WO2011113257A1 - 光传送网络设备和光传送网络的带宽调整方法 - Google Patents

光传送网络设备和光传送网络的带宽调整方法 Download PDF

Info

Publication number
WO2011113257A1
WO2011113257A1 PCT/CN2010/076303 CN2010076303W WO2011113257A1 WO 2011113257 A1 WO2011113257 A1 WO 2011113257A1 CN 2010076303 W CN2010076303 W CN 2010076303W WO 2011113257 A1 WO2011113257 A1 WO 2011113257A1
Authority
WO
WIPO (PCT)
Prior art keywords
otn
bandwidth
mac frame
signal
module
Prior art date
Application number
PCT/CN2010/076303
Other languages
English (en)
French (fr)
Inventor
彭肖
古渊
王加莹
罗彬�
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2011113257A1 publication Critical patent/WO2011113257A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • H04J3/1658Optical Transport Network [OTN] carrying packets or ATM cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1682Allocation of channels according to the instantaneous demands of the users, e.g. concentrated multiplexers, statistical multiplexers

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an optical transport network (referred to as an Optical Transport Network) device and a bandwidth adjustment method.
  • an optical transport network referred to as an Optical Transport Network
  • ⁇ Carrying customer signals requires mapping and multiplexing.
  • the client signal needs to be mapped to the payload of the Optical Channel Data Unit (ODU), and then the multiple low-order ODUs are multiplexed into a high-order ODU to form an optical path transmission.
  • the Optical Channel Transport Unit (OTU) signal is transmitted in the OTN network.
  • a high-order ODU in the OTU signal is demultiplexed to a plurality of 4th-order ODUs, and each of the ODUs is demapped into a client signal to implement transparent transmission of the client signal in the OTN network.
  • the customer signal can be divided into: a fixed bit rate client signal and a variable bit rate client signal according to whether the rate changes.
  • OTN carrying variable bit rate client signals and client signals carrying fixed bit rates are methods for allocating fixed bandwidth, that is, fixed allocation of network bandwidth according to the maximum bit rate possible of the client signal, in order to ensure that the client signal is transmitted. It will not be lost during the process.
  • the IEEE Media Access Control (MAC) frame signal based on the IEEE 802.3 standard belongs to a variable bit rate client signal, and the bandwidth requirement for the OTN network is dynamically changed.
  • the frame length and frame interval of an Ethernet MAC frame are dynamically changed.
  • the current methods are: (1)
  • the Ethernet MAC frame is transmitted according to the maximum possible rate of the Ethernet MAC frame signal.
  • the frame mapped Generic Framing Procedure (GFP-F) is encapsulated by the frame mapping.
  • the GFP-F encapsulation is defined by the ITU-T G.7041 standard. Inter-Packet Gap (IPG) is deleted.
  • the GFP-F encapsulated signal is asynchronously mapped to the lower order ODU2. Since the Ethernet MAC frame signal rate is constantly changing, it is necessary to insert a GFP idle frame with the change of the Ethernet MAC frame signal rate in the payload of the low-order ODU to achieve the rate. The purpose of the match. (3) Multiple low-order ODU2s are multiplexed into one high-order ODU3. The high-order ODU3 payload is divided into 16 2.5G slots or 32 1.25G slots with the same rate and format, and the low-order ODU2 occupies 4 2.5G slots or 8 1.25G slots of ODU3.
  • the high-order ODU3 inserts overhead to form an OTU3 signal for transmission in the OTN network.
  • the number of time slots allocated to the first-order ODU2 is fixed, that is, the occupied OTN network bandwidth is fixed.
  • the Ethernet MAC frame signal rate is constantly changing, often failing to reach the maximum possible rate, so a fixed time slot is allocated to the Ethernet MAC frame signal according to the maximum possible rate, resulting in wasted bandwidth.
  • a main object of the present invention is to provide a method for adjusting bandwidth of an OTN device and an OTN, so as to solve the problem that the bandwidth utilization rate of the OTN network is not high when the 7-carrier Ethernet MAC frame signal is used.
  • an OTN device including: an access module, an Ethernet signal for accessing a client device; a bandwidth detecting module, configured to detect an Ethernet media access control MAC frame signal of the client device The flow rate changes; the dynamic adjustment control module is configured to determine the bandwidth adjustment requirement of the client device according to the change of the traffic flow; the time slot dynamic adjustment module is configured to adjust the bandwidth of the OTN in units of time slots according to the bandwidth adjustment requirement. Further, the time slot dynamic adjustment module includes: an execution module, configured to send a bandwidth adjustment command to all OTN nodes when all OTN nodes that the MAC frame signal passes meet the bandwidth adjustment requirement, and require all OTN nodes to adjust the demand according to the bandwidth. The bandwidth is adjusted in units of slots.
  • the time slot dynamic adjustment module further includes: a failure module, configured to send flow control information to the client device when the OTN nodes passing through the MAC frame signal have a node that does not satisfy the bandwidth adjustment requirement, notify the client device to reduce the transmission of the Ethernet Network MAC frame signal.
  • the OTN device further includes: a mapping multiplexing module, configured to: map and multiplex the Ethernet MAC frame signal into an OTU signal in the process of adjusting the OTN bandwidth; and send a module, configured to send the OTU signal by using the intermediate OTN node To the target OTN node.
  • the dynamic adjustment control module includes: a priority module, configured to determine a bandwidth adjustment requirement of the client device according to the priority level of the MAC frame signal and the traffic change.
  • a bandwidth adjustment method for an OTN including the following Step: The OTN device in the OTN accesses the Ethernet signal of the client device; the OTN device detects the traffic change of the Ethernet media access control MAC frame signal of the client device; determines the bandwidth adjustment requirement of the client device according to the traffic change; The time slot is used to adjust the bandwidth of the OTN. Further, the step of adjusting the bandwidth of the OTN by the bandwidth adjustment requirement includes: if all the OTN nodes that the MAC frame signal passes meet the bandwidth adjustment requirement, send a bandwidth adjustment command to all OTN nodes, requiring all OTN nodes to adjust the demand according to the bandwidth. The bandwidth is adjusted in units of slots.
  • the step of adjusting the bandwidth of the OTN by the bandwidth adjustment requirement further includes: if there is a node that does not satisfy the bandwidth adjustment requirement among all the OTN nodes that the MAC frame signal passes, the OTN device sends the flow control information to the client device to notify the client device to reduce Send an Ethernet MAC frame signal.
  • the method for adjusting the bandwidth of the OTN further includes the following steps: In the process of adjusting the OTN bandwidth, the OTN device maps and multiplexes the Ethernet MAC frame signal into an OTU signal, and sends the OTU signal to the target OTN node through the intermediate OTN node.
  • the step of determining the bandwidth adjustment requirement of the client device according to the traffic change comprises: determining a bandwidth adjustment requirement of the client device according to the priority level of the MAC frame signal and the traffic change.
  • FIG. 1 is a structural block diagram of an OTN device according to an embodiment of the present invention
  • 2 is a schematic structural diagram of a preferred OTN device according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of another preferred OTN device according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of still another preferred OTN device according to an embodiment of the present invention
  • 5 is a flow chart of steps of a bandwidth adjustment method for an OTN according to an embodiment of the present invention
  • FIG. 6 is a flow chart of steps of a preferred OTN bandwidth adjustment method according to an embodiment of the present invention
  • FIG. 7 is another preferred embodiment of the present invention.
  • FIG. 1 a block diagram of an OTN device according to an embodiment of the present invention is shown, which specifically includes: an access module 101, an Ethernet signal for accessing a client device, and a bandwidth detecting module 103 connected to the access module 101. And detecting, by the client device, the traffic change of the Ethernet media access control MAC frame signal; the dynamic adjustment control module 105 is connected to the bandwidth detection module 103, and is configured to determine a bandwidth adjustment requirement of the client device according to the traffic change; The adjustment module 107 is connected to the dynamic adjustment control module 105 for adjusting the bandwidth of the OTN in units of time slots for the bandwidth adjustment requirement.
  • the related art OTN 7 carrying variable bit rate client signal and 7-bit fixed bit rate client signal are all methods for allocating fixed bandwidth, that is, fixedly allocating network bandwidth according to the maximum bit rate possible of the client signal, and this embodiment
  • the OTN device detects the traffic change of the Ethernet MAC frame signal of the client device, determines the bandwidth adjustment requirement of the client device for the OTN, and implements the dynamic bandwidth adjustment of the OTN.
  • the problem that the bandwidth utilization of the OTN network in the OTN network is not high when the 7-carrier Ethernet MAC frame signal is used in the prior art is realized, and the dynamic adjustment of the bandwidth of the OTN network is realized, and the participation of the client equipment and the operator is not required, and the OTN is improved.
  • the OTN device of this embodiment may further include: a mapping multiplexing module, configured to: map and multiplex the Ethernet MAC frame signal into an OTU signal for transmission in the OTN in the process of adjusting the OTN bandwidth; And a sending module, configured to send the OTU signal to the target OTN node by using the intermediate OTN node.
  • the dynamic adjustment control module 105 may include: a priority module, configured to determine a bandwidth adjustment requirement of the client device according to a priority level and a traffic change of the MAC frame signal.
  • the priority module of the dynamic adjustment control module 105 determines the bandwidth adjustment requirement of the client device according to the priority level and the traffic change of the MAC frame signal, and notifies the slot dynamic adjustment module 107 to adjust the OTN bandwidth. .
  • the OTN time slot is allocated. When there is free bandwidth, the user needs to meet the needs of the most needed bandwidth adjustment, improve the OTN efficiency, and improve the customer experience. Multiple Ethernet signals share OTN slot bandwidth.
  • the time slot dynamic adjustment module 107 may include: an execution module, configured to send a bandwidth adjustment command to all OTN nodes when all OTN nodes that the MAC frame signal passes meet the bandwidth adjustment requirement, and require all OTN nodes to adjust the bandwidth according to the bandwidth requirement. Adjusting the bandwidth in units of time slots; the failure module is configured to send flow control information to the client device when the OTN nodes passing through the MAC frame signal have nodes that do not satisfy the bandwidth adjustment requirement, and notify the client device to reduce the transmission of the Ethernet MAC frame. signal.
  • the OTN bandwidth resource adjustment is quickly implemented by judging whether all OTN nodes passing through the MAC frame signal satisfy the bandwidth adjustment requirement.
  • an OTN node When an OTN node does not meet the bandwidth adjustment requirement, it sends traffic control information to the client device to ensure that the client signal is not lost.
  • FIG. 2 a schematic structural diagram of an OTN device according to an embodiment of the present invention is shown.
  • the access module 101 is configured to access an Ethernet signal of a client device.
  • the bandwidth detecting module 103 is configured to detect a traffic change of the Ethernet MAC frame signal of the client device, and transmit the detection result to the dynamic adjustment control module 105 in real time.
  • the bandwidth detection module 103 is located in an edge OTN device directly connected to the client device, and can detect one Ethernet MAC frame signal or multiple Ethernet MAC frame signals.
  • the Ethernet mapping/demapping module 205 is configured to extract the MAC frame signal in the Ethernet signal in the sending direction, and encapsulate the MAC frame signal into a frame mapped Generic Framing Procedure (GFP-F) signal. And then asynchronously mapping to 1 low-order ODU payload by inserting a GFP idle frame, and adding a low-order ODU overhead to transmit the low-order ODU signal to the slot dynamic adjustment module 107; and, for receiving direction Demap a low-order ODU signal into a GFP-F signal, then de-encapsulate the GFP-F signal into a 1-way Ethernet MAC frame signal, and finally restore the Ethernet signal to the client device.
  • GFP-F Generic Framing Procedure
  • the rate of the Ethernet MAC frame signal after being encapsulated by the GFP-F is less than or equal to the low-order ODU payload rate.
  • the number of high-order ODU slots allocated for carrying the low-order ODU is a positive integer, and the specific value is dynamically adjusted.
  • Block 105 determines.
  • the dynamic adjustment control module 105 is configured to receive the traffic change information of the Ethernet MAC frame signal transmitted by the bandwidth detection module 101, determine the foregoing information, determine whether to perform the time slot adjustment, and send the determination result formation adjustment command to the local
  • the slot dynamic adjustment module 107 is configured to receive the command of the dynamic adjustment control module 105, and adjust the time slot occupied by the Ethernet MAC frame signal according to the command.
  • the adjustment includes increasing and decreasing the number of time slots.
  • the time slot dynamic adjustment module 107 may further include an execution module and a failure module.
  • the execution module sends a bandwidth adjustment command to all OTN nodes, requiring all OTN nodes to adjust the bandwidth in units of time slots according to the bandwidth adjustment requirement;
  • the failure module sends flow control information to the client device to notify the client device to reduce the transmission of the Ethernet MAC frame signal.
  • the multiplexing/demultiplexing module 211 is configured to receive the M time slot signals transmitted by the time slot dynamic adjustment module 107 in the multiplexing direction, and multiplex the time slot adjusted M time slot signals into one high order ODU signal.
  • the OTN device detects the bandwidth of the Ethernet signal from the client device, and dynamically adjusts the time slot occupied by the Ethernet MAC frame signal.
  • FIG. 3 a schematic structural diagram of another preferred OTN device according to an embodiment of the present invention is shown.
  • a 16-channel 10 GbE variable bit rate Ethernet MAC frame signal is mapped and multiplexed to a 1-way OTU3 for transmission in an OTN.
  • the bandwidth adjustment is an example.
  • each Ethernet MAC frame signal is first allocated a fixed bandwidth, which is a quality guaranteed minimum bandwidth.
  • the 16-way Ethernet MAC frame signal is fixedly allocated 1 time slot respectively, and the allocation of the above 16 time slots is fixed, occupying the 1st time slot to the 16th time slot of the ODU3, and the bandwidth of each time slot is 1.25G.
  • the ODU3 also has 17th to 32nd 16 time slots for dynamic bandwidth adjustment, shared by 16 Ethernet MAC frame signals.
  • the OTN device of this embodiment includes: an access module 101, a bandwidth detecting module 103, a dynamic adjustment control module 105, a slot dynamic adjustment module 107, a multiplexing/demultiplexing module 211, and 16 Ethernet mapping/demapping modules. 205.
  • the dynamic adjustment control module 105 preferably includes a priority module.
  • the slot dynamic adjustment module 107 preferably further includes an execution module and a failure module.
  • the OTN devices of the present embodiment will be described as a sender and a receiver, respectively.
  • the access module 101 is used to access the Ethernet signal of the client device.
  • the bandwidth detecting module 103 determines the change of the signal flow of the 16-way Ethernet MAC frame signal through the GFP-F encapsulation on the receiving port of the OTN device client side, and transmits the detection result to the dynamic in real time.
  • the control module 105 is adjusted.
  • the Ethernet MAC frame signal can contain priority level information.
  • the detection results are divided into three cases: no need to adjust the bandwidth, need to increase the bandwidth, and need to reduce the bandwidth. The following is an example: No need to adjust the bandwidth: A slot bandwidth has been fixedly allocated for a certain Ethernet MAC frame signal.
  • the bandwidth detection module 101 detects that the Ethernet MAC frame signal is GFP-F encapsulated, the bit rate is smaller than Equal to 1.25G, indicating no bandwidth adjustment is required. Need to increase the bandwidth: 1 time slot bandwidth that has been fixedly allocated for a certain Ethernet MAC frame signal. When the bandwidth detection module 103 detects that the Ethernet MAC frame signal is GFP-F encapsulated, the bit rate is less than 1.25G. When it is greater than 3.75G and less than 5G, it indicates that the time slot carrying the Ethernet MAC frame signal needs to be increased to 4 time slots, and the bandwidth detecting module 103 transmits the information to the dynamic adjustment control module 105. Need to reduce the bandwidth: 4 time slot bandwidths that have been allocated for a certain Ethernet MAC frame signal.
  • the bandwidth detection module 103 detects that the Ethernet MAC frame signal is GFP-F encapsulated, the bit rate is greater than 3.75G. And less than 5G becomes greater than 1.25G and less than 2.5G, indicating that the time slot carrying the Ethernet MAC frame signal needs to be reduced to two time slots, and the bandwidth detecting module 103 transmits the information to the dynamic adjustment control module 105.
  • the bandwidth detecting module 103 transmits the information to the dynamic adjustment control module 105.
  • IPG inter-packet Gap
  • Preamble preamble
  • the Ethernet mapping/demapping module 205 uses the mapping function of the module in the transmission direction. In this embodiment, there are 16 Ethernet mapping/demapping modules 205, which respectively perform extraction of MAC frame signals in 16 lOGbE Ethernet signals, and GFP-F encapsulation and mapping of MAC frame signals.
  • An Ethernet mapping/demapping module 205 is configured to encapsulate one Ethernet MAC frame signal into one GFP-F signal, and then map to one low-order ODU payload, and add low-order ODU overhead, which will be low.
  • the order ODU signal is transmitted to the slot dynamic adjustment module 107.
  • the 16 Ethernet mapping/demapping modules 205 correspond to one slot dynamic adjustment module 107.
  • the above GFP-F signal is mapped to the low-order ODU signal, and the GFP idle frame (IDLE frame) is added to the low-order ODU payload.
  • the rate of the Ethernet MAC frame signal after being encapsulated by the GFP-F is less than or equal to the low-order ODU payload rate.
  • the number of high-order ODU slots allocated for the low-order ODU is a positive integer, and the specific value is determined by the dynamic adjustment control module 105.
  • the dynamic adjustment control module 105 is configured to receive bandwidth change information of the Ethernet MAC frame signal transmitted by the bandwidth detection module 103, determine the information, and determine whether to perform dynamic adjustment of the time slot. When the Ethernet MAC frame signal carries the priority information, the priority module determines the priority information and the traffic change. If yes, the judgment result formation adjustment command is sent to the slot dynamic adjustment module 107 and the Ethernet mapping/demapping module 205 of the source OTN node through which the Ethernet MAC frame signal passes, the slot dynamic adjustment module 107 of the target OTN node, and the ether.
  • a network mapping/demapping module 205 and a cross-connect matrix of all OTN intermediate nodes through which the foregoing Ethernet MAC frame signal passes in the network, completes slot adjustment of the entire connection; if not, sends a flow control command to the Ethernet of the source OTN node
  • the Ethernet mapping/demapping module 205 corresponding to the network MAC frame signal, the Ethernet mapping/demapping module 205 inserts a flow control frame (such as a PAUSE frame) into the Ethernet MAC frame signal according to the flow control command, and sends it back to the client device.
  • the dynamic adjustment control module 105 is located in a centralized network management system. The transfer of control commands is implemented through the data channel of the network management system.
  • the slot dynamic adjustment module 107 is configured to receive the command of the dynamic adjustment control module 105, and adjust the number of slots and the slot positions occupied by the 16 low-order ODUs according to the command, and convert the 16 low-order ODU signals into 32. Time slot signals. In the above process, 16 time slots are fixedly allocated to 16 low-order ODU signals, and the other 16 time slots are used for dynamic bandwidth adjustment, and are shared by 16 low-order ODU signals. Further, when the slot dynamic adjustment module 107 receives the command of the dynamic adjustment control module 105 to adjust the bandwidth, if all the OTN nodes that the Ethernet MAC frame signal passes satisfy the adjustment requirement, the execution module performs bandwidth adjustment; otherwise, The failure module sends flow control information to the client device.
  • the multiplexing/demultiplexing module 211 is configured to receive, by using the multiplexing function of the module, the 32 time slot signals transmitted by the time slot dynamic adjustment module 107, and the 32 time slot signals after the time slot adjustment. It is multiplexed into one high-order ODU3 signal, and the high-order ODU3 overhead is added to form an OTU3 signal to be transmitted in the OTN network.
  • the multiplexing/demultiplexing module 211 uses the demultiplexing function of the module to demap one OTU3 signal into one high-order ODU3 signal, and solves one high-order ODU3 signal.
  • the multiplex is transmitted to the time slot dynamic adjustment module for 32 time slot signals.
  • the slot dynamic adjustment module 107 is configured to receive the command of the dynamic adjustment control module 105, and adjust the number of slots and the slot position occupied by the 16 low-order ODUs according to the command, and convert the 32 slot signals into 16 Low order ODU signal.
  • the 16 low order ODU signals are transmitted to the Ethernet mapping/demapping module 205.
  • the 16 Ethernet mapping/demapping modules 205 correspond to one slot dynamic adjustment module.
  • the Ethernet mapping/demapping module 205 uses the demapping function of the module to process low-order ODU signal overhead, demap one low-order ODU signal into a GFP-F signal, and then GFP-F The signal is decapsulated into one Ethernet MAC frame signal.
  • the flow control frame (such as a PAUSE frame) is inserted into the Ethernet MAC frame signal, and the lOGbE signal is restored and sent to the client device.
  • the low-order ODU signal is demapped to the GFP-F signal, and is implemented by deleting the GFP idle frame (such as an IDLE frame) in the low-order ODU payload.
  • FIG. 4 a schematic structural diagram of still another preferred OTN device according to an embodiment of the present invention is shown.
  • an 8-channel 10 GbE variable bit rate Ethernet MAC frame signal and a 2-way synchronous transfer module SMT-16 (Synchronous Transfer) are shown.
  • Module, STM-16) Signal mixed mapping multiplexing to 1 way OTU3 is transmitted in OTN as an example.
  • the SMT-16 signal is a synchronous digital series fixed bit rate signal with a rate level of 2.5G.
  • the number of time slots occupied by the STM-16 signal is fixed, and the Ethernet signal uses the time slot as the granularity for dynamic bandwidth adjustment.
  • the 8-way 1 OGbE Ethernet signal and the 2-way STM-16 signal are mixed and mapped to one OTU3.
  • the OTU3 payload is divided into 32 1.25G time slots.
  • Each STM-64 occupies 8 1.25G time slots and cannot adjust the dynamic bandwidth.
  • the 8 channels lOGbE share 16 1.25G time slots, which can adjust the dynamic bandwidth.
  • the OTN device of this embodiment includes: an access module 101, a bandwidth detecting module 103, a dynamic adjustment control module 105, a slot dynamic adjustment module 107, a multiplexing/demultiplexing module 211, and 10 Ethernet mapping/demapping modules. 205.
  • the function of each module in the sending direction and the receiving direction refers to the third embodiment shown in FIG. 3, and will not be described again.
  • the dynamic bandwidth adjustment when the variable bit rate signal and the fixed bit rate signal are mixed and mapped to one OTU for transmission in the OTN can be implemented, and those skilled in the art can implement other similar situations according to the embodiment. Dynamic bandwidth adjustment.
  • 2 STM-16 fixedly occupy 4 1.25G time slots, and 4 1.25G time slots are shared by 2 lOGbE; 8 lOGbE and 2 STM-64 are mapped and multiplexed to OTU3 (OTU3 payload division) 32 1.25G time slots;), where STM-64 is an SDH signal with a rate class of 10G, 2 channels of STM-64 occupy a fixed 16 1.25G time slots, and another 16 1.25G time slots are composed of 8 lOGbE Sharing; 8-way lOGbE and 2-way STM-256 are mapped and multiplexed to OTU4 (OTU4 payload is divided into 80 1.25G time slots;), where STM-256 is SDH signal with rate class 40G, 2-way STM-256 fixed It occupies 64 1.25G time slots, and another 16 1.25G time slots are shared by 8 lOGbEs, and so on.
  • OTU3 OFTU3 payload division
  • STM-64 is an SDH signal with a rate
  • Step 501 The OTN device in the OTN accesses the Ethernet signal of the client device;
  • Step 503 The OTN device detects the traffic change of the Ethernet MAC frame signal of the client device;
  • Step 505 Determine the bandwidth adjustment requirement of the client device according to the traffic change;
  • Step 507 The bandwidth adjustment requirement adjusts the bandwidth of the OTN in units of time slots.
  • the related art OTN fixedly allocates network bandwidth according to the maximum bit rate possible of the client signal.
  • the OTN device detects the traffic change of the Ethernet MAC frame signal of the client device, determines the bandwidth adjustment requirement of the client device for the OTN, and implements the OTN. Dynamic bandwidth adjustment. Solution
  • the bandwidth utilization is not high, and the dynamic adjustment of the OTN network bandwidth is realized, and the participation of the client equipment and the operator is not required, and the OTN is improved.
  • the utilization of network bandwidth saves the effect of OTN network operation costs. Referring to FIG. 6 , a flow chart of a method for adjusting a bandwidth of a preferred OTN according to an embodiment of the present invention is shown.
  • the bandwidth adjustment is taken as an example, which may include the following steps: Step 601: OTN equipment in the OTN An Ethernet signal that is connected to the client device; the OTN device is an edge OTN device connected to the OTN and the Ethernet. Step 603: The OTN device detects a traffic change of the Ethernet MAC frame signal of the client device.
  • the OTN device receives the Ethernet signal, extracts the MAC frame, and detects the traffic change of the MAC frame signal. This step can be implemented by counting the bit rate of the Ethernet MAC frame signal after GFP-F encapsulation.
  • Step 605 Determine a bandwidth adjustment requirement of the client device according to the traffic change; for example, the OTN device detects that the bit rate of the Ethernet MAC frame signal after being encapsulated by the GFP-F is greater than 3.75G and less than 5G and becomes greater than 1.25G and less than 2.5G. , it is determined that the time slot carrying the Ethernet MAC frame signal needs to be reduced to 2 time slots.
  • Step 607 Determine whether all OTN nodes that the MAC frame signal passes meet the bandwidth adjustment requirement, and if yes, go to step 609; if no, go to step 611; this step may be performed by querying the slot idle table of the network management system or by sending signaling.
  • the manner of query implementation can also be implemented by other suitable methods (such as signaling query method) by those skilled in the art.
  • the OTN bandwidth resource adjustment is quickly implemented by judging whether all OTN nodes through which the MAC frame signal passes meet the bandwidth adjustment requirement.
  • Step 609 The OTN device sends a bandwidth adjustment command to all OTN nodes, requiring all OTN nodes to increase bandwidth according to bandwidth adjustment requirements; all OTN nodes that the OTN device passes to the Ethernet MAC frame signal, including the source OTN node, the intermediate OTN node, and the target OTN The node sends a bandwidth adjustment command, which requires these nodes to increase the bandwidth in units of time slots according to the bandwidth adjustment requirement.
  • Step 611 The OTN device sends the flow control information to the client device, and notifies the client device to reduce the transmission of the Ethernet MAC frame signal. When the OTN network cannot meet the bandwidth adjustment request of the Ethernet signal, it actively sends flow control information (such as a PAUSE frame) to the client device to ensure that the customer information is not lost.
  • flow control information such as a PAUSE frame
  • the OTN edge device when detecting the change of the Ethernet MAC frame signal traffic, the OTN edge device encapsulates the Ethernet MAC frame signal into a GFP-F signal, and then maps to the ODU payload, and inserts the low-order ODU overhead. A low-order ODU signal is generated, and a low-order ODU signal is multiplexed to a high-order ODU signal to generate an OTU signal for transmission in the OTN.
  • the problem that the OTN network does not have high bandwidth utilization when carrying the Ethernet MAC frame signal is solved in the prior art, and the dynamic adjustment of the OTN network bandwidth is realized, and the customer equipment does not need to be replaced, and operation and maintenance are not required.
  • Step 701 The OTN device in the OTN accesses the client device. Ethernet signal;
  • the OTN device is an edge OTN device with OTN and Ethernet connection.
  • Step 703 The OTN device detects a traffic change of the Ethernet MAC frame signal of the client device that includes the priority information.
  • Step 705 Determine a bandwidth adjustment requirement of the client device according to the priority level and the traffic change; for example, the OTN device detects the Ethernet MAC frame.
  • Step 707 The OTN device determines whether the priority level of the Ethernet MAC frame signal is the current highest level. If not, step 709 is performed; if yes, step 711 is performed; and the OTN device according to the priority level information carried in the Ethernet MAC frame signal , to determine whether the current Ethernet MAC frame signal is the most preferred adjustment. Step 709: The OTN device suspends sending and adjusting the Ethernet MAC frame letter to all OTN nodes.
  • the OTN device delays sending and adjusting the Ethernet MAC frame signal to all OTN nodes.
  • the bandwidth adjustment command preferentially transmits the Ethernet MAC frame signal adjustment command with the highest priority, and preferentially adjusts the Ethernet MAC frame signal of the highest priority.
  • it continues to detect whether the Ethernet MAC frame signal with a lower priority has risen to the current highest priority level.
  • Step 711 The OTN device sends a bandwidth adjustment command to all OTN nodes, requiring all OTN nodes to reduce bandwidth according to bandwidth adjustment requirements. After the adjustment of the Ethernet MAC frame signal with higher priority than the priority, the Ethernet MAC frame signal is upgraded to the current highest priority Ethernet MAC frame signal.
  • the OTN device sends the Ethernet MAC frame to the Ethernet MAC frame.
  • All OTN nodes passing the signal send bandwidth adjustment commands, requiring all OTN nodes to reduce bandwidth according to bandwidth adjustment requirements.
  • OTN time slots can be allocated according to priority. In the case of free bandwidth, priority is given to meeting the needs of customers who need the most bandwidth adjustment, improving OTN efficiency and improving customer experience.
  • Multiple Ethernet signals share OTN slot bandwidth.
  • embodiments of the invention may be applied to Ethernet signals having a bit rate rating of 1 GbE / 10 GbE / 40 GbE / 1 OOGbE.
  • those skilled in the art can apply the present invention to other rate grade Ethernet signals in accordance with embodiments of the present invention.
  • 1 lOGbE and 8 GbE maps are multiplexed to OTU2
  • 4 lOGbE and 8 GbE maps are multiplexed to OTU3
  • 2 channels of 40GbE and 10 lOGbE maps are multiplexed to OTU4
  • Each of the Ethernet signals is dynamically bandwidth-tuned with time slots as particles.
  • the network signal is dynamically bandwidth-tuned with time slots as particles.
  • 2 lOGbE and 2 STM-16 maps are multiplexed to OTU2 (OTU2 payload is divided into 8 1.25G time slots), where Synchronous Transfer Module (STM-16) is a rate class of 2.5.
  • Synchronous Digital Hierarchy (SDH) signal 2 STM-16 fixedly occupy 4 1.25G time slots, and 4 1.25G time slots are shared by 2 lOGbE; 8 lOGbE and 2 STM -64 mapping multiplexing to OTU3 (OTU3 payload is divided into 32 1.25G slots;), where STM-64 is an SDH signal with a rate of 10G, 2 STM-64s occupy 16 1.25G slots, and 16 1.25G slots are shared by 8 lOGbEs; 8 lOGbE and 2 STM-256 maps Used to OTU4 (OTU4 payload is divided into 80 1.25G time slots), where STM-256 is an SDH signal with a rate grade of 40G, and 2-way STM-256 occupies 64 1.25G time slots fixedly, and another 16 1.25 G slots are shared by 8 lOGbE; and so on.
  • SDH Synchronous Digital Hierarchy
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

本发明公开了一种光传送网络OTN设备和OTN的带宽调整方法。其中,所述OTN设备包括:接入模块,用于接入客户设备的以太网信号;带宽检测模块,用于检测客户设备的以太网媒体访问控制MAC帧信号的流量变化;动态调整控制模块,用于根据流量变化确定客户设备的带宽调整需求;时隙动态调整模块,用于根据带宽调整需求以时隙为单位调整OTN的带宽。通过本发明,解决了现有技术中存在的OTN网络在承载以太网MAC帧信号时,带宽利用率不高的问题,利了OTN网络带宽的动态调整。

Description

光传送网络设备和光传送网络的带宽调整方法 技术领域 本发明涉及通信技术领域, 尤其涉及一种光传送网络( Optical Transport Network , 简称 ΟΤΝ )设备和 ΟΤΝ的带宽调整方法。 背景技术 由于 ΟΤΝ 能够支持多种客户信号的传送, 在近几年得到很快发展, 逐 渐成为光通信领域的主流技术之一。 ΟΤΝ承载客户信号需要进行映射和复用 处理。 在发送侧, 首先需要将客户信号映射至低阶光通路数据模块 (Optical Channel Data Unit, 简称 ODU ) 的净荷中, 然后将多个低阶 ODU复用至一 个高阶 ODU, 形成光通路传输单元 (Optical Channel Transport Unit, 简称 OTU )信号在 OTN网络中传送。 在接收侧, 将 OTU信号中的一个高阶 ODU 解复用至多个 4氏阶 ODU, 每个氏阶 ODU解映射为客户信号, 实现客户信号 在 OTN网络中的透明传送。 客户信号按照速率是否变化可以分为: 固定比特速率的客户信号和可变 比特速率的客户信号。 目前 OTN承载可变比特速率的客户信号和承载固定 比特速率的客户信号都是釆用分配固定带宽的方法, 即按照客户信号可能的 最大比特速率固定分配网络带宽, 目的是保证客户信号在传送的过程中不会 丢失。 基于 IEEE 802.3标准的以太网媒体访问控制 (Media Access Control , 简称 MAC ) 帧信号属于可变比特速率的客户信号, 对 OTN网络带宽需求是 动态变化的。 以太网 MAC帧的帧长度和帧间隔是动态变化的。 以 OTU3 载 10吉比特以太网 ( 10 Gigabit Ethernet, 10GbE ) MAC帧信号在 OTN网络 传送为例, 目前釆用的方法是: ( 1 ) 按照以太网 MAC帧信号可能的最大速 率将以太网 MAC帧信号进行帧映射的通用成帧规程 ( Frame mapped Generic Framing Procedure , 简称 GFP-F )封装, GFP-F封装由 ITU-T G.7041标准定 义, 删除帧间码 ( Inter-Packet Gap, 简称 IPG )和前导码(Preamble ) 的同时 加入 GFP-F核心头和净荷头开销。 ( 2 ) GFP-F封装后的信号异步映射至低阶 ODU2。 由于以太网 MAC帧信号速率是不断变化的, 因此需要在低阶 ODU 的净荷中随着以太网 MAC帧信号速率的变化插入 GFP空闲帧, 以达到速率 匹配的目的。 ( 3 )将多个低阶 ODU2复用至一个高阶 ODU3。 高阶 ODU3净 荷划分为速率和格式相同的 16个 2.5G时隙或者 32个 1.25G时隙,低阶 ODU2 占用 ODU3的 4个 2.5G时隙或者 8个 1.25G时隙。 高阶 ODU3插入开销后 形成 OTU3信号在 OTN网络中传送。在 OTN传送过程中,分配给氐阶 ODU2 的时隙数是固定不变, 也就是占用的 OTN网络带宽是固定不变的。 实际上, 以太网 MAC帧信号速率是不断变化的, 往往达不到可能的最 大速率, 因此按照可能的最大速率给以太网 MAC帧信号分配固定的时隙, 造成了带宽的浪费。 发明内容 本发明的主要目的在于提供一种 OTN设备和 OTN的带宽调整方法, 以 解决 OTN网络在 7 载以太网 MAC帧信号时, 带宽利用率不高的问题。 根据本发明的一个方面, 提供了一种 OTN设备, 包括: 接入模块, 用 于接入客户设备的以太网信号; 带宽检测模块, 用于检测客户设备的以太网 媒体访问控制 MAC帧信号的流量变化; 动态调整控制模块, 用于 居流量 变化确定客户设备的带宽调整需求; 时隙动态调整模块, 用于根据带宽调整 需求以时隙为单位调整 OTN的带宽。 进一步地, 时隙动态调整模块包括: 执行模块, 用于当 MAC帧信号经 过的所有 OTN节点都满足带宽调整需求时, 向所有 OTN节点发送带宽调整 命令, 要求所有 OTN节点按照带宽调整需求以时隙为单位调整带宽。 进一步地, 时隙动态调整模块还包括: 失败模块, 用于当 MAC帧信号 经过的所有 OTN 节点中存在不满足带宽调整需求的节点时, 向客户设备发 送流量控制信息, 通知客户设备减少发送以太网 MAC帧信号。 进一步地, OTN设备还包括: 映射复用模块, 用于在调整 OTN带宽的 过程中, 将以太网 MAC帧信号映射和复用为 OTU信号; 发送模块, 用于通 过中间 OTN节点将 OTU信号发送至目标 OTN节点。 进一步地, 动态调整控制模块包括: 优先级模块, 用于根据 MAC帧信 号的优先级别和流量变化确定客户设备的带宽调整需求。 才艮据本发明的另一方面, 提供了一种 OTN 的带宽调整方法, 包括以下 步骤: OTN中的 OTN设备接入客户设备的以太网信号; OTN设备检测客 户设备的以太网媒体访问控制 MAC帧信号的流量变化; 根据流量变化确定 客户设备的带宽调整需求; 根据带宽调整需求以时隙为单位调整 OTN 的带 宽。 进一步地, 居带宽调整需求调整 OTN的带宽的步骤包括: 若 MAC帧 信号经过的所有 OTN节点都满足带宽调整需求, 则向所有 OTN节点发送带 宽调整命令, 要求所有 OTN节点按照带宽调整需求以时隙为单位调整带宽。 进一步地, 居带宽调整需求调整 OTN的带宽的步骤还包括: 若 MAC 帧信号经过的所有 OTN节点中存在不满足带宽调整需求的节点, 则 OTN设 备向客户设备发送流量控制信息, 通知客户设备减少发送以太网 MAC帧信 号。 进一步地, OTN的带宽调整方法还包括以下步骤: 在调整 OTN带宽的 过程中, OTN设备将以太网 MAC帧信号映射和复用为 OTU信号, 通过中 间 OTN节点将 OTU信号发送至目标 OTN节点。 进一步地,根据流量变化确定所述客户设备的带宽调整需求的步骤包括: 根据 MAC帧信号的优先级别和流量变化确定客户设备的带宽调整需求。 通过本发明,解决了现有技术中存在的 OTN网络在 7 载以太网 MAC帧 信号时, 带宽利用率不高的问题, 实现了 OTN 网络带宽的动态调整, 在完 成 OTN 网络带宽调整的过程中, 不需要客户设备和运营商人工的参与, 动 态适应客户流量的变化, 自动完成以 OTN 时隙为单位的带宽调整, 提高了 OTN网络带宽的利用率, 节省了 OTN网络运营成本。 另外, 由 OTN设备检 测来自客户设备的以太网信号的带宽, 并触发带宽调整请求, 无需客户设备 参与。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是本发明实施例的一个 OTN设备的结构框图; 图 2是本发明实施例的一个优选 OTN设备的结构示意图; 图 3是本发明实施例的另一个优选 OTN设备的结构示意图; 图 4是本发明实施例的再一个优选 OTN设备的结构示意图; 图 5是本发明实施例的一个 OTN的带宽调整方法的步骤流程图; 图 6是本发明实施例的一个优选 OTN的带宽调整方法的步骤流程图; 图 7是本发明实施例的另一个优选 OTN的带宽调整方法的步骤流程图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 参照图 1 ,示出了本发明实施例的一种 OTN设备的结构框图,具体包括: 接入模块 101 , 用于接入客户设备的以太网信号; 带宽检测模块 103 , 连接 至接入模块 101 , 用于检测客户设备的以太网媒体访问控制 MAC 帧信号的 流量变化; 动态调整控制模块 105 , 连接至带宽检测模块 103 , 用于才艮据流 量变化确定客户设备的带宽调整需求; 时隙动态调整模块 107 , 连接至动态 调整控制模块 105 , 用于 居带宽调整需求以时隙为单位调整 OTN的带宽。 相关技术的 OTN 7 载可变比特速率的客户信号和 7 载固定比特速率的 客户信号都是釆用分配固定带宽的方法, 即按照客户信号可能的最大比特速 率固定分配网络带宽, 而本实施例通过 OTN 设备检测客户设备的以太网 MAC帧信号的流量变化, 确定客户设备对 OTN的带宽调整需求, 进而实现 OTN的动态带宽调整。 解决了现有技术中 OTN网络在 7 载以太网 MAC帧 信号时, 带宽利用率不高的问题, 实现了 OTN 网络带宽的动态调整, 且不 需要客户设备和运营商人工的参与, 提高了 OTN 网络带宽的利用率, 节省 了 OTN网络运营成本的效果。 更进一步地, 本实施例的 OTN设备还可以包括: 映射复用模块, 用于 在调整 OTN带宽的过程中,将以太网 MAC帧信号映射和复用为 OTU信号, 以便在 OTN中传输; 以及发送模块, 用于通过中间 OTN节点将 OTU信号 发送至目标 OTN节点。 优选的, 动态调整控制模块 105可以包括: 优先级模块, 用于根据 MAC 帧信号的优先级别和流量变化确定客户设备的带宽调整需求。在以太网 MAC 帧信号携带有优先级别信息时, 动态调整控制模块 105 的优先级模块根据 MAC 帧信号的优先级别和流量变化确定客户设备的带宽调整需求, 通知时 隙动态调整模块 107调整 OTN带宽。 对以太网信号按照优先级, 分配 OTN 时隙, 在有空闲带宽的情况下, 优先满足最需要带宽调整客户的需要, 提高 OTN效率, 提升客户体验。 多路以太网信号共享 OTN时隙带宽。 优选的, 时隙动态调整模块 107可以包括: 执行模块, 用于当 MAC帧 信号经过的所有 OTN节点都满足带宽调整需求时, 向所有 OTN节点发送带 宽调整命令, 要求所有 OTN节点按照带宽调整需求以时隙为单位调整带宽; 失败模块,用于当 MAC帧信号经过的所有 OTN节点中存在不满足带宽调整 需求的节点时, 向客户设备发送流量控制信息, 通知客户设备减少发送以太 网 MAC帧信号。 通过对 MAC帧信号经过的所有 OTN节点是否满足带宽调 整需求的判断, 快速实现 OTN带宽资源调整。 在有 OTN节点不满足带宽调 整需求时, 向客户设备发送流量控制信息, 保证客户信号不丢失。 参照图 2 , 示出了本发明实施例的 OTN设备一个优选的结构示意图, 具 体可以包括: 接入模块 101 , 用于接入客户设备的以太网信号。 带宽检测模块 103 , 用于检测客户设备的以太网 MAC 帧信号的流量变 化, 并将检测结果实时传递给动态调整控制模块 105。 其中, 带宽检测模块 103位于直接与客户设备连接的边缘 OTN设备中,可以检测 1路以太网 MAC 帧信号, 也可以检测多路以太网 MAC帧信号。 以太网映射 /解映射模块 205 , 用于发送方向的以太网信号中 MAC帧信 号的提取, 将 MAC 帧信号封装为帧映射的通用成帧规程 ( Frame mapped Generic Framing Procedure , 简称 GFP-F )信号, 然后釆用插入 GFP空闲帧 的方式异步映射到 1 个低阶 ODU净荷, 同时加上低阶 ODU开销, 将低阶 ODU信号传送至时隙动态调整模块 107; 以及, 用于接收方向的将 1个低阶 ODU信号解映射为 GFP-F信号, 然后将 GFP-F信号解封装为 1 路以太网 MAC帧信号, 最后恢复以太网信号发送给客户设备。 其中, 以太网 MAC帧 信号经过 GFP-F封装后的速率小于或等于上述低阶 ODU净荷速率。 为承载 低阶 ODU所分配的高阶 ODU时隙数为正整数,具体数值由动态调整控制模 块 105确定。 动态调整控制模块 105 ,用于接收带宽检测模块 101传送的以太网 MAC 帧信号的流量变化信息, 对上述信息进行判断, 做出是否进行时隙调整的判 断, 将判断结果形成调整命令发送到本 OTN节点和网络中上述以太网 MAC 帧信号经过的所有 OTN节点的时隙动态调整模块 107。 时隙动态调整模块 107, 用于接收动态调整控制模块 105的命令, 并按 照命令对以太网 MAC帧信号占用的时隙进行调整。 调整的内容包括增加和 减少时隙的数量。 进一步地, 该时隙动态调整模块 107可以进一步包括执行 模块和失败模块。 当该以太网 MAC帧信号经过的所有 OTN节点都满足带宽 调整需求时, 执行模块向所有 OTN节点发送带宽调整命令, 要求所有 OTN 节点按照带宽调整需求以时隙为单位调整带宽; 当该以太网 MAC帧信号经 过的所有 OTN 节点中存在不满足带宽调整需求的节点时, 失败模块向客户 设备发送流量控制信息, 通知客户设备减少发送以太网 MAC帧信号。 复用 /解复用模块 211 , 用于在复用方向接收时隙动态调整模块 107传送 的 M个时隙信号, 将经过时隙调整后的 M个时隙信号复用为一路高阶 ODU 信号, 同时加上高阶 ODU开销, 形成 OTU信号在 OTN网络中传送; 以及, 用于在解复用方向将一路 OTU信号解映射为一路高阶 ODU信号,将一路高 阶 ODU信号解复用为 M路时隙信号传送到时隙动态调整模块。 通过本实施例, OTN设备检测来自客户设备的以太网信号的带宽, 对以 太网 MAC帧信号占用的时隙进行动态调整。 参照图 3 , 示出了本发明实施例的另一个优选 OTN设备的结构示意图, 本实施例以 16路 lO GbE可变比特速率以太网 MAC帧信号映射复用至 1路 OTU3在 OTN中传输时的带宽调整为例。
1路 lOGbE以太网 MAC帧信号理论最大速率为 10G, 16路 lOGbE以太 网 MAC帧信号理论最大速率为 160G。 OTU3中 ODU3净荷速率为 40G, 无 法按照目前的方法 载 16路 lOGbE信号。 为了解决上述问题, 本实施例首先给每路以太网 MAC帧信号分配一个 固定带宽, 此带宽是有质量保证的最小带宽。 16路以太网 MAC帧信号分别 固定分配 1个时隙, 上述 16个时隙的分配是固定不变的, 占用 ODU3第 1 时隙至第 16时隙, 每个时隙带宽为 1.25G。 ODU3另外还有第 17至第 32共 16个时隙, 用于动态带宽调整, 由 16路以太网 MAC帧信号共享。 本实施例的 OTN设备包括: 接入模块 101、 带宽检测模块 103、 动态调 整控制模块 105、 时隙动态调整模块 107、 复用 /解复用模块 211 , 以及 16个 以太网映射 /解映射模块 205。 其中, 动态调整控制模块 105优选的可以包括 优先级模块; 时隙动态调整模块 107优选还可以包括执行模块和失败模块。 下面以本实施例的 OTN设备分别作为发送方和接收方加以说明。
( 1 ) 发送方向: 接入模块 101 , 用于接入客户设备的以太网信号。 带宽检测模块 103 , 在 OTN设备客户侧的接收端口, 通过分别统计 16 路以太网 MAC帧信号经过 GFP-F封装后的比特速率, 确定该路信号流量的 变化, 并将检测结果实时传递给动态调整控制模块 105。 以太网 MAC 帧信 号可以包含优先级别信息。 检测结果分为无需调整带宽、 需要增加带宽、 需 要减小带宽三种情况。 下面举例说明: 无需调整带宽: 已经为某 1路以太网 MAC帧信号固定分配 1个时隙带 宽, 当带宽检测模块 101检测到该路以太网 MAC帧信号经过 GFP-F封装后 的比特速率小于等于 1.25G, 表示无需进行带宽调整。 需要增加带宽: 已经为某 1路以太网 MAC帧信号固定分配的 1个时隙 带宽, 当带宽检测模块 103检测到该路以太网 MAC帧信号经过 GFP-F封装 后的比特速率由小于 1.25G变为大于 3.75G且小于 5G,表示承载该路以太网 MAC帧信号的时隙需要增加至 4个时隙, 带宽检测模块 103将此信息传送 给动态调整控制模块 105。 需要减小带宽: 已经为某 1路以太网 MAC帧信号分配的 4个时隙带宽, 当带宽检测模块 103检测到该路以太网 MAC帧信号经过 GFP-F封装后的比 特速率由大于 3.75G且小于 5G变为大于 1.25G且小于 2.5G, 表示承载该路 以太网 MAC帧信号的时隙需要减少至 2个时隙, 带宽检测模块 103将此信 息传送给动态调整控制模块 105。 在统计以太网 MAC帧信号经过 GFP-F封装后的比特速率的时候, 需要 按照 ITU-T G.7041标准定义删除帧间码 ( Inter-Packet Gap, IPG ) 和前导码 ( Preamble ), 同时需要力口入 GFP-F核心头和净荷头开销字节。 需要说明的是, 本实施例中的带宽调整范围均为示例性说明, 本领域技 术人员可以根据实际需要灵活设置,如检测到以太网 MAC帧信号经过 GFP-F 封装后的比特速率由小于 1.25G变为大于 2.5G且小于 3.75G时,表示承载该 路以太网 MAC帧信号的时隙需要增加等, 本发明无须对此作出限制。 以太网映射 /解映射模块 205 , 在发送方向, 使用该模块的映射功能。 本 实施例中有 16个以太网映射 /解映射模块 205 ,分别完成 16路 lOGbE以太网 信号中 MAC帧信号的提取, MAC帧信号的 GFP-F封装和映射。 1个以太网 映射 /解映射模块 205用于将 1路以太网 MAC帧信号封装为 1路 GFP-F信号, 然后映射到 1个低阶 ODU净荷, 同时加上低阶 ODU开销, 将低阶 ODU信 号传送至时隙动态调整模块 107。 16个以太网映射 /解映射模块 205对应 1个 时隙动态调整模块 107。 上述 GFP-F信号映射到低阶 ODU信号, 釆用在低 阶 ODU净荷中添加 GFP空闲帧 ( IDLE帧)的方式。 其中, 以太网 MAC帧 信号经过 GFP-F 封装后的速率小于等于上述低阶 ODU 净荷速率。 为低阶 ODU分配的高阶 ODU时隙数为正整数, 具体数值由动态调整控制模块 105 确定。 动态调整控制模块 105 ,用于接收带宽检测模块 103传送的以太网 MAC 帧信号的带宽变化信息, 对上述信息进行判断, 做出是否进行时隙动态调整 的判断。 在以太网 MAC帧信号携带有优先级信息时, 优先级模块结合优先 级信息和流量变化进行判断。 如果是, 将判断结果形成调整命令发送到以太 网 MAC帧信号经过的源 OTN节点的时隙动态调整模块 107和以太网映射 / 解映射模块 205、 目标 OTN节点的时隙动态调整模块 107和以太网映射 /解 映射模块 205 , 以及网络中上述以太网 MAC帧信号经过的所有 OTN中间节 点的交叉连接矩阵, 完成整个连接的时隙调整; 如果否, 将流量控制命令发 送到源 OTN节点的以太网 MAC帧信号对应的以太网映射 /解映射模块 205 , 以太网映射 /解映射模块 205根据流量控制命令在以太网 MAC帧信号中插入 流量控制帧 (如 PAUSE帧;), 回送给客户设备。 动态调整控制模块 105位于 集中式网络管理系统中。 控制命令的传送通过网管系统的数据通道实现。 时隙动态调整模块 107, 用于接收动态调整控制模块 105的命令, 并按 照命令对 16个低阶 ODU 占用的时隙数量和时隙位置分别进行调整, 将 16 个低阶 ODU信号转换为 32个时隙信号。 在上述过程中, 16个时隙被固定分 配给 16路低阶 ODU信号, 另外 16个时隙被用于动态带宽调整, 由 16路低 阶 ODU信号共享。 更进一步地, 时隙动态调整模块 107在接收动态调整控制模块 105的命 令对带宽进行调整时,若以太网 MAC帧信号经过的所有 OTN节点都满足调 整需求, 则执行模块进行带宽调整; 否则, 失败模块向客户设备发送流量控 制信息。 复用 /解复用模块 211 , 在发送方向, 使用该模块的复用功能, 用于接收 时隙动态调整模块 107传送的 32个时隙信号, 将经过时隙调整后的 32个时 隙信号复用为一路高阶 ODU3信号, 同时加上高阶 ODU3开销, 形成 OTU3 信号在 OTN网络中传送。
( 2 )接收方向: 复用 /解复用模块 211 , 在接收方向, 使用该模块的解复用功能, 用于将 一路 OTU3信号解映射为一路高阶 ODU3信号,将一路高阶 ODU3信号解复 用为 32路时隙信号传送到时隙动态调整模块。 时隙动态调整模块 107, 用于接收动态调整控制模块 105的命令, 并按 照命令对 16个低阶 ODU 占用的时隙数量和时隙位置分别进行调整, 将 32 个时隙信号转换为 16个低阶 ODU信号。 16个低阶 ODU信号传送给以太网 映射 /解映射模块 205。 16个以太网映射 /解映射模块 205对应 1个时隙动态 调整模块。 在上述过程中, 16个时隙被固定分配给 16路低阶 ODU信号, 另 外 16个时隙被用于动态带宽调整, 由 16路氏阶 ODU信号共享。 以太网映射 /解映射模块 205 , 在接收方向, 使用该模块的解映射功能, 用于处理低阶 ODU信号开销, 将 1个低阶 ODU信号解映射为 GFP-F信号, 然后将 GFP-F信号解封装为 1个以太网 MAC帧信号。 当接收到动态调整控 制模块 105发送的流量控制命令, 将流量控制帧 (如 PAUSE帧) 插入上述 以太网 MAC帧信号, 恢复 lOGbE信号后发送给客户设备。 上述低阶 ODU 信号解映射到 GFP-F信号,釆用在低阶 ODU净荷中删除 GFP空闲帧(如 IDLE 帧) 的方式实现。 参照图 4, 示出了本发明实施例的再一个优选的 OTN设备结构示意图, 本实施例以 8路 10 GbE可变比特速率以太网 MAC帧信号和 2路同步传递模 块 SMT-16 ( Synchronous Transfer Module, STM-16 )信号混合映射复用至 1 路 OTU3在 OTN中传输为例。 其中, SMT-16信号是速率等级为 2.5G的同 步数字系列固定比特速率信号。 8路 lOGbE以太网可变比特速率信号和 2路 STM-16固定比特速率信号 混合映射复用至 1路 OTUk ( k=2, 3 , 4 )。 其中, STM-16信号占用的时隙 数是固定不变的, 以太网信号以时隙为颗粒进行动态带宽调整。本实施例中, 8路 1 OGbE以太网信号和 2路 STM- 16信号混合映射复用至 1路 OTU3。 OTU3 净荷划分为 32个 1.25G时隙, 每 1路 STM-64固定占用 8个 1.25G时隙, 不 能动态带宽调整; 8路 lOGbE共享 16个 1.25G时隙, 可以动态带宽调整。 本实施例的 OTN设备包括: 接入模块 101、 带宽检测模块 103、 动态调 整控制模块 105、 时隙动态调整模块 107、 复用 /解复用模块 211 , 以及 10个 以太网映射 /解映射模块 205。 各模块在发送方向和接收方向功能参照图 3所 示实施例三, 在;^不再赘述。 通过本实施例, 可以实现可变比特速率信号和固定比特速率信号混合映 射复用至 1路 OTU在 OTN中传输时的动态带宽调整, 本领域技术人员可以 根据本实施例, 实现其它类似情况的动态带宽调整。 如: 2路 STM-16 固定 占用 4个 1.25G时隙, 另夕卜 4个 1.25G时隙由 2路 lOGbE共享; 8路 lOGbE 和 2路 STM-64映射复用至 OTU3 ( OTU3净荷划分为 32个 1.25G时隙;), 其中 STM-64是速率等级为 10G的 SDH信号, 2路 STM-64固定占用 16个 1.25G时隙, 另夕卜 16个 1.25G时隙由 8路 lOGbE共享; 8路 lOGbE和 2路 STM-256 映射复用至 OTU4 ( OTU4 净荷划分为 80 个 1.25G 时隙;), 其中 STM-256是速率等级为 40G的 SDH信号, 2路 STM-256固定占用 64个 1.25G 时隙, 另夕卜 16个 1.25G时隙由 8路 lOGbE共享, 等等。 参照图 5 ,示出了本发明实施例的一个 OTN的带宽调整方法的步骤流程 图, 具体可以包括以下步 4聚: 步骤 501 : OTN中的 OTN设备接入客户设备的以太网信号; 步骤 503: OTN设备检测客户设备的以太网 MAC帧信号的流量变化; 步骤 505 : 根据流量变化确定客户设备的带宽调整需求; 步骤 507: 居带宽调整需求以时隙为单位调整 OTN的带宽。 相关技术的 OTN按照客户信号可能的最大比特速率固定分配网络带宽, 而本实施例通过 OTN设备检测客户设备的以太网 MAC帧信号的流量变化, 确定客户设备对 OTN的带宽调整需求, 进而实现 OTN的动态带宽调整。 解 决了现有技术中 OTN网络在 7 载以太网 MAC帧信号时,带宽利用率不高的 问题, 实现了 OTN 网络带宽的动态调整, 且不需要客户设备和运营商人工 的参与,提高了 OTN网络带宽的利用率,节省了 OTN网络运营成本的效果。 参照图 6,示出了本发明实施例的一个优选 OTN的带宽调整方法的步骤 流程图, 本实施例以增加带宽调整为例, 具体可以包括以下步 4聚: 步骤 601: OTN中的 OTN设备接入客户设备的以太网信号; 该 OTN设备为 OTN与以太网连接的边缘 OTN设备。 步骤 603: OTN设备检测客户设备的以太网 MAC帧信号的流量变化;
OTN设备接收以太网信号, 提取 MAC帧, 检测 MAC帧信号的流量变 化。 本步 4聚可以釆用统计以太网 MAC帧信号经过 GFP-F封装后的比特速率 的方式实现。 步骤 605: 根据流量变化确定客户设备的带宽调整需求; 如: OTN设备检测到以太网 MAC帧信号经过 GFP-F封装后的比特速率 由大于 3.75G且小于 5G变为大于 1.25G且小于 2.5G, 确定承载该路以太网 MAC帧信号的时隙需要减少至 2个时隙。 步骤 607: 判断 MAC帧信号经过的所有 OTN节点是否满足带宽调整需 求, 若是, 则转步骤 609; 若否, 则转步骤 611; 本步骤可以通过查询网管系统的时隙空闲表或通过发送信令查询的方式 实现, 本领域技术人员也可以釆用其它适当方法 (如信令查询方法) 实现。 通过对 MAC帧信号经过的所有 OTN节点是否满足带宽调整需求的判断,快 速实现 OTN带宽资源调整。 步骤 609: OTN设备向所有 OTN节点发送带宽调整命令,要求所有 OTN 节点按照带宽调整需求增加带宽; OTN设备向以太网 MAC帧信号经过的所有 OTN节点, 包括源 OTN节 点、 中间 OTN节点和目标 OTN节点发送带宽调整命令, 要求这些节点按照 带宽调整需求以时隙为单位增加带宽。 步骤 611 : OTN设备向客户设备发送流量控制信息, 通知客户设备减少 发送以太网 MAC帧信号。 当 OTN 网络无法满足以太网信号的带宽调整请求, 主动向客户设备发 送流量控制信息 (如 PAUSE帧), 可以保证客户信息不丢失。 需要说明的是, OTN边缘设备在检测以太网 MAC帧信号流量变化的同 时, 还将以太网 MAC帧信号封装为 GFP-F信号, 然后映射到氏阶 ODU净 荷, 并插入低阶 ODU开销, 生成低阶 ODU信号, 将低阶 ODU信号复用至 高阶 ODU信号, 生成 OTU信号, 在 OTN中传输。 通过本实施例,解决了现有技术中 OTN网络在承载以太网 MAC帧信号 时, 带宽利用率不高的问题, 实现了 OTN 网络带宽的动态调整, 不需要更 换客户设备, 也不需要运营维护人员的人工参与, 提高了 OTN 网络带宽的 利用率, 节省了 OTN网络运营成本的效果。 参照图 7,示出了本发明实施例的另一个优选 OTN的带宽调整方法的步 骤流程图, 本实施例以减少带宽为例, 具体可以包括: 步骤 701: OTN中的 OTN设备接入客户设备的以太网信号; 该 OTN设备为 OTN与以太网连接的边缘 OTN设备。 步骤 703: OTN设备检测客户设备的包含优先级别信息的以太网 MAC 帧信号的流量变化; 步骤 705 : 根据优先级别和流量变化确定客户设备的带宽调整需求; 如: OTN设备检测到以太网 MAC帧信号经过 GFP-F封装后的比特速率 由小于 1.25G变为大于 3.75G且小于 5G, 确定承载该路以太网 MAC帧信号 的时隙需要增力 至 4个时隙。 步骤 707: OTN设备判断该以太网 MAC帧信号的优先级别是否为当前 最高级别, 若否, 则执行步骤 709; 若是, 则执行步骤 711 ; OTN设备根据以太网 MAC帧信号中携带的优先级别信息, 判断当前以 太网 MAC帧信号是否最优先调整。 步骤 709: OTN设备暂緩向所有 OTN节点发送调整该以太网 MAC帧信 号的带宽调整命令, 转步骤 707; 本步骤中, OTN设备在检测到该以太网 MAC帧信号的优先级别不是当 前的最高级别时,暂緩向所有 OTN节点发送调整该以太网 MAC帧信号的带 宽调整命令, 优先发送优先级别最高的以太网 MAC帧信号调整命令, 优先 对最优先级别的以太网 MAC帧信号进行调整。 同时, 继续检测该优先级别 较氐的以太网 MAC帧信号是否上升为当前最高优先级别。 步骤 711 : OTN设备向所有 OTN节点发送带宽调整命令,要求所有 OTN 节点按照带宽调整需求减少带宽。 优先级别较氐的以太网 MAC 帧信号在高于其优先级别的以太网 MAC 帧信号调整完成后, 上升成为当前优先级别最高的以太网 MAC帧信号, 这 时, OTN设备向该以太网 MAC帧信号经过的所有 OTN节点发送带宽调整 命令, 要求所有 OTN节点按照带宽调整需求减少带宽。 对以太网信号可以按照优先级, 分配 OTN 时隙, 在有空闲带宽的情况 下, 优先满足最需要带宽调整客户的需要, 提高 OTN效率, 提升客户体验。 多路以太网信号共享 OTN时隙带宽。 较为优选的, 本发明 的实施例可以应用 于比特速率等级为 1 GbE/ 10GbE/40GbE/ 1 OOGbE的以太网信号。 当然, 本领域技术人员可以根据 本发明的实施例, 将本发明应用于其它速率等级的以太网信号中。 应用本发明, 多路相同速率或不同速率以太网信号可以同时映射复用至 1路 OTUk(k=2, 3 , 4)。 例如: 1路 lOGbE和 8路 GbE映射复用至 OTU2; 4路 lOGbE和 8路 GbE映射复用至 OTU3; 2路 40GbE和 10路 lOGbE映射 复用至 OTU4; 等等。 其中各路以太网信号以时隙为颗粒进行动态带宽调整。 同样, 多路以太网信号也可以和固定比特速率信号混合映射复用至 1路 OTUk(k=2, 3 , 4), 其中, 固定比特速率信号占用的时隙数是固定不变的, 以太网信号以时隙为颗粒进行动态带宽调整。 例如: 2 路 lOGbE 和 2 路 STM-16映射复用至 OTU2 ( OTU2净荷划分为 8个 1.25G时隙), 其中同步 传递模块 -16(Synchronous Transfer Module, STM-16)是速率等级为 2.5G的同 步数字系列(Synchronous Digital Hierarchy, SDH)信号, 2路 STM-16固定占 用 4个 1.25G时隙, 另夕卜 4个 1.25G时隙由 2路 lOGbE共享; 8路 lOGbE和 2路 STM-64映射复用至 OTU3 ( OTU3净荷划分为 32个 1.25G时隙;), 其中 STM-64是速率等级为 10G的 SDH信号, 2路 STM-64固定占用 16个 1.25G 时隙,另外 16个 1.25G时隙由 8路 lOGbE共享; 8路 lOGbE和 2路 STM-256 映射复用至 OTU4 ( OTU4净荷划分为 80个 1.25G时隙), 其中 STM-256是 速率等级为 40G的 SDH信号, 2路 STM-256固定占用 64个 1.25G时隙, 另 夕卜 16个 1.25G时隙由 8路 lOGbE共享; 等等。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步 4聚, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书 一种光传送网络 OTN设备, 其特征在于, 包括:
接入模块, 用于接入客户设备的以太网信号;
带宽检测模块,用于检测所述客户设备的以太网媒体访问控制 MAC 帧信号的流量变化;
动态调整控制模块, 用于根据所述流量变化确定所述客户设备的带 宽调整需求;
时隙动态调整模块, 用于才艮据所述带宽调整需求以时隙为单位调整 OTN的带宽。 才艮据权利要求 1所述的 OTN设备, 其特征在于, 所述时隙动态调整模块 包括:
执行模块, 用于当所述 MAC帧信号经过的所有 OTN节点都满足所 述带宽调整需求时, 向所述所有 OTN节点发送带宽调整命令,要求所述 所有 OTN节点按照所述带宽调整需求以时隙为单位调整带宽。 才艮据权利要求 2所述的 OTN设备, 其特征在于, 所述时隙动态调整模块 还包括:
失败模块, 用于当所述 MAC帧信号经过的所述所有 OTN节点中存 在不满足所述带宽调整需求的节点时, 向所述客户设备发送流量控制信 息, 通知所述客户设备减少发送所述以太网 MAC帧信号。 根据权利要求 2所述的 OTN设备, 其特征在于, 还包括:
映射复用模块, 用于在所述调整 OTN带宽的过程中,将所述以太网 MAC帧信号映射和复用为 OTU信号;
发送模块, 用于通过中间 OTN 节点将所述 OTU 信号发送至目标 OTN节点。 根据权利要求 1所述的 OTN设备, 其特征在于, 所述动态调整控制模块 包括: 优先级模块, 用于 居所述 MAC 帧信号的优先级别和所述流量变 化确定所述客户设备的带宽调整需求。
6. —种光传送网络 OTN的带宽调整方法, 其特征在于, 包括以下步 4聚:
OTN中的 OTN设备接入客户设备的以太网信号;
所述 OTN设备检测所述客户设备的以太网媒体访问控制 MAC帧信 号的流量变化;
根据所述流量变化确定所述客户设备的带宽调整需求; 才艮据所述带宽调整需求以时隙为单位调整所述 OTN的带宽。
7. 根据权利要求 6所述的方法, 其特征在于, 根据所述带宽调整需求调整 所述 OTN的带宽的步骤包括:
若所述 MAC 帧信号经过的所有 OTN 节点都满足所述带宽调整需 求, 则向所述所有 OTN节点发送带宽调整命令, 要求所述所有 OTN节 点按照所述带宽调整需求以时隙为单位调整带宽。
8. 根据权利要求 7所述的方法, 其特征在于, 根据所述带宽调整需求调整 所述 OTN的带宽的步骤还包括:
若所述 MAC帧信号经过的所述所有 OTN节点中存在不满足所述带 宽调整需求的节点, 则所述 OTN设备向所述客户设备发送流量控制信 息, 通知所述客户设备减少发送所述以太网 MAC帧信号。
9. 居权利要求 7所述的方法, 其特征在于, 还包括以下步骤:
在所述调整 OTN带宽的过程中,所述 OTN设备将所述以太网 MAC 帧信号映射和复用为 OTU信号, 通过中间 OTN节点将所述 OTU信号 发送至目标 OTN节点。
10. 居权利要求 6所述的方法, 其特征在于, 所述 -据流量变化确定所述 客户设备的带宽调整需求的步骤包括:
才艮据所述 MAC 帧信号的优先级别和流量变化确定所述客户设备的 带宽调整需求。
PCT/CN2010/076303 2010-03-18 2010-08-24 光传送网络设备和光传送网络的带宽调整方法 WO2011113257A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010138659.5 2010-03-18
CN2010101386595A CN102195864A (zh) 2010-03-18 2010-03-18 Otn设备和otn的带宽调整方法

Publications (1)

Publication Number Publication Date
WO2011113257A1 true WO2011113257A1 (zh) 2011-09-22

Family

ID=44603278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076303 WO2011113257A1 (zh) 2010-03-18 2010-08-24 光传送网络设备和光传送网络的带宽调整方法

Country Status (2)

Country Link
CN (1) CN102195864A (zh)
WO (1) WO2011113257A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102523154B (zh) * 2011-12-08 2015-05-06 华为技术有限公司 以太网数据处理方法、系统及光传送网处理芯片
US9072094B2 (en) 2012-10-15 2015-06-30 Qualcomm Incorporated Support for signaling over flexible bandwidth carrier
WO2014071640A1 (zh) * 2012-11-12 2014-05-15 华为技术有限公司 以太数据处理的方法和装置
CN102984606B (zh) * 2012-12-06 2015-08-12 中兴通讯股份有限公司 实现动态速率业务接入的方法和装置
CN104066017B (zh) * 2013-03-21 2018-10-23 中兴通讯股份有限公司 设备单元、节点设备、隧道带宽调整的方法和系统
WO2015106386A1 (zh) * 2014-01-14 2015-07-23 华为技术有限公司 以太网信号传送方法、调度方法及其装置和系统
CN108449659B (zh) * 2018-03-21 2020-12-15 烽火通信科技股份有限公司 一种创建端到端的otn业务保证时隙一致的方法
CN112042163B (zh) * 2018-05-25 2022-09-09 华为技术有限公司 传输数据的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006113553A2 (en) * 2005-04-15 2006-10-26 New Jersey Institute Of Technology Dynamic bandwidth allocation and service differentiation for broadband passive optical networks
CN101207508A (zh) * 2006-12-19 2008-06-25 中兴通讯股份有限公司 实现光网络带宽按需分配的方法和系统
CN101436916A (zh) * 2007-11-15 2009-05-20 华为技术有限公司 一种无源光网络的带宽处理方法、装置和系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101141410B (zh) * 2007-10-24 2011-05-11 中兴通讯股份有限公司 一种千兆无源光网络系统中下行流控信息的传递方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006113553A2 (en) * 2005-04-15 2006-10-26 New Jersey Institute Of Technology Dynamic bandwidth allocation and service differentiation for broadband passive optical networks
CN101207508A (zh) * 2006-12-19 2008-06-25 中兴通讯股份有限公司 实现光网络带宽按需分配的方法和系统
CN101436916A (zh) * 2007-11-15 2009-05-20 华为技术有限公司 一种无源光网络的带宽处理方法、装置和系统

Also Published As

Publication number Publication date
CN102195864A (zh) 2011-09-21

Similar Documents

Publication Publication Date Title
CN100401715C (zh) 局域网信号在光传送网中传输的实现方法和装置
US9497064B2 (en) Method and apparatus for transporting ultra-high-speed Ethernet service
US9225462B2 (en) Method, apparatus and system for transmitting and receiving client signals
CN111201728B (zh) 光网络中数据传输方法及光网络设备
US10225037B2 (en) Channelized ODUflex systems and methods
WO2011113257A1 (zh) 光传送网络设备和光传送网络的带宽调整方法
EP2472748B1 (en) Method and communication node for adjusting bandwidth
WO2008122218A1 (fr) Procédé de multiplexage et de démultiplexage de service de faible débit binaire
EP2999170B1 (en) Increasing method and decreasing method for variable optical channel bandwidth and device
WO2018014342A1 (zh) 一种多路业务传送、接收方法及装置
WO2021139604A1 (zh) 光信号传送方法和相关装置
CN101873517B (zh) 光传送网的信号传送方法、设备及通信系统
CN102318238B (zh) 光传输网中的数据传送方法、系统及设备
WO2013185327A1 (zh) 传送、接收客户信号的方法和装置
WO2017124787A1 (zh) 一种传输公共无线接口信号的方法和设备
CN101242232A (zh) 实现以太网信号在光传送网中传输的方法、装置及系统
EP1971050A1 (en) An optical transport node construction device and service dispatch method
CN1734990B (zh) 信号传送方法及装置
CN102238439B (zh) 一种基于g.709的业务映射过程的控制方法和系统
WO2016074484A1 (zh) 分组业务信号发送方法、装置及接收方法、装置
WO2016047521A1 (ja) 光通信システム
JP6299119B2 (ja) 伝送装置、伝送システム、及び伝送方法
US20160142798A1 (en) Transmission apparatus
JP2013175931A (ja) 伝送装置、伝送システム及び伝送プログラム
WO2008074180A1 (fr) Procédé de transfert d'un signal stm/sts à faible vitesse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847726

Country of ref document: EP

Kind code of ref document: A1