WO2010105546A1 - 光通道传送单元信号的传输方法和装置 - Google Patents

光通道传送单元信号的传输方法和装置 Download PDF

Info

Publication number
WO2010105546A1
WO2010105546A1 PCT/CN2010/071058 CN2010071058W WO2010105546A1 WO 2010105546 A1 WO2010105546 A1 WO 2010105546A1 CN 2010071058 W CN2010071058 W CN 2010071058W WO 2010105546 A1 WO2010105546 A1 WO 2010105546A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
odu
opuj
module
optical channel
Prior art date
Application number
PCT/CN2010/071058
Other languages
English (en)
French (fr)
Inventor
肖新
吴秋游
马腾⋅维塞斯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES10753113.9T priority Critical patent/ES2536569T3/es
Priority to EP10753113.9A priority patent/EP2410673B1/en
Publication of WO2010105546A1 publication Critical patent/WO2010105546A1/zh
Priority to US13/234,991 priority patent/US8774640B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems

Definitions

  • the present invention relates to optical communication technologies, and in particular, to a method and apparatus for transmitting optical channel transmission unit signals. Background technique
  • Wavelength Division Multiplexing (WDM) systems can meet the growing bandwidth requirements of data services.
  • the Optical Transport Network (OTN) can solve the problem of flexible scheduling and grooming of wavelengths and sub-wavelengths of WDM systems. Therefore, OTN networks are gradually developing. In an OTN network, it is necessary to first photoelectrically convert an optical signal into an electrical signal.
  • the structure of the OTUk includes an Optical Channel Data Unit-k (ODUk) portion, and the structure of the ODUk includes an Optical Channel Payload Unit-k (OPUk) portion.
  • ODUk Optical Channel Data Unit-k
  • ODUk Optical Channel Payload Unit-k
  • there are electrical signal units of several cases such as k l, 2, and 3.
  • the OTUk signal is transmitted between the OTN devices in the network through the OTUk interface.
  • the data in the OTUk signal is required to be transparently transmitted, and no modification can be made to the data in the OTUk signal.
  • the OTUk signal in order to ensure transparent transmission of data in the OTUk signal, the OTUk signal is first decapsulated out of the ODUk signal; then the ODUk signal is transparently transmitted end-to-end; after that, the ODUk signal is encapsulated out of the OTUk signal. It can be seen from the above process: In the prior art, only the ODUk signal is transparently transmitted, and the implementation cannot be completed. Transparent transmission of OTUk signals in full sense.
  • the invention provides a transmission method and device for an optical channel transmission unit signal, which solves the problem that the existing OTUk signal cannot be completely transmitted.
  • An embodiment of the present invention provides a method for transmitting an optical channel transmission unit signal, including: receiving an optical channel transmission unit OTUk signal after photoelectric conversion;
  • the OPUj signal is encapsulated into an ODUj signal and an OTUj signal and then transmitted.
  • the embodiment of the present invention further provides a method for transmitting an optical channel transmission unit signal, including: receiving an optical channel transmission unit OTUj signal after photoelectric conversion;
  • OPUj signal De-mapping and demultiplexing the payload portion of the OPUj signal to obtain an optical channel data unit ODU signal, where the OPUj signal is a high-order signal of the ODU signal;
  • An embodiment of the present invention provides a transmission apparatus for an optical channel transmission unit signal, including: a first receiving module, configured to receive an opto-transformed optical channel transmission unit OTUk signal; and an encapsulation module connected to the first receiving module For encapsulating the OTUk signal into an optical channel data unit ODU signal; a multiplexing module, configured to connect to the encapsulation module, to multiplex the ODU signal to an optical channel payload unit OPUj signal, where the OPUj signal is a high-order signal of the ODU signal; the first sending module, and the The multiplexing module is connected to encapsulate the OPUj signal into an ODUj signal and an OTUj signal.
  • the embodiment of the invention further provides a transmission device for transmitting an optical channel transmission unit signal, comprising: a second receiving module, configured to receive an optical channel transmission unit OTUj signal after the photoelectric conversion; a decapsulation module, and the second receiving a module connection, configured to decapsulate the OTUj signal into a payload portion of the optical channel data unit ODUj and the optical channel payload unit OPUj signal;
  • a demultiplexing module coupled to the decapsulation module, configured to demap and demultiplex the payload portion of the OPUj signal to obtain an optical channel data unit ODU signal, where the OPUj signal is the ODU signal Higher order signal
  • the second sending module is connected to the demultiplexing module, and is configured to decapsulate the ODU signal, obtain an OTUk signal, and send the signal.
  • the embodiment of the present invention can realize the transparent transmission of the OTUk signal in a complete sense by encapsulating the OTUk signal into an ODU signal instead of decapsulating the ODU signal as in the prior art.
  • FIG. 1 is a schematic flow chart of a method according to a first embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of encapsulation from an OTUk signal to an ODU signal in the first embodiment of the present invention
  • 3 is a schematic structural diagram of multiplexing an ODU signal to a high-order OPUj signal and encapsulating to a high-order ODUj and a high-order OTUj signal according to the first embodiment of the present invention
  • 4 is a schematic diagram of a time slot after an OPU2 signal in the first embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a mapping process of multiplexing and mapping an ODU signal to an OPU2 signal according to a first embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a time slot of a mapped OPU2 signal according to a first embodiment of the present invention
  • FIG. 7 is a schematic flowchart of a method according to a second embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a process of de-mapping and demultiplexing an OPU2 signal into an ODU signal according to a second embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a device according to a third embodiment of the present invention.
  • FIG. 10 is a schematic structural view of a device according to a fourth embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a method according to a first embodiment of the present invention.
  • the embodiment is directed to an uplink direction, that is, a direction in which a low order (LO) electrical signal is converted to a high order (HO) electrical signal.
  • LO low order
  • HO high order
  • Step 11 The OTU signal transmission device receives the photoelectrically converted first OTU signal (OTUk signal);
  • Step 12 The device encapsulates the OTUk signal into an ODU signal
  • Step 13 The apparatus multiplexes and maps the ODU signal to an OPUj signal, where the OPUj signal is a high-order signal of the ODU signal;
  • Step 14 The device sends the OPUj signal to the ODUj signal and the second OTU signal (OTUj signal) and then sends the signal.
  • step 12 may specifically be:
  • FIG. 2 is a schematic diagram showing the structure of an OTUk signal encapsulated to an ODU signal in the first embodiment of the present invention.
  • the unit structure in Figure 2 is the structure diagram of the existing OTUk signal.
  • the following unit structure is a schematic diagram of the structure of the ODUflex signal after the ODUflex overhead (ie ODUflex Overhead, ODUflex OH) and the OPUflex overhead (ie OPUflex OH).
  • the embodiment of the present invention may further include scheduling the ODU signal, and multiplexing the ODU signal after the scheduling process to the high-order OPUj signal.
  • the ODU scheduling process can increase the flexibility of the system, so that the unit that encapsulates the OTUk signal to the ODU signal and the subsequent unit that multiplexes the ODU signal to the OPUj signal do not have to be fixedly docked.
  • Steps 13-14 can be specifically:
  • FIG. 3 is a schematic structural diagram of multiplexing an ODU signal into a high-order OPUj signal and encapsulating to a high-order ODUj and a high-order OTUj signal according to the first embodiment of the present invention.
  • the signal is a better signal than the OTUk signal, so that the OTUk signal can be loaded into the OPUj signal (j>k).
  • the OTU1 signal is multiplexed into OPU2.
  • the above unit structure diagram is a schematic diagram of the structure of the ODU (ODUflex) signal, and n ODUflex signals are multiplexed as shown by #1...#n.
  • OPUj OH OPUj overhead
  • ODUj OH ODUj overhead
  • OTUj OH OTUj overhead
  • FEC Forward error correction
  • the bit rate of the OTU1 signal is: 255/238x2488320 kbit/s ⁇ 20 ppm.
  • the bit rate of the ODUflex signal is: 239/238x255/238x2488320 kbit/s ⁇ 20ppm, which is approximately 2.67726Gbps ⁇ 20ppm.
  • the encapsulation map can be bit synchronized, and the ODUflex signal is synchronized with the OTU1 signal clock.
  • the ODUflex signal is multiplexed to OPU2:
  • each frame of OPU2 (represented by the serial numbers 000, 001, and 111) is divided into 8 time slot units (OPU2 TribSlotl, OPU2 TribSlot2, ..., OPU2 TribSlot8), and the bandwidth of each time slot is 1.249 Gbps. Soil 20ppm. Since the bit rate of the ODUflex signal is approximately 2.67726 Gbps 20 ppm, the ODUflex signal will occupy 3 slot units of the OPU2.
  • the mapping of ODUflex signals to OPU2 can be performed by the Generic Mapping Procedure (GMP) asynchronous mapping method.
  • GMP Generic Mapping Procedure
  • FIG. 5 is a schematic structural diagram of a mapping process of multiplexing an ODU signal to an OPU2 signal according to a first embodiment of the present invention.
  • the ODUflex signal since the ODUflex signal needs to occupy 3 time slot units of the OPU2, The ODUflex signal is demultiplexed into three data units, and then the ODU signal is multiplexed and mapped to the HO OPU2 signal through the mapping module and the insertion adjustment overhead (C8 overhead) module, and the byte interleave multiplexing module.
  • the C8 overhead is used to indicate the number of bytes of data bytes, so that subsequent devices can distinguish which are the data bytes and which are filled bytes, ensuring the correctness of signal processing.
  • FIG. 6 is a schematic diagram of a time slot structure of a mapped OPU2 signal according to a first embodiment of the present invention.
  • each OPU2 frame represented by sequence numbers 1, 2, ..., 8) includes 8 time slot units, and the ODUflex signal occupies 3 of them (shown as padding in Figure 6). Insert C8 during the mapping process to indicate the number of bytes of data bytes in each frame.
  • the OTUk signal is encapsulated into an ODU signal instead of being decapsulated into an ODU signal as in the prior art, so that the transparent transmission of the OTUk signal in a complete sense can be realized.
  • FIG. 7 is a schematic flowchart of a method according to a second embodiment of the present invention.
  • the embodiment is directed to a downlink direction, that is, a direction in which a HO electrical signal is converted to an LO electrical signal.
  • this embodiment includes:
  • Step 71 The OTU signal transmission device receives the photoelectrically converted second OTU signal (OTUj signal);
  • Step 72 The apparatus decapsulates the OTUj signal into an ODUj signal and a payload portion of the OPUj signal;
  • Step 73 The device demaps and demultiplexes the payload portion of the OPUj signal to obtain an ODU signal (ODUflex signal), where the OPUj signal is a high-order signal of the ODU signal;
  • Step 74 The device decapsulates the ODU signal to obtain a first OTU signal (OTUk signal) and then transmits the signal. .
  • the step 72 may specifically be: after extracting the OTUj overhead of the OTUj signal and the OTUj FEC, obtaining the ODUj signal, extracting the ODUj overhead from the ODUj signal, and obtaining the OPUj signal from the OPUj
  • the signal extracts the OPUj overhead and obtains the payload portion of the OPUj signal.
  • step 73 may specifically be:
  • FIG. 8 is a schematic structural diagram of a process of de-mapping and demultiplexing an OPU2 signal into an ODU signal according to a second embodiment of the present invention.
  • HO OPU2 can obtain 8 time slot units after de-interleaving and de-multiplexing processing, and then, after extracting C8 overhead and demapping processing, three data units can be obtained (which can form a complete ODUflex signal). Finally, the three data units are byte-multiplexed to obtain the ODUflex signal.
  • the step 74 may be: extracting the ODUflex cost of the ODUflex signal, and after obtaining the OPUflex signal, extracting the OPUflex overhead, and decapsulating the OTUflex signal from the OPUflex signal to obtain the OTUk signal.
  • FIG. 9 is a schematic structural diagram of a device according to a third embodiment of the present invention, including a first receiving module 91, an encapsulating module 92, a multiplexing module 93, and a first transmitting module 94.
  • the first receiving module 91 is configured to receive the photoelectrically converted OTUk signal;
  • the encapsulating module 92 is connected to the first receiving module 91, and configured to encapsulate the OTUk signal into an ODU signal;
  • the encapsulation module 92 is configured to multiplex the ODU signal to the OPUj signal, where the OPUj signal is a high-order signal of the ODU signal;
  • the first sending module 94 is connected to the multiplexing module 93, and is configured to:
  • the OPUj signal is encapsulated as an ODUj signal and transmitted after the OTUj signal.
  • the embodiment may further include a first scheduling module, where the first scheduling module is connected to the encapsulating module and the multiplexing module, so that the encapsulating module and the multiplexing module are connected by using the first scheduling module, Performing scheduling processing on the ODU signal, and outputting the processed ODU signal to the multiplexing module.
  • the OTUk signal is encapsulated into an ODU signal instead of being decapsulated into an ODU signal as in the prior art, so that the transparent transmission of the OTUk signal in a complete sense can be realized.
  • FIG. 10 is a schematic structural diagram of a device according to a fourth embodiment of the present invention, including a second receiving module 101, a decapsulation module 102, a demultiplexing module 103, and a second sending module 104.
  • the second receiving module 101 is configured to receive the photoelectrically transformed OTUj signal;
  • the decapsulation module 102 is connected to the second receiving module 101, and is configured to decapsulate the OTUj signal into an ODUj and a payload portion of the OPUj signal;
  • the demultiplexing module 103 is connected to the decapsulation module 102, configured to demap and demultiplex the OPUj signal to obtain an ODU signal, where the OPUj signal is a high-order signal of the ODU signal;
  • the module 104 is connected to the demultiplexing module 103, and is configured to decapsulate the ODU signal to obtain an OTUk signal and then transmit the signal.
  • the embodiment may further include a second scheduling module, and the second scheduling module is connected to the demultiplexing module and the second sending module, so that the demultiplexing module and the second sending module pass the second scheduling. And a module connection, configured to perform scheduling processing on the ODU signal, and output the scheduled ODU signal to the second sending module.
  • the OTUk signal can be completely transparently transmitted by encapsulating the OTUk signal in the ODU signal.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Time-Division Multiplex Systems (AREA)

Description

光通道传送单元信号的传输方法和装置
本申请要求于 2009 年 3 月 16 日提交中国专利局、 申请号为 200910127581.4、 发明名称为 "光通道传送单元信号的传输方法和装置" 的中 国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及光通信技术, 特别涉及一种光通道传送单元信号的传输方法和装 置。 背景技术
随着数据业务的飞速发展,数据业务的传送网络也得到了很大的发展。 波 分复用( Wavelength Division Multiplexing, WDM )系统可以满足数据业务所需 的带宽不断增长的需求。 光传送网络 ( Optical Transport Network, OTN ) 可以 解决 WDM系统的波长和子波长的灵活调度和疏导的问题, 因此, OTN网络 正在逐步发展起来。在 OTN网络中需要首先对光信号进行光电变换为电信号,
OTUk )。 OTUk的结构中包括光通道数据单元(Optical Channel Data Unit-k, ODUk )部分, ODUk的结构中包括光通道净荷单元( Optical Channel Payload Unit-k, OPUk )部分。 目前存在 k=l,2,3等几种情况的电信号单元。 OTN网络中, OTUk信号通过 OTUk接口在网络中的各 OTN设备间进行 传输。 当 OTUk信号要穿越运营商的网络时,要求 OTUk信号中的数据是透明 传输的, 不能对 OTUk信号中的数据进行任何修改。 现有技术中, 为了保证 OTUk信号中的数据的透明传输,是先将 OTUk信号解包封出 ODUk信号; 再 将 ODUk信号进行端到端的透明传输; 之后, 将 ODUk信号包封出 OTUk信 号。 从上述流程可以看出: 现有技术中只是透传 ODUk信号, 并不能实现完 全意义上的透传 OTUk信号。
发明内容
本发明是提供一种光通道传送单元信号的传输方法和装置,解决现有不能 完全透传 OTUk信号的问题。 本发明实施例提供了一种光通道传送单元信号的传输方法, 包括: 接收光电变换后的光通道传送单元 OTUk信号;
将所述 OTUk信号包封为光通道数据单元 ODU信号;
将所述 ODU信号复用映射到光通道净荷单元 OPUj信号, OPUj信号为所 述 ODU信号的高阶信号;
将所述 OPUj信号包封为 ODUj信号以及 OTUj信号后发送。 本发明实施例还提供了一种光通道传送单元信号的传输方法, 包括: 接收光电变换后的光通道传送单元 OTUj信号;
将所述 OTUj信号解包封为光通道数据单元 ODUj 以及光通道净荷单元 OPUj信号的净荷部分;
将所述 OPUj信号的净荷部分解映射及解复用,得到光通道数据单元 ODU 信号, 所述 OPUj信号为所述 ODU信号的高阶信号;
将所述 ODU信号解包封, 得到 OTUk信号后发送。 本发明实施例提供了一种光通道传送单元信号的传输装置, 包括: 第一接收模块, 用于接收光电变换后的光通道传送单元 OTUk信号; 包封模块,与所述第一接收模块连接,用于将所述 OTUk信号包封为光通 道数据单元 ODU信号; 复用模块, 与所述包封模块连接, 用于将所述 ODU信号复用映射到光通 道净荷单元 OPUj信号, OPUj信号为所述 ODU信号的高阶信号; 第一发送模块,与所述复用模块连接,用于将所述 OPUj信号包封为 ODUj 信号以及 OTUj信号后发送。
本发明实施例还提供了一种光通道传送单元信号的传输装置, 包括: 第二接收模块, 用于接收光电变换后的光通道传送单元 OTUj信号; 解包封模块, 与所述第二接收模块连接, 用于将所述 OTUj信号解包封为 光通道数据单元 ODUj以及光通道净荷单元 OPUj信号的净荷部分;
解复用模块, 与所述解包封模块连接, 用于将所述 OPUj信号的净荷部分 解映射及解复用,得到光通道数据单元 ODU信号,所述 OPUj信号为所述 ODU 信号的高阶信号;
第二发送模块, 与所述解复用模块连接, 用于将所述 ODU信号解包封, 得到 OTUk信号后发送。
由上述技术方案可知,本发明实施例通过将 OTUk信号包封为 ODU信号, 而不是如现有那样解包封为 ODU信号, 可以实现 OTUk信号完全意义上的透 明传输。 附图说明
图 1为本发明第一实施例的方法流程示意图;
图 2为本发明第一实施例中的从 OTUk信号包封到 ODU信号的结构示意 图;
图 3为本发明第一实施例中的 ODU信号复用到高阶 OPUj信号及包封到 高阶 ODUj及高阶 OTUj信号的结构示意图; 图 4为本发明第一实施例中 OPU2信号后的时隙示意图;
图 5为本发明第一实施例中 ODU信号复用映射到 OPU2信号的映射过程 的结构示意图;
图 6为本发明第一实施例中映射后的 OPU2信号的时隙结构示意图; 图 7为本发明第二实施例的方法流程示意图;
图 8为本发明第二实施例中 OPU2信号解映射及解复用到 ODU信号的过 程的结构示意图; 图 9为本发明第三实施例的装置结构示意图;
图 10为本发明第四实施例的装置结构示意图。
具体实施方式
下面通过附图和实施例, 对本发明的技术方案做进一步的详细描述。 图 1为本发明第一实施例的方法流程示意图,本实施例针对上行方向, 即 由低阶( Low Order, LO )电信号向高阶( High Order, HO )电信号转换的方向。 参见图 1, 本实施例包括:
步骤 11 : OTU信号传输装置接收光电变换后的第一 OTU信号(OTUk信 号);
步骤 12: 该装置将所述 OTUk信号包封为 ODU信号;
步骤 13: 该装置将所述 ODU信号复用映射到 OPUj信号, OPUj信号为 ODU信号的高阶信号;
步骤 14: 该装置将所述 OPUj信号包封为 ODUj信号以及第二 OTU信号 ( OTUj信号)后发送。 其中, 步骤 12具体可以为:
图 2为本发明第一实施例中的从 OTUk信号包封到 ODU信号的结构示意 图。参见图 2,针对各种 OTUk信号( k=l,2,3 )进行包封,包封到 ODU( ODUflex ) 信号, 此时需要插入 ODUflex开销和 OPUflex开销。 图 2中上面的单元结构 即为现有的 OTUk信号的结构示意图, 下面的单元结构为插入 ODUflex开销 (即 ODUflex Overhead, ODUflex OH )及 OPUflex开销 (即 OPUflex OH )后 的 ODUflex信号的结构示意图。
OTUk信号包封到 ODUflex信号后的比特速率可以参见表 1 :
表 1
Figure imgf000007_0001
经过上述的 OTUk信号包封到 ODU信号后的处理后, 本发明实施例还可 以进一步包括对 ODU信号进行调度处理, 对调度处理后的 ODU信号再复用 到高阶的 OPUj 信号。通过 ODU调度处理可以增加系统的灵活性,使将 OTUk 信号包封到 ODU信号的单元与后续的将 ODU信号复用到 OPUj信号的单元 不必——固定对接。
步骤 13-14具体可以为:
图 3为本发明第一实施例中的 ODU信号复用到高阶 OPUj信号及包封到高 阶 ODUj及高阶 OTUj信号的结构示意图。 高阶 OPUj ( HO OPUj ) (j=l, 2,3,4 ) 信号是比 OTUk信号性能更好的信号,这样才能保证 OTUk信号可以载入 OPUj 信号中 (j>k )。 例如, 将 OTU1信号复用包封到 OPU2。 参见图 3, 上面的单元 结构示意图为 ODU ( ODUflex )信号的结构示意图, n个 ODUflex信号复用如 #1...#n所示。复用到 HO OPUj及包封到 ODUj及 OTUj需要插入 OPUj开销(即 OPUj OH ), ODUj开销(即 ODUj OH )及 OTUj开销(即 OTUj OH ), 并需要 添力口 OTUj 前向纠错 ( Forward Error Correction, FEC ) 区域。
下面以透明传输 OTU1信号为例进行较为详细的描述:
现有技术中: OTU1信号的比特速率为: 255/238x2488320 kbit/s± 20ppm。 通过本发明实施例中的包封到 ODUflex信号后得到:
ODUflex信号的比特速率为: 239/238x255/238x2488320 kbit/s± 20ppm, 大 约为 2.67726Gbps ± 20ppm。包封映射可以采用比特同步, ODUflex信号和 OTU1 信号时钟同步。
以 ODUflex信号复用到 OPU2为例:
图 4为本发明第一实施例中 OPU2信号后的时隙示意图。参见图 4, OPU2 的每一帧 (用序号 000、 001、 111表示)被划分为 8个时隙单元(OPU2 TribSlotl 、 OPU2 TribSlot2, ... , OPU2 TribSlot8 ), 每个时隙带宽为 1.249Gbps土 20ppm。由于 ODUflex信号的比特速率大约为 2.67726Gbps土 20ppm, 所以 ODUflex信号将占用 OPU2的 3个时隙单元。
ODUflex信号映射到 OPU2 可以采用通用映射机制 (Generic Mapping Procedure, GMP )异步映射方式。
图 5为本发明第一实施例中 ODU信号复用映射到 OPU2信号的映射过程 的结构示意图。参见图 5,由于 ODUflex信号需要占用 OPU2的 3个时隙单元, 将 ODUflex信号解复用为三个数据单元, 之后经过映射模块和插入调整开销 ( C8开销)模块, 及字节间插复用模块实现 ODU信号复用映射到 HO OPU2 信号。 C8开销用于指示数据字节的字节数, 这样后续的设备可以区分哪些是 数据字节哪些是填充字节, 保证信号处理的正确性。
图 6为本发明第一实施例中映射后的 OPU2信号的时隙结构示意图。参见 图 6, 每个 OPU2帧(用序号 1, 2, ..., 8表示)包括 8个时隙单元, ODUflex 信号占用其中的 3个(图 6中以填充表示)。 在映射过程中插入 C8来指示各 帧中数据字节的字节数。
本实施例通过将 OTUk信号包封为 ODU信号, 而不是如现有那样解包封 为 ODU信号, 可以实现 OTUk信号的完全意义上的透明传输。
图 7为本发明第二实施例的方法流程示意图, 本实施例针对下行方向, 即 由 HO电信号向 LO电信号转换的方向。 参见图 7, 本实施例包括:
步骤 71 : OTU信号传输装置接收光电变换后的第二 OTU信号(OTUj信 号);
步骤 72: 该装置将所述 OTUj信号解包封为 ODUj信号以及 OPUj信号的 净荷部分;
步骤 73:该装置将所述 OPUj信号的净荷部分解映射及解复用,得到 ODU 信号 (ODUflex信号), 所述 OPUj信号为所述 ODU信号的高阶信号;
步骤 74: 该装置将所述 ODU信号解包封, 得到第一 OTU信号 (OTUk 信号)后发送。。
其中, 步骤 72具体可以为: 提取 OTUj信号的 OTUj开销及 OTUj FEC 后,得到 ODUj信号,从 ODUj信号提取 ODUj开销,得到 OPUj信号,从 OPUj 信号提取 OPUj开销, 得到 OPUj信号的净荷部分。
以 OPU2为例, 步骤 73具体可以为:
图 8为本发明第二实施例中 OPU2信号解映射及解复用到 ODU信号的过 程的结构示意图。 参见图 8, HO OPU2经过解间插、 解复用处理可以得到 8 个时隙单元, 之后, 再经过提取 C8开销、 解映射处理可以得到占用 3个数据 单元(可以构成一个完整的 ODUflex信号), 最后, 3个数据单元经过字节复 用可以得到 ODUflex信号。
步骤 74具体可以为: 提取 ODUflex信号的 ODUflex开销, 得到 OPUflex 信号后, 提取 OPUflex开销后, 从 OPUflex信号解包封得到 OTUk信号。
本实施例通过在 ODUflex信号中包封 OTUk信号, 可以实现 OTUk信号 完全意义上的透明传输。
图 9为本发明第三实施例的装置结构示意图, 包括第一接收模块 91、 包 封模块 92、 复用模块 93和第一发送模块 94。 第一接收模块 91用于接收光电 变换后的 OTUk信号; 包封模块 92与所述第一接收模块 91连接,用于将所述 OTUk信号包封为 ODU信号; 复用模块 93与所述包封模块 92连接, 用于将 所述 ODU信号复用映射到 OPUj信号, OPUj信号为所述 ODU信号的高阶信 号; 第一发送模块 94与所述复用模块 93连接, 用于将所述 OPUj信号包封为 ODUj信号以及 OTUj信号后发送。
为了增强灵活性,本实施例还可以进一步包括第一调度模块, 第一调度模 块与所述包封模块和复用模块连接,使包封模块和复用模块通过第一调度模块 连接, 用于对所述 ODU信号进行调度处理, 并将调度处理后的 ODU信号输 出给所述复用模块。 本实施例通过将 OTUk信号包封为 ODU信号, 而不是如现有那样解包封 为 ODU信号, 可以实现 OTUk信号的完全意义上的透明传输。
图 10为本发明第四实施例的装置结构示意图, 包括第二接收模块 101、 解包封模块 102、 解复用模块 103和第二发送模块 104。 第二接收模块 101用 于接收光电变换后的 OTUj信号;解包封模块 102与所述第二接收模块 101连 接, 用于将所述 OTUj信号解包封为 ODUj以及 OPUj信号的净荷部分; 解复 用模块 103与所述解包封模块 102连接, 用于将所述 OPUj信号解映射及解复 用,得到 ODU信号, 所述 OPUj信号为所述 ODU信号的高阶信号; 第二发送 模块 104与所述解复用模块 103连接, 用于将所述 ODU信号解包封, 得到 OTUk信号后发送。
为了增强灵活性,本实施例还可以进一步包括第二调度模块, 第二调度模 块, 与所述解复用模块和第二发送模块连接,使解复用模块和第二发送模块通 过第二调度模块连接, 用于对所述 ODU信号进行调度处理, 并将调度处理后 的 ODU信号输出给所述第二发送模块。
本实施例通过在 ODU信号中包封 OTUk信号, 可以实现 OTUk信号完全 意义上的透明传输。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可 以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存 储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储 介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上实施例仅用以说明本发明的技术方案而非对其进行 限制,尽管参照较佳实施例对本发明进行了详细的说明,本领域的普通技术人 员应当理解: 其依然可以对本发明的技术方案进行修改或者等同替换, 而这些 修改或者等同替换亦不能使修改后的技术方案脱离本发明技术方案的精神和 范围。

Claims

权 利 要 求
1、 一种光通道传送单元信号的传输方法, 其特征在于, 包括:
接收光电变换后的光通道传送单元 OTUk信号;
将所述 OTUk信号包封为光通道数据单元 ODU信号;
将所述 ODU信号复用映射到光通道净荷单元 OPUj信号, OPUj信号为所 述 ODU信号的高阶信号;
将所述 OPUj信号包封为 ODUj信号以及 OTUj信号后发送。
2、 根据权利要求 1所述的方法, 其特征在于, 将所述 OTUk信号包封为 ODU信号包括:
将所述 OTUk信号映射到所述 ODU信号的 OPU净荷部分;
对映射后的信号插入 OPU开销和 ODU开销, 得到所述 ODU信号。
3、 根据权利要求 1所述的方法, 其特征在于, 将所述 ODU信号复用映 射到 OPUj信号包括:
将所述 ODU信号进行同步的解复用处理, 得到 M个 N字节单元; 对所述 M个 N字节单元分别进行映射和插入调整开销处理,得到 M个时 隙单元;
将所述 ODU信号占用的 M个时隙单元进行字节间插复用处理,得到映射 到 OPUj信号净荷部分的信号。
4、 根据权利要求 1所述的方法, 其特征在于, 将所述 OPUj信号包封为 ODUj信号以及 OTUj信号后发送包括:
对映射到 OPUj信号净荷部分的信号插入 OPUj开销, 得到所述 OPUj信 号; 对所述 OPUj信号插入 ODUj开销, 得到所述 ODUj信号;
对所述 ODUj信号插入 OTUj开销以及前向纠错 FEC部分,得到所述 OTUj 信号;
发送所述 OTUj信号。
5、 根据权利要求 1所述的方法, 其特征在于, 将所述 ODU信号复用映 射到 OPUj信号之前还包括: 对所述 ODU信号进行调度处理。
6、 一种光通道传送单元信号的传输方法, 其特征在于, 包括:
接收光电变换后的光通道传送单元 OTUj信号;
将所述 OTUj信号解包封为光通道数据单元 ODUj 以及光通道净荷单元 OPUj信号的净荷部分;
将所述 OPUj信号的净荷部分解映射及解复用,得到光通道数据单元 ODU 信号, 所述 OPUj信号为所述 ODU信号的高阶信号;
将所述 ODU信号解包封, 得到 OTUk信号后发送。
7、 根据权利要求 6所述的方法, 其特征在于, 将所述 OTUj信号解包封 为 ODUj以及 OPUj信号包括:提取所述 OTUj信号的 OTUj开销以及剥离 OTUj 前向纠错 FEC部分后, 提取 ODUj开销以及 OPUj开销, 得到所述 OPUj信号 的净荷部分。
8、 根据权利要求 6所述的方法, 其特征在于, 将所述 OPUj信号的净荷 部分解映射及解复用, 得到 ODU信号包括:
对所述 OPUj信号的净荷部分进行字节解间插和解复用处理, 得到 M个 时隙单元;
对所述 M个时隙单元分别进行提取调整开销及解映射处理, 得到占用 M 个 N字节单元;
对所述 M个 N字节单元进行同步的复用处理得到所述 ODU信号。
9、 根据权利要求 6所述的方法, 其特征在于, 将所述 ODU信号解包封, 得到 OTUk信号后发送包括:提取所述 ODU信号的 ODU开销及 OPU开销后, 得到所述 OTUk信号。
10、 根据权利要求 6所述的方法, 其特征在于, 将所述 OPUj信号解映射 及解复用, 得到 ODU信号之后还包括: 对所述 ODU信号进行调度处理。
11、 一种光通道传送单元信号的传输装置, 其特征在于, 包括:
第一接收模块, 用于接收光电变换后的光通道传送单元 OTUk信号; 包封模块,与所述第一接收模块连接,用于将所述 OTUk信号包封为光通 道数据单元 ODU信号;
复用模块, 与所述包封模块连接, 用于将所述 ODU信号复用映射到光通 道净荷单元 OPUj信号, OPUj信号为所述 ODU信号的高阶信号;
第一发送模块,与所述复用模块连接,用于将所述 OPUj信号包封为 ODUj 信号以及 OTUj信号后发送。
12、 根据权利要求 11所述的装置, 其特征在于, 还包括:
第一调度模块, 与所述包封模块和复用模块分别连接,使所述包封模块和 复用模块通过所述第一调度模块连接, 用于对所述 0DU信号进行调度处理, 并将调度处理后的 ODU信号输出给所述复用模块。
13、 一种光通道传送单元信号的传输装置, 其特征在于, 包括:
第二接收模块, 用于接收光电变换后的光通道传送单元 OTUj信号; 解包封模块, 与所述第二接收模块连接, 用于将所述 OTUj信号解包封为 光通道数据单元 ODUj以及光通道净荷单元 OPUj信号的净荷部分; 解复用模块, 与所述解包封模块连接, 用于将所述 OPUj信号的净荷部分 解映射及解复用,得到光通道数据单元 ODU信号,所述 OPUj信号为所述 ODU 信号的高阶信号; 第二发送模块, 与所述解复用模块连接, 用于将所述 ODU信号解包封, 得到 OTUk信号后发送。
14、 根据权利要求 13所述的装置, 其特征在于, 还包括:
第二调度模块, 与所述解复用模块和第二发送模块连接,使所述解复用模 块和第二发送模块通过所述第二调度模块连接, 用于对所述 ODU信号进行调 度处理, 并将调度处理后的 ODU信号输出给所述第二发送模块。
PCT/CN2010/071058 2009-03-16 2010-03-16 光通道传送单元信号的传输方法和装置 WO2010105546A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES10753113.9T ES2536569T3 (es) 2009-03-16 2010-03-16 Método y dispositivo para transmitir señales de Unidad de Transporte de Canal Óptico
EP10753113.9A EP2410673B1 (en) 2009-03-16 2010-03-16 Method and device for transmitting optical channel transport unit signals
US13/234,991 US8774640B2 (en) 2009-03-16 2011-09-16 Method and device for transmitting optical channel transport unit signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910127581.4 2009-03-16
CN200910127581.4A CN101841741B (zh) 2009-03-16 2009-03-16 光通道传送单元信号的传输方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/234,991 Continuation US8774640B2 (en) 2009-03-16 2011-09-16 Method and device for transmitting optical channel transport unit signal

Publications (1)

Publication Number Publication Date
WO2010105546A1 true WO2010105546A1 (zh) 2010-09-23

Family

ID=42739200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071058 WO2010105546A1 (zh) 2009-03-16 2010-03-16 光通道传送单元信号的传输方法和装置

Country Status (5)

Country Link
US (1) US8774640B2 (zh)
EP (1) EP2410673B1 (zh)
CN (1) CN101841741B (zh)
ES (1) ES2536569T3 (zh)
WO (1) WO2010105546A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101834688B (zh) 2009-03-09 2011-08-31 华为技术有限公司 光传送网中的映射、解映射方法及装置
AU2011370367A1 (en) * 2011-11-15 2014-02-20 Huawei Technologies Co., Ltd. Method, device and system for transmitting service data on optical transport network
CN103248509B (zh) * 2012-02-13 2018-09-14 中兴通讯股份有限公司 光数据单元的管理方法及装置
US9503191B2 (en) 2012-04-26 2016-11-22 Zte Corporation GMP mapping method and apparatus for optical channel data unit
WO2013189034A1 (zh) * 2012-06-19 2013-12-27 华为技术有限公司 一种分配光频谱带宽资源的方法及装置
CN106301661B (zh) * 2012-07-30 2018-10-19 华为技术有限公司 光传送网中传送、接收客户信号的方法和装置
CN103595515B (zh) * 2012-08-13 2018-08-31 中兴通讯股份有限公司 光传送网的数据映射方法及装置
US8989222B1 (en) 2012-09-21 2015-03-24 Pmc-Sierra Us, Inc. Justification insertion and removal in generic mapping procedure in an optical transport network
EP2747318B1 (en) * 2012-12-19 2015-03-25 Alcatel Lucent Method and apparatus for transmitting signals in an optical transport network
ES2641542T3 (es) 2013-03-15 2017-11-10 Huawei Technologies Co., Ltd. Dispositivo y método de transferencia de servicio de unidad de datos de canal óptico (ODU)
WO2014139178A1 (zh) 2013-03-15 2014-09-18 华为技术有限公司 一种光通道数据单元业务传送装置和方法
CN105451102B (zh) * 2014-08-22 2019-05-28 华为技术有限公司 一种处理信号的方法、装置及系统
CN104202205B (zh) * 2014-09-26 2018-01-02 烽火通信科技股份有限公司 一种板卡内实现业务保护的方法及装置
CN105577319A (zh) * 2014-10-17 2016-05-11 中兴通讯股份有限公司 通过光通道传输单元信号发送、接收信号的方法及装置
US10235911B2 (en) * 2016-01-12 2019-03-19 Ford Global Technologies, Llc Illuminating badge for a vehicle
CN107979434B (zh) * 2016-10-21 2019-07-19 深圳市中兴微电子技术有限公司 一种进行odu业务调度的方法及装置
WO2019090696A1 (zh) 2017-11-10 2019-05-16 华为技术有限公司 光传输单元信号的传输方法和装置
EP3737110A4 (en) * 2018-02-09 2021-01-13 Huawei Technologies Co., Ltd. PROCESS AND DEVICE FOR PROCESSING SERVICE DATA IN AN OPTICAL TRANSPORT NETWORK
CN115623361A (zh) * 2021-07-14 2023-01-17 中兴通讯股份有限公司 光业务单元的映射方法及装置、存储介质、电子装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040202198A1 (en) * 2003-03-24 2004-10-14 Walker Timothy P. 10 GbE LAN signal mapping to OTU2 signal
CN1984018A (zh) * 2006-05-17 2007-06-20 华为技术有限公司 通过光传送网透传光通道传输单元信号的方法和装置
WO2008101377A1 (fr) * 2007-02-16 2008-08-28 Huawei Technologies Co., Ltd. Procédé et système de transport de données ethernet dans un réseau de transport optique
CN101299649A (zh) * 2008-06-19 2008-11-05 中兴通讯股份有限公司 基于通用成帧规程的多业务混合汇聚方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100349390C (zh) * 2004-08-11 2007-11-14 华为技术有限公司 光传送网中传输低速率业务信号的方法及其装置
ES2340162T3 (es) * 2004-11-12 2010-05-31 Alcatel Lucent Metodo y aparato para transportar una señal de capa de cliente sobre una red de transporte optico (otn).
CN100373847C (zh) * 2004-12-14 2008-03-05 华为技术有限公司 在光传送网中传输低速率业务信号的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040202198A1 (en) * 2003-03-24 2004-10-14 Walker Timothy P. 10 GbE LAN signal mapping to OTU2 signal
CN1984018A (zh) * 2006-05-17 2007-06-20 华为技术有限公司 通过光传送网透传光通道传输单元信号的方法和装置
WO2008101377A1 (fr) * 2007-02-16 2008-08-28 Huawei Technologies Co., Ltd. Procédé et système de transport de données ethernet dans un réseau de transport optique
CN101299649A (zh) * 2008-06-19 2008-11-05 中兴通讯股份有限公司 基于通用成帧规程的多业务混合汇聚方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Interfaces for the Optical Transport Network (OTN) ITU-T G.709/Y.1331", INTERNATIONAL TELECOMMUNICATION UNION, 14 December 2003 (2003-12-14), XP017463959 *

Also Published As

Publication number Publication date
CN101841741B (zh) 2015-04-08
ES2536569T3 (es) 2015-05-26
EP2410673B1 (en) 2015-02-18
US20120002671A1 (en) 2012-01-05
EP2410673A1 (en) 2012-01-25
US8774640B2 (en) 2014-07-08
CN101841741A (zh) 2010-09-22
EP2410673A4 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
WO2010105546A1 (zh) 光通道传送单元信号的传输方法和装置
CN101615967B (zh) 一种业务数据的发送、接收方法、装置和系统
US8743915B2 (en) Method and apparatus for transmitting packet in optical transport network
ES2323970T3 (es) Procedimiento y dispositivo de transmision de señales de trafico a baja velocidad en una red de transmision optica.
JP5578957B2 (ja) デジタル伝送システム及びデジタル伝送方法
US9497064B2 (en) Method and apparatus for transporting ultra-high-speed Ethernet service
US8180224B2 (en) Method, apparatus and system for transmitting Ethernet signals in optical transport network
WO2008122218A1 (fr) Procédé de multiplexage et de démultiplexage de service de faible débit binaire
WO2008035769A1 (fr) SystÈme de transmission multiplex et procÉDÉ de transmission multiplex
WO2019105010A1 (zh) 接口传输方法、装置及设备
WO2012126421A2 (zh) 一种光传送网的数据处理方法、相关设备及系统
WO2012155710A1 (zh) 一种实现otn业务映射及解映射的方法和装置
WO2010130076A1 (zh) 光传输网中的数据传送方法、系统及设备
WO2005036781A1 (fr) Appareil et procede d'integration de trafics multiports
WO2017050027A1 (zh) 一种信号发送、接收方法、装置及系统
JP5736964B2 (ja) 伝送装置及びデータ伝送方法
WO2016074484A1 (zh) 分组业务信号发送方法、装置及接收方法、装置
CN101350691B (zh) 一种业务汇聚和adm分插复用方法及设备
KR20110127077A (ko) 광 전달 망에서 패킷 전송 방법 및 장치
JP6299119B2 (ja) 伝送装置、伝送システム、及び伝送方法
JP5662601B2 (ja) デジタル伝送システム及びデジタル伝送方法
JP6077630B1 (ja) フレーム伝送装置およびフレーム伝送方法
WO2008074180A1 (fr) Procédé de transfert d'un signal stm/sts à faible vitesse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010753113

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 7067/CHENP/2011

Country of ref document: IN