time calculation unit 204 of the base station 20, acquires the remaining reproduction time T Remain wireless terminal 30 (step S201), the calculation of future remaining reproduction time T Est_remain Used in (Step S202).
- a traffic management device that controls a transmission rate of a wired line to a base station of data addressed to a wireless terminal is a server device. Newly provided between base stations.
- the server device stores (accumulates) content data encoded at each of a plurality of different bit rates.
- FIG. 8 shows the configuration of the distribution system 3 according to the second embodiment of the present invention.
- the distribution system 3 includes a wireless communication system 4.
- an LTE communication system is assumed as the wireless communication system 4, but other communication systems other than LTE such as UMTS and GSM (registered trademark) may be assumed. .
- a traffic management device 40 is newly added as compared with the distribution system 1 according to the first embodiment of the present invention. Furthermore, the distribution system 3 includes a base station 21 instead of the base station 20 as compared with the distribution system 1 according to the first embodiment of the present invention. Note that the traffic management device 40, the base station 21, and the wireless terminal 30 are included in the wireless communication system 4.
- a configuration changed in the second embodiment as compared with the first embodiment will be described.
- the server apparatus 10 and the traffic management apparatus 40 are configured to communicate via a communication line (for example, the Internet) NW.
- the traffic management device 40 and the base station 21 communicate with each other via an LTE core network (EPC: Evolved Packet Core) N2.
- EPC Evolved Packet Core
- GTP GPRS (General Packet Radio Service) Tunneling Protocol
- the base station 21 and the wireless terminal 30 are configured to communicate via the wireless interface N1.
- the distribution system 3 includes only one server device 10, one traffic management device 40, one base station 21, and one wireless terminal 30, but any number of server devices 10 may be used. Similarly, the number of traffic management devices 40, the number of base stations 21, and the number of wireless terminals 30 may be any number.
- the traffic management device 40 is, for example, a P-GW (PDN (Packet Data Network) -Gateway), but is not limited thereto.
- the traffic management device 40 includes an information processing device (not shown).
- the information processing apparatus includes a central processing unit (CPU) (not shown) and a storage device (memory and hard disk drive (HDD)).
- the traffic management device 40 is configured to realize functions to be described later when the CPU executes a program stored in the storage device.
- the base station 21 includes an information processing apparatus (not shown) as in the base station 20 according to the first embodiment of the present invention.
- the information processing apparatus includes a central processing unit (CPU) (not shown) and a storage device (memory and hard disk drive (HDD)).
- the base station 21 is configured to realize functions to be described later when the CPU executes a program stored in the storage device.
- FIG. 9 is a block diagram showing functions of the distribution system 3 configured as described above. Hereinafter, functions added and changed in the second embodiment as compared with the first embodiment will be described.
- the traffic management device 40 includes a traffic management device operation unit 401, a buffer 402, and a wired line transmission rate control unit 403.
- the traffic management device operation unit 401 includes TCP, which is a layer 4 protocol in the OSI (Open Systems Interconnection) basic reference model.
- the traffic management device operation unit 401 uses the TCP protocol to transmit and receive signals to and from the server device 10 via the communication line NW, and to transmit and receive signals via the base station 21 and the LTE core network N2.
- Have The traffic management apparatus operation unit 401 in the present embodiment temporarily accumulates transmission data addressed to each wireless terminal 30 received via the communication line NW in the buffer 402, and transmits the data accumulated in the buffer 402 to the wired line. The data is transferred to the base station 21 at the wired line transmission rate controlled by the rate control unit 403.
- the traffic management device operation unit 401 has a function of proxying the protocol of the application layer of the OSI basic reference model, and a function of acquiring a playlist file of streaming content addressed to the wireless terminal 30 that arrives via the communication line NW. Have. Further, the traffic management apparatus operation unit 401 has a function of acquiring the bit rate of content data addressed to the wireless terminal 30 that arrives via the communication line NW using the proxy and the playlist file. In this embodiment, the traffic management apparatus operation unit 401 uses an HTTP proxy, but uses the adaptive video distribution proxy introduced with video pacing described in Non-Patent Document 3 described above to acquire the playlist file. Also good. Then, the traffic management device operation unit 401 notifies the base station 21 of information regarding the bit rate of the acquired content data.
- notification of information related to the playlist file to the base station 21 is performed by piggybacking the information on a GTP packet corresponding to content data addressed to the wireless terminal 30.
- the notification may be performed by adding the information to the header area of the GTP packet.
- the notification may be performed by piggybacking the information on a UDP packet corresponding to the GTP packet using UDP (User Datagram Protocol) used in a lower layer of the GTP.
- UDP User Datagram Protocol
- the notification may be performed by adding the information to the header area of the UDP packet.
- the notification may be performed by piggybacking the information on an IP packet corresponding to the GTP packet by an IP (Internet Protocol) used in a lower layer of the UDP.
- the notification may be performed by adding the information to the header area of the IP packet. Further, the notification may be performed by piggybacking on various packets corresponding to content data addressed to the wireless terminal 30 other than the wireless terminal 30 instead of the content data addressed to the wireless terminal 30. . That is, the notification may be performed by piggybacking on various packets corresponding to arbitrary data transmitted from the traffic management device 40 to the base station 21 or adding the various packets to the header area.
- the base station 21 identifies the target wireless terminal 30 by notifying the information regarding the wireless terminal 30 together (simultaneously) together with the information.
- a new interface for notifying the information may be provided between the traffic management device 40 and the base station 21, and the notification may be notified via the interface.
- the buffer 402 has a function of storing transmission data addressed to each wireless terminal 30 that arrives via the communication line NW.
- an LTE mobile network (LTE core network N2) composed of EPC or EUTRAN (Evolved Universal Terrestrial Radio Network) has a longer delay time for data transmission / reception than the communication line NW. Therefore, in the present embodiment, it is assumed that transmission data addressed to each wireless terminal 30 that arrives via the communication line NW is accumulated in the buffer 402 until the wireless terminal 30 ends communication.
- LTE core network N2 composed of EPC or EUTRAN (Evolved Universal Terrestrial Radio Network)
- EUTRAN Evolved Universal Terrestrial Radio Network
- the wired line transmission rate control unit 403 has a function of controlling the wired line transmission rate from the traffic management device 40 to the base station 21 in accordance with a notification from the radio resource allocation unit 215 of the base station 21 described later.
- the MTU Maximum Transmission Unit
- the MTU is set to a default value. Is reduced by a predetermined multiple (less than 1).
- the wired line transmission rate control unit 403 when the wired line transmission rate control unit 403 receives a notification related to an instruction to increase the wired line transmission rate, the wired line transmission rate control unit 403 is a value that is a predetermined multiple (less than 1) of the default value within a range not exceeding the default value. Only increase.
- the initial value of the MTU is a default value, and the default value is 1500 bytes, which is the same as the default value of the MTU in Ethernet (registered trademark), and the predetermined multiple is 0.1.
- the control of the wired line transmission rate from the traffic management device 40 to the base station 21 is performed for each wireless terminal 30.
- the base station 21 uses a radio channel instead of the radio channel quality prediction unit 203, the remaining reproduction time calculation unit 204, and the radio resource allocation unit 205.
- Functions of a quality prediction unit 213, a remaining reproduction time calculation unit 214, and a radio resource allocation unit 215 are provided.
- functions of the radio channel quality prediction unit 213, the remaining reproduction time calculation unit 214, and the radio resource allocation unit 215 will be described.
- the radio channel quality prediction unit 213 diffuses the future radio channel quality (probabilistic spread) between the base station 21 and the radio terminal 30 connected to the base station 21 (communication link is established). Has a function of predicting as a future change trend.
- the wireless channel quality prediction unit 213 uses, for example, a technique for predicting stochastic diffusion based on the Wiener process model described in Non-Patent Document 4 described above.
- the wireless channel quality is a CQI included in CSI periodically reported from the wireless terminal 30. Information on the probabilistic spread of the predicted future radio channel quality is used by the remaining reproduction time calculation unit 214.
- the residual reproduction time calculation unit 214 uses the residual reproduction time calculated by the same method as the residual reproduction time calculation unit 204 and the information on the probability spread of the future radio channel quality predicted by the radio channel quality prediction unit 213, It has a function of calculating the remaining remaining reproduction time.
- the calculated future remaining reproduction time is used by the radio resource allocation unit 215.
- the remaining playback time calculation unit 214 calculates a future remaining playback time (process expected index) for each wireless terminal.
- the radio resource allocating unit 215 is connected to the base station 21 using the residual reproduction time calculated by the residual reproduction time calculating unit 214 and the information on the probability spread of the future radio channel quality predicted by the radio channel quality prediction unit 213.
- the frequency block to be allocated to the allocation priority wireless terminal group which is a set of wireless terminals 30 in which the future remaining reproduction time is equal to or less than a predetermined value, from among the wireless terminals 30 in which the communication link is established first decide. Thereafter, the radio resource allocation unit 215 determines a frequency block to be allocated to the radio terminals 30 that are not included in the radio terminal group. That is, the radio resource allocating unit 215 preferentially allocates radio resources to the radio terminals in the process expected index that does not satisfy the predetermined condition.
- the frequency block is RB (Resource Block)
- the allocation index is PF
- RBs are allocated in order from the wireless terminal 30 having the largest calculated allocation index.
- the radio resource allocation unit 215 uses the remaining reproduction time calculated by the remaining reproduction time calculation unit 214 and the information on the probability spread of the future radio channel quality predicted by the radio channel quality prediction unit 213, and uses the traffic management device 40.
- the wired line transmission rate control unit 403 supervises the wired line transmission rate control. That is, the radio resource allocation unit 215 instructs the wired line transmission rate control unit 403 to control the wired line transmission rate for controlling the wired line transmission rate from the traffic management device 40 to the base station 21.
- An instruction from the wireless resource allocation unit 215 to the wired line transmission rate control unit 403 is notified via the base station operation unit 201. In the present embodiment, information related to the instruction is piggybacked and notified to the GTP packet corresponding to the transmission data of the wireless terminal 30.
- the notification may be performed by adding the information to the header area of the GTP packet.
- the notification may be performed by piggybacking the information on a UDP packet corresponding to the GTP packet in UDP used in a lower layer of GTP.
- the notification may be performed by adding the information to the header area of the UDP packet.
- the notification may be performed by piggybacking the information on an IP packet corresponding to the GTP packet by an IP (Internet Protocol) used in a lower layer of the UDP.
- the notification may be performed by adding the information to the header area of the IP packet.
- the wired line transmission rate instruction may be piggybacked on various packets corresponding to data transmitted by wireless terminals 30 other than the wireless terminal 30 instead of the various data transmitted by the wireless terminal 30. It may be done at. That is, the instruction of the wired line transmission rate is performed by piggybacking on various packets corresponding to arbitrary data transmitted from the base station 21 to the traffic management device 40 or adding to the header area of various packets. Also good.
- the traffic management apparatus 40 identifies the wireless terminal 30 to be controlled by notifying the information related to the wireless terminal 30 together (simultaneously) together with the information. Alternatively, a new interface for notifying the information may be provided between the traffic management device 40 and the base station 21, and the notification may be notified via the interface.
- the radio channel quality prediction unit 213 of the base station 21 predicts future CQIs for all the radio terminals 30 that are connected to the base station 21 using Equation (13).
- Formula (13) is a calculation formula for CQI stochastic diffusion based on the Wiener process model.
- CQI + T is the best CQI value expected at a future time T
- CQI ⁇ T is the worst value CQI expected at a future time T.
- the difference value between CQI + T and CQI ⁇ T calculated from Equation (13) is the stochastic diffusion of CQI at time T.
- ⁇ is a drift coefficient, and in this embodiment, the least square method is used from the CQI reported from the wireless terminal 30 during the period from the current time to a predetermined time, and the CQI and time are related. The slope of the approximate line.
- the period from the current time to a predetermined time before is 10 [seconds], but may be a value larger than 10 [seconds] or may be a value smaller than 10 [seconds].
- ⁇ is the variance of CQI reported from the wireless terminal 30 during the period from the current time to a predetermined time.
- ⁇ is a constant that determines the prediction range of stochastic diffusion. In this embodiment, ⁇ is 2. However, ⁇ may be a value smaller than 2 or a value larger than 2.
- the difference value between CQI + T and CQI ⁇ T which is the stochastic diffusion of CQI, is a value obtained by multiplying 2 ⁇ ⁇ ⁇ ⁇ “the square root of T” and the variance ⁇ of CQI by a predetermined value from Equation (13). Since it is calculated, it is also a variation amount of CQI at time T.
- the base station 21 predicts a future CQI every 1 [second], but it may be executed in a cycle shorter than 1 [second], or may be executed in a cycle longer than 1 [second]. It may be executed with.
- CQI from the current time to 10 [seconds] later is predicted every 0.1 [seconds].
- the CQI to be predicted may be a CQI up to a time before 10 [seconds] from the current time, or a CQI from a current time to a time after 10 [seconds].
- the cycle of CQI to be predicted may be a cycle shorter than 0.1 [second], or may be a cycle longer than 0.1 [second].
- step S202 the future remaining reproduction time Test_remain is calculated using Equation (14).
- ⁇ is a weighting coefficient, which is 0.1 in this embodiment, but may be smaller than 0.1. It is good also as a value larger than 0.1.
- FIG. 10 shows an operation procedure in which the radio resource allocation unit 215 of the base station 21 controls the wired line transmission rate from the traffic management device 40 to the base station 21.
- the base station 21 executes the operation illustrated in FIG. 10 after the operation of the remaining reproduction time calculation unit 214 ends.
- steps S302 to S304 in FIG. 7 are deleted, and steps S401 to S404 are newly added.
- steps S401 to S404 are newly added.
- step S301 determines that the wired line transmission rate from the traffic management device 40 to the base station 21 should be increased. Then, the radio resource allocation unit 215 determines whether or not the traffic management device 40 has already been instructed to increase the wired line transmission rate (step S401).
- the radio resource allocation unit 215 ends the process of FIG. 10 for the radio terminal 30.
- the wireless resource allocation unit 215 increases the wired line transmission rate with respect to the traffic management device 40. Is notified (step S402).
- Step S301 the wireless resource allocation unit 215 determines that the wired line transmission rate from the traffic management device 40 to the base station 21 should be reduced. Then, similarly to step S401, the radio resource allocation unit 215 determines whether or not the traffic management device 40 has already been instructed to increase the wired line transmission rate (step S403).
- step S403 If the traffic management apparatus 40 has already been notified of an increase in the wired line transmission rate (YES in step S403), the wireless resource allocation unit 215 indicates that the traffic management apparatus 40 has a decrease in the wired line transmission rate. Information for instructing is notified (step S404). By executing step S404, the increase in the wired line transmission rate executed in step S402 is cancelled.
- the radio resource allocation unit 215 ends the process of FIG. 10 for the radio terminal 30.
- the radio resource allocation unit 215 performs the above process for all the radio terminals 30 connected to the base station 21. Thereafter, the radio resource allocation unit 215 and the process of FIG.
- the wired connection from the traffic management device 40 to the base station 21 is made to the wireless terminal 30.
- data can be prepared in the buffer 201 of the base station 21 so that the line transmission rate is increased and the remaining reproduction time in the streaming content at the wireless terminal 30 exceeds a predetermined value. Thus, it is possible to avoid stopping the reproduction of the streaming content.
- step S401 when the traffic management apparatus 40 has already been notified of the increase in the wired line transmission rate (YES in step S401), the wireless resource allocation unit 215 sends the wired management line 40 to the traffic management apparatus 40. Information for instructing further increase of the line transmission rate may be notified. Alternatively, the process of step S401 may be omitted, and at this time, the wired line transmission rate control unit 403 of the traffic management device 40 increases the wired line transmission rate each time the notification of step S402 is received. May be.
- step S403 the traffic management device 40 may be notified of information for instructing to cancel the increase in the wired line transmission rate step by step, or the increase in the wired line transmission rate may be performed at once. You may notify the information for instruct
- step S401 and steps S403 to S404 are omitted, and the wired line transmission rate control unit 403 of the traffic management device 40 reduces the wired line transmission rate for a predetermined time after receiving the notification of step S402. You may make it make it.
- the predetermined time is a cycle in which the base station 21 executes the processing of FIG.
- step S301 If it is determined in step S301 that the transmission rate of the wired line from the traffic management device 40 to the base station 21 should be increased (step S301, YES), the TCP retransmission timeout threshold is set for the traffic management device 40. You may notify to update to a high value.
- Expression (6) the data stored in the buffer 202 of the base station 21 has a longer waiting time until it is transmitted to the wireless terminal, so that the probability that a retransmission timeout will occur in TCP increases.
- a retransmission timeout occurs in TCP, the wired line transmission rate from the traffic management device 40 to the base station 21 is significantly reduced.
- the amount of data stored in the buffer 202 of the base station 21 is emptied, and streaming content such as video and audio is interrupted at the wireless terminal.
- a retransmission timeout occurs in TCP, all the packets within the congestion window are retransmitted from the server device 10, but when the packets are data stored in the buffer 202 of the base station 21, the base station 21 is the same. Since data is transmitted a plurality of times, wireless resources are wasted. This deprives other wireless terminals 30 of transmission opportunities and reduces the TCP throughput of those wireless terminals 30. Therefore, when Expression (6) is satisfied, the probability that the retransmission timeout will occur can be reduced by updating the TCP retransmission timeout threshold to a high value.
- the radio resource allocation unit 215 of the base station 21 determines whether or not the future remaining reproduction time is equal to or less than a predetermined value, and uses the determination result, like the radio resource allocation unit 205 in the first embodiment.
- the frequency block to be allocated to each wireless terminal 30 may be determined using the allocation index calculated in the above. Further, in the radio resource allocating unit 205 in the first embodiment, similar to the radio resource allocating unit 215, allocation is performed to an allocation priority radio terminal group that is a set of radio terminals 30 whose future remaining reproduction time is a predetermined value or less.
- the frequency block may be determined first, and then the frequency block to be allocated to the wireless terminals 30 not included in the wireless terminal group may be determined.
- the base station 21 replaces the radio channel quality prediction unit 213 and the remaining reproduction time calculation unit 214 with functions of the radio channel quality prediction unit 203 and the remaining reproduction time calculation unit 204 included in the base station 20 in the first embodiment. May be provided.
- the base station 20 in the first embodiment may include the functions of the radio channel quality prediction unit 213 and the remaining reproduction time calculation unit 214.
- the wired line transmission rate control unit 403 of the traffic management device 40 realizes control of the wired line transmission rate from the traffic management device 40 to the base station 21 by increasing or decreasing the MTU.
- the traffic management device 40 may limit the amount of data per unit time that can be transmitted to the base station 21, and may be realized by setting the limitation. Alternatively, it may be realized by increasing / decreasing the size of CWND of TCP.
- the traffic management device 40 acquires the bit rate of content data addressed to the wireless terminal 30 and notifies the base station 21 of information related to the bit rate. It is also possible to directly acquire information indicating the characteristics of the content such as the bit rate.
- the base station 21 has a function of proxying the DPI function and the application layer protocol of the OSI basic reference model, acquires the playlist file of the streaming content addressed to the wireless terminal 30, and the proxy and the play With reference to the list file, the bit rate of the content data addressed to the wireless terminal 30 arriving from the traffic management device 40 is acquired.
- the base station 21 may further acquire the data size of the content data from the playlist file.
- the traffic management device 40 can also be installed outside the LTE core network N2.
- the base station 21 has a DPI function, and the source IP address described in the header area of the IP packet corresponding to the data addressed to the wireless terminal 30 transferred from the traffic management device 40 via the core network N2.
- the traffic management device 40 is specified.
- the base station 21 has a function of correcting the IP packet transmitted by the wireless terminal 30, and instructs the traffic management device 40 how to control the wired line transmission rate from the traffic management device 40 to the base station 21. In this case, the IP packet is corrected and notified so that information regarding the instruction can be added to the IP packet.
- the base station determines whether or not the future residual playback time is less than or equal to a predetermined value.
- the traffic management device determines that the future residual playback time is less than or equal to a predetermined value. It is determined whether or not.
- the distribution system according to the third embodiment of the present invention is the same as the distribution system 3 according to the second embodiment of the present invention.
- FIG. 11 is a block diagram showing functions of a distribution system according to the third embodiment of the present invention.
- a traffic management device 41 is provided instead of the traffic management device 40, and a base station 22 is provided instead of the base station 21.
- the traffic management device 41 is, for example, a P-GW (PDN (Packet Data Network) -Gateway), but is not limited thereto.
- P-GW Packet Data Network
- the traffic management device 41 is newly provided with functions of a radio line transmission rate prediction unit 414 and a remaining reproduction time calculation unit 415.
- the wired line transmission rate control unit 403 provided in the traffic management device 41 controls the wired line transmission rate in accordance with the wired line transmission rate control method instructed from the wireless resource allocation unit 205 provided in the base station 22. Shall.
- functions of the wireless channel transmission rate prediction unit 414 and the remaining reproduction time calculation unit 415 will be described.
- the wireless channel transmission rate predicting unit 414 performs a spreading spread (probability of the future wireless channel transmission rate (wireless channel transmission rate) between the base station 22 and the wireless terminal 30 with which the base station 22 has established a connection.
- the transmission rate is an index indicating the amount of data that can be transmitted per unit time, or the amount of data that can be transmitted per unit transmission opportunity (TTI; Transmission Time Interval) (for example, MCS (Modulation and Coding Scheme)).
- TTI Transmission Time Interval
- MCS Modulation and Coding Scheme
- the radio channel transmission rate prediction unit 414 uses a technique for predicting stochastic diffusion based on the Wiener process model.
- the transmission rate is a TCP throughput.
- Information on the probabilistic spread of the transmission rate of the predicted future wireless channel is used by the remaining reproduction time calculation unit 415.
- the remaining playback time calculation unit 415 adds to the function of the remaining playback time calculation unit 214 according to the second embodiment of the present invention, and the future remaining playback time of content data stored in the content playback unit 302 of the wireless terminal 30 A function of notifying the base station 22 of information regarding the new information.
- the information regarding the remaining reproduction time is notified to the base station 22 by piggybacking the information on the GTP packet corresponding to the transmission data addressed to the wireless terminal 30.
- the notification may be performed by adding the information to the header area of the GTP packet.
- the notification may be performed by piggybacking the information on a UDP packet corresponding to the GTP packet in the UDP used in the lower layer of the GTP.
- the notification may be performed by adding the information to the header area of the UDP packet.
- the notification may be performed by piggybacking the information on an IP packet corresponding to the GTP packet at an IP used in a lower layer of the UDP.
- the notification may be performed by adding the information to the header area of the IP packet.
- the notification may be performed by piggybacking on various packets corresponding to transmission data addressed to wireless terminals 30 other than the wireless terminal 30 instead of transmission data addressed to the wireless terminal 30. . That is, the notification may be performed by piggybacking on various packets corresponding to arbitrary data transmitted from the traffic management device 40 to the base station 22 or adding the various packets to the header area.
- the base station 22 identifies the target wireless terminal 30 by notifying the information regarding the wireless terminal 30 together (simultaneously) together with the information.
- a new interface may be provided between the traffic management device 41 and the base station 22 for notifying information on the remaining reproduction time, and the notification may be notified via the interface.
- the base station 22 includes the functions of a base station operation unit 201, a buffer 202, and a radio resource allocation unit 205.
- the wireless resource allocation unit 205 in the present embodiment notifies the remaining residual reproduction time of the content data stored in the content reproduction unit 302 of the wireless terminal 30 notified from the residual reproduction time calculation unit 415 of the traffic management device 41. And a function for determining whether or not the future remaining reproduction time is equal to or less than a predetermined value. Then, the wireless resource allocation unit 205 in the present embodiment sets the wired line transmission rate from the traffic management device 41 to the base station 22 to the wired line transmission rate control unit 403 as in the wireless resource allocation unit 215 described above. It is assumed that a method for controlling a wired line transmission rate for control is instructed.
- the wireless channel transmission rate prediction unit 414 of the traffic management device 41 uses Equation (15) to predict the future wireless channel transmission rate for all the wireless terminals 30 connected to the base station 22.
- the radio channel transmission rate may be predicted for a specific radio terminal 30.
- Formula (15) is a formula for calculating the stochastic spread of the radio channel transmission rate based on the Wiener process model.
- R + T is the best value of the radio channel transmission rate expected at the future time T
- R ⁇ T is the worst value of the radio channel transmission rate expected at the future time T. is there.
- the difference value between R + T and R ⁇ T calculated from Equation (15) is the stochastic spread of the radio channel transmission rate at time T.
- ⁇ is a drift coefficient, and in the present embodiment, the least square method is used from the wireless line transmission rate reported from the wireless terminal 30 during the period from the current time to a predetermined time ago.
- the period from the current time to a predetermined time before is 10 [seconds], but may be a value larger than 10 [seconds] or may be a value smaller than 10 [seconds].
- ⁇ is the variance of the radio line transmission rate measured during the period from the current time to a predetermined time before.
- ⁇ is a constant that determines the prediction range of stochastic diffusion. In this embodiment, ⁇ is 2.
- ⁇ may be a value smaller than 2 or a value larger than 2.
- the difference value between R + T and R ⁇ T which is the stochastic spread of the radio channel transmission rate, is given by 2 ⁇ ⁇ ⁇ ⁇ “square root of T” and the variance ⁇ of the radio channel transmission rate according to Equation (15). Since it is calculated as a value multiplied by the value, it is also a fluctuation amount of the radio channel transmission rate at time T.
- the base station 22 predicts a future wireless line transmission rate every 1 [second], but may execute in a cycle shorter than 1 [second] or from 1 [second]. May be executed in a long cycle.
- the operation procedure in which the remaining reproduction time calculation unit 415 of the traffic management device 41 calculates the future value (future value) of the remaining reproduction time stored in the content reproduction unit 302 of the wireless terminal 30 connected to the base station 22 is as follows. 5 is the same as the remaining reproduction time calculation unit 214 of the base station 20 according to the first embodiment of the present invention shown in FIG.
- the future remaining reproduction time Test_remain is calculated using Equation (16).
- Equation (16) is the reproduction speed and is 1 in this embodiment, but may be a value smaller than 1 or a value larger than 1.
- the wired line transmission rate control unit 403 provided in the traffic management device 41 performs the wired line transmission rate according to the wired line transmission rate control method instructed from the wireless resource allocation unit 205 provided in the base station 22.
- the wired line transmission rate control unit 403 uses the information about the future remaining playback time of the content data stored in the content playback unit 302 of the wireless terminal 30 calculated by the remaining playback time calculation unit 415 to It may be determined whether or not the remaining reproduction time is equal to or less than a predetermined value, and the wired line transmission rate may be controlled based on the determination result.
- the wired line transmission rate control unit 403 notifies the base station 22 of the determination result, and the radio resource allocation unit 205 of the base station 22 calculates the radio resource allocation priority based on the notification.
- the notification regarding the determination result to the base station 22 may be performed by piggybacking the information on a GTP packet corresponding to transmission data addressed to the wireless terminal 30.
- the notification may be performed by adding the information to the header area of the GTP packet.
- the notification may be performed by piggybacking the information on a UDP packet corresponding to the GTP packet in the UDP used in the lower layer of the GTP.
- the notification may be performed by adding the information to the header area of the UDP packet.
- the notification may be performed by piggybacking the information on an IP packet corresponding to the GTP packet at an IP used in a lower layer of the UDP.
- the notification may be performed by adding the information to the header area of the IP packet.
- the notification may be performed by piggybacking on various packets corresponding to transmission data addressed to wireless terminals 30 other than the wireless terminal 30 instead of transmission data addressed to the wireless terminal 30. . That is, the notification may be performed by piggybacking on various packets corresponding to arbitrary data transmitted from the traffic management device 40 to the base station 22 or adding the various packets to the header area.
- the base station 22 identifies the target wireless terminal 30 by notifying the information regarding the wireless terminal 30 together (simultaneously) together with the information.
- a new interface may be provided between the traffic management device 41 and the base station 22 for notifying information on the remaining reproduction time, and the notification may be notified via the interface.
- the functions provided in the traffic management device 41 in this embodiment can also be used in the second embodiment of the present invention.
- the prediction of the future value of the transmission rate using the change tendency based on the past and present values of the transmission rate of the wireless channel by the wireless channel transmission rate prediction unit 414 of the traffic management device 41 is performed by the base station in the other embodiments. This may be performed for control in the base station.
- the gateway device (second relay device) that sets the transfer priority in the LTE core network (EPC) is connected between the server device and the base station. Newly equipped.
- EPC LTE core network
- FIG. 12 shows the configuration of a distribution system 5 according to the fourth embodiment of the present invention.
- the distribution system 5 includes a wireless communication system 6.
- an LTE communication system is assumed as the wireless communication system 6, but other communication systems other than LTE, such as UMTS and GSM (registered trademark), may be assumed. .
- a gateway device 50 is newly added as compared with the distribution system 1 according to the first embodiment of the present invention.
- the gateway device 50 constitutes a part of the LTE core network N2.
- the distribution system 5 includes a base station 23 instead of the base station 20 as compared with the distribution system 1 according to the first embodiment of the present invention.
- the gateway device 50, the base station 23, and the wireless terminal 30 are included in the wireless communication system 6.
- the gateway device 50 is, for example, P-GW (Packet Data Network) -Gateway (PDN) or S-GW (Serving Gateway), but is not limited thereto.
- the server device 10 and the gateway device 50 are configured to communicate via a communication line (for example, the Internet) NW.
- the gateway device 50 and the base station 23 communicate with each other via an LTE core network (EPC) N2. Further, the base station 23 and the wireless terminal 30 are configured to communicate via the wireless interface N1.
- EPC LTE core network
- the distribution system 5 includes only one server device 10, one gateway device 50, one base station 23, and one wireless terminal 30, but any number of server devices 10 may be used.
- the number of gateway devices 50, the number of base stations 23, and the number of wireless terminals 30 may be any number.
- the gateway device 50 includes an information processing device (not shown).
- the information processing apparatus includes a central processing unit (CPU) (not shown) and a storage device (memory and hard disk drive (HDD)).
- the gateway device 50 is configured to realize functions to be described later when the CPU executes a program stored in the storage device.
- the base station 23 includes an information processing device (not shown).
- the information processing apparatus includes a central processing unit (CPU) (not shown) and a storage device (memory and hard disk drive (HDD)).
- the base station 23 is configured to realize functions to be described later when the CPU executes a program stored in the storage device.
- FIG. 13 is a block diagram showing functions of the distribution system 5 configured as described above. Hereinafter, functions added and changed in the fourth embodiment as compared with the first embodiment will be described.
- the gateway device 50 includes a gateway device operation unit 501 and a priority setting unit 502.
- the gateway device operating unit 501 has a function of transmitting / receiving a signal to / from the server device 10 via the communication line NW, a function of transmitting / receiving a signal via the base station 23 and the LTE core network N2, and a communication line NW from the server device 10.
- the gateway device in a general wireless communication system has a function such as a function of transferring transmission data addressed to each wireless terminal 30 arriving via the wireless terminal 30 to the base station 23.
- movement part 501 is a well-known matter of those skilled in the art, description of each function with which the gateway apparatus operation
- the priority setting unit 502 transfers the transmission data addressed to each wireless terminal 30 from the gateway device 50 to the base station 23 in the LTE core network N2 in accordance with an instruction from the radio resource allocation unit 235 of the base station 23 described later. It has a function to set priority. That is, the priority setting unit 502 sets the transfer priority based on the future value of the wireless channel quality and the expected processing index. In the present embodiment, when the priority setting unit 502 receives a notification regarding the instruction to increase the priority from the radio resource allocation unit 235 of the base station 23, the GTP packet corresponding to the transmission data addressed to the radio terminal 30 is received.
- a low priority is set by the TOS.
- priority may be set by DS (Differentiated Services) of the header area. In the present embodiment, the priority is set for each wireless terminal 30.
- the functions of the base station 23 are a base station operation unit 201, a buffer 202, a radio channel quality prediction unit 213, a remaining reproduction time calculation unit 214, and a radio resource allocation unit 235.
- the radio resource allocation unit 235 predicts the residual reproduction time calculated by the residual reproduction time calculation unit 214 and the radio channel quality prediction unit 213 Overseeing the function of setting the transfer priority in the LTE core network, which is provided in the priority setting unit 502 of the gateway device operation unit 501 by using information on the probability spread of the future wireless channel quality (transfer priority setting method) New function).
- An instruction from the radio resource assignment unit 235 to the priority setting unit 502 is notified via the base station operation unit 201.
- information related to the instruction is piggybacked and notified to the GTP packet corresponding to the transmission data from the wireless terminal 30.
- the notification may be performed by adding the information to the header area of the GTP packet.
- the notification may be performed by piggybacking the information on a UDP packet corresponding to the GTP packet in UDP used in a lower layer of GTP.
- the notification may be performed by adding the information to the header area of the UDP packet.
- the notification may be performed by piggybacking the information on an IP packet corresponding to the GTP packet by an IP (Internet Protocol) used in a lower layer of the UDP.
- the notification may be performed by adding the information to the header area of the IP packet.
- the notification is performed by piggybacking on various packets corresponding to data transmitted by wireless terminals 30 other than the wireless terminal 30 instead of the various data transmitted by the wireless terminal 30.
- the instruction of the wired line transmission rate may be performed by piggybacking on various packets corresponding to arbitrary data transmitted from the base station 23 to the gateway device 50 or adding to the header area of the various packets.
- the gateway device 50 identifies the wireless terminal 30 to be controlled by notifying the information related to the wireless terminal 30 together (simultaneously) together with the information.
- a new interface for notifying the information may be installed between the gateway device 50 and the base station 23, and the notification may be notified via the interface.
- FIG. 14 shows an operation procedure in which the radio resource allocation unit 235 of the base station 23 controls the transfer priority in the LTE core network N2 of the transmission data addressed to each radio terminal 30 transferred from the gateway device 50 to the base station 23. It represents. After the operation of the remaining reproduction time calculation unit 214 ends, the base station 23 executes the operation illustrated in FIG.
- steps S302 to S304 in FIG. 7 are omitted, and steps S501 to S504 are newly added.
- steps S501 to S504 are newly added.
- Step S301 the wireless resource allocation unit 235 transfers the transmission data addressed to the wireless terminal 30 transferred from the gateway device 50 to the base station 23 in the LTE core network. It is determined that the priority should be increased. Then, the radio resource allocation unit 235 determines whether or not the gateway device 50 has already been instructed to increase the priority (step S501).
- the radio resource allocation unit 235 ends the process of FIG. 14 for the radio terminal 30.
- the radio resource assignment unit 235 instructs the gateway device 50 to instruct the priority increase. Is notified (step S502).
- Step S301 the radio resource allocation unit 235 transmits the LTE core of the transmission data addressed to the radio terminal 30 transferred from the gateway device 50 to the base station 23. It is determined that the transfer priority in the network should be lowered. Then, similarly to step S501, the radio resource allocation unit 235 determines whether or not the gateway device 50 has already been instructed to increase the priority (step S503).
- the radio resource allocation unit 235 provides information for instructing the gateway device 50 to decrease the priority. Notification is made (step S504). By executing step S504, the priority increase executed in step S502 is cancelled.
- the radio resource allocation unit 235 terminates the process of FIG. 14 for the radio terminal 30.
- the radio resource allocation unit 235 performs the above process for all the radio terminals 30 connected to the base station 23. The above process may be performed on a specific wireless terminal 30. Thereafter, the radio resource allocation unit 235 and the process of FIG. 14 are terminated.
- the radio terminal 30 when the future radio channel quality is predicted to deteriorate, the radio terminal 30 is transferred from the gateway device 50 to the base station 23. Since the transfer priority of the transmission data addressed to the wireless terminal 30 in the LTE core network N2 can be increased and data that can achieve the remaining reproduction time to be accumulated in the wireless terminal 30 can be prepared in the buffer 201 of the base station 23, Compared to the first embodiment of the present invention, it is possible to avoid stopping the reproduction of streaming content.
- step S501 when the gateway device 50 has already been notified of the increase in the priority (step S501, YES), the radio resource allocation unit 235 further increases the priority to the gateway device 50. Information for instructing an increase may be notified. Alternatively, the process of step S501 may be omitted, and at this time, the priority setting unit 502 of the gateway device 50 may increase the priority every time the notification of step S502 is received.
- step S503 the gateway device 50 may be notified of information for instructing to cancel the priority increase step by step, or instructed to cancel the priority increase at once. Information may be notified. Alternatively, the process of step S503 may be omitted, and at this time, the priority setting unit 502 of the gateway device 50 may decrease the priority every time the notification of step S504 is received.
- step S501 and steps S503 to S504 is omitted, and the priority setting unit 502 of the gateway device 50 reduces the wired line transmission rate for a predetermined time after receiving the notification of step S502. May be.
- the predetermined time is a cycle in which the base station 23 executes the processing of FIG.
- the function of the gateway device 50 can be provided in the traffic management device 40 according to the second embodiment of the present invention.
- the traffic management apparatus 41 according to the third embodiment of the present invention can also be provided.
- the transfer priority for transferring the content data from the second relay device gateway device to the base station device is set based on the future value of the radio channel quality and the expected processing index. It can be said that a priority setting step is included. Then, the priority setting step increases the transfer priority when the processing expectation index does not satisfy the predetermined condition.
- FIG. 15 shows the configuration of a distribution system 7 according to the fifth embodiment of the present invention.
- the distribution system 7 includes a wireless communication system 8.
- an LTE communication system is assumed as the wireless communication system 8, but other communication systems other than LTE such as UMTS and GSM (registered trademark) may be assumed. .
- the distribution system 7 includes a server device 11 instead of the server device 10 as compared with the distribution system 3 according to the second embodiment of the present invention. Further, the distribution system 7 includes a traffic management device 42 instead of the traffic management device 40 as compared with the distribution system 3 according to the second embodiment of the present invention. Furthermore, the distribution system 7 includes a base station 24 instead of the base station 21 as compared with the distribution system 3 according to the second embodiment of the present invention. Further, the distribution system 7 includes a wireless terminal 31 instead of the wireless terminal 30 as compared with the distribution system 3 according to the second embodiment of the present invention. The traffic management device 42, the base station 24, and the wireless terminal 31 are included in the wireless communication system 8. Hereinafter, a configuration changed in the fifth embodiment as compared with the second embodiment will be described.
- the traffic management device 42 is, for example, a P-GW (PDN (Packet Data Network) -Gateway), but is not limited thereto.
- P-GW Packet Data Network
- the server device 11 and the traffic management device 42 are configured to communicate via a communication line (for example, the Internet) NW. Further, the traffic management device 42 and the base station 24 are configured to communicate via an LTE core network (EPC) N2. Here, it is assumed that the traffic management device 42 is installed in the LTE core network N2. Further, the base station 24 and the wireless terminal 31 are configured to communicate via the wireless interface N1.
- the distribution system 7 includes only one server device 12, one traffic management device 42, one base station 24, and one wireless terminal 31, but any number of server devices 11 may be used. Similarly, the number of traffic management devices 42, the number of base stations 24, and the number of wireless terminals 31 may be any number.
- the server device 11 includes an information processing device (not shown) as with the server device 10 according to the second embodiment of the present invention.
- the information processing apparatus includes a central processing unit (CPU) (not shown) and a storage device (memory and hard disk drive (HDD)).
- the server device 11 may be configured to realize functions to be described later when the CPU executes a program stored in the storage device.
- the traffic management device 42 includes an information processing device (not shown), similar to the traffic management device 40 according to the second embodiment of the present invention.
- the information processing apparatus includes a central processing unit (CPU) (not shown) and a storage device (memory and hard disk drive (HDD)).
- the traffic management device 42 is configured to realize functions to be described later when the CPU executes a program stored in the storage device.
- the base station 24 includes an information processing device (not shown) as in the base station 21 according to the second embodiment of the present invention.
- the information processing apparatus includes a central processing unit (CPU) (not shown) and a storage device (memory and hard disk drive (HDD)).
- the base station 24 is configured to realize functions to be described later when the CPU executes a program stored in the storage device.
- the wireless terminal 31 is any one of a mobile phone terminal, a personal computer, a PHS terminal, a PDA, a smartphone, a tablet terminal, a car navigation terminal, a game terminal, and the like.
- the wireless terminal 30 includes a CPU, a storage device (memory), an input device (key buttons and a microphone), and an output device (display and speaker).
- the wireless terminal 31 may be configured to realize a function included in the wireless terminal 31 when the CPU executes a program stored in the storage device.
- FIG. 16 is a block diagram showing functions of the distribution system 7 configured as described above. Hereinafter, functions added and changed in the fifth embodiment will be described in comparison with the second embodiment.
- the functions of the server device 11 are a server operation unit 111 and a data storage unit 112.
- the server operation unit 111 has a function of transmitting the non-real-time traffic data stored in the data storage unit 112 to the wireless terminal 31 via the base station 24.
- the non-real time traffic is the Web.
- the data storage unit 112 has a function of storing (accumulating) non-real-time traffic data.
- the traffic management device 42 includes a traffic management device operation unit 421 instead of the traffic management device operation unit 401, as compared with the traffic management device 40 according to the second embodiment of the present invention.
- a traffic management device operation unit 421 instead of the traffic management device operation unit 401, as compared with the traffic management device 40 according to the second embodiment of the present invention.
- the function of the traffic management device operation unit 421 will be described.
- the traffic management device operation unit 421 includes TCP, which is a layer 4 protocol in the OSI basic reference model.
- the traffic management device operation unit 421 uses the TCP protocol to transmit / receive signals to / from the server device 11 via the communication line NW, and to transmit / receive signals via the base station 24 and the LTE core network N2.
- Have The traffic management device operation unit 421 in the present embodiment temporarily stores transmission data addressed to each wireless terminal 30 received via the communication line NW in the buffer 402, and the data stored in the buffer 402 is wired. The data is transferred to the base station 24 at the wired line transmission rate controlled by the line transmission rate control unit 403.
- the traffic management device operation unit 421 is different from the traffic management device operation unit 401 according to the second embodiment of the present invention in that it has a function of proxying the protocol of the application layer of the OSI basic reference model. That is, the traffic management device operation unit 421 has a function of acquiring the data size of non-real-time traffic addressed to the wireless terminal 30 received via the communication line NW.
- the traffic management device operation unit 421 in the present embodiment includes an HTTP proxy. Then, the traffic management device operation unit 421 transmits a GET Request to the server device 11 and acquires the data size of the non-real-time traffic from the Content-Length that is returned from the server device 11. Then, the traffic management device operation unit 421 notifies the base station 24 of information regarding the acquired data size of the non-real-time traffic.
- the information regarding the data size of the non-real-time traffic is notified to the base station 24 by piggybacking the information on the GTP packet corresponding to the transmission data addressed to the wireless terminal 31.
- the notification may be performed by adding the information to the header area of the GTP packet.
- the notification may be performed by piggybacking the information on a UDP packet corresponding to the GTP packet using UDP (User Datagram Protocol) used in a lower layer of the GTP.
- UDP User Datagram Protocol
- the notification may be performed by adding the information to the header area of the UDP packet.
- the notification may be performed by piggybacking the information on an IP packet corresponding to the GTP packet by an IP (Internet Protocol) used in a lower layer of the UDP.
- the notification may be performed by adding the information to the header area of the IP packet.
- the notification may be performed by piggybacking on various packets corresponding to transmission data addressed to wireless terminals 31 other than the wireless terminal 31 instead of transmission data addressed to the wireless terminal 31. . That is, the notification may be performed by piggybacking on various packets corresponding to arbitrary data transmitted from the traffic management device 42 to the base station 24 or adding the various packets to the header area.
- the base station 24 identifies the target wireless terminal 31 by notifying the information regarding the wireless terminal 31 together (simultaneously) together with the information.
- a new interface for notifying the information may be provided between the traffic management device 42 and the base station 24, and the notification may be notified via the interface.
- the base station 24 replaces the remaining reproduction time calculation unit 214 and the radio resource allocation unit 215 with a remaining transmission time calculation unit 246 and a radio resource.
- the function of the allocation part 245 is provided.
- functions of the remaining transmission time calculation unit 246 and the radio resource allocation unit 245 will be described.
- the remaining transmission time calculation unit 246 is an example of an index calculation unit.
- the remaining transmission time calculation unit 246 calculates the remaining time excluding the transmitted time from the transmission time that is the time from the transmission start time of the content from the base station 24 to the wireless terminal 31 to the transmission completion time, as a process expected index. To do.
- the remaining time is used as an example of a process expected index.
- the remaining time can be said to be the time required for transmitting the non-real-time traffic data. That is, the remaining time can be said to be an expected index for performing processing for displaying the non-real-time traffic data received in the wireless terminal 31.
- the remaining transmission time calculation unit 246 uses the data size of the non-real-time traffic notified from the traffic management device 42 and the information on the probability spread of the future radio channel quality predicted by the radio channel quality prediction unit 213. And a function of calculating the remaining time.
- the data size of non-real-time traffic is an example of information indicating content characteristics.
- the calculated remaining time is used by the radio resource allocation unit 245.
- the radio resource allocation unit 245 has a function of calculating an allocation index of each radio terminal 31 using the remaining time required for transmitting the non-real-time traffic data calculated by the remaining transmission time calculation unit 246. Further, the radio resource allocation unit 245 has a function of determining a frequency block to be allocated to each radio terminal 31 based on the calculated allocation index. In the present embodiment, the frequency block is RB, and RBs are allocated in order from the wireless terminal 31 having the largest calculated allocation index.
- the radio resource allocation unit 245 uses the remaining time required for transmitting the non-real-time traffic data calculated by the remaining transmission time calculation unit 246 to use the traffic management included in the wired line transmission rate control unit 403 of the traffic management device 42. It has a function of supervising a function of controlling the wired line transmission rate from the device 42 to the base station 24 (instructing a method of controlling the wired line transmission rate).
- the instruction from the wireless resource allocation unit 245 to the wired line transmission rate control unit 403 is the same as that of the wireless resource allocation unit 215 according to the second embodiment of the present invention.
- the wireless terminal 31 has a function of an application execution unit 312 instead of the content playback unit 302.
- functions of the application execution unit 312 will be described.
- the application execution unit 312 has a function of executing the non-real-time traffic application using the non-real-time traffic data transmitted from the server device 11. In the present embodiment, the application execution unit 312 displays a web page using the data.
- the remaining transmission time calculation unit 246 calculates the minimum time Testestend that satisfies Expression (17) for all the wireless terminals 31 connected to the base station 24.
- T test-end is a time when transmission of non-real-time traffic data is completed, and a value obtained by subtracting the current time T current from T- test-end is used to transmit data of the non-real-time traffic. This is the remaining time required.
- NRTD is the data size of the non-real-time traffic
- NRTD Tcurrent is the data size of the data size that has been transmitted to the wireless terminal 31 by the current time.
- the base station 24 calculates the minimum time Testestend that satisfies Equation (17) in units of 1 [milliseconds], but may calculate in units greater than 1 [milliseconds]. It may also be calculated in units smaller than 1 [millisecond]. The base station 24 calculates the remaining time required for transmitting the non-real-time traffic data every 1 [second], but may be executed in a cycle shorter than 1 [second]. ] May be executed in a longer cycle than the above.
- FIG. 17 illustrates an operation procedure in which the radio resource allocation unit 245 of the base station 24 calculates an allocation index of the radio terminal 31 used for determining a frequency block to be allocated to the radio terminal 31.
- the base station 24 performs the operation illustrated in FIG. 17 for each subframe that is a radio resource allocation unit time.
- step S301 in FIG. 7 is omitted, and step S601 is newly added. Only the added operation in step S601 will be described below.
- the radio resource allocation unit 205 uses Formula (18) to determine whether the remaining time ( Testend - Tcurrent ) required for transmitting non-real-time traffic data is equal to or longer than the required time (second threshold). It is determined whether or not (step S601).
- T thresh is a required time (second threshold), and is 1 [second] in the present embodiment.
- the second threshold may be a time shorter than 1 [second] or may be a time longer than 1 [second].
- the operation procedure for the wireless resource allocation unit 245 of the base station 24 to control the wired line transmission rate from the traffic management device 42 to the base station 24 is the same as that of the present invention except that step S301 in FIG. This is the same as the radio resource assignment unit 215 according to the second embodiment.
- the transmission of non-real-time traffic to the radio terminal 31 is completed promptly. Since wireless resource allocation can be prioritized, the throughput of the non-real-time traffic can be improved.
- the distribution system 7 includes the traffic management device 42, but may include a gateway device management device 50.
- the wired line transmission rate when content is transferred from the first relay apparatus to the base station apparatus, the future value of wireless line quality, and processing It can be said to include a wired line transmission rate control step for controlling based on the expected index.
- the wired line transmission rate control step increases the wired line transmission rate when the expected processing index does not satisfy the predetermined condition.
- this embodiment may be used in combination with other embodiments of the present invention. That is, the function provided by the traffic management device 42 may be provided by the traffic management device 40 according to the second embodiment of the present invention or the traffic management device 41 according to the third embodiment of the present invention.
- the functions of the base station 24 relate to the base station 20 according to the first embodiment of the present invention, the base station 21 according to the second embodiment of the present invention, or the third embodiment of the present invention.
- the base station 22 or the base station 23 according to the fourth embodiment of the present invention may be provided.
- the function provided in the wireless terminal 31 may be provided in the wireless terminal 30 according to the first embodiment of the present invention.
- the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention described above.
- one of the features of the present invention is that radio resources are allocated to the wireless terminal in accordance with a process expected index that is an index indicating the likelihood of processing of content executed by the wireless terminal. Therefore, the transmission device described above is configured to implement the present invention, according to the acquisition unit that acquires a process expected index that is an index indicating the likelihood of processing of the content executed by the wireless terminal, and the process expected index.
- a control unit that allocates radio resources to the radio terminal may be provided.
- the transmission apparatus when the transmission apparatus is a radio base station, it is needless to say that the transmission apparatus may have a function unit that operates as a radio base station in a general radio communication system.
- the acquisition unit and the control unit correspond to the remaining reproduction time calculation unit 204 and the radio resource allocation unit 205.
- the present invention has been described as a hardware configuration, but the present invention is not limited to this. The present invention can also realize arbitrary processing by causing a CPU (Central Processing Unit) to execute a computer program.
- a CPU Central Processing Unit
- Non-transitory computer readable media include various types of tangible storage media (tangible storage medium).
- Examples of non-transitory computer-readable media include magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R / W, DVD (Digital Versatile Disc), BD (Blu-ray (registered trademark) Disc), semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM ( Random Access Memory)).
- magnetic recording media eg flexible disks, magnetic tapes, hard disk drives
- magneto-optical recording media eg magneto-optical discs
- CD-ROMs Read Only Memory
- CD-Rs Compact Only Memory
- CD-R / W Digital Versatile Disc
- DVD Digital Versatile Disc
- BD Blu-ray (registered trademark) Disc
- the program may also be supplied to the computer by various types of temporary computer-readable media.
- Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
- the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
- the index calculating step includes: Using the current value of the remaining playback time, which is the time required to play back the content that has been stored in the wireless terminal and is not played back, and the future value of the wireless channel quality, the future value of the remaining playback time is Calculated as the expected processing index, The radio resource allocation method according to appendix 1 or 2, wherein the predetermined condition is that a future value of the remaining reproduction time is equal to or less than a first threshold value.
- the first threshold value is a time required for a handover process between the base station apparatuses, a time from when the handover process fails to a reconnection to the base station apparatus, or a signal from the base station apparatus It is a value based on one of the times staying in an area that does not reach.
- the information indicating the characteristics of the content is information regarding that the content is time-divided and encoded at a plurality of encoding rates with different bit rates for each of the time-divided contents.
- the radio resource allocation method includes: Calculating the remaining time excluding the transmitted time from the transmission time that is the time from the transmission start time to the transmission completion time of the content from the base station device to the wireless terminal as the processing expected index, The radio resource allocation method according to appendix 1 or 2, wherein the predetermined condition is that the remaining time is equal to or greater than a second threshold.
- the information indicating the characteristics of the content is the data size of the content.
- the radio resource allocation method according to appendix 6, wherein (Appendix 8)
- the wireless communication system includes a first relay device between the content transmission source and the base station device, A wired line transmission rate control step of controlling a wired line transmission rate when transferring the content from the first relay apparatus to the base station apparatus based on a future value of the wireless line quality and the expected processing index;
- the radio resource allocation method according to any one of appendices 1 to 7, wherein the radio resource allocation method is provided.
- the wired line transmission rate control step includes: 9. The radio resource allocation method according to appendix 8, wherein the wired line transmission rate is increased when the expected processing index does not satisfy the predetermined condition.
- the wireless communication system includes a second relay device between the content transmission source and the base station device, A priority setting step of setting a transfer priority when transferring the content from the second relay apparatus to the base station apparatus based on a future value of the wireless channel quality and the expected processing index.
- the radio resource allocation method according to any one of appendices 1 to 9, which is characterized by the following.
- the priority setting step includes: The radio resource allocation method according to appendix 10, wherein the transfer priority is increased when the processing expectation index does not satisfy the predetermined condition.
- the radio resource allocation step includes: Calculating an allocation index indicating a priority for allocating the radio resource according to whether or not the processing expected index satisfies the predetermined condition; Assigning the radio resource based on the assignment index; 12. The radio resource allocation method according to any one of appendices 1 to 11, wherein the allocation index is calculated to have a high priority when the processing expected index does not satisfy the predetermined condition.
- the index calculating step includes: Calculate the expected processing index for each wireless terminal, The radio resource allocation step includes: 12. The radio resource allocation method according to any one of appendices 1 to 11, wherein the radio resource is preferentially allocated to a radio terminal in the processing expectation index that does not satisfy the predetermined condition.
- the wireless channel quality is Throughput of CQI (Channel Quality Indicator), RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), PDCP (Packet Data ConcelRoc) At least one of OTA (Over-The-Air) throughput or TCP (Transmission Control Protocol) throughput, 14.
- the radio resource allocating method according to any one of appendices 1 to 13, characterized in that: (Appendix 15)
- the radio resource allocation step includes: Performed by any one of the content unit or the wireless terminal unit, 15.
- the radio resource allocation method according to any one of supplementary notes 1 to 14, wherein (Appendix 16) A base station apparatus that transmits content addressed to a wireless terminal received via a network to the wireless terminal via a wireless line, The base station device Predicting means for predicting a future value of radio channel quality, which is quality information of the radio channel; Processing expected index calculation means for calculating a processing expected index that is an index indicating the likelihood of processing of the content received at the wireless terminal, using the future value of the wireless channel quality; A radio resource allocating means for preferentially allocating radio resources to the radio terminal when the processing expectation index does not satisfy a predetermined condition; A wireless communication system comprising: (Appendix 17) A transmission device that transmits content addressed to a wireless terminal received via a network to the wireless terminal via a wireless line, A prediction unit that predicts a future value of the wireless channel quality that is the quality information of the wireless channel; An index calculation unit that calculates a processing expected index that is an index indicating the likelihood of processing of the content received at the wireless terminal, using
- Appendix A2 The transmission apparatus according to appendix A1, wherein the acquisition unit extracts information indicating the characteristic of the content and calculates the processing expectation index by calculating based on the extracted information indicating the characteristic of the content.
- Appendix A3 The transmission device according to appendix A1, wherein the acquisition unit acquires the processing expected index by receiving the index from the wireless terminal.
- Appendix A4 The transmission according to any one of appendices A1 to A3, wherein the processing expectation index is a remaining reproduction time that is accumulated in the wireless terminal and required for reproduction of the content that is not reproduced at a predetermined time. apparatus.
- the processing expectation index is a remaining time excluding a transmission time at a predetermined time from a transmission time that is a time from a transmission start time to a transmission completion time of content addressed to the wireless terminal transmitted by the transmission device.
- the transmission device according to any one of appendices A1 to A3.
- the remaining reproduction time includes the data size of the content that has been transmitted from the time when content transmission is started to the wireless terminal to the predetermined time, the bit rate of the content data, and the time after the transmission is started.
- the transmitting apparatus according to appendix A4, which calculates using the elapsed time from the time when the data size of the data satisfies a predetermined value to the predetermined time.
- Appendix A7 A prediction means for predicting a future value based on at least one change tendency of the radio channel quality and the transmission rate, which is the quality information of the radio channel; The control unit according to any one of Supplementary Note A4 or A6, wherein the control unit allocates a radio resource to the wireless terminal according to the remaining reproduction time future value calculated using the remaining reproduction time at the predetermined time and the future value. Transmitter device.
- Appendix A8 The future value based on at least one of the change tendency of the radio channel quality and the transmission rate, the priority regarding the data transfer between the relay device provided above the transmitting device and the transmitting device or the rate of the data transfer, and The transmission device according to attachment A7, which determines based on the remaining reproduction time and notifies the relay device.
- Appendix A9 A method for controlling a transmission device that transmits content data addressed to a wireless terminal received via a network to the wireless terminal via a wireless line, Obtaining a process expected index that is an index indicating the likelihood of processing of the content executed by the wireless terminal; A method for controlling a transmission apparatus, wherein radio resources are allocated to the radio terminal according to the processing expectation index.
- Appendix A10 A program that causes a computer to execute a control method of a transmission device that transmits content data addressed to a wireless terminal received via a network to the wireless terminal via a wireless line, Obtaining a process expected index that is an index indicating the likelihood of processing of the content executed by the wireless terminal; A program for a control method of a transmitting apparatus that allocates radio resources to the radio terminal according to the processing expectation index.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
無線回線品質が劣化した場合でも、ストリーミングコンテンツの再生停止などによるQoEの劣化を回避すること。本発明にかかる送信装置は、ネットワークを介して受信した無線端末宛のコンテンツのデータを、無線回線を介して当該無線端末へ送信するものである。送信装置は、無線端末が実行するコンテンツの処理の見込みを示す指標である処理見込指標を取得する取得手段と、処理見込指標に応じて、無線端末に無線リソースを割り当てる制御手段と、を有する。
Description
本発明は、送信装置並びにその制御方法及びプログラムに関し、特に、ネットワークを介して受信した無線端末宛のコンテンツを基地局装置から当該無線端末へ無線回線を介して送信する際における送信装置並びにその制御方法及びプログラムに関する。
近年、インターネットでの映像及び音楽配信は、HTTP(Hypertext Transfer Protocol)を利用したストリーミング配信が一般的である。国際標準化団体であるISO(International Organization for Standardization)では、HTTPプロトコルを使った動画配信プロトコルの国際標準規格として、MPEG-DASH(Moving Picture Experts Group-Dynamic Adaptive Streaming over HTTP)をリリースしている(非特許文献1)。
MPEG-DASHは、映像などのストリーミングコンテンツの再生がバッファリング状態により停止しないよう、コンテンツデータのビットレートを動的に切り替える技術である。ここで、バッファリング状態とは、ストリーミングアプリケーションソフトウェアで未だ再生していないコンテンツデータを格納している記憶領域において、現在格納されているコンテンツデータで再生可能な時間である残余再生時間が所定値以上となるまで、ストリーミングコンテンツの再生を停止し、コンテンツデータの蓄積を行う状態のことである。図18に、MPEG-DASHを用いたコンテンツ配信システムを示す。サーバ装置91では、ストリーミングコンテンツを時分割し、それぞれをビットレートが互いに異なる複数の符号化レートで符号化したコンテンツデータにて管理する。ここで、ビットレートは、ストリーミングコンテンツを単位時間だけ等速再生(1倍速にて再生)するために必要なデータのサイズを表す。また、これらのコンテンツデータに関する情報を記載したMPD(Media Presentation Description)と呼ばれるプレイリストファイルを作成する。MPDには、時分割された各ストリーミングコンテンツの再生開始時刻や再生時間長、サーバ装置91で用意されているビットレートや解像度などの情報や、それらのコンテンツデータがあるURLなどが記載されている。クライアント装置92は、動画コンテンツの配信を受ける前に、サーバ装置91からMPDを取得し、MPDに記載された各コンテンツデータのURLを基に、順次コンテンツデータを取得し、動画コンテンツの再生を行う。ネットワーク環境に応じて動的にストリーミングコンテンツのビットレートの切り替えを行うことで、バッファリング状態によるストリーミングコンテンツの再生停止を回避できる。
ISO/IEC 23009-1 "Information technology ― Dynamic adaptive streaming over HTTP (DASH) ― Part 1: Media presentation description and segment formats," Second edition,2014-05-15
Christian Wengerter et al、"Fairness and Throughput Analysis for Generalized Proportional Fair Frequency Scheduling in OFDMA、" VTC 2005-Spring. 2005 IEEE 61st (Volume:3)
里田,他,"ビデオペーシングを導入した適応映像配信プロキシ," 電子情報通信学会ソサイエティ大会講演論文集 2012年(通信_2), B-6-69, 2012年8月28日
吉田,他,"TCPスループットの確率的拡散予測に基づく映像配信制御" , インターネットコンファレンス2011(IC2011), 2011年10月27日-10月28日
しかしながら、スマートフォンをはじめとするモバイル端末(無線端末)にてストリーミングコンテンツの再生を行う場合、無線回線品質の急激な劣化によりストリーミングコンテンツの再生が停止してしまう課題があった。
例えば、図19に示すように、無線端末が、高層ビルなどに遮られる、基地局からの信号が届かない不感地エリア(カバレッジホール)を通過する場合を想定する。図20に示すように、無線端末の無線回線品質は、当該不感地エリアとその周辺エリアにおいて、著しく劣化する。このとき、無線端末の受信ビットレート(基地局と、当該基地局と接続中の無線端末との間の無線回線の伝送レート)は、コンテンツの再生ビットレートを下回る。その結果、無線端末においてストリーミングコンテンツの残余再生時間は低下し、やがて枯渇してバッファリング状態となってしまう。バッファリング状態を回避するため、無線回線品質が劣化した場合は、通常、コンテンツの再生ビットレートを、無線端末の受信ビットレートを上回らない最小の値に減少させる。しかし、当該受信ビットレートが当該コンテンツの最小再生ビットレート以下となる場合は、当該受信ビットレートに対する適切な再生ビットレートを設定できないため、当該バッファリング状態を回避できない。そのため、無線端末では映像や音声などのストリーミングコンテンツの再生途絶が発生し、当該無線端末においてユーザの体感品質(QoE;Quality of Experience)が劣化する。
尚、当該課題は、基地局からの信号が届かない不感地エリアだけでなく、例えば、セル境界など、無線回線品質が劣化するエリアでも発生する。また、WWW(World Wide Web)や電子メール、静止画像などのノンリアルタイムトラヒックのコンテンツについて表示等の処理を行う場合にも、同様の理由により、無線回線品質の急激な劣化により当該表示処理等が停止し得るという同様の課題が発生する。
本発明は、このような問題点を解決するためになされたものであり、無線回線品質が劣化した場合でも、ストリーミングコンテンツの再生停止などによるQoEの劣化を回避するための送信装置並びにその制御方法及びプログラムを提供することを目的とする。
本発明の第1の態様にかかる送信装置は、
ネットワークを介して受信した無線端末宛のコンテンツのデータを、無線回線を介して当該無線端末へ送信する送信装置であって、
前記無線端末が実行する前記コンテンツの処理の見込みを示す指標である処理見込指標を取得する取得手段と、
前記処理見込指標に応じて、前記無線端末に無線リソースを割り当てる制御手段と、
を有する。
ネットワークを介して受信した無線端末宛のコンテンツのデータを、無線回線を介して当該無線端末へ送信する送信装置であって、
前記無線端末が実行する前記コンテンツの処理の見込みを示す指標である処理見込指標を取得する取得手段と、
前記処理見込指標に応じて、前記無線端末に無線リソースを割り当てる制御手段と、
を有する。
本発明の第2の態様にかかる送信装置の制御方法は、
ネットワークを介して受信した無線端末宛のコンテンツのデータを、無線回線を介して当該無線端末へ送信する送信装置の制御方法であって、
前記無線端末が実行する前記コンテンツの処理の見込みを示す指標である処理見込指標を取得し、
前記処理見込指標に応じて、前記無線端末に無線リソースを割り当てる。
ネットワークを介して受信した無線端末宛のコンテンツのデータを、無線回線を介して当該無線端末へ送信する送信装置の制御方法であって、
前記無線端末が実行する前記コンテンツの処理の見込みを示す指標である処理見込指標を取得し、
前記処理見込指標に応じて、前記無線端末に無線リソースを割り当てる。
本発明の第3の態様にかかる送信装置の制御方法のプログラムは、
ネットワークを介して受信した無線端末宛のコンテンツのデータを、無線回線を介して当該無線端末へ送信する送信装置の制御方法をコンピュータに実行させるプログラムであって、
前記無線端末が実行する前記コンテンツの処理の見込みを示す指標である処理見込指標を取得し、
前記処理見込指標に応じて、前記無線端末に無線リソースを割り当てる。
ネットワークを介して受信した無線端末宛のコンテンツのデータを、無線回線を介して当該無線端末へ送信する送信装置の制御方法をコンピュータに実行させるプログラムであって、
前記無線端末が実行する前記コンテンツの処理の見込みを示す指標である処理見込指標を取得し、
前記処理見込指標に応じて、前記無線端末に無線リソースを割り当てる。
本発明により、無線回線品質が劣化した場合でも、ストリーミングコンテンツの再生停止などによるQoEの劣化を回避するための送信装置並びにその制御方法及びプログラムを提供することができる。
以下では、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。各図面において、同一要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略する。
[第1実施形態]
[構成の説明]
図1に、本発明の第1の実施形態に係る配信システム1の構成を示す。配信システム1は、無線通信システム2を含む。ここで、本発明の各実施形態の説明では、無線通信システム2としてLTEの通信システムを想定する。但し、無線通信システム2として、UMTS(Universal Mobile Telecommunications System)やGSM(登録商標)(Grobal System for Mobile communications)などのLTE以外の他の通信システムを想定してもよい。
[構成の説明]
図1に、本発明の第1の実施形態に係る配信システム1の構成を示す。配信システム1は、無線通信システム2を含む。ここで、本発明の各実施形態の説明では、無線通信システム2としてLTEの通信システムを想定する。但し、無線通信システム2として、UMTS(Universal Mobile Telecommunications System)やGSM(登録商標)(Grobal System for Mobile communications)などのLTE以外の他の通信システムを想定してもよい。
配信システム1は、サーバ装置10と、基地局20と、無線端末30と、を備える。このうち、基地局20と、無線端末30は、無線通信システム2に含まれる。サーバ装置10と基地局20は、通信回線(例えば、インターネット)NWを介して、通信するよう構成されている。また、基地局20と無線端末30は、無線インターフェースN1を介して、通信するよう構成されている。説明の便宜上、図1においては、配信システム1は、1つの基地局と1つの無線端末しか備えていないが、基地局の数は幾つでもよい。同様に、無線端末の数も幾つでもよい。
サーバ装置10は、図示しない情報処理装置を備える。情報処理装置は、図示しない中央処理装置(CPU;Central Processing Unit)、及び、記憶装置(メモリ及びハードディスク駆動装置(HDD;Hard Disk Drive))を備える。サーバ装置10は、記憶装置に記憶されているプログラムをCPUが実行することにより、後述する機能を実現するように構成されてもよい。
基地局20は、図示しない情報処理装置を備える。情報処理装置は、図示しない中央処理装置(CPU)、及び、記憶装置(メモリ及びハードディスク駆動装置(HDD))を備える。基地局20は、記憶装置に記憶されているプログラムをCPUが実行することにより、後述する機能を実現するように構成されてもよい。
無線端末30は、携帯電話端末、パーソナル・コンピュータ、PHS(Personal Handyphone System)端末、PDA(Personal Data Assistance、Personal Digital Assistant)、スマートフォン、タブレット端末、カーナビゲーション端末、又は、ゲーム端末等の何れかである。無線端末30は、CPU、記憶装置(メモリ)、入力装置(キーボタン及びマイクロフォン)、及び、出力装置(ディスプレイ及びスピーカ)を備える。無線端末30は、記憶装置に記憶されているプログラムをCPUが実行することにより、無線端末30が備える機能を実現するように構成されてもよい。
図2は、上記のように構成された配信システム1の機能を表すブロック図である。
サーバ装置10の機能は、サーバ動作部101と、コンテンツデータ蓄積部102である。
サーバ動作部101は、コンテンツデータ蓄積部102に記憶されているコンテンツデータを、基地局20を経由して無線端末30へ送信する機能を有する。コンテンツデータとは、音声データや動画データなどを指す。
コンテンツデータ蓄積部102は、ストリーミングコンテンツを所定時間で時分割し、更に、時分割したそれぞれに対して符号化した各コンテンツデータを記憶(蓄積)する機能を有する。尚、本実施形態では、コンテンツデータ蓄積部102は、特定(単一)のビットレートで符号化したコンテンツデータを記憶する。更に、コンテンツデータ蓄積部102は、記憶しているストリーミングコンテンツのプレイリストファイルを作成する機能を有する。プレイリストファイルとは、例えば、上述したMPDに相当するものである。本実施形態では、コンテンツデータ蓄積部102は、無線端末30からストリーミングコンテンツの送信開始要求を受信した場合、上述したストリーミングコンテンツのプレイリストファイルを無線端末30へ送信する。更に、コンテンツデータ蓄積部102は、記憶しているコンテンツデータを無線端末30へ送信する機能を有する。本実施形態では、コンテンツデータ蓄積部102は、無線端末30が送信したコンテンツデータの送信要求から特定されるコンテンツデータを、無線端末30へ送信する。
尚、本実施形態では、サーバ装置10がストリーミングコンテンツのコンテンツデータを配信すること、及び、サーバ装置10から配信されるコンテンツデータあたりの再生時間とビットレートの情報は、基地局20と無線端末30で既知の事実として認識されているものとする。
基地局20の機能は、基地局動作部201と、バッファ202と、無線回線品質予測部203と、残余再生時間計算部204と、無線リソース割り当て部205である。
基地局動作部201は、基地局20と、基地局20と接続中の(通信リンクが確立されている)無線端末30との間で無線信号を送受信する機能や、無線端末30が基地局20との通信路品質を測定するために用いるリファレンス信号を生成する機能など、一般的な無線通信システムにおける基地局が備える機能を有する。尚、基地局動作部201が備える機能は当業者の周知事項であるため、基地局動作部201が備える各機能の説明は省略する。
バッファ202は、通信回線NWを介して到着する各無線端末30宛の送信データを共に蓄積する機能を有する。
無線回線品質予測部203は、予測部の一例である。無線回線品質予測部203は、基地局20と、基地局20と接続中の(通信リンクが確立されている)無線端末30との間における無線回線の品質情報(以下、「無線回線品質」という。)の変化傾向を無線回線品質の現在及び過去の値から予測し、当該予測した変化傾向に基づいて当該無線回線品質の将来値(将来の無線回線品質)を予測する機能を有する。ここで、変化傾向とは、ある情報の変化量、変化具合、変化の推移、又は、当該推移における変動量(変動幅や変化の速度)を示す指標である。変化傾向の例としては、少なくとも2つ以上の情報から得られる傾き、微分値、差分値、又は、近似関数(近似直線等)などがある。従って、無線回線品質の変化傾向であれば、例えば、複数の所定時刻にそれぞれ対応する複数の無線回線品質における、当該複数の所定時刻あたりの無線回線品質の変化量であってもよい。本実施形態では、無線回線品質は無線端末30から周期的に報告されるCSI(Channel State Information)に含まれるCQI(Channel Quarity Indicator)である。予測した将来の無線回線品質の情報は、残余再生時間計算部204と無線リソース割り当て部205で用いられる。なお、無線回線品質予測部203は、無線回線品質の代わりに無線回線の伝送レートの現在及び過去の値に基づいて変化傾向を予測し、当該変化傾向を用いて予測した将来の無線回線の伝送レート(将来値)を上述した無線回線品質の将来値の代わりに用いてもよい。
残余再生時間計算部204は、指標算出部の一例である。残余再生時間計算部204は、無線回線品質予測部203により予測された無線回線品質の将来値を用いて、処理見込指標を算出する。ここで、処理見込指標とは、無線端末30において受信するコンテンツデータの処理の見込みを示す指標である。本実施形態では、処理見込指標の一例として残余再生時間の将来値を用いるものとする。ここで、残余再生時間とは、無線端末30に蓄積され、かつ、再生されていないコンテンツデータの再生に要する時間である。言い換えると、残余再生時間とは、無線端末30のコンテンツ再生部302に記憶されているコンテンツデータのうちの未だ再生していない部分(未再生データ)について再生に要する時間である。つまり、残余再生時間は、無線端末30において受信済みのコンテンツデータついて再生という処理を行うに当たっての見込みの指標といえる。そして、残余再生時間計算部204は、残余再生時間の現在値を取得する手段を有するものである。すなわち、本実施形態にかかる残余再生時間計算部204は、無線端末30への送信が完了した(ACK応答を受信した)コンテンツデータのサイズが所定値を達成してから現在までの時間と、現在時刻までに送信が完了したコンテンツデータのサイズを当該コンテンツデータデータのビットレートにより除した値を用いて計算することにより残余再生時間の現在値を取得する。具体的には、まず、残余再生時間計算部204は、無線端末30に対して送信が完了したコンテンツデータのサイズ(送信完了データサイズ)が所定値を超えたか否かを判定する。送信完了データサイズが所定値を超えたと判定した場合、残余再生時間計算部204は、所定値を超えたと判定してからの経過時間の測定を開始する。そして、残余再生時間計算部204は、所定のタイミングで、送信完了データサイズと、該当コンテンツデータのビットレートと、経過時間とを用いて残余再生時間の現在値を算出する。例えば、当該コンテンツデータのサイズが所定値を達成してからの経過時間(つまり、無線端末30が当該コンテンツデータの再生を開始してから経過した時間)が2[秒](以下、物理量の単位を[]により囲んで表記する)であり、現在時刻までに送信が完了したコンテンツデータのサイズが8[MB]であり、且つ、当該コンテンツデータのビットレートが1[Mbps]である場合には、残余再生時間は8÷1-2=6[秒]となる。また、当該コンテンツデータのビットレートが2[Mbps]である場合には、残余再生時間は8÷2-2=2[秒]となる。更に、残余再生時間計算部204は、計算した残余再生時間の現在値と無線回線品質予測部202が予測した将来の無線回線品質の情報を用いて、将来の残余再生時間を計算する機能を有する。計算した将来の残余再生時間は、無線リソース割り当て部205で用いられる。さらに、残余再生時間計算部204は、無線端末30宛のコンテンツの特性を示す情報を取得する。ここで、コンテンツの特性を示す情報とは、コンテンツが時分割され、当該時分割された各コンテンツのそれぞれについてビットレートが異なる複数の符号化レートにより符号化されたことに関する情報である。例えば、コンテンツの特性を示す情報は、上述したプレイリストファイル等であり、ビットレートやコンテンツデータのサイズが含まれる。つまり、残余再生時間計算部204は、コンテンツの特性を示す情報を用いて、処理見込指標を算出するものといえる。
なお、本実施形態では、ビットレートやコンテンツデータのサイズが含まれるプレイリスト等のコンテンツの特性を示す情報は、上述した通り、基地局20と無線端末30で既知の事実として認識されているものとしたが、これに限られない。例えば基地局20はDPI機能とOSI基本参照モデルのアプリケーション層のプロトコルをプロキシする機能を備え、当該無線端末30宛のストリーミングコンテンツのプレイリストファイルを取得し、当該プレイリストファイルからビットレートやコンテンツデータのサイズを含むコンテンツの特性を示す情報を取得してもよい。または、当該コンテンツの特性を示す情報を無線端末から直接受信してもよい。
また、処理見込指標の他の例としては、残余再生時間の現在値がある。また、処理見込指標の他の例としては、無線端末30に蓄積され、かつ、再生されていないコンテンツデータの容量の現在値又は将来値であってもよい。また、残余再生時間の現在値とは、例えば、残余再生時間計算部204が残余再生時間を算出すると判断した所定の時刻における残余再生時間である。
無線リソース割り当て部205は、無線リソース割り当て部の一例である。無線リソース割り当て部205は、処理見込指標が所定条件を満たさない場合に、無線端末30に対して無線リソースを優先して割り当てる。すなわち、無線リソース割り当て部205は、以下の機能を有する。まず、無線リソース割り当て部205は、無線回線品質予測部202が予測した将来の無線回線品質と、残余再生時間計算部204が計算した残余再生時間の情報を用いて、将来の残余再生時間が所定値以下となるか否かを判定する機能を有する。更に、無線リソース割り当て部205は、当該判定結果を用いて、各無線端末30の割り当て指標を計算する機能を有する。ここで、割り当て指標とは、無線リソースを割り当てるための優先度を示す指標である。更に、無線リソース割り当て部205は、計算した当該割り当て指標に基づき、各無線端末30に割り当てる周波数ブロックを決定する機能を有する。本実施形態では、周波数ブロックはRB(Resource Block)であり、計算した割り当て指標が最も大きい無線端末30から順にRBを割り当てる。つまり、無線リソース割り当て部205は、処理見込指標が所定条件を満たすか否かに応じて、割り当て指標を算出し、当該割り当て指標に基づき無線リソースの割り当てを行う。このとき、割り当て指標は、処理見込指標が所定条件を満たさない場合に、無線リソースを割り当てる優先度が高く算出される。
無線端末30の機能は、無線端末動作部301とコンテンツ再生部302である。
無線端末動作部301は、無線端末30と、無線端末30と接続中の(通信リンクが確立されている)基地局20との間で無線信号を送受信する機能や、リファレンス信号に対するCQIやRSRP(Reference Signal Received Power)やRSRQ(Reference Signal Received Quality)などの通信路品質を測定する機能や、測定した通信路品質の情報をそれぞれ基地局20へ通知するための信号を生成する機能など、一般的な無線通信システムにおける無線端末が備える機能を有する。尚、無線端末動作部301が備える機能は当業者の周知事項であるため、無線端末動作部301が備える各機能の説明は省略する。
コンテンツ再生部302は、サーバ装置10に対し、ストリーミングコンテンツの送信開始要求を送信する機能を有する。更に、コンテンツ再生部302は、サーバ装置10から送信されたストリーミングコンテンツのプレイリストファイルを管理する機能を有する。更に、コンテンツ再生部302は、サーバ装置10から送信されたストリーミングコンテンツのプレイリストファイルを参照し、サーバ装置10に対し、コンテンツデータの送信要求を送信する機能を有する。更に、コンテンツ再生部302は、サーバ装置10から送信されたコンテンツデータを記憶する機能と、当該ストリーミングコンテンツのプレイリストファイルと記憶したコンテンツデータを用いてストリーミングコンテンツを再生する機能を有する。
[動作の説明]
次に、上述した基地局20が、各無線端末30に周波数ブロックを割り当てる動作手順について説明する。
次に、上述した基地局20が、各無線端末30に周波数ブロックを割り当てる動作手順について説明する。
図3は、基地局20の無線回線品質予測部203が、基地局20と、基地局20と接続中の(通信リンクが確立されている)無線端末30との間における将来の無線回線品質を予測する動作手順を表すものである。基地局20は、所定周期毎に図3に記載の動作を実行する。本実施形態では、基地局20は、1[秒]毎に図3の動作を実行する。尚、図3の動作は、1[秒]よりも短い周期で実行してもよく、また、1[秒]よりも長い周期で実行してもよい。
先ず、無線回線品質予測部203は、図4に示すように、現在時刻から所定時間前までの期間に無線端末30から報告されたCQIから最小二乗法を用い、CQIと時間に関する近似直線(一次方程式)を求める(ステップS101)。すなわち、無線回線品質予測部203は、当該近似直線を算出することにより無線回線品質の現在と過去の値に基づく将来の変化傾向を予測する。数式(1)は、最小二乗法を用いて求められるCQIと時間に関する一次方程式である。数式(1)において、TはCQIを予測したい時刻であり、Tcurrentは現在時刻である。また、aとbは変数であり、それぞれ数式(2)と数式(3)を用いて計算される。数式(2)及び数式(3)において、Nは無線端末30から報告されたCQIの総数であり、iは無線端末30から報告されたCQIのそれぞれを識別するための識別番号であり、Tiは識別番号iのCQIが報告された時刻である。本実施形態では、現在時刻から所定時間前までの期間を10[秒]とするが、10[秒]より大きい値としてもよく、また、10[秒]より小さい値としてもよい。
次に、無線回線品質予測部203は、数式(1)を用いて、将来のCQIを予測する(ステップS102)。つまり、無線回線品質予測部203は、ステップS101により予測した無線回線品質の現在と過去の値に基づく将来の変化傾向に基づいて、無線回線品質の将来値を予測する。詳細な計算事例は図6で説明する。本実施形態では、現在時刻から10[秒]後までのCQIを0.1[秒]毎に予測する。尚、予測するCQIは、現在時刻から10[秒]後よりも前の時刻までのCQIでもよく、また、現在時刻から10[秒]後よりも後の時刻までのCQIでもよい。また、予測するCQIの周期は、0.1[秒]よりも短い周期でもよく、また、0.1[秒]よりも長い周期でもよい。
無線回線品質予測部203は、上記処理を基地局20と接続中の全ての無線端末30に対して行う。その後、無線回線品質予測部203は、図3の処理を終了する。
図5は、基地局20の残余再生時間計算部204が、基地局20と接続中の無線端末30のコンテンツ再生部302に記憶されているコンテンツデータにおける残余再生時間を取得し、当該残余再生時間の将来の値を計算する動作手順を表すものである。基地局20は、無線回線品質予測部203の動作終了後に、図5に記載の動作を実行する。
先ず、残余再生時間計算部204は、数式(4)を用いて、無線端末30の現在の残余再生時間Tremainを取得する(ステップS201)。具体的には、無線端末30への送信が完了した(ACK応答を受信した)コンテンツデータのサイズが所定値を達成してからの時間Telapseと、現在時刻までに送信が完了したコンテンツデータのサイズと、当該コンテンツデータデータのビットレートを用いる。数式(4)において、jは無線端末30への送信が完了したコンテンツデータを識別するための識別番号であり、Mは無線端末30への送信が完了したコンテンツデータの総数である。また、Sjは識別番号jのコンテンツデータのサイズである。本実施形態では、当該サイズは、PDCP(Packet Data Convergence Protocol)レイヤのSDU(Service Data Unit)のサイズとするが、PDCP SDUのサイズからIP(Internet Protocol)レイヤのヘッダサイズを減算した値としてもよく、更にTCP(Transmission Control Protocol)レイヤのヘッダサイズも減算した値としてもよい。また、このときに用いるIPレイヤとTCPレイヤのヘッダサイズは、最小値である20[B]としてもよく、或いは予めサーバ装置から取得した値としてもよい。また、Rjは識別番号jのコンテンツデータのビットレートである。本実施形態では、Rjは固定値であり、基地局20では既知の事実として認識されている。
次に、残余再生時間計算部204は、数式(5)を用いて、将来の残余再生時間Test_remainを計算する(ステップS202)。数式(5)において、右辺第2項は将来のある時刻までに無線端末30へ送信されるコンテンツデータで再生可能な時間であり、右辺第3項は将来のある時刻までに無線端末30にて再生される時間である。本実施形態では、将来のある時刻とは、無線回線品質予測部203において将来の無線回線品質を予測した時刻と同じ、現在時刻から10[秒]後である。数式(5)において、Lは無線回線品質予測部203で予測したCQIの総数であり、kは無線回線品質予測部203で予測したCQIを識別するための識別番号であり、Tkは識別番号kの予測CQIを予測した時刻である。kを0としたときのTkはTcurrentであり、kを大きくするほどTkとTcurrentとの時間差が大きくなる。また、TBS(・)は、CQIとRB数から決定される、単位時間あたりに送信可能なデータ量であるTBS(Transport Block Size)を導出する関数である。TBSは、送信時に使用する帯域幅とその受信品質から決定されるため、式(5)を用いて導出できる。本実施形態では、数式(1)から計算される予測CQIが整数ではない場合、図6に示すように、小数点以下を切り捨てたCQIを用いてTBSに換算する。また、NRBは無線端末30に割り当て可能なRB数であり、本実施形態では50とする。また、NUEは、現在時刻Tcurrentにおいてバッファ202に送信すべきデータが滞留している無線端末30の数である。
本実施形態では、残余再生時間計算部204は、上記処理を基地局20と接続中の無線端末30全てに対して行う。なお、上記処理は、特定の無線端末30に対して行われても良い。その後、残余再生時間計算部204は、図5の処理を終了する。
図7は、基地局20の無線リソース割り当て部205が、無線端末30の将来の残余再生時間が所定値(第1の閾値)以下となるか否かを判定し、当該判定結果を用いて無線端末30に割り当てる周波数ブロックを決定するために用いる無線端末30の割り当て指標を計算する動作手順を表すものである。基地局20は、無線リソースの割り当て単位時間であるSubframe毎に、図7に記載の動作を実行する。
先ず、無線リソース割り当て部205は、数式(6)を用いて、将来の残余再生時間Test_remainが所定値以下となるか否かを判定する(ステップS301)。数式(6)において、Tthreshは所定値(第1の閾値)であり、本実施形態では10[秒]とする。但し、第1の閾値は、10[秒]より短い時間としてもよく、また、10[秒]より長い時間としてもよい。或いは、第1の閾値は、予め、基地局20が、ログ情報として、基地局20間でのハンドオーバ処理に要する時間(基地局20間でハンドオーバが実施されるときの無通信時間)を測定しておき、当該無通信時間を統計して計算した代表的な値を第1の閾値としてもよい。尚、当該ログ情報は、ハンドオーバ処理に失敗し、基地局20との接続が途絶えてから、当該基地局20又は他の基地局20に再接続するまでの時間である瞬断時間としてもよい。或いは、当該ログ情報は、基地局20からの無線信号が届かないカバレッジホールなどのエリアに滞在している時間としてもよい。
数式(6)を満たす場合(ステップS301、YES)、無線リソース割り当て部205は、数式(7)を用いて、無線端末30のアプリケーション指標Mappを計算する(ステップS302)。数式(7)において、Wappは1より大きい重み付け係数である。本実施形態では、Wappは10とするが、1より大きく10より小さい値としてもよく、また、10より大きい値としてもよい。
一方、数式(6)を満たさない場合(ステップS301、NO)、無線リソース割り当て部205は、数式(8)を用いて、無線端末30のアプリケーション指標Mappを計算する(ステップS303)。
次に、無線リソース割り当て部205は、数式(9)を用いて、無線端末30の割り当て指標Mxを計算する(ステップS304)。数式(9)において、xはRBの識別番号であり、Mconv,xは、無線回線品質やトラヒックの種類などから計算される割り当て指標である。本実施形態では、Mconv,xは、非特許文献2に記載される、無線端末30のスループットの公平性を実現できるPropotional Fairness(PF)法を用いて算出される指標である。尚、Mconv,xは、PF法以外から算出される割り当て指標を用いても良く、また、QoS(Quality of Service)やQCI(QoS Class Identifier)などから計算される割り当て指標を加味してもよい。
無線リソース割り当て部205は、上記処理を基地局20と接続中の無線端末30全てに対して行う。その後、無線リソース割り当て部205、図7の処理を終了する。
以上、説明したように、本発明の第1の実施形態によれば、無線回線品質が劣化した場合でも、ストリーミングコンテンツの再生停止を回避できる。その理由は、将来の無線回線品質を予測し、予測結果からストリーミングコンテンツの残余再生時間が所定値以下になると予測される場合、無線リソース割り当てを優先させ、予め無線端末に残余再生時間が所定値超となるように、ストリーミングコンテンツを蓄積させるためである。言い換えると、将来の無線回線品質が劣化すると予測される場合、当該無線端末30に対しより速くコンテンツを蓄積できるように無線リソース割り当てを優先させるため、無線回線品質が劣化した場合でも、ストリーミングコンテンツの再生停止を回避できる。または、今後の無線回線品質の推移を踏まえて算出した将来の残余再生時間が閾値を下回ると予想されるときには、たとえ現時点の残余再生時間が閾値を上回っていたとしても、現時点で予め当該無線端末の無線リソースの割り当てを優先させておく。これにより、無線端末がバッファリング状態となることを未然に防ぐことができる。よって、将来、無線回線品質が劣化した場合でも、ストリーミングコンテンツの再生停止を回避できる。
以上、上記実施形態を参照して本願発明を説明したが、本願発明は、上述した実施形態に限定されるものではない。本願発明の構成及び詳細に、本願発明の範囲内において当業者が理解し得る様々な変更をすることができる。
例えば、本実施形態では、基地局20の無線回線品質予測部203は、無線回線品質の将来の変化傾向を予測し、当該予測した変化傾向に基づいて将来の無線回線品質としてCQIを予測していたが、CQIを用いてもよい。この場合、基地局20の無線回線品質予測部203は、予測したCQIをSINR(Signal-to-Interference plus Noise power Ratio)に換算し、換算したSINRと時間に関する近似直線を将来の変化傾向として導出してもよい。このとき、CQIからSINRへの換算は、例えば、CQI毎に設定される、目標誤り率(BLER;Block Error Ratio)を達成可能な最小のSINRである目標SINRを用いてもよい。また、この場合、予測したSINRで目標SINRを満たす最大のCQIを計算し、当該CQIからTBSを導出する。
尚、無線通信システム1がTDD(Time Division Duplex)の場合、無線端末30から周期的に報告されるCQIから当該SINRを導出する代わりに、基地局20が、無線端末30からの上り信号を用いてSINRを導出してもよい。SINRの導出は、当該上り信号から基地局20と無線端末30との間のチャネル情報を取得し、当該チャネル情報からSINRを導出するのが望ましい。また、この場合、SINRの導出に必要な干渉電力などの情報は、無線端末30から報告させてもよく、或いは、基地局20が計算してもよい。
また、RSRQを予測してもよい。この場合、基地局20の残余再生時間計算部204は、予測したRSRQからSINR(Signal-to-Interference plus Noise power Ratio)を導出し、当該SINRで目標SINRを満たす最大のCQIを計算し、当該CQIからTBSを導出する。数式(10)は、RSRQからSINRを導出するための数式である。NRB
SCはRBあたりのSubcarrier数である。
また、基地局20の無線回線品質予測部203は、将来の無線回線品質としてRSRPを予測してもよい。この場合、基地局20の残余再生時間計算部204は、数式(11)を用い、RSRPからSINRを導出する。数式(11)において、Nncellは、基地局20が形成する通信エリアであるセルに隣接するセルの数であり、yは、当該隣接セルのそれぞれを識別するための識別番号である。また、Noiseは、熱雑音である。尚、都市部など、基地局20が密に設置される環境では、RSRPと比較して熱雑音は無視できるほど小さくなるため、数式(11)において、Noiseの項を削除することもできる。
また、基地局20の無線回線品質予測部203は、将来の無線回線品質として、バッファ202に送信すべきデータが滞留している無線端末30の数NUEを予測してもよい。また、このとき、上述で説明したCQIやRSRPやRSRQを同時に予測してもよい。この場合、基地局20の残余再生時間計算部204は、予測した無線端末30の数を用いてTBSを導出する。
また、基地局20の残余再生時間計算部204は、数式(10)及び数式(11)を用いて導出したSINRで、目標SINRを満たす最大のCQIからTBSを導出する代わりに、数式(12)を用いてTBSを導出してもよい。数式(12)において、Bはシステム帯域幅である。
また、基地局20の無線回線品質予測部203は、将来の無線回線品質としてスループット(通信速度)を予測してもよい。スループットとしては、基地局20で測定可能な、PDCP層のスループットでも、RLC(Radio Link Control)層のスループットでも、MAC(Medium Access Control)層のスループットでもよい。或いは、OTA(Over-The-Air)スループットでもよい。これらのスループットは、例えば、所定時間内に、無線端末30への送信が完了した当該層におけるPDU(Protocol Data Unit)の総ビット数として測定される。この場合、基地局20の残余再生時間計算部204は、予測したスループットから換算した単位時間あたりに送信可能なデータ量であるTBSを用いて残余再生時間を計算する。
また、本実施形態では、基地局20の無線回線品質予測部203は、最小二乗法を用いて将来の無線回線品質を予測していたが、最尤推定法など、他の推定法を用いてもよい。
また、本実施形態では、基地局20の残余再生時間計算部204は、ステップS201において、数式(4)を用いて、無線端末30の残余再生時間Tremainを取得していたが、無線端末30から当該残余再生時間Tremainを取得してもよい。この場合、無線端末30は、当該残余再生時間Tremainに関する情報を基地局20へ通知する。当該情報の基地局20への通知は、無線端末30から基地局20へのアップリンク・ユーザデータにピギーバックさせて行ってもよい。または、基地局20と無線端末30の間に、当該情報の通知のための新たなインターフェースを定義し、当該インターフェースを用いて通知してもよい。また、当該通知は、周期的に行ってもよく、或いは、基地局20から要求された場合に行ってもよい。
また、本実施形態では、基地局20の無線リソース割り当て部205は、無線リソース割り当てを優先する条件を、無線端末30の将来の残余再生時間が所定値以下としていたが、更に、当該無線端末30宛のコンテンツデータの基地局20への有線回線の伝送レート(有線回線伝送レート)を考慮してもよい。例えば、当該有線回線伝送レートが低い場合、基地局20の送信バッファ202に、当該無線端末30へ送信するコンテンツデータを充分に蓄積できない。その結果、当該無線端末30への無線リソース割り当てを優先させても、送信すべきコンテンツデータが無いため、無線端末30に対し、残余再生時間が所定値超となるようにコンテンツデータを送信できない。この場合、当該無線端末30に対しては、無線リソース割り当てを優先しないようにする。
また、本実施形態は、サーバ装置が複数存在する場合でも適用できる。この場合、基地局20は、各サーバ装置を識別する必要があるため、DPI(Deep Packet Inspection)の機能を備え、サーバ装置10から通信回線NWを介して転送された無線端末30宛のデータに対応するIPパケットのヘッダ領域に記載される送信元IPアドレスから、各サーバ装置10を識別する。
また、本実施形態は、コンテンツデータは、特定(単一)のビットレートにて符号化されていたが、複数の異なるビットレートのそれぞれにて符号化されてもよい。この場合、サーバ装置10のコンテンツデータ蓄積部402は、ストリーミングコンテンツを所定時間で時分割し、複数の異なるビットレートのそれぞれにて符号化した各コンテンツデータを記憶(蓄積)すると共に、当該ストリーミングコンテンツのプレイリストファイルに、当該ビットレートに関する情報も記載する。また、基地局20は、DPIの機能を備え、サーバ装置10から送信された当該ストリーミングコンテンツのプレイリストファイルを取得する。取得した当該ストリーミングコンテンツのプレイリストファイルは、基地局20の残余再生時間計算部204にて、無線端末30の残余再生時間Tremainの取得(ステップS201)と、将来の残余再生時間Test_remainの計算(ステップS202)で用いられる。
以上の変更は、以降の実施形態も同様に行うことができる。
[第2実施形態]
次に、本発明の第2の実施形態について図面を参照して詳細に説明する。本発明の第1の実施形態と比較して、本実施形態では、無線端末宛のデータの基地局への有線回線伝送レートを制御するトラヒック管理装置(第1の中継装置)が、サーバ装置と基地局の間に新たに備わる。
次に、本発明の第2の実施形態について図面を参照して詳細に説明する。本発明の第1の実施形態と比較して、本実施形態では、無線端末宛のデータの基地局への有線回線伝送レートを制御するトラヒック管理装置(第1の中継装置)が、サーバ装置と基地局の間に新たに備わる。
尚、以後の実施形態では、サーバ装置は、複数の異なるビットレートのそれぞれにて符号化したコンテンツデータを記憶(蓄積)する場合を想定する。
[構成の説明]
図8に、本発明の第2の実施形態に係る配信システム3の構成を示す。配信システム3は、無線通信システム4を含む。本実施形態を含む本発明の実施形態の説明では、無線通信システム4としてLTEの通信システムを想定するが、UMTSやGSM(登録商標)などのLTE以外の他の通信システムを想定してもよい。
図8に、本発明の第2の実施形態に係る配信システム3の構成を示す。配信システム3は、無線通信システム4を含む。本実施形態を含む本発明の実施形態の説明では、無線通信システム4としてLTEの通信システムを想定するが、UMTSやGSM(登録商標)などのLTE以外の他の通信システムを想定してもよい。
配信システム3は、本発明の第1の実施形態に係る配信システム1と比較して、トラヒック管理装置40が新たに追加される。更に、配信システム3は、本発明の第1の実施形態に係る配信システム1と比較して、基地局20の代わりに基地局21を備える。尚、トラヒック管理装置40と、基地局21と、無線端末30は、無線通信システム4に含まれる。以下では、第1の実施形態と比較して、第2の実施形態で変更された構成について説明する。
サーバ装置10とトラヒック管理装置40は、通信回線(例えば、インターネット)NWを介して、通信するよう構成されている。また、トラヒック管理装置40と基地局21は、LTEのコアネットワーク(EPC;Evolved Packet Core)N2を介して、通信するよう構成されている。尚、ここでは、トラヒック管理装置40は、LTEコアネットワークN2の内部に設置されているものとする。尚、LTEのコアネットワークN2では、プロトコルとしてGTP(GPRS(General Packet Radio Service) Tunneling Protocol)が用いられる。また、基地局21と無線端末30は、無線インターフェースN1を介して、通信するよう構成されている。
説明の便宜上、本図においては、配信システム3は、サーバ装置10とトラヒック管理装置40と基地局21と無線端末30をそれぞれ1つずつしか備えていないが、サーバ装置10の数は幾つでもよく、同様に、トラヒック管理装置40の数と基地局21の数と無線端末30の数も幾つでもよい。尚、トラヒック管理装置40は、例えば、P-GW(PDN(Packet Data Network)-Gateway)であるが、これに限られない。
トラヒック管理装置40は、図示しない情報処理装置を備える。情報処理装置は、図示しない中央処理装置(CPU)、及び、記憶装置(メモリ及びハードディスク駆動装置(HDD))を備える。トラヒック管理装置40は、記憶装置に記憶されているプログラムをCPUが実行することにより、後述する機能を実現するように構成されている。
基地局21は、本発明の第1の実施形態に係る基地局20と同様、図示しない情報処理装置を備える。情報処理装置は、図示しない中央処理装置(CPU)、及び、記憶装置(メモリ及びハードディスク駆動装置(HDD))を備える。基地局21は、記憶装置に記憶されているプログラムをCPUが実行することにより、後述する機能を実現するように構成されている。
図9は、上記のように構成された配信システム3の機能を表すブロック図である。以下では、第1の実施形態と比較して、第2の実施形態で追加された機能と変更された機能について説明する。
トラヒック管理装置40は、トラヒック管理装置動作部401と、バッファ402と、有線回線伝送レート制御部403と、から構成されている。
トラヒック管理装置動作部401は、OSI(Open Systems Interconnection)基本参照モデルにおけるレイヤ4のプロトコルであるTCPを備える。そして、トラヒック管理装置動作部401は、TCPプロトコルを用いて、サーバ装置10と通信回線NWを介して信号を送受信する機能や、基地局21とLTEのコアネットワークN2を介して信号を送受信する機能を有する。本実施形態におけるトラヒック管理装置動作部401は、通信回線NWを介して受信した各無線端末30宛の送信データを、一時的にバッファ402に蓄積し、バッファ402に蓄積されたデータを有線回線伝送レート制御部403により制御された有線回線伝送レートにより基地局21へ転送する。更に、トラヒック管理装置動作部401は、OSI基本参照モデルのアプリケーション層のプロトコルをプロキシする機能を備え、通信回線NWを介して到着する無線端末30宛のストリーミングコンテンツのプレイリストファイルを取得する機能を有する。更に、トラヒック管理装置動作部401は、当該プロキシと当該プレイリストファイルを用い、通信回線NWを介して到着する無線端末30宛のコンテンツデータのビットレートを取得する機能を有する。本実施形態は、トラヒック管理装置動作部401は、HTTPプロキシを用いるが、上述した非特許文献3に記載される、ビデオペーシングを導入した適応映像配信プロキシを用い、当該プレイリストファイルを取得してもよい。そして、トラヒック管理装置動作部401は、取得したコンテンツデータのビットレートに関する情報を、基地局21へ通知する。
本実施形態では、当該プレイリストファイルに関する情報の基地局21への通知は、当該無線端末30宛のコンテンツデータに対応するGTPパケットに当該情報をピギーバックすることで行われる。但し、当該通知は、当該GTPパケットのヘッダ領域に当該情報を追加することで行われてもよい。また、当該通知は、当該GTPの下位層で使用されるUDP(User Datagram Protocol)にて、当該GTPパケットに対応するUDPパケットに当該情報をピギーバックすることで行われてもよい。また、当該通知は、当該UDPパケットのヘッダ領域に当該情報を追加することで行われてもよい。また、当該通知は、当該UDPの下位層で使用されるIP(Internet Protocol)にて、当該GTPパケットに対応するIPパケットに当該情報をピギーバックすることで行われてもよい。また、当該通知は、当該IPパケットのヘッダ領域に当該情報を追加することで行われてもよい。また、当該通知は、当該無線端末30宛のコンテンツデータの代わりに、当該無線端末30以外の無線端末30宛のコンテンツデータ等に対応する各種パケットへピギーバック等をすることで行われてもよい。つまり、当該通知は、トラヒック管理装置40から基地局21へ送信される任意のデータに対応する各種パケットへピギーバックすること又は各種パケットのヘッダ領域への追加することにより行われてもよい。この場合、当該情報と共に、当該無線端末30に関する情報も一緒(同時)に通知することで、基地局21は、対象の無線端末30を識別するものとする。或いは、トラヒック管理装置40と基地局21との間に、当該情報を通知するための新たなインターフェースを設置し、当該通知は、当該インターフェースを介して通知してもよい。
バッファ402は、通信回線NWを介して到着する各無線端末30宛の送信データを蓄積する機能を有する。
尚、一般的に、EPCやEUTRAN(Evolved Universal Terrestrial Radio Access Network)から構成されるLTEのモバイルネットワーク(LTEコアネットワークN2)は、通信回線NWと比較して、データ送受信にかかる遅延時間が大きい。そのため、本実施形態では、無線端末30が通信を終了するまで、通信回線NWを介して到着する各無線端末30宛の送信データがバッファ402に蓄積されているものとする。
有線回線伝送レート制御部403は、後述する基地局21の無線リソース割り当て部215からの通知に従い、トラヒック管理装置40から基地局21への有線回線伝送レートを制御する機能を有する。本実施形態では、有線回線伝送レート制御部403は、基地局21の無線リソース割り当て部215から、当該有線回線伝送レートの低下の指示に関する通知を受信した場合、MTU(Maximum Transmission Unit)をデフォルト値の所定の倍数(1未満)の値だけ低下させる。一方、有線回線伝送レート制御部403は、当該有線回線伝送レートの増加の指示に関する通知を受信した場合、MTUを、デフォルト値を超えない範囲で、デフォルト値の所定の倍数(1未満)の値だけ増加させる。本実施形態では、MTUの初期値はデフォルト値であり、デフォルト値は、Ethernet(登録商標)におけるMTUのデフォルト値と同じ1500バイトであり、所定の倍数は0.1とする。また、本実施形態では、トラヒック管理装置40から基地局21への有線回線伝送レートの制御は、無線端末30毎に行う。
基地局21は、本発明の第1の実施形態に係る基地局20と比較して、無線回線品質予測部203と、残余再生時間計算部204と、無線リソース割り当て部205の代わりに、無線回線品質予測部213と、残余再生時間計算部214と、無線リソース割り当て部215の機能を備える。以下、無線回線品質予測部213と、残余再生時間計算部214と、無線リソース割り当て部215の機能について説明する。
無線回線品質予測部213は、基地局21と、基地局21と接続中の(通信リンクが確立されている)無線端末30との間における将来の無線回線品質の拡散的広がり(確率的拡散)を将来の変化傾向として予測する機能を有する。本実施形態では、無線回線品質予測部213は、例えば、上述した非特許文献4に記載される、Wiener過程モデルに基づく確率的拡散を予測する手法を用いる。また、本実施形態では、無線回線品質は、無線端末30から周期的に報告されるCSIに含まれるCQIである。予測した将来の無線回線品質の確率的拡散の情報は、残余再生時間計算部214で用いられる。
残余再生時間計算部214は、残余再生時間計算部204と同様の方法で計算した残余再生時間と、無線回線品質予測部213が予測した将来の無線回線品質の確率的拡散の情報を用いて、将来の残余再生時間を計算する機能を有する。計算した将来の残余再生時間は、無線リソース割り当て部215で用いられる。尚、残余再生時間計算部214は、無線端末ごとに将来の残余再生時間(処理見込指標)を算出する。
無線リソース割り当て部215は、残余再生時間計算部214が計算した残余再生時間と、無線回線品質予測部213が予測した将来の無線回線品質の確率的拡散の情報を用いて、基地局21と接続中の(通信リンクが確立されている)無線端末30の中より、将来の残余再生時間が所定値以下となる無線端末30の集合である割り当て優先無線端末群に対して割り当てる周波数ブロックを先に決定する。その後、無線リソース割り当て部215は、当該無線端末群に含まれない無線端末30に対して割り当てる周波数ブロックを決定する。つまり、無線リソース割り当て部215は、所定条件を満たさない処理見込指標における無線端末に対して無線リソースを優先して割り当てる。尚、当該割り当て優先無線端末群における各無線端末30に対する割り当て周波数ブロックの決定と、当該割り当て優先無線端末群に含まれない無線端末30に対する周波数ブロックの決定は、それぞれ割り当て指標に基づき行う。本実施形態では、周波数ブロックはRB(Resource Block)であり、割り当て指標はPFであり、計算した割り当て指標が最も大きい無線端末30から順にRBを割り当てる。
更に、無線リソース割り当て部215は、残余再生時間計算部214が計算した残余再生時間と、無線回線品質予測部213が予測した将来の無線回線品質の確率的拡散の情報を用い、トラヒック管理装置40の有線回線伝送レート制御部403が行う有線回線伝送レートの制御を監督する。すなわち、無線リソース割り当て部215は、有線回線伝送レート制御部403に対して、トラヒック管理装置40から基地局21への有線回線伝送レートを制御するための有線回線伝送レートの制御方法を指示する。無線リソース割り当て部215から有線回線伝送レート制御部403への指示は、基地局動作部201を介して通知される。本実施形態では、当該無線端末30の送信データに対応するGTPパケットに当該指示に関する情報をピギーバックして通知する。但し、当該通知は、当該GTPパケットのヘッダ領域に当該情報を追加して通知してもよい。また、当該通知は、GTPの下位層で使用されるUDPにて、当該GTPパケットに対応するUDPパケットに当該情報をピギーバックすることで行われてもよい。また、当該通知は、当該UDPパケットのヘッダ領域に当該情報を追加することで行われてもよい。また、当該通知は、当該UDPの下位層で使用されるIP(Internet Protocol)にて、当該GTPパケットに対応するIPパケットに当該情報をピギーバックすることで行われてもよい。また、当該通知は、当該IPパケットのヘッダ領域に当該情報を追加することで行われてもよい。また、有線回線伝送レートの指示は、当該無線端末30が送信した上記各種データの代わりに、当該無線端末30以外の無線端末30が送信したデータ等に対応する各種パケットへピギーバック等をすることで行われてもよい。つまり、有線回線伝送レートの指示は、基地局21からトラヒック管理装置40へ送信される任意のデータに対応する各種パケットへピギーバックすること又は各種パケットのヘッダ領域への追加することにより行われてもよい。この場合、当該情報と共に、当該無線端末30に関する情報も一緒(同時)に通知することで、トラヒック管理装置40は、制御対象の無線端末30を識別するものとする。或いは、トラヒック管理装置40と基地局21との間に、当該情報を通知するための新たなインターフェースを設置し、当該通知は、当該インターフェースを介して通知してもよい。
[動作の説明]
次に、上述した基地局21が、各無線端末30に周波数ブロックを割り当てる動作手順について説明する。
次に、上述した基地局21が、各無線端末30に周波数ブロックを割り当てる動作手順について説明する。
基地局21の無線回線品質予測部213は、数式(13)を用い、基地局21と接続中の無線端末30全てに対して将来のCQIを予測する。数式(13)は、Wiener過程モデルに基づくCQIの確率的拡散の計算式である。数式(13)において、CQI+
Tは、将来の時刻Tにおいて期待されるCQIの最良値であり、CQI-
Tは、将来の時刻Tにおいて期待されるCQIの最悪値である。数式(13)から計算される、CQI+
TとCQI-
Tの差分値が、時刻TにおけるCQIの確率的拡散である。また、数式(13)において、μは、ドリフト係数であり、本実施形態では、現在時刻から所定時間前までの期間に無線端末30から報告されたCQIから最小二乗法を用い、CQIと時間に関する近似直線の傾きとする。本実施形態では、現在時刻から所定時間前までの期間を10[秒]とするが、10[秒]より大きい値としてもよく、また、10[秒]より小さい値としてもよい。また、σは、現在時刻から所定時間前までの期間に無線端末30から報告されたCQIの分散である。また、αは、確率的拡散の予測範囲を定める定数であり、本実施形態では2とするが、2よりも小さい値でもよく、また、2よりも大きい値でもよい。
尚、CQIの確率的拡散であるCQI+
TとCQI-
Tの差分値は、数式(13)より、2α・σ・「Tの平方根」と、CQIの分散σに所定値を乗算した値として計算されるため、時刻TにおけるCQIの変動量でもある。
本実施形態では、基地局21は、1[秒]毎に、将来のCQIを予測するが、1[秒]よりも短い周期で実行してもよく、また、1[秒]よりも長い周期で実行してもよい。また、本実施形態では、現在時刻から10[秒]後までのCQIを0.1[秒]毎に予測する。尚、予測するCQIは、現在時刻から10[秒]後よりも前の時刻までのCQIでもよく、また、現在時刻から10[秒]後よりも後の時刻までのCQIでもよい。また、予測するCQIの周期は、0.1[秒]よりも短い周期でもよく、また、0.1[秒]よりも長い周期でもよい。
基地局21の残余再生時間計算部214が、基地局21と接続中の無線端末30のコンテンツ再生部302に記憶されている残余再生時間の将来の値を計算する動作手順は、図5に示した本発明の第1の実施形態に係る基地局20の残余再生時間計算部214と同じである。尚、本実施形態では、ステップS202において、数式(14)を用いて将来の残余再生時間Test_remainを計算する。数式(14)において、ωは重みづけ係数であり、本実施形態では、0.1とするが、0.1よりも小さい値としてもよく、また。0.1よりも大きい値としてもよい。
図10は、基地局21の無線リソース割り当て部215が、トラヒック管理装置40から基地局21への有線回線伝送レートを制御する動作手順を表すものである。基地局21は、残余再生時間計算部214の動作終了後に、図10に記載の動作を実行する。
図10を参照すると、図7のステップS302~ステップS304が削除され、新たにステップS401~ステップS404が追加されている。以下では、追加されたステップS401~ステップS404の動作についてのみ説明する。
ステップS301で数式(6)を満たす場合(ステップS301,YES)、無線リソース割り当て部215は、トラヒック管理装置40から基地局21への有線回線伝送レートを増加すべきと判定する。そして、無線リソース割り当て部215は、トラヒック管理装置40に対し、当該有線回線伝送レートの増加を既に指示していたか否かを判定する(ステップS401)。
トラヒック管理装置40に対し、当該有線回線伝送レートの増加を既に通知済みである場合(ステップS401,YES)、無線リソース割り当て部215は、当該無線端末30に対する図10の処理を終了する。
一方、トラヒック管理装置40に対し、当該有線回線伝送レートの増加を通知していない場合(ステップS401,NO)、無線リソース割り当て部215は、トラヒック管理装置40に対し、当該有線回線伝送レートの増加を指示するための情報を通知する(ステップS402)。
また、ステップS301で数式(6)を満たさない場合(ステップS301,NO)、無線リソース割り当て部215は、トラヒック管理装置40から基地局21への有線回線伝送レートを低下すべきと判定する。そして、無線リソース割り当て部215は、ステップS401と同様、トラヒック管理装置40に対し、当該有線回線伝送レートの増加を既に指示していたか否かを判定する(ステップS403)。
トラヒック管理装置40に対し、当該有線回線伝送レートの増加を既に通知済みである場合(ステップS403,YES)、無線リソース割り当て部215は、トラヒック管理装置40に対し、当該有線回線伝送レートの低下を指示するための情報を通知する(ステップS404)。ステップS404を実行することにより、ステップS402で実行される当該有線回線伝送レートの増加を解除することになる。
一方、トラヒック管理装置40に対し、当該有線回線伝送レートの増加を通知していない場合(ステップS403,NO)、無線リソース割り当て部215は、当該無線端末30に対する図10の処理を終了する。
無線リソース割り当て部215は、上記処理を基地局21と接続中の無線端末30全てに対して行う。その後、無線リソース割り当て部215、図10の処理を終了する。
以上、説明したように、本発明の第2の実施形態によれば、将来の無線回線品質が劣化すると予測される場合、当該無線端末30に対し、トラヒック管理装置40から基地局21への有線回線伝送レートを増加し、当該無線端末30でのストリーミングコンテンツにおける残余再生時間が所定値を超えるように、データを基地局21のバッファ201で用意できるため、本発明の第1の実施形態と比較して、ストリーミングコンテンツの再生停止を回避できる。
以上、上記実施形態を参照して本願発明を説明したが、本願発明は、上述した実施形態に限定されるものではない。本願発明の構成及び詳細に、本願発明の範囲内において当業者が理解し得る様々な変更をすることができる。
例えば、ステップS401において、トラヒック管理装置40に対し、当該有線回線伝送レートの増加を既に通知済みである場合(ステップS401,YES)、無線リソース割り当て部215は、トラヒック管理装置40に対し、当該有線回線伝送レートの更なる増加を指示するための情報を通知してもよい。或いは、ステップS401の処理を省略してもよく、このとき、トラヒック管理装置40の有線回線伝送レート制御部403では、ステップS402の通知を受信する度に、当該有線回線伝送レートを増加させるようにしてもよい。
また、ステップS403において、トラヒック管理装置40に対し、当該有線回線伝送レートの増加を段階的に解除するよう指示するための情報を通知してもよく、或いは、当該有線回線伝送レートの増加を一気に解消するよう指示するための情報を通知してもよい。或いは、ステップS403の処理を省略してもよく、このとき、トラヒック管理装置40の有線回線伝送レート制御部403では、ステップS404の通知を受信する度に、当該有線回線伝送レートを低下させてもよい。
また、ステップS401及び、ステップS403~ステップS404の処理を省略し、トラヒック管理装置40の有線回線伝送レート制御部403は、ステップS402の通知を受信してから所定時間だけ当該有線回線伝送レートを低下させるようにしてもよい。この場合、所定時間は、基地局21が図10の処理を実行する周期とするのが好ましい。
また、ステップS301で、トラヒック管理装置40から基地局21への有線回線伝送レートを増加すべきと判定した場合(ステップS301,YES)、トラヒック管理装置40に対し、TCPの再送タイムアウト時間の閾値を高い値に更新するように通知してもよい。数式(6)を満たす場合、基地局21のバッファ202に蓄積されているデータは、無線端末へ送信されるまでの待ち時間が長くなるため、TCPで再送タイムアウトが発生する確率が高くなる。TCPで再送タイムアウトが発生すると、トラヒック管理装置40から基地局21への有線回線伝送レートが著しく低下する。その結果、基地局21のバッファ202の蓄積データ量が空になってしまい、無線端末では映像や音声などのストリーミングコンテンツの再生途絶などが発生してしまう。また、TCPで再送タイムアウトが発生すると、輻輳ウィンドウ内の全てのパケットがサーバ装置10から再送されるが、当該パケットが基地局21のバッファ202に蓄積されているデータの場合、基地局21は同一データを複数回送信することになるため、無線リソースを無駄に使用してしまう。このことは、他の無線端末30の送信機会が奪われることになり、それらの無線端末30のTCPスループットも低下してしまう。そのため、数式(6)を満たす場合、TCPの再送タイムアウト時間の閾値を高い値に更新することで、当該再送タイムアウトが発生する確率を低減できる。
また、基地局21の無線リソース割り当て部215は、第1の実施形態における無線リソース割り当て部205と同様、将来の残余再生時間が所定値以下となるか否かを判定し、当該判定結果を用いて計算した割り当て指標を用い、各無線端末30に割り当てる周波数ブロックを決定してもよい。また、第1の実施形態における無線リソース割り当て部205において、無線リソース割り当て部215と同様、将来の残余再生時間が所定値以下となる無線端末30の集合である割り当て優先無線端末群に対して割り当てる周波数ブロックを先に決定し、その後、当該無線端末群に含まれない無線端末30に対して割り当てる周波数ブロックを決定してもよい。
また、基地局21は、無線回線品質予測部213と残余再生時間計算部214の代わりに、第1の実施形態における基地局20が備える無線回線品質予測部203と残余再生時間計算部204の機能を備えてもよい。また、第1の実施形態における基地局20が、無線回線品質予測部213と残余再生時間計算部214の機能を備えてもよい。
また、本実施形態では、トラヒック管理装置40の有線回線伝送レート制御部403は、MTUの増減によりトラヒック管理装置40から基地局21への有線回線伝送レートの制御を実現していた。但し、本実施形態では、例えば、トラヒック管理装置動作部401における、基地局21とコアネットワークを介して信号を送受信する機能の実行可能時間を設定し、当該実行可能時間の増減により実現してもよい。或いは、トラヒック管理装置40が基地局21に対して送信可能な単位時間当たりのデータ量に制限を設け、当該制限の設定により実現してもよい。或いは、TCPのCWNDのサイズの増減により実現してもよい。
また、本実施形態では、実施例として、トラヒック管理装置40が、無線端末30宛のコンテンツデータのビットレートを取得し、当該ビットレートに関する情報を基地局21へ通知していたが、基地局21が当該ビットレート等のコンテンツの特性を示す情報を直接取得することもできる。この場合、基地局21は、DPIの機能と、OSI基本参照モデルのアプリケーション層のプロトコルをプロキシする機能を備え、当該無線端末30宛のストリーミングコンテンツのプレイリストファイルを取得し、当該プロキシと当該プレイリストファイルを参照し、トラヒック管理装置40から到着した無線端末30宛のコンテンツデータのビットレートを取得する。なお、この場合、基地局21は、当該プレイリストファイルからコンテンツデータのデータサイズをさらに取得してもよい。
尚、トラヒック管理装置40は、LTEのコアネットワークN2の外部に設置することもできる。この場合、基地局21は、DPIの機能を備え、トラヒック管理装置40からコアネットワークN2を介して転送された無線端末30宛のデータに対応するIPパケットのヘッダ領域に記載される送信元IPアドレスから、トラヒック管理装置40を特定する。更に、基地局21は、当該無線端末30が送信したIPパケットを修正する機能を有し、トラヒック管理装置40に対し、トラヒック管理装置40から基地局21への有線回線伝送レートの制御方法を指示する場合、当該IPパケットに当該指示に関する情報を追加できるように当該IPパケットを修正して通知する。
以上の変更は、以降の実施形態も同様に行うことができる。
[第3実施形態]
次に、本発明の第3の実施形態について図面を参照して詳細に説明する。第2の実施形態では、基地局が将来の残余再生時間が所定値以下となるか否かを判定していたが、本実施形態では、トラヒック管理装置が将来の残余再生時間が所定値以下となるか否かを判定する。
次に、本発明の第3の実施形態について図面を参照して詳細に説明する。第2の実施形態では、基地局が将来の残余再生時間が所定値以下となるか否かを判定していたが、本実施形態では、トラヒック管理装置が将来の残余再生時間が所定値以下となるか否かを判定する。
[構成の説明]
本発明の第3の実施形態に係る配信システムは、本発明の第2の実施形態における配信システム3と同じである。
本発明の第3の実施形態に係る配信システムは、本発明の第2の実施形態における配信システム3と同じである。
図11は、本発明の第3の実施形態に係る配信システムの機能を表すブロック図である。本実施形態では、第2の実施形態と比較して、トラヒック管理装置40の代わりにトラヒック管理装置41を備え、更に、基地局21の代わりに基地局22を備える。以下では、第2の実施形態と比較して、第3の実施形態で変更された構成について説明する。尚、トラヒック管理装置41は、例えば、P-GW(PDN(Packet Data Network)-Gateway)であるが、これに限られない。
トラヒック管理装置41は、本発明の第2の実施形態に係るトラヒック管理装置40と比較して、無線回線伝送レート予測部414と、残余再生時間計算部415の機能を新たに備える。尚、トラヒック管理装置41が備える有線回線伝送レート制御部403は、基地局22が備える無線リソース割り当て部205から指示される有線回線伝送レートの制御方法に応じて、有線回線伝送レートの制御を行うものとする。以下、無線回線伝送レート予測部414と、残余再生時間計算部415の機能について説明する。
無線回線伝送レート予測部414は、基地局22と、基地局22とコネクションが確立されている無線端末30との間における将来の無線回線の伝送レート(無線回線伝送レート)の拡散的広がり(確率的拡散)を無線回線の伝送レートの過去及び現在の値に基づく将来の変化傾向として予測する機能を有する。ここで、伝送レートとは、単位時間あたりに送信可能なデータ量、又は、単位送信機会(TTI;Transmission Time Interval)あたりに送信可能なデータ量を表す指標(例えば、MCS(Modulation and Coding Scheme))である。そして、無線回線伝送レートとは、基地局20と、基地局20と接続中の無線端末30との間における無線回線の伝送レートである。本実施形態では、無線回線伝送レート予測部414は、Wiener過程モデルに基づく確率的拡散を予測する手法を用いる。また、本実施形態では、伝送レートは、TCPのスループットである。予測した将来の無線回線の伝送レートの確率的拡散の情報は、残余再生時間計算部415で用いられる。
残余再生時間計算部415は、本発明の第2の実施形態に係る残余再生時間計算部214の機能に加え、無線端末30のコンテンツ再生部302に記憶されているコンテンツデータの将来の残余再生時間に関する情報を基地局22に通知する機能を新たに有する。尚、本実施形態では、当該残余再生時間に関する情報の基地局22への通知は、当該無線端末30宛の送信データに対応するGTPパケットに当該情報をピギーバックすることで行われる。但し、当該通知は、当該GTPパケットのヘッダ領域に当該情報を追加することで行われてもよい。また、当該通知は、当該GTPの下位層で使用されるUDPにて、当該GTPパケットに対応するUDPパケットに当該情報をピギーバックすることで行われてもよい。また、当該通知は、当該UDPパケットのヘッダ領域に当該情報を追加することで行われてもよい。また、当該通知は、当該UDPの下位層で使用されるIPにて、当該GTPパケットに対応するIPパケットに当該情報をピギーバックすることで行われてもよい。また、当該通知は、当該IPパケットのヘッダ領域に当該情報を追加することで行われてもよい。また、当該通知は、当該無線端末30宛の送信データの代わりに、当該無線端末30以外の無線端末30宛の送信データ等に対応する各種パケットへピギーバック等をすることで行われてもよい。つまり、当該通知は、トラヒック管理装置40から基地局22へ送信される任意のデータに対応する各種パケットへピギーバックすること又は各種パケットのヘッダ領域への追加することにより行われてもよい。この場合、当該情報と共に、当該無線端末30に関する情報も一緒(同時)に通知することで、基地局22は、対象の無線端末30を識別するものとする。或いは、トラヒック管理装置41と基地局22との間に、当該残余再生時間に関する情報を通知するための新たなインターフェースを設置し、当該通知は、当該インターフェースを介して通知してもよい。
基地局22は、基地局動作部201と、バッファ202と、無線リソース割り当て部205の機能を備える。尚、本実施形態における無線リソース割り当て部205は、トラヒック管理装置41の残余再生時間計算部415から通知された、無線端末30のコンテンツ再生部302に記憶されているコンテンツデータの将来の残余再生時間に関する情報を用いて、将来の残余再生時間が所定値以下となるか否かを判定する機能を有する。そして、本実施形態における無線リソース割り当て部205は、上述した無線リソース割り当て部215のように、有線回線伝送レート制御部403に対して、トラヒック管理装置41から基地局22への有線回線伝送レートを制御するための有線回線伝送レートの制御方法を指示するものとする。
[動作の説明]
トラヒック管理装置41の無線回線伝送レート予測部414は、数式(15)を用い、基地局22と接続中の無線端末30全てに対して将来の無線回線伝送レートを予測する。なお、無線回線伝送レートの予測は、特定の無線端末30に対して行われてもよい。数式(15)は、Wiener過程モデルに基づく無線回線伝送レートの確率的拡散の計算式である。数式(15)において、R+ Tは、将来の時刻Tにおいて期待される無線回線伝送レートの最良値であり、R- Tは、将来の時刻Tにおいて期待される無線回線伝送レートの最悪値である。数式(15)から計算される、R+ TとR- Tの差分値が、時刻Tにおける無線回線伝送レートの確率的拡散である。また、数式(15)において、μは、ドリフト係数であり、本実施形態では、現在時刻から所定時間前までの期間に無線端末30から報告された無線回線伝送レートから最小二乗法を用い、無線回線伝送レートと時間に関する近似直線の傾きとする。本実施形態では、現在時刻から所定時間前までの期間を10[秒]とするが、10[秒]より大きい値としてもよく、また、10[秒]より小さい値としてもよい。また、σは、現在時刻から所定時間前までの期間に測定された無線回線伝送レートの分散である。また、αは、確率的拡散の予測範囲を定める定数であり、本実施形態では2とするが、2よりも小さい値でもよく、また、2よりも大きい値でもよい。尚、無線回線伝送レートの確率的拡散であるR+ TとR- Tの差分値は、数式(15)より、2α・σ・「Tの平方根」と、無線回線伝送レートの分散σに所定値を乗算した値として計算されるため、時刻Tにおける無線回線伝送レートの変動量でもある。
トラヒック管理装置41の無線回線伝送レート予測部414は、数式(15)を用い、基地局22と接続中の無線端末30全てに対して将来の無線回線伝送レートを予測する。なお、無線回線伝送レートの予測は、特定の無線端末30に対して行われてもよい。数式(15)は、Wiener過程モデルに基づく無線回線伝送レートの確率的拡散の計算式である。数式(15)において、R+ Tは、将来の時刻Tにおいて期待される無線回線伝送レートの最良値であり、R- Tは、将来の時刻Tにおいて期待される無線回線伝送レートの最悪値である。数式(15)から計算される、R+ TとR- Tの差分値が、時刻Tにおける無線回線伝送レートの確率的拡散である。また、数式(15)において、μは、ドリフト係数であり、本実施形態では、現在時刻から所定時間前までの期間に無線端末30から報告された無線回線伝送レートから最小二乗法を用い、無線回線伝送レートと時間に関する近似直線の傾きとする。本実施形態では、現在時刻から所定時間前までの期間を10[秒]とするが、10[秒]より大きい値としてもよく、また、10[秒]より小さい値としてもよい。また、σは、現在時刻から所定時間前までの期間に測定された無線回線伝送レートの分散である。また、αは、確率的拡散の予測範囲を定める定数であり、本実施形態では2とするが、2よりも小さい値でもよく、また、2よりも大きい値でもよい。尚、無線回線伝送レートの確率的拡散であるR+ TとR- Tの差分値は、数式(15)より、2α・σ・「Tの平方根」と、無線回線伝送レートの分散σに所定値を乗算した値として計算されるため、時刻Tにおける無線回線伝送レートの変動量でもある。
本実施形態では、基地局22は、1[秒]毎に、将来の無線回線伝送レートを予測するが、1[秒]よりも短い周期で実行してもよく、また、1[秒]よりも長い周期で実行してもよい。
トラヒック管理装置41の残余再生時間計算部415が、基地局22と接続中の無線端末30のコンテンツ再生部302に記憶されている残余再生時間の将来の値(将来値)を計算する動作手順は、図5に示す、本発明の第1の実施形態に係る基地局20の残余再生時間計算部214と同じである。尚、本実施形態では、ステップS202において、数式(16)を用いて将来の残余再生時間Test_remainを計算する。数式(16)において、pは再生速度であり、本実施形態では、1とするが、1よりも小さい値としてもよく、また、1よりも大きい値としてもよい。
尚、本実施形態では、トラヒック管理装置41が備える有線回線伝送レート制御部403は、基地局22が備える無線リソース割り当て部205から指示される有線回線伝送レートの制御方法に応じて有線回線伝送レートの制御を行っていた。但し、有線回線伝送レート制御部403が、残余再生時間計算部415が計算した、無線端末30のコンテンツ再生部302に記憶されているコンテンツデータの将来の残余再生時間に関する情報を用いて、将来の残余再生時間が所定値以下となるか否かを判定し、判定結果に基づき当該有線回線伝送レートの制御を行ってもよい。この場合、有線回線伝送レート制御部403は、当該判定結果を基地局22に通知し、基地局22の無線リソース割り当て部205は、当該通知に基づき、無線リソースの割り当て優先度を計算する。尚、当該判定結果に関する情報の基地局22への通知は、当該無線端末30宛の送信データに対応するGTPパケットに当該情報をピギーバックすることで行われてもよい。また、当該通知は、当該GTPパケットのヘッダ領域に当該情報を追加することで行われてもよい。また、当該通知は、当該GTPの下位層で使用されるUDPにて、当該GTPパケットに対応するUDPパケットに当該情報をピギーバックすることで行われてもよい。また、当該通知は、当該UDPパケットのヘッダ領域に当該情報を追加することで行われてもよい。また、当該通知は、当該UDPの下位層で使用されるIPにて、当該GTPパケットに対応するIPパケットに当該情報をピギーバックすることで行われてもよい。また、当該通知は、当該IPパケットのヘッダ領域に当該情報を追加することで行われてもよい。また、当該通知は、当該無線端末30宛の送信データの代わりに、当該無線端末30以外の無線端末30宛の送信データ等に対応する各種パケットへピギーバック等をすることで行われてもよい。つまり、当該通知は、トラヒック管理装置40から基地局22へ送信される任意のデータに対応する各種パケットへピギーバックすること又は各種パケットのヘッダ領域への追加することにより行われてもよい。この場合、当該情報と共に、当該無線端末30に関する情報も一緒(同時)に通知することで、基地局22は、対象の無線端末30を識別するものとする。或いは、トラヒック管理装置41と基地局22との間に、当該残余再生時間に関する情報を通知するための新たなインターフェースを設置し、当該通知は、当該インターフェースを介して通知してもよい。
また、本実施形態におけるトラヒック管理装置41が備える機能は、本発明の第2の実施形態でも用いることができる。さらに、トラヒック管理装置41の無線回線伝送レート予測部414による無線回線の伝送レートの過去及び現在の値に基づく変化傾向を用いた伝送レートの将来値の予測は、他の実施形態における基地局が、基地局内の制御のために行っても良い。
[第4実施形態]
次に、本発明の第4の実施形態について図面を参照して詳細に説明する。本発明の第1の実施形態と比較して、本実施形態では、LTEのコアネットワーク(EPC)における転送優先度を設定するゲートウェイ装置(第2の中継装置)が、サーバ装置と基地局の間に新たに備わる。
[構成の説明]
図12に、本発明の第4の実施形態に係る配信システム5の構成を示す。配信システム5は、無線通信システム6を含む。本実施形態を含む本発明の実施形態の説明では、無線通信システム6としてLTEの通信システムを想定するが、UMTSやGSM(登録商標)などのLTE以外の他の通信システムを想定してもよい。
図12に、本発明の第4の実施形態に係る配信システム5の構成を示す。配信システム5は、無線通信システム6を含む。本実施形態を含む本発明の実施形態の説明では、無線通信システム6としてLTEの通信システムを想定するが、UMTSやGSM(登録商標)などのLTE以外の他の通信システムを想定してもよい。
配信システム5は、本発明の第1の実施形態に係る配信システム1と比較して、ゲートウェイ装置50が新たに追加される。尚、ゲートウェイ装置50は、LTEのコアネットワークN2の一部を構成する。更に、配信システム5は、本発明の第1の実施形態に係る配信システム1と比較して、基地局20の代わりに基地局23を備える。尚、ゲートウェイ装置50と、基地局23と、無線端末30は、無線通信システム6に含まれる。以下では、第1の実施形態と比較して、第4の実施形態で変更された構成について説明する。尚、ゲートウェイ装置50は、例えば、P-GW(PDN(Packet Data Network)-Gateway)やS-GW(Serving Gateway)であるが、これに限られない。
サーバ装置10とゲートウェイ装置50は、通信回線(例えば、インターネット)NWを介して、通信するよう構成されている。また、ゲートウェイ装置50と基地局23は、LTEのコアネットワーク(EPC)N2を介して、通信するよう構成されている。また、基地局23と無線端末30は、無線インターフェースN1を介して、通信するよう構成されている。
説明の便宜上、本図においては、配信システム5は、サーバ装置10とゲートウェイ装置50と基地局23と無線端末30をそれぞれ1つずつしか備えていないが、サーバ装置10の数は幾つでもよく、同様に、ゲートウェイ装置50の数と基地局23の数と無線端末30の数も幾つでもよい。
ゲートウェイ装置50は、図示しない情報処理装置を備える。情報処理装置は、図示しない中央処理装置(CPU)、及び、記憶装置(メモリ及びハードディスク駆動装置(HDD))を備える。ゲートウェイ装置50は、記憶装置に記憶されているプログラムをCPUが実行することにより、後述する機能を実現するように構成されている。
基地局23は、基地局23と同様、図示しない情報処理装置を備える。情報処理装置は、図示しない中央処理装置(CPU)、及び、記憶装置(メモリ及びハードディスク駆動装置(HDD))を備える。基地局23は、記憶装置に記憶されているプログラムをCPUが実行することにより、後述する機能を実現するように構成されている。
図13は、上記のように構成された配信システム5の機能を表すブロック図である。以下では、第1の実施形態と比較して、第4の実施形態で追加された機能と変更された機能について説明する。
ゲートウェイ装置50は、ゲートウェイ装置動作部501と、優先度設定部502と、から構成されている。
ゲートウェイ装置動作部501は、サーバ装置10と通信回線NWを介して信号を送受信する機能や、基地局23とLTEのコアネットワークN2を介して信号を送受信する機能や、サーバ装置10から通信回線NW介して到着した各無線端末30宛の送信データを基地局23へ転送する機能など、一般的な無線通信システムにおけるゲートウェイ装置が備える機能を有する。尚、基ゲートウェイ装置動作部501が備える機能は当業者の周知事項であるため、ゲートウェイ装置動作部501が備える各機能の説明は省略する。
優先度設定部502は、後述する基地局23の無線リソース割り当て部235からの指示に従い、ゲートウェイ装置50から基地局23へ転送される各無線端末30宛の送信データのLTEのコアネットワークN2における転送優先度を設定する機能を有する。すなわち、優先度設定部502は、無線回線品質の将来値及び処理見込指標に基づいて転送優先度を設定する。本実施形態では、優先度設定部502は、基地局23の無線リソース割り当て部235から、当該優先度の増加の指示に関する通知を受信した場合、当該無線端末30宛の送信データに対応するGTPパケットに対応するIPパケットのヘッダ領域におけるTOS(Time Of Service)で高い優先度を設定し、当該優先度の低下の指示に関する通知を受信した場合、当該TOSで低い優先度を設定する。尚、TOSを用いる代わりに、当該ヘッダ領域のDS(Differentiated Services)で優先度を設定してもよい。また、本実施形態では、当該優先度の設定は、無線端末30毎に行う。
基地局23の機能は、基地局動作部201と、バッファ202と、無線回線品質予測部213と、残余再生時間計算部214と、無線リソース割り当て部235である。
無線リソース割り当て部235は、本発明の第2の実施形態に係る無線リソース割り当て部215の機能に加え、残余再生時間計算部214が計算した残余再生時間と、無線回線品質予測部213が予測した将来の無線回線品質の確率的拡散の情報を用い、ゲートウェイ装置動作部501の優先度設定部502が備える、LTEのコアネットワークにおける転送優先度を設定する機能を監督する(転送優先度の設定方法を指示する)機能を新たに有する。無線リソース割り当て部235から優先度設定部502への指示は、基地局動作部201を介して通知される。本実施形態では、当該無線端末30からの送信データに対応するGTPパケットに当該指示に関する情報をピギーバックして通知する。但し、当該通知は、当該GTPパケットのヘッダ領域に当該情報を追加して通知してもよい。また、当該通知は、GTPの下位層で使用されるUDPにて、当該GTPパケットに対応するUDPパケットに当該情報をピギーバックすることで行われてもよい。また、当該通知は、当該UDPパケットのヘッダ領域に当該情報を追加することで行われてもよい。また、当該通知は、当該UDPの下位層で使用されるIP(Internet Protocol)にて、当該GTPパケットに対応するIPパケットに当該情報をピギーバックすることで行われてもよい。また、当該通知は、当該IPパケットのヘッダ領域に当該情報を追加することで行われてもよい。また、当該通知は、当該無線端末30が送信した上記各種データの代わりに、当該無線端末30以外の無線端末30が送信したデータ等に対応する各種パケットへピギーバック等をすることで行われてもよい。つまり、有線回線伝送レートの指示は、基地局23からゲートウェイ装置50へ送信される任意のデータに対応する各種パケットへピギーバックすること又は各種パケットのヘッダ領域への追加することにより行われてもよい。この場合、当該情報と共に、当該無線端末30に関する情報も一緒(同時)に通知することで、ゲートウェイ装置50は、制御対象の無線端末30を識別するものとする。或いは、ゲートウェイ装置50と基地局23との間に、当該情報を通知するための新たなインターフェースを設置し、当該通知は、当該インターフェースを介して通知してもよい。
[動作の説明]
図14は、基地局23の無線リソース割り当て部235が、ゲートウェイ装置50から基地局23へ転送される各無線端末30宛の送信データのLTEのコアネットワークN2における転送優先度を制御する動作手順を表すものである。基地局23は、残余再生時間計算部214の動作終了後に、図14に記載の動作を実行する。
図14は、基地局23の無線リソース割り当て部235が、ゲートウェイ装置50から基地局23へ転送される各無線端末30宛の送信データのLTEのコアネットワークN2における転送優先度を制御する動作手順を表すものである。基地局23は、残余再生時間計算部214の動作終了後に、図14に記載の動作を実行する。
図14を参照すると、図7のステップS302~ステップS304が省略され、新たにステップS501~ステップS504が追加されている。以下では、追加されたステップS501~ステップS504の動作についてのみ説明する。
ステップS301で数式(6)を満たす場合(ステップS301,YES)、無線リソース割り当て部235は、ゲートウェイ装置50から基地局23へ転送される当該無線端末30宛の送信データのLTEのコアネットワークにおける転送優先度を増加すべきと判定する。そして、無線リソース割り当て部235は、ゲートウェイ装置50に対し、当該優先度の増加を既に指示していたか否かを判定する(ステップS501)。
ゲートウェイ装置50に対し、当該優先度の増加を既に通知済みである場合(ステップS501,YES)、無線リソース割り当て部235は、当該無線端末30に対する図14の処理を終了する。
一方、ゲートウェイ装置50に対し、当該優先度の増加を通知していない場合(ステップS501,NO)、無線リソース割り当て部235は、ゲートウェイ装置50に対し、当該優先度の増加を指示するための情報を通知する(ステップS502)。
また、ステップS301で数式(6)を満たさない場合(ステップS301,NO)、無線リソース割り当て部235は、ゲートウェイ装置50から基地局23へ転送される当該無線端末30宛の送信データのLTEのコアネットワークにおける転送優先度を低下すべきと判定する。そして、無線リソース割り当て部235は、ステップS501と同様、ゲートウェイ装置50に対し、当該優先度の増加を既に指示していたか否かを判定する(ステップS503)。
ゲートウェイ装置50に対し、当該優先度の増加を既に通知済みである場合(ステップS503,YES)、無線リソース割り当て部235は、ゲートウェイ装置50に対し、当該優先度の低下を指示するための情報を通知する(ステップS504)。ステップS504を実行することにより、ステップS502で実行される当該優先度の増加を解除することになる。
一方、トゲートウェイ装置50に対し、当該優先度の増加を通知していない場合(ステップS503,NO)、無線リソース割り当て部235は、当該無線端末30に対する図14の処理を終了する。
本実施形態の無線リソース割り当て部235は、上記処理を基地局23と接続中の無線端末30全てに対して行う。なお、上記処理は、特定の無線端末30に対して行われてもよい。その後、無線リソース割り当て部235、図14の処理を終了する。
以上、説明したように、本発明の第4の実施形態によれば、将来の無線回線品質が劣化すると予測される場合、当該無線端末30に対し、ゲートウェイ装置50から基地局23へ転送される当該無線端末30宛の送信データのLTEのコアネットワークN2における転送優先度を増加し、当該無線端末30で蓄積すべき残余再生時間を達成可能なデータを基地局23のバッファ201で用意できるため、本発明の第1の実施形態と比較して、ストリーミングコンテンツの再生停止を回避できる。
以上、上記実施形態を参照して本願発明を説明したが、本願発明は、上述した実施形態に限定されるものではない。本願発明の構成及び詳細に、本願発明の範囲内において当業者が理解し得る様々な変更をすることができる。
例えば、ステップS501において、ゲートウェイ装置50に対し、当該優先度の増加を既に通知済みである場合(ステップS501,YES)、無線リソース割り当て部235は、ゲートウェイ装置50に対し、当該優先度の更なる増加を指示するための情報を通知してもよい。或いは、ステップS501の処理を省略してもよく、このとき、ゲートウェイ装置50の優先度設定部502では、ステップS502の通知を受信する度に、当該優先度を増加させるようにしてもよい。
また、ステップS503において、ゲートウェイ装置50に対し、当該優先度の増加を段階的に解除するよう指示するための情報を通知してもよく、或いは、当該優先度の増加を一気に解消するよう指示するための情報を通知してもよい。或いは、ステップS503の処理を省略してもよく、このとき、ゲートウェイ装置50の優先度設定部502では、ステップS504の通知を受信する度に、当該優先度を低下させてもよい。
また、ステップS501及び、ステップS503~ステップS504の処理を省略し、ゲートウェイ装置50の優先度設定部502は、ステップS502の通知を受信してから所定時間だけ当該有線回線伝送レートを低下させるようにしてもよい。この場合、所定時間は、基地局23が図14の処理を実行する周期とするのが好ましい。
また、ゲートウェイ装置50が有する機能は、本発明の第2の実施形態に係るトラヒック管理装置40に備えることができる。また、本発明の第3の実施形態に係るトラヒック管理装置41に備えることもできる。
尚、本実施形態では、上述したことから、コンテンツデータを第2の中継装置ゲートウェイ装置から基地局装置へ転送する際の転送優先度を、無線回線品質の将来値及び処理見込指標に基づいて設定する優先度設定ステップを含むものということができる。そして、優先度設定ステップは、処理見込指標が所定条件を満たさない場合に、転送優先度を高くする。
以上の変更は、以降の実施形態も同様に行うことができる。
[第5実施形態]
次に、本発明の第5の実施形態について図面を参照して詳細に説明する。第5の実施形態では、将来の無線回線品質が劣化すると予測される場合、無線端末に対し、WWW(World Wide Web)や電子メール、静止画像などのノンリアルタイムトラヒック(ベストエフォートトラヒック)の送信が速やかに完了するように無線リソース割り当てを優先させる。
次に、本発明の第5の実施形態について図面を参照して詳細に説明する。第5の実施形態では、将来の無線回線品質が劣化すると予測される場合、無線端末に対し、WWW(World Wide Web)や電子メール、静止画像などのノンリアルタイムトラヒック(ベストエフォートトラヒック)の送信が速やかに完了するように無線リソース割り当てを優先させる。
[構成の説明]
図15に、本発明の第5の実施形態に係る配信システム7の構成を示す。配信システム7は、無線通信システム8を含む。本実施形態を含む本発明の実施形態の説明では、無線通信システム8としてLTEの通信システムを想定するが、UMTSやGSM(登録商標)などのLTE以外の他の通信システムを想定してもよい。
図15に、本発明の第5の実施形態に係る配信システム7の構成を示す。配信システム7は、無線通信システム8を含む。本実施形態を含む本発明の実施形態の説明では、無線通信システム8としてLTEの通信システムを想定するが、UMTSやGSM(登録商標)などのLTE以外の他の通信システムを想定してもよい。
配信システム7は、本発明の第2の実施形態に係る配信システム3と比較して、サーバ装置10の代わりにサーバ装置11を備える。更に、配信システム7は、本発明の第2の実施形態に係る配信システム3と比較して、トラヒック管理装置40の代わりにトラヒック管理装置42を備える。更に、配信システム7は、本発明の第2の実施形態に係る配信システム3と比較して、基地局21の代わりに基地局24を備える。更に、配信システム7は、本発明の第2の実施形態に係る配信システム3と比較して、無線端末30の代わりに無線端末31を備える。尚、トラヒック管理装置42と、基地局24と、無線端末31は、無線通信システム8に含まれる。以下では、第2の実施形態と比較して、第5の実施形態で変更された構成について説明する。尚、トラヒック管理装置42は、例えば、P-GW(PDN(Packet Data Network)-Gateway)であるが、これに限られない。
サーバ装置11とトラヒック管理装置42は、通信回線(例えば、インターネット)NWを介して、通信するよう構成されている。また、トラヒック管理装置42と基地局24は、LTEのコアネットワーク(EPC)N2を介して、通信するよう構成されている。尚、ここでは、トラヒック管理装置42は、LTEコアネットワークN2の内部に設置されているものとする。また、基地局24と無線端末31は、無線インターフェースN1を介して、通信するよう構成されている。
説明の便宜上、本図においては、配信システム7は、サーバ装置12とトラヒック管理装置42と基地局24と無線端末31をそれぞれ1つずつしか備えていないが、サーバ装置11の数は幾つでもよく、同様に、トラヒック管理装置42の数と基地局24の数と無線端末31の数も幾つでもよい。
サーバ装置11は、本発明の第2の実施形態に係るサーバ装置10と同様、図示しない情報処理装置を備える。情報処理装置は、図示しない中央処理装置(CPU)、及び、記憶装置(メモリ及びハードディスク駆動装置(HDD))を備える。サーバ装置11は、記憶装置に記憶されているプログラムをCPUが実行することにより、後述する機能を実現するように構成されてもよい。
トラヒック管理装置42は、本発明の第2の実施形態に係るトラヒック管理装置40と同様、図示しない情報処理装置を備える。情報処理装置は、図示しない中央処理装置(CPU)、及び、記憶装置(メモリ及びハードディスク駆動装置(HDD))を備える。トラヒック管理装置42は、記憶装置に記憶されているプログラムをCPUが実行することにより、後述する機能を実現するように構成されている。
基地局24は、本発明の第2の実施形態に係る基地局21と同様、図示しない情報処理装置を備える。情報処理装置は、図示しない中央処理装置(CPU)、及び、記憶装置(メモリ及びハードディスク駆動装置(HDD))を備える。基地局24は、記憶装置に記憶されているプログラムをCPUが実行することにより、後述する機能を実現するように構成されている。
無線端末31は、携帯電話端末、パーソナル・コンピュータ、PHS端末、PDA、スマートフォン、タブレット端末、カーナビゲーション端末、又は、ゲーム端末等の何れかである。無線端末30は、CPU、記憶装置(メモリ)、入力装置(キーボタン及びマイクロフォン)、及び、出力装置(ディスプレイ及びスピーカ)を備える。無線端末31は、記憶装置に記憶されているプログラムをCPUが実行することにより、無線端末31が備える機能を実現するように構成されてもよい。
図16は、上記のように構成された配信システム7の機能を表すブロック図である。以下では、第2の実施形態と比較して、第5の実施形態で追加された機能と変更された機能について説明する。
サーバ装置11の機能は、サーバ動作部111と、データ蓄積部112である。
サーバ動作部111は、データ蓄積部112に記憶されているノンリアルタイムトラヒックのデータを、基地局24を経由して無線端末31へ送信する機能を有する。本実施形態では、ノンリアルタイムトラヒックはWebである。
データ蓄積部112は、ノンリアルタイムトラヒックのデータを記憶(蓄積)する機能を有する。
トラヒック管理装置42は、本発明の第2の実施形態に係るトラヒック管理装置40と比較して、トラヒック管理装置動作部401の代わりにトラヒック管理装置動作部421備える。以下、トラヒック管理装置動作部421の機能について説明する。
トラヒック管理装置動作部421は、本発明の第2の実施形態に係るトラヒック管理装置動作部401と同様、OSI基本参照モデルにおけるレイヤ4のプロトコルであるTCPを備える。そして、トラヒック管理装置動作部421は、TCPプロトコルを用いて、サーバ装置11と通信回線NWを介して信号を送受信する機能や、基地局24とLTEのコアネットワークN2を介して信号を送受信する機能を有する。本実施形態におけるトラヒック管理装置動作部421は、通信回線NWを介して受信した各無線端末30宛の送信データを、一時的にバッファ402にバッファに蓄積し、バッファ402に蓄積されたデータを有線回線伝送レート制御部403により制御された有線回線伝送レートにより基地局24へ転送する。
一方、トラヒック管理装置動作部421は、OSI基本参照モデルのアプリケーション層のプロトコルをプロキシする機能を備える点で、本発明の第2の実施形態に係るトラヒック管理装置動作部401と異なる。すなわち、トラヒック管理装置動作部421は、通信回線NWを介して受信する無線端末30宛のノンリアルタイムトラヒックのデータサイズを取得する機能を有する。具体的には、本実施形態におけるトラヒック管理装置動作部421は、HTTPプロキシを備える。そして、トラヒック管理装置動作部421は、サーバ装置11へGET Requestを送信し、当該サーバ装置11から応答されたContent-Lengthからノンリアルタイムトラヒックのデータサイズを取得する。そして、トラヒック管理装置動作部421は、取得した当該ノンリアルタイムトラヒックのデータサイズに関する情報を、基地局24へ通知する。
本実施形態では、当該ノンリアルタイムトラヒックのデータサイズに関する情報の基地局24への通知は、当該無線端末31宛の送信データに対応するGTPパケットに当該情報をピギーバックすることで行われる。但し、当該通知は、当該GTPパケットのヘッダ領域に当該情報を追加することで行われてもよい。また、当該通知は、当該GTPの下位層で使用されるUDP(User Datagram Protocol)にて、当該GTPパケットに対応するUDPパケットに当該情報をピギーバックすることで行われてもよい。また、当該通知は、当該UDPパケットのヘッダ領域に当該情報を追加することで行われてもよい。また、当該通知は、当該UDPの下位層で使用されるIP(Internet Protocol)にて、当該GTPパケットに対応するIPパケットに当該情報をピギーバックすることで行われてもよい。また、当該通知は、当該IPパケットのヘッダ領域に当該情報を追加することで行われてもよい。また、当該通知は、当該無線端末31宛の送信データの代わりに、当該無線端末31以外の無線端末31宛の送信データ等に対応する各種パケットへピギーバック等をすることで行われてもよい。つまり、当該通知は、トラヒック管理装置42から基地局24へ送信される任意のデータに対応する各種パケットへピギーバックすること又は各種パケットのヘッダ領域への追加することにより行われてもよい。この場合、当該情報と共に、当該無線端末31に関する情報も一緒(同時)に通知することで、基地局24は、対象の無線端末31を識別するものとする。或いは、トラヒック管理装置42と基地局24との間に、当該情報を通知するための新たなインターフェースを設置し、当該通知は、当該インターフェースを介して通知してもよい。
基地局24は、本発明の第2の実施形態に係る基地局21と比較して、残余再生時間計算部214と、無線リソース割り当て部215の代わりに、残り送信時間計算部246と、無線リソース割り当て部245の機能を備える。以下、残り送信時間計算部246と、無線リソース割り当て部245の機能について説明する。
残り送信時間計算部246は、指標算出部の一例である。残り送信時間計算部246は、基地局24から無線端末31へのコンテンツの送信開始時刻から送信完了時刻までの時間である送信時間のうち送信済みの時間を除いた残り時間を処理見込指標として算出する。本実施形態では、処理見込指標の一例として上記残り時間を用いるものとする。上記残り時間は、言い換えると、当該ノンリアルタイムトラヒックのデータの送信に要する時間といえる。つまり、上記残り時間は、無線端末31において受信済みのノンリアルタイムトラヒックのデータを表示する処理を行うに当たっての見込みの指標といえる。そして、残り送信時間計算部246は、トラヒック管理装置42から通知される当該ノンリアルタイムトラヒックのデータサイズと、無線回線品質予測部213が予測した将来の無線回線品質の確率的拡散の情報を用いて、上記残り時間を計算する機能を有する。また、ノンリアルタイムトラヒックのデータサイズは、コンテンツの特性を示す情報の一例である。計算した当該残り時間は、無線リソース割り当て部245で用いられる。
無線リソース割り当て部245は、残り送信時間計算部246が計算した当該ノンリアルタイムトラヒックのデータの送信に要する残り時間を用いて、各無線端末31の割り当て指標を計算する機能を有する。更に、無線リソース割り当て部245は、計算した当該割り当て指標に基づき、各無線端末31に割り当てる周波数ブロックを決定する機能を有する。本実施形態では、周波数ブロックはRBであり、計算した割り当て指標が最も大きい無線端末31から順にRBを割り当てる。
更に、無線リソース割り当て部245は、残り送信時間計算部246が計算した当該ノンリアルタイムトラヒックのデータの送信に要する残り時間を用いて、トラヒック管理装置42の有線回線伝送レート制御部403が備えるトラヒック管理装置42から基地局24への有線回線伝送レートを制御する機能を監督する(有線回線伝送レートの制御方法を指示する)機能を有する。無線リソース割り当て部245から有線回線伝送レート制御部403への指示は、本発明の第2の実施形態に係る無線リソース割り当て部215と同様である。
無線端末31は、本発明の第2の実施形態に係る無線端末30と比較して、コンテンツ再生部302の代わりにアプリケーション実行部312の機能を備える。以下、アプリケーション実行部312の機能について説明する。
アプリケーション実行部312は、サーバ装置11から送信されたノンリアルタイムトラヒックのデータを用いて、当該ノンリアルタイムトラヒックのアプリケーションを実行する機能を有する。本実施形態では、アプリケーション実行部312は、当該データを用いてWebページを表示する。
[動作の説明]
残り送信時間計算部246は、基地局24と接続中の無線端末31全てに対し、数式(17)を満たす最小の時刻Testーendを計算する。数式(17)において、Testーendは、ノンリアルタイムトラヒックのデータの送信が完了する時刻であり、Testーendから現在時刻Tcurrentを引いた値が、当該ノンリアルタイムトラヒックのデータの送信に要する残り時間である。数式(17)において、NRTDは、当該ノンリアルタイムトラヒックのデータサイズであり、NRTDTcurrentは、当該データサイズのうち現在時刻までに無線端末31への送信が完了したデータサイズである。
残り送信時間計算部246は、基地局24と接続中の無線端末31全てに対し、数式(17)を満たす最小の時刻Testーendを計算する。数式(17)において、Testーendは、ノンリアルタイムトラヒックのデータの送信が完了する時刻であり、Testーendから現在時刻Tcurrentを引いた値が、当該ノンリアルタイムトラヒックのデータの送信に要する残り時間である。数式(17)において、NRTDは、当該ノンリアルタイムトラヒックのデータサイズであり、NRTDTcurrentは、当該データサイズのうち現在時刻までに無線端末31への送信が完了したデータサイズである。
本実施形態では、基地局24は、1[ミリ秒]単位で、数式(17)を満たす最小の時刻Testーendを計算するが、1[ミリ秒]よりも大きい単位で計算してもよく、また、1[ミリ秒]よりも小さい単位で計算してもよい。また、基地局24は、1[秒]毎に、ノンリアルタイムトラヒックのデータの送信に要する残り時間を計算するが、1[秒]よりも短い周期で実行してもよく、また、1[秒]よりも長い周期で実行してもよい。
図17は、基地局24の無線リソース割り当て部245が、無線端末31に割り当てる周波数ブロックを決定するために用いる無線端末31の割り当て指標を計算する動作手順を表すものである。基地局24は、無線リソースの割り当て単位時間であるSubframe毎に、図17に記載の動作を実行する。
図17を参照すると、図7のステップS301が省略され、新たにステップS601が追加されている。以下では、追加されたステップS601の動作についてのみ説明する。
先ず、無線リソース割り当て部205は、数式(18)を用いて、ノンリアルタイムトラヒックのデータの送信に要する残り時間(Testーend‐Tcurrent)が所要時間(第2の閾値)以上となるか否かを判定する(ステップS601)。数式(18)において、Tthreshは所要時間(第2の閾値)であり、本実施形態では1[秒]とする。但し、第2の閾値は、1[秒]より短い時間としてもよく、また、1[秒]より長い時間としてもよい。
また、基地局24の無線リソース割り当て部245が、トラヒック管理装置42から基地局24への有線回線伝送レートを制御する動作手順は、図10のステップS301がステップ601に代わる以外は、本発明の第2の実施形態に係る無線リソース割り当て部215と同様である。
以上、説明したように、本発明の第5の実施形態によれば、将来の無線回線品質が劣化すると予測される場合、当該無線端末31に対し、ノンリアルタイムトラヒックの送信が速やかに完了するように無線リソース割り当てを優先することができるため、当該ノンリアルタイムトラヒックのスループットを改善できる。
<その他の発明の実施の形態>
以上、上記実施形態を参照して本願発明を説明したが、本願発明は、上述した実施形態に限定されるものではない。本願発明の構成及び詳細に、本願発明の範囲内において当業者が理解し得る様々な変更をすることができる。
以上、上記実施形態を参照して本願発明を説明したが、本願発明は、上述した実施形態に限定されるものではない。本願発明の構成及び詳細に、本願発明の範囲内において当業者が理解し得る様々な変更をすることができる。
例えば、本実施形態では、配信システム7は、トラヒック管理装置42を備えていたが、ゲートウェイ装置管理装置50を備えてもよい。
尚、本発明の第2及び第3の実施形態では、上述したことから、コンテンツを第1の中継装置から基地局装置へ転送する際の有線回線伝送レートを、無線回線品質の将来値及び処理見込指標に基づいて制御する有線回線伝送レート制御ステップを含むものということができる。そして、有線回線伝送レート制御ステップは、処理見込指標が所定条件を満たさない場合に、有線回線伝送レートを高くする。
また、本実施形態は、本発明の他の実施形態と併用してもよい。即ち、トラヒック管理装置42が備える機能は、本発明の第2の実施形態に係るトラヒック管理装置40、または、本発明の第3の実施形態に係るトラヒック管理装置41が備えてもよく、また、基地局24が備える機能は、本発明の第1の実施形態に係る基地局20、または、本発明の第2の実施形態に係る基地局21、または、本発明の第3の実施形態に係る基地局22、または、本発明の第4の実施形態に係る基地局23が備えてもよい。また、無線端末31が備える機能は、本発明の第1の実施形態に係る無線端末30が備えてもよい。
さらに、本発明は上述した実施の形態のみに限定されるものではなく、既に述べた本発明の要旨を逸脱しない範囲において種々の変更が可能であることは勿論である。例えば、無線端末が実行するコンテンツの処理の見込みを示す指標である処理見込指標に応じて、当該無線端末に無線リソースを割り当てるところに、本発明における特徴の1つがあるといえる。従って、前述した送信装置は、本発明を実施するための構成として、無線端末が実行する前記コンテンツの処理の見込みを示す指標である処理見込指標を取得する取得部と、処理見込指標に応じて、前記無線端末に無線リソースを割り当てる制御部を備えていればよい。なお、当該送信装置が無線基地局である場合は、当該送信装置を一般的な無線通信システムにおける無線基地局として動作させる機能部を有していてもよいことはもちろんである。取得部及び制御部は、例えば第一の実施形態であれば、残余再生時間計算部204と無線リソース割り当て部205に対応する。
また、上述の実施の形態では、本発明をハードウェアの構成として説明したが、本発明は、これに限定されるものではない。本発明は、任意の処理を、CPU(Central Processing Unit)にコンピュータプログラムを実行させることにより実現することも可能である。
また、上述の実施の形態では、本発明をハードウェアの構成として説明したが、本発明は、これに限定されるものではない。本発明は、任意の処理を、CPU(Central Processing Unit)にコンピュータプログラムを実行させることにより実現することも可能である。
上述の例において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、DVD(Digital Versatile Disc)、BD(Blu-ray(登録商標) Disc)、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
(付記1)
ネットワークを介して受信した無線端末宛のコンテンツを基地局装置から当該無線端末へ無線回線を介して送信する無線通信システムにおける無線リソース割り当て方法であって、
前記無線回線の品質情報である無線回線品質の将来値を予測する予測ステップと、
前記無線回線品質の将来値を用いて、前記無線端末において受信する前記コンテンツの処理の見込みを示す指標である処理見込指標を算出する指標算出ステップと、
前記処理見込指標が所定条件を満たさない場合に、前記無線端末に対して無線リソースを優先して割り当てる無線リソース割り当てステップと、
を含む無線リソース割り当て方法。
(付記2)
前記コンテンツの特性を示す情報を取得するコンテンツ情報取得ステップをさらに備え、
前記指標算出ステップは、前記コンテンツの特性を示す情報をさらに用いて、前記処理見込指標を算出する
ことを特徴とする付記1に記載の無線リソース割り当て方法。
(付記3)
前記指標算出ステップは、
前記無線端末に蓄積され、かつ、再生されていない前記コンテンツの再生に要する時間である残余再生時間の現在値と、前記無線回線品質の将来値とを用いて、当該残余再生時間の将来値を前記処理見込指標として算出し、
前記所定条件は、前記残余再生時間の将来値が第1の閾値以下であることを条件とする
ことを特徴とする付記1又は2に記載の無線リソース割り当て方法。
(付記4)
前記第1の閾値は、前記基地局装置間でのハンドオーバ処理に要する時間、前記ハンドオーバ処理に失敗してから前記基地局装置に再接続するまでの時間、又は、前記基地局装置からの信号が届かないエリアに滞在している時間、の何れか1つに基づく値である、
ことを特徴とする付記3に記載の無線リソース割り当て方法。
(付記5)
前記コンテンツの特性を示す情報は、当該コンテンツが時分割され、当該時分割された各コンテンツのそれぞれについてビットレートが異なる複数の符号化レートにより符号化されたことに関する情報である、
ことを特徴とする付記2乃至4のいずれか1項に記載の無線リソース割り当て方法。
(付記6)
前記指標算出ステップは、
前記基地局装置から前記無線端末への前記コンテンツの送信開始時刻から送信完了時刻までの時間である送信時間のうち送信済みの時間を除いた残り時間を前記処理見込指標として算出し、
前記所定条件は、前記残り時間が第2の閾値以上であることを条件とする
ことを特徴とする付記1又は2に記載の無線リソース割り当て方法。
(付記7)
前記コンテンツの特性を示す情報は、前記コンテンツのデータサイズである、
ことを特徴とする付記6に記載の無線リソース割り当て方法。
(付記8)
前記無線通信システムは、前記コンテンツの送信元と前記基地局装置との間に第1の中継装置を備え、
前記コンテンツを前記第1の中継装置から前記基地局装置へ転送する際の有線回線伝送レートを、前記無線回線品質の将来値及び前記処理見込指標に基づいて制御する有線回線伝送レート制御ステップをさらに備える
ことを特徴とする付記1~7のいずれか1項に記載の無線リソース割り当て方法。
(付記9)
前記有線回線伝送レート制御ステップは、
前記処理見込指標が前記所定条件を満たさない場合に、前記有線回線伝送レートを高くする
ことを特徴とする付記8に記載の無線リソース割り当て方法。
(付記10)
前記無線通信システムは、前記コンテンツの送信元と前記基地局装置との間に第2の中継装置を備え、
前記コンテンツを前記第2の中継装置から前記基地局装置へ転送する際の転送優先度を、前記無線回線品質の将来値及び前記処理見込指標に基づいて設定する優先度設定ステップをさらに備える
ことを特徴とする付記1~9のいずれか1項に記載の無線リソース割り当て方法。
(付記11)
前記優先度設定ステップは、
前記処理見込指標が前記所定条件を満たさない場合に、前記転送優先度を高くする
ことを特徴とする付記10に記載の無線リソース割り当て方法。
(付記12)
前記無線リソース割り当てステップは、
前記処理見込指標が前記所定条件を満たすか否かに応じて、前記無線リソースを割り当てるための優先度を示す割り当て指標を算出し、
前記割り当て指標に基づき前記無線リソースの割り当てを行い、
前記割り当て指標は、前記処理見込指標が前記所定条件を満たさない場合に、前記優先度が高く算出される
ことを特徴とする付記1~11のいずれか1項に記載の無線リソース割り当て方法。
(付記13)
前記指標算出ステップは、
前記無線端末ごとに前記処理見込指標を算出し、
前記無線リソース割り当てステップは、
前記所定条件を満たさない前記処理見込指標における無線端末に対して前記無線リソースを優先して割り当てる
ことを特徴とする付記1~11のいずれか1項に記載の無線リソース割り当て方法。
(付記14)
前記無線回線品質は、
CQI(Channel Quarity Indicator)、RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)、PDCP(Packet Data Convergence Protocol)のスループット、RLC(Radio Link Control)のスループット、MAC(Medium Access Control)のスループット、OTA(Over-The-Air)のスループット、又は、TCP(Transmission Control Protocol)のスループット、の何れか1つを少なくとも含む、
ことを特徴とする付記1~13のいずれか1項に記載の無線リソース割り当て方法。
(付記15)
前記無線リソース割り当てステップは、
前記コンテンツ単位、又は、前記無線端末単位のいずれか1つにより行われる、
ことを特徴とする付記1~14のいずれか1項に記載の無線リソース割り当て方法。
(付記16)
ネットワークを介して受信した無線端末宛のコンテンツを、無線回線を介して当該無線端末へ送信する基地局装置を備え、
前記基地局装置は、
前記無線回線の品質情報である無線回線品質の将来値を予測する予測手段と、
前記無線回線品質の将来値を用いて、前記無線端末において受信する前記コンテンツの処理の見込みを示す指標である処理見込指標を算出する処理見込指標算出手段と、
前記処理見込指標が所定条件を満たさない場合に、前記無線端末に対して無線リソースを優先して割り当てる無線リソース割り当て手段と、
を備える無線通信システム。
(付記17)
ネットワークを介して受信した無線端末宛のコンテンツを、無線回線を介して当該無線端末へ送信する送信装置であって、
前記無線回線の品質情報である無線回線品質の将来値を予測する予測部と、
前記無線回線品質の将来値を用いて、前記無線端末において受信する前記コンテンツの処理の見込みを示す指標である処理見込指標を算出する指標算出部と、
前記処理見込指標が所定条件を満たさない場合に、前記無線端末に対して無線リソースを優先して割り当てる無線リソース割り当て部と、
を備える送信装置。
(付記18)
ネットワークを介して受信した無線端末宛のコンテンツを、無線回線を介して当該無線端末へ送信する送信装置に、
前記無線回線の品質情報である無線回線品質の将来値を予測する予測処理と、
前記無線回線品質の将来値を用いて、前記無線端末において受信する前記コンテンツの処理の見込みを示す指標である処理見込指標を算出する指標算出処理と、
前記処理見込指標が所定条件を満たさない場合に、前記無線端末に対して無線リソースを優先して割り当てる無線リソース割り当て処理と、
を実行させる無線リソース制御プログラム。
(付記A1)
ネットワークを介して受信した無線端末宛のコンテンツのデータを、無線回線を介して当該無線端末へ送信する送信装置であって、
前記無線端末が実行する前記コンテンツの処理の見込みを示す指標である処理見込指標を取得する取得手段と、
前記処理見込指標に応じて、前記無線端末に無線リソースを割り当てる制御手段と、
を有する送信装置。
(付記A2)
前記取得手段は、前記コンテンツの特性を示す情報を抽出し、抽出した前記コンテンツの特性を示す情報に基づき算出することにより、前記処理見込指標を取得する付記A1に記載の送信装置。
(付記A3)
前記取得手段は、前記処理見込指標を前記無線端末から受信することにより取得する付記A1に記載の送信装置。
(付記A4)
前記処理見込指標は、前記無線端末に蓄積され、かつ、所定時刻における、再生されていない前記コンテンツの再生に要する時間である残余再生時間である付記A1からA3のいずれか1項に記載の送信装置。
(付記A5)
前記処理見込指標は、前記送信装置が送信する前記無線端末宛のコンテンツの送信開始時刻から送信完了時刻までの時間である送信時間のうち、所定時刻における送信済みの時間を除いた残り時間である付記A1からA3のいずれか1項に記載の送信装置。
(付記A6)
前記残余再生時間は、前記無線端末へコンテンツの送信を開始した時刻から前記所定時刻までに送信を完了した前記コンテンツのデータサイズと、前記コンテンツのデータのビットレートと、前記送信を開始してからのデータサイズが所定値を満たした時刻から前記所定時刻までの経過時間とを用いて算出する付記A4に記載の送信装置。
(付記A7)
前記無線回線の品質情報である無線回線品質及び伝送レートの少なくとも1つの変化傾向に基づく将来値を予測する予測手段をさらに有し、
前記制御手段は、前記所定時刻における前記残余再生時間と、前記将来値とを用いて算出した残余再生時間将来値に応じて前記無線端末に無線リソースを割り当てる付記A4又はA6のいずれかに記載の送信装置。
(付記A8)
前記送信装置の上位に備えられた中継装置と前記送信装置の間のデータ転送に関する優先度又は前記データ転送のレートを、前記無線回線品質及び伝送レートの少なくとも1つの変化傾向に基づく前記将来値及び前記残余再生時間に基づいて決定し、前記中継装置へ通知する付記A7記載の送信装置。
(付記A9)
ネットワークを介して受信した無線端末宛のコンテンツのデータを、無線回線を介して当該無線端末へ送信する送信装置の制御方法であって、
前記無線端末が実行する前記コンテンツの処理の見込みを示す指標である処理見込指標を取得し、
前記処理見込指標に応じて、前記無線端末に無線リソースを割り当てる
送信装置の制御方法。
(付記A10)
ネットワークを介して受信した無線端末宛のコンテンツのデータを、無線回線を介して当該無線端末へ送信する送信装置の制御方法をコンピュータに実行させるプログラムであって、
前記無線端末が実行する前記コンテンツの処理の見込みを示す指標である処理見込指標を取得し、
前記処理見込指標に応じて、前記無線端末に無線リソースを割り当てる
送信装置の制御方法のプログラム。
(付記1)
ネットワークを介して受信した無線端末宛のコンテンツを基地局装置から当該無線端末へ無線回線を介して送信する無線通信システムにおける無線リソース割り当て方法であって、
前記無線回線の品質情報である無線回線品質の将来値を予測する予測ステップと、
前記無線回線品質の将来値を用いて、前記無線端末において受信する前記コンテンツの処理の見込みを示す指標である処理見込指標を算出する指標算出ステップと、
前記処理見込指標が所定条件を満たさない場合に、前記無線端末に対して無線リソースを優先して割り当てる無線リソース割り当てステップと、
を含む無線リソース割り当て方法。
(付記2)
前記コンテンツの特性を示す情報を取得するコンテンツ情報取得ステップをさらに備え、
前記指標算出ステップは、前記コンテンツの特性を示す情報をさらに用いて、前記処理見込指標を算出する
ことを特徴とする付記1に記載の無線リソース割り当て方法。
(付記3)
前記指標算出ステップは、
前記無線端末に蓄積され、かつ、再生されていない前記コンテンツの再生に要する時間である残余再生時間の現在値と、前記無線回線品質の将来値とを用いて、当該残余再生時間の将来値を前記処理見込指標として算出し、
前記所定条件は、前記残余再生時間の将来値が第1の閾値以下であることを条件とする
ことを特徴とする付記1又は2に記載の無線リソース割り当て方法。
(付記4)
前記第1の閾値は、前記基地局装置間でのハンドオーバ処理に要する時間、前記ハンドオーバ処理に失敗してから前記基地局装置に再接続するまでの時間、又は、前記基地局装置からの信号が届かないエリアに滞在している時間、の何れか1つに基づく値である、
ことを特徴とする付記3に記載の無線リソース割り当て方法。
(付記5)
前記コンテンツの特性を示す情報は、当該コンテンツが時分割され、当該時分割された各コンテンツのそれぞれについてビットレートが異なる複数の符号化レートにより符号化されたことに関する情報である、
ことを特徴とする付記2乃至4のいずれか1項に記載の無線リソース割り当て方法。
(付記6)
前記指標算出ステップは、
前記基地局装置から前記無線端末への前記コンテンツの送信開始時刻から送信完了時刻までの時間である送信時間のうち送信済みの時間を除いた残り時間を前記処理見込指標として算出し、
前記所定条件は、前記残り時間が第2の閾値以上であることを条件とする
ことを特徴とする付記1又は2に記載の無線リソース割り当て方法。
(付記7)
前記コンテンツの特性を示す情報は、前記コンテンツのデータサイズである、
ことを特徴とする付記6に記載の無線リソース割り当て方法。
(付記8)
前記無線通信システムは、前記コンテンツの送信元と前記基地局装置との間に第1の中継装置を備え、
前記コンテンツを前記第1の中継装置から前記基地局装置へ転送する際の有線回線伝送レートを、前記無線回線品質の将来値及び前記処理見込指標に基づいて制御する有線回線伝送レート制御ステップをさらに備える
ことを特徴とする付記1~7のいずれか1項に記載の無線リソース割り当て方法。
(付記9)
前記有線回線伝送レート制御ステップは、
前記処理見込指標が前記所定条件を満たさない場合に、前記有線回線伝送レートを高くする
ことを特徴とする付記8に記載の無線リソース割り当て方法。
(付記10)
前記無線通信システムは、前記コンテンツの送信元と前記基地局装置との間に第2の中継装置を備え、
前記コンテンツを前記第2の中継装置から前記基地局装置へ転送する際の転送優先度を、前記無線回線品質の将来値及び前記処理見込指標に基づいて設定する優先度設定ステップをさらに備える
ことを特徴とする付記1~9のいずれか1項に記載の無線リソース割り当て方法。
(付記11)
前記優先度設定ステップは、
前記処理見込指標が前記所定条件を満たさない場合に、前記転送優先度を高くする
ことを特徴とする付記10に記載の無線リソース割り当て方法。
(付記12)
前記無線リソース割り当てステップは、
前記処理見込指標が前記所定条件を満たすか否かに応じて、前記無線リソースを割り当てるための優先度を示す割り当て指標を算出し、
前記割り当て指標に基づき前記無線リソースの割り当てを行い、
前記割り当て指標は、前記処理見込指標が前記所定条件を満たさない場合に、前記優先度が高く算出される
ことを特徴とする付記1~11のいずれか1項に記載の無線リソース割り当て方法。
(付記13)
前記指標算出ステップは、
前記無線端末ごとに前記処理見込指標を算出し、
前記無線リソース割り当てステップは、
前記所定条件を満たさない前記処理見込指標における無線端末に対して前記無線リソースを優先して割り当てる
ことを特徴とする付記1~11のいずれか1項に記載の無線リソース割り当て方法。
(付記14)
前記無線回線品質は、
CQI(Channel Quarity Indicator)、RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)、PDCP(Packet Data Convergence Protocol)のスループット、RLC(Radio Link Control)のスループット、MAC(Medium Access Control)のスループット、OTA(Over-The-Air)のスループット、又は、TCP(Transmission Control Protocol)のスループット、の何れか1つを少なくとも含む、
ことを特徴とする付記1~13のいずれか1項に記載の無線リソース割り当て方法。
(付記15)
前記無線リソース割り当てステップは、
前記コンテンツ単位、又は、前記無線端末単位のいずれか1つにより行われる、
ことを特徴とする付記1~14のいずれか1項に記載の無線リソース割り当て方法。
(付記16)
ネットワークを介して受信した無線端末宛のコンテンツを、無線回線を介して当該無線端末へ送信する基地局装置を備え、
前記基地局装置は、
前記無線回線の品質情報である無線回線品質の将来値を予測する予測手段と、
前記無線回線品質の将来値を用いて、前記無線端末において受信する前記コンテンツの処理の見込みを示す指標である処理見込指標を算出する処理見込指標算出手段と、
前記処理見込指標が所定条件を満たさない場合に、前記無線端末に対して無線リソースを優先して割り当てる無線リソース割り当て手段と、
を備える無線通信システム。
(付記17)
ネットワークを介して受信した無線端末宛のコンテンツを、無線回線を介して当該無線端末へ送信する送信装置であって、
前記無線回線の品質情報である無線回線品質の将来値を予測する予測部と、
前記無線回線品質の将来値を用いて、前記無線端末において受信する前記コンテンツの処理の見込みを示す指標である処理見込指標を算出する指標算出部と、
前記処理見込指標が所定条件を満たさない場合に、前記無線端末に対して無線リソースを優先して割り当てる無線リソース割り当て部と、
を備える送信装置。
(付記18)
ネットワークを介して受信した無線端末宛のコンテンツを、無線回線を介して当該無線端末へ送信する送信装置に、
前記無線回線の品質情報である無線回線品質の将来値を予測する予測処理と、
前記無線回線品質の将来値を用いて、前記無線端末において受信する前記コンテンツの処理の見込みを示す指標である処理見込指標を算出する指標算出処理と、
前記処理見込指標が所定条件を満たさない場合に、前記無線端末に対して無線リソースを優先して割り当てる無線リソース割り当て処理と、
を実行させる無線リソース制御プログラム。
(付記A1)
ネットワークを介して受信した無線端末宛のコンテンツのデータを、無線回線を介して当該無線端末へ送信する送信装置であって、
前記無線端末が実行する前記コンテンツの処理の見込みを示す指標である処理見込指標を取得する取得手段と、
前記処理見込指標に応じて、前記無線端末に無線リソースを割り当てる制御手段と、
を有する送信装置。
(付記A2)
前記取得手段は、前記コンテンツの特性を示す情報を抽出し、抽出した前記コンテンツの特性を示す情報に基づき算出することにより、前記処理見込指標を取得する付記A1に記載の送信装置。
(付記A3)
前記取得手段は、前記処理見込指標を前記無線端末から受信することにより取得する付記A1に記載の送信装置。
(付記A4)
前記処理見込指標は、前記無線端末に蓄積され、かつ、所定時刻における、再生されていない前記コンテンツの再生に要する時間である残余再生時間である付記A1からA3のいずれか1項に記載の送信装置。
(付記A5)
前記処理見込指標は、前記送信装置が送信する前記無線端末宛のコンテンツの送信開始時刻から送信完了時刻までの時間である送信時間のうち、所定時刻における送信済みの時間を除いた残り時間である付記A1からA3のいずれか1項に記載の送信装置。
(付記A6)
前記残余再生時間は、前記無線端末へコンテンツの送信を開始した時刻から前記所定時刻までに送信を完了した前記コンテンツのデータサイズと、前記コンテンツのデータのビットレートと、前記送信を開始してからのデータサイズが所定値を満たした時刻から前記所定時刻までの経過時間とを用いて算出する付記A4に記載の送信装置。
(付記A7)
前記無線回線の品質情報である無線回線品質及び伝送レートの少なくとも1つの変化傾向に基づく将来値を予測する予測手段をさらに有し、
前記制御手段は、前記所定時刻における前記残余再生時間と、前記将来値とを用いて算出した残余再生時間将来値に応じて前記無線端末に無線リソースを割り当てる付記A4又はA6のいずれかに記載の送信装置。
(付記A8)
前記送信装置の上位に備えられた中継装置と前記送信装置の間のデータ転送に関する優先度又は前記データ転送のレートを、前記無線回線品質及び伝送レートの少なくとも1つの変化傾向に基づく前記将来値及び前記残余再生時間に基づいて決定し、前記中継装置へ通知する付記A7記載の送信装置。
(付記A9)
ネットワークを介して受信した無線端末宛のコンテンツのデータを、無線回線を介して当該無線端末へ送信する送信装置の制御方法であって、
前記無線端末が実行する前記コンテンツの処理の見込みを示す指標である処理見込指標を取得し、
前記処理見込指標に応じて、前記無線端末に無線リソースを割り当てる
送信装置の制御方法。
(付記A10)
ネットワークを介して受信した無線端末宛のコンテンツのデータを、無線回線を介して当該無線端末へ送信する送信装置の制御方法をコンピュータに実行させるプログラムであって、
前記無線端末が実行する前記コンテンツの処理の見込みを示す指標である処理見込指標を取得し、
前記処理見込指標に応じて、前記無線端末に無線リソースを割り当てる
送信装置の制御方法のプログラム。
以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
この出願は、2014年9月19日に出願された日本出願特願2014-192010を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1,3,5,7 配信システム
2,4,6,8 無線通信システム
10,11 サーバ装置
20,21,22,23,24 基地局
30,31 無線端末
40,41,42 トラヒック管理装置
50 ゲートウェイ装置
101,111 サーバ動作部
102 コンテンツデータ蓄積部
112 データ蓄積部
201 基地局動作部
202 バッファ
203,213 無線回線品質予測部
204,214 残余再生時間計算部
205,215,235,245 無線リソース割り当て部
301 無線端末動作部
302 コンテンツ再生部
312 アプリケーション実行部
401 トラヒック管理装置動作部
402 バッファ
403 有線回線伝送レート制御部
414 無線回線伝送レート予測部
415 残余再生時間計算部
501 ゲートウェイ装置動作部
502 優先度制御部
NW 通信回線
N1 無線インターフェース
N2 LTEコアネットワーク
91 サーバ装置
92 クライアント装置
2,4,6,8 無線通信システム
10,11 サーバ装置
20,21,22,23,24 基地局
30,31 無線端末
40,41,42 トラヒック管理装置
50 ゲートウェイ装置
101,111 サーバ動作部
102 コンテンツデータ蓄積部
112 データ蓄積部
201 基地局動作部
202 バッファ
203,213 無線回線品質予測部
204,214 残余再生時間計算部
205,215,235,245 無線リソース割り当て部
301 無線端末動作部
302 コンテンツ再生部
312 アプリケーション実行部
401 トラヒック管理装置動作部
402 バッファ
403 有線回線伝送レート制御部
414 無線回線伝送レート予測部
415 残余再生時間計算部
501 ゲートウェイ装置動作部
502 優先度制御部
NW 通信回線
N1 無線インターフェース
N2 LTEコアネットワーク
91 サーバ装置
92 クライアント装置
Claims (10)
- ネットワークを介して受信した無線端末宛のコンテンツのデータを、無線回線を介して当該無線端末へ送信する送信装置であって、
前記無線端末が実行する前記コンテンツの処理の見込みを示す指標である処理見込指標を取得する取得手段と、
前記処理見込指標に応じて、前記無線端末に無線リソースを割り当てる制御手段と、
を有する送信装置。 - 前記取得手段は、前記コンテンツの特性を示す情報を抽出し、抽出した前記コンテンツの特性を示す情報に基づき算出することにより、前記処理見込指標を取得する請求項1に記載の送信装置。
- 前記取得手段は、前記処理見込指標を前記無線端末から受信することにより取得する請求項1に記載の送信装置。
- 前記処理見込指標は、前記無線端末に蓄積され、かつ、所定時刻における、再生されていない前記コンテンツの再生に要する時間である残余再生時間である請求項1から3のいずれか1項に記載の送信装置。
- 前記処理見込指標は、前記送信装置が送信する前記無線端末宛のコンテンツの送信開始時刻から送信完了時刻までの時間である送信時間のうち、所定時刻における送信済みの時間を除いた残り時間である請求項1から3のいずれか1項に記載の送信装置。
- 前記残余再生時間は、前記無線端末へコンテンツの送信を開始した時刻から前記所定時刻までに送信を完了した前記コンテンツのデータサイズと、前記コンテンツのデータのビットレートと、前記送信を開始してからのデータサイズが所定値を満たした時刻から前記所定時刻までの経過時間とを用いて算出する請求項4に記載の送信装置。
- 前記無線回線の品質情報である無線回線品質及び伝送レートの少なくとも1つの変化傾向に基づく将来値を予測する予測手段をさらに有し、
前記制御手段は、前記所定時刻における前記残余再生時間と、前記将来値とを用いて算出した残余再生時間将来値に応じて前記無線端末に無線リソースを割り当てる請求項4又は6のいずれかに記載の送信装置。 - 前記送信装置の上位に備えられた中継装置と前記送信装置の間のデータ転送に関する優先度又は前記データ転送のレートを、前記無線回線品質及び伝送レートの少なくとも1つの変化傾向に基づく前記将来値及び前記残余再生時間に基づいて決定し、前記中継装置へ通知する請求項7記載の送信装置。
- ネットワークを介して受信した無線端末宛のコンテンツのデータを、無線回線を介して当該無線端末へ送信する送信装置の制御方法であって、
前記無線端末が実行する前記コンテンツの処理の見込みを示す指標である処理見込指標を取得し、
前記処理見込指標に応じて、前記無線端末に無線リソースを割り当てる
送信装置の制御方法。 - ネットワークを介して受信した無線端末宛のコンテンツのデータを、無線回線を介して当該無線端末へ送信する送信装置の制御方法をコンピュータに実行させるプログラムが格納された非一時的なコンピュータ可読媒体であって、
前記無線端末が実行する前記コンテンツの処理の見込みを示す指標である処理見込指標を取得し、
前記処理見込指標に応じて、前記無線端末に無線リソースを割り当てる
送信装置の制御方法のプログラムが格納された非一時的なコンピュータ可読媒体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016548531A JPWO2016042687A1 (ja) | 2014-09-19 | 2015-04-24 | 送信装置及びその制御方法並びにプログラム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-192010 | 2014-09-19 | ||
JP2014192010 | 2014-09-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016042687A1 true WO2016042687A1 (ja) | 2016-03-24 |
Family
ID=55532749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/002236 WO2016042687A1 (ja) | 2014-09-19 | 2015-04-24 | 送信装置及びその制御方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2016042687A1 (ja) |
WO (1) | WO2016042687A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018010436A1 (zh) * | 2016-07-12 | 2018-01-18 | 中兴通讯股份有限公司 | 一种车联网资源分配的方法、车联网终端及网络侧设备 |
WO2019017402A1 (ja) * | 2017-07-19 | 2019-01-24 | 日本電気株式会社 | 基地局、通信システム、通信制御方法、及び通信制御プログラム |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005531220A (ja) * | 2002-06-21 | 2005-10-13 | トムソン ライセンシング | 移動無線相互接続環境における記憶されたビデオストリーミングのための減少するネットワークqos要件 |
JP2010041708A (ja) * | 2008-08-04 | 2010-02-18 | Inha-Industry Partnership Inst | マルチメディアサービスを提供するためのスケジューリング方法 |
JP2010114517A (ja) * | 2008-11-04 | 2010-05-20 | Ntt Docomo Inc | 移動端末装置及び無線基地局装置 |
WO2013042758A1 (ja) * | 2011-09-21 | 2013-03-28 | 日本電気株式会社 | コンテンツ配信システム、キャッシュサーバおよびコンテンツ配信方法 |
-
2015
- 2015-04-24 JP JP2016548531A patent/JPWO2016042687A1/ja active Pending
- 2015-04-24 WO PCT/JP2015/002236 patent/WO2016042687A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005531220A (ja) * | 2002-06-21 | 2005-10-13 | トムソン ライセンシング | 移動無線相互接続環境における記憶されたビデオストリーミングのための減少するネットワークqos要件 |
JP2010041708A (ja) * | 2008-08-04 | 2010-02-18 | Inha-Industry Partnership Inst | マルチメディアサービスを提供するためのスケジューリング方法 |
JP2010114517A (ja) * | 2008-11-04 | 2010-05-20 | Ntt Docomo Inc | 移動端末装置及び無線基地局装置 |
WO2013042758A1 (ja) * | 2011-09-21 | 2013-03-28 | 日本電気株式会社 | コンテンツ配信システム、キャッシュサーバおよびコンテンツ配信方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018010436A1 (zh) * | 2016-07-12 | 2018-01-18 | 中兴通讯股份有限公司 | 一种车联网资源分配的方法、车联网终端及网络侧设备 |
CN107635186A (zh) * | 2016-07-12 | 2018-01-26 | 中兴通讯股份有限公司 | 一种车联网资源分配的方法、车联网终端及网络侧设备 |
WO2019017402A1 (ja) * | 2017-07-19 | 2019-01-24 | 日本電気株式会社 | 基地局、通信システム、通信制御方法、及び通信制御プログラム |
JPWO2019017402A1 (ja) * | 2017-07-19 | 2020-06-18 | 日本電気株式会社 | 基地局、通信システム、通信制御方法、及び通信制御プログラム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016042687A1 (ja) | 2017-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6593527B2 (ja) | 無線アクセスネットワークノード、外部ノード、及びこれらの方法 | |
JP2020535716A (ja) | 受信した体感品質情報に基づくリソース割り当ての最適化 | |
JP6635044B2 (ja) | 無線リソース制御システム、無線基地局、中継装置、無線リソース制御方法およびプログラム | |
US8958834B2 (en) | Resource control in a communication system | |
Kwan et al. | On radio admission control for LTE systems | |
WO2016068316A1 (ja) | 無線基地局、パケット送信装置、無線端末、制御方法、及びプログラム | |
EP3251451B1 (en) | Method and device for selecting uplink data | |
US10271345B2 (en) | Network node and method for handling a process of controlling a data transfer related to video data of a video streaming service | |
US10291541B1 (en) | Systems and methods for scheduling transmissions from an access node | |
JP6627966B2 (ja) | 無線アクセスネットワークノード、外部ノード、及びこれらの方法 | |
US20190037443A1 (en) | Method and apparatus for processing traffic in radio network system | |
US10313947B1 (en) | Systems and methods for load balancing in a wireless communication network | |
US11044636B2 (en) | Method and device for detecting congestion in data transmission path | |
US11632691B1 (en) | Dynamic PDCP duplication with bearer modification, to help overcome reduced wireless quality | |
WO2013182561A1 (en) | Data loading control | |
US9992788B2 (en) | Reducing interference between network nodes | |
WO2012114728A1 (ja) | 送信データ処理方法、情報処理方法、送信装置、及び受信装置 | |
WO2016042687A1 (ja) | 送信装置及びその制御方法 | |
JP6439414B2 (ja) | 通信装置 | |
JP2016063497A (ja) | 無線端末装置並びにその制御方法及びプログラム | |
Musabe et al. | Evaluation of a new scheduling scheme for VoIP with mobility in 3G LTE | |
US10397922B2 (en) | Method for allocating time-frequency resources for the transmission of data packets via a frequency selective channel | |
WO2016042686A1 (ja) | データ送信制御装置及び制御方法 | |
JP6790508B2 (ja) | データ流量制御方法、無線基地局装置、サーバ装置、中継装置、通信システム、プログラム | |
WO2017170011A1 (ja) | 無線端末、無線局及び無線端末の制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15842598 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016548531 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15842598 Country of ref document: EP Kind code of ref document: A1 |