WO2013189034A1 - 一种分配光频谱带宽资源的方法及装置 - Google Patents

一种分配光频谱带宽资源的方法及装置 Download PDF

Info

Publication number
WO2013189034A1
WO2013189034A1 PCT/CN2012/077176 CN2012077176W WO2013189034A1 WO 2013189034 A1 WO2013189034 A1 WO 2013189034A1 CN 2012077176 W CN2012077176 W CN 2012077176W WO 2013189034 A1 WO2013189034 A1 WO 2013189034A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
integer
otubase
otuflex
service data
Prior art date
Application number
PCT/CN2012/077176
Other languages
English (en)
French (fr)
Inventor
苏伟
丁炽武
吴秋游
青华平
沈瑶
蒋红丽
魏建英
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES12879417.9T priority Critical patent/ES2604349T3/es
Priority to PCT/CN2012/077176 priority patent/WO2013189034A1/zh
Priority to EP12879417.9A priority patent/EP2852177B1/en
Priority to CN201280000727.9A priority patent/CN102884808B/zh
Publication of WO2013189034A1 publication Critical patent/WO2013189034A1/zh
Priority to US14/573,486 priority patent/US9496957B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1301Optical transmission, optical switches

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and an apparatus for allocating optical spectrum bandwidth resources.
  • the OTN Optical Transport Network
  • the OTN is the core technology of the next-generation transport network, including the technical specifications of the electrical layer and the optical layer, enabling flexible scheduling and management of large-capacity services.
  • optical transmission technology with a rate of 100 Gbit/s has been widely used.
  • OTN is required to have the capability of adapting optical spectrum resource allocation and bandwidth adjustment to achieve lossless bandwidth adjustment. For example, by flexibly selecting parameters such as the optical modulation mode based on the traffic flow and the transmission distance, the optical spectrum resource allocation is appropriately changed. This requires the OTN to adapt to the change by bandwidth adjustment when the optical spectrum resource allocation is changed.
  • OTN provides OPUk, ODUk, and OTUk at various rate levels.
  • the coefficient k represents the supported bit rate and different kinds of OPUk, ODUk and OTUk.
  • k 0 means the bit rate level is 1.25 Gbit/s
  • k l means the bit rate level is 2.5 Gbit/s
  • k 2 means the bit rate level is 10 Gbit/s
  • k 3 means the bit rate level is 40 Gbit/s
  • the frame format of the OTN is a modular structure of 4080*4, including the frame alignment byte FAS, which provides the function of frame synchronization positioning.
  • the OTUk OH is the optical channel transmission unit overhead byte, and provides the optical channel transmission unit level. Network management capabilities.
  • ODUk OH is an optical channel data unit overhead byte that provides maintenance and operational functions.
  • OPUk OH is the optical channel payload unit overhead byte and provides client signal adaptation.
  • OPUk is an optical channel payload unit that provides the function of customer signal bearing.
  • the FEC is a forward error correction byte that provides error detection and error correction.
  • the current OTN can use LO ODUx (Low Order Optical Channel Data Unit-x) to adapt customer service data, implement mapping and packaging of customer service data, and then map LO ODUx.
  • LO ODUx Low Order Optical Channel Data Unit-x
  • HO ODUk High Order Optical Channel Data Unit-k
  • HO OTUk high-order optical channel transmission unit k
  • the LO ODUx may include ODU0, ODU1, ODU2, ODU3, and ODUflex.
  • the HO ODUk contains ODU1, ODU2, ODU3, and ODU4 at fixed rate levels.
  • OTN adopts OTU1 (2.5G), OTU2 (10G), OTU3
  • OTU4 (100G) and other fixed rate grades to adapt to optical layer spectrum bandwidth resources for transmission
  • OTU1 2.5G
  • OTU2 10G
  • OTU3 40G
  • (100G) occupies one 50 GHz optical spectrum bandwidth resource at equal intervals.
  • the OTUk rate needs to be changed in real time to adapt to this change.
  • the current OTN adapts to the optical spectrum bandwidth resource by using a fixed rate class, and cannot flexibly adapt to the change of the optical spectrum bandwidth resource allocation, thereby realizing the effective use of the optical spectrum resource.
  • 2.5G OTU1 or 10G OTU2 occupies 50 GHz optical spectrum bandwidth resources, and there is also a waste of optical spectrum bandwidth resources, which is not fully utilized.
  • Embodiments of the present invention provide a method and apparatus for allocating optical spectrum bandwidth resources, which are used to allocate optical bandwidth resources by configuring a transmission bandwidth HO OTU and an optical spectrum bandwidth resource suitable for a customer service data bandwidth according to a bandwidth of a customer service data. Flexible allocation, efficient use of optical spectrum resources.
  • a method for allocating an optical spectrum bandwidth resource includes: obtaining a bandwidth of a reference optical channel transmission unit OTUbase according to an optical layer frequency interval bandwidth and a carried carrier spectrum efficiency; constructing a bandwidth according to a bandwidth of the customer service data and a bandwidth of the OTUbase a variable high-order optical channel transmission unit HO OTUflex; the bandwidth of the HO OTUflex is a first integer multiple of a bandwidth of the OTUbase, the first integer is not less than 1; mapping the customer service data to the HO OTUflex The payload area encapsulates the overhead information; and modulates the HO OTUflex carrying the customer service data to a second integer optical channel carrier; the second integer is not less than 1.
  • An apparatus for allocating an optical spectrum bandwidth resource includes: a first acquiring unit, configured to acquire a bandwidth of a reference optical channel transmission unit OTUbase according to an optical layer frequency interval bandwidth and a carrier spectrum efficiency; and a structural unit, configured to perform according to a customer service Configuring a bandwidth-capable high-order optical channel transmission unit HO OTUflex; the bandwidth of the HO OTUflex is a first integer multiple of a bandwidth of the OTUbase, the first An integer is not less than 1; a first mapping encapsulating unit, configured to map the customer service data to the
  • the embodiment of the invention provides a method and a device for allocating an optical spectrum bandwidth resource. First, the bandwidth of the OTUbase is obtained according to the optical layer frequency interval bandwidth, and then the bandwidth of the OTUbase is constructed according to the bandwidth of the customer service data and the bandwidth of the OTUbase.
  • the first integer multiple of the HO OTUflex; and the customer service data is mapped to the payload area of the HO OTUflex, and the HO OTUflex is encapsulated with the associated overhead information, and the HO OTUflex is modulated into the second integer optical channel carrier for transmission.
  • the bandwidth of the OTUbase is based on the optical layer frequency interval bandwidth structure, the optical layer frequency interval bandwidth is fully matched, and according to the bandwidth of the customer service data, the HO OTUflex is constructed based on the bandwidth of the OTUbase, and the bandwidth allocation according to the customer service data is implemented to suit the customer service.
  • the data transmission bandwidth HO OTU and optical spectrum bandwidth resources enable flexible allocation of optical spectrum resources and efficient use of optical spectrum resources.
  • FIG. 1 is a schematic diagram of a frame format of an OTN in the prior art
  • FIG. 2 is a schematic flowchart of a method for allocating optical spectrum bandwidth resources according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a frame structure of HO OTUflex according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of mapping customer service data to a payload area of HO OTUflex according to an embodiment of the present invention
  • FIG. 6 is a flow chart of another method for allocating optical spectrum bandwidth resources according to an embodiment of the present invention
  • FIG. 7 is a schematic flowchart of a method for increasing HO OTUflex bandwidth according to an embodiment of the present invention
  • FIG. 8 is a schematic flowchart of a method for reducing HO OTUflex bandwidth according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of an apparatus for allocating optical spectrum bandwidth resources according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a first mapping encapsulation unit shown in FIG. 9;
  • FIG. 1 is a schematic structural diagram of another apparatus for allocating optical spectrum bandwidth resources according to an embodiment of the present invention
  • FIG. 12 is a schematic structural diagram of another apparatus for allocating optical spectrum bandwidth resources according to an embodiment of the present invention. detailed description
  • An embodiment of the present invention provides a method for allocating optical spectrum bandwidth resources, as shown in FIG. 2, including:
  • the frequency interval is defined to take a value; m represents a multiple value between the product of the carrier spectrum efficiency and the optical layer frequency interval bandwidth set by the demand and the bandwidth of the OTUbase, and m is an integer not less than 1.
  • the carried carrier is an orthogonal frequency division multiplexing multiple subcarrier
  • FG 12.5GH
  • the frequency-latency efficiency of the orthogonal frequency division multiplexing subcarrier is 2bit/Hz/s
  • m l
  • the carrier spectrum efficiency parameter of the above formula can be used to obtain the bandwidth of the OTUbase according to the requirements of the multi-carrier transmission or the single-carrier transmission.
  • the modulation format adopted by the carrier is not limited in the present invention.
  • the reference optical channel transmission unit OTUbase is the optical channel transmission unit with the smallest bandwidth in the optical layer, and the bandwidth of the OTUbase is the reference for the bandwidth of other optical channel transmission units.
  • the bandwidth of the HO OTUflex is a first integer multiple of the bandwidth of the OTUbase, and the first integer is not less than 1.
  • the bandwidth of the customer service data is several times the bandwidth of the OTUbase, and the multiple is represented by k, and k is a number greater than 0, and the rounding function is used.
  • k performs rounding to obtain the first integer
  • p is used to represent the first integer
  • HO OTUflex is constructed such that the bandwidth of the HO OTUflex is p times the bandwidth of the OTUbase.
  • HO OTUflex there are two frame formats of HO OTUflex, one is a concatenation structure of a first integer number of OTUbase frames; another HO OTUflex has a frame format identical to that of the OTUbase.
  • the frame format of the OTUbase is the same as the frame format of the 0TN. If the frame format of HO OTUflex is a cascading structure of OTUbase frames, the frame format of HO OTUflex is a modular structure of 4080n*4. Where n is the number of OTUbase frames, as shown in Figure 3.
  • the frame format of the HO OTUflex is the same as the frame format of the OTUbase
  • the frame format of the HO OTUflex is the same as the frame format of the OTN.
  • the frame format of the OTUbase may also be different from the frame format of the OTN, and is a frame format of other forms, which is not limited by the present invention.
  • HO OTUflex's payload area is different.
  • the customer service data is directly mapped to the OPUflex (Optical Channel Payload Unit flex).
  • the OPUflex encapsulation-related overhead is mapped to the corresponding ODUflex (Optical Channel Data Unit flex), and the ODUflex encapsulation related overhead is mapped to the HO OTUflex.
  • the customer service data is directly mapped into the OPUflex by a universal mapping procedure.
  • the threshold value is set in advance by the system, taking the example of the threshold value in FIG.
  • mapping the customer service data directly to the embodiment can also OPUflex
  • the bit asynchronous basic procedure or other means, the present invention does not limit the manner in which the customer service data is directly mapped to the OPUflex.
  • the customer service data is first mapped to the LO ODUx (Low Order Optical Channel Data Unit-x).
  • the payload area of the HO ODUx package is mapped to the payload area of the HO OPUflex (High Order Optical Channel Payload Unit-flex) after the LO ODUx encapsulation related overhead is mapped to the HO OPUflex package related overhead.
  • HO ODUflex High Order Optical Channel Data Unit-flex
  • the LO ODUx includes ODU0, 0DU1, ODU2, ODU2e, ODU3, ODU3el, ODU3e2, ODU4, and ODUflex.
  • Different values of x indicate that the LO ODU has different fixed rate levels and different types of LO ODUs.
  • the customer service data is directly mapped into the LO ODUx by a universal mapping procedure.
  • the manner in which the customer service data is directly mapped to the LO ODUx may also be through a bit asynchronous general procedure or other manners.
  • the present invention does not limit the manner in which the customer service data is directly mapped to the LO ODUx.
  • the customer service data of the second mode whose bandwidth is lower than the threshold is divided into three cases by the bandwidth of the OTUbase, as shown in FIG. 5.
  • the bandwidth of the customer service data is lower than the threshold and higher than the bandwidth of the OTUbase
  • the manner in which the customer service data is mapped to the payload area of the HO OTUflex is the same as the second method, and is not described herein. .
  • the second case is: when the bandwidth of the customer service data is lower than the bandwidth of the OTUbase, the customer service data is mapped to the payload area of the LO ODUx, and the LO ODUx encapsulation related overhead is mapped to the HO OPUbase (High Order Optical Channel Payload Unit).
  • the payload area of the base, high-order reference optical channel data unit is mapped to the HO ODUbase (High Order Optical Channel Data Unit base) after the HO OPUbase encapsulation related overhead, and the high-order reference maps the OTUbase to the payload area of the OTUflex.
  • the customer service data is directly mapped into the LO ODUx by a universal mapping procedure.
  • the manner in which the customer service data is directly mapped to the LO ODUx may also be through a bit asynchronous general procedure or other manners.
  • the present invention does not limit the manner in which the customer service data is directly mapped to the LO ODUx.
  • the customer service data is directly mapped into the payload area of the OPUbase, and the OPUbase encapsulation related cost is mapped to the ODUbase, and finally the ODUbase encapsulation related overhead is mapped to the OTUbase.
  • the customer service data is directly mapped into the OPUbase by a universal mapping procedure.
  • the bandwidth of the OTUbase is 25 Gbit/s in FIG. 5 as an example.
  • the manner in which the customer service data is directly mapped to the OPUbase may be through a bit-synchronous general procedure or other manners.
  • the present invention does not limit the manner in which the customer service data is directly mapped to the OPUbase.
  • the manner of mapping the customer service data to the payload area of the HO OTUbase may also be through other methods, and this method does not limit this.
  • the low order and the high order are relative.
  • the ODU that directly adapts the customer service data is the first level. After the low-bandwidth ODU is multiplexed to the high-bandwidth ODU, the high-bandwidth ODU is the second level.
  • ODU the first-level ODU
  • ODU the second The level of ODU
  • OPUbase and ODUbase are corresponding to OTUbase, and the rates of OPUbase and ODUbase depend on the rate of OTUbase.
  • OPUbase rate OTUbase rate * 238 / 255
  • ODUbase rate OTUbase rate * 239 / 255.
  • the HO OTUflex carrying the customer service data may be split into a third integer number of OTUbase channels, and the third integer number of OTUbase channels are multiplexed into the second integer channel optical channel carrier, and the second integer path is adopted.
  • the optical channel carrier transmits customer service data.
  • the third integer is not less than 1 and the third integer is a multiple of the second integer.
  • HO OTUflex carrying the customer service data is split into 16 OTUbase channels, and the 16 OTUbase channels are multiplexed into 4 optical channel carriers, that is, every 4 OTUbase channels Multiple optical channel carriers are multiplexed, and customer service data is transmitted through the four optical channel carriers.
  • each of the HO OTUflex splits is referred to as an OTUbase channel.
  • the second integer is equal to the third integer, and further preferably, the third integer is equal to the first integer.
  • the third integer OTUbase channel is multiplexed and modulated into the second full optical channel carrier, thereby realizing transmission of customer service data by using multiple carriers.
  • the method of splitting the HO OTUflex carrying the customer service data into the third integer OTUbase channel is also different.
  • the method of splitting the HO OTUflex carrying the customer service data into a third integer number of OTUbase channels includes: The HO OTUflex is split into a third integer number of OTUbase channels by column. It should be noted that at this time, one column is a complete OTUbase frame, which will be HO. OTUflex is split into the first integer number of OTUbase frames, and each OTUbase frame corresponds to one OTUbase channel.
  • the method for splitting the H0 OTUflex into the third integer OTUbase channel includes:
  • the HO OTUflex is split into a third integer number of OTUbase channels by byte granularity.
  • HO OTUflex frames can be split into a third integer number of OTUbase channels in a 4-byte granularity.
  • the HO OTUflex frames are split from left to right and top to bottom according to the frame.
  • the HO OTUflex is distributed into a third integer number of OTUbase channels according to a frame granularity.
  • An embodiment of the present invention provides a method for allocating an optical spectrum bandwidth resource. First, the bandwidth of the OTUbase is obtained according to the optical layer frequency interval bandwidth, and then the bandwidth of the OTUbase bandwidth is constructed according to the bandwidth of the customer service data and the bandwidth of the OTUbase. An integer multiple of HO OTUflex; and mapping the customer service data to the payload area of the HO OTUflex, and encapsulating the HO OTUflex with the associated overhead information, and then modulating the HO OTUflex to the second integer optical channel carrier for transmission.
  • the bandwidth of the OTUbase is based on the optical layer frequency interval bandwidth structure, the optical layer frequency interval bandwidth is fully matched, and according to the bandwidth of the customer service data, the HO OTUflex is constructed based on the bandwidth of the OTUbase, and the bandwidth allocation according to the customer service data is implemented to suit the customer service.
  • the data transmission bandwidth HO OTU and optical spectrum bandwidth resources enable flexible allocation of optical spectrum resources and efficient use of optical spectrum resources.
  • the above method as shown in FIG. 6, further includes:
  • the control field of the LCAS includes a setting instruction.
  • the setting instruction is used to indicate to the destination end that the mapping of the payload area of the HO OTUflex after the completion of the customer service data to the bandwidth change in the next frame of the HO OTUflex.
  • the binary code of the setup command is 0100.
  • adding a fourth integer optical channel carrier in each link of the link and using the LCAS to add a fifth integer number of OTUbase channels, and Adding a fifth integer number of OTUbase channels to the HO OTUflex, and modulating the added fifth integer number of OTUbase channels to the newly added fourth integer channel optical channel carrier; wherein, the fourth integer is not less than 1, The fifth integer is an integer multiple of the fourth integer;
  • the fourth integer path is added to the optical channel carrier of the same modulation format as the established optical channel carrier at the source end and the destination end, and strobed.
  • Adding a fifth integer number of OTUbase channels at the source end and the destination end by LCAS merging the fifth integer OTUbase channel into the HO OTUflex, and modulating the newly added fifth integer OTUbase channel to the newly added fourth
  • the number of setting instructions sent to the destination end is greater than or equal to 1, and less than or equal to the fifth integer, that is, the setting instruction is sent to at least one newly added member of the destination end.
  • the intermediate node provides a transport channel for the transmission of HO OTUflex.
  • the intermediate node allocates an idle optical channel carrier to the newly added OTUbase channel to implement the transmission of the newly added OTUbase channel.
  • the fourth integer is equal to the fifth integer, and the bandwidth of the customer service data is increased.
  • the bandwidth of the HO OTUbase needs to be increased from n OTUbase channels to n+2 OTUbase channels, firstly added in each link of the link. 2 orthogonal frequency division multiplexing subcarriers of the same modulation format as the n orthogonal frequency division multiplexing subcarriers, and strobed.
  • the source and destination add two OTUbase channels through LCAS, and specifically increase the OTUbase channel process, as shown in Figure 7, including:
  • the system issues a command to establish an LCAS connection between the source So and the Sk (n+1) of the destination Sk.
  • NORM indicates regular transmission
  • EOS indicates end of sequence and regular transmission.
  • Member that is, the newly added connection Sk (n+1) becomes the last connection of So and Sk.
  • Sk will refer to each connection established with So as a member.
  • One connection is Sk (n+1).
  • step 303 is not described herein.
  • two members Sk ( n+1 ) and Sk ( n ) of Sk are newly added, since Sk ( n+1 ) first returns the connection check information, the member Sk ( n+1 ) is added first, The member Sk ( ⁇ ), so the CTRL field of the last member Sk ( ⁇ ) is EOS.
  • Steps 301-310 are implemented to increase the bandwidth of the HO OTUbase from n OTUbase channels to n+2 OTUbase channels.
  • the customer service data is transmitted through the n+2 OTUbase channels. If the bandwidth of the customer service data is increased, the lossless bandwidth adjustment can be implemented by the above method, so that the bandwidth of the HO OTUflex is correspondingly increased, thereby realizing flexible adjustment of the optical layer spectrum resources. It should be noted that the newly added two OTUbase channels are modulated to be transmitted on the newly added two orthogonal frequency division multiplexing subcarriers.
  • the fifth integer number of OTUbase channels to be deleted are determined, and the fifth integer OTUbase channel to be deleted of the HO OTUflex is deleted by the LCAS, and the corresponding fourth integer path is decoded.
  • Optical channel carrier Optical channel carrier.
  • first determine the fifth integer number of OTUbase channels to be deleted at the source end and the destination end that is, determine the number and location of the OTUbase channels to be deleted.
  • the source and the destination end use LCAS to delete the fifth integer number of OTUbase channels to be deleted at the source end and the destination end, and release the corresponding fourth integer path optical channel carrier at the source end and the destination end, and then release the corresponding segments of the link.
  • Optical channel carrier Optical channel carrier.
  • the fourth integer is equal to the fifth integer, and the bandwidth of the customer service data is reduced.
  • the bandwidth of the HO OTUbase needs to be reduced from n OTUbase channels to n-1 OTUbase channels, first through the source end and the destination end.
  • the LCAS reduces one OTUbase channel, and releases the orthogonal frequency division multiplexing subcarrier corresponding to the deleted OTUbase channel between the source end and the destination end, and the other segments of the link release the corresponding orthogonal frequency division multiplexing subcarriers.
  • the source and destination end specifically delete the OTUbase channel process, as shown in Figure 8, including:
  • the system sends a command to the So end to delete the Sk (n) connection with Sk.
  • the next frame of OTUflex completes the customer service data to the HO after the bandwidth change Mapping of the payload area of an OTUflex frame.
  • IDLE indicates that the current member is idle or will be removed.
  • SQ is the serial number that identifies the Sk member, starting at 0. So sends an IDLE instruction to Sk's Sk ( n ), which means that Sk's member Sk ( n ) is to be removed from the group, that is, Sk ( n ) is deleted, and the SQ of Sk member ( Sk ) is set to the maximum value. Since Sk(n) was originally the last member of Sk, that is, the CTR field is EOS, the CTR field of Sk's Sk(n-1) is first set to EOS, so that Sk (n-1)'s Sk is the end member of the order.
  • the steps of 401-405 are implemented to reduce the bandwidth of the HO OTUbase from n OTUbase channels to n-1 OTUbase channels. If the bandwidth of the customer service data is reduced, the lossless bandwidth adjustment can be implemented by the above method, so that the bandwidth of the HO OTUflex is correspondingly reduced, thereby realizing flexible adjustment of the optical layer spectrum resources.
  • An embodiment of the present invention provides a method for allocating an optical spectrum bandwidth resource. First, the bandwidth of the OTUbase is obtained according to the optical layer frequency interval bandwidth, and then the bandwidth of the OTUbase bandwidth is constructed according to the bandwidth of the customer service data and the bandwidth of the OTUbase.
  • An integer multiple of HO OTUflex mapping the customer service data to the payload area of the HO OTUflex, and encapsulating the HO OTUflex with the associated overhead information, and then modulating the HO OTUflex to the second integer optical channel carrier for transmission. Since the bandwidth of the OTUbase is based on the optical layer frequency interval bandwidth structure, the optical layer frequency interval bandwidth is fully matched, and according to the bandwidth of the customer service data, the HO OTUflex is constructed based on the bandwidth of the OTUbase, and the bandwidth allocation according to the customer service data is implemented to suit the customer service.
  • the data transmission bandwidth HO OTU and optical spectrum bandwidth resources enable flexible allocation of optical spectrum resources and efficient use of optical spectrum resources.
  • the third integer number of OTUbase channels are modulated into the second integer optical channel carrier for transmission, thereby realizing time division multiplexing.
  • the optical channel carrier transmits customer service data, which can transmit customer service data more quickly. If The bandwidth adjustment of the customer service data is adjusted by the LCAS to adjust the bandwidth of the HO OTUflex, and the optical channel carrier is adjusted accordingly to achieve lossless bandwidth adjustment.
  • An embodiment of the present invention provides a device for allocating optical spectrum bandwidth resources, as shown in FIG. 9, including:
  • FG Frequency Grid
  • the optical frequency interval of the ITU-T G.694.1 is defined as a value; m represents a multiple of the product of the carrier spectrum efficiency and the optical layer frequency interval bandwidth and the bandwidth of the OTUbase, and m is not less than An integer of 1.
  • the carried carrier is an orthogonal frequency division multiplexing multiple subcarrier
  • the constructing unit 802 is configured to construct a bandwidth-advanced high-order optical channel transmission unit HO OTUflex according to the bandwidth of the customer service data and the bandwidth of the OTUbase; the bandwidth of the HO OTUflex is the first integer multiple of the bandwidth of the OTUbase, The first integer is not less than one.
  • the first mapping encapsulating unit 803 is configured to map the customer service data to a payload area of the HO OTUflex and encapsulate the overhead information. Specifically, the first mapping encapsulating unit 803, as shown in FIG. 10, includes: a first mapping module, an 8031 first encapsulating module 8032, a second mapping module 8033, a second encapsulating module 8034, a third mapping module 8035, and a third Encapsulation module 8036;
  • the first mapping module 8031 is configured to directly map the customer service data to a payload area of the variable bandwidth optical channel payload unit OPUflex when the bandwidth of the customer service data exceeds a threshold.
  • the first encapsulating module 8032 is configured to encapsulate the related overhead of the OPUflex.
  • the second mapping module 8033 is configured to map the OPUflex encapsulated by the first encapsulation module 8032 to a payload area of a corresponding variable bandwidth optical channel data unit ODUflex.
  • the second encapsulating module 8034 is configured to encapsulate the related overhead of the ODUflex.
  • a third mapping module 8035 configured to encapsulate the ODUflex of the second encapsulation module 8034 Map to the payload area of HO OTUflex.
  • the third encapsulating module 8036 is configured to encapsulate the related overhead of the HO OTUflex.
  • the modulating unit 804 is configured to modulate the HO OTUflex carrying the customer service data to a second integer optical channel carrier; the second integer is not less than 1.
  • the above device as shown in FIG. 12, includes:
  • the splitting unit 805 is configured to split the HO OTUflex carrying the customer service data into a third integer number of OTUbase channels, where the third integer is not less than 2.
  • the third integer is equal to the first integer.
  • the splitting unit 805 has different ways to split the HO OTUflex into a third integer number of OTUbase channels.
  • the splitting unit 805 is specifically configured to split the HO OTUflex carrying the customer service data into columns according to the column. Three integer OTUbase channels.
  • the splitting unit 805 is specifically configured to split the HO OTUflex into a third integer number of OTUbase channels by byte granularity.
  • the splitting unit 805 is specifically configured to distribute the HO OTUflex into a third integer number of OTUbase channels in a frame granularity manner.
  • the modulating unit 804 is specifically configured to: multiplex the third integer number of OTUbase channels into a second integer number of optical channel carriers, where the second integer is not less than 1, and the third integer is the second An integer multiple of an integer.
  • the third integer is equal to the second integer.
  • the above device as shown in FIG. 12, further includes:
  • the adjusting unit 806 is configured to adjust the bandwidth of the HO OTUflex and adjust the optical channel carrier accordingly according to the bandwidth of the customer service data, according to the bandwidth of the customer service data, by using a link capacity adjustment mechanism LCAS.
  • the control field of the LCAS includes a setting instruction.
  • the setting instruction is used to indicate to the destination end that the mapping of the payload area of the HO OTUflex after the completion of the customer service data to the bandwidth change in the next frame of the HO OTUflex is performed.
  • the adjusting unit 806 is specifically configured to: when the bandwidth of the customer service data increases, add a fourth integer optical channel carrier in each link of the link, and use the LCAS to add a fifth integer number of OTUbase channels, and Adding the fifth integer number of OTUbase channels to the In the HO OTUflex, the newly added fifth integer OTUbase channel is modulated to the newly added fourth integer optical channel carrier; wherein the fourth integer is not less than 1, and the fifth integer is not less than 1, the The five integer is an integer multiple of the fourth integer. Determining the fifth integer to be deleted if the bandwidth of the customer service data is reduced
  • the OTUbase channel deletes the fifth integer OTUbase channel of the HO OTUflex to be deleted by using the LCAS and translates the corresponding fourth integer channel optical channel carrier.
  • the fourth integer is equal to the fifth integer.
  • An embodiment of the present invention provides an apparatus for allocating an optical spectrum bandwidth resource. First, the bandwidth of the OTUbase is obtained according to the optical layer frequency interval bandwidth, and then the bandwidth of the OTUbase bandwidth is constructed according to the bandwidth of the customer service data and the bandwidth of the OTUbase. An integer multiple of HO OTUflex; and mapping the customer service data to the payload area of the HO OTUflex, and encapsulating the HO OTUflex with the relevant overhead information, and then transmitting the HO OTUflex to the optical channel carrier for transmission.
  • the bandwidth of the OTUbase is based on the optical layer frequency interval bandwidth structure, the optical layer frequency interval bandwidth is fully matched, and according to the bandwidth of the customer service data, the HO OTUflex is constructed based on the bandwidth of the OTUbase, and the bandwidth allocation according to the customer service data is implemented to suit the customer service.
  • the data transmission bandwidth HO OTU and optical spectrum bandwidth resources enable flexible allocation of optical spectrum resources and efficient use of optical spectrum resources.
  • the third integer OTUbase channel is modulated into the second integer optical channel carrier for transmission, thereby realizing the time division multiplexing.
  • the optical channel carrier transmits customer service data, which can transmit customer service data more quickly. If the bandwidth of the customer service data is adjusted, the bandwidth of the HO OTUflex is adjusted accordingly by LCAS, and the optical channel carrier is adjusted accordingly to achieve lossless bandwidth adjustment.

Abstract

本发明实施例提供了一种分配光频谱带宽资源的方法及装置,涉及通信领域,用以通过根据客户业务数据的带宽分配适合客户业务数据带宽的传送带宽以及光频谱带宽资源,实现光频谱资源的灵活分配,有效利用光频谱资源。所述方法包括:根据光层频率间隔带宽及载波频谱效率获取OTUbase的带宽;根据客户业务数据的带宽和所述OTUbase的带宽,构造HO OTUflex;所述HO OTUflex的带宽为OTUbase的带宽的第一整数倍;将所述客户业务数据映射到所述HO OTUflex的净荷区并封装开销信息;将承载有所述客户业务数据的所述HO OTUflex调制到第二整数路光通道载波。本发明实施例适用于客户业务数据的传送场景。

Description

一种分配光频谱带宽资源的方法及装置 技术领域 本发明涉及通信领域, 尤其涉及一种分配光频谱带宽资源的方法及 装置。
背景技术
OTN ( Optical transport network, 光传送网 )为下一代传送网的核心 技术, 包括电层和光层的技术规范, 能够实现大容量业务的灵活调度和 管理。 随着客户业务的海量增长, 速率为 100Gbit/s的光传输技术已被广 泛使用。 目前, 为了达到最优化高效的网络配置, 实现光频谱资源的有 效利用, 要求 OTN具有适配光频谱资源分配和带宽调整的能力, 做到无 损带宽调整。 比如通过基于业务流量和传输距离灵活选择光调制方式等 参数, 导致光频谱资源分配进行了适当变更, 这就要求在光频谱资源分 配变更时, OTN通过带宽调整来适配该种变化。
当前 OTN提供了多种速率等级的 OPUk、 ODUk, OTUk。 系数 k表 示所支持的比特速率和不同种类的 OPUk, ODUk和 OTUk。 k = 0表示比 特速率等级为 1.25Gbit/s, k = l表示比特速率等级为 2.5Gbit/s, k = 2表 示比特速率等级为 10Gbit/s, k = 3 表示比特速率等级为 40Gbit/s, k = 4 表示比特速率等级为 100Gbit/s, k=flex表示比特速率任意。 同时 OTN中 存在低阶(Low Order )和高阶( High Order )的概念。 如图 1所示, OTN 的帧格式是 4080*4的模块化结构, 包括帧定位字节 FAS , 提供帧同步定 位的功能, OTUk OH为光通道传送单元开销字节, 提供光通道传送单元 级别的网络管理功能。 ODUk OH为光通道数据单元开销字节, 提供维护 和操作功能。 OPUk OH为光通道净荷单元开销字节, 提供客户信号适配 的功能。 OPUk为光通道净荷单元, 提供客户信号承载的功能。 FEC为前 向纠错字节, 提供错误探测和纠错功能。
在现有技术中, 当前 OTN可以采用 LO ODUx ( Low Order Optical Channel Data Unit-x, 低阶光通道数据单元 x ) 适配客户业务数据, 实现 对客户业务数据的映射封装, 之后将 LO ODUx映射到 HO ODUk ( High Order Optical Channel Data Unit-k,高阶光通道数据单元 k ) ,将 HO ODUk 封装到 HO OTUk (高阶光通道传输单元 k ) , 通过 HO OTUk适配光频 -潜资源分配, 实现承载传送。 其中, LO ODUx可以包含 ODU0、 ODUl、 ODU2、 ODU3、 ODUflex。 HO ODUk包含固定速率等级的 ODUl、 ODU2、 ODU3、 ODU4。 OTN通过采用 OTU1 ( 2.5G ) 、 OTU2 ( 10G ) 、 OTU3
( 40G ) 、 OTU4 ( 100G ) 等固定速率等级的方式来适配光层频谱带宽资 源实现传送, 且 OTU1 ( 2.5G ) 、 OTU2 ( 10G ) 、 OTU3 ( 40G ) 、 OTU4
( 100G ) 分别占用 1个 50GHz等间隔的光频谱带宽资源。 当分配给上述固定速率等级的 OTUk的光频谱带宽资源改变后, 需 要实时变更 OTUk的速率来适配这种变更。 而当前 OTN由于采用固定速 率等级来适配光频谱带宽资源, 无法灵活适配光频谱带宽资源分配的变 更, 实现光频谱资源的有效利用。另外, 2.5G的 OTU1或者 10G的 OTU2 固定的占用 50GHz光频谱带宽资源, 也存在光频谱带宽资源的浪费, 未 充分利用。
发明内容 本发明的实施例提供一种分配光频谱带宽资源的方法及装置, 用以 通过根据客户业务数据的带宽分配适合客户业务数据带宽的传送带宽 HO OTU 以及光频谱带宽资源, 实现光频谱资源的灵活分配, 有效利用 光频谱资源。
为达到上述目的, 本发明的实施例采用如下技术方案:
一种分配光频谱带宽资源的方法, 包括: 根据光层频率间隔带宽及 所承载的载波频谱效率获取基准光通道传输单元 OTUbase的带宽; 根据 客户业务数据的带宽和所述 OTUbase的带宽, 构造带宽可变的高阶光通 道传输单元 HO OTUflex; 所述 HO OTUflex的带宽为所述 OTUbase的带 宽的第一整数倍, 所述第一整数不小于 1 ; 将所述客户业务数据映射到所 述 HO OTUflex的净荷区并封装开销信息;将承载有所述客户业务数据的 所述 HO OTUflex调制到第二整数路光通道载波;所述第二整数不小于 1。
一种分配光频谱带宽资源的装置, 包括: 第一获取单元, 用于根据 光层频率间隔带宽及所承载的载波频谱效率获取基准光通道传输单元 OTUbase 的带宽; 构造单元, 用于根据客户业务数据的带宽和所述 OTUbase的带宽, 构造带宽可变的高阶光通道传输单元 HO OTUflex; 所 述 HO OTUflex的带宽为所述 OTUbase的带宽的第一整数倍, 所述第一 整数不小于 1 ; 第一映射封装单元, 用于将所述客户业务数据映射到所述
HO OTUflex的净荷区并封装开销信息; 调制单元, 用于将承载有所述客 户业务数据的所述 HO OTUflex调制到第二整数路光通道载波;所述第二 整数不小于 1。 本发明实施例提供了一种分配光频谱带宽资源的方法及装置, 首先 根据光层频率间隔带宽获取 OTUbase的带宽, 然后根据客户业务数据的 带宽和所述 OTUbase的带宽, 构造带宽为 OTUbase的带宽的第一整数倍 的 HO OTUflex; 并将客户业务数据映射至 HO OTUflex的净荷区,将 HO OTUflex封装相关开销信息后,将 HO OTUflex调制到第二整数路光通道 载波中传送。 由于 OTUbase的带宽基于光层频率间隔带宽构造, 充分匹 配光层频率间隔带宽, 且根据客户业务数据的带宽, 基于所述 OTUbase 的带宽构造 HO OTUflex, 实现了根据客户业务数据的带宽分配适合客户 业务数据的传送带宽 HO OTU以及光频谱带宽资源, 从而实现光频谱资 源的灵活分配, 有效利用光频谱资源。
附图说明
对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见 地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技 术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得 其他的附图。 图 1为现有技术中 OTN的帧格式的示意图;
图 2为本发明实施例提供的一种分配光频谱带宽资源的方法的流程 示意图;
图 3为本发明实施例提供的 HO OTUflex的一种帧结构的示意图; 图 4为本发明实施例提供的一种将客户业务数据映射至 HO OTUflex 的净荷区的示意图; 图 5 为本发明实施例提供的另一种将客户业务数据映射至 HO OTUflex的净荷区的示意图;
图 6为本发明实施例提供的另一种分配光频谱带宽资源的方法的流 程示意图; 图 7为本发明实施例提供的一种增加 HO OTUflex带宽方法的流程 示意图;
图 8为本发明实施例提供的一种减少 HO OTUflex带宽方法的流程 示意图;
图 9为本发明实施例提供的一种分配光频谱带宽资源的装置的结构 示意图;
图 10为图 9所示的第一映射封装单元的结构示意图; 图 1 1 为本发明实施例提供的另一种分配光频谱带宽资源的装置的 结构示意图;
图 12 为本发明实施例提供的又一种分配光频谱带宽资源的装置的 结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案 进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实 施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术 人员在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本 发明保护的范围。 本发明实施例提供了一种分配光频谱带宽资源的方法,如图 2所示, 包括:
101、根据光层频率间隔带宽及所承的载波频谱效率获取基准光通道 传输单元 OTUbase的带宽。 具体的, 根据公式: OTUbase 的带宽 =FG*载波频谱效率 /m 计算得 到; 其中, FG ( Frequency Grid, 频率间隔 )表示光层频率间隔带宽, 可 以基于国际电讯联盟 ITU-T G.694.1的光频率间隔定义来取值; m表示根 据需求设置的所述载波频谱效率及光层频率间隔带宽间的乘积与 OTUbase的带宽间的倍数值, 且 m为不小于 1的整数。 可选的, 所承载 的载波为正交频分复用多子载波, 此时 OTUbase 的带宽根据公式: OTUbase的带宽 =FG*正交频分复用子载波频谱效率 /m计算得到。 例如, FG=12.5GH, 正交频分复用子载波频-潜效率为 2bit/Hz/s, 且 m=l , 则 OTUbase的带宽 = 12.5 GH*2bit/Hz/s=25Gbit/s。 需要说明的是, 无论采用多载波传送, 还是单载波传送都可以根据 需要, 改变上述公式的载波频谱效率参数获取 OTUbase的带宽, 本发明 对载波所采用的调制格式不做限定。
需要说明的是, 基准光通道传输单元 OTUbase是光层中最小带宽的 光通道传输单元, OTUbase 的带宽是其他光通道传输单元的制定带宽的 基准。
102、 根据客户业务数据的带宽和所述 OTUbase 的带宽, 构造带宽 可变的高阶光通道传输单元 HO OTUflex。
其中, 所述 HO OTUflex的带宽为所述 OTUbase的带宽的第一整数 倍, 所述第一整数不小于 1。 具体的, 根据客户业务数据的带宽和 OTUbase的带宽, 可以获知客 户业务数据的带宽为 OTUbase的带宽的几倍, 用 k来表示此倍数, k为 大于 0的数, 并利用上取整函数对 k进行上取整得到第一整数, 用 p来 表示第一整数, 构造 HO OTUflex, 使得 HO OTUflex的带宽为 p倍的 OTUbase的带宽。
进一步的, HO OTUflex 的帧格式有两种, 一种是第一整数个 OTUbase帧的级联结构;另一种 HO OTUflex的帧格式是与所述 OTUbase 的帧格式相同。
具体的, 优选的, OTUbase的帧格式与 0TN的帧格式相同。 若 HO OTUflex的帧格式是 OTUbase的帧的级联结构时, 则 HO OTUflex的帧 格式是 4080n*4的模块化结构。 其中, n表示 OTUbase帧的数目, 如图 3 所示。
若 HO OTUflex的帧格式与所述 OTUbase的帧格式相同时, 则 HO OTUflex的帧格式也与 OTN的帧格式相同, 具体可参考图 1所示。 需要说明的是, OTUbase的帧格式也可与 OTN的帧格式不相同, 是 其他形式的帧格式, 本发明对此不做限制。
103、 将所述客户业务数据映射到所述 HO OTUflex的净荷区并封装 开销信息。 具体的, 根据客户业务数据的带宽的不同, 将客户业务数据映射至
HO OTUflex的净荷区的方式不同。
第一种方式, 如图 4所示, 当客户业务数据的带宽超过门限值时, 将所述客户业务数据直接映射到 OPUflex ( Optical Channel Payload Unit flex, 带宽可变的光通道净荷单元) 的净荷区, 并将所述 OPUflex封装相 关开销后映射到相应的 ODUflex ( Optical Channel Data Unit flex, 带宽可 变的光通道数据单元) , 将所述 ODUflex 封装相关开销后映射到 HO OTUflex。 优选的, 通过通用映射规程将所述客户业务数据直接映射到 OPUflex中。 需要说明的是, 门限值是由系统预先设置, 在图 4 中示例性的取门 限值为 100Gbit/so 需要说明的是, 将所述客户业务数据直接映射到 OPUflex的方式还 可以通过比特异步通用规程或是其他方式, 本发明对将所述客户业务数 据直接映射到 OPUflex的方式不做限制。
第二种方式, 参考图 4所示, 当客户业务数据的带宽低于门限值时, 首先将客户业务数据映射至 LO ODUx ( Low Order Optical Channel Data Unit-x, 低阶光通道数据单元 x ) 的净荷区, 在将 LO ODUx封装相关开 销'后映射至 HO OPUflex ( High Order Optical Channel Payload Unit-flex, 高阶光通道传输单元 flex ) 的净荷区, 在将 HO OPUflex封装相关开销后 映射至 HO ODUflex ( High Order Optical Channel Data Unit-flex, 高阶光 通道数据单元 flex ) , 最后将 HO ODUflex封装相关开销后映射至 HO OTUflex。其中, LO ODUx包含 ODU0、 0DU1、 ODU2、 ODU2e、 ODU3、 ODU3el、 ODU3e2、 ODU4、 ODUflex。 x的值不同则表示 LO ODU的固 定速率等级不同及 LO ODU的类型不同。 优选的, 通过通用映射规程将 所述客户业务数据直接映射到 LO ODUx中。
需要说明的是, 将所述客户业务数据直接映射到 LO ODUx的方式 还可以通过比特异步通用规程或是其他方式, 本发明对将所述客户业务 数据直接映射到 LO ODUx的方式不做限制。
第三种方式, 将第二种方式的带宽低于门限值的客户业务数据以 OTUbase的带宽为界限分为三种情况, 如图 5所示。 第一种情况是, 当客户业务数据的带宽低于门限值且高于 OTUbase 的带宽时,将客户业务数据映射至 HO OTUflex的净荷区的方式与第二种 方式相同, 在此不作贅述。
第二情况是, 当客户业务数据的带宽低于 OTUbase的带宽时, 将客 户业务数据映射至 LO ODUx的净荷区, 在将 LO ODUx封装相关开销后 映射至 HO OPUbase ( High Order Optical Channel Payload Unit base, 高阶 基准光通道数据单元) 的净荷区, 在将 HO OPUbase封装相关开销后映 射至 HO ODUbase ( High Order Optical Channel Data Unit base, 高阶基准 将 OTUbase映射至 OTUflex的净荷区中。 优选的, 通过通用映射规程将 所述客户业务数据直接映射到 LO ODUx中。
需要说明的是, 将所述客户业务数据直接映射到 LO ODUx的方式 还可以通过比特异步通用规程或是其他方式, 本发明对将所述客户业务 数据直接映射到 LO ODUx的方式不做限制。
第三种情况是, 当客户业务数据的带宽等于 OTUbase的带宽时, 将 客户业务数据直接映射入 OPUbase的净荷区, OPUbase封装相关开销后 映射至 ODUbase, 最后将 ODUbase封装相关开销后映射至 OTUbase, 将 OTUbase映射至 HO OTUflex的净荷区中。优选的, 通过通用映射规程将 所述客户业务数据直接映射到 OPUbase中。
需要说明的是, 在图 5中以 OTUbase的带宽为 25Gbit/s为例进行说 明的。
需要说明的是, 将所述客户业务数据直接映射到 OPUbase的方式还 可以通过比特异步通用规程或是其他方式, 本发明对将所述客户业务数 据直接映射到 OPUbase的方式不做限制。 需要说明的是, 当客户业务数据的带宽低于门限值时, 将客户业务 数据映射至 HO OTUbase的净荷区的方式还可以通过其他的方法, 本法 明对此不做限制。 需要说明的是, 低阶与高阶是相对的。 示例性的, 直接适配客户业 务数据的 ODU是第一级,将低带宽的 ODU复用至高带宽的 ODU后, 高 带宽的 ODU是第二级, 通常, 将第一级的 ODU称为 LO ODU, 将第二 级的 ODU称为 HO ODU。 需要说明的是, OPUbase 和 ODUbase 是与 OTUbase 相对应的, OPUbase和 ODUbase的速率取决于 OTUbase的速率。 可选的, OPUbase 速率 =OTUbase速率 *238/255, ODUbase速率 =OTUbase速率 *239/255。
104、 将承载有所述客户业务数据的所述 HO OTUflex调制到第二整 数路光通道载波。 其中, 第二整数不小于 1。 具体的, 可以将承载有所述客户业务数据的 HO OTUflex拆分为第 三整数个 OTUbase通道, 将第三整数个 OTUbase通道复用调制到第二整 数路光通道载波中, 通过第二整数路光通道载波传送客户业务数据。 其 中, 所述第三整数不小于 1 , 且第三整数为第二整数的倍数。 示例性的, 将将承载有所述客户业务数据的 HO OTUflex拆分为 16 个 OTUbase通道, 将这 16个 OTUbase通道复用调制到 4路光通道载波 中, 也就是说, 每 4个 OTUbase通道复用 1路光通道载波, 通过这 4路 光通道载波传送客户业务数据。
需要说明的是, 将 HO OTUflex拆分的每一份称为一个 OTUbase通 道。
优选的, 第二整数与第三整数相等, 进一步优选的, 第三整数与第 一整数相等。
需要说明的是, 当第二整数和第三整数均为大于 1 的整数时, 将第 三整数个 OTUbase通道复用调制到第二整路光通道载波中, 实现了通过 多载波传送客户业务数据。
进一步的, 针对 HO OTUflex的不同的帧格式, 将承载有所述客户 业务数据的 HO OTUflex拆分为第三整数个 OTUbase通道的方法也不同。
具体的, 若 HO OTUflex的帧格式为 OTUbase帧的级联结构, 则将 承载有所述客户业务数据的 HO OTUflex拆分为第三整数个 OTUbase通 道的方法包括: 将所述承载客户业务数据的所述 HO OTUflex按列拆分成第三整数 个 OTUbase通道。 需要说明的是, 此时一列即为一个完整的 OTUbase 帧, 即将 HO OTUflex 拆分为第一整数个 OTUbase 帧, 每个 OTUbase 帧对应一个 OTUbase通道。
若 HO OTUflex的帧格式是与所述 OTUbase的帧格式相同,则将 H0 OTUflex拆分为第三整数个 OTUbase通道的方法包括:
将所述 HO OTUflex按字节粒度拆分为第三整数个 OTUbase通道。 示例性的, 以 4字节为拆分粒度, 可以将 HO OTUflex的帧按 4字 节的粒度拆分为第三整数个 OTUbase通道。
需要说明的是, 将 HO OTUflex的帧按字节粒度进行拆分时, 根据 HO OTUflex的帧按从左到右, 从上到下的顺序进行拆分。
或者, 将所述 HO OTUflex 按帧粒度的方法分发成第三整数个 OTUbase通道。 本发明实施例提供了一种分配光频谱带宽资源的方法, 首先根据光 层频率间隔带宽获取 OTUbase的带宽, 然后根据客户业务数据的带宽和 所述 OTUbase的带宽, 构造带宽为 OTUbase的带宽的第一整数倍的 HO OTUflex ; 并将客户业务数据映射至 HO OTUflex 的净荷区, 将 HO OTUflex封装相关开销信息后,将 HO OTUflex调制到第二整数路光通道 载波中传送。 由于 OTUbase的带宽基于光层频率间隔带宽构造, 充分匹 配光层频率间隔带宽, 且根据客户业务数据的带宽, 基于所述 OTUbase 的带宽构造 HO OTUflex, 实现了根据客户业务数据的带宽分配适合客户 业务数据的传送带宽 HO OTU以及光频谱带宽资源, 从而实现光频谱资 源的灵活分配, 有效利用光频谱资源。
上述方法, 如图 6所示, 还包括:
105、 若所述客户业务数据的带宽调整时, 则根据所述客户业务数据 的带宽,利用链路容量调整机制 LCAS调整 HO OTUflex的带宽并相应的 调整光通道载波。
其中, 所述 LCAS的控制字段包括设置指令; 所述设置指令用于向 目的端指示在 HO OTUflex 的下一帧完成客户业务数据到带宽变化后的 HO OTUflex 的净荷区的映射切换。 优选的, 设置指令的二进制编码为 0100。
若所述客户业务数据的带宽增加时, 则在链路各段增加第四整数路 光通道载波, 并利用所述 LCAS增加第五整数个 OTUbase通道, 并将所 述第五整数个 OTUbase通道添加至所述 HO OTUflex中 , 将新增的第五 整数个 OTUbase通道调制到新增的第四整数路光通道载波; 其中, 所述 第四整数不小于 1 , 所述第五整数为所述第四整数的整数倍;
具体的, 首先确定在源端和目的端需增加的第五整数个 OTUbase通 道, 即确定第五整数的大小。 在链路的各段增加第四整数路与源端和目 的端已建立的光通道载波相同调制格式的光通道载波, 并选通。 利用 LCAS在源端和目的端增加第五整数个 OTUbase通道, 将所述第五整数 个 OTUbase 通道合并至所述 HO OTUflex 中, 将新增加的第五整数个 OTUbase 通道调制到新增加的第四整数路光通道载波中; 其中, 向目的 端发送设置指令的数量大于等于 1 , 小于等于第五整数, 即向目的端的至 少一个新增加的成员发送设置指令。
需要说明的是, 在源端和目的端间有多个中间节点, 每相邻两个节 点间的链路为一段链路。所述中间节点为 HO OTUflex的传送提供传送通 道。 在源端和目的端新增 OTUbase通道时, 中间节点为新增的 OTUbase 通道分配空闲的光通道载波, 以实现新增 OTUbase通道的传送。
示例性的, 此时第四整数等于第五整数, 客户业务数据的带宽增加 了, HO OTUbase的带宽需从 n个 OTUbase通道增加到 n+2个 OTUbase 通道, 首先在链路的各段增加了 2条与 n条正交频分复用子载波相同调 制格式的正交频分复用子载波, 并选通。 源端与目的端通过 LCAS增加 2 个 OTUbase通道, 具体的增加 OTUbase通道的过程,如图 7所示, 包括:
301、 系统下发命令在源端 So和目的端 Sk 的 Sk ( n ) 和 Sk ( n+1 ) 建立 LCAS连接。
302、 So向 Sk发送 CTRL=ADD增加指令。 具体的, So找到两个 CTRL=IDLE的空闲成员 (该空闲成员即为待 增加的两路 OTUbase通道) , 并将这两个成员的 CTRL字段改为 ADD, 即 CTRL=ADD, 并向目的端 Sk 的 Sk ( n )和 Sk ( n+1 )发送 CTRL=ADD 增加指令。
303、 Sk ( n+1 ) 进行连接性检查, 若检查到连接状态正常, 则向 So 返回 MST=OK的信令。 具体的, Sk ( n+1 ) 进行连接性检查, 若检查到连接状态正常, 则 向 So返回 MST=OK的信令, 其中 MST字段用于报告成员状态, 有两种 值 OK或 FAIL。 MST=OK, 表示成员无故障且可使用, 成员状态正常; MST=FAIL, 表示成员不可使用, 成员状态不正常。
304、 So接收到 MST=OK的信令后, 先向与 Sk的原最后一个连接 发送 CTRL=NORM的指令, 在向 Sk的 Sk ( n+1 ) 发送 CTRL=EOS的指 令。
具体的, NORM表示常规传输, EOS表示顺序的结尾和常规传输。 So接收到 MST=OK 的信令后, 知道 Sk (n+1) 的成员状态正常, 向与 Sk的原来最后一个连接发送 CTRL=NORM的指令, 使得 Sk原来最后一 个成员将 CTRL 字段由 EOS 设为 NORM。 向 Sk 的 Sk (n+1 ) 发送 CTRL=EOS的指令,使得新增的连接 Sk( n+1 )将 CTRL字段设置为 EOS, 使得 Sk的新增加的成员 Sk (n+1) 为最后一个成员, 即使得新增加的连 接 Sk (n+1 ) 变为 So与 Sk的最后一个连接。
需要说明的是, So与 Sk原最后一个连接是指在增加 Sk (n) 与 Sk (n+1) 之前, Sk的所有成员中 CTRL字段为 EOS的成员, 用 Sk (n-l) 来表示。
需要说明的是, Sk将与 So建立的每个连接称为一个成员。
305、 Sk的与 So的原最后一个连接接收到 CTRL=NORM的指令接 收到 CTRL=NORM 的指令后, 将其 CTRL 字段由 CTRL=EOS 修改为 CTRL=NORM。 Sk的 Sk( n+1 )接收到 CTRL= EOS的指令后,将其 CTRL 字段设置为 EOS。
具体的, Sk的原最后一个成员接收到 CTRL=NORM的指令后, 将 其 CTRL字段由 CTRL=EOS修改为 CTRL=NORM, 使得 Sk的原最后一 个成员由结尾成员变为常规传输成员。 Sk的新增加的成员 Sk (n+1 )接 收到 CTRL= EOS的指令后, 将其 CTRL字段设为 EOS, 使得 Sk的新增 加成员设为新的结尾成员。
306、 Sk的 Sk (n+1 ) 向 So返回设置成功指示 RS=ACK inverted。 具体的, Sk的新增成员 Sk( n+1)将 CTRL字段设为 EOS设为成功 后, 向 So返回设置成功指示 RS=ACK inverted, 以指示 So设置成功, 此 时 So与 Sk新增加了一条连接 Sk (n+1 ) 。 307、 Sk ( n) 进行连接性检查, 若检查到连接状态正常, 则向 So 返回 MST=OK的信令。
具体的, 与步骤 303相同在此不作贅述。
308、 So接收到 MST=OK的信令后, 先向与 Sk的原最后一个连接 发送 CTRL=NORM的指令, 在向 Sk的 Sk ( n)发送 CTRL=EOS的指令。 具体的, So接收到 MST=OK的信令后, 知道 Sk (n)的成员状态正 常, 向与 Sk的原来最后一个连接发送 CTRL=NORM的指令, 即向 Sk的 成员 Sk (n+1 ) 发送 CTRL=NORM的指令, 使得 Sk原来最后一个成员 将 CTRL字段由 EOS设为 NORM,即使得 Sk( n+1 )将 CTRL字段由 EOS 设为 NORM。 向 Sk的 Sk (n) 发送 CTRL=EOS的指令, 使得新增的连 接 Sk (n) 将 CTRL字段设置为 EOS, 使得 Sk的新增加的成员 Sk ( n ) 为最后一个成员, 即使得新增加的连接 Sk (n) 变为 So与 Sk的最后一 个连接。
309、 Sk的与 So的原最后一个连接接收到 CTRL=NORM的指令接 收到 CTRL=NORM 的指令后, 将其 CTRL 字段由 CTRL=EOS 修改为 CTRL=NORM。 Sk的 Sk ( n )接收到 CTRL= EOS的指令后, 将其 CTRL 字段设置为 EOS。
具体的, Sk的原最后一个成员即 Sk ( n+1 )接收到 CTRL=NORM的 指令后, 将其 CTRL字段由 CTRL=EOS修改为 CTRL=NORM, 使得 Sk 的原最后一个成员即成员 Sk (n+1 ) 由结尾成员变为常规传输成员。 Sk 的新增力口的成员 Sk (n)接收到 CTRL= EOS的指令后, 将其 CTRL字段 设为 EOS, 使得 Sk的新增加成员 Sk (n) 设为新的结尾成员。
310、 Sk的 Sk (n) 向 So返回设置成功指示 RS=ACK inverted。 具体的, 参考步骤 306在此不再贅述。
311、 So向两个新建立的连接 Sk (n+1 )和 Sk ( n ) 的至少一个发送 CTRL=S WITCH指令。
具体的, So向两个新建立的连接 Sk (n+1 ) 和 Sk (n) 的至少一个 发送 CTRL=SWITCH指令, 以通知 Sk在下一帧开始, Sk的两个新成员 Sk (n+1 ) 和 Sk (n) 开始传输业务, 即在所述 HO OTUflex的下一帧完 成客户业务数据到带宽变化后的 HO OTUflex帧的净荷区的映射切换。 需要说明的是, 新增加 Sk的两个成员 Sk ( n+1 ) 和 Sk ( n ) 时, 由 于 Sk ( n+1 ) 首先返回连接检查信息所以先添加成员 Sk ( n+1 ) , 在添加 成员 Sk ( η ) , 所以最后成员 Sk ( η ) 的 CTRL字段为 EOS。 通过步骤 301-310实现了将 HO OTUbase的带宽需从 n个 OTUbase 通道增加到 n+2 个 OTUbase 通道, 通过步骤 311 实现了通过 n+2 个 OTUbase 通道传输客户业务数据。 若客户业务数据的带宽增加了通过上 述方法可以实现无损带宽调整, 使得 HO OTUflex 的带宽得到相应的增 加, 从而实现了光层频谱资源的灵活调整。 需要说明的是, 将新增的 2条 OTUbase通道调制到新增的 2条正交 频分复用子载波上传送。
若所述客户业务数据的带宽减少时, 确定待删除的第五整数个 OTUbase通道,通过所述 LCAS删除所述 HO OTUflex的待删除的第五整 数个 OTUbase通道并译放相应的第四整数路光通道载波。
具体的, 首先确定在源端和目的端需删除的第五整数个 OTUbase通 道, 即确定待删除的 OTUbase 通道个数及位置。 在源端和目的端利用 LCAS在源端和目的端删除待删除的第五整数个 OTUbase通道, 并释放 源端和目的端的相应的第四整数路光通道载波, 然后链路其他各段释放 对应的光通道载波。
示例性的, 此时第四整数等于第五整数, 客户业务数据的带宽减小 了, HO OTUbase的带宽需从 n个 OTUbase通道减少到 n-1个 OTUbase 通道, 首先在源端与目的端通过 LCAS减少 1个 OTUbase通道, 并释放 源端和目的端间的删除的 OTUbase通道对应的正交频分复用子载波, 链 路其他各段释放相应的正交频分复用子载波。 源端和目的端具体的删除 OTUbase通道过程, 如图 8所示, 包括:
401、 系统下发命令至 So端删除与 Sk的 Sk ( n ) 连接。
402、 So向 Sk的 Sk ( n ) 发送 CTR= SWITCH指令。 具体的, So向要删除的连接 Sk的 Sk( n )发送 CTR= SWITCH指令, 以指示 Sk的成员 Sk ( n ) 在下一帧不会通过 Sk ( n ) 发送数据, 即通知 Sk 在所述 HO OTUflex的下一帧完成客户业务数据到带宽变化后的 HO OTUflex帧的净荷区的映射切换。
403、 So发送向 Sk的 Sk ( n ) 发送 CTR=IDLE指令, 并将 Sk ( n ) 的 SQ设置为最大, 发送 CTR=EOS至 Sk的 Sk ( n-1 ) 。
具体的, IDLE表示当前成员空闲或将要移除该组。 SQ是指标识 Sk 成员的序号, 从 0开始。 So发送向 Sk的 Sk ( n ) 发送 IDLE指令, 是指 将 Sk的成员 Sk ( n ) 要移除该组, 即将 Sk ( n ) 删除, 并将 Sk的成员 Sk ( n ) 的 SQ设置为最大值。 由于 Sk ( n ) 原先是 Sk的最后一个成员, 即 CTR字段为 EOS , 先将 Sk的 Sk ( n-1 ) 的 CTR字段设为 EOS , 使得 Sk ( n-1 ) 的 Sk的顺序结尾成员。
404、 Sk的 Sk ( n-1 ) 向 So返回设置成功指示 RS=ACK inverted„ 具体的, Sk的成员 SK ( n-l )将 CTR字段设置为 EOS后, 向 So返 回设置成功指示 RS=ACK inverted的确认信息。
405、 Sk的 Sk ( n )向 So返回 MST=FAIL状态, 表示已经删除成功。 通过步骤 401-405实现了将 HO OTUbase的带宽需从 n个 OTUbase 通道减少到 n-1个 OTUbase通道。 若客户业务数据的带宽减少了通过上 述方法可以实现无损带宽调整, 使得 HO OTUflex 的带宽得到相应的减 少, 从而实现了光层频谱资源的灵活调整。 本发明实施例提供了一种分配光频谱带宽资源的方法, 首先根据光 层频率间隔带宽获取 OTUbase的带宽, 然后根据客户业务数据的带宽和 所述 OTUbase的带宽, 构造带宽为 OTUbase的带宽的第一整数倍的 HO OTUflex ; 并将客户业务数据映射至 HO OTUflex 的净荷区, 将 HO OTUflex封装相关开销信息后,将 HO OTUflex调制到第二整数路光通道 载波中传送。 由于 OTUbase的带宽基于光层频率间隔带宽构造, 充分匹 配光层频率间隔带宽, 且根据客户业务数据的带宽, 基于所述 OTUbase 的带宽构造 HO OTUflex, 实现了根据客户业务数据的带宽分配适合客户 业务数据的传送带宽 HO OTU以及光频谱带宽资源, 从而实现光频谱资 源的灵活分配, 有效利用光频谱资源。 通过将承载有客户业务数据的 HO OTUflex拆分成第三整数个独立的 OTUbase通道,将第三整数个 OTUbase 通道调制到第二整数个光通道载波中进行传输, 实现了通过分时复用多 条光通道载波传送客户业务数据, 能够更快速的传输客户业务数据。 若 客户业务数据的带宽调整,则通过 LCAS使得 HO OTUflex的带宽做相应 的调整, 并相应的调整光通道载波, 实现无损带宽调整。 本发明实施例提供了一种分配光频谱带宽资源的装置,如图 9所示, 包括:
第一获取单元 801 , 用于根据光层频率间隔带宽及所承载的载波频 谱效率获取基准光通道传输单元 OTUbase的带宽。 具体的, 所述第一获取单元具体用于: 根据公式 OTUbase 的带宽 =FG*载波频谱效率 /m计算得到; 其中, FG ( Frequency Grid, 频率间隔 ) 表示光层频率间隔带宽, 可以基于国际电讯联盟 ITU-T G.694.1的光频率 间隔定义来取值; m 表示根据需求设置的所述载波频谱效率及光层频率 间隔带宽间的乘积与 OTUbase的带宽间的倍数值, 且 m为不小于 1的整 数。 可选的, 所承载的载波为正交频分复用多子载波, 此时 OTUbase的 带宽根据公式: OTUbase的带宽 =FG*正交频分复用子载波频谱效率 /m计 算得到。
构造单元 802, 用于根据客户业务数据的带宽和所述 OTUbase的带 宽,构造带宽可变的高阶光通道传输单元 HO OTUflex;所述 HO OTUflex 的带宽为所述 OTUbase的带宽的第一整数倍, 所述第一整数不小于 1。 第一映射封装单元 803 , 用于将所述客户业务数据映射到所述 HO OTUflex的净荷区并封装开销信息。 具体的, 第一映射封装单元 803 , 如图 10所示, 包括: 第一映射模 块, 8031第一封装模块 8032 , 第二映射模块 8033 , 第二封装模块 8034, 第三映射模块 8035 , 第三封装模块 8036;
所述第一映射模块 8031 ,用于当客户业务数据的带宽超过门限值时 , 将所述客户业务数据直接映射到带宽可变的光通道净荷单元 OPUflex 的 净荷区。
所述第一封装模块 8032 , 用于封装所述 OPUflex的相关开销。
所述第二映射模块 8033 , 用于将第一封装模块 8032 封装的所述 OPUflex映射到相应的带宽可变的光通道数据单元 ODUflex的净荷区。
第二封装模块 8034 , 用于封装所述 ODUflex的相关开销。
第三映射模块 8035 ,用于将第二封装模块 8034封装的所述 ODUflex 映射到 HO OTUflex的净荷区。
所述第三封装模块 8036 , 用于封装 HO OTUflex的相关开销。
调制单元 804, 用于将承载有所述客户业务数据的所述 HO OTUflex 调制到第二整数路光通道载波; 所述第二整数不小于 1。 上述装置, 如图 12所示, 包括:
拆分单元 805 , 用于将承载有所述客户业务数据的所述 HO OTUflex 拆分为第三整数个 OTUbase通道, 所述第三整数不小于 2。
优选的, 所述第三整数和所述第一整数相等。
具体的, 根据 HO OTUflex不同的帧格式, 拆分单元 805有不同的 方式将 HO OTUflex拆分为第三整数个 OTUbase通道。
若所述 HO OTUflex的帧格式为第一整数个 OTUbase帧的级联结构 时, 则所述拆分单元 805具体用于, 将所述承载客户业务数据的所述 HO OTUflex按列拆分成第三整数个 OTUbase通道。
若所述 HO OTUflex的帧格式与所述 OTUbase的帧格式相同时, 则 所述拆分单元 805具体用于,将所述 HO OTUflex按字节粒度拆分为第三 整数个 OTUbase通道。
或者, 所述拆分单元 805具体用于, 将所述 HO OTUflex按帧粒度 的方式分发成第三整数个 OTUbase通道。
所述调制单元 804具体用于, 将所述第三整数个 OTUbase通道复用 调制到第二整数个光通道载波, 所述第二整数不小于 1 , 且所述第三整数 为所述第二整数的整数倍。 优选的, 所述第三整数与所述第二整数相等。
上述装置, 如图 12所示, 还包括:
调整单元 806 , 用于若所述客户业务数据的带宽调整时, 则根据所 述客户业务数据的带宽, 利用链路容量调整机制 LCAS调整 HO OTUflex 的带宽并相应的调整光通道载波。
其中, 所述 LCAS的控制字段包括设置指令; 所述设置指令用于向 目的端指示在所述 HO OTUflex 的下一帧完成客户业务数据到带宽变化 后的 HO OTUflex的净荷区的映射切换。
所述调整单元 806具体用于, 若所述客户业务数据的带宽增加时, 则在链路各段增加第四整数路光通道载波, 并利用所述 LCAS 增加第五 整数个 OTUbase 通道, 并将所述第五整数个 OTUbase 通道添加至所述 HO OTUflex中,将新增的第五整数个 OTUbase通道调制到新增的第四整 数路光通道载波; 其中, 所述第四整数不小于 1 , 所述第五整数不小于 1 , 所述第五整数为所述第四整数的整数倍。 若所述客户业务数据的带宽减少时, 确定待删除的第五整数个
OTUbase通道,通过所述 LCAS删除所述 HO OTUflex的待删除的第五整 数个 OTUbase通道并译放相应的第四整数路光通道载波。 优选的, 第四 整数与所述第五整数相等。 本发明实施例提供了一种分配光频谱带宽资源的装置, 首先根据光 层频率间隔带宽获取 OTUbase的带宽, 然后根据客户业务数据的带宽和 所述 OTUbase的带宽, 构造带宽为 OTUbase的带宽的第一整数倍的 HO OTUflex; 并将客户业务数据发映射至 HO OTUflex 的净荷区, 将 HO OTUflex封装相关开销信息后,将 HO OTUflex调制到光通道载波中传送。 由于 OTUbase的带宽基于光层频率间隔带宽构造, 充分匹配光层频率间 隔带宽,且根据客户业务数据的带宽,基于所述 OTUbase的带宽构造 HO OTUflex, 实现了根据客户业务数据的带宽分配适合客户业务数据的传送 带宽 HO OTU以及光频谱带宽资源, 从而实现光频谱资源的灵活分配, 有效利用光频谱资源。通过将承载有客户业务数据的 HO OTUflex拆分成 第三整数个独立的 OTUbase通道, 将第三整数个 OTUbase通道调制到第 二整数路光通道载波中进行传输, 实现了通过分时复用多条光通道载波 传送客户业务数据, 能够更快速的传输客户业务数据。 若客户业务数据 的带宽调整, 则通过 LCAS使得 HO OTUflex的带宽做相应的调整, 并相 应的调整光通道载波, 实现无损带宽调整
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不 局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本 发明的保护范围应以所述权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种分配光频谱带宽资源的方法, 其特征在于, 包括:
根据光层频率间隔带宽及所承载的载波频谱效率获取基准光通道传 输单元 OTUbase的带宽;
根据客户业务数据的带宽和所述 OTUbase的带宽, 构造带宽可变的 高阶光通道传输单元 HO OTUflex; 所述 HO OTUflex 的带宽为所述 OTUbase的带宽的第一整数倍, 所述第一整数不小于 1 ;
将所述客户业务数据映射到所述 HO OTUflex的净荷区并封装开销 信息;
将承载有所述客户业务数据的所述 HO OTUflex调制到第二整数路 光通道载波; 所述第二整数不小于 1。
2、 根据权利要求 1所述的方法, 其特征在于, 所述根据光层频率间 隔带宽及所承载的载波频谱效率获取基准光通道传输单元 OTUbase的带 宽包括:
根据公式: OTUbase的带宽 =FG*载波频谱效率 /m计算得到; 其中, FG表示光层频率间隔带宽; m表示根据需求设置的所述载波频谱效率及 光层频率间隔带宽间的乘积与 OTUbase的带宽间的倍数值, 且 m为不小 于 1的整数。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述所承载的载 波为正交频分复用多子载波。
4、根据权利要求 1-3任一项所述的方法,其特征在于,所述 OTUbase 的帧格式与 OTN的帧格式相同。
5、 根据权利要求 1-4任一项所述的方法, 其特征在于, 在所述将承 载有所述客户业务数据的所述 HO OTUflex调制到第二整数个光通道载 波具体为:
将承载有所述客户业务数据的所述 HO OTUflex拆分为第三整数个 OTUbase通道, 所述第三整数不小于 2;
将所述第三整数个 OTUbase 通道复用调制到第二整数个光通道载 波, 所述第二整数不小于 1 , 且所述第三整数为所述第二整数的整数倍。
6、 根据权利要求 5所述的方法, 其特征在于, 所述第三整数与所述 第二整数相等。
7、 根据权利要求 5或 6所述的方法, 其特征在于, 所述第三整数和 所述第一整数相等。
8、 根据权利要求 7所述的方法, 其特征在于, 所述 HO OTUflex的 帧格式为第一整数个 OTUbase帧的级联结构;
所述将承载有客户业务数据的所述 HO OTUflex拆分为第三整数个 OTUbase通道包括:
将所述承载客户业务数据的所述 HO OTUflex按列拆分成第三整数 个 OTUbase通道。
9、 根据权利要求 5-7任一项所述的方法, 其特征在于,
所述 HO OTUflex的帧格式与所述 OTUbase的帧格式相同; 所述将承载有客户业务数据的所述 HO OTUflex拆分为第三整数个
OTUbase通道包括:
将所述 HO OTUflex按字节粒度拆分为第三整数个 OTUbase通道; 或者,
将所述 HO OTUflex按帧粒度的方式分发成第三整数个 OTUbase通 道。
10、 根据权利要求 1-9 任一项所述的方法, 其特征在于, 当客户业 务数据的带宽超过门限值时, 所述将客户业务数据映射到所述 HO OTUflex包括:
将所述客户业务数据直接映射到低阶带宽可变的光通道净荷单元 OPUflex的净荷区,并将所述 OPUflex封装相关开销后映射到相应的低阶 带宽可变的光通道数据单元 ODUflex, 将所述 ODUflex封装相关开销后 映射到 HO OTUflex。
11、 根据权利要求 1-10任一项所述的方法, 其特征在于, 还包括: 若所述客户业务数据的带宽调整时, 则根据所述客户业务数据的带 宽,利用链路容量调整机制 LCAS调整 HO OTUflex的带宽并相应的调整 光通道载波; 其中, 所述 LCAS 的控制字段包括设置指令; 所述设置指 令用于向目的端指示在所述 HO OTUflex 的下一帧完成客户业务数据到 带宽变化后的 HO OTUflex的净荷区的映射切换。
12、 根据权利要求 11所述的方法, 其特征在于, 所述若所述客户业 务数据的带宽调整时, 则根据所述客户业务数据的带宽, 利用链路容量 调整机制 LCAS调整 HO OTUflex的带宽并相应的调整光通道载波具体 为: 若所述客户业务数据的带宽增加时, 则在链路各段增加第四整数路 光通道载波, 并利用所述 LCAS增加第五整数个 OTUbase通道, 并将所 述第五整数个 OTUbase通道添加至所述 HO OTUflex中, 将新增的第五 整数个 OTUbase通道调制到新增的第四整数路光通道载波; 其中, 所述 第四整数不小于 1 , 所述第五整数不小于 1 , 所述第五整数为所述第四整 数的整数倍;
若所述客户业务数据的带宽减少时, 确定待删除的第五整数个 OTUbase通道,通过所述 LCAS删除所述 HO OTUflex的待删除的第五整 数个 OTUbase通道并译放相应的第四整数路光通道载波。
13、 根据权利要求 12所述的方法, 其特征在于, 所述第四整数与所 述第五整数相等。
14、 一种分配光频谱带宽资源的装置, 其特征在于, 包括: 第一获取单元, 用于根据光层频率间隔带宽及所承载的载波频谱效 率获取基准光通道传输单元 OTUbase的带宽;
构造单元, 用于根据客户业务数据的带宽和所述 OTUbase的带宽, 构造带宽可变的高阶光通道传输单元 HO OTUflex; 所述 HO OTUflex的 带宽为所述 OTUbase的带宽的第一整数倍, 所述第一整数不小于 1 ; 第一映射封装单元, 用于将所述客户业务数据映射到所述 HO OTUflex的净荷区并封装开销信息;
调制单元, 用于将承载有所述客户业务数据的所述 HO OTUflex调 制到第二整数路光通道载波; 所述第二整数不小于 1。
15、 根据权利要求 14所述的装置, 其特征在于, 所述第一获取单元 具体用于: 根据公式 OTUbase 的带宽 =FG*载波频谱效率 /m计算得到; 其中, FG表示光层频率间隔带宽; m表示根据需求设置的所述载波频 谱效率及光层频率间隔带宽间的乘积与 OTUbase的带宽间的倍数值, 且 m为不小于 1的整数。
16、 根据权利要求 14或 15所述的方法, 其特征在于, 还包括: 拆分单元, 用于将承载有所述客户业务数据的所述 HO OTUflex拆 分为第三整数个 OTUbase通道, 所述第三整数不小于 2;
所述调制单元具体用于, 将所述第三整数个 OTUbase通道复用调制 到第二整数个光通道载波, 所述第二整数不小于 1 , 且所述第三整数为所 述第二整数的整数倍。
17、 根据权利要求 16所述的装置, 其特征在于, 所述 HO OTUflex 的帧格式为第一整数个 OTUbase帧的级联结构;
所述拆分单元, 具体用于将所述承载客户业务数据的所述 HO OTUflex按列拆分成第三整数个 OTUbase通道。
18、 根据权利要求 16所述的装置, 其特征在于, 所述 HO OTUflex 的帧格式与所述 OTUbase的帧格式相同;
所述拆分单元, 具体用于将所述 HO OTUflex按字节粒度拆分为第 三整数个 OTUbase通道; 或者,
将所述 HO OTUflex按帧粒度的方式分发成第三整数个 OTUbase通 道。
19、 根据权利要求 14-18 任一项所述的装置, 其特征在于, 所述第 一映射封装单元包括: 第一映射模块, 第一封装模块, 第二映射模块, 第二封装模块, 第三映射模块, 第三封装模块;
所述第一映射模块, 用于当客户业务数据的带宽超过门限值时, 将 所述客户业务数据直接映射到带宽可变的光通道净荷单元 OPUflex 的净 荷区;
所述第一封装模块, 用于封装所述 OPUflex的相关开销;
所述第二映射模块, 用于将第一封装模块封装的所述 OPUflex映射 到相应的带宽可变的光通道数据单元 ODUflex的净荷区;
第二封装模块, 用于封装所述 ODUflex的相关开销;
第三映射模块,用于将第二封装模块封装的所述 ODUflex映射到 HO
OTUflex的净荷区;
所述第三封装模块, 用于封装 HO OTUflex的相关开销。
20、 根据权利要求 14-19任一项所述的装置, 其特征在于, 还包括: 调整单元, 用于若所述客户业务数据的带宽调整时, 则根据所述客 户业务数据的带宽,利用链路容量调整机制 LCAS调整 HO OTUflex的带 宽并相应的调整光通道载波; 其中, 所述 LCAS 的控制字段包括设置指 令;所述设置指令用于向目的端指示在所述 HO OTUflex的下一帧完成客 户业务数据到带宽变化后的 HO OTUflex的净荷区的映射切换。
21、 根据权利要求 20所述的装置, 其特征在于, 所述调整单元具 体用于, 若所述客户业务数据的带宽增加时, 则在链路各段增加第四整 数路光通道载波, 并利用所述 LCAS增加第五整数个 OTUbase通道, 并 将所述第五整数个 OTUbase通道添加至所述 HO OTUflex中 , 将新增的 第五整数个 OTUbase通道调制到新增的第四整数路光通道载波; 其中, 所述第四整数不小于 1 , 所述第五整数不小于 1 , 所述第五整数为所述第 四整数的整数倍;
若所述客户业务数据的带宽减少时, 确定待删除的第五整数个 OTUbase通道,通过所述 LCAS删除所述 HO OTUflex的待删除的第五整 数个 OTUbase通道并译放相应的第四整数路光通道载波。
PCT/CN2012/077176 2012-06-19 2012-06-19 一种分配光频谱带宽资源的方法及装置 WO2013189034A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES12879417.9T ES2604349T3 (es) 2012-06-19 2012-06-19 Método y dispositivo para la asignación de un recurso de ancho de banda de espectro óptico
PCT/CN2012/077176 WO2013189034A1 (zh) 2012-06-19 2012-06-19 一种分配光频谱带宽资源的方法及装置
EP12879417.9A EP2852177B1 (en) 2012-06-19 2012-06-19 Method and device for allocating optical frequency spectrum bandwidth resource
CN201280000727.9A CN102884808B (zh) 2012-06-19 2012-06-19 一种分配光频谱带宽资源的方法及装置
US14/573,486 US9496957B2 (en) 2012-06-19 2014-12-17 Method and apparatus for allocating optical spectrum bandwidth resources

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/077176 WO2013189034A1 (zh) 2012-06-19 2012-06-19 一种分配光频谱带宽资源的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/573,486 Continuation US9496957B2 (en) 2012-06-19 2014-12-17 Method and apparatus for allocating optical spectrum bandwidth resources

Publications (1)

Publication Number Publication Date
WO2013189034A1 true WO2013189034A1 (zh) 2013-12-27

Family

ID=47484678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077176 WO2013189034A1 (zh) 2012-06-19 2012-06-19 一种分配光频谱带宽资源的方法及装置

Country Status (5)

Country Link
US (1) US9496957B2 (zh)
EP (1) EP2852177B1 (zh)
CN (1) CN102884808B (zh)
ES (1) ES2604349T3 (zh)
WO (1) WO2013189034A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014166077A1 (zh) * 2013-04-10 2014-10-16 华为技术有限公司 调整线路接口速率的方法和节点
US9647761B1 (en) * 2014-02-21 2017-05-09 Inphi Corporation Flexible rate communication signalling
US10637604B2 (en) * 2014-10-24 2020-04-28 Ciena Corporation Flexible ethernet and multi link gearbox mapping procedure to optical transport network
EP3282601B1 (en) * 2015-06-29 2021-08-04 Huawei Technologies Co., Ltd. Method for mapping packet service to optical transport network, and otn device
EP3396879B1 (en) 2016-07-22 2020-12-16 Huawei Technologies Co., Ltd. Multi-channel service transporting and receiving method and device
CN108632061B (zh) * 2017-03-20 2020-12-15 华为技术有限公司 一种带宽调整方法及装置
CN109962802A (zh) * 2017-12-26 2019-07-02 中兴通讯股份有限公司 带宽调整方法、装置、系统、传送平面节点及存储介质
CN111356037B (zh) * 2018-12-21 2021-08-20 深圳市海思半导体有限公司 光传送网线路带宽切换方法及装置
EP3694122B1 (en) * 2019-02-07 2023-05-03 ADVA Optical Networking SE Method and apparatus for efficient utilization of a transport capacity provided by an optical transport network
CN111740801B (zh) * 2019-03-25 2021-12-10 华为技术有限公司 一种业务数据的处理方法及装置
CN111083580B (zh) * 2019-12-09 2021-12-14 北京格林威尔科技发展有限公司 一种在光传输网络中对以太网链路的保护方法及装置
CN111182379B (zh) * 2020-01-03 2021-08-13 中原工学院 弹性光网络中可塑预留业务的频谱分配方法
CN117044107A (zh) * 2021-05-18 2023-11-10 华为技术有限公司 映射方法和映射系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291179A (zh) * 2007-04-17 2008-10-22 华为技术有限公司 一种光传送网中客户信号传送方法及相关设备
CN101841741A (zh) * 2009-03-16 2010-09-22 华为技术有限公司 光通道传送单元信号的传输方法和装置
CN102349310A (zh) * 2011-08-16 2012-02-08 华为技术有限公司 一种可变速率信号的处理方法、装置及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100142947A1 (en) * 2008-12-08 2010-06-10 Jong-Yoon Shin Apparatus and method for pseudo-inverse multiplexing/de-multiplexing transporting
US8204382B2 (en) * 2009-03-11 2012-06-19 Ciena Corporation Radio frequency-based optical transport network systems and methods
CA2843207A1 (en) * 2011-11-15 2012-12-13 Huawei Technologies Co., Ltd. Method, apparatus and system for transmitting service data on optical transport network
JP5942542B2 (ja) * 2012-03-29 2016-06-29 富士通株式会社 伝送方法及びノード装置
JP5835059B2 (ja) * 2012-03-29 2015-12-24 富士通株式会社 データ伝送装置及びデータ伝送方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291179A (zh) * 2007-04-17 2008-10-22 华为技术有限公司 一种光传送网中客户信号传送方法及相关设备
CN101841741A (zh) * 2009-03-16 2010-09-22 华为技术有限公司 光通道传送单元信号的传输方法和装置
CN102349310A (zh) * 2011-08-16 2012-02-08 华为技术有限公司 一种可变速率信号的处理方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2852177A4 *

Also Published As

Publication number Publication date
EP2852177A1 (en) 2015-03-25
EP2852177A4 (en) 2015-06-24
CN102884808B (zh) 2015-11-25
US9496957B2 (en) 2016-11-15
ES2604349T3 (es) 2017-03-06
US20150104178A1 (en) 2015-04-16
CN102884808A (zh) 2013-01-16
EP2852177B1 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
WO2013189034A1 (zh) 一种分配光频谱带宽资源的方法及装置
EP3627727B1 (en) Method and apparatus for transmitting and receiving client signal in optical transport network
US9497064B2 (en) Method and apparatus for transporting ultra-high-speed Ethernet service
US9225462B2 (en) Method, apparatus and system for transmitting and receiving client signals
EP3462647A1 (en) Method for transporting client signal in optical transport network, and transport device
US20160323661A1 (en) Method and Apparatus for Transmitting and Receiving Client Signal
US8180224B2 (en) Method, apparatus and system for transmitting Ethernet signals in optical transport network
WO2007076689A1 (fr) Procede et dispositif de transmission de signaux lan dans un reseau de transport optique
US20170005746A1 (en) Method, Apparatus and System for Processing Flexible-Rate Signal
WO2010121520A1 (zh) 光传送网的信号传送方法、设备及通信系统
US20110318001A1 (en) Method and device for sending and receiving service data
CN106303766A (zh) 带宽调整的方法及装置
WO2014059834A1 (zh) 数据传送方法及装置
CN103547338A (zh) 无损业务的多载波频谱迁移方法及装置
WO2016074484A1 (zh) 分组业务信号发送方法、装置及接收方法、装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000727.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012879417

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012879417

Country of ref document: EP