WO2014139178A1 - 一种光通道数据单元业务传送装置和方法 - Google Patents

一种光通道数据单元业务传送装置和方法 Download PDF

Info

Publication number
WO2014139178A1
WO2014139178A1 PCT/CN2013/072766 CN2013072766W WO2014139178A1 WO 2014139178 A1 WO2014139178 A1 WO 2014139178A1 CN 2013072766 W CN2013072766 W CN 2013072766W WO 2014139178 A1 WO2014139178 A1 WO 2014139178A1
Authority
WO
WIPO (PCT)
Prior art keywords
odu
unit
frame
ethernet
frame period
Prior art date
Application number
PCT/CN2013/072766
Other languages
English (en)
French (fr)
Inventor
陈志云
周蕙瑜
魏建英
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13878263.6A priority Critical patent/EP2958279B1/en
Priority to PCT/CN2013/072766 priority patent/WO2014139178A1/zh
Priority to CN201380000496.6A priority patent/CN103918231B/zh
Priority to ES13878263.6T priority patent/ES2629184T3/es
Publication of WO2014139178A1 publication Critical patent/WO2014139178A1/zh
Priority to US14/853,445 priority patent/US9641916B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0003Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0073Services, e.g. multimedia, GOS, QOS
    • H04J2203/0082Interaction of SDH with non-ATM protocols
    • H04J2203/0085Support of Ethernet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0088Signalling aspects

Definitions

  • the present invention relates to the field of communication transmission, and in particular, to an optical channel data unit (ODU) service transmission apparatus and method.
  • ODU optical channel data unit
  • FIG. 1 is a schematic diagram of a switching device of an optical channel data unit (ODU) of a prior art time division multiplexing service.
  • the switching device of the ODU is exchanged based on the cell, including the ODU service receiving line card, the cell switching unit, and the ODU service sending line card.
  • the ODU service receiving line card further includes a demapping unit and a receiving line card interface control unit.
  • the ODU service receiving line card extracts the payload bit stream data from the received ODU service through the demapping unit; and the receiving line card interface control unit is configured to encapsulate the extracted payload bit stream data into time division multiplexed cells.
  • the frame carries the identifier of the ODU service transmission line card in the overhead of the time division multiplexed cell frame.
  • the cell switching unit sends the time division multiplexed cell frame to the ODU service sending line card corresponding to the identifier according to the identifier of the ODU service sending line card carried in the overhead of the time division multiplexing cell frame.
  • the service transmission line card further includes a transmission line card interface control unit and a mapping unit.
  • the transmission line card interface control unit is configured to extract the payload of the received time division multiplexed cell frame to generate a cell bit stream.
  • the mapping unit recovers the time division multiplexing service ODU by using byte interleaving according to the network management configuration.
  • the prior art cannot perform Ethernet switching forwarding for the time division multiplexing service optical channel data unit ODU service, thereby reducing device compatibility.
  • an optical channel data unit (0DU) service delivery apparatus including: a first OFDM service processing unit, a time slot allocation unit, a switch-out port allocation unit, an Ethernet switching unit, and a second OFDM service processing unit.
  • the first 0DU service processing unit is configured to receive the 0DU service, and encapsulate the 0DU frame into an Ethernet frame according to the slice length of the 0DU frame, according to the first ODU service processing unit determined by the time slot allocating unit
  • the slot correspondence table sends the Ethernet frame to the EtherSwitch unit.
  • a time slot allocation unit configured to generate a synchronization frame period, and determine, according to the obtained rate of the ODU frame and the number of egress ports of the first ODU service processing unit, that the first ODU service processing unit corresponds to an egress time slot table.
  • a switch-out port allocation unit configured to determine, according to the first ODU service processing unit out-port slot correspondence table determined by the time slot allocating unit, an Ethernet switch unit in-port frame period slot table, according to the Ethernet switching unit ingress port a frame period slot table, determining an egress switching unit egress port frame period slot table, and determining an EtherSwitch unit according to the EtherSwitch Ingress Port Frame Period Slot Table and the Ether Switch Outbound Port Frame Period Slot Table Assign a forwarding command.
  • the Ethernet switching unit forwards the received Ethernet frame to the second ODU service processing unit according to the allocation of a forwarding command by the EtherSwitch unit.
  • a second ODU service processing unit configured to perform decapsulation processing on the received Ethernet frame according to the Ethernet switch unit egress frame period slot table determined by the switch-out port allocation unit, to obtain an Ethernet payload bitstream data, and Encapsulating the Ethernet payload bitstream data into an ODU frame for transmission.
  • the apparatus further includes: a synchronization clock unit, configured to provide a clock signal to the time slot allocating unit, where the clock signal is used for synchronizing
  • the reference time of the synchronization frame period is such that each frame period generated by the time slot allocation unit is synchronized in time.
  • the first ODU service processing unit includes: an Too package unit and port distribution unit.
  • the cost extraction unit is configured to receive the ODU service, extract the overhead information of the ODU frame in the ODU service, identify the ODU service according to the overhead information, and obtain the type of the ODU frame in the ODU service.
  • An Ethernet encapsulating unit configured to determine a rate of the ODU frame according to the extracted overhead information, according to the port distribution unit, configured to use the port time slot correspondence table of the first ODU service processing unit determined according to the time slot allocating unit, Sending the Ethernet frame to the EtherSwitch unit.
  • the time slot allocating unit is configured to generate a synchronization frame period, Determining, according to the method of inter-distribution, determining, according to the obtained rate of the ODU frame, the egress port of the first ODU service processing unit, and the slice length of the ODU frame, the outbound port including the first ODU service processing unit The first ODU service processing unit outbound port time slot correspondence table of the time slot correspondence relationship in the synchronization frame period.
  • the time slot allocating unit is configured to generate a synchronization frame period, according to the obtained rate of the ODU frame and the synchronization frame period, according to a rate multiple of the ODU frame and an ODU frame occupying a synchronization frame period.
  • the first ODU service processing unit in the synchronization frame period corresponds to the port time slot correspondence table.
  • an optical channel data unit service transmission method including: receiving an ODU service, and encapsulating the ODU frame into an Ethernet frame according to a slice length of the ODU frame, according to the time slot allocation unit.
  • the first ODU service processing unit sends out the port time slot correspondence table, and sends the An Ethernet frame to an Ethernet switching unit;
  • the time slot correspondence table is determined according to a synchronization frame period, a rate of the ODU frame, and an outbound port number of the first ODU service processing unit;
  • the Ethernet switching unit assigning a forwarding command according to an Ethernet switching unit ingress port frame period slot table and The Ethernet switching unit egress port frame period slot table is determined; the EtherSwitch unit egress frame period slot table is determined according to the Ethernet switching unit ingress frame period slot table; the Ether switching unit ingress port frame The periodic slot table is determined according to the first ODU service processing unit out port slot correspondence table determined by the slot allocation unit;
  • the method further includes: generating a clock signal, where the clock signal is used to synchronize a reference time of the synchronization frame period, so that the synchronization Each frame period of the frame period is synchronized in time.
  • the step of receiving an ODU service according to a slice length of the ODU frame The ODU frame is encapsulated into an Ethernet frame, and the Ethernet frame is sent to the Ethernet switching unit according to the first ODU service processing unit outbound port time slot correspondence table determined by the time slot allocating unit, specifically,
  • Receiving the ODU service extracting the overhead information of the ODU frame in the ODU service, identifying the ODU service according to the release information, and obtaining the type of the ODU frame in the ODU service;
  • the time slot correspondence table is determined, specifically, generating a synchronization frame period, according to the obtained rate of the ODU frame, the egress port of the first ODU service processing unit. Rate and the synchronization frame period, determining that the ODU frame occupies the number of slots in the synchronization frame period and the slice length of the ODU frame, and determining, according to the method of interleaving allocation, the outbound port including the first ODU service processing unit The first ODU service processing unit outbound port time slot correspondence table corresponding to the time slot in the synchronization frame period.
  • the fourth possibility in the second aspect The method further includes: determining, by the time slot correspondence table, specifically, generating a synchronization frame period, according to the obtained rate of the ODU frame and the synchronization frame period, according to a rate multiple of the ODU frame and the ODU
  • the frame occupies a correspondence between the number of slots in the synchronization frame period, determines that the ODU frame occupies the number of slots in the synchronization frame period, and the slice length of the ODU frame, and determines that the first ODU is included according to the method of inter-distribution allocation.
  • the first ODU service processing unit outbound port time slot correspondence table of the service processing unit egress port and the time slot corresponding to the synchronization frame period. Therefore, in the embodiment of the present invention, the first ODU service processing unit, the time slot allocation unit, the switch-out port allocation unit, the Ethernet switching unit, and the second ODU service processing unit are used according to the first ODU service processing unit.
  • the port time slot correspondence table and the Ethernet switching unit allocate the forwarding command to forward the ODU service, which solves the problem that the prior art cannot transmit the ODU frame through the Ethernet switching unit, and ensures that the forwarding port of the transmitting device does not have traffic congestion, and improves.
  • the transmission quality of the communication network BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 2 is a schematic diagram of an ODU service transmission apparatus according to a first embodiment of the present invention
  • FIG. 3 is a schematic diagram of an ODU service transmission apparatus according to a second embodiment of the present invention.
  • FIG. 4 is a slot correspondence table and a frame period slot table corresponding to the second embodiment of the present invention
  • FIG. 5 is a schematic diagram of an ODU service switching apparatus according to a third embodiment of the present invention.
  • FIG. 6 is a slot correspondence table and a frame period slot table corresponding to a third embodiment of the present invention
  • FIG. 7 is a schematic diagram of an ODU service transmission apparatus according to a fourth embodiment of the present invention.
  • FIG. 8 is a slot correspondence table and a frame period slot table corresponding to the fourth embodiment of the present invention
  • FIG. 9 is a slot correspondence table and a frame period slot table corresponding to another embodiment of the present invention
  • a slot correspondence table and a frame period slot table corresponding to another embodiment of the present invention are shown
  • FIG. 11 is a schematic diagram of an ODU service transmission method according to another embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a first ODU service processing unit according to another embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION In order to facilitate the understanding and implementation of the present invention by those skilled in the art, the embodiments of the present invention are now described in conjunction with the accompanying drawings. The illustrative embodiments of the present invention and the description thereof are intended to be illustrative of the invention, and are not intended to limit the invention.
  • Fig. 2 is a view showing the ODU service transmitting apparatus of the first embodiment of the present invention.
  • the switching device includes a first ODU service processing unit, a time slot allocating unit, a switch-out port allocating unit, an Ethernet switching unit, and a second ODU service processing unit.
  • a first ODU service processing unit configured to receive an ODU service, and encapsulate the ODU frame into an Ethernet frame according to a slice length of the ODU frame, according to the first ODU service processing unit determined by the time slot allocating unit
  • the slot correspondence table sends the Ethernet frame to the EtherSwitch unit.
  • a time slot allocation unit configured to generate a synchronization frame period, and determine, according to the obtained rate of the ODU frame and the number of egress ports of the first ODU service processing unit, that the first ODU service processing unit corresponds to an egress time slot The table and the slice length of the ODU frame.
  • a switch-out port allocation unit configured to determine, according to the first ODU service processing unit out-port slot correspondence table determined by the time slot allocating unit, an Ethernet switch unit in-port frame period slot table, according to the Ethernet switching unit ingress port a frame period slot table, determining an egress switching unit egress port frame period slot table, and determining an EtherSwitch unit according to the EtherSwitch Ingress Port Frame Period Slot Table and the Ether Switch Outbound Port Frame Period Slot Table Assign a forwarding command.
  • the Ethernet switching unit forwards the received Ethernet frame to the second ODU service processing unit according to the allocation of a forwarding command by the EtherSwitch unit.
  • a second ODU service processing unit configured to perform decapsulation processing on the received Ethernet frame according to the Ethernet switch unit egress frame period slot table determined by the switch-out port allocation unit, to obtain an Ethernet payload bitstream data, and Encapsulating the Ethernet payload bitstream data into an ODU frame for transmission.
  • the number of slots in the sync frame period can be set to an integer number of slots according to the type of service.
  • the sync frame period can consist of several Ethernet frame slots.
  • the number of Ethernet frame slots constituting the synchronization frame period must be greater than or equal to the number of outbound ports of the first ODU service processing unit, which is less than 1000, that is, the number is usually several tens, hundreds of orders of magnitude.
  • the time slot allocating unit ensures the dispersion and uniformity of the time slots allocated to each of the ODU services to the synchronization frame period by the slot interleaving allocation algorithm.
  • the embodiment of the present invention may further be that the ODU service received by the first ODU service processing unit includes at least two ODU sub-services, and the at least two ODU sub-services may be different types of high-order ODU services, or High-order ODU services for customers of the same type but different.
  • the embodiment of the present invention may further include two or more first ODU service processing units.
  • the embodiment of the present invention may further include two or more second ODU service processing units.
  • Two or more first ODU service processing units are respectively connected to the ingress ports of the above-mentioned EtherSwitch unit.
  • Two or more second ODU service processing units respectively output the egress port of the above-mentioned EtherSwitch unit Connected.
  • the time slot allocating units are respectively connected to the plurality of first ODU service processing units.
  • the time slot allocating unit ensures the dispersion and uniformity of the time slots allocated to the respective ODU services to the synchronization frame period by the slot interleaving allocation algorithm.
  • the slot allocation algorithm ensures the time slot allocation of the input interface and the output interface of the Ethernet switching unit, so that the Ethernet switching unit allocates the forwarding command according to the Ethernet switching unit generated by the switching out port allocation unit, and receives the forwarding command.
  • the Ethernet frame is forwarded to the second ODU service processing unit.
  • the egress time slot corresponding The table and the Ethernet switching unit allocate forwarding commands to forward the ODU service, which solves the problem that the prior art cannot transmit the ODU frame through the Ethernet switching unit, ensuring that the forwarding port of the transmitting device does not have traffic congestion, and improves the transmission of the communication network. quality.
  • Fig. 3 is a block diagram showing a transmission apparatus of an ODU service according to a second embodiment of the present invention.
  • the apparatus includes a synchronous clock unit, a first ODU service processing unit, a time slot allocation unit, a switch-out port assignment unit, an Ethernet switching unit, and a second ODU service processing unit.
  • a synchronous clock unit configured to provide a clock signal to the time slot allocating unit, where the clock signal is used to synchronize a reference time of the synchronization frame period, so that each frame period generated by the time slot allocating unit is in time Synchronous.
  • the first ODU service processing unit in the embodiment of the present invention may further include an overhead extraction unit, an Ethernet encapsulation unit, and a port distribution unit.
  • the cost extraction unit is configured to receive the ODU service, extract the overhead information of the ODU frame in the ODU service, identify the ODU service according to the overhead information, and obtain the type of the ODU frame in the ODU service.
  • the Ethernet encapsulating unit is configured to determine a rate of the ODU frame according to the extracted overhead information, and encapsulate the ODU frame into an Ethernet frame according to a rate of the ODU frame and a slice length of the ODU frame.
  • Port distribution unit, for And the first ODU service processing unit outbound port slot correspondence table determined by the time slot allocating unit, and sending the Ethernet frame to the EtherSwitch unit.
  • a time slot allocation unit configured to generate a synchronization frame period, determining, according to the obtained rate of the ODU frame, the egress port rate of the first ODU service processing unit, and the synchronization frame period, that the ODU frame occupies the Determining, by the method of inter-distribution, the first ODU service including the corresponding relationship between the egress port of the first ODU service processing unit and the time slot in the synchronization frame period, according to the method of inter-distribution allocation
  • the processing unit outbound port time slot correspondence table.
  • the time slot allocation unit is further configured to: generate a synchronization frame period, and according to the obtained rate of the ODU frame and the synchronization frame period, occupy a synchronization frame with the ODU frame according to a rate multiple of the pre-configured ODU frame. Corresponding relationship between the number of time slots in the period, determining that the ODU frame occupies the number of time slots in the synchronization frame period and the slice length of the ODU frame, and determining, according to the method of interleaving allocation, that the first ODU service processing unit is included The first ODU service processing unit outbound port time slot correspondence table corresponding to the time slot in the synchronization frame period.
  • the corresponding relationship between the number of time slots in the synchronization frame period of the ODU frame is specifically the correspondence between the rate of the ODU frame and the number of time slots in the synchronization frame period occupied by the ODU frame of the rate.
  • the number of time slots is
  • the rate multiplier correspondence table of the pre-configured ODU frame may include a rate of more types of ODU frames. For example, when the rate of the ODU frame is 10 Gbps, the number of slots in the synchronization frame period occupied by the ODU frame of the rate is 24 One.
  • the ODU service includes ODU0, ODU1, ODU2, ODU3, and ODU4, and their rates are 1.2 Gbit/s, 2.5 Gbit/s, and 1 OGbit/s, respectively.
  • the corresponding relationship between the number of time slots in the frame period, and the ODU frame and the ODU at different rates may be set under the premise of multiple types of synchronization frame periods, the egress port rate of the first ODU service processing unit, and the number of different Ethernet frame payloads.
  • the frame occupies the correspondence of the number of slots in the synchronization frame period.
  • each module or functional unit such as an Ethernet encapsulation unit in the first ODU service processing unit or the first ODU service processing unit may also determine the slice length of the ODU frame,
  • the specific process is similar to the above embodiment, and details are not described herein again.
  • the time slot allocating unit is respectively connected to the switch-out port allocating unit, the overhead extracting unit of the first ODU service processing unit, the Ethernet encapsulating unit of the first ODU service processing unit, and the port distributing unit.
  • the time slot allocation unit ensures the discreteness and uniformity of the time slots allocated to the synchronization frame period of each ODU service through the inter-slot allocation algorithm, and ensures the traffic balance of the egress port of the first ODU service processing unit. Reduce slot conflicts.
  • the second ODU service processing unit in the embodiment of the present invention may further include: an Ethernet decapsulation unit and an ODU framing unit.
  • An Ethernet decapsulation unit configured to perform decapsulation processing on the received Ethernet frame according to the Ethernet switch unit egress frame period slot table determined by the switch out port allocation unit, to obtain Ethernet payload bitstream data; ODU framing frame And a unit, configured to encapsulate the Ethernet payload bitstream data into an ODU frame for transmission.
  • the embodiment of the present invention may further include two or more second ODU service processing units. Two or more first ODU service processing units are respectively connected to the ingress ports of the above-mentioned Ethernet switching units. Two or more second ODU service processing units are respectively connected to the egress ports of the above-mentioned EtherSwitch unit.
  • the time slot allocating units are respectively connected to the plurality of first ODU service processing units.
  • FIG. 4 shows a slot correspondence table and a frame period slot table corresponding to the second embodiment of the present invention.
  • the number of slots in the synchronization frame period in the embodiment of the present invention is 24, and the service type is a type of ODU service.
  • the first ODU service processing unit has two out ports, Don't be ol and o2.
  • the payload length of each Ethernet frame is 256 bytes, and the egress port rate of the first ODU service processing unit is 12 Gbps.
  • the payload length of the Ethernet frame may range from 64 bytes to less than 1000 bytes.
  • the time slot allocation unit according to the number of time slots 24 of the synchronization frame period and the rate of the ODU service (the ODU service in the embodiment of the present invention is ODU2, the rate is 239/237 9 953 280 kbit/s), and the ODU2 frame needs to be determined. Encapsulated by 24 Ethernet frames, that is, the ODU2 frame occupies 24 slots of the entire synchronization frame period.
  • the method of calculating how many Ethernet frames are required for the ODU0 frame is first encapsulated, and then how many Ethernet frames are required for the ODU2 frame to be encapsulated.
  • the number of ODU1 bytes per Ethernet frame encapsulation is approximately equal to 213.2288107563 bytes, so the Ethernet frame encapsulation ODU1 length is an integer, so each Ethernet frame encapsulates the ODU1 length to 213 or 214 bytes.
  • each module or functional unit such as an Ethernet encapsulation unit in the first ODU service processing unit or the first ODU service processing unit may also determine the slice length of the ODU frame,
  • the specific process is similar to the above embodiment, and details are not described herein again.
  • FIG. 4( a ) is a first ODU service processing unit out port slot correspondence table determined by the slot allocation unit.
  • the ODU service corresponds to the first ODU service processing unit out port ol, o2 ... ol, o2 at the position of the time slot of 1 - 24.
  • the first ODU service processing unit sends the Ethernet frame to the Ethernet switching unit at the corresponding outbound port position corresponding to the time slot according to the time slot correspondence table shown in FIG. 4(a).
  • 4(b) and 4(c) are respectively an Ethernet switch unit ingress port frame period slot table and an Ethernet switch unit egress frame period slot table generated by the switch out port allocation unit according to the slot correspondence table.
  • the Ethernet switching unit has two service input ports sil/si2 and two service output ports sol/so2, as shown in Figures 4(b) and 4(c).
  • the Ethernet switch unit incoming port frame period slot table in the Ethernet switch unit incoming port frame period slot table,
  • the ODU service is on time slots 1 - 24 and corresponds to input ports sil, si2 sil, si2, respectively.
  • the output switching port so2 of the Ethernet switching unit corresponding to the location of the time slot 1 in the port frame period slot table of the Ethernet switching unit, and the subsequent slot number 2 - 24, the principle of interleaving allocation, respectively
  • sol, so2, sol, so2, sol sol that is, in the corresponding time slot, the corresponding ether
  • the Ethernet switching unit receives and forwards the Ethernet frame to the second ODU service processing unit.
  • the position of the time slot 1 may also correspond to the output port sol of the EtherSwitch unit.
  • the subsequent slot number 2-24 the principle of inter-distribution is used, and the number of the output port of the EtherSwitch unit is They are fixed timings so2, sol, so2, sol so2.
  • the switch port allocation unit is configured to generate an Ethernet switch unit ingress port frame period slot table and an Ethernet switch unit egress frame frame period slot table according to the slot correspondence table generated by the slot allocation unit, and according to the The Ethernet switching unit ingress port frame period slot table and the Ethernet switching unit out port frame period slot table determine that the EtherSwitch unit allocates the forwarding command.
  • the EtherSwitch unit sends an Ethernet frame to the second ODU service processing unit according to the received EtherSwitch unit allocation forwarding command.
  • a second ODU service processing unit configured to perform decapsulation processing on the received Ethernet frame according to the Ethernet switch unit egress frame period slot table determined by the switch-out port allocation unit, to obtain an Ethernet payload bitstream data, and Encapsulating the Ethernet payload bitstream data into an ODU frame for transmission.
  • the egress time slot corresponding The table and the Ethernet switching unit allocate forwarding commands to forward the ODU service, which solves the problem that the prior art cannot transmit the ODU frame through the Ethernet switching unit, ensuring that the forwarding port of the transmitting device does not have traffic congestion, and improves the transmission of the communication network. quality.
  • Fig. 5 is a diagram showing an apparatus for transmitting an ODU service according to a third embodiment of the present invention.
  • the apparatus includes a synchronous clock unit, a first ODU service processing unit, a time slot allocating unit, a switched out port allocation unit, an Ethernet switching unit, and a second ODU service processing unit.
  • each functional module of the device please refer to the description of the ODU service adjusting device of the second embodiment of the present invention.
  • the ODU service includes at least two ODU sub-services, for example, ODU sub-service 1 and ODU sub-service 2.
  • FIG. 6 shows a slot correspondence table and a frame period slot table corresponding to the third embodiment of the present invention.
  • the number of slots of the synchronization frame period in the embodiment of the present invention is 24, and the service type is two.
  • ODU sub-service 1 and ODU sub-service 2 are ODU2 (rate 239/237 9953280 kbit/s) and ODU1 (rate 239/238 2 488320 kbit/s) ).
  • the first ODU service processing unit has four egress ports ol. 2, o3 and o4.
  • Figure 6 (a) is a table of corresponding port time slot correspondences of the first ODU service processing unit.
  • the payload length of each Ethernet frame is 256 bytes
  • the transmission rate of the first ODU service processing unit out port is 12 Gbps.
  • the time slot allocation unit determines that the ODU2 service needs to be encapsulated by 24 Ethernet frames according to the number of time slots 24 of the synchronization frame period and the rate of the two ODUs and the rate of the ODU1, that is, the ODU2 frame needs to occupy the synchronization frame period.
  • the number of time slots is 24, and ODU1 occupies 6 of the total number of time slots of the synchronization frame period, that is, the number of time slots in the ODU1 frame that needs to occupy the synchronization frame period is 6.
  • time slots 1 to 24 correspond to the first ODU service processing unit out port ol, respectively. 2, o3, o4, ol, o2, o3... o2. 3, . 4.
  • time slots 1, 5, 9, 13, 17, 21 correspond to the first ODU service processing unit out port o2, o3, o4, o2, o3, o4, respectively.
  • the first ODU service processing unit sends an Ethernet frame to the EtherSwitch unit at the corresponding egress port location corresponding to the slot according to the slot correspondence table shown in FIG. 6(a).
  • 6(b) and 6(c) are an Ethernet switching unit ingress port frame period slot table and an Ethernet switching unit out port frame period slot table respectively generated by the switch-out port allocation unit according to the slot correspondence table.
  • the EtherSwitch unit has four service input ports si 1 /si2/si3/si4 and four service output ports sol/so2/so3/so4, as shown in Figures 6(b) and 6(c). Show.
  • Figure 6 (b) when the ODU sub-service 1 corresponds to the ingress port sil in slot 1, the ODU sub-service 2 is in time because only the traffic in the same slot can be received or transmitted on the same port.
  • the gap 1 it can only correspond to si2 or si3 or si4, and the embodiment of the present invention is si2, and of course, it can also be si3 or si4.
  • the rate of the ODU sub-service 1 in the embodiment of the present invention is four times the rate of the ODU sub-service 2, so the subsequent inter-slot interleaving positions are in the slot positions of the slots 5, 9, 13, 17, 21, respectively.
  • the input port order of the Ethernet switching unit of the ODU sub-service 2 is the fixed sequence si2, si3, and si4. Of course, the fixed timings si2, si4, and si3 may be used.
  • the Ethernet switching unit exits the slot 1 in the slot frame table of the port frame period, when the ODU sub-industry
  • the ODU sub-service 2 may correspond to so3 or so4 or sol.
  • the embodiment of the present invention corresponds to so3, and the subsequent slot numbers 5, 9, 13, 17, 21 use the principle of inter-distribution, which are respectively fixed timings so4, sol, so3, so4, sol as shown in the figure. That is, in the corresponding time slot, the output port of the corresponding Ethernet switching unit, the Ethernet switching unit receives and forwards the Ethernet frame to the second ODU service processing unit.
  • the principle of interleaving allocation may be fixed timings sol, so4, so3, sol, so4.
  • the principle of interleaving allocation may be fixed timings sol, so4, so3, sol, so4.
  • the switch port allocation unit is configured to generate an Ethernet switch unit ingress port frame period slot table and an Ethernet switch unit egress frame frame period slot table according to the slot correspondence table generated by the slot allocation unit, and according to the The Ethernet switching unit ingress port frame period slot table and the Ethernet switching unit out port frame period slot table determine that the EtherSwitch unit allocates the forwarding command.
  • the EtherSwitch unit sends an Ethernet frame to the second ODU service processing unit according to the received EtherSwitch unit allocation forwarding command.
  • a second ODU service processing unit configured to perform decapsulation processing on the received Ethernet frame according to the Ethernet switch unit egress frame period slot table determined by the switch-out port allocation unit, to obtain an Ethernet payload bitstream data, and Encapsulating the Ethernet payload bitstream data into an ODU frame for transmission.
  • FIG. 7 is a schematic diagram of an ODU service delivery apparatus according to a fourth embodiment of the present invention.
  • the apparatus includes a synchronous clock unit, a first ODU service processing unit, a time slot allocating unit, a switch-out port allocating unit, an Ethernet switching unit, and a second ODU service processing unit.
  • a synchronous clock unit For a detailed description of each functional module of the device, refer to the description of the ODU service switching device of the second embodiment of the present invention.
  • the at least two ODU sub-services included in the ODU service in the example are the ODU sub-service 1, the ODU sub-service 2, and the ODU sub-service 3, and the fixed-time slot in the time slot correspondence table and the three-way in the ODU service.
  • the service ODU sub-service 1, the ODU sub-service 2, and the ODU sub-service 3 correspond.
  • the fixed time slots may be connected to each other or at any number of time slots.
  • the number of any number of slots should be less than the number of slots in the synchronization frame period.
  • the number of slots in the synchronization frame period in the embodiment of the present invention is 24, and the service type is a three-way ODU sub-service.
  • the first ODU service processing unit further includes an overhead extraction unit, an Ethernet encapsulation unit, and a port distribution unit.
  • the cost extraction unit is configured to extract overhead information of the ODU frame in the ODU sub-service 1, the ODU sub-service 2, and the ODU sub-service 3.
  • the Ethernet encapsulating unit is configured to determine a rate of the ODU frame according to the cost information of the ODU frame in the ODU sub-service 1, the ODU sub-service 2, and the ODU sub-service 3, according to the rate of the ODU frame and the ODU.
  • the slice length of the frame encapsulates the ODU frame into an Ethernet frame.
  • the port distribution unit is configured to send the Ethernet frame to the EtherSwitch unit according to the first ODU service processing unit out port slot correspondence table determined by the time slot allocating unit.
  • the number of time slots 24 in the outbound end of the first ODU service processing unit in the embodiment of the present invention, and the ODU sub-service 1, the ODU sub-service 2, and the ODU sub-service 3 respectively correspond to the egress port of the first ODU service processing unit, and generate Time slot correspondence table.
  • the time slot allocation unit uses the inter-slot allocation algorithm to ensure the discreteness and uniformity of the time slots of the ODU service allocated to the synchronization frame period, and also ensures that the traffic of the outbound port of the first ODU service processing unit is balanced and reduced. Time slot conflict.
  • the port allocation unit is exchanged, and the time slot allocation algorithm ensures the time slot allocation of the input interface and the output interface of the Ethernet switching unit, so that the Ethernet switching unit allocates a forwarding command according to the Ethernet switching unit generated by the switching out port allocation unit, and receives the forwarding command.
  • the Ethernet frame is forwarded to the second ODU service processing unit.
  • FIG. 8 shows a slot correspondence table and a frame period slot table corresponding to the fourth embodiment of the present invention.
  • the number of slots in the synchronization frame period is 24, and the service type is three-way ODU service, which is an ODU sub-service 1 (specifically, ODU2, the rate is 239/237 ⁇ 9 953 280 kbit/s), ODU sub-industry Service 2 (specifically ODU1, rate 239/238 2 488 320 kbit/s) and ODU sub-service 3 (specifically ODU0, rate 1 244 160 kbit/s).
  • the first ODU service processing unit has four egress ports ol, o2, o3, and o4.
  • Figure 8 (a) is a port time slot correspondence table of the first ODU service processing unit.
  • the payload length of each Ethernet frame is 256 bytes
  • the transmission rate of the egress port of the first ODU service processing unit is 12 Gbps.
  • the time slot allocating unit determines, according to the time slot number 24 of the synchronization frame period and the rate of the three ODU sub-services, that the ODU sub-service 1 needs to be encapsulated with 24 Ethernet frames in one synchronization frame period, that is, the ODU The frame occupies 24 of the total number of slots in the sync frame period.
  • the ODU sub-service 2 needs to be encapsulated by 6 Ethernet frames, that is, the ODU sub-service 2 occupies 6 slots of the entire synchronization frame period.
  • the ODU sub-service 3 needs to be encapsulated by three Ethernet frames, that is, the ODU sub-service 3 occupies three slots of the entire synchronization frame period.
  • the ODU sub-service 1 corresponds to the egress port ol of the first ODU service processing unit, respectively. 2, . 3, o4 ol, o2, o3, . 4.
  • time slots 1 5, 9,
  • the ODU sub-services 2 respectively correspond to the egress port o2 of the first ODU service processing unit. 3, o4, o2, o3, . 4.
  • the ODU sub-services 3 correspond to the egress ports ol, ol, ol of the first ODU service processing unit, respectively.
  • the first ODU service processing unit sends an Ethernet frame to the EtherSwitch unit according to the time slot correspondence table shown in FIG. 8( a ) at the corresponding egress port position corresponding to the time slot.
  • the EtherSwitch unit has four service input ports sil/si2/si3/si4 and four service output ports sol/so2/so3/so4, as shown in Figures 8(b) and 8(c). .
  • Figure 8 (b) when the ODU sub-service 1 corresponds to the ingress port sil in slot 1, the ODU sub-service 2 is in time because only the traffic in the same slot can be received or transmitted on the same port.
  • the gap 1 it can only correspond to si2 or si3 or si4, and the embodiment of the present invention is si2, and of course, it can also be si3 or si4.
  • the rate of the ODU sub-service 1 in the embodiment of the present invention is four times the rate of the ODU sub-service 2, so the subsequent time slots are The insertion positions are at time slot positions of time slots 5, 9, 13, 17, 21, respectively.
  • the input port order of the Ethernet switching unit of the ODU sub-service 2 is si2, si3, and si4. Of course, the fixed timings si2, si4, and si3 may also be used.
  • the ODU sub-service 3 corresponds to the input port sil at the location of slot 3.
  • the position of the subsequent time slot is 11, 19, and corresponds to the input port sil, indicating that the rate of the ODU sub-service 1 is eight times that of the ODU sub-service 3.
  • the ODU sub-service 3 can also be input in another time slot or other input port, as long as it is handled according to the principle that "the same input port or output port cannot carry different services on the same time slot".
  • the EDU sub-service is in the position of time slot 1 in the slot table of the port frame period of the Ethernet switching unit, and the output port so2 of the Ethernet switching unit corresponding to the ODU sub-service 1 2 can correspond to so3, or so4 or sol.
  • the embodiment of the present invention corresponds to so3, and the subsequent slot numbers 5, 9, 13, 17, 21 use the principle of inter-distribution, which are respectively fixed timings so4, sol, so3, so4, sol as shown in the figure. That is, in the corresponding time slot, the output port of the corresponding Ethernet switching unit, the Ethernet switching unit receives and forwards the Ethernet frame to the second ODU service processing unit.
  • the principle of interleaving allocation may be used as the fixed timings sol, so4, so3, sol, so4.
  • the ODU sub-service 3 corresponds to the input port so2 at the position of slot 3.
  • the position of the subsequent time slot is 11, 19, and also corresponds to the input port so2, indicating that the rate of the ODU sub-service 1 is 8 times that of the ODU sub-service 3.
  • the ODU sub-service 3 can also be input in another time slot or other input port, as long as it can be handled according to the principle that "the same input port or output port cannot carry different services on the same time slot".
  • the switch port allocation unit is configured to generate an Ethernet switch unit ingress port frame period slot table and an Ethernet switch unit egress frame frame period slot table according to the slot correspondence table generated by the slot allocation unit, and according to the The Ethernet switching unit ingress port frame period slot table and the Ethernet switching unit out port frame period slot table determine that the EtherSwitch unit allocates the forwarding command.
  • the EtherSwitch unit sends an Ethernet frame to the second ODU service processing unit according to the received EtherSwitch unit allocation forwarding command.
  • the interface frame period slot table performs decapsulation processing on the received Ethernet frame to obtain Ethernet payload bitstream data, and encapsulates the Ethernet payload bitstream data into a high-order ODU frame for transmission.
  • the egress time slot corresponding The table and the Ethernet switching unit allocate forwarding commands to forward the ODU service, which solves the problem that the prior art cannot transmit the ODU frame through the Ethernet switching unit, ensuring that the forwarding port of the transmitting device does not have traffic congestion, and improves the transmission of the communication network. quality.
  • FIG. 9 shows a slot correspondence table and a frame period slot table corresponding to another embodiment of the present invention.
  • the ODU service in the embodiment of the present invention is ODU sub-service 1 and ODU sub-service 2, respectively, and the number of slot cycles is 12.
  • the corresponding relationship between the first ODU service processing unit out port, the input port and the output port of the Ethernet switching unit, and the time slot in the synchronization frame period see FIG. 9 (a), (b), and (c). .
  • the ODU sub-service 1 and the ODU sub-service 2 may be ODU2 (rate 239/237 9 953 280 kbit/s) and ODU1 (rate 239/238 2 488 320 kbit/s, respectively). ). If the payload length of each Ethernet frame is 256 bytes, and the transmission rate of the first ODU service processing unit is 12 Gbps, the ODU2 needs to be determined according to the number of slots 12 of the synchronization frame period, the rate of the ODU1, and the rate of the ODU2. Encapsulated by 12 Ethernet frames, that is, the ODU2 service fills the entire synchronization frame period, and the ODU1 service only needs to occupy 3 slots in the synchronization frame period, as shown in FIG. 9(a).
  • FIG. 10 shows a slot correspondence table and a frame period slot table corresponding to another embodiment of the present invention.
  • the ODU service in the embodiment of the present invention is a type of service, and the number of slot cycles is 12. Specifically, the corresponding relationship between the first ODU service processing unit out port, the input port and the output port of the Ethernet switching unit, and the time slot in the synchronization frame period, see FIG. 10 (a), (b), and (c). .
  • the ODU service may be ODU2 (the rate is 239/237 X 9). 953 280 kbit/s). If the payload length of each Ethernet frame is 256 bytes and the transmission rate of the port distribution unit is 12 Gbps, it is determined that the ODU 2 needs to be encapsulated with 12 Ethernet frames according to the number of slots 12 of the synchronization frame period and the rate of the ODU 2 . That is, the ODU2 service fills the entire synchronization frame period as shown in FIG. 10(a).
  • FIG. 11 is a schematic diagram showing a method for transmitting an ODU service according to another embodiment of the present invention.
  • Step S101 Receive an ODU service, and package the ODU frame into an Ethernet frame according to a slice length of the ODU frame, and send a port time slot correspondence table according to the first ODU service processing unit determined by the time slot allocating unit.
  • the Ethernet frame to the Ethernet switching unit is determined; the time slot correspondence table is determined according to a synchronization frame period, a rate of the ODU frame, and an outbound port number of the first ODU service processing unit.
  • step S102 the Ethernet switching unit allocates a forwarding command, and forwards the received Ethernet frame to the second ODU service processing unit.
  • the Ethernet switching unit allocates a forwarding command according to an Ethernet switching unit input port frame period.
  • the slot table and the egress switching unit egress port frame period slot table are determined; the egress switching unit egress port frame period slot table is determined according to the Ethernet switching unit ingress port frame period slot table; the Ether switching unit
  • the ingress port frame period slot table is determined according to the first ODU service processing unit out port slot correspondence table determined by the slot allocation unit.
  • Step S103 performing decapsulation processing on the received Ethernet frame according to the Ethernet switch unit egress frame period slot table, obtaining Ethernet payload bitstream data, and encapsulating the Ethernet payload bitstream data into a high order
  • the ODU frame is sent out.
  • the embodiment of the present invention may further include: generating a clock signal for synchronizing the reference time of the synchronization frame period, so that each frame period of the synchronization frame period is synchronized in time.
  • the embodiment of the present invention may further include: the step of: receiving an ODU service, and encapsulating the ODU frame into an Ethernet frame according to a slice length of the ODU frame, and determining, by the time slot allocation unit, the first ODU
  • the service processing unit sends out the Ethernet frame to the Ethernet switching unit, specifically, Receiving an ODU service, extracting an overhead information of an ODU frame in the ODU service, identifying the ODU service according to the overhead information, and obtaining a type of an ODU frame in the ODU service;
  • determining the time slot correspondence table specifically, generating a synchronization frame period, according to the obtained rate of the ODU frame, the egress port rate of the first ODU service processing unit, and the synchronization frame period, Determining, by the ODU frame, the number of slots in the synchronization frame period and the slice length of the ODU frame, according to the method of inter-distribution, determining that the first ODU service processing unit outbound port and the synchronization frame period are included
  • the first ODU service processing unit of the slot correspondence corresponds to the port slot correspondence table.
  • determining the time slot correspondence table specifically, generating a synchronization frame period, according to the obtained rate of the ODU frame and the synchronization frame period, occupying a synchronization frame period according to a rate multiple of the ODU frame and the ODU frame Corresponding relationship between the number of timeslots, determining that the ODU frame occupies the number of slots in the synchronization frame period and the slice length of the ODU frame, and determining, according to the method of interleaving allocation, the outbound port including the first ODU service processing unit The first ODU service processing unit outbound port time slot correspondence table corresponding to the time slot in the synchronization frame period.
  • the correspondence between the rate multiplier of the pre-configured ODU frame and the number of slots in the synchronization frame period of the ODU frame is specifically the correspondence between the rate of the ODU frame and the number of slots in the synchronization frame period occupied by the ODU frame of the rate.
  • the synchronization frame period occupied by the ODU frame of the rate is occupied by the ODU frame of the rate when the rate of the ODU frame is 2.5 Gbps.
  • the number of timeslots in the synchronization frame period occupies a multiple of the number of time slots in the synchronization frame period, which is exactly equal to the number of time slots.
  • the multiple of the rate increase of the ODU frame is 2 times.
  • the rate multiplier correspondence table of the pre-configured ODU frame may include a rate of more types of ODU frames. For example, when the rate of the ODU frame is 10 Gbps, the number of slots in the synchronization frame period occupied by the ODU frame of the rate is 24 One.
  • the ODU service includes ODU0, ODU1, ODU2, ODU3, and ODU4, and their rates are 1.2 Gbit/s, 2.5 Gbit/s, 1 OGbit/s, and the number of slots in the frame period, which can be synchronized in multiple types.
  • each module or functional unit such as an Ethernet encapsulation unit
  • the first ODU service processing unit or the first ODU service processing unit may also determine the slice length of the ODU frame, The specific process is similar to the above embodiment, and details are not described herein again.
  • the egress time slot corresponding The table and the Ethernet switching unit allocate forwarding commands to forward the ODU service, which solves the problem that the prior art cannot transmit the ODU frame through the Ethernet switching unit, ensuring that the forwarding port of the transmitting device does not have traffic congestion, and improves the transmission of the communication network. quality.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative
  • the division of the unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or may be integrated into another system, or some features may be ignored. Or not.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the components displayed by the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .
  • the first ODU service processing unit in the foregoing embodiment may be as shown in FIG. 12, including at least one processor 1201 (for example, a CPU), at least one network interface 1202 or other communication interface, and the memory 1203. And at least one communication bus 1204 for implementing connection communication between the devices.
  • the processor 1201 is configured to execute executable executables stored in the memory 1203 A module, such as a computer program.
  • the memory 1203 may include a high speed random access memory (RAM: Random Access Memory), and may also include a non-volatile memory, such as at least one disk memory.
  • the communication connection between the system gateway and at least one other network element is implemented by at least one network interface 1202 (which may be wired or wireless), and may use an Internet, a wide area network, a local network, a metropolitan area network, or the like.
  • the memory 1203 stores a program 1231, and the program 1231 can be executed by the processor 1201.
  • the program includes:
  • the ODU service is received, and the ODU frame is encapsulated into an Ethernet frame according to the slice length of the ODU frame, and the Ethernet frame is sent to the Ethernet switching unit according to the first ODU service processing unit outbound port time slot correspondence table determined by the time slot allocating unit;
  • the time slot correspondence table is determined according to a synchronization frame period, a rate of the ODU frame, and an output port number of the first ODU service processing unit.
  • the structure of the second ODU service processing unit may be referred to FIG. 12, or may include at least one processor 1301 (eg, a CPU), at least one network interface 1302 or other communication interface, and the memory 1303. And at least one communication bus 1304 for implementing connection communication between the devices.
  • the processor 1301 is for executing an executable module, such as a computer program, stored in the memory 1303.
  • the memory 1303 may include a high speed random access memory (RAM: Random Access Memory), and may also include a non-volatile memory such as at least one disk memory.
  • the communication connection between the system gateway and at least one other network element is implemented by at least one network interface 1302 (which may be wired or wireless), and may use an Internet, a wide area network, a local area network, a metropolitan area network, or the like.
  • the memory 1303 stores a program 1331, and the program 1331 can be executed by the processor 1301.
  • the program includes:

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

本发明涉及通信传输领域,特别公开了一种光通道数据单元业务传送装置和方法,该传送装置包括,第一ODU业务处理单元、时隙分配单元、交换出端口分配单元、以太交换单元和第二ODU业务处理单元,根据与ODU业务相对应的时隙对应表和帧周期时隙表,对ODU业务进行转发,提高了设备的兼容性,保证了传送装置的转发端口不出现业务拥塞,降低了转发业务的延时及传送装置的成本,提高了通信网络的传输质量。

Description

一种光通道数据单元业务传送装置和方法 技术领域
本发明涉及通信传输领域,尤其涉及一种光通道数据单元( Optical channel Data unit , ODU )业务传送装置和方法。
背景技术
随着通信网络的快速发展, 业务种类越来越多, 如移动、 语音、 视频、 网 络游戏、 网络浏览等, 带宽要求也越来越大。 为了传送时分复用业务等业务, 通信网络必须进行复杂的业务分类, 并且尽量简化交换设备的处理流程,提高 交换设备的处理效率和质量。
如图 1所示为现有技术的时分复用业务光通道数据单元( Optical channel Data unit , ODU )的交换装置示意图。 该 ODU的交换装置基于信元进行交换, 包括 ODU业务接收线卡、 信元交换单元和 ODU业务发送线卡。 ODU业务接收 线卡进一步包括解映射单元和接收线卡接口控制单元。 ODU业务接收线卡通 过解映射单元, 从接收到的 ODU业务中, 提取出净荷比特流数据; 接收线卡 接口控制单元, 用于将提取出净荷比特流数据封装成时分复用信元帧, 在该时 分复用信元帧的开销中, 携带有 ODU业务发送线卡的标识。 信元交换单元根 据时分复用信元帧的开销中携带的 ODU业务发送线卡的标识, 将该时分复用 信元帧发送到该标识所对应的 ODU业务发送线卡上。 业务发送线卡进一步包 括发送线卡接口控制单元和映射单元。发送线卡接口控制单元用于把接收到的 时分复用信元帧的净荷提取出来,生成信元比特流。映射单元,根据网管配置, 使用字节间插的方式, 恢复出时分复用业务 ODU。
现有技术无法对时分复用业务光通道数据单元 ODU业务进行以太交换的 转发, 降低了设备的兼容性。
发明内容
本发明提供了一种光通道数据单元业务传送装置和方法。 第一方面, 提供了一种光通道数据单元 0DU业务传送装置, 包括: 第一 0DU业务处理单元、 时隙分配单元、 交换出端口分配单元、 以太交换单元和 第二 0DU业务处理单元。
第一 0DU业务处理单元, 用于接收 0DU业务, 根据所述 0DU帧的切片长 度, 将所述 0DU帧封装成以太帧, 根据所述时隙分配单元确定的第一 ODU业 务处理单元出端口时隙对应表, 发送所述以太帧到以太交换单元。
时隙分配单元, 用于产生一个同步帧周期, 根据获得的所述 ODU帧的速 率和所述第一 ODU业务处理单元的出端口数量, 确定所述第一 ODU业务处理 单元出端口时隙对应表。
交换出端口分配单元, 用于根据所述时隙分配单元确定的第一 ODU业务 处理单元出端口时隙对应表,确定以太交换单元入端口帧周期时隙表,根据所 述以太交换单元入端口帧周期时隙表, 确定以太交换单元出端口帧周期时隙 表,并根据所述以太交换单元入端口帧周期时隙表和所述以太交换单元出端口 帧周期时隙表, 确定以太交换单元分配转发命令。
以太交换单元,根据所述以太交换单元分配转发命令,将接收到的所述以 太帧转发至所述第二 ODU业务处理单元。
第二 ODU业务处理单元, 用于根据所述交换出端口分配单元确定的以太 交换单元出端口帧周期时隙表,对接收到的以太帧进行解封装处理, 获得以太 净荷比特流数据, 并将所述以太净荷比特流数据封装成 ODU帧发送出去。
结合第一方面,在第一方面的第一种可能的实现方式中, 所述装置进一步 包括, 同步时钟单元, 用于为所述时隙分配单元提供时钟信号, 所述时钟信号 用于同步所述同步帧周期的基准时间,使得所述时隙分配单元产生的每一个帧 周期在时间上是同步的。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种 可能的实现方式中, 所述第一 ODU业务处理单元, 包括, 开销提取单元、 以 太封装单元和端口分发单元。 开销提取单元, 用于接收 ODU业务, 提取所述 ODU业务中的 ODU帧的开销信息, 根据所述开销信息, 识别所述 ODU业务, 并获得所述 ODU业务中的 ODU帧的类型。
以太封装单元, 用于根据提取的开销信息确定所述 ODU帧的速率, 根据 端口分发单元, 用于根据所述时隙分配单元确定的所述第一 ODU业务处 理单元出端口时隙对应表, 发送所述以太帧到以太交换单元。
结合第一方面的第一种可能的实现方式或第二种可能的实现方式,在第一 方面的第三种可能的实现方式中, 所述时隙分配单元, 用于产生一个同步帧周 期, 根据获得的所述 ODU帧的速率、 所述第一 ODU业务处理单元的出端口 和所述 ODU帧的切片长度, 按照间插分配的方法,确定包含第一 ODU业务处 理单元出端口与所述同步帧周期中时隙对应关系的第一 ODU业务处理单元出 端口时隙对应表。
结合第一方面、第一方面的第一种可能的实现方式、第一方面的第二种可 能的实现方式或第一方面的第三种可能的实现方式,在第一方面的第四种可能 的实现方式中, 所述时隙分配单元, 用于产生一个同步帧周期, 根据获得的所 述 ODU帧的速率和所述同步帧周期,按照 ODU帧的速率倍数与 ODU帧占用 同步帧周期中时隙数量的对应关系, 确定所述 ODU帧占用所述同步帧周期中 时隙的数量和所述 ODU 帧的切片长度, 按照间插分配的方法,确定包含第一 ODU业务处理单元出端口与所述同步帧周期中时隙对应关系的第一 ODU业 务处理单元出端口时隙对应表。
第二方面, 提供了一种光通道数据单元业务传送方法, 包括, 接收 ODU 业务, 根据所述 ODU帧的切片长度, 将所述 ODU帧封装成以太帧, 根据所 述时隙分配单元确定的第一 ODU业务处理单元出端口时隙对应表, 发送所述 以太帧到以太交换单元; 所述时隙对应表是根据同步帧周期、 所述 ODU帧的 速率和所述第一 ODU业务处理单元的出端口数量确定的;
根据所述以太交换单元分配转发命令,将接收到的所述以太帧转发至所述 第二 ODU业务处理单元; 所述以太交换单元分配转发命令是根据以太交换单 元入端口帧周期时隙表和以太交换单元出端口帧周期时隙表确定的;所述以太 交换单元出端口帧周期时隙表是根据所述以太交换单元入端口帧周期时隙表 确定的;所述以太交换单元入端口帧周期时隙表是根据所述时隙分配单元确定 的第一 ODU业务处理单元出端口时隙对应表确定的;
根据所述以太交换单元出端口帧周期时隙表,对接收到的以太帧进行解封 装处理, 获得以太净荷比特流数据, 并将所述以太净荷比特流数据封装成高阶 ODU帧发送出去。
结合第二方面,在第二方面的第一种可能的实现方式中, 所述方法进一步 包括,产生一个时钟信号,所述时钟信号用于同步所述同步帧周期的基准时间 , 使得所述同步帧周期的每一个帧周期在时间上是同步的。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种 可能的实现方式中,所述步骤,,接收 ODU业务,根据所述 ODU帧的切片长度, 将所述 ODU帧封装成以太帧, 根据所述时隙分配单元确定的第一 ODU业务处 理单元出端口时隙对应表, 发送所述以太帧到以太交换单元, 具体为,
接收 ODU业务, 提取所述 ODU业务中的 ODU帧的开销信息, 根据所述开 销信息, 识别所述 ODU业务, 并获得所述 ODU业务中的 ODU帧的类型;
根据提取的开销信息确定所述 ODU帧的速率, 根据所述 ODU帧的速率和 根据所述时隙分配单元确定的所述第一 ODU业务处理单元出端口时隙对 应表, 发送所述以太帧到以太交换单元。
结合第二方面的第一种可能的实现方式或第二种可能的实现方式,在第二 方面的第三种可能的实现方式中, 所述时隙对应表的确定, 具体为, 产生一个 同步帧周期, 根据获得的所述 ODU帧的速率、 所述第一 ODU业务处理单元 的出端口速率和所述同步帧周期, 确定所述 ODU帧占用所述同步帧周期中时 隙的数量和所述 ODU帧的切片长度,按照间插分配的方法,确定包含第一 ODU 业务处理单元出端口与所述同步帧周期中时隙对应关系的第一 ODU业务处理 单元出端口时隙对应表。
结合第二方面、第二方面的第一种可能的实现方式、第二方面的第二种可 能的实现方式或第二方面的第三种可能的实现方式,在第二方面的第四种可能 的实现方式中, 进一步包括, 所述时隙对应表的确定, 具体为, 产生一个同步 帧周期, 根据获得的所述 ODU帧的速率和所述同步帧周期, 按照 ODU帧的 速率倍数与 ODU帧占用同步帧周期中时隙数量的对应关系, 确定所述 ODU 帧占用所述同步帧周期中时隙的数量和所述 ODU帧的切片长度, 按照间插分 配的方法,确定包含第一 ODU 业务处理单元出端口与所述同步帧周期中时隙 对应关系的第一 ODU业务处理单元出端口时隙对应表。 由此可见, 在本发明实施例中, 通过使用第一 ODU业务处理单元、 时隙 分配单元、 交换出端口分配单元、 以太交换单元和第二 ODU业务处理单元, 根据第一 ODU 业务处理单元出端口时隙对应表和以太交换单元分配转发命 令, 对 ODU业务进行转发, 解决了现有技术无法通过以太交换单元进行传送 ODU帧的问题, 保证了传送装置的转发端口不出现业务拥塞, 提高了通信网 络的传输质量。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 并不构成对本发明的限定。 在附图中: 图 1示出了现有技术的时分复用业务光通道数据单元 ODU的交换装置示 意图;
图 2示出了本发明第一实施例的 ODU业务传送装置示意图;
图 3示出了本发明第二实施例的 ODU业务传送装置示意图;
图 4示出了本发明第二实施例对应的时隙对应表和帧周期时隙表; 图 5示出了本发明第三实施例的 ODU业务交换装置示意图;
图 6示出了本发明第三实施例对应的时隙对应表和帧周期时隙表; 图 7示出了本发明第四实施例的 ODU业务传送装置示意图;
图 8示出了本发明第四实施例对应的时隙对应表和帧周期时隙表; 图 9示出了本发明另一实施例对应的时隙对应表和帧周期时隙表; 图 10示出了本发明另一实施例对应的时隙对应表和帧周期时隙表; 图 11示出了本发明另一实施例的 ODU业务传送方法示意图;
图 12示出了本发明另一实施例的第一 ODU业务处理单元的结构示意图。 具体实施方式 为了便于本领域一般技术人员理解和实现本发明,现结合附图描绘本发明 的实施例。 在此, 本发明的示意性实施例及其说明用于解释本发明, 但并不作 为对本发明的限定。
图 2示出了本发明第一实施例的 ODU业务传送装置示意图。 该交换装置包 括, 第一 ODU业务处理单元、 时隙分配单元、 交换出端口分配单元、 以太交 换单元和第二 ODU业务处理单元。
第一 ODU业务处理单元, 用于接收 ODU业务, 根据所述 ODU帧的切片长 度, 将所述 ODU帧封装成以太帧, 根据所述时隙分配单元确定的第一 ODU业 务处理单元出端口时隙对应表, 发送所述以太帧到以太交换单元。 时隙分配单元, 用于产生一个同步帧周期, 根据获得的所述 ODU帧的速 率和所述第一 ODU业务处理单元的出端口数量, 确定所述第一 ODU业务处理 单元出端口时隙对应表和所述 ODU帧的切片长度。
交换出端口分配单元, 用于根据所述时隙分配单元确定的第一 ODU业务 处理单元出端口时隙对应表,确定以太交换单元入端口帧周期时隙表,根据所 述以太交换单元入端口帧周期时隙表, 确定以太交换单元出端口帧周期时隙 表,并根据所述以太交换单元入端口帧周期时隙表和所述以太交换单元出端口 帧周期时隙表, 确定以太交换单元分配转发命令。
以太交换单元,根据所述以太交换单元分配转发命令,将接收到的所述以 太帧转发至所述第二 ODU业务处理单元。
第二 ODU业务处理单元, 用于根据所述交换出端口分配单元确定的以太 交换单元出端口帧周期时隙表,对接收到的以太帧进行解封装处理, 获得以太 净荷比特流数据, 并将所述以太净荷比特流数据封装成 ODU帧发送出去。
同步帧周期中的时隙数可以根据业务类型,设置整数个时隙。该同步帧周 期可以由若干个以太帧时隙组成。组成该同步帧周期的以太帧时隙的数目须大 于或等于该第一 ODU业务处理单元出端口数量, 小于 1000以内, 即, 其数目 通常为几十、 几百数量级。 时隙分配单元通过时隙间插分配算法, 保证各个 ODU业务分配到同步帧周期中的时隙的离散性和均匀性。
进一步地, 本发明实施例还可以为, 第一 ODU业务处理单元接收到的所 述 ODU业务包括至少两路 ODU子业务, 该至少两路 ODU子业务可以为不同类 型的高阶 ODU业务, 或同一类型却不同的客户的高阶 ODU业务。
本发明实施例还可以包括两个或两个以上的第一 ODU业务处理单元。 本 发明实施例还可以包括两个或两个以上的第二 ODU业务处理单元。 两个或两 个以上的第一 ODU业务处理单元分别上述的以太交换单元的入端口相连接。 两个或两个以上的第二 ODU业务处理单元分别上述的以太交换单元的出端口 相连接。 上述的时隙分配单元分别与上述的多个第一 ODU业务处理单元相连 接。
时隙分配单元通过时隙间插分配算法, 保证各个 ODU业务分配到同步帧 周期中的时隙的离散性和均匀性。 交换出端口分配单元,按时隙间插分配算法 保证了以太交换单元的输入接口和输出接口的时隙分配,使得以太交换单元根 据交换出端口分配单元生成的以太交换单元分配转发命令,将接收到的以太帧 转发至所述第二 ODU业务处理单元。
在本发明实施例中, 通过使用第一 ODU业务处理单元、 时隙分配单元、 交换出端口分配单元、以太交换单元和第二 ODU业务处理单元,根据第一 ODU 业务处理单元出端口时隙对应表和以太交换单元分配转发命令, 对 ODU业务 进行转发, 解决了现有技术无法通过以太交换单元进行传送 ODU帧的问题, 保证了传送装置的转发端口不出现业务拥塞, 提高了通信网络的传输质量。
图 3示出了本发明第二实施例的 ODU业务的传送装置示意图。 该装置包 括, 同步时钟单元、 第一 ODU业务处理单元、 时隙分配单元、 交换出端口分 配单元、 以太交换单元和第二 ODU业务处理单元。
同步时钟单元, 用于为所述时隙分配单元提供时钟信号, 所述时钟信号用 于同步所述同步帧周期的基准时间,使得所述时隙分配单元产生的每一个帧周 期在时间上是同步的。
进一步地, 本发明实施例中的第一 ODU业务处理单元还可以具体包括开 销提取单元、 以太封装单元和端口分发单元。开销提取单元, 用于接收 ODU业 务, 提取所述 ODU业务中的 ODU帧的开销信息, 根据所述开销信息, 识别所 述 ODU业务, 并获得所述 ODU业务中的 ODU帧的类型。 以太封装单元, 用于 根据提取的开销信息确定所述 ODU帧的速率, 根据所述 ODU帧的速率和所述 ODU帧的切片长度将所述 ODU帧封装成以太帧。 端口分发单元, 用于根据所 述时隙分配单元确定的所述第一 ODU业务处理单元出端口时隙对应表, 发送 所述以太帧到以太交换单元。
时隙分配单元, 用于产生一个同步帧周期, 根据获得的所述 ODU帧的速 率、 所述第一 ODU业务处理单元的出端口速率和所述同步帧周期, 确定所述 ODU帧占用所述同步帧周期中时隙的数量和所述 ODU帧的切片长度, 按照间 插分配的方法,确定包含第一 ODU业务处理单元出端口与所述同步帧周期中时 隙对应关系的第一 ODU业务处理单元出端口时隙对应表。
时隙分配单元, 进一步地, 还可以用于, 产生一个同步帧周期, 根据获得 的所述 ODU帧的速率和所述同步帧周期, 按照预先配置的 ODU帧的速率倍数 与 ODU帧占用同步帧周期中时隙数量的对应关系, 确定所述 ODU帧占用所述 同步帧周期中时隙的数量和所述 ODU帧的切片长度, 按照间插分配的方法,确 定包含第一 ODU业务处理单元出端口与所述同步帧周期中时隙对应关系的第 一 ODU业务处理单元出端口时隙对应表。 该预先配置的 ODU帧的速率倍数与
ODU帧占用同步帧周期中时隙数量的对应关系, 具体为 ODU帧的速率与该速 率的 ODU帧占用的同步帧周期中时隙的数量的对应关系。 例如, 在时隙数为
24的同步帧周期中, ODU帧的速率为 1.2Gbps时, 该速率的 ODU帧占用的同步 节; 当 ODU帧的速率为 2.5Gbps时, 该速率的 ODU帧占用的同步帧周期中时隙 帧占用的同步帧周期中时隙的数量增加的倍数刚好等于时隙的数量所对应的 ODU帧的速率增加的倍数,即为 2倍。该预先配置的 ODU帧的速率倍数对应表, 可以包括, 更多种 ODU帧的速率, 比如, ODU帧的速率为 lOGbps时, 该速率 的 ODU帧占用的同步帧周期中时隙的数量为 24个。 ODU业务包括 ODU0、 ODU1、 ODU2、 ODU3和 ODU4 ,它们的速率分别为 1.2Gbit/s、 2.5Gbit/s、 1 OGbit/s、 帧周期中时隙数量的对应关系, 可以在多种类型的同步帧周期、 第一 ODU业 务处理单元的出端口速率及不同以太帧净荷数量的前提下, 设置不同速率的 ODU帧与该 ODU帧占用同步帧周期中时隙数量的对应关系。 当然, 在本发明 实施例中, 本领域人员知道, 第一 ODU业务处理单元或第一 ODU业务处理单 元中的各模块或功能单元(比如以太封装单元)也可以确定 ODU帧的切片长 度, 其具体过程与上述的实施例类似, 此处不再赘述。 时隙分配单元分别与交换出端口分配单元、 第一 ODU业务处理单元的开 销提取单元、 第一 ODU业务处理单元的以太封装单元和端口分发单元相连。 时隙分配单元通过时隙间插分配算法, 保证各个 ODU业务分配到同步帧周期 中的时隙的离散性和均匀性, 同时, 也可以保证第一 ODU业务处理单元的出 端口的流量均衡, 降低时隙冲突。
进一步地, 本发明实施例中的第二 ODU业务处理单元还可以包括, 以太 解封装单元和 ODU组帧单元。 以太解封装单元, 用于根据所述交换出端口分 配单元确定的以太交换单元出端口帧周期时隙表,对接收到的以太帧进行解封 装处理, 获得以太净荷比特流数据; ODU组帧单元, 用于所述以太净荷比特 流数据封装成 ODU帧发送出去。 理单元。 本发明实施例还可以包括两个或两个以上的第二 ODU业务处理单元。 两个或两个以上的第一 ODU业务处理单元分别上述的以太交换单元的入端口 相连接。 两个或两个以上的第二 ODU业务处理单元分别上述的以太交换单元 的出端口相连接。 上述的时隙分配单元分别与上述的多个第一 ODU业务处理 单元相连接。
图 4示出了本发明第二实施例对应的时隙对应表和帧周期时隙表。 在本发 明第二实施例中, 本发明实施例中的同步帧周期的时隙数为 24, 业务类型为一 类 ODU业务。 在本发明实施例中, 第一 ODU业务处理单元出端口有两个, 分 别为 ol和 o2。 在本发明实施例中, 每个以太帧的净荷长度为 256个字节, 第一 ODU业务处理单元的出端口速率为 12Gbps。 在本发明实施例中, 以太帧的净 荷长度的取值范围可以为 64字节至 1000字节以下。
时隙分配单元, 根据同步帧周期的时隙数 24和该 ODU业务的速率 (本发 明实施例的 ODU业务为 ODU2 , 速率为 239/237 9 953 280 kbit/s ) , 确定该 ODU2帧需要用 24个以太帧来封装, 即, 该 ODU2帧占了整个该同步帧周期时 隙数的 24个。
具体计算过程为: 以太帧的净荷长度为 256个字节乘以 8再除以第一 ODU 业务处理单元的出端口速率 12Gbps, 算出每个以太帧时隙时长为 170.6665ns, 则 12Gbps的第一 ODU业务处理单元的出端口每秒钟可发送 5859375个以太帧, 或每秒钟可发送 244140.625 ( 5859375/24 = 244140.625 )个帧周期。 在本发明 实施例中, 釆用的方法是, 先计算 ODU0帧需要多少个以太帧来封装, 然后再 计算 ODU2帧需要多少个以太帧来封装。 ODU0的速率为 1 244 160 kbit/s, 可计 算出每个帧周期需要传送 637.00992个 ( 1244160 * 1000/8/244140.625 = 637.00992 ) 字节。 使用净荷长度 256字节的以太帧去封装, 则需要 637.00992/256=2.48832个以太帧, 取整后, 可知, ODU0需要 3个以太帧时隙封 装,每个以太帧封装的字节数为 637.00992/3=212.33664字节,因为以太帧封装的
的速率 239/237 9 953 280 kbit/s , 可计算出每个帧周期需要传送 5139.08424911392405个 ( 239/237 9 953 280*1000/8/244140.625 = 5139.08424911392405 )字节。因为 ODU2速率大约等于 8个 ODU0的速率, ODU0 需要 3个以太帧时隙封装, 因此使用 24个以太帧时隙封装 ODU2,每个以太帧封 装 ODU2字节数 =5139.08424911392405/24 « 214.12851037974683542字节,因为 以太帧封装 ODU2长度为整数,因此每个以太帧封装 ODU2的切片长度为 214字 节或 215字节。
方法同上, 可以计算出, 当 ODU业务为 ODU1时(ODU1速率 =239/238 X 2 488 320 kbit/s ) , 计算得出每秒有 239/238 2 488 320*1000/8= ( 239/238 ) * 311040000字节需要传送, 从而计算出每个接口帧周期需要传送(239/238 ) * 311040000/244140.625 - 1279.3728645378 字 节 , 1279.3728645378/6 - 213.2288107563。 使用 6个以太帧时隙封装, 每个以太帧封装 ODU1字节数约等 于 213.2288107563字节, 因此以太帧封装 ODU1长度为整数, 因此每个以太帧 封装 ODU1长度为 213或 214字节。
当然, 在本发明实施例中, 本领域人员知道, 第一 ODU业务处理单元或 第一 ODU业务处理单元中的各模块或功能单元(比如以太封装单元)也可以 确定 ODU帧的切片长度, 其具体过程与上述的实施例类似, 此处不再赘述。
图 4( a )为时隙分配单元确定的第一 ODU业务处理单元出端口时隙对应表。 如图 4 ( a )所示, ODU业务在 1 - 24的时隙的位置上,分别对应于第一 ODU 业务处理单元出端口 ol、 o2... ... ol、 o2。 第一 ODU业务处理单元,按照图 4 ( a ) 所示的时隙对应表,在时隙所对应的相应的出端口位置,发送以太帧至以太交 换单元。
图 4 ( b )和图 4 ( c )分别为交换出端口分配单元根据该时隙对应表生成的 以太交换单元入端口帧周期时隙表和以太交换单元出端口帧周期时隙表。以太 交换单元具有两个业务输入端口 sil/si2和两个业务输出端口 sol/so2,如图 4 ( b ) 和 4 ( c ) 所示。 本发明实施例中, 在以太交换单元入端口帧周期时隙表中,
ODU业务在时隙 1 - 24上, 分别对应于输入端口 sil、 si2 sil、 si2。 相应地, 以太交换单元出端口帧周期时隙表中的时隙 1的位置上对应的是以太交换单元 的输出端口 so2, 后续时隙编号 2 - 24 , 釆用间插分配的原则, 分别为如图所示 的固定时序 sol、 so2、 sol , so2、 sol sol , 即在对应的时隙、 对应的以太 交换单元的输出端口, 以太交换单元接收并转发以太帧至第二 ODU业务处理 单元。 当然,时隙 1的位置上对应的也可以是以太交换单元的输出端口 sol ,则, 在后续时隙编号 2 - 24中, 釆用间插分配的原则, 以太交换单元的输出端口的 编号则分别为固定时序 so2、 sol , so2、 sol so2。
在具体实现中, 交换出端口分配单元,根据时隙分配单元生成的时隙对应 表,生成以太交换单元入端口帧周期时隙表和以太交换单元出端口帧周期时隙 表,并根据所述以太交换单元入端口帧周期时隙表和所述以太交换单元出端口 帧周期时隙表,确定以太交换单元分配转发命令。 以太交换单元根据接收到的 以太交换单元分配转发命令,发送以太帧至第二 ODU业务处理单元。第二 ODU 业务处理单元, 用于根据所述交换出端口分配单元确定的以太交换单元出端 口帧周期时隙表,对接收到的以太帧进行解封装处理, 获得以太净荷比特流数 据, 并将所述以太净荷比特流数据封装成 ODU帧发送出去。
在本发明实施例中, 通过使用第一 ODU业务处理单元、 时隙分配单元、 交换出端口分配单元、以太交换单元和第二 ODU业务处理单元,根据第一 ODU 业务处理单元出端口时隙对应表和以太交换单元分配转发命令, 对 ODU业务 进行转发, 解决了现有技术无法通过以太交换单元进行传送 ODU帧的问题, 保证了传送装置的转发端口不出现业务拥塞, 提高了通信网络的传输质量。
图 5示出了本发明第三实施例的 ODU业务传送装置示意图。 该装置包括, 同步时钟单元、 第一 ODU业务处理单元、 时隙分配单元、 交换出端口分配单 元、 以太交换单元和第二 ODU业务处理单元。 对该装置各功能模块详细的描 述, 请参照上述本发明第二实施例的 ODU业务调整装置的描述。 在本发明的 实施例中, ODU业务包含至少两路 ODU子业务, 比如, ODU子业务 1和 ODU 子业务 2。
图 6示出了本发明第三实施例对应的时隙对应表和帧周期时隙表。 在本发 明第三实施例中, 本发明实施例中的同步帧周期的时隙数为 24, 业务类型为两 路 ODU业务(ODU子业务 1和 ODU子业务 2) ODU子业务 1和 ODU子业务 2分别 为 ODU2 (速率为 239/237 9953280 kbit/s )和 ODU1 (速率为 239/238 2 488320 kbit/s )。 在本发明实施例中, 第一 ODU业务处理单元有 4个出端口 ol、 。2、 o3和 o4。 图 6 (a)为第一 ODU业务处理单元出端口时隙对应表。 如图 6 (a) 所示, 在本发明实施例中, 每个以太帧的净荷长度为 256个字节, 第一 ODU业 务处理单元出端口的传输速率为 12Gbps。时隙分配单元,根据同步帧周期的时 隙数 24, 以及该两路 ODU2的速率和 ODU1的速率, 确定 ODU2业务需要用 24 个以太帧来封装, 即, 该 ODU2帧需要占用同步帧周期中时隙数量为 24, 而 ODU1则占了整个该同步帧周期时隙数的 6个, 即, 该 ODU1帧需要占用同步帧 周期中时隙数量为 6。 对于 ODU2业务, 时隙 1至 24分别对应于第一 ODU业务处 理单元出端口 ol、 。2、 o3、 o4、 ol、 o2、 o3...... o2、 。3、 。4。 对于 ODU1业务, 时隙 1、 5、 9、 13、 17、 21分别对应于第一 ODU业务处理单元出端口 o2、 o3、 o4、 o2、 o3、 o4。 第一 ODU业务处理单元, 按照图 6 (a) 所示的时隙对应表, 在时隙所对应的相应的出端口位置, 发送以太帧至以太交换单元。
图 6 (b)和图 6 (c)分别为交换出端口分配单元根据该时隙对应表生成的 以太交换单元入端口帧周期时隙表和以太交换单元出端口帧周期时隙表。在本 发明实施例中, 以太交换单元具有四个业务输入端口 si 1 /si2/si3/si4和四个业务 输出端口 sol/so2/so3/so4, 如图 6 (b)和 6 (c)所示。 在图 6 (b) 中, 当 ODU 子业务 1在时隙 1对应于入端口 sil时, 因为在同一个端口只能接收或发送同一 个时隙里的业务, 所以, ODU子业务 2在时隙 1时, 只能对应 si2或 si3或 si4, 本 发明实施例为 si2, 当然也可以是 si3或 si4。 本发明实施例中的 ODU子业务 1的 速率是 ODU子业务 2的速率的 4倍, 所以, 后续的时隙间插位置分别在时隙 5、 9、 13、 17、 21等时隙位置。 ODU子业务 2的以太交换单元的输入端口顺序为 固定时序 si2、 si3、 si4, 当然, 也可以为固定时序 si2、 si4、 si3。 同理, 在图 6 (c)中, 以太交换单元出端口帧周期时隙表中的时隙 1的位置上, 当 ODU子业 务 1对应的是以太交换单元的输出端口 so2时, ODU子业务 2可以对应 so3 , 也可 以是 so4或 sol。 本发明实施例对应的是 so3 , 后续时隙编号 5、 9、 13、 17、 21 中, 釆用间插分配的原则, 分别为如图所示的固定时序 so4、 sol , so3、 so4、 sol , 即在对应的时隙、 对应的以太交换单元的输出端口, 以太交换单元接收 并转发以太帧至第二 ODU业务处理单元。 当然, 在后续时隙编号 5、 9、 13、 17、 21中, 釆用间插分配的原则, 也可以为固定时序 sol、 so4、 so3、 sol , so4。 只要按照 "在相同的时隙上不能用相同的输入端口或输出端口承载不同的业 务" 原则处理即可。
在具体实现中, 交换出端口分配单元,根据时隙分配单元生成的时隙对应 表,生成以太交换单元入端口帧周期时隙表和以太交换单元出端口帧周期时隙 表,并根据所述以太交换单元入端口帧周期时隙表和所述以太交换单元出端口 帧周期时隙表,确定以太交换单元分配转发命令。 以太交换单元根据接收到的 以太交换单元分配转发命令,发送以太帧至第二 ODU业务处理单元。第二 ODU 业务处理单元, 用于根据所述交换出端口分配单元确定的以太交换单元出端 口帧周期时隙表,对接收到的以太帧进行解封装处理, 获得以太净荷比特流数 据, 并将所述以太净荷比特流数据封装成 ODU帧发送出去。
在本发明实施例中, 通过使用第一 ODU业务处理单元、 时隙分配单元、 交换出端口分配单元、以太交换单元和第二 ODU业务处理单元,根据第一 ODU 业务处理单元出端口时隙对应表和以太交换单元分配转发命令, 对 ODU业务 进行转发, 解决了现有技术无法通过以太交换单元进行传送 ODU帧的问题, 保证了传送装置的转发端口不出现业务拥塞, 提高了通信网络的传输质量。 图 7示出了本发明第四实施例的 ODU业务传送装置示意图。 该装置包括, 同步时钟单元、 第一 ODU业务处理单元、 时隙分配单元、 交换出端口分配单 元、 以太交换单元和第二 ODU业务处理单元。 对该装置各功能模块详细的描 述, 请参照上述本发明第二实施例的 ODU业务交换装置的描述。 本发明实施 例中的 ODU业务包含的至少两路 ODU子业务为 ODU子业务 1、 ODU子业务 2和 ODU子业务 3 ,则所述时隙对应表中的固定时序的时隙与 ODU业务中的三路子 业务 ODU子业务 1、 ODU子业务 2和 ODU子业务 3相对应。 固定时序的时隙可以 彼此相连, 或以任意数目的时隙间隔, 当然, 该任意数目的时隙数应该小于该 同步帧周期中的时隙数。在本发明第四实施例中, 本发明实施例中的同步帧周 期的时隙数为 24, 业务类型为三路 ODU子业务。 第一 ODU业务处理单元进一 步包括开销提取单元、 以太封装单元和端口分发单元。 开销提取单元, 用于提 取 ODU子业务 1、 ODU子业务 2和 ODU子业务 3中的 ODU帧的开销信息。 以太 封装单元, 具体用于, 根据 ODU子业务 1、 ODU子业务 2和 ODU子业务 3中的 ODU帧的开销信息, 确定所述 ODU帧的速率, 根据所述 ODU帧的速率和所述 ODU帧的切片长度将所述 ODU帧封装成以太帧。 端口分发单元, 用于根据所 述时隙分配单元确定的所述第一 ODU业务处理单元出端口时隙对应表, 发送 所述以太帧到以太交换单元。 本发明实施例中的第一 ODU业务处理单元出端 中的时隙数 24,将 ODU子业务 1、 ODU子业务 2和 ODU子业务 3分别与第一 ODU 业务处理单元出端口相对应, 生成时隙对应表。 时隙分配单元通过时隙间插分 配算法, 保证各个 ODU业务分配到同步帧周期中的时隙的离散性和均匀性, 同时, 也可以保证第一 ODU业务处理单元出端口的流量均衡, 降低时隙冲突。 交换出端口分配单元,按时隙间插分配算法保证了以太交换单元的输入接口和 输出接口的时隙分配,使得以太交换单元根据交换出端口分配单元生成的以太 交换单元分配转发命令, 将接收到的以太帧转发至所述第二 ODU业务处理单 元。
图 8示出了本发明第四实施例对应的时隙对应表和帧周期时隙表。 在本发 明实施例中, 同步帧周期的时隙数为 24 , 业务类型为三路 ODU业务, 分别为 ODU子业务 1 (具体为 ODU2, 速率为 239/237 χ 9 953 280 kbit/s ) 、 ODU子业 务 2 (具体为 ODU1 , 速率为 239/238 2 488 320 kbit/s )和 ODU子业务 3 (具体 为 ODU0, 速率为 1 244 160 kbit/s ) 。 在本发明实施例中, 第一 ODU业务处理 单元有 4个出端口 ol、 o2、 o3和 o4。 图 8 ( a )为第一 ODU业务处理单元出端口 时隙对应表。 如图 8 ( a )所示, 在本发明实施例中, 每个以太帧的净荷长度为 256个字节, 第一 ODU业务处理单元的出端口的传输速率为 12Gbps。 时隙分配 单元, 根据同步帧周期的时隙数 24, 以及该 3路 ODU子业务的速率, 确定在一 个同步帧周期中, ODU子业务 1需要用 24个以太帧来封装, 即, 该 ODU帧占 了整个该同步帧周期时隙数的 24个。 ODU子业务 2需要用 6个以太帧来封装, 即, ODU子业务 2占了整个该同步帧周期时隙数的 6个。 ODU子业务 3需要用 3 个以太帧来封装, 即, ODU子业务 3占了整个该同步帧周期时隙数的 3个。 如 图 8 ( a ) 所示, 在时隙 1至 24的位置上, ODU子业务 1分别对应于第一 ODU业 务处理单元的出端口 ol、 。2、 。3、 o4 ol、 o2、 o3、 。4。 在时隙 1、 5、 9、
13、 17、 21的位置上, ODU子业务 2分别对应于第一 ODU业务处理单元的出端 口 o2、 。3、 o4 、 o2、 o3、 。4。 在时隙 3、 11、 19的位置上, ODU子业务 3分别 对应于第一 ODU业务处理单元的出端口 ol、 ol、 ol。 第一 ODU业务处理单元, 按照图 8 ( a )所示的时隙对应表, 在时隙所对应的相应的出端口位置, 发送以 太帧至以太交换单元。
图 8 ( b )和图 8 ( c )分别为交换出端口分配单元根据图 8 ( a )的时隙对应 表生成的以太交换单元输入端口帧周期时隙表和以太交换单元输出端口帧周 期时隙表。 在本发明实施例中, 以太交换单元具有四个业务输入端口 sil/si2/si3/si4和四个业务输出端口 sol/so2 /so3/so4, 如图 8 ( b )和 8 ( c )所示。 在图 8 ( b ) 中, 当 ODU子业务 1在时隙 1对应于入端口 sil时, 因为在同一个端 口只能接收或发送同一个时隙里的业务, 所以, ODU子业务 2在时隙 1时, 只 能对应 si2或 si3或 si4, 本发明实施例为 si2, 当然也可以是 si3或 si4。 本发明实施 例中的 ODU子业务 1的速率是 ODU子业务 2的速率的 4倍, 所以, 后续的时隙间 插位置分别在时隙 5、 9、 13、 17、 21等时隙位置。 ODU子业务 2的以太交换单 元的输入端口顺序为 si2、 si3、 si4 , 当然, 也可以为固定时序 si2、 si4、 si3。
ODU子业务 3在时隙 3的位置上, 对应的是输入端口 sil。 在后续时隙为 11、 19 的位置上, 也对应输入端口 sil , 表明, ODU子业务 1的速率是 ODU子业务 3的 速率的 8倍。 ODU子业务 3也可以在别的时隙或别的输入端口输入, 只要按照 "在相同的时隙上不能用相同的输入端口或输出端口承载不同的业务"原则处 理即可。 同理, 在图 8 ( c ) 中, 以太交换单元出端口帧周期时隙表中的时隙 1 的位置上, 当 ODU子业务 1对应的是以太交换单元的输出端口 so2时, ODU子业 务 2可以对应 so3 , 也可以是 so4或 sol。 本发明实施例对应的是 so3 , 后续时隙编 号 5、 9、 13、 17、 21中,釆用间插分配的原则,分别为如图所示的固定时序 so4、 sol、 so3、 so4、 sol , 即在对应的时隙、 对应的以太交换单元的输出端口, 以 太交换单元接收并转发以太帧至第二 ODU业务处理单元。 当然, 在后续时隙 编号 5、 9、 13、 17、 21中, 釆用间插分配的原则, 也可以为固定时序 sol、 so4、 so3、 sol、 so4。 只要按照 "在相同的时隙上不能用相同的输入端口或输出端 口承载不同的业务" 原则处理即可。 ODU子业务 3在时隙 3的位置上, 对应的 是输入端口 so2。 在后续时隙为 11、 19的位置上, 也对应输入端口 so2, 表明, ODU子业务 1的速率是 ODU子业务 3的速率的 8倍。 ODU子业务 3也可以在别的 时隙或别的输入端口输入, 只要按照 "在相同的时隙上不能用相同的输入端口 或输出端口承载不同的业务" 原则处理即可。
在具体实现中, 交换出端口分配单元,根据时隙分配单元生成的时隙对应 表,生成以太交换单元入端口帧周期时隙表和以太交换单元出端口帧周期时隙 表,并根据所述以太交换单元入端口帧周期时隙表和所述以太交换单元出端口 帧周期时隙表,确定以太交换单元分配转发命令。 以太交换单元根据接收到的 以太交换单元分配转发命令,发送以太帧至第二 ODU业务处理单元。第二 ODU 业务处理单元, 用于根据所述交换出端口分配单元确定的以太交换单元出端 口帧周期时隙表,对接收到的以太帧进行解封装处理, 获得以太净荷比特流数 据, 并将所述以太净荷比特流数据封装成高阶 ODU帧发送出去。
在本发明实施例中, 通过使用第一 ODU业务处理单元、 时隙分配单元、 交换出端口分配单元、以太交换单元和第二 ODU业务处理单元,根据第一 ODU 业务处理单元出端口时隙对应表和以太交换单元分配转发命令, 对 ODU业务 进行转发, 解决了现有技术无法通过以太交换单元进行传送 ODU帧的问题, 保证了传送装置的转发端口不出现业务拥塞, 提高了通信网络的传输质量。
图 9示出了本发明另一实施例对应的时隙对应表和帧周期时隙表。 可以参 照上面实施例的详细论述,本发明实施例中的 ODU业务分别为 ODU子业务 1和 ODU子业务 2, 时隙周期数为 12。 具体详细的第一 ODU业务处理单元出端口、 以太交换单元的输入端口和输出端口, 分别与同步帧周期中的时隙的对应关 系, 请阅图 9 ( a ) 、 ( b )和(c ) 。
具体地, 在本发明实施例中, ODU子业务 1和 ODU子业务 2可以分别为 ODU2 (速率为 239/237 9 953 280 kbit/s )和 ODU1 (速率为 239/238 2 488 320 kbit/s )。 如果每个以太帧的净荷长度为 256个字节, 第一 ODU业务处理单元传 输速率为 12Gbps, 则根据同步帧周期的时隙数 12、 ODU1的速率和 ODU2的速 率, 确定该 ODU2需要用 12个以太帧来封装, 即, 该 ODU2业务占满了整个该 同步帧周期, 以及 ODU1业务只需要占据该同步帧周期中的 3个时隙即可, 如 图 9 ( a ) 所示。
图 10示出了本发明另一实施例对应的时隙对应表和帧周期时隙表。可以参 照上面实施例的详细论述, 本发明实施例中的 ODU业务为一种类型的业务, 时隙周期数为 12。 具体详细的第一 ODU业务处理单元出端口、 以太交换单元 的输入端口和输出端口, 分别与同步帧周期中的时隙的对应关系, 请阅图 10 ( a ) 、 ( b )和(c ) 。
具体地, 在本发明实施例中, ODU业务可以为 ODU2 (速率为 239/237 X 9 953 280 kbit/s ) 。 如果每个以太帧的净荷长度为 256个字节, 端口分发单元的 传输速率为 12Gbps, 则根据同步帧周期的时隙数 12和 ODU2的速率, 确定该 ODU2需要用 12个以太帧来封装, 即, 该 ODU2业务占满了整个该同步帧周期, 如图 10 ( a )所示。
图 11示出了本发明另一实施例的 ODU业务传送方法示意图。
步骤 S101 , 接收 ODU业务, 根据所述 ODU帧的切片长度, 将所述 ODU帧 封装成以太帧, 根据所述时隙分配单元确定的第一 ODU业务处理单元出端口 时隙对应表,发送所述以太帧到以太交换单元; 所述时隙对应表是根据同步帧 周期、所述 ODU帧的速率和所述第一 ODU业务处理单元的出端口数量确定的。
步骤 S102,根据所述以太交换单元分配转发命令,将接收到的所述以太帧 转发至所述第二 ODU业务处理单元; 所述以太交换单元分配转发命令是根据 以太交换单元入端口帧周期时隙表和以太交换单元出端口帧周期时隙表确定 的;所述以太交换单元出端口帧周期时隙表是根据所述以太交换单元入端口帧 周期时隙表确定的;所述以太交换单元入端口帧周期时隙表是根据所述时隙分 配单元确定的第一 ODU业务处理单元出端口时隙对应表确定的。
步骤 S103 ,根据所述以太交换单元出端口帧周期时隙表,对接收到的以太 帧进行解封装处理, 获得以太净荷比特流数据, 并将所述以太净荷比特流数据 封装成高阶 ODU帧发送出去。
进一步地, 本发明实施例还可以包括, 产生一个时钟信号, 该时钟信号用 于同步所述同步帧周期的基准时间 ,使得所述同步帧周期的每一个帧周期在时 间上是同步的。
进一步地, 本发明实施例还可以包括, 所述步骤, 接收 ODU业务, 根据 所述 ODU帧的切片长度, 将所述 ODU帧封装成以太帧, 根据所述时隙分配单 元确定的第一 ODU业务处理单元出端口时隙对应表, 发送所述以太帧到以太 交换单元, 具体为, 接收 ODU业务, 提取所述 ODU业务中的 ODU帧的开销信息, 根据所述开 销信息, 识别所述 ODU业务, 并获得所述 ODU业务中的 ODU帧的类型;
根据提取的开销信息确定所述 ODU帧的速率, 根据所述 ODU帧的速率和 根据所述时隙分配单元确定的所述第一 ODU业务处理单元出端口时隙对 应表, 发送所述以太帧到以太交换单元。
进一步地, 所述时隙对应表的确定, 具体为, 产生一个同步帧周期, 根据 获得的所述 ODU帧的速率、 所述第一 ODU业务处理单元的出端口速率和所述 同步帧周期, 确定所述 ODU帧占用所述同步帧周期中时隙的数量和所述 ODU 帧的切片长度, 按照间插分配的方法,确定包含第一 ODU业务处理单元出端口 与所述同步帧周期中时隙对应关系的第一 ODU业务处理单元出端口时隙对应 表。
进一步地, 所述时隙对应表的确定, 具体为, 产生一个同步帧周期, 根据 获得的所述 ODU帧的速率和所述同步帧周期, 按照 ODU帧的速率倍数与 ODU 帧占用同步帧周期中时隙数量的对应关系, 确定所述 ODU帧占用所述同步帧 周期中时隙的数量和所述 ODU帧的切片长度, 按照间插分配的方法,确定包含 第一 ODU业务处理单元出端口与所述同步帧周期中时隙对应关系的第一ODU 业务处理单元出端口时隙对应表。 该预先配置的 ODU帧的速率倍数与 ODU帧 占用同步帧周期中时隙数量的对应关系, 具体为 ODU帧的速率与该速率的 ODU帧占用的同步帧周期中时隙的数量的对应关系。 例如, 在时隙数为 24的 同步帧周期中, ODU帧的速率为 1.2Gbps时, 该速率的 ODU帧占用的同步帧周 当 ODU帧的速率为 2.5Gbps时, 该速率的 ODU帧占用的同步帧周期中时隙的数 占用的同步帧周期中时隙的数量增加的倍数刚好等于时隙的数量所对应的 ODU帧的速率增加的倍数,即为 2倍。该预先配置的 ODU帧的速率倍数对应表, 可以包括, 更多种 ODU帧的速率, 比如, ODU帧的速率为 lOGbps时, 该速率 的 ODU帧占用的同步帧周期中时隙的数量为 24个。 ODU业务包括 ODU0、 ODU1、 ODU2、 ODU3和 ODU4 ,它们的速率分别为 1.2Gbit/s、 2.5Gbit/s、 1 OGbit/s、 帧周期中时隙数量的对应关系, 可以在多种类型的同步帧周期、 第一 ODU业 务处理单元的出端口速率及不同以太帧净荷数量的前提下, 设置不同速率的 ODU帧与该 ODU帧占用同步帧周期中时隙数量的对应关系。 当然, 在本发明 实施例中, 本领域人员知道, 第一 ODU业务处理单元或第一 ODU业务处理单 元中的各模块或功能单元(比如以太封装单元)也可以确定 ODU帧的切片长 度, 其具体过程与上述的实施例类似, 此处不再赘述。
本发明实施例的 ODU业务传送方法的每个步骤更详细的描述, 可以参照 本发明上述的实施例一至实施例四, 在此不再赘述。
在本发明实施例中, 通过使用第一 ODU业务处理单元、 时隙分配单元、 交换出端口分配单元、以太交换单元和第二 ODU业务处理单元,根据第一 ODU 业务处理单元出端口时隙对应表和以太交换单元分配转发命令, 对 ODU业务 进行转发, 解决了现有技术无法通过以太交换单元进行传送 ODU帧的问题, 保证了传送装置的转发端口不出现业务拥塞, 提高了通信网络的传输质量。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示 例的单元及算法步骤, 能够以电子硬件、或者计算机软件和电子硬件的结合来 实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用 和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现 所描述的功能, 但是这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和方 法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性 的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另 外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个系统, 或 一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或直 接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。 单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者 也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部 单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在 ,也可以两个或两个以上单元集成在一个单元 中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用 时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技 术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以 以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质中, 包括 若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设 备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前述的存储介质 包括: U盘、 移动硬盘、 只读存储器(ROM, Read-Only Memory ) 、 随机存取 存储器(RAM, Random Access Memory ) 、 磁碟或者光盘等各种可以存储程 序代码的介质。
本发明的另一个实施例, 上述实施例中的第一 ODU业务处理单元可以为 如图 12所示, 包括至少一个处理器 1201 (例如 CPU ) , 至少一个网络接口 1202或者其他通信接口, 存储器 1203 , 和至少一个通信总线 1204 , 用于实现 这些装置之间的连接通信。处理器 1201用于执行存储器 1203中存储的可执行 模块, 例如计算机程序。 存储器 1203可能包含高速随机存取存储器(RAM: Random Access Memory ) , 也可能还包括非不稳、定的存 4诸器 ( non- volatile memory ) , 例如至少一个磁盘存储器。 通过至少一个网络接口 1202 (可以是 有线或者无线)实现该系统网关与至少一个其他网元之间的通信连接, 可以使 用互联网, 广域网, 本地网, 城域网等。
在一些实施方式中, 存储器 1203存储了程序 1231 , 程序 1231可以被处 理器 1201执行, 这个程序包括:
接收 ODU业务, 根据 ODU帧的切片长度, 将 ODU帧封装成以太帧, 根 据时隙分配单元确定的第一 ODU业务处理单元出端口时隙对应表, 发送所述 以太帧到以太交换单元; 所述时隙对应表是根据同步帧周期、 所述 ODU帧的 速率和所述第一 ODU业务处理单元的出端口数量确定的。
在本发明的另一实施例中,第二 ODU业务处理单元的结构可以参照图 12 , 也可以为, 包括至少一个处理器 1301 (例如 CPU ) , 至少一个网络接口 1302 或者其他通信接口, 存储器 1303 , 和至少一个通信总线 1304, 用于实现这些 装置之间的连接通信。处理器 1301用于执行存储器 1303中存储的可执行模块, 例如计算机程序。存储器 1303可能包含高速随机存取存储器(RAM: Random Access Memory ) , 也可能还包括非不稳定的存 4诸器( non- volatile memory ) , 例如至少一个磁盘存储器。 通过至少一个网络接口 1302 (可以是有线或者无 线) 实现该系统网关与至少一个其他网元之间的通信连接, 可以使用互联网, 广域网, 本地网, 城域网等。
在一些实施方式中, 存储器 1303存储了程序 1331 , 程序 1331可以被处 理器 1301执行, 这个程序包括:
根据以太交换单元出端口帧周期时隙表,对接收到的以太帧进行解封装处 理,获得以太净荷比特流数据,并将所述以太净荷比特流数据封装成高阶 ODU 帧发送出去。 以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于 此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到 变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应 所述以权利要求的保护范围为准。

Claims

权 利 要 求
1、一种光通道数据单元 ODU业务传送装置,其特征在于,包括,第一 ODU 业务处理单元、 时隙分配单元、 交换出端口分配单元、 以太交换单元和第二 ODU业务处理单元;
第一 ODU业务处理单元, 用于接收 ODU业务, 根据所述 ODU帧的切片长 度, 将所述 ODU帧封装成以太帧, 根据所述时隙分配单元确定的第一 ODU业 务处理单元出端口时隙对应表, 发送所述以太帧到以太交换单元;
时隙分配单元, 用于产生一个同步帧周期, 根据获得的所述 ODU帧的速 率和所述第一 ODU业务处理单元的出端口数量, 确定所述第一 ODU业务处理 单元出端口时隙对应表;
交换出端口分配单元, 用于根据所述时隙分配单元确定的第一 ODU业务 处理单元出端口时隙对应表,确定以太交换单元入端口帧周期时隙表,根据所 述以太交换单元入端口帧周期时隙表, 确定以太交换单元出端口帧周期时隙 表,并根据所述以太交换单元入端口帧周期时隙表和所述以太交换单元出端口 帧周期时隙表, 确定以太交换单元分配转发命令;
以太交换单元,根据所述以太交换单元分配转发命令,将接收到的所述以 太帧转发至所述第二 ODU业务处理单元;
第二 ODU业务处理单元, 用于根据所述交换出端口分配单元确定的以太 交换单元出端口帧周期时隙表,对接收到的以太帧进行解封装处理, 获得以太 净荷比特流数据, 并将所述以太净荷比特流数据封装成 ODU帧发送出去。
2、 如权利要求 1所述的装置, 其特征在于, 所述装置进一步包括, 同步时 钟单元, 用于为所述时隙分配单元提供时钟信号, 所述时钟信号用于同步所述 同步帧周期的基准时间,使得所述时隙分配单元产生的每一个帧周期在时间上 是同步的。
3、 如权利要求 1或 2所述的任一装置, 其特征在于, 所述第一 ODU业务处 理单元具体包括开销提取单元、 以太封装单元和端口分发单元;
开销提取单元, 用于接收 ODU业务, 提取所述 ODU业务中的 ODU帧的开 销信息, 根据所述开销信息, 识别所述 ODU业务, 并获得所述 ODU业务中的 ODU帧的类型;
以太封装单元, 用于根据提取的开销信息确定所述 ODU帧的速率, 根据 端口分发单元, 用于根据所述时隙分配单元确定的所述第一 ODU业务处 理单元出端口时隙对应表, 发送所述以太帧到以太交换单元。
4、 如权利要求 3所述的装置, 其特征在于, 所述时隙分配单元, 用于产生 一个同步帧周期, 根据获得的所述 ODU帧的速率、 所述第一 ODU业务处理单 元的出端口速率和所述同步帧周期, 确定所述 ODU帧占用所述同步帧周期中 时隙的数量和所述 ODU帧的切片长度, 按照间插分配的方法,确定包含第一 ODU业务处理单元出端口与所述同步帧周期中时隙对应关系的第一 ODU业务 处理单元出端口时隙对应表。
5、 如权利要求 3所述的装置, 其特征在于, 所述时隙分配单元, 用于产生 一个同步帧周期,根据获得的所述 ODU帧的速率和所述同步帧周期,按照 ODU
ODU帧占用所述同步帧周期中时隙的数量和所述 ODU帧的切片长度, 按照间 插分配的方法,确定包含第一 ODU业务处理单元出端口与所述同步帧周期中时 隙对应关系的第一 ODU业务处理单元出端口时隙对应表。
6、 一种光通道数据单元 ODU业务传送方法, 其特征在于, 包括, 接收 ODU业务, 根据所述 ODU帧的切片长度, 将所述 ODU帧封装成以太 帧, 根据所述时隙分配单元确定的第一 ODU业务处理单元出端口时隙对应表, 发送所述以太帧到以太交换单元; 所述时隙对应表是根据同步帧周期、 所述 ODU帧的速率和所述第一 ODU业务处理单元的出端口数量确定的;
根据所述以太交换单元分配转发命令,将接收到的所述以太帧转发至所述 第二 ODU业务处理单元; 所述以太交换单元分配转发命令是根据以太交换单 元入端口帧周期时隙表和以太交换单元出端口帧周期时隙表确定的;所述以太 交换单元出端口帧周期时隙表是根据所述以太交换单元入端口帧周期时隙表 确定的;所述以太交换单元入端口帧周期时隙表是根据所述时隙分配单元确定 的第一 ODU业务处理单元出端口时隙对应表确定的;
根据所述以太交换单元出端口帧周期时隙表,对接收到的以太帧进行解封 装处理, 获得以太净荷比特流数据, 并将所述以太净荷比特流数据封装成高阶 ODU帧发送出去。
7、 如权利要求 6所述的方法, 其特征在于, 所述方法进一步包括, 产生一个时钟信号, 所述时钟信号用于同步所述同步帧周期的基准时间, 使得所述同步帧周期的每一个帧周期在时间上是同步的。
8、 如权利要求 6或 7所述的任一方法, 其特征在于, 所述步骤, 接收 ODU 业务, 根据所述 ODU帧的切片长度, 将所述 ODU帧封装成以太帧, 根据所述 时隙分配单元确定的第一 ODU业务处理单元出端口时隙对应表, 发送所述以 太帧到以太交换单元, 具体为,
接收 ODU业务, 提取所述 ODU业务中的 ODU帧的开销信息, 根据所述开 销信息, 识别所述 ODU业务, 并获得所述 ODU业务中的 ODU帧的类型;
根据提取的开销信息确定所述 ODU帧的速率, 根据所述 ODU帧的速率和 根据所述时隙分配单元确定的所述第一 ODU业务处理单元出端口时隙对 应表, 发送所述以太帧到以太交换单元。
9、 如权利要求 8所述的方法, 其特征在于, 所述时隙对应表的确定, 具体 为, 产生一个同步帧周期, 根据获得的所述 ODU帧的速率、 所述第一 ODU业 务处理单元的出端口速率和所述同步帧周期, 确定所述 ODU帧占用所述同步 帧周期中时隙的数量和所述 ODU帧的切片长度, 按照间插分配的方法,确定包 含第一 ODU业务处理单元出端口与所述同步帧周期中时隙对应关系的第一 ODU业务处理单元出端口时隙对应表。
10、 如权利要求 8所述的方法, 其特征在于, 所述时隙对应表的确定, 具 体为, 产生一个同步帧周期, 根据获得的所述 ODU帧的速率和所述同步帧周
度, 按照间插分配的方法,确定包含第一 ODU业务处理单元出端口与所述同步 帧周期中时隙对应关系的第一 ODU业务处理单元出端口时隙对应表。
PCT/CN2013/072766 2013-03-15 2013-03-15 一种光通道数据单元业务传送装置和方法 WO2014139178A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13878263.6A EP2958279B1 (en) 2013-03-15 2013-03-15 Service transfer device and method for optical channel data unit
PCT/CN2013/072766 WO2014139178A1 (zh) 2013-03-15 2013-03-15 一种光通道数据单元业务传送装置和方法
CN201380000496.6A CN103918231B (zh) 2013-03-15 2013-03-15 一种光通道数据单元业务交换的装置和方法
ES13878263.6T ES2629184T3 (es) 2013-03-15 2013-03-15 Dispositivo y método de transferencia de servicio para unidad de datos de canal óptico
US14/853,445 US9641916B2 (en) 2013-03-15 2015-09-14 Optical channel data unit service transmission apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/072766 WO2014139178A1 (zh) 2013-03-15 2013-03-15 一种光通道数据单元业务传送装置和方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/853,445 Continuation US9641916B2 (en) 2013-03-15 2015-09-14 Optical channel data unit service transmission apparatus and method

Publications (1)

Publication Number Publication Date
WO2014139178A1 true WO2014139178A1 (zh) 2014-09-18

Family

ID=51042383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072766 WO2014139178A1 (zh) 2013-03-15 2013-03-15 一种光通道数据单元业务传送装置和方法

Country Status (5)

Country Link
US (1) US9641916B2 (zh)
EP (1) EP2958279B1 (zh)
CN (1) CN103918231B (zh)
ES (1) ES2629184T3 (zh)
WO (1) WO2014139178A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017020292A1 (zh) * 2015-08-06 2017-02-09 华为技术有限公司 一种光接入设备及光接入系统
WO2021115451A1 (zh) * 2019-12-12 2021-06-17 中兴通讯股份有限公司 波分接入设备的配置方法、交叉配置方法、装置及设备
CN113949743A (zh) * 2021-11-22 2022-01-18 烽火通信科技股份有限公司 Odu净荷承载方法及系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9830298B2 (en) * 2013-05-15 2017-11-28 Qualcomm Incorporated Media time based USB frame counter synchronization for Wi-Fi serial bus
EP3236601A1 (en) * 2016-04-21 2017-10-25 Fujitsu Limited Disaggregated optical transport network switching system
US10219050B2 (en) 2016-04-21 2019-02-26 Fujitsu Limited Virtual line cards in a disaggregated optical transport network switching system
US10469168B2 (en) 2017-11-01 2019-11-05 Fujitsu Limited Disaggregated integrated synchronous optical network and optical transport network switching system
US10454610B2 (en) 2017-11-13 2019-10-22 Fujitsu Limited 1+1 Ethernet fabric protection in a disaggregated optical transport network switching system
CN113746945B (zh) * 2020-05-30 2023-09-12 华为技术有限公司 反向地址解析方法及电子设备
CN115633279B (zh) * 2022-12-19 2023-04-07 北京华环电子股份有限公司 Osu交叉设备及基于osu交叉设备的数据传输方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090154479A1 (en) * 2007-12-18 2009-06-18 Electronics & Telecommunications Research Institute APPARATUS FOR MATCHING GIGABIT ETHERNET (GbE) SIGNALS WITH OPTICAL TRANSPORT HIERARCHY (OTH)
CN101610242A (zh) * 2008-06-16 2009-12-23 华为技术有限公司 多协议交换网的信号处理方法及装置
CN101389146B (zh) * 2007-09-13 2011-01-05 华为技术有限公司 光传送网同步交叉调度的方法和装置
CN102684994A (zh) * 2012-03-30 2012-09-19 中兴通讯股份有限公司 一种实现业务调度的方法和系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7738596B2 (en) 2002-09-13 2010-06-15 Broadcom Corporation High speed data service via satellite modem termination system and satellite modems
CN100505588C (zh) * 2003-07-26 2009-06-24 华为技术有限公司 一种光纤传输系统、光纤传输的实现方法及终端处理装置
CN101217334A (zh) * 2004-08-11 2008-07-09 华为技术有限公司 光传送网中传输低速率业务信号的方法及其装置
CN101039245A (zh) * 2006-03-13 2007-09-19 华为技术有限公司 高速以太网到光传输网的数据传输方法及相关接口和设备
CN101212424B (zh) 2006-12-28 2011-03-23 杭州华三通信技术有限公司 融合了电路交换和分组交换的以太网交换方法与设备
EP2228928B1 (en) 2009-03-09 2012-06-13 Alcatel Lucent Method for data transmission in an optical transport network
CN101834688B (zh) * 2009-03-09 2011-08-31 华为技术有限公司 光传送网中的映射、解映射方法及装置
CN101841741B (zh) 2009-03-16 2015-04-08 华为技术有限公司 光通道传送单元信号的传输方法和装置
CN101610430B (zh) * 2009-06-30 2013-03-27 中兴通讯股份有限公司 一种实现ODUk交叉调度的方法和装置
US8837942B2 (en) * 2009-12-07 2014-09-16 Electronics And Telecommunications Research Institute Apparatus and method for packet-optical integrated transport
US8644347B2 (en) 2010-01-11 2014-02-04 Cisco Technology, Inc. Transporting optical data units in an optical transport network
US8363670B2 (en) * 2010-04-20 2013-01-29 Vitesse Semiconductor Corporation Framed flows over packet-switched fabrics
US8743915B2 (en) 2010-05-18 2014-06-03 Electronics And Telecommunications Research Institute Method and apparatus for transmitting packet in optical transport network
CN102571548B (zh) 2010-12-21 2015-05-20 上海贝尔股份有限公司 用于光传输网络的网络节点
CN102594648B (zh) * 2011-01-07 2014-11-05 中兴通讯股份有限公司 业务调度方法及装置
JP2012165110A (ja) * 2011-02-04 2012-08-30 Mitsubishi Electric Corp 光伝送装置、管理装置および光伝送システム
JP5644598B2 (ja) * 2011-03-11 2014-12-24 富士通株式会社 信号多重分離装置及び信号多重収容装置及び信号多重収容・分離装置
JP5659910B2 (ja) * 2011-03-29 2015-01-28 富士通株式会社 フレームマッピング装置及びフレームマッピング方法
CN102291631B (zh) 2011-08-12 2017-04-26 中兴通讯股份有限公司 分组交换和光传送网业务的混合接入、发送方法及装置
EP2741454B1 (en) * 2011-08-24 2015-07-08 Huawei Technologies Co., Ltd. Method and device for transporting ultra-high-speed ethernet service
RU2606060C1 (ru) 2012-12-05 2017-01-10 Хуавэй Текнолоджиз Ко., Лтд. Способ обработки данных, плата связи и устройство

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101389146B (zh) * 2007-09-13 2011-01-05 华为技术有限公司 光传送网同步交叉调度的方法和装置
US20090154479A1 (en) * 2007-12-18 2009-06-18 Electronics & Telecommunications Research Institute APPARATUS FOR MATCHING GIGABIT ETHERNET (GbE) SIGNALS WITH OPTICAL TRANSPORT HIERARCHY (OTH)
CN101610242A (zh) * 2008-06-16 2009-12-23 华为技术有限公司 多协议交换网的信号处理方法及装置
CN102684994A (zh) * 2012-03-30 2012-09-19 中兴通讯股份有限公司 一种实现业务调度的方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2958279A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017020292A1 (zh) * 2015-08-06 2017-02-09 华为技术有限公司 一种光接入设备及光接入系统
US10382364B2 (en) 2015-08-06 2019-08-13 Huawei Technologies Co., Ltd. Optical access device and optical access system
WO2021115451A1 (zh) * 2019-12-12 2021-06-17 中兴通讯股份有限公司 波分接入设备的配置方法、交叉配置方法、装置及设备
CN113949743A (zh) * 2021-11-22 2022-01-18 烽火通信科技股份有限公司 Odu净荷承载方法及系统

Also Published As

Publication number Publication date
US9641916B2 (en) 2017-05-02
CN103918231A (zh) 2014-07-09
ES2629184T3 (es) 2017-08-07
EP2958279A1 (en) 2015-12-23
EP2958279B1 (en) 2017-05-10
EP2958279A4 (en) 2016-01-20
CN103918231B (zh) 2016-10-05
US20160007103A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
WO2014139178A1 (zh) 一种光通道数据单元业务传送装置和方法
CN108353314B (zh) 切换用于通过提供回程和前传两者(xhaul)连接性的传输网络的传输的至少两个类型的数据信号
WO2014139180A1 (zh) 一种光通道数据单元odu业务传送装置和方法
TWI455501B (zh) 用以延伸乙太網路被動光學網路(epon)中之媒體存取控制(mac)控制訊息的設備
EP2348691B1 (en) Service transmission method and service transmission apparatus
US11477549B2 (en) Transmission network system, data switching and transmission method, apparatus and equipment
WO2010020130A1 (zh) 包分插复用设备及包分插复用设备的数据传输方法
WO2014161291A1 (zh) 数据调度和交换的方法、装置及系统
US20110013619A1 (en) Universal Service Transport Transitional Encoding
JP5258976B2 (ja) 時分割多重信号を交換するために分割および再組み立て(sar)機能を用いるスケーラブルなネットワーク要素
CN109286864B (zh) 一种基于注册的信息处理方法、装置及存储介质
CN102480408B (zh) 伪线仿真系统的调度方法及装置
Benzaoui et al. Deterministic dynamic networks (DDN)
WO2019114544A1 (zh) 一种数据传送的方法、设备和系统
WO2011113257A1 (zh) 光传送网络设备和光传送网络的带宽调整方法
JP2016082393A (ja) 多段ponシステムのdba制御装置、dba制御方法およびdba制御プログラム
EP1701495B1 (en) Hybrid digital cross-connect for switching circuit and packet based data traffic
WO2021196753A1 (zh) 一种业务承载方法、数据交换方法、业务提取方法、pe设备、运营商交换设备及存储介质
WO2019100982A1 (zh) 数据传输方法和设备
CN102843293A (zh) 一种处理报文的方法和网元设备
CN102437944A (zh) 一种局域网之间相互通信的系统、设备及方法
WO2011150807A1 (zh) 带宽分配方法及实现带宽分配的设备
US7272315B1 (en) Technique for transferring information in a passive optical network
CN108737911B (zh) 基于广义光突发交换的potn业务承载方法及系统
JP3876414B2 (ja) データ伝送方法及びデータ伝送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013878263

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013878263

Country of ref document: EP