WO2021139604A1 - 光信号传送方法和相关装置 - Google Patents

光信号传送方法和相关装置 Download PDF

Info

Publication number
WO2021139604A1
WO2021139604A1 PCT/CN2020/142382 CN2020142382W WO2021139604A1 WO 2021139604 A1 WO2021139604 A1 WO 2021139604A1 CN 2020142382 W CN2020142382 W CN 2020142382W WO 2021139604 A1 WO2021139604 A1 WO 2021139604A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit frame
payload
optical
frame
optical data
Prior art date
Application number
PCT/CN2020/142382
Other languages
English (en)
French (fr)
Inventor
苏伟
吴秋游
向俊凌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20911992.4A priority Critical patent/EP4075820A4/en
Publication of WO2021139604A1 publication Critical patent/WO2021139604A1/zh
Priority to US17/859,422 priority patent/US11910135B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0084Formats for payload data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0083Formatting with frames or packets; Protocol or part of protocol for error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1301Optical transmission, optical switches

Definitions

  • This application relates to the field of optical transmission technology, and in particular to some optical signal transmission methods and related devices.
  • OTN optical transport network
  • OTN technology defines a powerful digital encapsulation structure, which can realize the management and monitoring of customer service signals.
  • optical signal transmission methods and related devices are provided in the embodiments of the present application.
  • a first aspect of the embodiments of the present application provides an optical signal transmission method, including: mapping a first optical data unit frame to a first flexible tributary unit frame, where the first flexible tributary unit frame includes a plurality of payload blocks; The first flexible tributary unit frame is mapped to a first optical payload unit frame, and the multiple payload blocks included in the first flexible tributary unit frame are distributed on the payload of the first optical payload unit frame Area; the first optical payload unit frame is mapped to a second optical data unit frame, the bit rate of the second optical data unit frame is greater than the bit rate of the first optical data unit frame; the second optical data The unit frame is mapped to the first optical transmission unit frame; and the first optical transmission unit frame is sent.
  • the first flexible tributary unit frame may be, for example, a TUflex (Flexible Tributary Unit) frame.
  • the flexible tributary unit frame in the embodiment of the present application may be composed of one or more payload blocks, and the size of each payload block in the flexible tributary unit frame is Y bits (Y is a positive integer).
  • this flexible tributary unit frame composed of one or more payload blocks has much smaller granularity than a time slot.
  • the payload block in the flexible tributary unit frame can be designed to be any size based on needs, and the payload block size can be set to be different based on different transmission cycles, so the bit rate of the flexible tributary unit frame can have more flexible adjustment space .
  • the first optical data unit frame is, for example, a low-order (LO, Low-order) ODU frame, such as a LO ODUj or ODUflex frame.
  • the first optical payload unit frame may be, for example, a high-order (HO) OPU frame, where the HO OPU frame may be, for example, an OPUk4 frame or an OPUCn frame.
  • the second optical data unit frame may be, for example, a high-order (HO, High-order) ODU frame.
  • the payload block in the payload area of the first optical payload unit frame may only come from the payload block of the first flexible tributary unit frame.
  • the payload area of the first optical payload unit frame is The payload block may not only come from the payload block of the first flexible tributary unit frame, but may also come from other optical signal containers.
  • the multiple payload blocks included in the first flexible tributary unit frame may be distributed uniformly or non-uniformly in the payload area of the first optical payload unit frame.
  • the specific uniform distribution method can be determined by but not limited to the Sigma-delta algorithm.
  • the payload area of the optical payload unit frame may use the payload block as the mapping particle. Since the particle size of the payload block is much smaller than the particle size of the time slot, the technical solution of this embodiment is beneficial to improve the bandwidth utilization rate and the flexibility of adjusting the transmission rate of the customer service signal compared with the solution that uses the time slot as the mapping particle. .
  • the number of payload blocks from the first flexible tributary unit frame mapped to different transmission periods of the first optical payload unit frame is fixed or variable.
  • the number of payload blocks included in the first flexible tributary unit frame C TUflex C LOODU (the payload from the first flexible tributary unit frame mapped to different transmission periods of the first optical payload unit frame The number of blocks is variable).
  • the number of payload blocks included in the first flexible tributary unit frame C TUflex ⁇ C max (the net value from the first flexible tributary unit frame mapped to the different transmission periods of the first optical payload unit frame The number of load blocks is fixed).
  • the number of payload blocks of the first flexible tributary unit frame that the first optical data unit frame needs to occupy is C LOODU
  • the value range of C LOODU is [C min , C max ].
  • C max ceiling[R LOODU *(1+OS HOOPU )/(R PB-P *(1-OS HOOPU ))].
  • C min floor[R LOODU *(1-OS HOOPU )/(R PB-P *(1+OS HOOPU ))].
  • R HOOPU represents the payload bit rate of the first optical payload unit frame
  • OS HOOPU represents the rate frequency deviation of the first optical payload unit frame
  • R HOOPU R PB *P
  • R LOODU represents the first optical data unit frame
  • OS LOODU represents the rate frequency deviation of the first optical data unit frame
  • R PB represents the payload block rate of the first optical payload unit frame
  • P represents the payload of one transmission cycle of the first optical payload unit frame Number of blocks.
  • mapping the first optical data unit frame to the first flexible tributary unit frame includes: splitting the first optical data unit frame into X-bit code blocks and forming an X-bit code block stream Mapping consecutive multiple X-bit code blocks in the X-bit code block stream to a first flexible branch unit frame, wherein the multiple consecutive X-bit code blocks and the first flexible branch The multiple payload blocks included in the path unit frame have a one-to-one correspondence.
  • the first optical data unit frame may include N frames of optical data unit frames, and the splitting the first optical data unit frame into multiple X-bit code blocks and forming an X-bit code block stream includes:
  • the optical data unit frame is split into M X-bit code blocks to form an X-bit code block stream.
  • the X can also be equal to 240 or 238 or other values.
  • M is equal to 239, for example. M can also be equal to 478, 100, 250, 500 or other values. N may be equal to 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 19, 20, 50, 100, 200, 500 or other values, for example.
  • the overhead area of the first optical payload unit frame may carry a multi-frame indication
  • the multi-frame indication is used to indicate the arrangement position of the current optical data unit frame in the N-frame optical data unit frame (that is, The multi-frame indication is used to indicate which of the N frames of optical data unit frames the current optical data unit frame is. For example, assuming that N is equal to 3, then the multi-frame indication can be used to indicate that the current optical data unit frame is the first, second, or third frame of the three optical data unit frames; if N is equal to 2, then the multi-frame indication is available It indicates that the current optical data unit frame is the first or second frame of the two optical data unit frames, and so on for other situations.
  • the first optical data unit frame includes 1 frame of optical data unit frame
  • the overhead area of the first optical payload unit frame may carry a multi-frame indication, and the multi-frame indication is used to indicate the arrangement position of the current optical data unit frame in the two-frame optical data unit frame.
  • the multi-frame indication may be, for example, a multi-frame alignment signal MFAS or an optical multi-frame indication OMFI.
  • the multi-frame indication includes a multi-frame alignment signal MFAS
  • the lowest 1 bit of the MFAS is used to indicate the arrangement position of the current frame in the two-frame optical data unit frame.
  • the multi-frame indication includes an optical multi-frame indication OMFI
  • the OMFI is used to indicate the arrangement position of the current frame in the 2 frames of optical data unit frames.
  • the overhead area of the first optical payload unit frame may carry a multi-frame indication, and the multi-frame indication is used to indicate the arrangement position of the current optical data unit frame in the three-frame optical data unit frame.
  • the multi-frame indication may be, for example, a multi-frame alignment signal MFAS or an optical multi-frame indication OMFI.
  • the multi-frame indication includes a multi-frame alignment signal MFAS
  • the lowest 2 bits of the MFAS are used to indicate the arrangement position of the current frame in the 3-frame optical data unit frame.
  • the multi-frame indication includes an optical multi-frame indication OMFI
  • the OMFI is used to indicate the arrangement position of the current frame in the 3-frame optical data unit frame.
  • the overhead area of the first optical payload unit frame may carry a multi-frame indication, and the multi-frame indication is used to indicate the arrangement position of the current optical data unit frame in the 4-frame optical data unit frame.
  • the multi-frame indication may be, for example, a multi-frame alignment signal MFAS or an optical multi-frame indication OMFI.
  • the multi-frame indication includes a multi-frame alignment signal MFAS
  • the lowest 2 bits of the MFAS are used to indicate the arrangement position of the current frame in the 4-frame optical data unit frame.
  • the multi-frame indication includes an optical multi-frame indication OMFI
  • the OMFI is used to indicate the arrangement position of the current frame in the 4-frame optical data unit frame.
  • each of the multiple payload blocks included in the first flexible tributary unit frame carries a customer service identifier of the first optical data unit frame.
  • the customer service identifier is used to identify the customer service to which this payload block belongs.
  • the customer service identifier may be, for example, a tributary port identifier (TPN, Tributary Port Number).
  • TPN tributary Port Identifier
  • TPID Tributary Port Identifier
  • the first optical payload unit frame carries an overhead indicator, where the overhead indicator is used to indicate that multiple payload blocks included in the first flexible tributary unit frame are in the first optical payload unit frame.
  • the overhead indication may be carried in the overhead area of the first optical payload unit frame or the overhead indication may be carried in at least one payload block of the first optical payload unit frame (for example, the overhead indication may be carried in the first optical payload unit frame).
  • the receiving end can determine the distribution positions of multiple payload blocks included in the first flexible tributary unit frame in the payload area of the first optical payload unit frame according to a default agreement.
  • the three-optical data unit frame and the first optical data unit frame are used to carry service data of the same client; the second optical payload unit frame is mapped to the fourth optical data unit frame, where the fourth optical data
  • the bit rate of the unit frame is greater than the bit rate of the third optical data unit frame; the fourth optical data unit frame is mapped to the second optical transmission unit frame; the second optical transmission unit frame is sent.
  • the method when the rate adjustment is required, further includes: mapping the third optical data unit frame to the second flexible tributary unit frame; and mapping the second flexible tributary unit frame to the first flexible tributary unit frame; Two optical payload unit frames, a plurality of payload blocks included in the second flexible tributary unit frame are distributed in the payload area of the second optical payload unit frame;
  • P2 P1*R2/R1
  • R1 is the bit rate of the first optical payload unit frame
  • R2 is the bit rate of the second optical payload unit frame
  • P1 is one of the first optical payload unit frame
  • the number of payload blocks included in the transmission period where P2 is the number of payload blocks included in one transmission period of the second optical payload unit frame; the second flexible tributary unit frame and the first flexible tributary
  • the number of payload blocks included in the unit frame is the same (for example, the number of payload blocks is C1);
  • the third optical data unit frame and the first optical data unit frame are used to carry service data of the same client; Map the second optical payload unit frame to a fourth optical data unit frame, the bit rate of the fourth optical data unit frame is greater than the bit rate of the third optical data unit frame; and the fourth optical data unit frame Mapped to the second optical transmission unit frame; sending the second optical transmission unit frame.
  • the two rate adjustment methods in the above examples can achieve optical cleanliness by adjusting the number of payload blocks included in the flexible tributary unit frame or adjusting the number of payload blocks included in one transmission period of the optical payload unit frame.
  • the flexible and accurate adjustment of the frame rate of the load unit is simple to implement and very flexible.
  • the number of payload blocks included in the flexible tributary unit frame and the number of payload blocks included in one transmission period of the optical payload unit frame can also be adjusted at the same time, so as to realize the flexibility and accuracy of the optical payload unit frame rate. Adjustment, the specific adjustment method will not be repeated here.
  • the mapping unit is configured to map the first optical data unit frame to a first flexible tributary unit frame, where the first flexible tributary unit frame includes a plurality of payload blocks; and map the first flexible tributary unit frame to A first optical payload unit frame, a plurality of payload blocks included in the first flexible tributary unit frame are distributed in the payload area of the first optical payload unit frame; and the first optical payload unit frame Mapping to the second optical data unit frame, the bit rate of the second optical data unit frame is greater than the bit rate of the first optical data unit frame; and mapping the second optical data unit frame to the first optical transmission unit frame.
  • the transceiver unit is configured to send the first optical transmission unit frame.
  • each functional unit of the above-mentioned optical signal transmission device can refer to the first aspect to provide related detailed description of the optical signal transmission method.
  • a third aspect of the embodiments of the present application provides an optical signal transmission device, including: a processor and a memory coupled to each other; wherein, the processor is used to call a computer program stored in the memory to execute any of the provided in the first aspect. A part or all of the steps of an optical signal transmission method.
  • the fourth aspect of the embodiments of the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by hardware, it can complete any of the optical signal transmission methods provided in the first aspect Some or all of the steps.
  • a fifth aspect of the embodiments of the present application provides a communication device, including: at least one input terminal, a signal processor, and at least one output terminal; wherein the signal processor is used to execute any optical signal transmission method provided in the first aspect Some or all of the steps.
  • a sixth aspect of the embodiments of the present application provides a communication device, including: an input interface circuit, a logic circuit, and an output interface circuit, wherein the logic circuit is used to execute part or part of any optical signal transmission method provided in the first aspect. All steps.
  • a seventh aspect of the embodiments of the present application provides a chip system.
  • the chip system includes a processor for supporting an optical signal transmission device to implement part or all of the steps of any optical signal transmission method provided in the first aspect.
  • the eighth aspect of the embodiments of the present application provides a computer program product including instructions.
  • the computer program product runs on an optical signal transmission device, the optical signal transmission device executes part of any of the above aspects. Or all steps.
  • Fig. 1-A is a schematic diagram of a modular structure of an OTU frame provided by an embodiment of the present application.
  • Fig. 1-B is a schematic diagram of time slot particle mapping of client service signals provided by an embodiment of the present application.
  • Fig. 2-A is a schematic flowchart of an optical signal transmission method provided by an embodiment of the present application.
  • Figure 2-B is a schematic diagram of payload block particle mapping of client service signals provided by an embodiment of the present application.
  • Fig. 2-C to Fig. 2-F are schematic diagrams of several code block splitting of ODU provided by embodiments of the present application.
  • FIG. 3-A is a schematic flowchart of another optical signal transmission method provided by an embodiment of this application.
  • FIG. 3-B to FIG. 3-C are two schematic diagrams of hybrid mapping provided by an embodiment of this application.
  • FIG. 3-D is a schematic diagram of uniform mapping of payload blocks provided by an embodiment of this application.
  • FIG. 4-A is a schematic flowchart of another optical signal transmission method provided by an embodiment of the application.
  • Fig. 4-B to Fig. 4-C are two schematic diagrams of hybrid mapping provided by an embodiment of this application.
  • FIG. 5-A is a schematic flowchart of another optical signal transmission method provided by an embodiment of the application.
  • Figure 5-B is a schematic diagram of a non-hybrid mapping provided by an embodiment of the application.
  • FIG. 6-A is a schematic flowchart of another optical signal transmission method provided by an embodiment of the application.
  • Fig. 6-B is a schematic flow chart of carrying through MSI overhead provided by an embodiment of the application.
  • FIG. 6-C is a schematic diagram of an example of the meaning of each byte of the MSI provided in an embodiment of the application.
  • Fig. 6-D is a schematic diagram of another example of the meaning of each byte of the MSI provided in an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of an optical network system provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a possible hardware structure of an optical signal transmission device provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of another possible structure of an optical signal transmission device provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of another possible structure of an optical signal transmission device provided by an embodiment of the application.
  • FIG. 11 is a schematic diagram of another possible structure of an optical signal transmission device provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of another possible structure of an optical signal transmission device provided by an embodiment of this application.
  • FIG. 1-A shows an example of a 4 (row) ⁇ 4080 (column) optical transport unit (OTU, Optical Transport Unit) frame modular structure.
  • the OTU frame may include a payload (Payload) area and an overhead (OH, Overhead) area.
  • the overhead area can also be referred to as overhead bytes.
  • the payload area can also be referred to as payload bytes.
  • OTU frame includes frame alignment signal (FAS, Frame Alignment Signal), FAS can provide frame synchronization positioning function.
  • FEC Forward Error Correction
  • OTUk OH represents the overhead bytes of the OTU frame, and OTUk OH can provide network management functions at the optical transport unit level.
  • ODUk OH represents the overhead bytes of an optical data unit (ODU, Optical Data Unit), and ODUk OH is used to provide related maintenance and operation functions.
  • OPUk OH represents the overhead bytes of the optical payload unit (OPU, Optical Payload Unit), and OPUk OH is used to provide the adaptation function of the customer service signal.
  • the optical payload unit OPUk is used to provide the bearer function of customer service signals.
  • the coefficient k in OPUk, ODUk, and OTUk is used to indicate that the supported bit rates and types of OPU, ODU, and OTU are different.
  • OTUCn does not include FEC, and OTUCn is composed of n channels of OTUC frames, which are finally sent by mapping to the FlexO (Flexible OTN) interface.
  • the current OTN interface rate generally has a rate increase of about 5% relative to the Ethernet interface rate of the same rate.
  • 100G OTU4 is relative to Ethernet 100GE
  • 400G OTUC4 and FlexO-4 are relative to Ethernet 400GE.
  • the rate difference of about 5% will cause great differences in the design of optical digital processing chips and optical modules, and the external performance will cause the power consumption and cost of the OTN interface to be greatly improved relative to the same rate Ethernet interface. decline.
  • the inventor of the present application discovered that one of the main reasons for the about 5% rate increase of the OTN interface is the rigid time slot division method.
  • the bandwidth allocated to some client services is very high. There may be greater bandwidth redundancy, and bandwidth waste will also lead to an increase in the overall rate of the final output interface.
  • the OTN interface can converge to a speed-up interface in certain scenarios, using the same rate of the Ethernet interface rate, and using the same rate of optical modules to reduce the overall network cost.
  • the OTN interface uses a custom rate based on the application distance of the optical module in some scenarios, and its rate can be flexibly changed within a certain range based on specific application scenarios, and this change does not affect the original service carrying capacity.
  • OTUk/OTUCn provides the following types of fixed time slot transmission methods: 2.5G time slots, the OTUk payload area is divided into a fixed number of 2.5G time slots, and multiple client services are mapped and multiplexed through asynchronous mapping.
  • 2.5G time slots the OTUk payload area is divided into a fixed number of 1.25G time slots, and a common mapping procedure is used to complete the multiplexing of multiple client services.
  • 5G time slots the payload area of OTUCn is divided into 20n 5G time slots, and a common mapping procedure is used to complete the multiplexing of multiple client services.
  • the rate adjustment When the rate adjustment is required, if the rate is reduced based on the OTUk/OTUCn interface, the rate of the time slots contained in it will decrease in the same proportion, and some customer services may not be effectively carried when occupying the same number of time slots. It can be seen that the fixed time slot transmission method has problems such as bandwidth waste; and the fixed time slot transmission method causes the line interface rate to be unable to be flexibly adjusted. If adjusted, it may no longer be able to meet the effective load of the original multi-client service.
  • the embodiments of the present application disclose a new optical signal transmission method to improve bandwidth utilization and provide flexible transmission rate adjustment capabilities.
  • FIG. 2-A is a schematic flowchart of an optical signal transmission method provided by an embodiment of the application. As shown in Figure 2-A, an optical signal transmission method may include:
  • the first flexible tributary unit frame includes a plurality of payload blocks.
  • the first flexible tributary unit frame may be, for example, a TUflex (Flexible Tributary Unit) frame.
  • the flexible tributary unit frame in the embodiment of the present application may be composed of one or more payload blocks, and the size of each payload block in the flexible tributary unit frame is Y bits (Y is a positive integer).
  • this flexible tributary unit frame composed of one or more payload blocks has a much smaller granularity than the time slot.
  • the payload block in the flexible tributary unit frame can be designed to be any size based on needs, and the payload block size can be set to be different based on different transmission cycles, so the bit rate of the flexible tributary unit frame can be more flexible Adjust the space.
  • mapping the first optical data unit frame to the first flexible tributary unit frame may include: splitting the first optical data unit frame into multiple X-bit code blocks (X-bit code blocks can be expressed as X-Bit code Block, that is, a code block with a size of X bits) and form an X-bit code block stream; the continuous C1 X-bit code blocks in the X-bit code block stream are mapped to the first flexible tributary unit frame, so
  • the C1 X-bit code blocks correspond to the C1 payload blocks included in the first flexible tributary unit frame in a one-to-one correspondence (wherein, the one-to-one correspondence means that an X-bit code block is mapped to a payload block, namely : Different X-bit code blocks are mapped to different payload blocks).
  • the payload block in the payload area of the first optical payload unit frame may only come from the payload block of the first flexible tributary unit frame.
  • the payload area of the first optical payload unit frame is The payload block may not only come from the payload block of the first flexible tributary unit frame, but may also come from other optical signal containers.
  • the multiple payload blocks included in the first flexible tributary unit frame may be distributed uniformly or non-uniformly in the payload area of the first optical payload unit frame.
  • the specific uniform distribution method can be determined by but not limited to the Sigma-delta algorithm.
  • the first optical data unit frame is, for example, a low order (LO, Low order) ODU frame, for example, a LO ODUj or ODUflex frame.
  • the first optical payload unit frame may be, for example, a high-order (HO) OPU frame, and the HO OPU frame may be, for example, an OPU1 frame, an OPU2 frame, an OPU3 frame, an OPU4 frame, or an OPUCn frame.
  • the second optical data unit frame may be a HOODU frame, for example.
  • the payload area of the optical payload unit frame in this embodiment can use the payload block as the mapping particle. Since the particle size of the payload block is much smaller than the particle size of the time slot, it is relative to the time slot as the mapping particle.
  • the technical solution of this embodiment is beneficial to improve the bandwidth utilization rate and the flexibility of adjusting the transmission rate of the customer service signal.
  • the first optical data unit frame may include N frames of optical data unit frames
  • M is equal to 239, for example. M can also be equal to 478, 100, 250, 500 or other values.
  • N can be equal to 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 19, 20, 50, 100, 200, 500 or other values, for example.
  • the overhead area of the first optical payload unit frame may carry a multi-frame indication
  • the multi-frame indication is used to indicate the arrangement position of the current optical data unit frame in the N-frame optical data unit frame (that is, The multi-frame indication is used to indicate which of the N frames of optical data unit frames the current optical data unit frame is. For example, assuming that N is equal to 3, then the multi-frame indication can be used to indicate that the current optical data unit frame is the first, second, or third frame of the three optical data unit frames; if N is equal to 2, then the multi-frame indication is available It indicates that the current optical data unit frame is the first or second frame of the two optical data unit frames, and so on for other situations.
  • the first optical data unit frame includes 1 frame of optical data unit frame, and the first optical data unit frame is split into X-Bit code blocks to form X-bit code blocks.
  • the first optical data unit frame includes 2 frames of optical data unit frames.
  • the overhead area of the first optical payload unit frame may carry a multi-frame indication, and the multi-frame indication is used to indicate the arrangement position of the current optical data unit frame in the two-frame optical data unit frame.
  • the multi-frame indication may be, for example, a multi-frame alignment signal MFAS or an optical multi-frame indication OMFI.
  • the multi-frame indication includes a multi-frame alignment signal MFAS
  • the lowest 1 bit of the MFAS is used to indicate the arrangement position of the current frame in the 2 frames of optical data unit frames.
  • the multi-frame indication includes an optical multi-frame indication OMFI
  • the OMFI is used to indicate the arrangement position of the current frame in the 2 frames of optical data unit frames.
  • the overhead area of the first optical payload unit frame may carry a multi-frame indicator. For details, refer to the related description of FIG. 2-D, which will not be repeated. The difference is that in this example, the lowest 2 bits of the MFAS are used to indicate the arrangement position of the current frame in the three optical data unit frames.
  • the overhead area of the first optical payload unit frame may carry a multi-frame indicator. For details, refer to the related description of FIG. 2-E, which will not be repeated here.
  • each of the multiple payload blocks included in the first flexible tributary unit frame carries a customer service identifier of the first optical data unit frame.
  • the customer service identifier can be used to identify the customer service to which this payload block belongs.
  • the customer service identifier may be, for example, a tributary port identifier (TPN, Tributary Port Number).
  • TPN tributary Port Identifier
  • TPID Tributary Port Identifier
  • the first optical payload unit frame carries an overhead indicator, where the overhead indicator is used to indicate that multiple payload blocks included in the first flexible tributary unit frame are in the first optical payload unit frame.
  • the overhead indication may be carried in the overhead area of the first optical payload unit frame or the overhead indication may be carried in at least one payload block of the first optical payload unit frame (for example, the overhead indication may be carried in the first optical payload unit frame).
  • the receiving end can determine the distribution positions of multiple payload blocks included in the first flexible tributary unit frame in the payload area of the first optical payload unit frame according to a default agreement.
  • the method further includes: mapping the third optical data unit frame to a second flexible tributary unit frame, where the second flexible tributary unit frame includes a C2 payload block;
  • the second flexible tributary unit frame is mapped to a second optical payload unit frame, and C2 payload blocks included in the second flexible tributary unit frame are distributed on the payload of the second optical payload unit frame Area;
  • C2 C1*R1/R2,
  • R1 is the bit rate of the first optical payload unit frame
  • R2 is the bit rate of the second optical payload unit frame
  • C1 is the net included in the first flexible tributary unit frame
  • the third optical data unit frame and the first optical data unit frame are used to carry service data of the same client;
  • the second optical payload unit frame is mapped to the fourth optical data unit frame, Wherein, the bit rate of the fourth optical data unit frame is greater than the bit rate of the third optical data unit frame;
  • the fourth optical data unit frame is mapped to the
  • the method when the rate adjustment is required, further includes: mapping the third optical data unit frame to the second flexible tributary unit frame; and mapping the second flexible tributary unit frame to the first flexible tributary unit frame; Two optical payload unit frames, a plurality of payload blocks included in the second flexible tributary unit frame are distributed in the payload area of the second optical payload unit frame;
  • P2 P1*R2/R1
  • R1 is the bit rate of the first optical payload unit frame
  • R2 is the bit rate of the second optical payload unit frame
  • P1 is one of the first optical payload unit frame
  • the number of payload blocks included in the transmission period where P2 is the number of payload blocks included in one transmission period of the second optical payload unit frame
  • the second flexible tributary unit frame and the first flexible The number of payload blocks included in the tributary unit frame is the same (for example, the number of payload blocks is C1)
  • the third optical data unit frame and the first optical data unit frame are used to carry services of the same client Data
  • the second optical payload unit frame is mapped to a fourth optical data unit frame, the bit rate of the fourth optical data unit frame is greater than the bit rate of the third optical data unit frame
  • the fourth optical data The unit frame is mapped to the second optical transmission unit frame
  • the second optical transmission unit frame is sent.
  • the two rate adjustment methods in the above examples can achieve optical cleanliness by adjusting the number of payload blocks included in the flexible tributary unit frame or adjusting the number of payload blocks included in one transmission period of the optical payload unit frame.
  • the flexible and accurate adjustment of the frame rate of the load unit is simple to implement and very flexible.
  • the number of payload blocks included in the flexible tributary unit frame and the number of payload blocks included in one transmission period of the optical payload unit frame can also be adjusted at the same time, so as to realize the flexibility and accuracy of the optical payload unit frame rate. Adjustment, the specific adjustment method will not be repeated here.
  • the sender maps one or more customer service signals step by step, and finally obtains an OTU frame.
  • the receiving end can perform demapping step by step in a corresponding manner, and finally obtain one or more customer service signals.
  • FIG. 3-A is a schematic flowchart of another optical signal transmission method provided by an embodiment of this application.
  • the payload area of the HO OPU frame in this embodiment includes a first payload partition and a second payload partition. Different mapping procedures can be used for the first payload partition and the second payload partition.
  • another optical signal transmission method may include:
  • the 302. Map the TUflex frame to the first payload partition of the HO OPU frame. Wherein, the multiple payload blocks included in the TUflex frame are distributed in multiple payload blocks of the first payload partition of the HO OPU frame.
  • the first payload partition of the HO OPU frame is composed of ts1 time slots.
  • the HO OPU frame may be, for example, an OPU1 frame, an OPU2 frame, an OPU3 frame, an OPU4 frame, or an OPUCn frame.
  • Step 303 and steps 301-302 can be executed in parallel.
  • the #j-th LO ODU frame and the #i-th LO ODU frame correspond to different channels of customer service signals.
  • FIG. 3-B illustrates that the payload area of the HO OPU frame includes a first payload partition and a second payload partition.
  • the first payload partition is composed of ts1 time slots of the HO OPU frame
  • the second payload partition is composed of ts2 time slots of the HO OPU frame
  • the first payload partition is divided into multiple payload blocks.
  • the mapping procedures used by the first payload partition and the second payload partition are, for example, different.
  • the mapping procedure used by the first payload partition is a generic mapping procedure (GMP, Generic Mapping Procedure)
  • the mapping procedure used by the second payload partition is a generic tributary unit procedure (GTP).
  • GTP may also be called Flexible Tributary Unit Procedure (FTP, Flexible Tributary Unit Procedure).
  • Fig. 3-C illustrates that the time slots constituting the first payload partition and the second payload partition may be discontinuous.
  • Fig. 3-D illustrates that multiple payload blocks included in the TUflex frame are evenly distributed in the first payload partition of the HO OPU frame.
  • the solution in this embodiment mainly takes the OPU frame as the HO OPU frame, the lower rate ODU frame as the LO ODU frame (the LO ODU frame is specifically LO ODUj/flex frame), and the higher rate ODU frame is the HO ODU frame as examples Describe.
  • the implementation manner in the case where the OPU frame is other types of OPU frames, the lower rate ODU frames are other types of ODU frames, and the higher rate ODU frames are other types of ODU frames can be deduced by analogy.
  • the hybrid mapping mechanism is introduced in this embodiment, that is, the payload area of the HO OPU frame includes the first payload partition and the second payload partition.
  • the first payload partition and the second payload partition can use different mapping procedures.
  • the second payload partition can use the payload block as the mapping particle
  • the first payload partition can use the time slot as the mapping particle.
  • Particles correspond to different transmission rate control flexibility, so the hybrid mapping mechanism is beneficial to meet the diversified needs of different customer services for mapping particles, and is beneficial to further improve the flexibility of customer service transmission rate control.
  • FIG. 4-A is a schematic flowchart of another optical signal transmission method provided by an embodiment of the application.
  • the payload area of the HO OPU frame in this embodiment includes a first payload partition and a second payload partition. Different mapping procedures can be used for the first payload partition and the second payload partition.
  • Another optical signal transmission method may include:
  • the multiple payload blocks included in the TUflex frame are distributed in multiple payload blocks of the third payload partition of the HO OPU frame.
  • the HO OPU frame may be, for example, an OPU1 frame, an OPU2 frame, an OPU4 frame, an OPU4 frame, or an OPUCn frame.
  • FIG. 4-C illustrates that the payload area of the HO OPU frame includes a third payload partition and a fourth payload partition.
  • the third payload partition and the fourth payload partition are composed of different OPUCs.
  • the third payload partition includes OPUCn1
  • the third payload partition includes OPUCn2.
  • the mapping procedures used for the third payload partition and the fourth payload partition are different, see Figure 4-B, and Figure 4-B shows an example.
  • the mapping procedures for the third payload partition are GMP
  • the fourth payload partition uses GMP.
  • the mapping procedure is GTP.
  • the solution in this embodiment mainly takes the OPU frame as the HO OPU frame, the lower rate ODU frame as the LO ODU frame (the LO ODU frame is specifically LO ODUj/flex frame), and the higher rate ODU frame is the HO ODU frame as examples Describe.
  • the implementation manner in the case where the OPU frame is other types of OPU frames, the lower rate ODU frames are other types of ODU frames, and the higher rate ODU frames are other types of ODU frames can be deduced by analogy.
  • the hybrid mapping mechanism is introduced in this embodiment, that is, the payload area of the HO OPU frame includes the first payload partition and the second payload partition.
  • the first payload partition and the second payload partition can use different mapping procedures.
  • the second payload partition can use the payload block as the mapping particle
  • the first payload partition can use the time slot as the mapping particle.
  • the adjustment flexibility of the transmission rate corresponding to the particles is different. Therefore, the hybrid mapping mechanism is beneficial to meet the diversified requirements of different customer services for mapping particles, and is beneficial to further improve the adjustment flexibility of the transmission rate of the customer service.
  • FIG. 5-A is a schematic flowchart of another optical signal transmission method provided by an embodiment of the application.
  • the payload area of the HO OPU frame uses a unified mapping procedure.
  • Another optical signal transmission method may include:
  • the multiple payload blocks included in the TUflex frame may be evenly distributed in the payload area of the HO OPU frame.
  • the HO OPU frame may be, for example, an OPU1 frame, an OPU2 frame, an OPU3 frame, an OPU4 frame, or an OPUCn frame.
  • FIG. 5-B shows an example of multiple payload blocks included in a TUflex frame that are evenly distributed in the payload area of the HO OPU frame.
  • the solution in this embodiment mainly takes the OPU frame as the HO OPU frame, the lower rate ODU frame as the LO ODU frame (the LO ODU frame is specifically LO ODUj/flex frame), and the higher rate ODU frame is the HO ODU frame as examples Describe.
  • the implementation manner in the case where the OPU frame is other types of OPU frames, the lower rate ODU frames are other types of ODU frames, and the higher rate ODU frames are other types of ODU frames can be deduced by analogy.
  • the payload area of the HO OPU frame in this embodiment uses a unified mapping procedure, and the payload area of the HO OPU frame uses the payload block as the mapping particle.
  • the technical solution of the example is conducive to improving the bandwidth utilization rate and the flexibility of adjusting the transfer rate of customer services.
  • the payload area of the HO OPU frame is mapped using a unified mapping procedure, which helps reduce the complexity of mapping control.
  • FIG. 6-A is a schematic flowchart of another optical signal transmission method provided by an embodiment of the application.
  • the first optical data unit frame is the LO ODU frame
  • the optical payload unit is the HO OPU as an example.
  • Another optical signal transmission method may include:
  • One X-Bit code block obtained by splitting the LO ODU frame corresponds to one payload block of the TUflex frame.
  • the size of a payload block of a TUflex frame is Y-Bit, and each X-Bit code block is less than or equal to the size of its corresponding payload block, that is, X ⁇ Y.
  • the size of the TUflex frame can be determined, and the distribution position of the payload block included in the TUflex frame in the payload area of the HO OPU frame can also be determined. That is, the number of payload blocks and the distribution mode that the TUflex frame occupies in the HO OPU frame with P payload blocks as 1 transmission period are determined.
  • the payload block size of the TUflex frame is Y-Bit
  • R PB is the bit rate of a single payload block.
  • the payload size of each payload block is X-Bit
  • the overhead size of each payload block is YX bits.
  • R PB-P represents the payload rate of a single payload block
  • R PB-P R PB *X/Y.
  • the bit rate of the LO ODU frame is expressed as R LOODU
  • the rate frequency deviation of the LO ODU frame is expressed as OS LOODU
  • OS LOODU may be, for example, 20 ppm, 30 ppm or other values.
  • the payload bit rate of the HO OPU frame is expressed as R HOOPU
  • the rate frequency deviation of the HO OPU frame is expressed as OS HOOPU
  • OS HOOPU is, for example, 20 ppm, 25 ppm, 30 ppm or other values.
  • C max ceiling[R LOODU *(1+OS HOOPU )/(R PB-P *(1-OS HOOPU ))].
  • C min floor[R LOODU *(1-OS HOOPU )/(R PB-P *(1+OS HOOPU ))].
  • the TUflex frame structure may have the following two optional methods.
  • the number of TUflex frame payload blocks is fixed; in the other structure method, the number of TUflex frame payload blocks is variable. That is, the number of payload blocks from the LO ODU frame mapped to different transmission periods of the OPU frame is fixed or variable.
  • the number of payload blocks included in the TUflex frame is a fixed value C TUflex
  • C TUflex represents the number of payload blocks included in the TUflex frame.
  • C max the number of payload blocks included in the TUflex frame.
  • the C TUflex payload blocks included in the TUflex frame are evenly distributed among the P payload blocks in 1 transmission period of the HO OPU frame.
  • the specific uniform distribution method can be but not limited to use Sigma-delta algorithm to determine.
  • the LO ODU frame (that is, the X-Bit code block obtained by splitting the LO ODU frame) needs to occupy the number of payload blocks of the TUflex frame as C LOODU and the value of C LOODU
  • the value range is [C min , C max ]. That is, the C LOODU X-Bit code blocks obtained by splitting the LO ODU frame are mapped to the C LOODU Y-Bit payload blocks among the C TUflex Y-Bit payload blocks of TUflex, and C LOODU ⁇ C TUflex , rate adaptation can be performed through idle payload blocks.
  • C LOODU C TUflex
  • idle payload blocks are filled in appropriate positions of TUflex.
  • C TUflex payload blocks of TUflex are determined by C TUflex- It is composed of C LOODU free payload blocks and C LOODU payload blocks containing X-Bit code blocks of LO ODU.
  • C LOODU C TUflex
  • TUflex does not include idle payload blocks, that is, C TUflex payload blocks of TUflex are all composed of payload blocks including X-Bit code blocks of LO ODU.
  • the idle payload blocks can be filled with 0 or 1 or other preset values.
  • the LO ODU frame (that is, the X-Bit code block obtained by splitting the LO ODU frame) needs to occupy the number of payload blocks of the TUflex frame as C LOODU and C LOODU
  • the value range is [C min , C max ].
  • the C TUflex payload blocks are all composed of payload blocks containing X-Bit code blocks of the LO ODU frame.
  • the TUflex frame is mapped to the HO OPU frame, that is, the C TUflex payload blocks of the TUflex frame are mapped to C TUflex payload block positions in the P payload blocks of the HO OPU frame.
  • the C TUflex payload blocks of the TUflex frame can be mapped to the corresponding C TUflex payload block positions of the HO OPU frame one by one.
  • the C TUflex payload blocks of the TUflex frame are evenly mapped to the P payload blocks of the HO OPU frame C TUflex payload block positions in.
  • the specific uniform distribution method can be determined by, but not limited to, the Sigma-delta algorithm.
  • the HO OPU frame overhead includes but is not limited to: payload type (PT, Payload Type) overhead, tributary port number TPN overhead, payload block occupancy and distribution indication overhead, LO ODU frame occupied payload block number overhead, LO The amount of overhead of ODU frame services, etc.
  • the PT overhead can define a new value, such as 0x24 or other values.
  • the PT overhead can be carried through the 4th row to the 15th column of the first frame of the HO OPU frame.
  • the PT overhead is used to indicate that the payload area of the current HO OPU frame uses the GTP mapping method to complete the LO ODU frame bearing.
  • Method 1 The overhead is carried along with the payload block that carries the LO ODU frame, and the tributary port identification TPN of the LO ODU frame is added to each payload block. At this time, Y>X, the adding position is located in each payload block. The overhead area of YX bits; at this time, the receiving end can judge the occupancy and distribution of each payload block through the TPN carried by each payload block, that is, the TPN can be used to indicate the occupancy and distribution of the payload block Features.
  • the overhead of the number of payload blocks occupied by the LO ODU frame is optional.
  • the number of LO ODU frame services is optional.
  • Manner 2 The overhead is carried independently of the payload block that carries the LO ODU frame.
  • Y>X at this time, optionally, the TPN is carried along with the payload block.
  • the TUflex frame construction method that is, the TUflex frame occupies the P of each transmission cycle of the HO OPU frame
  • the distribution of C TUflex payload blocks in each payload block indicates the overhead and the number of payload blocks occupied by the LO ODU frame indicates the overhead.
  • TUflex frame construction mode 2 that is, LO ODU frame or TUflex frame occupies the distribution indicating overhead of C LOODU or C TUflex payload blocks in the P payload blocks of each transmission period of the HO OPU frame, at this time
  • the number of payload blocks occupied by the LO ODU frame indicates the overhead, which can be implemented through the payload block occupancy and distribution indication overhead interface. For example, these overheads can be carried through the multiplex structure indicator (MSI, Multiplex Structure Identifier) overhead of the HO OPU frame or through special payload blocks.
  • MSI Multiplex structure indicator
  • Figure 6-B illustrates that it can be carried through MSI overhead.
  • the specific manner of carrying overhead independently of the payload block carrying the LO ODU frame can be described in the following three manners, for example.
  • the LO ODU frame occupies the number and distribution of the payload block of the HO OPU frame.
  • the indication overhead is carried by MSI.
  • OMFI for example, the value range is 0 to 255 for looping, that is, after 256 HO OPU frames, the value of OMFI increases by 1, until it increases from 0 to 255, and then becomes 0. , And so on.
  • the LO ODU frame occupies the number and distribution of the payload block of the HO OPU frame.
  • the overhead is carried by MSI mode 2: MSI[2] to MSI[P+1] correspond to the 1st to Pth payload block in the HO OPU frame Occupancy indication, as shown in Figure 6-D for example, carrying TPN#i means that the current payload block is occupied by the LO ODU frame service with the tributary port number #i.
  • the LO ODU frame occupies the number and distribution of the payload block of the HO OPU frame.
  • the overhead is carried by MSI.
  • Method 3 In the payload area, a special payload block is used to carry the HO OPU frame.
  • the OPU frame carries the indication of the payload block occupied by the LO ODU frame , Where the location of the special payload block can be indicated by MSI.
  • MSI[2]-MSI[p+1] corresponds to the corresponding payload block positions of the 1st to pth special payload blocks in the HO OPU frame.
  • MSI[2] carries "payload block #i", which represents that the first special payload block is located at the payload block #i position in the HO OPU frame.
  • the solution in this embodiment mainly takes the OPU frame as the HO OPU frame, the lower rate ODU frame as the LO ODU frame (the LO ODU frame is specifically LO ODUj/flex frame), and the higher rate ODU frame is the HO ODU frame as examples Describe.
  • the implementation manner in the case where the OPU frame is other types of OPU frames, the lower rate ODU frames are other types of ODU frames, and the higher rate ODU frames are other types of ODU frames can be deduced by analogy.
  • the LO ODU frame can be mapped to the payload area of the HO OPU frame, that is, the payload area of the HO OPU frame can use the payload block as the mapping particle, because the payload block
  • the particle size of is much smaller than the particle size of the time slot. Therefore, the technical solution of this embodiment is beneficial to improve the bandwidth utilization and the flexibility of adjusting the transmission rate of the customer service signal compared with the solution using the time slot as the mapping particle.
  • Fig. 7 is a schematic diagram of an optical signal transmission system.
  • the optical signal transmission system may include a plurality of optical signal transmission devices 710 and 720 interconnected by an optical switching network.
  • the optical signal transmission device 710 and the optical signal transmission device 720 can be used in the optical signal transmission method provided in the embodiment of the present application.
  • the optical signal transmission device 710 and the optical signal transmission device 720 can simultaneously have the functions of sending and receiving OTU frames.
  • the optical signal transmission device 710 can be used to send OTU frames
  • the optical signal transmission device 720 can be used to receive OTU frames.
  • the optical signal transmission device 710 can be used to receive OTU frames.
  • some optical signal transmission devices may only have the function of sending or receiving OTU frames.
  • the optical signal transmission device with the OTU frame transmission function in the optical signal transmission system may be used to execute part or all of the steps of any optical signal transmission method provided in the embodiments of the present application.
  • Fig. 8 is a schematic diagram of a possible hardware structure of an optical signal transmission device.
  • the optical signal transmission device 800 includes a tributary board 801, a crossover board 802, a circuit board 808, an optical layer processing single board (not shown in the figure), and a system control and communication single board 804.
  • the types and numbers of boards included in the optical signal transmission equipment may be different.
  • an optical signal transmission device as a core node does not have a tributary board 801.
  • an optical signal transmission device as an edge node has multiple tributary boards 801, or no crossover board 802.
  • an optical signal transmission device that only supports electrical layer functions may not have an optical layer processing board.
  • the tributary board 801, the cross board 802, and the circuit board 808 are used to process electrical layer signals of the transmission network.
  • the tributary board 801 can be used to receive and send various customer services, such as SDH services, packet services, Ethernet services, and fronthaul services.
  • the tributary board 801 can be divided into a client-side optical module and a signal processor, for example.
  • the client-side optical module may be an optical transceiver for receiving and/or sending service data.
  • the signal processor is used to implement the mapping and de-mapping processing of the service data to the data frame.
  • the cross board 802 is used to implement the exchange of data frames and complete the exchange of one or more types of data frames.
  • the circuit board 808 mainly realizes the processing of the data frame on the line side.
  • the circuit board 808 can be divided into a line-side optical module and a signal processor.
  • the line-side optical module may be a line-side optical transceiver for receiving and/or sending data frames.
  • the signal processor is used to implement multiplexing and demultiplexing, or mapping and demapping processing of data frames on the line side.
  • the system control and communication board 804 is used to implement system control. Specifically, information can be collected from different boards through the backplane, or control instructions can be sent to the corresponding boards. It should be noted that, unless otherwise specified, there may be one or more specific components (such as a signal processor), which is not limited in this application.
  • optical signal transmission device 800 may also include, for example, a power supply for backup, a fan for heat dissipation, and so on.
  • the tributary board 801 may be used to execute part or all of the steps of any optical signal transmission method provided in the embodiments of the present application.
  • the tributary board 801 may be used to execute part or all of the steps of any optical signal transmission method provided in the embodiments of the present application.
  • the tributary board 801 may be used to execute part or all of the steps of any optical signal transmission method provided in the embodiments of the present application.
  • the tributary board 801 may be used to execute part or all of the steps of any optical signal transmission method provided in the embodiments of the present application.
  • the tributary board 801 may be used to execute part or all of the steps of any optical signal transmission method provided in the embodiments of the present application.
  • FIG. 9 provides another optical signal transmission device 900 according to an embodiment of this application, which may include: a mapping unit 910 and a transceiving unit 920.
  • the mapping unit 910 is configured to map the first optical data unit frame to a first flexible tributary unit frame, where the first flexible tributary unit frame includes a plurality of payload blocks; and the first flexible tributary unit
  • the frame is mapped to a first optical payload unit frame, and the multiple payload blocks included in the first flexible tributary unit frame are distributed in the payload area of the first optical payload unit frame;
  • the charge unit frame is mapped to the second optical data unit frame, the bit rate of the second optical data unit frame is greater than the bit rate of the first optical data unit frame; and the second optical data unit frame is mapped to the first optical transmission unit frame.
  • the transceiver unit 920 is configured to send the first optical transmission unit frame.
  • the number of payload blocks from the first flexible tributary unit frame mapped to different transmission periods of the first optical payload unit frame is fixed or variable.
  • the number of payload blocks included in the first flexible tributary unit frame C TUflex C LOODU (the payload from the first flexible tributary unit frame mapped to different transmission periods of the first optical payload unit frame The number of blocks is variable).
  • the number of payload blocks included in the first flexible tributary unit frame C TUflex ⁇ C max (the net value from the first flexible tributary unit frame mapped to the different transmission periods of the first optical payload unit frame The number of load blocks is fixed).
  • the transceiver unit 920 is further configured to send the second optical transmission unit frame.
  • the mapping unit 910 is further configured to map the third optical data unit frame to the second flexible tributary unit frame; and map the second flexible tributary unit frame to the second flexible tributary unit frame.
  • the transceiver unit 920 is further configured to send the second optical transmission unit frame.
  • each functional unit of the optical signal transmission device 900 for example, refer to the detailed description of the optical signal transmission method provided in the method embodiment, for example, refer to FIG. 2-A, FIG. 3-A, and FIG. 4-A.
  • the relevant description of the embodiment corresponding to FIG. 5-A or FIG. 6-A will not be repeated here.
  • FIG. 10 is an optical signal transmission device 1000 provided by an embodiment of the application, including: a processor 1010 and a memory 1020 coupled to each other.
  • the processor 1010 is configured to call a computer program stored in the memory 1020 to execute part or all of the steps of any optical signal transmission method provided in the embodiments of the present application.
  • FIG. 11 is a communication device 1100 provided by an embodiment of the application, including: at least one input terminal 1110, a signal processor 1120, and at least one output terminal 1130.
  • the signal processor 1120 is configured to execute part or all of the steps of any optical signal transmission method provided in the embodiments of the present application.
  • FIG. 12 is a communication device 1200 provided by an embodiment of this application, which includes: an input interface circuit 1210, a logic circuit 1220, and an output interface circuit 1230, where the logic circuit 1210 is used to execute any type of light provided by the embodiment of the application. Part or all of the steps of the signal transmission method.
  • An embodiment of the present application provides a chip system, wherein the chip system includes a processor for supporting an optical signal transmission device to implement part or all of the steps of any optical signal transmission method provided in the embodiments of the present application.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program is executed by hardware (such as a processor, etc.), and is executed by any device in the embodiment of the present application Part or all of the steps of any one of the methods.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data.
  • the center transmits to another website site, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, an optical disk), or a semiconductor medium (for example, a solid state hard disk).
  • each embodiment has its own emphasis. For parts that are not described in detail in an embodiment, reference may be made to related descriptions of other embodiments.
  • the disclosed device may also be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored or not implemented.
  • the displayed or discussed indirect coupling or direct coupling or communication connection between each other may be through some interfaces, indirect coupling or communication connection between devices or units, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. . Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the functional units in the embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may also be implemented in the form of software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium. It includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium may include, for example: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other storable program codes. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

本申请实施例提供光信号传送方法和相关装置。一种光信号传送方法可包括:将第一光数据单元帧映射到第一灵活支路单元帧,第一灵活支路单元帧包括多个净荷块;将所述第一灵活支路单元帧映射到第一光净荷单元帧,第一灵活支路单元帧包括的多个净荷块分布于所述第一光净荷单元帧的净荷区;将所述第一光净荷单元帧映射到第二光数据单元帧,第二光数据单元帧的比特速率大于第一光数据单元帧的比特速率;将所述第二光数据单元帧映射到第一光传送单元帧;发送所述第一光传送单元帧。本申请实施例的技术方案有利于提高带宽利用率和客户业务的传送速率的调整灵活性。

Description

光信号传送方法和相关装置
本申请要求于2020年1月8日提交中国国家知识产权局、申请号为202010019363.5、发明名称为“光信号传送方法和相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光传送技术领域,尤其涉及一些光信号传送方法和相关装置。
背景技术
光传送网(Optical transport network,OTN)作为下一代传送网的核心技术,可用于大容量业务的灵活调度和管理,日益成为骨干传送网的主流技术。其中,在电层,OTN技术定义了功能强大的数字包封结构,能够实现对客户业务信号的管理和监控。
传统方案一般将多路客户业务信号以固定时隙为映射颗粒进行映射。实践发现在某些场景下,传统方案的带宽利用率不高,客户业务信号传送速率的调整灵活性不高,有些时候难以满足客户业务信号传送需求。
发明内容
为解决传统OTN技术中带宽利用率不高,客户业务信号传送速率的调整灵活性不高等技术问题,本申请实施例提供一些光信号传送方法和相关装置。
本申请实施例第一方面提供一种光信号传送方法,包括:将第一光数据单元帧映射到第一灵活支路单元帧,所述第一灵活支路单元帧包括多个净荷块;将所述第一灵活支路单元帧映射到第一光净荷单元帧,所述第一灵活支路单元帧包括的多个净荷块分布于所述第一光净荷单元帧的净荷区;将所述第一光净荷单元帧映射到第二光数据单元帧,所述第二光数据单元帧的比特速率大于第一光数据单元帧的比特速率;将所述第二光数据单元帧映射到第一光传送单元帧;发送所述第一光传送单元帧。
其中,第一灵活支路单元帧例如可为TUflex(Flexible Tributary Unit)帧。本申请实施例中的灵活支路单元帧可由一个或多个净荷块组成,灵活支路单元帧中的每个净荷块大小为Y比特(Y为正整数)。相对于由一个或多个固定时隙组成的灵活支路单元帧而言,这种由一个或多个净荷块组成的灵活支路单元帧,由于净荷块的颗粒度远小于时隙,灵活支路单元帧中的净荷块可基于需要而设计为任意大小,净荷块大小可基于不同的传送周期而设为不同,因此灵活支路单元帧的比特速率可以有更灵活的调整空间。
第一光数据单元帧例如为低阶(LO,Low order)ODU帧,例如LO ODUj或ODUflex帧。第一光净荷单元帧例如可为高阶(HO,High order)OPU帧,其中,HO OPU帧例如可为OPUk4帧或OPUCn帧等。第二光数据单元帧例如可为高阶(HO,High order)ODU帧。
可以理解,所述第一光净荷单元帧的净荷区中的净荷块可能只来自于第一灵活支路单元帧的净荷块,当然第一光净荷单元帧的净荷区的净荷块也可能不仅来自于第一灵活支路单元帧的净荷块,还可能来自于其他光信号容器。
其中,所述第一灵活支路单元帧包括的多个净荷块在所述第一光净荷单元帧的净荷区的分布方式可以是均匀分布或非均匀分布。在均匀分布的情况下,具体的均匀分布方式可以但不限于使用Sigma-delta算法来确定。
可以看出,上述举例方案中,光净荷单元帧的净荷区可以以净荷块为映射颗粒。由于净荷块的颗粒大小远小于时隙的颗粒大小,因此相对于以时隙为映射颗粒的方案,本实施例的技术方案有利于提高带宽利用率和客户业务信号的传送速率的调整灵活性。
在一些可能的实施方式中,映射到第一光净荷单元帧的不同传送周期的来自第一灵活支路单元帧的净荷块的数量固定或可变。
例如,所述第一灵活支路单元帧包括的净荷块数量C TUflex=C LOODU(映射到所述第一光净荷单元帧的不同传送周期的来自第一灵活支路单元帧的净荷块的数量可变)。又例如,所述第一灵活支路单元帧包括的净荷块数量C TUflex≥C max(映射到所述第一光净荷单元帧的不同传送周期的来自第一灵活支路单元帧的净荷块的数量固定)。
第一光数据单元帧需占用的所述第一灵活支路单元帧的净荷块数量为C LOODU,C LOODU的取值范围为[C min,C max]。
其中,C max=ceiling[R LOODU*(1+OS HOOPU)/(R PB-P*(1-OS HOOPU))]。
C min=floor[R LOODU*(1-OS HOOPU)/(R PB-P*(1+OS HOOPU))]。
其中,R HOOPU表示第一光净荷单元帧的净荷比特速率,OS HOOPU表示第一光净荷单元帧的速率频偏,R HOOPU=R PB*P;R LOODU表示第一光数据单元帧的比特速率,OS LOODU表示第一光数据单元帧的速率频偏,R PB表示第一光净荷单元帧的净荷块速率,P表示第一光净荷单元帧的一个传送周期的净荷块数量。
在一些可能的实施方式中,将第一光数据单元帧映射到第一灵活支路单元帧包括:将第一光数据单元帧拆分为X比特码块并形成的X比特码块流;将所述X比特码块流中连续的多个X比特码块映射到第一灵活支路单元帧,其中,所述连续的多个X比特码块与所述第一灵活支路单元帧包括的多个净荷块一一对应。
可以理解,第一光数据单元帧可包括N帧光数据单元帧,所述将第一光数据单元帧拆分为多个X比特码块并形成X比特码块流包括:将第一光数据单元帧拆分为M个X比特码块并形成X比特码块流。其中,所述X可为64的整数倍,例如X=N*64,所述M和N为正整数。所述X也可等于240或238或其他值。
在需进行帧对齐的情况下,M例如等于239。M也可等于478、100、250、500或者其他值。N例如可等于1、2、3、4、5、6、7、8、10、12、19、20、50、100、200、500或者其他值。
当N大于1时,第一光净荷单元帧的开销区可携带复帧指示,所述复帧指示用于指示当前光数据单元帧在所述N帧光数据单元帧中的排列位置(即复帧指示用于指示当前光数据单元帧是所述N帧光数据单元帧中的哪一帧)。例如假设N等于3,那么复帧指示可用于指示当前光数据单元帧是这3帧光数据单元帧中的第1帧、第2帧或第3帧;假设N等于2,那么复帧指示可用于指示当前光数据单元帧是这2帧光数据单元帧中的第1帧或第2帧,其他情况以此类推。
具体例如,所述第一光数据单元帧包括1帧光数据单元帧帧,所述将第一光数据单元帧拆分为X-Bit码块并形成X比特码块流可包括:将第一光数据单元帧拆分为239个X-Bit码块 并形成X比特码块流,例如所述X=64。
又例如,第一光数据单元帧包括2帧光数据单元帧,将第一光数据单元帧拆分为X比特码块并形成码块流包括:将第一光数据单元帧拆分为239个X-Bit码块并形成X比特码块流,例如所述X=128。第一光净荷单元帧的开销区可携带复帧指示,所述复帧指示用于指示当前光数据单元帧在所述2帧光数据单元帧中的排列位置。复帧指示例如可为复帧对齐信号MFAS或光复帧指示OMFI。其中,当复帧指示包括复帧对齐信号MFAS,例如所述MFAS的最低1比特用于指示当前帧在所述2帧光数据单元帧中的排列位置。或当复帧指示包括光复帧指示OMFI,则所述OMFI用于指示当前帧在所述2帧光数据单元帧中的排列位置。
又例如,所述第一光数据单元帧包括3帧光数据单元帧,将第一光数据单元帧拆分为X比特码块并形成码块流包括:将第一光数据单元帧拆分为239个X-Bit码块并形成码块流,例如所述X=192。第一光净荷单元帧的开销区可携带复帧指示,所述复帧指示用于指示当前光数据单元帧在所述3帧光数据单元帧中的排列位置。复帧指示例如可为复帧对齐信号MFAS或光复帧指示OMFI。其中,当复帧指示包括复帧对齐信号MFAS,例如所述MFAS的最低2比特用于指示当前帧在所述3帧光数据单元帧中的排列位置。或,当复帧指示包括光复帧指示OMFI,则所述OMFI用于指示当前帧在所述3帧光数据单元帧中的排列位置。
又例如,所述第一光数据单元帧包括3帧光数据单元帧,将第一光数据单元帧拆分为X比特码块并形成码块流包括:将第一光数据单元帧拆分为239个X-Bit码块并形成码块流,例如所述X=256。第一光净荷单元帧的开销区可携带复帧指示,所述复帧指示用于指示当前光数据单元帧在所述4帧光数据单元帧中的排列位置。复帧指示例如可为复帧对齐信号MFAS或光复帧指示OMFI。其中,当复帧指示包括复帧对齐信号MFAS,例如所述MFAS的最低2比特用于指示当前帧在所述4帧光数据单元帧中的排列位置。或,当复帧指示包括光复帧指示OMFI,则所述OMFI用于指示当前帧在所述4帧光数据单元帧中的排列位置。
其中,N为其他取值的情况可以此类推。
在一些可能实施方式中,第一灵活支路单元帧包括的多个净荷块的每个净荷块携带有所述第一光数据单元帧的客户业务标识。其中,客户业务标识用于标识这个净荷块所归属的客户业务。客户业务标识例如可为支路端口标识(TPN,Tributary Port Number)。净荷块携带有第一光数据单元帧的客户业务标识的情况下,Y>X,即一个净荷块的大小大于一个X比特码块的大小。应理解,TPN也可称为支路端口指示(TPID,Tributary Port Identifier)或其他名称。
在一些可能实施方式中,所述第一光净荷单元帧携带开销指示,其中,所述开销指示用于指示出所述第一灵活支路单元帧包括的多个净荷块在所述第一光净荷单元帧的净荷区的分布位置。因此接收端基于这个开销指示,便可确定第一灵活支路单元帧包括的多个净荷块在所述第一光净荷单元帧的净荷区的分布位置。其中,开销指示可携带于第一光净荷单元帧的开销区或所述开销指示可携带于第一光净荷单元帧的至少一个净荷块(开销指示例如可携带于第一光净荷单元帧的某1个净荷块)。
当然,如果第一灵活支路单元帧包括的多个净荷块在所述第一光净荷单元帧的净荷区的分布位置是默认约定的,那么第一光净荷单元帧中可无需携带这个开销指示,而接收端则可按默认约定,来确定第一灵活支路单元帧包括的多个净荷块在所述第一光净荷单元帧 的净荷区的分布位置。
在一些实施方式中,需进行速率调整时,所述方法还包括:将第三光数据单元帧映射到第二灵活支路单元帧,所述第二灵活支路单元帧包括C2个净荷块;将所述第二灵活支路单元帧映射到第二光净荷单元帧,所述C2个净荷块分布于所述第二光净荷单元帧的净荷区;R2=C1*R1/C2,R1为第一光净荷单元帧的比特速率,R2为第二光净荷单元帧的比特速率,C1为所述第一灵活支路单元帧包括的净荷块的数量;所述第三光数据单元帧和所述第一光数据单元帧用于承载相同客户的业务数据;将所述第二光净荷单元帧映射到第四光数据单元帧,其中,所述第四光数据单元帧的比特速率大于第三光数据单元帧的比特速率;将所述第四光数据单元帧映射到第二光传送单元帧;发送所述第二光传送单元帧。
在另一些实施方式中,在需进行速率调整时,所述方法还包括:将第三光数据单元帧映射到第二灵活支路单元帧;将所述第二灵活支路单元帧映射到第二光净荷单元帧,所述第二灵活支路单元帧包括的多个净荷块分布于所述第二光净荷单元帧的净荷区;
其中,P2=P1*R2/R1,R1为第一光净荷单元帧的比特速率,R2为第二光净荷单元帧的比特速率,P1为所述第一个光净荷单元帧的一个传送周期包括的净荷块的数量,所述P2为第二光净荷单元帧的一个传送周期包括的净荷块的数量;所述第二灵活支路单元帧和所述第一灵活支路单元帧所包括的净荷块的数量相同(例如净荷块的数量都为C1个);所述第三光数据单元帧和所述第一光数据单元帧用于承载相同客户的业务数据;将所述第二光净荷单元帧映射到第四光数据单元帧,所述第四光数据单元帧的比特速率大于第三光数据单元帧的比特速率;将所述第四光数据单元帧映射到第二光传送单元帧;发送所述第二光传送单元帧。
可以看出,上述举例的两种速率调整方式,通过调整灵活支路单元帧包括的净荷块数量或调整光净荷单元帧的一个传送周期包括的净荷块的数量,即可实现光净荷单元帧速率的灵活准确调整,实现简单且灵活性非常高。
在其他一些实施方式中,也可同时调整灵活支路单元帧包括的净荷块数量和光净荷单元帧的一个传送周期包括的净荷块的数量,进而实现光净荷单元帧速率的灵活准确调整,具体调整方式此处不再赘述。
本申请实施例第二方面提供一种光信号传送设备可包括:
映射单元,用于将第一光数据单元帧映射到第一灵活支路单元帧,所述第一灵活支路单元帧包括多个净荷块;将所述第一灵活支路单元帧映射到第一光净荷单元帧,所述第一灵活支路单元帧包括的多个净荷块分布于所述第一光净荷单元帧的净荷区;将所述第一光净荷单元帧映射到第二光数据单元帧,所述第二光数据单元帧的比特速率大于第一光数据单元帧的比特速率;将所述第二光数据单元帧映射到第一光传送单元帧。
收发单元,用于发送所述第一光传送单元帧。
其中,上述光信号传送设备的各功能单元的功能实现细节,例如可参考第一方面提供光信号传送方法的相关细节描述。
本申请实施例第三方面提供一种光信号传送设备,包括:相互耦合的处理器和存储器;其中,所述处理器用于调用所述存储器中存储的计算机程序,以执行第一方面提供的任意 一种光信号传送方法的部分或全部步骤。
本申请实施例第四方面提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被硬件执行时能够完成第一方面提供的任意一种光信号传送方法的部分或全部步骤。
本申请实施例第五方面提供一种通信装置,包括:至少一个输入端、信号处理器和至少一个输出端;其中,所述信号处理器用于执行第一方面提供的任意一种光信号传送方法的部分或全部步骤。
本申请实施例第六方面提供一种通信装置,包括:输入接口电路,逻辑电路和输出接口电路,其中,所述逻辑电路用于执行第一方面提供的任意一种光信号传送方法的部分或全部步骤。
本申请实施例第七方面提供一种芯片系统,所述芯片系统包括处理器,用于支持光信号传送设备实现第一方面提供的任意一种光信号传送方法的部分或全部步骤。
本申请实施例第八方面提供一种包括指令的计算机程序产品,当所述计算机程序产品在光信号传送设备上运行时,使得所述光信号传送设备执行以上各方面的任意一种方法的部分或者全部步骤。
附图说明
下面将对本申请实施例涉及的一些附图进行说明。
图1-A是本申请实施例提供的一种OTU帧的模块化结构的示意图。
图1-B是本申请实施例提供的客户业务信号的时隙颗粒映射的示意图。
图2-A是本申请实施例提供的光信号传送方法的流程示意图。
图2-B是本申请实施例提供的客户业务信号的净荷块颗粒映射的示意图。
图2-C至图2-F是本申请实施例提供的ODU的几种码块拆分的示意图。
图3-A为本申请实施例提供的另一光信号传送方法的流程示意图。
图3-B至图3-C是为本申请实施例提供的混合映射的两种示意图。
图3-D是为本申请实施例提供的净荷块均匀映射的示意图。
图4-A为本申请实施例提供的另一光信号传送方法的流程示意图。
图4-B至图4-C是为本申请实施例提供的混合映射的两种示意图。
图5-A为本申请实施例提供的另一光信号传送方法的流程示意图。
图5-B为本申请实施例提供的一种非混合映射的示意图。
图6-A为本申请实施例提供的另一光信号传送方法的流程示意图。
图6-B为本申请实施例提供的通过MSI开销进行携带的流程示意图。
图6-C为本申请实施例提供的MSI的各个字节含义的一种举例的示意图。
图6-D为本申请实施例提供的MSI的各个字节含义的另一种举例的示意图。
图7为本申请实施例提供的光网络系统的架构示意图。
图8为本申请实施例提供的光信号传送设备的一种可能的硬件结构示意图。
图9为本申请实施例提供的光信号传送设备的另一种可能的结构示意图。
图10为本申请实施例提供的光信号传送设备的另一种可能的结构示意图。
图11为本申请实施例提供的光信号传送设备的另一种可能的结构示意图。
图12为本申请实施例提供的光信号传送设备的另一种可能的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例方案进行描述。
图1-A举例示出了一种4(行)×4080(列)的光传送单元(OTU,Optical Transport Unit)帧的模块化结构。OTU帧可包括净荷(Payload)区和开销(OH,Overhead)区。开销区也可称为开销字节。净荷区也可称为净荷字节。
OTU帧包括帧对齐信号(FAS,Frame Alignment Signal),FAS可提供帧同步定位功能。前向纠错(FEC,Forward Error Correction)字节提供错误探测和纠错功能。OTUk OH表示OTU帧的开销字节,OTUk OH可提供光传送单元级别的网络管理功能。ODUk OH表示光数据单元(ODU,Optical Data Unit)的开销字节,ODUk OH用于提供相关的维护和操作功能。OPUk OH表示光净荷单元(OPU,Optical Payload Unit)的开销字节,OPUk OH用于提供客户业务信号的适配功能。光净荷单元OPUk用于提供客户业务信号的承载功能。
其中,OPUk、ODUk和OTUk中的系数k,用于表示所支持的OPU、ODU和OTU的比特速率和种类不同。例如,k=0时表示比特速率为1.25Gbit/s;k=1时表示比特速率为2.5Gbit/s;k=2时则表示比特速率为10Gbit/s;k=3时则表示比特速率为40Gbit/s;k=4时则表示比特速率为100Gbit/s;k=Cn时则表示比特速率为n*100Gbit/s,k=flex时则表示比特速率为n*1.25Gbit/s(n>=2)。
需要说明的是,OTUCn的帧结构不包含FEC,OTUCn由n路OTUC帧组成,最终通过映射到FlexO(Flexible OTN)接口来发送。
当前OTN接口速率相对同等速率的以太接口速率通常存在约5%的速率提升,例如100G的OTU4相对以太的100GE,或者400G的OTUC4和FlexO-4相对以太的400GE,随着接口速率向更高速率发展,约5%的速率差异会造成光数字处理芯片及光模块设计的极大差异,外在的表现则是导致OTN接口的功耗和成本相对同等速率以太接口会有极大提升,竞争力下降。
本申请发明人研究发现,造成OTN接口约5%速率提升的主要原因之一就是采用了刚性的时隙划分方式,当映射复用多路客户业务时,分配给某些路客户业务的带宽很可能存在较大的带宽冗余,带宽浪费的同时导致最终输出接口总速率提升。
因此,为了提升OTN竞争力,能够提供定制化的应用场景以及提高接口带宽效率将具有非常大的应用价值。例如OTN接口可以在某一些场景趋同于一个无速率提速接口,使用同等速率的以太接口速率,采用相同速率的光模块,降低整体网络成本。或OTN接口在某些场景,基于光模块的应用距离情况采用自定义速率,其速率可基于具体的应用场景可以在一定范围内进行灵活变化,同时这种变化不影响原有业务承载能力。
参见图1-B,在一些传统光传送方案中,多路客户业务信号是以固定时隙为映射颗粒进行映射的。OTUk/OTUCn提供了如下几类固定时隙传送方式:2.5G时隙,OTUk的净荷区划分为固定数量的2.5G时隙,通过异步映射完成多路客户业务映射复用。1.25G时隙,OTUk净荷区划分为固定数量的1.25G时隙,采用通用映射规程完成多路客户业务映射复用。5G时隙,OTUCn的净荷区划分为20n个5G时隙,采用通用映射规程完成多路客户业务映射复用。而在 需进行速率调整时,若基于OTUk/OTUCn接口进行速率降低,则其包含时隙的速率则同比例降低,那么某些客户业务在占用相同数量时隙的情况下可能无法有效承载。可见固定时隙传送方式,存在带宽浪费等问题;且固定时隙传送方式,导致线路接口速率无法灵活调整,若调整则可能不再能满足原有多客户业务的有效承载。
为此,本申请实施例揭示了一种新的光信号传送方式,以提高带宽利用率和提供传送速率灵活调整能力。
图2-A为本申请实施例提供的一种光信号传送方法的流程示意图。如图2-A所示,一种光信号传送方法可包括:
201.将第一光数据单元帧映射到第一灵活支路单元帧。所述第一灵活支路单元帧包括多个净荷块。
其中,第一灵活支路单元帧例如可为TUflex(Flexible Tributary Unit)帧。本申请实施例中的灵活支路单元帧可由1个或多个净荷块组成,灵活支路单元帧中的每个净荷块大小为Y比特(Y为正整数)。相对于由1个或多个固定时隙组成的灵活支路单元帧而言,这种由1个或多个净荷块组成的灵活支路单元帧,由于净荷块的颗粒度远小于时隙,灵活支路单元帧中的净荷块可基于需要而设计为任意大小,净荷块大小可基于不同的传送周期而设为不同,因此灵活支路单元帧的比特速率可以有更灵活的调整空间。
将第一光数据单元帧映射到第一灵活支路单元帧的具体方式可以是多种多样的。例如将第一光数据单元帧映射到第一灵活支路单元帧可包括:将第一光数据单元帧拆分为多个X比特码块(X比特码块可表示为X-Bit码块,即大小为X比特的码块)并形成X比特码块流;将所述X比特码块流中连续的C1个X比特码块映射到第一灵活支路单元帧,所述C1个X比特码块与所述第一灵活支路单元帧所包括的C1个净荷块一一对应(其中,一一对应表示一个X比特码块映射为一个净荷块,即:不同的X比特码块映射为不同的净荷块)。
202.将所述第一灵活支路单元帧映射到第一光净荷单元帧,所述第一灵活支路单元帧包括的多个净荷块分布于所述第一光净荷单元帧的净荷区。
可以理解,所述第一光净荷单元帧的净荷区中的净荷块可能只来自于第一灵活支路单元帧的净荷块,当然第一光净荷单元帧的净荷区的净荷块也可能不仅来自于第一灵活支路单元帧的净荷块,还可能来自于其他光信号容器。
其中,所述第一灵活支路单元帧包括的多个净荷块在所述第一光净荷单元帧的净荷区的分布方式可以是均匀分布或非均匀分布。在均匀分布的情况下,具体的均匀分布方式可以但不限于使用Sigma-delta算法来确定。
203.将所述第一光净荷单元帧映射到第二光数据单元帧。所述第二光数据单元帧的比特速率大于第一光数据单元帧的比特速率。
第一光数据单元帧例如为低阶(LO,Low order)ODU帧,例如为LO ODUj或ODUflex帧。第一光净荷单元帧例如可为高阶(HO,High order)OPU帧,HO OPU帧例如可为OPU1帧、OPU2帧、OPU3帧、OPU4帧或OPUCn帧等。第二光数据单元帧例如可为HOODU帧。
204.将所述第二光数据单元帧映射到第一光传送单元帧。
205.发送所述第一光传送单元帧。
可以看出,本实施例中光净荷单元帧的净荷区可以以净荷块为映射颗粒,由于净荷块 的颗粒大小远小于时隙的颗粒大小,因此相对于以时隙为映射颗粒的方案,本实施例的技术方案有利于提高带宽利用率和客户业务信号的传送速率的调整灵活性。
可以理解,第一光数据单元帧可包括N帧光数据单元帧,所述将第一光数据单元帧拆分为X比特码块并形成X比特码块流包括:将第一光数据单元帧拆分为M个X比特码块并形成X比特码块流,其中,所述X为64的整数倍,例如X=N*64,所述M和N为正整数。
其中,需进行帧对齐的情况下,M例如等于239。M也可等于478、100、250、500或其他值。其中,N例如可等于1、2、3、4、5、6、7、8、10、12、19、20、50、100、200、500或其他值。
当N大于1时,第一光净荷单元帧的开销区可携带复帧指示,所述复帧指示用于指示当前光数据单元帧在所述N帧光数据单元帧中的排列位置(即复帧指示用于指示当前光数据单元帧是所述N帧光数据单元帧中的哪一帧)。例如假设N等于3,那么复帧指示可用于指示当前光数据单元帧是这3帧光数据单元帧中的第1帧、第2帧或第3帧;假设N等于2,那么复帧指示可用于指示当前光数据单元帧是这2帧光数据单元帧中的第1帧或第2帧,其他情况以此类推。
具体例如,参见图2-C,所述第一光数据单元帧包括1帧光数据单元帧帧,所述将第一光数据单元帧拆分为X-Bit码块并形成X比特码块流可包括:将第一光数据单元帧拆分为239个X-Bit码块并形成码块流,例如所述X=64。
又例如,参见图2-D,所述第一光数据单元帧包括2帧光数据单元帧,将第一光数据单元帧拆分为X-Bit码块并形成X比特码块流可包括:将第一光数据单元帧拆分为239个X-Bit码块并形成X比特码块流,例如所述X=128。第一光净荷单元帧的开销区可携带复帧指示,所述复帧指示用于指示当前光数据单元帧在所述2帧光数据单元帧中的排列位置。复帧指示例如可为复帧对齐信号MFAS或光复帧指示OMFI。其中,当复帧指示包括复帧对齐信号MFAS,例如所述MFAS的最低1比特用于指示当前帧在所述2帧光数据单元帧中的排列位置。或当复帧指示包括光复帧指示OMFI,则所述OMFI用于指示当前帧在所述2帧光数据单元帧中的排列位置。
又例如,参见图2-E,所述第一光数据单元帧包括3帧光数据单元帧,所述将第一光数据单元帧拆分为X比特码块并形成X比特码块流包括:将第一光数据单元帧拆分为239个X-Bit码块并形成X比特码块流,所述X=192。第一光净荷单元帧的开销区可携带复帧指示,具体参见图2-D的相关说明,不再予以赘述。不同的是,在本例中,用MFAS的最低2比特用于指示当前帧在所述3帧光数据单元帧中的排列位置。
又例如,参见图2-F,所述第一光数据单元帧包括4帧光数据单元帧,所述将第一光数据单元帧拆分为X-Bit码块并形成X比特码块流包括:将第一光数据单元帧拆分为239个X-Bit码块并形成X比特码块流,例如所述X=256。第一光净荷单元帧的开销区可携带复帧指示,具体参见图2-E的相关说明,在此不再赘述。
其中,N为其他取值的情况可以此类推。
在一些可能实施方式中,第一灵活支路单元帧包括的多个净荷块的每个净荷块携带有所述第一光数据单元帧的客户业务标识。其中,客户业务标识可用于标识出这个净荷块所归属的客户业务。客户业务标识例如可为支路端口标识(TPN,Tributary Port Number)。净 荷块携带有第一光数据单元帧的客户业务标识的情况下,Y>X,即一个净荷块的大小大于一个X比特码块的大小。TPN也可被称为支路端口指示(TPID,Tributary Port Identifier)或其他名称。
在一些可能实施方式中,所述第一光净荷单元帧携带开销指示,其中,所述开销指示用于指示出所述第一灵活支路单元帧包括的多个净荷块在所述第一光净荷单元帧的净荷区的分布位置。因此接收端基于这个开销指示,便可确定第一灵活支路单元帧包括的多个净荷块在所述第一光净荷单元帧的净荷区的分布位置。其中,开销指示可携带于第一光净荷单元帧的开销区或所述开销指示可携带于第一光净荷单元帧的至少一个净荷块(开销指示例如可携带于第一光净荷单元帧的某1个净荷块)。
当然,如果第一灵活支路单元帧包括的多个净荷块在所述第一光净荷单元帧的净荷区的分布位置是默认约定的,那么第一光净荷单元帧中可无需携带这个开销指示,而接收端则可按默认约定,来确定第一灵活支路单元帧包括的多个净荷块在所述第一光净荷单元帧的净荷区的分布位置。
在一些实施方式中,需进行速率调整时,所述方法还包括:将第三光数据单元帧映射到第二灵活支路单元帧,所述第二灵活支路单元帧包括C2净荷块;将所述第二灵活支路单元帧映射到第二光净荷单元帧,所述第二灵活支路单元帧包括的C2个净荷块分布于所述第二光净荷单元帧的净荷区;C2=C1*R1/R2,R1为第一光净荷单元帧的比特速率,R2为第二光净荷单元帧的比特速率,C1为所述第一灵活支路单元帧包括的净荷块的数量;所述第三光数据单元帧和所述第一光数据单元帧用于承载相同客户的业务数据;将所述第二光净荷单元帧映射到第四光数据单元帧,其中,所述第四光数据单元帧的比特速率大于第三光数据单元帧的比特速率;将所述第四光数据单元帧映射到第二光传送单元帧;发送所述第二光传送单元帧。
在另一些实施方式中,在需进行速率调整时,所述方法还包括:将第三光数据单元帧映射到第二灵活支路单元帧;将所述第二灵活支路单元帧映射到第二光净荷单元帧,所述第二灵活支路单元帧包括的多个净荷块分布于所述第二光净荷单元帧的净荷区;
其中,P2=P1*R2/R1,R1为第一光净荷单元帧的比特速率,R2为第二光净荷单元帧的比特速率,P1为所述第一个光净荷单元帧的一个传送周期包括的净荷块的数量,所述P2为第二光净荷单元帧的一个传送周期包括的净荷块的数量;其中,所述第二灵活支路单元帧和所述第一灵活支路单元帧所包括的净荷块的数量相同(例如净荷块的数量都为C1个);所述第三光数据单元帧和所述第一光数据单元帧用于承载相同客户的业务数据;将所述第二光净荷单元帧映射到第四光数据单元帧,所述第四光数据单元帧的比特速率大于第三光数据单元帧的比特速率;将所述第四光数据单元帧映射到第二光传送单元帧;发送所述第二光传送单元帧。
可以看出,上述举例的两种速率调整方式,通过调整灵活支路单元帧包括的净荷块数量或调整光净荷单元帧的一个传送周期包括的净荷块的数量,即可实现光净荷单元帧速率的灵活准确调整,实现简单且灵活性非常高。
在其他一些实施方式中,也可同时调整灵活支路单元帧包括的净荷块数量和光净荷单元帧的一个传送周期包括的净荷块的数量,进而实现光净荷单元帧速率的灵活准确调整, 具体调整方式此处不再赘述。
可以理解,上述光信号传送方法应用于光信号传送系统中的发送端。参见图2-B,发送端将一路或多路客户业务信号进行逐级映射,最后得到OTU帧。接收端在接收到OTU帧后,可按对应的方式进行逐级解映射,最后得到一路或多路客户业务信号。
下面通过几个具体的应用场景进行进一步说明。
图3-A为本申请实施例提供的另一光信号传送方法的流程示意图。本实施例中的HO OPU帧的净荷区包括第一净荷分区和第二净荷分区。第一净荷分区和第二净荷分区可使用不同的映射规程。其中,另一光信号传送方法可包括:
301.将第#i路LO ODU帧拆分为X-Bit码块并形成X比特码块流,将X比特码块流中连续的C1个X比特码块映射到TUflex帧。
302.将所述TUflex帧映射到HO OPU帧的第一净荷分区。其中,所述TUflex帧包括的多个净荷块分布于HO OPU帧的第一净荷分区的多个净荷块。所述HO OPU帧的第一净荷分区由ts1个时隙组成。
其中,HO OPU帧例如可为OPU1帧、OPU2帧、OPU3帧、OPU4帧或OPUCn帧等。
303.将第#j路LO ODU帧映射到HO OPU帧的第二净荷分区,所述HO OPU帧的第二净荷分区由ts2个时隙组成。
可以理解,步骤301-302和步骤303之间没有必然的执行先后顺序。步骤303和步骤301-302可并行执行。第#j路LO ODU帧和第#i路LO ODU帧对应不同路的客户业务信号。
图3-B举例示出HO OPU帧的净荷区包括第一净荷分区和第二净荷分区。第一净荷分区由HO OPU帧的ts1个时隙组成,第二净荷分区由HO OPU帧的ts2个时隙组成,第一净荷分区划分为多个净荷块。第一净荷分区和第二净荷分区使用的映射规程例如不同。例如第一净荷分区使用映射规程为通用映射规程(GMP,Generic Mapping Procedure),第二净荷分区使用映射规程为通用支路单元规程(GTP,Generic Tributary unit Procedure)。GTP也可能被称为灵活支路单元规程(FTP,Flexible Tributary unit Procedure)。
图3-C举例示出组成第一净荷分区和第二净荷分区的时隙可以是不连续的。图3-D举例示出TUflex帧包括的多个净荷块均匀分布于HO OPU帧的第一净荷分区。
304.将HO OPU帧映射到HO ODU帧。
305.将所述HO ODU帧帧映射到OTU帧。
306.发送OTU帧。
可以理解,本实施例方案主要以OPU帧为HO OPU帧,较低速率ODU帧为LO ODU帧(LO ODU帧具体例如为LO ODUj/flex帧),较高速率ODU帧为HO ODU帧为例进行描述。当然OPU帧为其他类型的OPU帧、较低速率ODU帧为其他类型的ODU帧、较高速率ODU帧为为其他类型的ODU帧的情况下的实施方式,可以此类推。
可以看出,本实施例中引入了混合映射机制,即HO OPU帧的净荷区包括第一净荷分区和第二净荷分区。第一净荷分区和第二净荷分区可使用不同的映射规程,例如第二净荷分区可以以净荷块为映射颗粒,而第一净荷分区可以以时隙为映射颗粒,由于不同映射颗粒对应不同的传送速率控制的灵活性,因此混合映射机制有利于满足不同客户业务对映射颗粒的多样化需求,有利于进一步提高客户业务的传送速率控制的灵活性。
图4-A为本申请实施例提供的另一光信号传送方法的流程示意图。本实施例中的HO OPU帧的净荷区包括第一净荷分区和第二净荷分区。第一净荷分区和第二净荷分区可使用不同的映射规程。另一光信号传送方法可包括:
401.将第#i路LO ODU帧拆分为X-Bit码块并形成X比特码块流,将X比特码块流中连续的C1个X比特码块映射到TUflex帧。
402.将所述第一TUflex帧映射到HO OPU帧的第三净荷分区,所述HO OPU帧的净荷区包括第三净荷分区和第四净荷分区。所述TUflex帧包括的多个净荷块分布于HO OPU帧的第三净荷分区的多个净荷块。
HO OPU帧例如可为OPU1帧、OPU2帧、OPU4帧、OPU4帧或OPUCn帧等。
403.将第#j路LO ODU帧映射到HO OPU帧的第四净荷分区,所述HO OPU帧的第四净荷分区包括ts1个时隙。
图4-C举例示出HO OPU帧的净荷区包括第三净荷分区和第四净荷分区。第三净荷分区和第四净荷分区由不同的OPUC组成。在图4-B的示例中,第三净荷分区包括OPUCn1,第三净荷分区包括OPUCn2。第三净荷分区和第四净荷分区使用的映射规程例如不同,参见图4-B,图4-B举例示出,例如第三净荷分区使用映射规程为GMP,第四净荷分区使用映射规程为GTP。
404.将HO OPU帧映射到HO ODU帧。
405.将所述HO ODU帧帧映射到OTU帧。
406.发送OTU帧。
可以理解,本实施例方案主要以OPU帧为HO OPU帧,较低速率ODU帧为LO ODU帧(LO ODU帧具体例如为LO ODUj/flex帧),较高速率ODU帧为HO ODU帧为例进行描述。当然OPU帧为其他类型的OPU帧、较低速率ODU帧为其他类型的ODU帧、较高速率ODU帧为为其他类型的ODU帧的情况下的实施方式,可以此类推。
可以看出,本实施例中引入了混合映射机制,即HO OPU帧的净荷区包括第一净荷分区和第二净荷分区。第一净荷分区和第二净荷分区可使用不同的映射规程,例如第二净荷分区可以以净荷块为映射颗粒,而第一净荷分区可以以时隙为映射颗粒,由于不同映射颗粒对应的传送速率的调整灵活性不同,因此,混合映射机制有利于满足不同客户业务对映射颗粒的多样化需求,有利于进一步提高客户业务的传送速率的调整灵活性。
图5-A为本申请实施例提供的另一光信号传送方法的流程示意图。本实施例方案中,HO OPU帧的净荷区使用统一的映射规程。另一光信号传送方法可包括:
501.将第#i路LO ODU帧拆分为X-Bit码块并形式X比特码块流。
502.将X比特码块流中连续的C1个X比特码块映射到TUflex帧。
503.将所述TUflex帧映射到HO OPU帧的净荷区,其中,所述HO OPU帧的净荷区的一个传送周期包括P个净荷块。
其中,所述TUflex帧包括的多个净荷块可均匀分布于HO OPU帧的净荷区。
其中,HO OPU帧例如可为OPU1帧、OPU2帧、OPU3帧、OPU4帧或OPUCn帧等。图5-B举例示出TUflex帧包括的多个净荷块均匀分布于HO OPU帧的净荷区的多个净荷块。
504.将HO OPU帧映射到HO ODU帧。
505.将所述HO ODU帧映射到OTU帧。
506.发送OTU帧。
可以理解,本实施例方案主要以OPU帧为HO OPU帧,较低速率ODU帧为LO ODU帧(LO ODU帧具体例如为LO ODUj/flex帧),较高速率ODU帧为HO ODU帧为例进行描述。当然OPU帧为其他类型的OPU帧、较低速率ODU帧为其他类型的ODU帧、较高速率ODU帧为为其他类型的ODU帧的情况下的实施方式,可以此类推。
可以看出,本实施例中HO OPU帧的净荷区使用统一的映射规程,并且HO OPU帧的净荷区以净荷块为映射颗粒,相对于以时隙为映射颗粒的方案,本实施例的技术方案有利于提高带宽利用率和客户业务的传送速率的调整灵活性。并且,HO OPU帧的净荷区使用统一的映射规程来进行映射,有利于降低映射控制复杂度。
图6-A为本申请实施例提供的另一光信号传送方法的流程示意图。在图6-A中,以第一光数据单元帧为LO ODU帧,光净荷单元为HO OPU为例。另一光信号传送方法可包括:
601.将LO ODU帧拆分为多个X-Bit码块并形式X比特码块流。
602.将X比特码块流中连续的C LOODU个码块映射到灵活支路单元TUflex帧。
拆分LO ODU帧而得到的1个X-Bit码块,对应于TUflex帧的1个净荷块。TUflex帧的一个净荷块大小为Y-Bit,每个X-Bit码块小于或等于其对应净荷块的大小,即X≤Y。
在将LO ODU帧映射到灵活支路单元TUflex之前,可确定TUflex帧的大小,还可确定TUflex帧所包括的净荷块在HO OPU帧的净荷区的分布位置。即确定TUflex帧在以P个净荷块为1个传送周期的HO OPU帧的中所占用的净荷块数量和分布方式。
其中,假设TUflex帧的净荷块大小为Y-Bit,R PB为单个净荷块的比特速率。其中,每个净荷块的净荷大小为X-Bit,每个净荷块的开销大小为Y-X比特。其中,R PB-P表示单个净荷块的净荷速率,R PB-P=R PB*X/Y。
其中,LO ODU帧的比特速率表示为R LOODU,LO ODU帧的速率频偏表示为OS LOODU,OS LOODU例如可为20ppm、30ppm或其他值。其中,HO OPU帧的净荷比特速率表示为R HOOPU,HO OPU帧的速率频偏表示为OS HOOPU,OS HOOPU例如为20ppm、25ppm、30ppm或其他值。
其中,P=R HOOPU/R PB。如需预留足够承载能力,则P=R HOOPU(1-OS HOOPU)/R PB(1+OS HOOPU),P表示HO OPU帧的一个传送周期所包含的净荷块数量,即HO OPU帧的传送周期为P。其中,在计算过程中,可先确定R PB或P的值,具体先确定R PB和P之中哪一个的值不做限定,可以根据需要灵活选择。在通常情况下,对于承载容量相同的HO OPU,P值越大则R PB值越小,P值越小则R PB值越大。此时,C nor=ceiling[R LOODU/R PB-P]。
C max=ceiling[R LOODU*(1+OS HOOPU)/(R PB-P*(1-OS HOOPU))]。
C min=floor[R LOODU*(1-OS HOOPU)/(R PB-P*(1+OS HOOPU))]。
其中,TUflex帧构造可存在如下两种可选方式,在一种构造方式中,TUflex帧净荷块的数量固定;在另一种构造方式中,TUflex帧净荷块的数量可变。即映射到OPU帧的不同传送周期的来自LO ODU帧的净荷块的数量固定或可变。
TUflex帧构造方式一:在HO OPU帧的每个传送周期,TUflex帧包括的净荷块数量为固定值C TUflex,C TUflex表示TUflex帧包括的净荷块的数量。例如,可定义为TUflex帧包含的净荷块的数量C TUflex大于或者等于C max,具体例如C TUflex=C max。在HO OPU帧的每个传送周期,TUflex帧包括的C TUflex个净荷块,在HO OPU帧的1个传送周期的P个净荷块中均匀分布,具体的均匀 分布方式可以但不限于使用Sigma-delta算法来确定。
这种情况下,映射LO ODU帧到TUflex帧时,LO ODU帧(即拆分LO ODU帧而得到的X-Bit码块)需占用TUflex帧的净荷块数量为C LOODU,C LOODU的取值范围为[C min,C max]。也即,将拆分LO ODU帧而得到的C LOODU个X-Bit码块,映射到TUflex的C TUflex个Y-Bit净荷块之中的C LOODU个Y-Bit净荷块中,C LOODU≤C TUflex,可通过空闲净荷块进行速率适配,当C LOODU<C TUflex时,在TUflex的适当位置填充空闲净荷块,此时,TUflex的C TUflex个净荷块,由C TUflex-C LOODU个空闲净荷块和C LOODU个包含了LO ODU的X-Bit码块的净荷块组成。当C LOODU=C TUflex时,TUflex不包含空闲净荷块,即TUflex的C TUflex个净荷块,全部由包含了LO ODU的X-Bit码块的净荷块组成。其中,空闲净荷块可全部填充0或1或其他预设值。其中,在开销区,可携带该业务所对应的支路端口号(TPN)和空闲净荷块指示开销,或通过特殊TPN值(例如TPN=全0或全1)来指示当前净荷块为空闲净荷块。
TUflex构造方式二:在HO OPU帧不同传送周期,TUflex帧包括的净荷块数量C TUflex的取值是可变的,在这种情况下,例如C TUflex=C LOODU,其中,TUflex帧包括的净荷块数量C TUflex的取值范围例如为[C min,C max]。
在这种情况下,映射LO ODU帧到TUflex帧时,LO ODU帧(即拆分LO ODU帧而得到的X-Bit码块)需占用TUflex帧的净荷块数量为C LOODU,C LOODU的取值范围为[C min,C max]。将拆分LO ODU帧得到的C LOODU个X-Bit码块一一映射到TUflex帧的C TUflex个Y-Bit净荷块,因为C TUflex=C LOODU,因此在这种情况下,TUflex帧包括的C TUflex个净荷块,则是全部由包含有LO ODU帧的X-Bit码块的净荷块来组成。
603.将TUflex帧到HO OPU帧,即映射TUflex帧的C TUflex个净荷块到HO OPU帧的P个净荷块中的C TUflex个净荷块位置。
对于TUflex帧构造方式一的情况,可将TUflex帧的C TUflex个净荷块一一映射到HO OPU帧的对应C TUflex个净荷块位置。
对于TUflex帧构造方式二的情况,则在HO OPU帧的每个传送周期(P个净荷块),将TUflex帧的C TUflex个净荷块均匀的映射到HO OPU帧的P个净荷块中的C TUflex个净荷块位置。具体的均匀分布方式可以但不限于使用Sigma-delta算法来确定。
604.生成并添加HO OPU帧的开销。
其中,HO OPU帧开销包括但不限于:净荷类型(PT,Payload Type)开销、支路端口号TPN开销、净荷块占用和分布指示开销、LO ODU帧占用的净荷块数量开销,LO ODU帧业务的数量开销等。
PT开销可定义新的值,例如0x24或其他值。PT开销可通过HO OPU帧的第一帧第4行至第15列携带。PT开销用于指示当前HO OPU帧的净荷区采用了GTP映射方式完成LO ODU帧的承载。
对齐其他开销的处理方式可如下:
方式一:开销随承载LO ODU帧的净荷块进行承载,在每个净荷块添加该路LO ODU帧的支路端口标识TPN,此时Y>X,添加位置位于每个净荷块中的Y-X比特的开销区;此时,接收端通过各个净荷块携带的TPN,即可判断各个净荷块的占用和分布情况,也即通过TPN即可达到指示净荷块占用和分布情况的功能。LO ODU帧占用的净荷块数量开销可选。LO ODU帧业务的数量开销可选。
方式二:开销独立于承载LO ODU帧的净荷块进行承载,此时X≤Y,例如Y=X(即1个净荷块大小等于1个X比特码块大小)。在Y>X的情况,此时可选的,TPN随净荷块进行承载。生成LO ODU帧占用HO OPU帧的净荷块的指示开销,即净荷块占用和分布指示开销,对于TUflex帧构造方式一来讲,也即TUflex帧占用HO OPU帧的每个传送周期的P个净荷块中的C TUflex个净荷块的分布指示开销和LO ODU帧占用的净荷块数量指示开销。对于TUflex帧构造方式二来讲,也即LO ODU帧或TUflex帧占用HO OPU帧的每个传送周期的P个净荷块中的C LOODU或C TUflex个净荷块的分布指示开销,此时LO ODU帧占用的净荷块数量指示开销,可以通过净荷块占用和分布指示开销接口实现。例如这些开销可通过HO OPU帧的复用结构指示(MSI,Multiplex Structure Identifier)开销进行携带或通过特殊净荷块进行携带。
图6-B举例示出可通过MSI开销进行携带。其中,独立于承载LO ODU帧的净荷块进行开销承载的具体方式,例如可通过如下三种方式进行描述。
LO ODU帧占用HO OPU帧的净荷块的数量和分布指示开销通过MSI携带方式一:新定义净荷类型PT=0x24,用于指示HO OPU帧的净荷区采用GTP映射方式完成LO ODU帧承载。
参见图6-C,可以额外定义OMFI,例如其取值范围为0到255进行循环,即每经过256个HO OPU帧,OMFI取值增加1,直到从0递增到255之后,再变为0,依此循环。采用MFAS和OMFI共同完成HO OPU帧的MSI开销指示,可以指示256*256个MSI字节,其中MSI的各个字节含义例如图6-C举例所示。其中PT=0x24表示当前采用了净荷块的映射方式。
LO ODU帧占用HO OPU帧的净荷块的数量和分布指示开销通过MSI携带方式二:MSI[2]至MSI[P+1]对应HO OPU帧中的第1个到第P个净荷块占用情况指示,如图6-D举例所示,携带TPN#i则表示当前净荷块由支路端口号为#i的LO ODU帧业务占用。
LO ODU帧占用HO OPU帧的净荷块的数量和分布指示开销通过MSI携带方式三:在净荷区中通过特殊净荷块来承载HO OPU帧中承载LO ODU帧占用的净荷块情况指示,其中,该特殊净荷块的位置可通过MSI来指示。MSI[2]-MSI[p+1]对应第1个到第p个特殊净荷块在HO OPU帧中所对应的净荷块位置。例如MSI[2]携带“净荷块#i”,代表第1个特殊净荷块位于HO OPU帧中的净荷块#i位置。
605.将HO OPU帧映射到HO ODU帧。
606.将HO ODU帧映射到OTU帧。
607.发送OTU帧。
可以理解,本实施例方案主要以OPU帧为HO OPU帧,较低速率ODU帧为LO ODU帧(LO ODU帧具体例如为LO ODUj/flex帧),较高速率ODU帧为HO ODU帧为例进行描述。当然OPU帧为其他类型的OPU帧、较低速率ODU帧为其他类型的ODU帧、较高速率ODU帧为为其他类型的ODU帧的情况下的实施方式,可以此类推。
可以看出,本实施例中LO ODU帧可净荷块的颗粒,来映射到HO OPU帧的净荷区,即HO OPU帧的净荷区可以以净荷块为映射颗粒,由于净荷块的颗粒大小远小于时隙的颗粒大小,因此相对于以时隙为映射颗粒的方案,本实施例的技术方案有利于提高带宽利用率和客户业务信号的传送速率的调整灵活性。
图7为一种光信号传送系统的示意图。光信号传送系统可包括通过光交换网络互连的多个光信号传送设备710和720。光信号传送设备710和光信号传送设备720可用于本申请实施 例提供的光信号传送方法。光信号传送设备710和光信号传送设备720可同时具有OTU帧的发送和接收功能,当光信号传送设备710用于发送OTU帧时,光信号传送设备720可用于接收OTU帧,当光信号传送设备720用于发送OTU帧时,光信号传送设备710可用于接收OTU帧.当然,某些光信号传送设备也可能只OTU帧的发送或接收功能。光信号传送系统中具有OTU帧发送功能的光信号传送设备可用于执行本申请实施例提供的任意一种光信号传送方法的部分或全部步骤。
图8为光信号传送设备的一种可能的硬件结构示意图。具体地,光信号传送设备800包括支路板801、交叉板802、线路板808、光层处理单板(图中未示出)和系统控制和通信类单板804。根据具体的需要,光信号传送设备包含的单板类型和数量可能不相同。例如作为核心节点的光信号传送设备没有支路板801。又如,作为边缘节点的光信号传送设备有多个支路板801,或者没有交叉板802。再如,只支持电层功能的光信号传送设备可能没有光层处理单板。
支路板801、交叉板802和线路板808用于处理传输网络的电层信号。支路板801可用于实现各种客户业务的接收和发送,例如SDH业务、分组业务、以太网业务和前传业务等。更进一步地,支路板801例如可以划分为客户侧光模块和信号处理器。其中,客户侧光模块可以为光收发器,用于接收和/或发送业务数据。信号处理器用于实现对业务数据到数据帧的映射和解映射处理。交叉板802用于实现数据帧的交换,完成一种或者多种类型的数据帧的交换。线路板808主要实现线路侧数据帧的处理。具体地,线路板808可以划分为线路侧光模块和信号处理器。其中,线路侧光模块可以为线路侧光收发器,用于接收和/或发送数据帧。信号处理器用于实现对线路侧的数据帧的复用和解复用,或者映射和解映射处理。系统控制和通信类单板804用于实现系统控制。具体地,可以通过背板从不同的单板收集信息,或将控制指令发送到对应的单板上去。需要说明的是,除非特殊说明,具体的组件(例如信号处理器)可以是一个或多个,本申请不做限制。还需要说明的是,对设备包含的单板类型以及单板的功能设计和数量,本申请不做任何限制。需要说明的是,在具体的实现中,上述两个单板也可能设计为一个单板。此外,光信号传送设备800也还可能包括例如用于备用的电源、用于散热的风扇等等。
举例来说,支路板801可用于执行本申请实施例提供的任意一种光信号传送方法的部分或全部步骤。支路板801功能实现细节,例如可参考方法实施例所提供光信号传送方法的相关细节描述,此处不再赘述。
图9为本申请实施例提供另一种光信号传送设备900,可包括:映射单元910和收发单元920。其中,映射单元910,用于将第一光数据单元帧映射到第一灵活支路单元帧,所述第一灵活支路单元帧包括多个净荷块;将所述第一灵活支路单元帧映射到第一光净荷单元帧,所述第一灵活支路单元帧包括的多个净荷块分布于所述第一光净荷单元帧的净荷区;将所述第一光净荷单元帧映射到第二光数据单元帧,所述第二光数据单元帧的比特速率大于第一光数据单元帧的比特速率;将所述第二光数据单元帧映射到第一光传送单元帧。
收发单元920,用于发送所述第一光传送单元帧。
在一些可能的实施方式中,映射到所述第一光净荷单元帧的不同传送周期的来自第一灵活支路单元帧的净荷块的数量固定或可变。
例如,所述第一灵活支路单元帧包括的净荷块数量C TUflex=C LOODU(映射到所述第一光净荷单元帧的不同传送周期的来自第一灵活支路单元帧的净荷块的数量可变)。又例如,所述第一灵活支路单元帧包括的净荷块数量C TUflex≥C max(映射到所述第一光净荷单元帧的不同传送周期的来自第一灵活支路单元帧的净荷块的数量固定)。
在一些可能实施方式中,在需进行速率调整时,映射单元910还用于,将第三光数据单元帧映射到第二灵活支路单元帧,所述第二灵活支路单元帧包括C2净荷块;将所述第二灵活支路单元帧映射到第二光净荷单元帧,所述第二灵活支路单元帧包括的C2个净荷块分布于所述第二光净荷单元帧的净荷区;C2=C1*R1/R2,所述R1为第一光净荷单元帧的比特速率,所述R2为第二光净荷单元帧的比特速率,所述C1为所述第一灵活支路单元帧包括的净荷块的数量;所述第三光数据单元帧和所述第一光数据单元帧用于承载相同客户的业务数据;将所述第二光净荷单元帧映射到第四光数据单元帧,所述第四光数据单元帧的比特速率大于第三光数据单元帧的比特速率;将所述第四光数据单元帧映射到第二光传送单元帧;
收发单元920还用于,发送所述第二光传送单元帧。
在另一些可能实施方式中,在需进行速率调整时,映射单元910还用于将第三光数据单元帧映射到第二灵活支路单元帧;将第二灵活支路单元帧映射到第二光净荷单元帧,第二灵活支路单元帧包括的多个净荷块分布于所述第二光净荷单元帧的净荷区;P2=P1*R2/R1,所述R1为第一光净荷单元帧的比特速率,所述R2为第二光净荷单元帧的比特速率,所述P1为所述第一个光净荷单元帧的一个传送周期包括的净荷块的数量,所述P2为第二光净荷单元帧的一个传送周期包括的净荷块的数量;所述第二灵活支路单元帧和所述第一灵活支路单元帧所包括的净荷块的数量相同;其中,所述第三光数据单元帧和所述第一光数据单元帧用于承载相同客户的业务数据;将所述第二光净荷单元帧映射到第四光数据单元帧,所述第四光数据单元帧的比特速率大于第三光数据单元帧的比特速率;将所述第四光数据单元帧映射到第二光传送单元帧。
收发单元920还用于,发送所述第二光传送单元帧。
其中,光信号传送设备900的各功能单元的功能实现细节,例如可参考方法实施例所提供光信号传送方法的相关细节描述,例如可参考图2-A、图3-A、图4-A,图5-A或图6-A所对应实施例的相关描述,此处不再赘述。
图10为本申请实施例提供的一种光信号传送设备1000,包括:相互耦合的处理器1010和存储器1020。所述处理器1010用于调用所述存储器1020中存储的计算机程序,以执行本申请实施例提供的任意一种光信号传送方法的部分或全部步骤。
图11为本申请实施例提供的一种通信装置1100,包括:至少一个输入端1110、信号处理器1120和至少一个输出端1130。所述信号处理器1120,用于执行本申请实施例提供的任意一种光信号传送方法的部分或全部步骤。
图12为本申请实施例提供的一种通信装置1200包括:输入接口电路1210,逻辑电路1220和输出接口电路1230,其中,所述逻辑电路1210用于执行本申请实施例提供的任意一种光信号传送方法的部分或全部步骤。
本申请实施例提供的一种芯片系统,其中,所述芯片系统包括处理器,用于支持光信 号传送设备实现本申请实施例提供的任意一种光信号传送方法的部分或全部步骤。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被硬件(例如处理器等)执行,以本申请实施例中由任意设备执行的任意一种方法的部分或全部步骤。
在上述实施例中,可全部或部分地通过软件、硬件、固件、或其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请任一实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务端或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或者无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务端或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务端、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如为软盘、硬盘、磁带)、光介质(例如光盘)、或者半导体介质(例如固态硬盘)等。在上述实施例之中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在上述实施例中,对各实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。此外,在本申请所提供的几个实施例中,应该理解到,所揭露的装置,也可以通过其它的方式实现。例如以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可结合或者可以集成到另一个系统,或一些特征可以忽略或不执行。另一点,所显示或讨论的相互之间的间接耦合或者直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者,也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例的方案的目的。
另外,在本申请各实施例中的各功能单元可集成在一个处理单元中,也可以是各单元单独物理存在,也可两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,或者也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以为个人计算机、服务端或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质例如可以包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或光盘等各种可存储程序代码的介质。

Claims (17)

  1. 一种光信号传送方法,其特征在于,包括:
    将第一光数据单元帧映射到第一灵活支路单元帧,所述第一灵活支路单元帧包括多个净荷块;
    将所述第一灵活支路单元帧映射到第一光净荷单元帧,所述第一灵活支路单元帧包括的多个净荷块分布于所述第一光净荷单元帧的净荷区;
    将所述第一光净荷单元帧映射到第二光数据单元帧,所述第二光数据单元帧的比特速率大于第一光数据单元帧的比特速率;
    将所述第二光数据单元帧映射到第一光传送单元帧;
    发送所述第一光传送单元帧。
  2. 根据权利要求1所述的方法,其特征在于,映射到所述第一光净荷单元帧的不同传送周期的来自第一灵活支路单元帧的净荷块的数量固定或可变。
  3. 根据权利要求1或2所述的方法,其特征在于,所述将第一光数据单元帧映射到第一灵活支路单元帧包括:将第一光数据单元帧拆分为X比特码块并形成X比特码块流;将所述X比特码块流中连续的多个X比特码块映射到第一灵活支路单元帧,其中,所述连续的多个X比特码块与所述第一灵活支路单元帧包括的多个净荷块一一对应,所述X为64的整数倍。
  4. 根据权利要求3所述的方法,其特征在于,
    所述第一光数据单元帧包括N帧光数据单元帧,其中,所述将第一光数据单元帧拆分为X比特码块并形成X比特码块流包括:将第一光数据单元帧拆分为M个X比特码块并形成X比特码块流,所述N和M为正整数。
  5. 根据权利要求4所述的方法,其特征在于,当N大于1时,所述第一光净荷单元帧的开销区携带复帧指示,其中,所述复帧指示用于指示当前光数据单元帧在所述N帧光数据单元帧中的位置。
  6. 根据权利要求1至5任意一项所述的方法,其特征在于,所述第一灵活支路单元帧包括的多个净荷块中的每个净荷块携带有所述第一光数据单元帧的客户业务标识。
  7. 根据权利要求1至5任意一项所述的方法,其特征在于,所述第一光净荷单元帧携带开销指示,其中,所述开销指示用于指示出所述第一灵活支路单元帧包括的多个净荷块在所述第一光净荷单元帧的净荷区的位置。
  8. 根据权利要求7所述的方法,其特征在于,所述开销指示携带于第一光净荷单元帧的开销区或所述开销指示携带于第一光净荷单元帧的至少一个净荷块。
  9. 根据权利要求1至8任意一项所述的方法,其特征在于,所述第一光净荷单元帧的净荷区包括第一净荷分区和第二净荷分区;所述第一灵活支路单元帧包括的多个净荷块具体分布于所述第一光净荷单元帧的第一净荷分区;其中,所述第一净荷分区包含的时隙,不同于所述第二净荷分区包含的时隙,所述第一净荷分区所采用的映射规程与所述第二净荷分区所采用的映射规程不相同。
  10. 根据权利要求1至8任意一项所述的方法,其特征在于,所述第一光净荷单元帧的净荷区包括第三净荷分区和第四净荷分区,所述第一灵活支路单元帧包括的多个净荷块具体 分布于所述第一光净荷单元帧的第三净荷分区;其中,所述第三净荷分区包括的OPUC,不同于所述第四净荷分区包括的OPUC,所述第三净荷分区所采用的映射规程与所述第四净荷分区所采用的映射规程不相同。
  11. 根据权利要求1至10任意一项所述的方法,其特征在于,所述方法还包括:
    将第三光数据单元帧映射到第二灵活支路单元帧,其中,所述第二灵活支路单元帧包括C2个净荷块;
    将所述第二灵活支路单元帧映射到第二光净荷单元帧,所述第二灵活支路单元帧包括的C2个净荷块分布于所述第二光净荷单元帧的净荷区;其中,R2=C1*R1/C2,所述R1为第一光净荷单元帧的比特速率,所述R2为第二光净荷单元帧的比特速率,所述C1为所述第一灵活支路单元帧包括的净荷块的数量;所述第三光数据单元帧和所述第一光数据单元帧用于承载相同客户的业务数据;
    将所述第二光净荷单元帧映射到第四光数据单元帧,所述第四光数据单元帧的比特速率大于第三光数据单元帧的比特速率;
    将所述第四光数据单元帧映射到第二光传送单元帧;
    发送所述第二光传送单元帧。
  12. 根据权利要求1至10任意一项所述的方法,其特征在于,所述方法还包括:
    将第三光数据单元帧映射到第二灵活支路单元帧;
    将所述第二灵活支路单元帧映射到第二光净荷单元帧,所述第二灵活支路单元帧包括的多个净荷块分布于所述第二光净荷单元帧的净荷区;其中,P2=P1*R2/R1,所述R1为第一光净荷单元帧的比特速率,所述R2为第二光净荷单元帧的比特速率,所述P1为所述第一个光净荷单元帧的一个传送周期包括的净荷块的数量,所述P2为第二光净荷单元帧的一个传送周期包括的净荷块的数量;其中,所述第二灵活支路单元帧和所述第一灵活支路单元帧所包括的净荷块的数量相同;所述第三光数据单元帧和所述第一光数据单元帧用于承载相同客户的业务数据;
    将所述第二光净荷单元帧映射到第四光数据单元帧,所述第四光数据单元帧的比特速率大于第三光数据单元帧的比特速率;
    将所述第四光数据单元帧映射到第二光传送单元帧;
    发送所述第二光传送单元帧。
  13. 一种光信号传送设备,其特征在于,包括:相互耦合的处理器和存储器;所述处理器用于调用所述存储器中存储的计算机程序,以执行权利要求1至12任意一项所述的方法。
  14. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被硬件执行时能够完成权利要求1至12任意一项所述的方法。
  15. 一种通信装置,其特征在于,包括:至少一个输入端、信号处理器和至少一个输出端;其中,所述信号处理器,用于执行权利要求1-12任意一项所述的方法。
  16. 一种通信装置,其特征在于,包括:输入接口电路,逻辑电路和输出接口电路,所述逻辑电路用于执行如权利要求1-12中任意一项所述的方法。
  17. 一种芯片系统,其特征在于,所述芯片系统包括处理器,用于支持光信号传送设备实现权利要求1至12中任意一项所述的方法。
PCT/CN2020/142382 2020-01-08 2020-12-31 光信号传送方法和相关装置 WO2021139604A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20911992.4A EP4075820A4 (en) 2020-01-08 2020-12-31 OPTICAL SIGNAL TRANSMISSION METHOD AND ASSOCIATED APPARATUS
US17/859,422 US11910135B2 (en) 2020-01-08 2022-07-07 Optical signal transmission method and related apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010019363.5A CN113099323A (zh) 2020-01-08 2020-01-08 光信号传送方法和相关装置
CN202010019363.5 2020-01-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/859,422 Continuation US11910135B2 (en) 2020-01-08 2022-07-07 Optical signal transmission method and related apparatus

Publications (1)

Publication Number Publication Date
WO2021139604A1 true WO2021139604A1 (zh) 2021-07-15

Family

ID=76663451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142382 WO2021139604A1 (zh) 2020-01-08 2020-12-31 光信号传送方法和相关装置

Country Status (4)

Country Link
US (1) US11910135B2 (zh)
EP (1) EP4075820A4 (zh)
CN (1) CN113099323A (zh)
WO (1) WO2021139604A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023082501A1 (zh) * 2021-11-15 2023-05-19 深圳市中兴微电子技术有限公司 光传送网的流量处理方法、装置、电子设备及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116192647A (zh) * 2020-04-15 2023-05-30 华为技术有限公司 一种带宽调整的方法以及相关设备
CN115623361A (zh) * 2021-07-14 2023-01-17 中兴通讯股份有限公司 光业务单元的映射方法及装置、存储介质、电子装置
CN116566542A (zh) * 2022-01-29 2023-08-08 中兴通讯股份有限公司 业务数据承载方法、承载帧结构及业务处理设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080131117A1 (en) * 2006-12-05 2008-06-05 Electronics And Telecommunications Research Institute Method and apparatus for increasing transmission capacity in optical transport network
CN101742364A (zh) * 2008-11-25 2010-06-16 中兴通讯股份有限公司 一种将光净荷单元时隙信号映射到信号帧的方法及系统
CN102369681A (zh) * 2009-03-09 2012-03-07 阿尔卡特朗讯 在光传输网络中进行数据传输的方法
CN102893629A (zh) * 2012-06-01 2013-01-23 华为技术有限公司 光传送网中传送客户信号的方法及传送设备
CN107566074A (zh) * 2016-06-30 2018-01-09 华为技术有限公司 光传送网中传送客户信号的方法及传送设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100373847C (zh) * 2004-12-14 2008-03-05 华为技术有限公司 在光传送网中传输低速率业务信号的方法
CN101834688B (zh) * 2009-03-09 2011-08-31 华为技术有限公司 光传送网中的映射、解映射方法及装置
KR20120071213A (ko) * 2010-12-22 2012-07-02 한국전자통신연구원 광 전달망에서의 패킷 전송 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080131117A1 (en) * 2006-12-05 2008-06-05 Electronics And Telecommunications Research Institute Method and apparatus for increasing transmission capacity in optical transport network
CN101742364A (zh) * 2008-11-25 2010-06-16 中兴通讯股份有限公司 一种将光净荷单元时隙信号映射到信号帧的方法及系统
CN102369681A (zh) * 2009-03-09 2012-03-07 阿尔卡特朗讯 在光传输网络中进行数据传输的方法
CN102893629A (zh) * 2012-06-01 2013-01-23 华为技术有限公司 光传送网中传送客户信号的方法及传送设备
CN107566074A (zh) * 2016-06-30 2018-01-09 华为技术有限公司 光传送网中传送客户信号的方法及传送设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4075820A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023082501A1 (zh) * 2021-11-15 2023-05-19 深圳市中兴微电子技术有限公司 光传送网的流量处理方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
EP4075820A1 (en) 2022-10-19
US11910135B2 (en) 2024-02-20
US20220337925A1 (en) 2022-10-20
CN113099323A (zh) 2021-07-09
EP4075820A4 (en) 2023-06-07

Similar Documents

Publication Publication Date Title
WO2021139604A1 (zh) 光信号传送方法和相关装置
EP3462647B1 (en) Method for transporting client signal in optical transport network, and transport device
US9497064B2 (en) Method and apparatus for transporting ultra-high-speed Ethernet service
EP2296297B1 (en) Method and device for mapping a client signal
US8693480B2 (en) Method, apparatus and system for transmitting and receiving client signals
EP2037604B1 (en) Method and apparatus for synchronous cross-connect switching in optical transport network
CN101267386B (zh) 传输多路独立以太网数据的方法、装置和系统
EP3955479A1 (en) Method and device for transmitting data in optical transport network
EP2472748B1 (en) Method and communication node for adjusting bandwidth
WO2019128934A1 (zh) 光传送网中业务发送、接收方法及装置
CN101873517B (zh) 光传送网的信号传送方法、设备及通信系统
WO2020034964A1 (zh) 客户业务数据传送方法、装置、光传送网设备及存储介质
WO2019071369A1 (zh) 光网络中数据传输方法及光网络设备
WO2017124787A1 (zh) 一种传输公共无线接口信号的方法和设备
CN101610430B (zh) 一种实现ODUk交叉调度的方法和装置
WO2017201757A1 (zh) 一种业务传送方法和第一传送设备
WO2011113257A1 (zh) 光传送网络设备和光传送网络的带宽调整方法
WO2014059834A1 (zh) 数据传送方法及装置
EP3343805B1 (en) Signal sending and receiving method, apparatus, and system
KR20210022729A (ko) 광 전송 시스템 기기, 변환 유닛, 변환 방법 및 저장 매체
CN101350691B (zh) 一种业务汇聚和adm分插复用方法及设备
WO2023151483A1 (zh) 数据帧的处理方法和装置
WO2023134512A1 (zh) 一种传输数据的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020911992

Country of ref document: EP

Effective date: 20220714

NENP Non-entry into the national phase

Ref country code: DE