WO2016041318A1 - 数据传输方法和装置 - Google Patents

数据传输方法和装置 Download PDF

Info

Publication number
WO2016041318A1
WO2016041318A1 PCT/CN2015/072337 CN2015072337W WO2016041318A1 WO 2016041318 A1 WO2016041318 A1 WO 2016041318A1 CN 2015072337 W CN2015072337 W CN 2015072337W WO 2016041318 A1 WO2016041318 A1 WO 2016041318A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
data frame
gfp
oduflex
data
Prior art date
Application number
PCT/CN2015/072337
Other languages
English (en)
French (fr)
Inventor
杨湘鄂
钟长龙
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016041318A1 publication Critical patent/WO2016041318A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems

Definitions

  • the present invention relates to the field of communications, and in particular, to a data transmission method and apparatus.
  • OTN Optical Transport Network
  • the underlying transport network meets the growing demand for data bandwidth.
  • the OTN network defines the frame format, overhead, and rate class.
  • OTN defines four transmission rate levels, namely OTU1, OTU2, OTU3, and OTU4 of the Optical Channel Transport Unit (OTUk).
  • the OTUk signal is the actual transmission signal, which consists of 4 rows by 4080 columns (4 * 4080 bytes).
  • the frame header uses a special flag signal, occupying the first column to the sixth column in the first row.
  • the fixed hexadecimal numbers are represented as F6, F6, F6, 28, 28, and 28, respectively.
  • the OTUk signal carries an ODUk (Optical Channel Data Unit).
  • One frame of the ODUk is composed of 4 rows by 3824 columns (4*3824 bytes), and the ODUk carries the OPUk (Optical Channel Payload Unit). Unit), OPUk one frame consists of 4 rows by 3808 columns (4 * 3808 bytes).
  • OPUk carries customer data.
  • IP networks OTN networks need to be able to directly carry Ethernet data. Therefore, how to realize Ethernet transmission of any rate and multiple channels on a unified OTN transmission platform is an urgent solution. The problem.
  • the embodiment of the invention provides a data transmission method and device, which solves at least the problem that the data of the Ethernet of any rate and multiple channels in the related art is transmitted on the unified OTN transmission platform.
  • the present invention provides a data transmission method, and the data transmission method includes:
  • the step of converting the first GFP-F data frame into the first ODUflex data frame specifically includes:
  • the step of acquiring the channel number of the first GFP-F data frame further includes:
  • the step of converting the first ODUflex data frame forwarded to the designated port into the second GFP-F data frame comprises:
  • the step of acquiring the second GFP-F data frame corresponding to the frame slot position of the first ODUflex data frame includes:
  • the present invention further provides a time division to space division conversion method, and the time division to space division conversion method includes:
  • the present invention further provides a space division to time division conversion method, and the space division to time division conversion method includes:
  • the present invention further provides a data transmission apparatus, where the data transmission apparatus includes:
  • a frame closing module configured to encapsulate the received first Ethernet data frame into a first GFP-F data frame
  • a time division conversion module configured to convert the first GFP-F data frame into a first ODUflex data frame
  • a forwarding module configured to forward the first ODUflex data frame to a designated port of the cross matrix backplane
  • a space division conversion module configured to convert the first ODUflex data frame forwarded to the designated port into a second GFP-F data frame
  • a demapping module configured to deframe the second GFP-F data frame into a second Ethernet data frame and output the second Ethernet data frame.
  • the time division conversion module comprises:
  • a first channel acquiring unit configured to acquire a frame channel of the first GFP-F data frame
  • a first time slot obtaining unit configured to search a pre-configured time slot configuration table according to a frame channel of the first GFP-F data frame, and acquire an ODUflex frame time slot position corresponding to the first GFP-F data frame;
  • the first output unit is configured to output the first GFP-F data frame to the corresponding allocated ODUflex frame slot position.
  • the time division conversion module further includes:
  • the first configuration unit is configured to configure a slot configuration table corresponding to a frame channel of the first GFP-F data frame and a frame slot position of the first ODUflex data frame.
  • the space division conversion module comprises:
  • a second time slot obtaining unit configured to acquire a frame time slot position of the first ODUflex data frame
  • the second channel acquiring unit is configured to search the pre-configured time slot configuration table according to the frame time slot position of the first ODUflex data frame, and acquire the second GFP-F corresponding to the frame time slot position of the first ODUflex data frame.
  • a second output unit configured to output the first ODUflex data frame to the frame channel of the corresponding allocated second GFP-F data frame.
  • the space division conversion module further includes:
  • the second configuration unit is configured to configure a slot configuration table corresponding to a frame slot position of the first ODUflex data frame and a frame channel of the second GFP-F data frame.
  • the present invention further provides a time division to space division conversion apparatus, wherein the time division to space division conversion apparatus comprises:
  • a first channel acquiring module configured to acquire a frame channel of the first GFP-F data frame
  • a first time slot obtaining module configured to search a pre-configured time slot configuration table according to a frame channel of the first GFP-F data frame, and acquire an ODUflex frame time slot position corresponding to the first GFP-F data frame;
  • the first output module is configured to output the first GFP-F data frame to the corresponding allocated ODUflex frame slot position.
  • the present invention further provides a space division to time division conversion device, the space division to time division conversion device comprising:
  • a second time slot obtaining module configured to acquire a frame time slot position of the first ODUflex data frame
  • a second channel acquiring module configured to search a pre-configured time slot configuration table according to a frame slot position of the first ODUflex data frame, and acquire a second GFP-F corresponding to a frame time slot position of the first ODUflex data frame Frame channel of the data frame;
  • a second output module configured to output the first ODUflex data frame to the frame channel of the corresponding allocated second GFP-F data frame.
  • a data transmission method is provided, and the data transmission method includes:
  • the step of converting the first GFP-F data frame into the first ODUflex data frame specifically includes:
  • the step of converting the first ODUflex data frame forwarded to the designated port into the second GFP-F data frame comprises:
  • the frame channel corresponds to the second GFP-F frame slot. Achieve space division ODUflex data frame to time division GFP-F data frame conversion.
  • the present invention further provides a time division to space division conversion method, and the time division to space division conversion method includes:
  • the present invention further provides a space division to time division conversion method, and the space division to time division conversion method includes:
  • the frame channel corresponds to the second GFP-F frame slot.
  • the present invention further provides a data transmission apparatus, where the data transmission apparatus includes:
  • a frame closing module configured to encapsulate the received first Ethernet data frame into a first GFP-F data frame
  • a time division conversion module configured to convert the first GFP-F data frame into a first ODUflex data frame
  • a forwarding module configured to forward the first ODUflex data frame to a designated port of the cross matrix backplane
  • a space division conversion module configured to convert the first ODUflex data frame forwarded to the designated port into a second GFP-F data frame
  • a demapping module configured to deframe the second GFP-F data frame into a second Ethernet data frame and output the second Ethernet data frame.
  • the time division conversion module specifically includes:
  • a first configuration unit configured to configure a correspondence between the first GFP-F frame channel and the first ODUflex frame time slot
  • a first writing unit configured to write a first GFP-F data frame in the first GFP-F frame channel to a corresponding location of the first storage module
  • a first reading unit configured to read out the first GFP-F data frame written to a corresponding position of the first storage module and write the first GFP-F data into a corresponding position of the first storage module
  • the frame is output to a first ODUflex frame slot corresponding to the first GFP-F frame channel.
  • the space division conversion module comprises:
  • a second configuration unit configured to configure a correspondence between the first ODUflex frame channel and the second GFP-F frame time slot
  • a second writing unit configured to write the first ODUflex data frame to a corresponding location of the second storage module
  • a second readout unit configured to read out the first ODUflex data frame written in a corresponding position of the second storage module and write the first ODUflex data frame in a corresponding position of the second storage module Outputting to a second GFP-F frame slot corresponding to the first ODUflex frame channel.
  • the present invention further provides a time division to space division conversion apparatus, wherein the time division to space division conversion apparatus comprises:
  • a first configuration module configured to configure a correspondence between the first GFP-F frame channel and the first ODUflex frame time slot
  • a first writing module configured to write a first GFP-F data frame in the first GFP-F frame channel to a corresponding location of the first storage module
  • a first readout module configured to read out the first GFP-F data frame written to a corresponding location of the first storage module and write the first GFP-F data to a corresponding location of the first storage module
  • the frame is output to a first ODUflex frame slot corresponding to the first GFP-F frame channel.
  • the present invention further provides a space division to time division conversion device, the space division to time division conversion device comprising:
  • a second configuration module configured to configure a correspondence between the first ODUflex frame channel and the second GFP-F frame time slot
  • a second writing module configured to write the first ODUflex data frame to a corresponding location of the second storage module
  • a second readout module configured to read out the first ODUflex data frame written in a corresponding position of the second storage module and write the first ODUflex data frame in a corresponding position of the second storage module Outputting to a second GFP-F frame slot corresponding to the first ODUflex frame channel.
  • the data transmission method provided by the present invention is configured to encapsulate the received first Ethernet data frame into a first GFP-F data frame; convert the first GFP-F data frame into a first ODUflex data frame; An ODUflex data frame is forwarded to a designated port of the cross-matrix backplane; the first ODUflex data frame forwarded to the designated port is converted into a second GFP-F data frame; and the second GFP-F data frame is deframed to The second Ethernet data frame outputs the second Ethernet data frame.
  • the data transmission method provided by the invention solves the problem that the data of the Ethernet of any rate and multiple channels is transmitted on the unified OTN transmission platform, and the type of the board is greatly reduced and the board is improved compared with the traditional WDM. And the flexibility of port access, mapping, multiplexing, and scheduling capabilities; at the same time, the cross-matrix backplane supports ODUflex cross-scheduling, and the service scheduling mode is flexible.
  • FIG. 1 is a schematic flow chart of an embodiment of a data transmission method according to the present invention.
  • FIG. 2 is a schematic flowchart of the steps of converting the first GFP-F data frame into the first ODUflex data frame in FIG. 1;
  • FIG. 3 is a schematic flowchart of a process of converting a first ODUflex data frame forwarded to a designated port into a second GFP-F data frame in FIG. 1;
  • FIG. 4 is a schematic flow chart of an embodiment of a method for converting time-division to space-divided according to the present invention
  • FIG. 5 is a schematic flowchart diagram of an embodiment of a method for converting a space division to a time division according to the present invention
  • FIG. 6 is a schematic diagram of functional modules of an embodiment of a data transmission device according to the present invention.
  • FIG. 7 is a schematic diagram of functional modules of the time division conversion module of FIG. 6;
  • FIG. 8 is a schematic diagram of functional modules of the hollow sub-conversion module of FIG. 6;
  • FIG. 9 is a schematic diagram of functional modules of a time division to space division conversion device according to the present invention.
  • Figure 10 is a schematic diagram showing the functional blocks of the space division to time division conversion device of the present invention.
  • FIG. 1 is a schematic flowchart of an embodiment of a data transmission method according to an embodiment of the present invention.
  • the data transmission method includes:
  • Step S100 Encapsulate the received first Ethernet data frame into a first GFP-F data frame.
  • the data transmission device receives the first Ethernet data frame transmitted by the Ethernet, adopts the GFP-F mode, and maps the received first Ethernet data frame to the first GFP-F data frame for output, and maps the Ethernet data frame to In the GFP-F data frame, the Ethernet data frames of each channel occupy the same data bus in a time division multiplexed manner, and the GFP-F data frame is mapped into a serial Ethernet data frame.
  • the Ethernet data is carried to the OTN network by using a GFP (Generic Framing Procedure) method.
  • GFP can transmit variable length data packets in a byte-synchronized link and transmit fixed-length data blocks. It is an advanced, simple, and flexible data signal adaptation and mapping technology.
  • GFP Global System for Mobile Communications
  • GFP-T GFP-Transparent
  • GFP-F GFP-Frame-mapped
  • Transparent transmission mode GFP-T is a block-code oriented data stream mode.
  • a block-coded signal with a fixed frame length can be processed in a transparent mapping manner without waiting for the entire frame.
  • this adaptation is suitable for processing real-time services such as video signals (DVB-Digital Video Broadcast) and block-encoded signals such as storage services.
  • Frame mapping mode (GFP-F) is a PDU-oriented data stream mode, which can be processed after receiving a complete frame by mapping the entire frame (Frame-Mapped), etc.; GFP frames of different services can be time-division multiplexed to a higher-rate channel transmission. This packet multiplexing method greatly improves the utilization of network bandwidth.
  • Step S200 Convert the first GFP-F data frame into a first ODUflex data frame.
  • the data transmission device converts the first GFP-F data frame of the time division into the first ODUflex data frame of the space division, and further maps the GFP-F data frame to the ODUflex data frame data frame of the OTN.
  • Ethernet data of any rate is mapped to a GFP-F frame using the GFP-F mode.
  • the GFP-F frame needs to be further mapped to the OTN frame.
  • the GFP-F frame needs to be mapped to the Flexible ODU (ODUflex) frame.
  • the data entering the GFP-F mapping module has a channel number.
  • GFP-F processing is performed in a channel manner, and a channel is processed in a certain period of time.
  • Ethernet data map A channel Ethernet data to GFP-F frame; wait for the Ethernet data of A channel after processing, then process the next channel (assumed to be B channel), B channel
  • the Ethernet data is mapped to a GFP-F frame.
  • the GFP-F frame after GFP-F mapping is also divided into individual channels with channel number indication.
  • the data after GFP-F mapping is time-dependent.
  • the data of each channel is serial time division.
  • the so-called time division refers to the time period in which the data of each channel uses the same data bus.
  • the data at this time needs to be mapped to ODUflex data of space division.
  • the so-called space division refers to the existence of multiple data buses at the same time.
  • Each data bus carries data of different channels.
  • Step S300 Forward the first ODUflex data frame to a designated port of the cross matrix backplane.
  • the data transmission device forwards the first ODUflex data frame to the corresponding port of the cross-matrix backplane through the cross-matrix backplane.
  • Step S400 Convert the first ODUflex data frame forwarded to the designated port into a second GFP-F data frame.
  • the data transmission device calls the GFP-F data frame carried by the ODUflex signal, converts the first ODUflex data frame of the space division into the second GFP-F data frame of the time division, and maps the ODUflex data frame of the OTN to the GFP-F data frame. .
  • Step S500 Defragment the second GFP-F data frame into a second Ethernet data frame and output the second Ethernet data frame.
  • the data transmission device demaps the converted second GFP-F data frame into a second Ethernet data frame, maps the GFP-F data frame to an Ethernet data frame, and maps the Ethernet data frame to a GFP-F data frame.
  • the same data bus GFP-F data frame is multiplexed into multi-channel Ethernet data frames by means of space division multiplexing.
  • the data transmission method provided by the embodiment solves the problem that the data of the Ethernet of any rate and multiple channels is transmitted on the unified OTN transmission platform, and the type of the board is greatly reduced and the board is improved compared with the traditional WDM.
  • the flexibility of card and port access, mapping, multiplexing, and scheduling capabilities; while the cross-matrix backplane supports ODUflex cross-scheduling, and the service scheduling mode is flexible.
  • FIG. 2 is a detailed flowchart of step S200 of the data transmission method in the embodiment, where the step S200 specifically includes:
  • Step S210A Configure a time slot configuration table corresponding to a frame channel position of the first GFP-F data frame and a frame time slot position of the first ODUflex data frame.
  • the data transmission device configures a time slot configuration table of the first GFP-F frame channel and the first ODUflex frame time slot.
  • the ODUflex has a total of 8 time slots, and each channel can be configured with one time slot or More than one time slot can be configured with up to 8 time slots, and up to 8 channels can be supported. All channels occupy a total of 8 time slots.
  • ODUflex has a total of 32 time slots. Each channel can be configured with 1 time slot or more than 1 time slot. Up to 32 time slots can be configured, and up to 32 channels can be supported. Occupies 32 time slots.
  • ODUflex has a total of 80 time slots.
  • Each channel can be configured with 1 time slot or more than 1 time slot. Up to 80 time slots can be configured, and up to 80 channels can be supported. Occupies 80 time slots. Assuming that the first GFP-F frame channel includes the road A and the channel B, and the channel A needs to occupy the first time slot and the second time slot of the first ODUflex, then the configuration A channel corresponds to the first time slot of the first ODUflex frame time slot, Second time slot. It is assumed that the channel B needs to occupy the 45th slot and the 78th slot of the first ODUflex frame slot, and the configuration B channel corresponds to the 45th slot and the 78th slot of the first ODUflex frame slot.
  • the corresponding relationship between the channel and the time slot may be a one-to-one relationship, or a one-to-many relationship, that is, a certain channel may correspond to only one time slot, or may correspond to two or more time slots.
  • Step S210 Acquire a frame channel of the first GFP-F data frame.
  • the data transmission device acquires each frame channel of the first GFP-F data frame transmission.
  • Step S220 Search a pre-configured time slot configuration table according to the frame channel of the first GFP-F data frame, and obtain an ODUflex frame time slot position corresponding to the first GFP-F data frame.
  • the data transmission device searches for an ODUflex frame slot position corresponding to the frame channel of the first GFP-F data frame according to the pre-configured slot configuration table.
  • Step S230 Output the first GFP-F data frame to the corresponding allocated ODUflex frame slot position.
  • the data transmission device learns the corresponding time slot position occupied by the first GFP-F data frame according to the correspondence between the first GFP-F frame channel and the first ODUflex frame time slot configured in the time slot configuration table, and the first GFP-F The data frame is output to the frame time slot position of the first ODUflex of the corresponding location.
  • This embodiment solves the mapping of an arbitrary rate Ethernet data frame to an ODUflex frame, and realizes time division of the GFP-F data frame to the space division ODUflex data frame conversion and time division of the GFP-F data frame to the space division ODUflex data frame.
  • Flexible scheduling
  • FIG. 3 is a detailed flowchart of step S400 of the data transmission method in the embodiment, where the step S400 specifically includes:
  • Step S410A Configure a slot configuration table corresponding to a frame slot position of the first ODUflex data frame and a frame channel of the second GFP-F data frame.
  • the data transmission device is configured to configure a slot configuration table corresponding to a frame slot position of the first ODUflex data frame and a frame channel of the second GFP-F data frame.
  • the ODUflex has a total of 8 time slots, each Each channel can be configured with 1 time slot or more than 1 time slot. Up to 8 time slots can be configured, and up to 8 channels can be supported. All channels occupy a total of 8 time slots.
  • ODUflex has a total of 32 time slots. Each channel can be configured with 1 time slot or more than 1 time slot. Up to 32 time slots can be configured, and up to 32 channels can be supported. Occupies 32 time slots.
  • ODUflex has a total of 80 time slots. Each channel can be configured with 1 time slot or more than 1 time slot. Up to 80 time slots can be configured, and up to 80 channels can be supported. Occupies 80 time slots. Assuming that the second GFP-F frame channel includes the road A and the channel B, and the first time slot and the second time slot of the first ODUflex need to occupy the channel A, the first time slot and the second time slot of the first ODUflex frame time slot are configured. The gap corresponds to the A channel.
  • the 45th time slot and the 78th time slot of the first ODUflex frame time slot need to occupy the channel B, and the 45th time slot and the 78th time slot of the first ODUflex frame time slot are configured to correspond to the B channel.
  • the corresponding relationship between the time slot and the channel may be a one-to-one relationship, or a many-to-one relationship, that is, a certain time slot may correspond to only one channel, and two or more time slots correspond to one channel.
  • Step S410 Acquire a frame time slot position of the first ODUflex data frame.
  • the data transmission device acquires each frame slot position of the first ODUflex data frame transmission.
  • Step S420 Search a pre-configured slot configuration table according to the frame slot position of the first ODUflex data frame, and obtain a frame channel of the second GFP-F data frame corresponding to the frame slot position of the first ODUflex data frame.
  • the data transmission device searches for a frame channel of the second GFP-F data frame corresponding to the frame slot position of the first ODUflex data frame according to the pre-configured slot configuration table.
  • Step S430 Output the first ODUflex data frame to the frame channel of the corresponding allocated second GFP-F data frame.
  • the data transmission device outputs the first ODUflex data frame to the corresponding allocated number according to the slot configuration table corresponding to the frame slot position of the first ODUflex data frame configured by the slot configuration table and the frame channel of the second GFP-F data frame.
  • the frame channel of the two GFP-F data frames is the frame channel of the two GFP-F data frames.
  • mapping of the ODUflex data frame to the Ethernet data frame is solved, and the conversion of the ODUflex data frame from the space division to the GFP-F data frame of the time division and the ODUflex data frame of the space division to the GFP-F data frame of the time division are realized.
  • Flexible scheduling
  • FIG. 4 is a time division to space division conversion method.
  • the time division to space division conversion method includes:
  • Step S10 Obtain a frame channel of the first GFP-F data frame.
  • the time division to the air separation device acquires each frame channel of the first GFP-F data frame transmission.
  • Step S20 Searching a pre-configured time slot configuration table according to the frame channel of the first GFP-F data frame, and acquiring an ODUflex frame time slot position corresponding to the first GFP-F data frame.
  • the data transmission device searches for an ODUflex frame slot position corresponding to the frame channel of the first GFP-F data frame according to the pre-configured slot configuration table.
  • Step S30 Output the first GFP-F data frame to the corresponding allocated ODUflex frame time slot position.
  • the data transmission device learns the corresponding time slot position occupied by the first GFP-F data frame according to the correspondence between the first GFP-F frame channel and the first ODUflex frame time slot configured in the time slot configuration table, and the first GFP-F The data frame is output to the frame time slot position of the first ODUflex of the corresponding location.
  • the time-to-space-to-space conversion device learns the corresponding time slot occupied by the first GFP-F data frame according to the corresponding relationship between the configured first GFP-F frame channel and the first ODUflex frame time slot, and writes the corresponding to the storage module.
  • the first GFP-F data frame of the location is read out and output to the slot position of the corresponding first ODUflex frame slot.
  • the time division to space division conversion method solveds the mapping of an arbitrary rate Ethernet data frame to an ODUflex frame, and implements time division GFP-F data frame to space division ODUflex data frame conversion and time division GFP-F. Flexible scheduling of data frames to space-division ODUflex data frames.
  • FIG. 5 is a method for converting a space division to a time division.
  • the method for converting the space division to the time division includes:
  • Step S40 Acquire a second GFP-F data frame corresponding to a frame slot position of the first ODUflex data frame.
  • the space division to time division conversion means acquires the position of each frame slot of the first ODUflex data frame transmission.
  • Step S50 Search a pre-configured slot configuration table according to the frame slot position of the first ODUflex data frame, and obtain a frame channel of the second GFP-F data frame corresponding to the frame slot position of the first ODUflex data frame.
  • the space division to time division conversion means finds a frame channel of the second GFP-F data frame corresponding to the frame slot position of the first ODUflex data frame according to the pre-configured slot configuration table.
  • Step S60 Output the first ODUflex data frame to the frame channel of the corresponding allocated second GFP-F data frame.
  • the space division to time division conversion device outputs the first ODUflex data frame to the time slot configuration table corresponding to the frame time slot of the first ODUflex data frame configured by the time slot configuration table and the frame channel of the second GFP-F data frame. Corresponding to the frame channel of the allocated second GFP-F data frame.
  • the space division to time division conversion method provided in this embodiment solves the mapping of the ODUflex data frame to the Ethernet data frame, and realizes the conversion of the ODUflex data frame of the space division to the GFP-F data frame of the time division and the ODUflex of the space division. Flexible scheduling of data frames to time-division GFP-F data frames.
  • FIG. 6 is a schematic diagram of a functional module of an embodiment of a data transmission apparatus according to the present invention.
  • the data transmission apparatus includes:
  • the frame closure module 10 is configured to encapsulate the received first Ethernet data frame into a first GFP-F data frame;
  • the time division conversion module 20 is configured to convert the first GFP-F data frame into a first ODUflex data frame
  • the forwarding module 30 is configured to forward the first ODUflex data frame to a designated port of the cross matrix backplane;
  • the space division conversion module 40 is configured to convert the first ODUflex data frame forwarded to the designated port into a second GFP-F data frame;
  • the demapping module 50 is configured to deframe the second GFP-F data frame into a second Ethernet data frame and output the second Ethernet data frame.
  • the frame closure module 10 of the data transmission device receives the first Ethernet data frame transmitted by the Ethernet, adopts the GFP-F mode, and maps the received first Ethernet data frame into the first GFP-F data frame for output, and the Ethernet
  • the network data frame is mapped to the GFP-F data frame, and the Ethernet data frames of each channel occupy the same data bus in a time division multiplexed manner, and the GFP-F data frame is mapped into a serial Ethernet data frame.
  • the Ethernet data is carried to the OTN network by using a GFP (Generic Framing Procedure) method.
  • GFP can transmit variable-length data packets in a byte-synchronized link and transmit fixed-length data.
  • Block is an advanced, simple and flexible data signal adaptation and mapping technology.
  • GFP Global System for Mobile Communications
  • GFP-T GFP-Transparent
  • GFP-F GFP-Frame-mapped
  • Transparent transmission mode GFP-T is a block-code oriented data stream mode.
  • a block-coded signal with a fixed frame length can be processed in a transparent mapping manner without waiting for the entire frame.
  • this adaptation is suitable for processing real-time services such as video signals (DVB-Digital Video Broadcast) and block-encoded signals such as storage services.
  • Frame mapping mode (GFP-F) is a PDU-oriented data stream mode, which can be processed after receiving a complete frame by mapping the entire frame (Frame-Mapped), etc.; GFP frames of different services can be time-division multiplexed to a higher-rate channel transmission. This packet multiplexing method greatly improves the utilization of network bandwidth.
  • the time division conversion module 20 of the data transmission device converts the first GFP-F data frame of the time division into the first ODUflex data frame of the space division, and further maps the GFP-F data frame to the ODUflex data frame data frame of the OTN.
  • Ethernet data of any rate is mapped to a GFP-F frame using the GFP-F mode.
  • the GFP-F frame needs to be further mapped to the OTN frame.
  • the GFP-F frame needs to be mapped to the Flexible ODU (ODUflex) frame.
  • the data entering the GFP-F mapping module has a channel number.
  • GFP-F processing is performed in a channel manner, and Ethernet data of a certain channel (assumed to be A channel) is processed in a certain period of time, and A-channel Ethernet data is mapped to a GFP-F frame; After the Ethernet data of the A channel, the next channel (assumed to be the B channel) is processed, and the Ethernet data of the B channel is mapped to the GFP-F frame.
  • the GFP-F frame after GFP-F mapping is also divided into individual channels with channel number indication.
  • the data after GFP-F mapping is time-dependent.
  • the data of each channel is serial time division. The so-called time division refers to the time period in which the data of each channel uses the same data bus.
  • the data at this time needs to be mapped to ODUflex data of space division.
  • space division refers to the existence of multiple data buses at the same time.
  • Each data bus carries data of different channels.
  • GFP-F frame data of different channels that is, Ethernet data of different channels. This requires converting the GFP-F frame data of different channels of time division into air separation while existing on separate data buses.
  • the forwarding module 30 of the data transmission device forwards the first ODUflex data frame to the corresponding port of the cross-matrix backplane through the cross-matrix backplane.
  • the space division conversion module 40 of the data transmission device calls out the GFP-F data frame carried by the ODUflex signal, converts the first ODUflex data frame of the space division into the second GFP-F data frame of the time division, and maps the ODUflex data frame of the OTN. Go to the GFP-F data frame.
  • the deframing module 50 of the data transmission device demaps the converted second GFP-F data frame into a second Ethernet data frame, maps the GFP-F data frame to an Ethernet data frame, and maps the Ethernet data frame to GFP.
  • -F data frame the same data bus GFP-F data frame is multiplexed into multi-channel Ethernet data frames by means of space division multiplexing.
  • the data transmission device solves the problem that the data of the Ethernet of any rate and multiple channels is transmitted on the unified OTN transmission platform, and the type of the card is greatly reduced and the board is improved compared with the traditional WDM.
  • the time division conversion module specifically includes:
  • the first configuration unit 21 is configured to configure a slot configuration table corresponding to a frame channel of the first GFP-F data frame and a frame slot position of the first ODUflex data frame.
  • the first channel obtaining unit 22 is configured to acquire a frame channel of the first GFP-F data frame.
  • the first time slot obtaining unit 23 is configured to search a pre-configured time slot configuration table according to the frame channel of the first GFP-F data frame, and acquire an ODUflex frame time slot position corresponding to the first GFP-F data frame. .
  • the first output unit 24 is configured to output the first GFP-F data frame to the corresponding allocated ODUflex frame slot position.
  • the first configuration unit 21 of the data transmission device configures a slot configuration table of the first GFP-F frame channel and the first ODUflex frame slot.
  • the ODUflex has a total of 8 time slots, and each channel can be configured. Configure one time slot or more than one time slot. Up to eight time slots can be configured. Up to eight channels can be supported. All channels occupy a total of eight time slots.
  • ODUflex has a total of 32 time slots. Each channel can be configured with 1 time slot or more than 1 time slot. Up to 32 time slots can be configured, and up to 32 channels can be supported. Occupies 32 time slots.
  • ODUflex has a total of 80 time slots.
  • Each channel can be configured with 1 time slot or more than 1 time slot. Up to 80 time slots can be configured, and up to 80 channels can be supported. Occupies 80 time slots. Assuming that the first GFP-F frame channel includes the road A and the channel B, and the channel A needs to occupy the first time slot and the second time slot of the first ODUflex, then the configuration A channel corresponds to the first time slot of the first ODUflex frame time slot, Second time slot. Assume that channel B needs to occupy the first ODUflex frame. The 45th slot and the 78th slot of the slot may be configured to correspond to the 45th slot and the 78th slot of the first ODUflex frame slot. The corresponding relationship between the channel and the time slot may be a one-to-one relationship, or a one-to-many relationship, that is, a certain channel may correspond to only one time slot, or may correspond to two or more time slots.
  • the first channel acquisition unit 22 of the data transmission device acquires each frame channel of the first GFP-F data frame transmission.
  • the first time slot acquisition unit 23 of the data transmission device searches for the ODUflex frame time slot position corresponding to the frame channel of the first GFP-F data frame according to the pre-configured time slot configuration table.
  • the first output unit 24 of the data transmission device learns the corresponding time slot position occupied by the first GFP-F data frame according to the correspondence between the first GFP-F frame channel and the first ODUflex frame time slot configured by the time slot configuration table.
  • the first GFP-F data frame is output to the frame time slot position of the first ODUflex of the corresponding location.
  • This embodiment solves the mapping of an arbitrary rate Ethernet data frame to an ODUflex frame, and realizes time division of the GFP-F data frame to the space division ODUflex data frame conversion and time division of the GFP-F data frame to the space division ODUflex data frame.
  • Flexible scheduling
  • the space division conversion module specifically includes:
  • the second configuration unit 41 is configured to configure a slot configuration table corresponding to a frame slot of the first ODUflex data frame and a frame channel of the second GFP-F data frame.
  • the second time slot obtaining unit 42 is configured to acquire a frame time slot position of the first ODUflex data frame
  • the second channel acquiring unit 43 is configured to search the pre-configured slot configuration table according to the frame slot position of the first ODUflex data frame, and acquire the second GFP corresponding to the frame slot position of the first ODUflex data frame.
  • the second output unit 44 is configured to output the first ODUflex data frame to the frame channel of the corresponding allocated second GFP-F data frame.
  • the second configuration unit 41 configured by the data transmission device configures a slot configuration table corresponding to the frame slot position of the first ODUflex data frame and the frame channel of the second GFP-F data frame.
  • the ODUflex has a total of 8 time slots, each channel can be configured with 1 time slot or more than 1 time slot. Up to 8 time slots can be configured, and up to 8 channels can be supported. All channels occupy a total of 8 time slots.
  • ODUflex has a total of 32 time slots. Each channel can be configured with 1 time slot or more than 1 time slot. Up to 32 time slots can be configured, and up to 32 channels can be supported. Occupies 32 time slots.
  • ODUflex has a total of 80 time slots, and each channel can be configured with 1 time slot or more than 1 time slot. To configure 80 time slots, up to 80 channels can be supported, and all channels occupy a total of 80 time slots. Assuming that the second GFP-F frame channel includes the road A and the channel B, and the first time slot and the second time slot of the first ODUflex need to occupy the channel A, the first time slot and the second time slot of the first ODUflex frame time slot are configured. The gap corresponds to the A channel.
  • the 45th time slot and the 78th time slot of the first ODUflex frame time slot need to occupy the channel B, and the 45th time slot and the 78th time slot of the first ODUflex frame time slot are configured to correspond to the B channel.
  • the corresponding relationship between the time slot and the channel may be a one-to-one relationship, or a many-to-one relationship, that is, a certain time slot may correspond to only one channel, and two or more time slots correspond to one channel.
  • the second time slot acquisition unit 42 of the data transmission device acquires the respective frame time slot positions of the first ODUflex data frame transmission.
  • the second channel acquisition unit 43 of the data transmission device searches for a frame channel of the second GFP-F data frame corresponding to the frame slot position of the first ODUflex data frame according to the pre-configured slot configuration table.
  • the second output unit 44 of the data transmission device sets the first ODUflex data frame according to the slot configuration table corresponding to the frame slot position of the first ODUflex data frame configured by the slot configuration table and the frame channel of the second GFP-F data frame. Output to the frame channel corresponding to the assigned second GFP-F data frame.
  • mapping of the ODUflex data frame to the Ethernet data frame is solved, and the conversion of the ODUflex data frame from the space division to the GFP-F data frame of the time division and the ODUflex data frame of the space division to the GFP-F data frame of the time division are realized.
  • Flexible scheduling
  • the present invention further provides a time division to space division conversion apparatus, wherein the time division to space division conversion apparatus comprises:
  • the first channel obtaining module 110 is configured to acquire a frame channel of the first GFP-F data frame
  • the first time slot obtaining module 120 is configured to search a pre-configured time slot configuration table according to the frame channel of the first GFP-F data frame, and acquire an ODUflex frame time slot position corresponding to the first GFP-F data frame. ;
  • the first output module 130 is configured to output the first GFP-F data frame to the corresponding allocated ODUflex frame slot position.
  • the first channel acquisition module 110 which is time-divided to the air separation device, acquires each frame channel of the first GFP-F data frame transmission.
  • the first time slot obtaining module 120 of the data transmission device searches for the ODUflex frame time slot position corresponding to the frame channel of the first GFP-F data frame according to the pre-configured time slot configuration table.
  • the first output module 130 of the data transmission device learns the corresponding time slot position occupied by the first GFP-F data frame according to the correspondence between the first GFP-F frame channel and the first ODUflex frame time slot configured by the time slot configuration table.
  • the first GFP-F data frame is output to the frame time slot position of the first ODUflex of the corresponding location.
  • the time division to space division conversion apparatus solves the mapping of an arbitrary rate Ethernet data frame to an ODUflex frame, and realizes time division of GFP-F data frame to space division ODUflex data frame conversion and time division GFP-F. Flexible scheduling of data frames to space-division ODUflex data frames.
  • the present invention further provides a space division to time division conversion apparatus, the space division to time division conversion apparatus comprising:
  • the second time slot obtaining module 210 is configured to acquire a frame time slot position of the first ODUflex data frame
  • the second channel obtaining module 220 is configured to search the pre-configured time slot configuration table according to the frame time slot position of the first ODUflex data frame, and acquire the second GFP corresponding to the frame time slot position of the first ODUflex data frame.
  • the second output module 230 is configured to output the first ODUflex data frame to the frame channel of the corresponding allocated second GFP-F data frame.
  • the second time slot acquisition module 210 of the space division to time division conversion device acquires the respective frame time slot positions of the first ODUflex data frame transmission.
  • the second channel acquisition module 220 of the space division to time division conversion device searches for a frame channel of the second GFP-F data frame corresponding to the frame slot position of the first ODUflex data frame according to the pre-configured slot configuration table.
  • the second output module 230 of the space division to time division conversion device configures the frame time slot position of the first ODUflex data frame and the time slot configuration table corresponding to the frame channel of the second GFP-F data frame, An ODUflex data frame is output to a frame channel corresponding to the allocated second GFP-F data frame.
  • the space division to time division conversion apparatus solveds the mapping of the ODUflex data frame to the Ethernet data frame, and realizes the conversion of the space division ODUflex data frame to the time division GFP-F data frame and the space division ODUflex. Flexible scheduling of data frames to time-division GFP-F data frames.
  • the data transmission method and apparatus provided by the embodiments of the present invention have the following beneficial effects: compared with the traditional WDM, the board type is greatly reduced, and the board and port access, mapping, multiplexing, and scheduling are improved. Capability flexibility; at the same time, the cross-matrix backplane supports ODUflex cross-scheduling and flexible service scheduling.

Abstract

本发明公开了一种数据传输方法,通过将接收的第一以太网数据帧封装成第一GFP-F数据帧;将第一GFP-F数据帧转换为第一ODUflex数据帧;将第一ODUflex数据帧转发至交叉矩阵背板的指定端口;将转发至指定端口的第一ODUflex数据帧转换为第二GFP-F数据帧;将第二GFP-F数据帧解帧为第二以太网数据帧并将第二以太网数据帧进行输出。本发明进一步公开了一种数据传输装置。本发明解决了任意速率、多个通道的以太网的数据在统一的OTN传送平台上的传送的问题,与传统WDM相比,大大减少了板卡种类,提高了板卡和端口接入、映射、复用、调度能力的灵活性。

Description

数据传输方法和装置 技术领域
本发明涉及通信领域,尤其涉及数据传输方法和装置。
背景技术
随着互联网的发展,数据流量增长迅速,光通信的DWDM(Dense Wavelength Division Multiplexing,密集型光波复用)网络已经不能满足需要,国际标准组织提出了采用OTN(Optical Transport Network,光传送网)作为底层传输网络,以满足日益增长的数据带宽需求。OTN网络定义了帧格式、开销和速率等级等。目前OTN定义了4个传输速率等级,分别是光通路传送单元(Optical Channel Transport Unit,简称OTUk)的OTU1、OTU2、OTU3、OTU4。OTUk信号是实际的传输信号,由4行乘4080列(4*4080字节)构成一帧。帧头采用特殊的标志信号,占用第1行中的第1列至第6列,一般固定用16进制数分别表示为F6、F6、F6、28、28、28。通过搜寻这6个固定字节,可以找到帧头,从而找到帧内其它数据。OTUk信号承载了ODUk(Optical Channel Data Unit,光通路数据单元),ODUk的一帧由4行乘3824列(4*3824字节)构成,ODUk承载了OPUk(Optical Channel Payload Unit,光通道净荷单元),OPUk一帧由4行乘3808列(4*3808字节)构成。OPUk承载客户数据,随着IP网络的发展,OTN网络需要能够直接承载以太网数据,因此,如何实现任意速率、多个通道的以太网的数据在统一的OTN传送平台上进行传送是一个亟待解决的问题。
发明内容
本发明实施例提供了一种数据传输方法和装置,以至少解决相关技术中任意速率、多个通道的以太网的数据在统一的OTN传送平台上进行传送的问题。
为实现上述目的,本发明提供一种数据传输方法,所述数据传输方法包括:
将接收的第一以太网数据帧封装成第一帧映射模式GFP-F数据帧;
将所述第一GFP-F数据帧转换为第一灵活速率ODUflex数据帧;
将所述第一ODUflex数据帧转发至交叉矩阵背板的指定端口;
将所述转发至指定端口的第一ODUflex数据帧转换为第二GFP-F数据帧;
将所述第二GFP-F数据帧解帧为第二以太网数据帧并将所述第二以太网数据帧进行输出。
优选地,所述将第一GFP-F数据帧转换为第一ODUflex数据帧的步骤具体包括:
获取所述第一GFP-F数据帧的帧通道;
根据所述第一GFP-F数据帧的帧通道查找预先配置的时隙配置表,获取所述第一GFP-F数据帧对应分配的ODUflex帧时隙位置;
将所述第一GFP-F数据帧输出至所述对应分配的ODUflex帧时隙位置。
优选地,所述获取第一GFP-F数据帧的通道号的步骤之前还包括:
配置所述第一GFP-F数据帧的帧通道与第一ODUflex数据帧的帧时隙位置对应的时隙配置表。
优选地,所述将转发至指定端口的第一ODUflex数据帧转换为第二GFP-F数据帧的步骤具体包括:
获取所述第一ODUflex数据帧的帧时隙位置;
根据所述第一ODUflex数据帧的帧时隙位置查找预先配置的时隙配置表,获取所述第一ODUflex数据帧的帧时隙位置对应的第二GFP-F数据帧的帧通道;
将所述第一ODUflex数据帧输出至所述对应分配的第二GFP-F数据帧的帧通道。
优选地,所述获取第一ODUflex数据帧的帧时隙位置对应的第二GFP-F数据帧的步骤之前包括:
配置第一ODUflex数据帧的帧时隙位置与第二GFP-F数据帧的帧通道对应的时隙配置表。
为了解决上述的技术问题,本发明进一步提供一种时分到空分的转换方法,所述时分到空分的转换方法包括:
获取第一GFP-F数据帧的帧通道;
根据所述第一GFP-F数据帧的帧通道查找预先配置的时隙配置表,获取所述第一GFP-F数据帧对应分配的ODUflex帧时隙位置;
将所述第一GFP-F数据帧输出至所述对应分配的ODUflex帧时隙位置。
为了解决上述的技术问题,本发明进一步提供一种空分到时分的转换方法,所述空分到时分的转换方法包括:
获取所述第一ODUflex数据帧的帧时隙位置对应的第二GFP-F数据帧;
根据所述第一ODUflex数据帧的帧时隙位置查找预先配置的时隙配置表,获取所述第一ODUflex数据帧的帧时隙位置对应的第二GFP-F数据帧的帧通道;
将所述第一ODUflex数据帧输出至所述对应分配的第二GFP-F数据帧的帧通道。
为了解决上述的技术问题,本发明进一步提供一种数据传输装置,所述数据传输装置包括:
封帧模块,设置为将接收的第一以太网数据帧封装成第一GFP-F数据帧;
时分转换模块,设置为将所述第一GFP-F数据帧转换为第一ODUflex数据帧;
转发模块,设置为将所述第一ODUflex数据帧转发至交叉矩阵背板的指定端口;
空分转换模块,设置为将所述转发至指定端口的第一ODUflex数据帧转换为第二GFP-F数据帧;
解帧模块,设置为将所述第二GFP-F数据帧解帧为第二以太网数据帧并将所述第二以太网数据帧进行输出。
优选地,所述时分转换模块包括:
第一通道获取单元,设置为获取第一GFP-F数据帧的帧通道;
第一时隙获取单元,设置为根据所述第一GFP-F数据帧的帧通道查找预先配置的时隙配置表,获取所述第一GFP-F数据帧对应分配的ODUflex帧时隙位置;
第一输出单元,设置为将所述第一GFP-F数据帧输出至所述对应分配的ODUflex帧时隙位置。
优选地,所述时分转换模块还包括:
第一配置单元,设置为配置第一GFP-F数据帧的帧通道与第一ODUflex数据帧的帧时隙位置对应的时隙配置表。
优选地,所述空分转换模块包括:
第二时隙获取单元,设置为获取第一ODUflex数据帧的帧时隙位置;
第二通道获取单元,设置为根据所述第一ODUflex数据帧的帧时隙位置查找预先配置的时隙配置表,获取所述第一ODUflex数据帧的帧时隙位置对应的第二GFP-F数据帧的帧通道;
第二输出单元,设置为将所述第一ODUflex数据帧输出至所述对应分配的第二GFP-F数据帧的帧通道。
优选地,所述空分转换模块还包括:
第二配置单元,设置为配置第一ODUflex数据帧的帧时隙位置与第二GFP-F数据帧的帧通道对应的时隙配置表。
为了解决上述的技术问题,本发明进一步提供一种时分到空分的转换装置,所述时分到空分的转换装置包括:
第一通道获取模块,设置为获取第一GFP-F数据帧的帧通道;
第一时隙获取模块,设置为根据所述第一GFP-F数据帧的帧通道查找预先配置的时隙配置表,获取所述第一GFP-F数据帧对应分配的ODUflex帧时隙位置;
第一输出模块,设置为将所述第一GFP-F数据帧输出至所述对应分配的ODUflex帧时隙位置。
为了解决上述的技术问题,本发明进一步提供一种空分到时分的转换装置,所述空分到时分的转换装置包括:
第二时隙获取模块,设置为获取第一ODUflex数据帧的帧时隙位置;
第二通道获取模块,设置为根据所述第一ODUflex数据帧的帧时隙位置查找预先配置的时隙配置表,获取所述第一ODUflex数据帧的帧时隙位置对应的第二GFP-F数据帧的帧通道;
第二输出模块,设置为将所述第一ODUflex数据帧输出至所述对应分配的第二GFP-F数据帧的帧通道。
提供的一种数据传输方法,所述数据传输方法包括:
将接收的第一以太网数据帧封装成第一GFP-F数据帧;
将所述第一GFP-F数据帧转换为第一ODUflex数据帧;
将所述第一ODUflex数据帧转发至交叉矩阵背板的指定端口;
将所述转发至指定端口的第一ODUflex数据帧转换为第二GFP-F数据帧;
将所述第二GFP-F数据帧解帧为第二以太网数据帧并将所述第二以太网数据帧进行输出。
优选地,所述将第一GFP-F数据帧转换为第一ODUflex数据帧的步骤具体包括:
配置第一GFP-F帧通道与第一ODUflex帧时隙的对应关系;
将所述第一GFP-F帧通道中的第一GFP-F数据帧写入至第一存储模块的相应位置;
读出所述写入至第一存储模块的相应位置的第一GFP-F数据帧并将所述写入第一存储模块的相应位置的第一GFP-F数据帧输出至与所述第一GFP-F帧通道对应的第一ODUflex帧时隙中。实现时分的第一GFP-F数据帧到空分的第一ODUflex数据帧转换。
优选地,所述将转发至指定端口的第一ODUflex数据帧转换为第二GFP-F数据帧的步骤具体包括:
配置所述第一ODUflex帧通道与第二GFP-F帧时隙的对应关系;
将所述第一ODUflex数据帧写入至第二存储模块相应的位置中;
读出所述写入至第二存储模块相应的位置中的第一ODUflex数据帧并将所述写入至第二存储模块相应的位置中的第一ODUflex数据帧输出至与所述第一ODUflex帧通道对应的第二GFP-F帧时隙中。实现空分的ODUflex数据帧到时分的GFP-F数据帧转换。
为了解决上述的技术问题,本发明进一步提供一种时分到空分的转换方法,所述时分到空分的转换方法包括:
配置第一GFP-F帧通道与第一ODUflex帧时隙的对应关系;
将所述第一GFP-F帧通道中的第一GFP-F数据帧写入至第一存储模块的相应位置;
读出所述写入至第一存储模块的相应位置的第一GFP-F数据帧并将所述写入第一存储模块的相应位置的第一GFP-F数据帧输出至与所述第一GFP-F帧通道对应的第一ODUflex帧时隙中。
为了解决上述的技术问题,本发明进一步提供一种空分到时分的转换方法,所述空分到时分的转换方法包括:
配置所述第一ODUflex帧通道与第二GFP-F帧时隙的对应关系;
将所述第一ODUflex数据帧写入至第二存储模块相应的位置中;
读出所述写入至第二存储模块相应的位置中的第一ODUflex数据帧并将所述写入至第二存储模块相应的位置中的第一ODUflex数据帧输出至与所述第一ODUflex帧通道对应的第二GFP-F帧时隙中。
为了解决上述的技术问题,本发明进一步提供一种数据传输装置,所述数据传输装置包括:
封帧模块,设置为将接收的第一以太网数据帧封装成第一GFP-F数据帧;
时分转换模块,设置为将所述第一GFP-F数据帧转换为第一ODUflex数据帧;
转发模块,设置为将将所述第一ODUflex数据帧转发至交叉矩阵背板的指定端口;
空分转换模块,设置为将所述转发至指定端口的第一ODUflex数据帧转换为第二GFP-F数据帧;
解帧模块,设置为将所述第二GFP-F数据帧解帧为第二以太网数据帧并将所述第二以太网数据帧进行输出。
优选地,所述时分转换模块具体包括:
第一配置单元,设置为配置第一GFP-F帧通道与第一ODUflex帧时隙的对应关系;
第一写入单元,设置为将所述第一GFP-F帧通道中的第一GFP-F数据帧写入至第一存储模块的相应位置;
第一读出单元,设置为读出所述写入至第一存储模块的相应位置的第一GFP-F数据帧并将所述写入第一存储模块的相应位置的第一GFP-F数据帧输出至与所述第一GFP-F帧通道对应的第一ODUflex帧时隙中。
优选地,所述空分转换模块包括:
第二配置单元,设置为配置所述第一ODUflex帧通道与第二GFP-F帧时隙的对应关系;
第二写入单元,设置为将所述第一ODUflex数据帧写入至第二存储模块相应的位置中;
第二读出单元,设置为读出所述写入至第二存储模块相应的位置中的第一ODUflex数据帧并将所述写入至第二存储模块相应的位置中的第一ODUflex数据帧输出至与所述第一ODUflex帧通道对应的第二GFP-F帧时隙中。
为了解决上述的技术问题,本发明进一步提供一种时分到空分的转换装置,所述时分到空分的转换装置包括:
第一配置模块,设置为配置第一GFP-F帧通道与第一ODUflex帧时隙的对应关系;
第一写入模块,设置为将所述第一GFP-F帧通道中的第一GFP-F数据帧写入至第一存储模块的相应位置;
第一读出模块,设置为读出所述写入至第一存储模块的相应位置的第一GFP-F数据帧并将所述写入第一存储模块的相应位置的第一GFP-F数据帧输出至与所述第一GFP-F帧通道对应的第一ODUflex帧时隙中。
为了解决上述的技术问题,本发明进一步提供一种空分到时分的转换装置,所述空分到时分的转换装置包括:
第二配置模块,设置为配置所述第一ODUflex帧通道与第二GFP-F帧时隙的对应关系;
第二写入模块,设置为将所述第一ODUflex数据帧写入至第二存储模块相应的位置中;
第二读出模块,设置为读出所述写入至第二存储模块相应的位置中的第一ODUflex数据帧并将所述写入至第二存储模块相应的位置中的第一ODUflex数据帧输出至与所述第一ODUflex帧通道对应的第二GFP-F帧时隙中。
本发明提供的数据传输方法,通过将接收的第一以太网数据帧封装成第一GFP-F数据帧;将所述第一GFP-F数据帧转换为第一ODUflex数据帧;将所述第一ODUflex数据帧转发至交叉矩阵背板的指定端口;将所述转发至指定端口的第一ODUflex数据帧转换为第二GFP-F数据帧;将所述第二GFP-F数据帧解帧为第二以太网数据帧并将所述第二以太网数据帧进行输出。本发明提供的数据传输方法,解决了任意速率、多个通道的以太网的数据在统一的OTN传送平台上的传送的问题,与传统WDM相比,大大减少了板卡种类,提高了板卡和端口接入、映射、复用、调度能力的灵活性;同时交叉矩阵背板支持ODUflex的交叉调度,业务调度方式灵活。
附图说明
图1为本发明数据传输方法一实施例的流程示意图;
图2为图1中所述将第一GFP-F数据帧转换为第一ODUflex数据帧的步骤的细化流程示意图;
图3为图1中所述将转发至指定端口的第一ODUflex数据帧转换为第二GFP-F数据帧的步骤的细化流程示意图;
图4为本发明时分到空分的转换方法一实施例的流程示意图;
图5为本发明空分到时分的转换方法一实施例的流程示意图;
图6为本发明数据传输装置一实施例的功能模块示意图;
图7为图6中时分转换模块的功能模块示意图;
图8为图6中空分转换模块的功能模块示意图;
图9为本发明时分到空分的转换装置的功能模块示意图;
图10本发明空分到时分的转换装置的功能模块示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种数据传输方法,参照图1,图1为本发明数据传输方法一实施例的流程示意图,在一实施例中,所述数据传输方法包括:
步骤S100、将接收的第一以太网数据帧封装成第一GFP-F数据帧。
数据传输装置接收以太网传输过来的第一以太网数据帧,采用GFP-F模式并将接收的第一以太网数据帧映射为第一GFP-F数据帧进行输出,将以太网数据帧映射到GFP-F数据帧,各个通道的以太网数据帧通过时分复用形式的方式占用同一根数据总线,GFP-F数据帧映射后成为串行的以太网数据帧。一般的,以太网数据承载到OTN网络采用GFP(Generic Framing Procedure,通用成帧规程)方法。GFP既可以在字节同步的链路中传送长度可变的数据包,又可以传送固定长度的数据块,是一种先进的、简单的、灵活的数据信号适配、映射技术。它采用了与ATM技术相似的帧定界方式,通过它可以透明地将上层的各种数据信号封装为可以在现有的传输网络中有效传输的信号,利于多运营商设备互联互通,并且它引进了多服务等级的概念,实现了用户数据的统计复用和QoS(Quality of Service,服务质量)功能。GFP标准定义了两种模式:透传模式和帧映射模式,提供了一种通用的机制,把高层客户端的数据流适配到传输网络。GFP分为GFP-T(GFP-Transparent,透传模式)和GFP-F(GFP-Frame-mapped,帧映射模式)。透传模式(GFP-T)是一种面向块状码(block-codeoriented)的数据流模式,具有固定帧长度的块状编码的信号,可以用透明映射的方式及时处理而不用等待整个帧都收到,这种适配方式适合处理实时业务如视频信号(DVB-Digital Video Broadcast)和块状编码的信号如存储业务。帧映射模式(GFP-F)是一种PDU-oriented数据流模式,它们可以用映射整个帧的适配方式(Frame-Mapped)等接收到一个完整的帧后再进行处理;具有不同长度、属于不同业务的GFP帧可以时分复用到一个更高速率的信道传输,这种数据包复用方式大大提高了网络带宽的利用率。
步骤S200、将所述第一GFP-F数据帧转换为第一ODUflex数据帧。
数据传输装置将时分的第一GFP-F数据帧转换为空分的第一ODUflex数据帧,将GFP-F数据帧进一步映射到OTN的ODUflex数据帧数据帧。一般的,任意速率的以太网数据采用GFP-F模式映射为GFP-F帧。GFP-F帧还需要进一步映射到OTN帧,为了支持任意速率的以太网业务,GFP-F帧需要映射到灵活速率ODU(flexible ODU,简称ODUflex)帧中。为了区分不同通道的以太网数据,进入GFP-F映射模块的数据带有通道号。通常来说GFP-F处理是按通道方式进行的,在某个时间段处理某个通道 (假设为A通道)的以太网数据,将A通道以太网数据映射为GFP-F帧;等处理完毕A通道的以太网数据后,再处理下一个通道(假设为B通道),将B通道的以太网数据映射为GFP-F帧。GFP-F映射后的GFP-F帧也区分为各个通道,带有通道号标示。GFP-F映射后的数据从时间上看各个通道的数据是串行时分方式的,所谓时分指的是各个通道的数据使用同一根数据总线的某个时间段。此时分的数据需要映射为空分的ODUflex数据。所谓空分是指同时存在多根数据总线,每根数据总线承载不同通道的数据,此处要求是承载不同通道的GFP-F帧数据,即不同通道的以太网数据。这就需要将时分的不同通道的GFP-F帧数据转换为空分的同时并存在于各自独立的数据总线上。
步骤S300、将所述第一ODUflex数据帧转发至交叉矩阵背板的指定端口。
数据传输装置通过交叉矩阵背板将第一ODUflex数据帧转发至交叉矩阵背板的对应端口。
步骤S400、将所述转发至指定端口的第一ODUflex数据帧转换为第二GFP-F数据帧。
数据传输装置将ODUflex信号承载的GFP-F数据帧调出,将空分的第一ODUflex数据帧转换为时分的第二GFP-F数据帧,将OTN的ODUflex数据帧映射到GFP-F数据帧。
步骤S500、将所述第二GFP-F数据帧解帧为第二以太网数据帧并将所述第二以太网数据帧进行输出。
数据传输装置将转换的第二GFP-F数据帧进行解帧为第二以太网数据帧,将GFP-F数据帧映射到以太网数据帧,以太网数据帧映射后成为GFP-F数据帧,同一根数据总线GFP-F数据帧通过空分复用形式的方式复用为多路通道的以太网数据帧。
本实施例提供的数据传输方法,解决了任意速率、多个通道的以太网的数据在统一的OTN传送平台上的传送的问题,与传统WDM相比,大大减少了板卡种类,提高了板卡和端口接入、映射、复用、调度能力的灵活性;同时交叉矩阵背板支持ODUflex的交叉调度,业务调度方式灵活。
进一步参见图2,图2为本实施例数据传输方法的步骤S200的细化流程图,所述步骤S200具体包括:
步骤S210A、配置第一GFP-F数据帧的帧通道与第一ODUflex数据帧的帧时隙位置对应的时隙配置表。
数据传输装置配置第一GFP-F帧通道与第一ODUflex帧时隙的时隙配置表,在10G二层业务板中,ODUflex总共有8个时隙,每个通道可以配置1个时隙或1个以上时隙,最多可以配置8个时隙,最大可以支持8个通道,所有通道总共占用8个时隙。在40G二层业务板中,ODUflex总共有32个时隙,每个通道可以配置1个时隙或1个以上时隙,最多可以配置32个时隙,最大可以支持32个通道,所有通道总共占用32个时隙。在100G二层业务板中,ODUflex总共有80个时隙,每个通道可以配置1个时隙或1个以上时隙,最多可以配置80个时隙,最大可以支持80个通道,所有通道总共占用80个时隙。假设第一GFP-F帧通道包括道路A和通道B,通道A需要占用第一ODUflex的第1时隙和第2时隙,那么配置A通道对应第一ODUflex帧时隙的第1时隙、第2时隙。假设通道B需要占用第一ODUflex帧时隙的第45时隙和第78时隙,配置B通道对应第一ODUflex帧时隙第45时隙和第78时隙即可。通道与时隙的对应关系可以是一对一的关系,也可以是一对多的关系,即某个通道可以只对应一个时隙,也可以对应两个或两个以上时隙。
步骤S210、获取第一GFP-F数据帧的帧通道。
数据传输装置获取第一GFP-F数据帧传输的各个帧通道。
步骤S220、根据所述第一GFP-F数据帧的帧通道查找预先配置的时隙配置表,获取所述第一GFP-F数据帧对应分配的ODUflex帧时隙位置。
数据传输装置根据预先配置的时隙配置表,查找出与第一GFP-F数据帧的帧通道对应分配的ODUflex帧时隙位置。
步骤S230、将所述第一GFP-F数据帧输出至所述对应分配的ODUflex帧时隙位置。
数据传输装置根据时隙配置表配置的第一GFP-F帧通道与第一ODUflex帧时隙的对应关系,获知第一GFP-F数据帧占用的对应的时隙位置,将第一GFP-F数据帧输出到对应位置的第一ODUflex的帧时隙位置上。
本实施例解决了任意速率以太网数据帧到ODUflex帧的映射,实现了时分的GFP-F数据帧到空分的ODUflex数据帧转换以及时分的GFP-F数据帧到空分的ODUflex数据帧的灵活调度。
进一步参见图3,图3为本实施例数据传输方法的步骤S400的细化流程图,所述步骤S400具体包括:
步骤S410A、配置第一ODUflex数据帧的帧时隙位置与第二GFP-F数据帧的帧通道对应的时隙配置表。
数据传输装置配置配置第一ODUflex数据帧的帧时隙位置与第二GFP-F数据帧的帧通道对应的时隙配置表,在10G二层业务板中,ODUflex总共有8个时隙,每个通道可以配置1个时隙或1个以上时隙,最多可以配置8个时隙,最大可以支持8个通道,所有通道总共占用8个时隙。在40G二层业务板中,ODUflex总共有32个时隙,每个通道可以配置1个时隙或1个以上时隙,最多可以配置32个时隙,最大可以支持32个通道,所有通道总共占用32个时隙。在100G二层业务板中,ODUflex总共有80个时隙,每个通道可以配置1个时隙或1个以上时隙,最多可以配置80个时隙,最大可以支持80个通道,所有通道总共占用80个时隙。假设第二GFP-F帧通道包括道路A和通道B,第一ODUflex的第1时隙和第2时隙需要占用通道A,那么配置第一ODUflex帧时隙的第1时隙、第2时隙对应A通道。假设第一ODUflex帧时隙的第45时隙和第78时隙需要占用通道B,第一ODUflex帧时隙第45时隙和第78时隙配置对应B通道即可。时隙与通道的对应关系可以是一对一的关系,也可以是多对一的关系,即某个时隙可以只对应一个通道,也两个或两个以上时隙对应一个通道。
步骤S410、获取第一ODUflex数据帧的帧时隙位置。
数据传输装置获取第一ODUflex数据帧传输的各个帧时隙位置。
步骤S420、根据所述第一ODUflex数据帧的帧时隙位置查找预先配置的时隙配置表,获取所述第一ODUflex数据帧的帧时隙位置对应的第二GFP-F数据帧的帧通道。
数据传输装置根据预先配置的时隙配置表,查找出与第一ODUflex数据帧的帧时隙位置对应的第二GFP-F数据帧的帧通道。
步骤S430、将所述第一ODUflex数据帧输出至所述对应分配的第二GFP-F数据帧的帧通道。
数据传输装置根据时隙配置表配置的第一ODUflex数据帧的帧时隙位置与第二GFP-F数据帧的帧通道对应的时隙配置表,将第一ODUflex数据帧输出至对应分配的第二GFP-F数据帧的帧通道。
本实施例中解决了ODUflex数据帧到以太网数据帧的映射,实现了空分的ODUflex数据帧到时分的GFP-F数据帧的转换以及空分的ODUflex数据帧到时分的GFP-F数据帧的灵活调度。
进一步参见图4,图4为一种时分到空分的转换方法,在本实施中,所述时分到空分的转换方法包括:
步骤S10、获取第一GFP-F数据帧的帧通道。
时分到空分装置获取第一GFP-F数据帧传输的各个帧通道。
步骤S20、根据所述第一GFP-F数据帧的帧通道查找预先配置的时隙配置表,获取所述第一GFP-F数据帧对应分配的ODUflex帧时隙位置。
数据传输装置根据预先配置的时隙配置表,查找出与第一GFP-F数据帧的帧通道对应分配的ODUflex帧时隙位置。
步骤S30、将所述第一GFP-F数据帧输出至所述对应分配的ODUflex帧时隙位置。
数据传输装置根据时隙配置表配置的第一GFP-F帧通道与第一ODUflex帧时隙的对应关系,获知第一GFP-F数据帧占用的对应的时隙位置,将第一GFP-F数据帧输出到对应位置的第一ODUflex的帧时隙位置上。
时分到空分的转换装置根据配置的第一GFP-F帧通道与第一ODUflex帧时隙的对应关系,获知第一GFP-F数据帧占用的对应的时隙,将写入存储模块的相应位置的第一GFP-F数据帧读出,输出到对应的第一ODUflex帧时隙的时隙位置上。
本实施例提供的时分到空分的转换方法,解决了任意速率以太网数据帧到ODUflex帧的映射,实现了时分的GFP-F数据帧到空分的ODUflex数据帧转换以及时分的GFP-F数据帧到空分的ODUflex数据帧的灵活调度。
进一步参见图5,图5为一种空分到时分的转换方法,在本实施中,所述空分到时分的转换方法包括:
步骤S40、获取所述第一ODUflex数据帧的帧时隙位置对应的第二GFP-F数据帧。
空分到时分的转换装置获取第一ODUflex数据帧传输的各个帧时隙位置。
步骤S50、根据所述第一ODUflex数据帧的帧时隙位置查找预先配置的时隙配置表,获取所述第一ODUflex数据帧的帧时隙位置对应的第二GFP-F数据帧的帧通道。
空分到时分的转换装置根据预先配置的时隙配置表,查找出与第一ODUflex数据帧的帧时隙位置对应的第二GFP-F数据帧的帧通道。
步骤S60、将所述第一ODUflex数据帧输出至所述对应分配的第二GFP-F数据帧的帧通道。
空分到时分的转换装置根据时隙配置表配置的第一ODUflex数据帧的帧时隙位置与第二GFP-F数据帧的帧通道对应的时隙配置表,将第一ODUflex数据帧输出至对应分配的第二GFP-F数据帧的帧通道。
本实施例中提供的空分到时分的转换方法,解决了ODUflex数据帧到以太网数据帧的映射,实现了空分的ODUflex数据帧到时分的GFP-F数据帧的转换以及空分的ODUflex数据帧到时分的GFP-F数据帧的灵活调度。
如图6所示,本发明还提供一种数据传输装置,图6为本发明数据传输装置一实施例的功能模块示意图,在本实施例中,所述数据传输装置包括:
封帧模块10,设置为将接收的第一以太网数据帧封装成第一GFP-F数据帧;
时分转换模块20,设置为将所述第一GFP-F数据帧转换为第一ODUflex数据帧;
转发模块30,设置为将将所述第一ODUflex数据帧转发至交叉矩阵背板的指定端口;
空分转换模块40,设置为将所述转发至指定端口的第一ODUflex数据帧转换为第二GFP-F数据帧;
解帧模块50,设置为将所述第二GFP-F数据帧解帧为第二以太网数据帧并将所述第二以太网数据帧进行输出。
数据传输装置的封帧模块10接收以太网传输过来的第一以太网数据帧,采用GFP-F模式并将接收的第一以太网数据帧映射为第一GFP-F数据帧进行输出,将以太网数据帧映射到GFP-F数据帧,各个通道的以太网数据帧通过时分复用形式的方式占用同一根数据总线,GFP-F数据帧映射后成为串行的以太网数据帧。一般的,以太网数据承载到OTN网络采用GFP(Generic Framing Procedure,通用成帧规程)方法。GFP既可以在字节同步的链路中传送长度可变的数据包,又可以传送固定长度的数据 块,是一种先进的、简单的、灵活的数据信号适配、映射技术。它采用了与ATM技术相似的帧定界方式,通过它可以透明地将上层的各种数据信号封装为可以在现有的传输网络中有效传输的信号,利于多运营商设备互联互通,并且它引进了多服务等级的概念,实现了用户数据的统计复用和QoS(Quality of Service,服务质量)功能。GFP标准定义了两种模式:透传模式和帧映射模式,提供了一种通用的机制,把高层客户端的数据流适配到传输网络。GFP分为GFP-T(GFP-Transparent,透传模式)和GFP-F(GFP-Frame-mapped,帧映射模式)。透传模式(GFP-T)是一种面向块状码(block-codeoriented)的数据流模式,具有固定帧长度的块状编码的信号,可以用透明映射的方式及时处理而不用等待整个帧都收到,这种适配方式适合处理实时业务如视频信号(DVB-Digital Video Broadcast)和块状编码的信号如存储业务。帧映射模式(GFP-F)是一种PDU-oriented数据流模式,它们可以用映射整个帧的适配方式(Frame-Mapped)等接收到一个完整的帧后再进行处理;具有不同长度、属于不同业务的GFP帧可以时分复用到一个更高速率的信道传输,这种数据包复用方式大大提高了网络带宽的利用率。
数据传输装置的时分转换模块20将时分的第一GFP-F数据帧转换为空分的第一ODUflex数据帧,将GFP-F数据帧进一步映射到OTN的ODUflex数据帧数据帧。一般的,任意速率的以太网数据采用GFP-F模式映射为GFP-F帧。GFP-F帧还需要进一步映射到OTN帧,为了支持任意速率的以太网业务,GFP-F帧需要映射到灵活速率ODU(flexible ODU,简称ODUflex)帧中。为了区分不同通道的以太网数据,进入GFP-F映射模块的数据带有通道号。通常来说GFP-F处理是按通道方式进行的,在某个时间段处理某个通道(假设为A通道)的以太网数据,将A通道以太网数据映射为GFP-F帧;等处理完毕A通道的以太网数据后,再处理下一个通道(假设为B通道),将B通道的以太网数据映射为GFP-F帧。GFP-F映射后的GFP-F帧也区分为各个通道,带有通道号标示。GFP-F映射后的数据从时间上看各个通道的数据是串行时分方式的,所谓时分指的是各个通道的数据使用同一根数据总线的某个时间段。此时分的数据需要映射为空分的ODUflex数据。所谓空分是指同时存在多根数据总线,每根数据总线承载不同通道的数据,此处要求是承载不同通道的GFP-F帧数据,即不同通道的以太网数据。这就需要将时分的不同通道的GFP-F帧数据转换为空分的同时并存在于各自独立的数据总线上。
数据传输装置的转发模块30通过交叉矩阵背板将第一ODUflex数据帧转发至交叉矩阵背板的对应端口。
数据传输装置的空分转换模块40将ODUflex信号承载的GFP-F数据帧调出,将空分的第一ODUflex数据帧转换为时分的第二GFP-F数据帧,将OTN的ODUflex数据帧映射到GFP-F数据帧。
数据传输装置的解帧模块50将转换的第二GFP-F数据帧进行解帧为第二以太网数据帧,将GFP-F数据帧映射到以太网数据帧,以太网数据帧映射后成为GFP-F数据帧,同一根数据总线GFP-F数据帧通过空分复用形式的方式复用为多路通道的以太网数据帧。
本实施例提供的数据传输装置,解决了任意速率、多个通道的以太网的数据在统一的OTN传送平台上的传送的问题,与传统WDM相比,大大减少了板卡种类,提高了板卡和端口接入、映射、复用、调度能力的灵活性;同时交叉矩阵背板支持ODUflex的交叉调度,业务调度方式灵活。
如附图7所示,本实施例提供的数据传输装置,所述时分转换模块具体包括:
第一配置单元21,设置为配置第一GFP-F数据帧的帧通道与第一ODUflex数据帧的帧时隙位置对应的时隙配置表。
第一通道获取单元22,设置为获取第一GFP-F数据帧的帧通道。
第一时隙获取单元23,设置为根据所述第一GFP-F数据帧的帧通道查找预先配置的时隙配置表,获取所述第一GFP-F数据帧对应分配的ODUflex帧时隙位置。
第一输出单元24,设置为将所述第一GFP-F数据帧输出至所述对应分配的ODUflex帧时隙位置。
数据传输装置的第一配置单元21配置第一GFP-F帧通道与第一ODUflex帧时隙的时隙配置表,在10G二层业务板中,ODUflex总共有8个时隙,每个通道可以配置1个时隙或1个以上时隙,最多可以配置8个时隙,最大可以支持8个通道,所有通道总共占用8个时隙。在40G二层业务板中,ODUflex总共有32个时隙,每个通道可以配置1个时隙或1个以上时隙,最多可以配置32个时隙,最大可以支持32个通道,所有通道总共占用32个时隙。在100G二层业务板中,ODUflex总共有80个时隙,每个通道可以配置1个时隙或1个以上时隙,最多可以配置80个时隙,最大可以支持80个通道,所有通道总共占用80个时隙。假设第一GFP-F帧通道包括道路A和通道B,通道A需要占用第一ODUflex的第1时隙和第2时隙,那么配置A通道对应第一ODUflex帧时隙的第1时隙、第2时隙。假设通道B需要占用第一ODUflex帧 时隙的第45时隙和第78时隙,配置B通道对应第一ODUflex帧时隙第45时隙和第78时隙即可。通道与时隙的对应关系可以是一对一的关系,也可以是一对多的关系,即某个通道可以只对应一个时隙,也可以对应两个或两个以上时隙。
数据传输装置的第一通道获取单元22获取第一GFP-F数据帧传输的各个帧通道。
数据传输装置的第一时隙获取单元23根据预先配置的时隙配置表,查找出与第一GFP-F数据帧的帧通道对应分配的ODUflex帧时隙位置。
数据传输装置的第一输出单元24根据时隙配置表配置的第一GFP-F帧通道与第一ODUflex帧时隙的对应关系,获知第一GFP-F数据帧占用的对应的时隙位置,将第一GFP-F数据帧输出到对应位置的第一ODUflex的帧时隙位置上。
本实施例解决了任意速率以太网数据帧到ODUflex帧的映射,实现了时分的GFP-F数据帧到空分的ODUflex数据帧转换以及时分的GFP-F数据帧到空分的ODUflex数据帧的灵活调度。
如附图8所示,本实施例提供的数据传输装置,所述空分转换模块具体包括:
第二配置单元41,设置为配置所述第一ODUflex数据帧的帧时隙位置与所述第二GFP-F数据帧的帧通道对应的时隙配置表。
第二时隙获取单元42,设置为获取第一ODUflex数据帧的帧时隙位置;
第二通道获取单元43,设置为根据所述第一ODUflex数据帧的帧时隙位置查找预先配置的时隙配置表,获取所述第一ODUflex数据帧的帧时隙位置对应的第二GFP-F数据帧的帧通道;
第二输出单元44,设置为将所述第一ODUflex数据帧输出至所述对应分配的第二GFP-F数据帧的帧通道。
数据传输装置配置的第二配置单元41配置第一ODUflex数据帧的帧时隙位置与第二GFP-F数据帧的帧通道对应的时隙配置表,在10G二层业务板中,ODUflex总共有8个时隙,每个通道可以配置1个时隙或1个以上时隙,最多可以配置8个时隙,最大可以支持8个通道,所有通道总共占用8个时隙。在40G二层业务板中,ODUflex总共有32个时隙,每个通道可以配置1个时隙或1个以上时隙,最多可以配置32个时隙,最大可以支持32个通道,所有通道总共占用32个时隙。在100G二层业务板中,ODUflex总共有80个时隙,每个通道可以配置1个时隙或1个以上时隙,最多可 以配置80个时隙,最大可以支持80个通道,所有通道总共占用80个时隙。假设第二GFP-F帧通道包括道路A和通道B,第一ODUflex的第1时隙和第2时隙需要占用通道A,那么配置第一ODUflex帧时隙的第1时隙、第2时隙对应A通道。假设第一ODUflex帧时隙的第45时隙和第78时隙需要占用通道B,第一ODUflex帧时隙第45时隙和第78时隙配置对应B通道即可。时隙与通道的对应关系可以是一对一的关系,也可以是多对一的关系,即某个时隙可以只对应一个通道,也两个或两个以上时隙对应一个通道。
数据传输装置的第二时隙获取单元42获取第一ODUflex数据帧传输的各个帧时隙位置。
数据传输装置的第二通道获取单元43根据预先配置的时隙配置表,查找出与第一ODUflex数据帧的帧时隙位置对应的第二GFP-F数据帧的帧通道。
数据传输装置的第二输出单元44根据时隙配置表配置的第一ODUflex数据帧的帧时隙位置与第二GFP-F数据帧的帧通道对应的时隙配置表,将第一ODUflex数据帧输出至对应分配的第二GFP-F数据帧的帧通道。
本实施例中解决了ODUflex数据帧到以太网数据帧的映射,实现了空分的ODUflex数据帧到时分的GFP-F数据帧的转换以及空分的ODUflex数据帧到时分的GFP-F数据帧的灵活调度。
进一步参见图9,本发明还提供一种时分到空分的转换装置,所述时分到空分的转换装置包括:
第一通道获取模块110,设置为获取第一GFP-F数据帧的帧通道;
第一时隙获取模块120,设置为根据所述第一GFP-F数据帧的帧通道查找预先配置的时隙配置表,获取所述第一GFP-F数据帧对应分配的ODUflex帧时隙位置;
第一输出模块130,设置为将所述第一GFP-F数据帧输出至所述对应分配的ODUflex帧时隙位置。
时分到空分装置的第一通道获取模块110获取第一GFP-F数据帧传输的各个帧通道。
数据传输装置的第一时隙获取模块120根据预先配置的时隙配置表,查找出与第一GFP-F数据帧的帧通道对应分配的ODUflex帧时隙位置。
数据传输装置的第一输出模块130根据时隙配置表配置的第一GFP-F帧通道与第一ODUflex帧时隙的对应关系,获知第一GFP-F数据帧占用的对应的时隙位置,将第一GFP-F数据帧输出到对应位置的第一ODUflex的帧时隙位置上。
本实施例提供的时分到空分的转换装置,解决了任意速率以太网数据帧到ODUflex帧的映射,实现了时分的GFP-F数据帧到空分的ODUflex数据帧转换以及时分的GFP-F数据帧到空分的ODUflex数据帧的灵活调度。
进一步参见图10,本发明还提供一种空分到时分的转换装置,所述空分到时分的转换装置包括:
第二时隙获取模块210,设置为获取第一ODUflex数据帧的帧时隙位置;
第二通道获取模块220,设置为根据所述第一ODUflex数据帧的帧时隙位置查找预先配置的时隙配置表,获取所述第一ODUflex数据帧的帧时隙位置对应的第二GFP-F数据帧的帧通道;
第二输出模块230,设置为将所述第一ODUflex数据帧输出至所述对应分配的第二GFP-F数据帧的帧通道。
空分到时分的转换装置的第二时隙获取模块210获取第一ODUflex数据帧传输的各个帧时隙位置。
空分到时分的转换装置的第二通道获取模块220根据预先配置的时隙配置表,查找出与第一ODUflex数据帧的帧时隙位置对应的第二GFP-F数据帧的帧通道。
空分到时分的转换装置的第二输出模块230根据时隙配置表配置的第一ODUflex数据帧的帧时隙位置与第二GFP-F数据帧的帧通道对应的时隙配置表,将第一ODUflex数据帧输出至对应分配的第二GFP-F数据帧的帧通道。
本实施例中提供的空分到时分的转换装置,解决了ODUflex数据帧到以太网数据帧的映射,实现了空分的ODUflex数据帧到时分的GFP-F数据帧的转换以及空分的ODUflex数据帧到时分的GFP-F数据帧的灵活调度。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
工业实用性
如上所述,本发明实施例提供的一种数据传输方法和装置具有以下有益效果:与传统WDM相比,大大减少了板卡种类,提高了板卡和端口接入、映射、复用、调度能力的灵活性;同时交叉矩阵背板支持ODUflex的交叉调度,业务调度方式灵活。

Claims (14)

  1. 一种数据传输方法,所述数据传输方法包括:
    将接收的第一以太网数据帧封装成第一帧映射模式GFP-F数据帧;
    将所述第一GFP-F数据帧转换为第一灵活速率ODUflex数据帧;
    将所述第一ODUflex数据帧转发至交叉矩阵背板的指定端口;
    将所述转发至指定端口的第一ODUflex数据帧转换为第二GFP-F数据帧;
    将所述第二GFP-F数据帧解帧为第二以太网数据帧并将所述第二以太网数据帧进行输出。
  2. 如权利要求1所述的数据传输方法,其中,所述将第一GFP-F数据帧转换为第一ODUflex数据帧的步骤具体包括:
    获取所述第一GFP-F数据帧的帧通道;
    根据所述第一GFP-F数据帧的帧通道查找预先配置的时隙配置表,获取所述第一GFP-F数据帧对应分配的ODUflex帧时隙位置;
    将所述第一GFP-F数据帧输出至所述对应分配的ODUflex帧时隙位置。
  3. 如权利要求2所述的数据传输方法,其中,所述获取第一GFP-F数据帧的通道号的步骤之前还包括:
    配置所述第一GFP-F数据帧的帧通道与所述第一ODUflex数据帧的帧时隙位置对应的时隙配置表。
  4. 如权利要求1至3任一项所述的数据传输方法,其中,所述将转发至指定端口的第一ODUflex数据帧转换为第二GFP-F数据帧的步骤具体包括:
    获取所述第一ODUflex数据帧的帧时隙位置;
    根据所述第一ODUflex数据帧的帧时隙位置查找预先配置的时隙配置表,获取所述第一ODUflex数据帧的帧时隙位置对应的第二GFP-F数据帧的帧通道;
    将所述第一ODUflex数据帧输出至所述对应分配的第二GFP-F数据帧的帧通道。
  5. 如权利要求4所述的数据传输方法,其中,所述获取第一ODUflex数据帧的帧时隙位置对应的第二GFP-F数据帧的步骤之前包括:
    配置所述第一ODUflex数据帧的帧时隙位置与所述第二GFP-F数据帧的帧通道对应的时隙配置表。
  6. 一种时分到空分的转换方法,所述时分到空分的转换方法包括:
    获取第一GFP-F数据帧的帧通道;
    根据所述第一GFP-F数据帧的帧通道查找预先配置的时隙配置表,获取所述第一GFP-F数据帧对应分配的ODUflex帧时隙位置;
    将所述第一GFP-F数据帧输出至所述对应分配的ODUflex帧时隙位置。
  7. 一种空分到时分的转换方法,所述空分到时分的转换方法包括:
    获取所述第一ODUflex数据帧的帧时隙位置对应的第二GFP-F数据帧;
    根据所述第一ODUflex数据帧的帧时隙位置查找预先配置的时隙配置表,获取所述第一ODUflex数据帧的帧时隙位置对应的第二GFP-F数据帧的帧通道;
    将所述第一ODUflex数据帧输出至所述对应分配的第二GFP-F数据帧的帧通道。
  8. 一种数据传输装置,所述数据传输装置包括:
    封帧模块,设置为将接收的第一以太网数据帧封装成第一GFP-F数据帧;
    时分转换模块,设置为将所述第一GFP-F数据帧转换为第一ODUflex数据帧;
    转发模块,设置为将所述第一ODUflex数据帧转发至交叉矩阵背板的指定端口;
    空分转换模块,设置为将所述转发至指定端口的第一ODUflex数据帧转换为第二GFP-F数据帧;
    解帧模块,设置为将所述第二GFP-F数据帧解帧为第二以太网数据帧并将所述第二以太网数据帧进行输出。
  9. 如权利要求8所述的数据传输装置,其中,所述时分转换模块包括:
    第一通道获取单元,设置为获取第一GFP-F数据帧的帧通道;
    第一时隙获取单元,设置为根据所述第一GFP-F数据帧的帧通道查找预先配置的时隙配置表,获取所述第一GFP-F数据帧对应分配的ODUflex帧时隙位置;
    第一输出单元,设置为将所述第一GFP-F数据帧输出至所述对应分配的ODUflex帧时隙位置。
  10. 如权利要求9所述的数据传输装置,其中,所述时分转换模块还包括:
    第一配置单元,设置为配置所述第一GFP-F数据帧的帧通道与所述第一ODUflex数据帧的帧时隙位置对应的时隙配置表。
  11. 如权利要求6或7所述的数据传输装置,其中,所述空分转换模块包括:
    第二时隙获取单元,设置为获取第一ODUflex数据帧的帧时隙位置;
    第二通道获取单元,设置为根据所述第一ODUflex数据帧的帧时隙位置查找预先配置的时隙配置表,获取所述第一ODUflex数据帧的帧时隙位置对应的第二GFP-F数据帧的帧通道;
    第二输出单元,设置为将所述第一ODUflex数据帧输出至所述对应分配的第二GFP-F数据帧的帧通道。
  12. 如权利要求6或7所述的数据传输装置,其中,所述空分转换模块还包括:
    第二配置单元,设置为配置所述第一ODUflex数据帧的帧时隙位置与所述第二GFP-F数据帧的帧通道对应的时隙配置表。
  13. 一种时分到空分的转换装置,所述时分到空分的转换装置包括:
    第一通道获取模块,设置为获取第一GFP-F数据帧的帧通道;
    第一时隙获取模块,设置为根据所述第一GFP-F数据帧的帧通道查找预先配置的时隙配置表,获取所述第一GFP-F数据帧对应分配的ODUflex帧时隙位置;
    第一输出模块,设置为将所述第一GFP-F数据帧输出至所述对应分配的ODUflex帧时隙位置。
  14. 一种空分到时分的转换装置,所述空分到时分的转换装置包括:
    第二时隙获取模块,设置为获取第一ODUflex数据帧的帧时隙位置;
    第二通道获取模块,设置为根据所述第一ODUflex数据帧的帧时隙位置查找预先配置的时隙配置表,获取所述第一ODUflex数据帧的帧时隙位置对应的第二GFP-F数据帧的帧通道;
    第二输出模块,设置为将所述第一ODUflex数据帧输出至所述对应分配的第二GFP-F数据帧的帧通道。
PCT/CN2015/072337 2014-09-15 2015-02-05 数据传输方法和装置 WO2016041318A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410466402.0A CN105429840B (zh) 2014-09-15 2014-09-15 数据传输方法和装置
CN201410466402.0 2014-09-15

Publications (1)

Publication Number Publication Date
WO2016041318A1 true WO2016041318A1 (zh) 2016-03-24

Family

ID=55507788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072337 WO2016041318A1 (zh) 2014-09-15 2015-02-05 数据传输方法和装置

Country Status (2)

Country Link
CN (1) CN105429840B (zh)
WO (1) WO2016041318A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111177142A (zh) * 2018-11-13 2020-05-19 深圳市中兴微电子技术有限公司 一种数据转换方法及装置、设备和存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108243120B (zh) 2016-12-26 2021-06-22 北京华为数字技术有限公司 基于灵活以太网的业务流传输方法、装置和通信系统
CN109150361B (zh) * 2017-06-16 2021-01-15 中国移动通信有限公司研究院 一种传输网络系统、数据交换和传输方法、装置及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1671244A (zh) * 2004-03-19 2005-09-21 港湾网络有限公司 通过背板传输数据的方法
CN102257834A (zh) * 2011-06-13 2011-11-23 华为技术有限公司 光传送网背板时分到空分位宽转换方法及背板
US20120082455A1 (en) * 2010-10-05 2012-04-05 Bardalai Snigdho C TE-Link Bandwidth Model for ODU Switch Capable OTN Interfaces
CN102870434A (zh) * 2012-06-14 2013-01-09 华为技术有限公司 传送、接收客户信号的方法和装置
CN102893629A (zh) * 2012-06-01 2013-01-23 华为技术有限公司 光传送网中传送客户信号的方法及传送设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1671244A (zh) * 2004-03-19 2005-09-21 港湾网络有限公司 通过背板传输数据的方法
US20120082455A1 (en) * 2010-10-05 2012-04-05 Bardalai Snigdho C TE-Link Bandwidth Model for ODU Switch Capable OTN Interfaces
CN102257834A (zh) * 2011-06-13 2011-11-23 华为技术有限公司 光传送网背板时分到空分位宽转换方法及背板
CN102893629A (zh) * 2012-06-01 2013-01-23 华为技术有限公司 光传送网中传送客户信号的方法及传送设备
CN102870434A (zh) * 2012-06-14 2013-01-09 华为技术有限公司 传送、接收客户信号的方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111177142A (zh) * 2018-11-13 2020-05-19 深圳市中兴微电子技术有限公司 一种数据转换方法及装置、设备和存储介质
CN111177142B (zh) * 2018-11-13 2024-03-01 深圳市中兴微电子技术有限公司 一种数据转换方法及装置、设备和存储介质

Also Published As

Publication number Publication date
CN105429840A (zh) 2016-03-23
CN105429840B (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
EP3627727B1 (en) Method and apparatus for transmitting and receiving client signal in optical transport network
US9225462B2 (en) Method, apparatus and system for transmitting and receiving client signals
ES2323970T3 (es) Procedimiento y dispositivo de transmision de señales de trafico a baja velocidad en una red de transmision optica.
US8054853B2 (en) Systems and methods for combining time division multiplexed and packet connection in a meshed switching architecture
WO2019128934A1 (zh) 光传送网中业务发送、接收方法及装置
JP4708482B2 (ja) Otn上でdtmを伝送するための方法、装置、及び応用装置
WO2016026348A1 (zh) 一种处理信号的方法、装置及系统
CN101610430B (zh) 一种实现ODUk交叉调度的方法和装置
US20210152898A1 (en) Transmission network system, data switching and transmission method, apparatus and equipment
WO2010105546A1 (zh) 光通道传送单元信号的传输方法和装置
WO2018014342A1 (zh) 一种多路业务传送、接收方法及装置
US9066163B2 (en) Optical transmission device including a bit rate adjustment function
EP2079177A1 (en) Method and device to adjust the signal of the optical transport network
WO2012155710A1 (zh) 一种实现otn业务映射及解映射的方法和装置
CN106330417A (zh) 数据承载的方法、装置以及数据解析的方法、装置
WO2016041318A1 (zh) 数据传输方法和装置
JP5313351B2 (ja) 10ギガビット光ファイバーチャネルサービスを光伝送ネットワークに伝送する方法及び装置
WO2011113257A1 (zh) 光传送网络设备和光传送网络的带宽调整方法
WO2022143046A1 (zh) 一种多路业务传输方法、系统、存储介质及电子装置
EP1701495A1 (en) Hybrid digital cross-connect for switching circuit and packet based data traffic
WO2021013025A1 (zh) 数据接收方法及装置、数据发送方法及装置
WO2016074484A1 (zh) 分组业务信号发送方法、装置及接收方法、装置
CN101350691B (zh) 一种业务汇聚和adm分插复用方法及设备
WO2023232097A1 (zh) 业务数据处理方法和装置
US9912429B2 (en) Transmission device and transmission system for transmitting and receiving time division multiplexing signal in optical transport network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842404

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15842404

Country of ref document: EP

Kind code of ref document: A1