WO2012126421A2 - 一种光传送网的数据处理方法、相关设备及系统 - Google Patents

一种光传送网的数据处理方法、相关设备及系统 Download PDF

Info

Publication number
WO2012126421A2
WO2012126421A2 PCT/CN2012/075513 CN2012075513W WO2012126421A2 WO 2012126421 A2 WO2012126421 A2 WO 2012126421A2 CN 2012075513 W CN2012075513 W CN 2012075513W WO 2012126421 A2 WO2012126421 A2 WO 2012126421A2
Authority
WO
WIPO (PCT)
Prior art keywords
optical
unit
burst
optical burst
channel
Prior art date
Application number
PCT/CN2012/075513
Other languages
English (en)
French (fr)
Other versions
WO2012126421A3 (zh
Inventor
邓宁
维塞斯⋅马腾
石晓钟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2012/075513 priority Critical patent/WO2012126421A2/zh
Priority to ES12759883.7T priority patent/ES2647894T3/es
Priority to CN201280000554.0A priority patent/CN102783178B/zh
Priority to EP12759883.7A priority patent/EP2838275B1/en
Publication of WO2012126421A2 publication Critical patent/WO2012126421A2/zh
Publication of WO2012126421A3 publication Critical patent/WO2012126421A3/zh
Priority to US14/541,950 priority patent/US10085078B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0071Provisions for the electrical-optical layer interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • H04J3/1658Optical Transport Network [OTN] carrying packets or ATM cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0066Provisions for optical burst or packet networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0073Services, e.g. multimedia, GOS, QOS
    • H04J2203/0082Interaction of SDH with non-ATM protocols
    • H04J2203/0085Support of Ethernet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation

Definitions

  • Embodiments of the present invention relate to the field of optical communications, and in particular, to a data processing method, related device, and system for an optical transport network. Background technique
  • Optical Transport Network is a transport network that organizes networks in the optical layer based on WDM technology. It is the current mainstream transport network technology. Due to the explosive growth of Internet Protocol (IP) services and other packet-based data services transmitted over the network, the transmission capacity requirements are increasing rapidly. DWDM, Dense Wavelength Division Multiplexing The maturity and application of technology and optical amplifier (OA) technologies have enabled the transport network to evolve into optical transport networks based on optical networking technologies. The emergence of OTN-based transport networks will make the desired intelligent optical network gradually become a reality, providing network operators and customers with a new generation of optical transport platforms that are safe, reliable, cost-effective, customer-independent, manageable, operational and efficient.
  • IP Internet Protocol
  • OA optical amplifier
  • OTN Optical Payload Unit
  • ODU Optical Channel Data Unit
  • ODU Optical Channel Data Unit
  • the transmission unit (OTU, Optical Transform Unit) after electro-optical conversion, the network layer of the optical layer is followed by an optical channel layer, an optical multiplexing segment layer, and an optical transmission segment layer.
  • ODUs are mainly classified into the categories shown in Table 1 according to their rates:
  • low-order ODUs can be multiplexed into higher-order ODUs.
  • ODU1 is relative to ODU2
  • ODU1 is a low-order ODU
  • ODU2 is a high-order ODU
  • ODU2 is a low-order ODU with respect to ODU3
  • ODU3 is a high-order ODU. Therefore, before mapping the ODU to OUT, it may be necessary to The ODU is multiplexed into the high-order ODU as a low-order ODU.
  • OTN optical network
  • the intersection and multiplexing of the ODU are performed by electrical signal processing in the electrical layer, that is, to perform the intersection of the ODU, it is first necessary to convert the optical signal into an electrical signal through the optical receiver, and then to solve the layer by layer.
  • the ODU is then electrically crossed, then packaged layer by layer, and then converted into an optical signal by the optical transmitter. It can be seen that the intermediate node of the OTN needs to perform optical-electrical-to-optical conversion of the transmitted data and a large amount of electrical signal processing, data. The processing is complicated and the data processing delay is large. Summary of the invention
  • Embodiments of the present invention provide a data processing method, a related device, and a system for an optical transport network, which are used to compress a data processing process and reduce data processing delay.
  • a data processing method for an optical transport network comprising:
  • the above optical burst channel is transmitted to the line.
  • a data processing method for an optical transport network comprising:
  • a data transmission processing device includes:
  • a packaging unit configured to encapsulate service data into the optical payload unit
  • a first mapping unit configured to map the optical payload unit to the optical channel data unit
  • a second mapping unit configured to map the optical channel data unit to a payload area of the optical burst transmission unit
  • An electro-optical conversion module configured to perform electro-optical conversion on the optical burst transfer unit to form an optical burst optical signal
  • An optical burst mapping module configured to carry the optical burst optical signal to an optical time slot of the optical burst channel
  • a transmitting module configured to transmit the optical burst channel to the line.
  • a data receiving and processing device includes:
  • An acquiring unit configured to acquire an optical burst channel carried on the line
  • a photoelectric conversion module configured to perform photoelectric conversion on the optical burst optical signal on the optical burst channel to obtain an optical burst transmission unit
  • a first demapping module configured to demap the optical burst transmission unit, and obtain an optical channel data unit from a payload area of the optical burst transmission unit;
  • a second demapping module configured to demap the optical channel data unit to obtain an optical payload unit
  • a decapsulation unit configured to decapsulate the optical payload unit to obtain service data.
  • An optical transmission network system comprising:
  • the data transmission processing device is configured to: encapsulate the service data into the optical payload unit; map the optical payload unit to the optical channel data unit; and map the optical channel data unit to a payload area of the optical burst transmission unit; Performing the optical burst conversion unit to form an optical burst optical signal; and carrying the optical burst optical signal to an optical time slot of the optical burst channel; and transmitting the optical burst channel to the line;
  • the data receiving and processing device is configured to: acquire an optical burst channel carried on the line; perform photoelectric conversion on the optical burst optical signal on the optical burst channel to obtain an optical burst transmission unit;
  • the optical channel data unit is demapped to obtain an optical payload unit; and the optical payload unit is decapsulated to obtain service data.
  • the embodiments of the present invention have the following advantages:
  • Embodiments of the present invention provide an optical burst slot exchange network by mapping an Optical Channel Data Unit (ODU) to an optical burst transmission unit and mapping to an optical slot and an optical burst channel step by step.
  • ODU Optical Channel Data Unit
  • the optical signals are exchanged in the all-optical mode, that is, the multiplexing and intersecting processes of the optical burst channels are implemented in the optical layer, therefore,
  • the multiplexing and crossover of the ODU can also be realized on the optical layer, which saves a large amount of photoelectric, electro-optical conversion and electrical processing in the data transmission process, on the one hand, the data processing process is compressed, and on the other hand, the data processing is effectively reduced. Delay. DRAWINGS
  • FIG. 1 is a schematic flow chart of an embodiment of a data processing method for an optical transport network according to the present invention
  • FIG. 2 is a schematic structural diagram of an optical burst optical signal including three optical bursts per frame according to the present invention
  • FIG. 3 is a schematic diagram of an embodiment of filling an ODU into an optical burst transmission unit according to the present invention
  • a schematic diagram of an embodiment of an optical time slot division manner is provided;
  • FIG. 5 is a schematic diagram of another embodiment of a data processing method for an optical transport network according to the present invention.
  • FIG. 6 is a schematic structural diagram of an embodiment of a data transmission processing apparatus according to the present invention
  • FIG. 7 is a schematic structural diagram of an embodiment of a data reception processing apparatus provided by the present invention. detailed description
  • Embodiments of the present invention provide a data processing method, related device, and system for an optical transport network.
  • Optical burst switching or optical burst slot switching is a novel sub-wavelength granularity all-optical switching technique. The core idea is to divide a wavelength into optical time slots of many sub-wavelengths, and map the service data into each optical time slot.
  • optical signals are exchanged in an all-optical manner such as an all-optical switching array.
  • the all-optical switching array is an "optical switching chip", which corresponds to the "electric switching chip” and can directly exchange optical burst packets.
  • the optical signal is exchanged by the all-optical mode such as the all-optical switching array, which eliminates the optical-electric-light conversion of the intermediate node and a large amount of electrical signal processing.
  • the data processing manner in the optical burst time slot switching network may be as follows: the service data is first encapsulated and mapped to the optical burst transmission through a certain encapsulation manner.
  • the optical burst transfer unit is mapped to the optical time slot of the optical burst channel (OBCh, Optical Burst Channel) by electro-optical conversion, and then passes through the optical layer.
  • OBTU Optical Burst Transport Unit
  • the optical burst transfer unit may also be referred to as an optical burst unit, which represents an electrical signal corresponding to an optical burst channel on the electrical layer.
  • the optical burst transfer unit is uniformly described in the present invention.
  • the data processing method of the optical transport network in the embodiment of the present invention includes:
  • the data transmission processing device encapsulates the service data into an Optical Payload Unit (OPU).
  • OPU Optical Payload Unit
  • the foregoing service data may be, for example, Ethernet type service signal data; Gigabit Ethernet service signal data, or 10 Gigabit Ethernet service.
  • Signal data, or synchronous transmission mode signals (such as STM-8, STM-16), etc., are not limited here.
  • the optical burst is a basic switching unit on the optical layer carrying the service data, and each optical burst is separated by a period of matte protection time, because each optical burst time is equal.
  • the time taken by each optical burst and its guard time is referred to as an electrical time slot (in the electrical layer) or an optical time slot (in the optical layer). That is to say, the optical burst is an entity carried on the optical time slot, and has a one-to-one correspondence with the optical time slot.
  • the length of time per frame is called the frame period, and each frame consists of the same number of multiple optical bursts.
  • An optical burst channel is a collection of one or more optical bursts, or optical time slots.
  • a delivery unit is also a collection of one or more time slots.
  • FIG. 2 is a schematic diagram showing the structure of an optical burst optical signal including three optical bursts per frame.
  • Optical burst channel 1 is a collection of optical bursts of one optical slot
  • optical burst channel 2 is a collection of optical bursts of two optical slots. It is worth noting that in the case of such a framed structure in which each time slot is repeated in each frame, the "time slot" herein represents a set of time slots formed at the same position per frame.
  • the data transmission processing device can take a signal for a length of time equal to the optical protrusion.
  • the ODU of the frame period of the transmission unit (that is, the frame period of the optical burst transmission channel) is mapped to the payload area of the optical burst transmission unit, and the mapping manner thereof can be referred to FIG.
  • an ODU ie, ODU0
  • a rate level of 1.25 GHz ie, G
  • an optical burst transmission unit with a rate of 10 G is mapped to an optical burst transmission unit with a rate of 10 G.
  • the "rate level" is described.
  • the rate level is 1.25 G. , 2.5G, 10G, 40G and 100G and other well-known rate levels.
  • the rate levels are not necessarily strictly these rates, but may be slightly different, such as 10.7 gigabits per second (Gb/s) and 9.953 gigabits per second (Gb/s) are 10G rate grades.
  • the bit rate of ODU0 with no rate class of 1.25G is 1.24416 Gb/s, and the signal length of each ODU0 is about 98.354 microseconds (ie).
  • the code rate of the optical burst transmission unit of the rate class of 10G is about 10.882 Gb/s.
  • the mapping of the ODU0 to the optical burst transmission unit may be as follows : Mapping ODU0 into optical stimuli through the Generic Mapping Procedure (GMP) or other mapping methods (such as Asynchronous Mapping Procedure (AMP), Bit-Synchronous Mapping Procedure (BMP), etc.
  • GMP Generic Mapping Procedure
  • AMP Asynchronous Mapping Procedure
  • BMP Bit-Synchronous Mapping Procedure
  • the specific implementation method may be that the ODU0 of 1.24416 Gb/s is read into the buffer, and then the ODU0 is read out at the code rate of the OBTU, and placed in the location of the payload area in the buffer area of the optical burst transmission unit. It should be noted that, in addition to the data bytes of the ODU0 in the payload area, a small number of overhead bytes of the optical burst transmission unit may be included, and the specific overhead may refer to the overhead of the OTU or the overhead of other network mapping modes. Said.
  • the code rate for mapping the ODU should be no higher than the code rate of the optical burst transmission unit (ie, the rate level of the ODU is not higher than the optical burst.
  • the rate level of the transmitting unit is, in the above example, the frame period of the selected optical burst transmission unit is exactly equal to the signal length of one ODU0, and the data byte of one ODU0 can be mapped into an optical burst transmission unit.
  • the selection of the frame period of the optical burst transmission unit may also be related to the signal length of one ODU0. For example, the frame period of an optical burst transmission unit may be less than the signal length of one ODU.
  • the ODU whose signal length is equal to the frame period of one optical burst transmission unit needs to be mapped, as shown in FIG. 3 .
  • the number of data bytes of the ODU to be selected is not an integer.
  • the bit length, bit rate, and number of bytes can be guaranteed by the byte filling technique. The correct relationship between the two is not detailed here.
  • the data transmission processing apparatus may further calculate bit data encoded by Forward Error Correction (FEC) according to signal data of the ODU and place the FEC in the buffer area of the optical burst transmission unit. s position.
  • FEC Forward Error Correction
  • the data transmission processing device may also refer to the standard recommendation of the International Telecommunication Union - Telecommunication Standardization Sector (ITU-T, G.709, etc.) to increase the port overhead in the ODU.
  • ITU-T International Telecommunication Union - Telecommunication Standardization Sector
  • the OTU of the same rate class is mapped, and then the ODU of the signal period whose length of time is equal to one optical burst transmission unit is taken from the OTU, and is mapped to the payload area of the optical burst transmission unit.
  • the data transmission processing apparatus may further include a preamble (ie, a preamble) and a guard time in the optical burst transmission unit, where the preamble is used to assist in synchronization, frequency locking, phase locking, and clock recovery.
  • a preamble ie, a preamble
  • the guard time is used to separate each optical burst, so that when the optical burst transmission unit performs electro-optical conversion, it facilitates the intersection of optical bursts or optical time slots. And burst reception.
  • the data transmission processing device performs electro-optical conversion on the optical burst transfer unit carrying the ODU to obtain an optical burst optical signal.
  • the optical burst optical signal is carried on the optical time slot of the optical burst channel; the channel corresponds to one optical burst transmission unit, and the optical burst channel and the optical burst transmission unit contain the same signal data, but the optical burst
  • the transmission unit is transmitted on the electrical layer, and the optical burst channel is transmitted on the optical layer. Since the optical burst channel is formed by optical optical conversion of the optical burst optical signal, the rate level of the optical burst channel is the rate level of the optical burst transmission unit, and the number of optical slots occupied by the optical burst channel and the optical burst transmission unit The number of occupied electrical time slots is the same, and the above electrical time slots and optical time slots have the same length of time.
  • the optical burst channel is transmitted to the line.
  • the data transmission processing device performs optical burst slot multiplexing or optical burst add/drop multiplexing on the optical burst channel mapped by other ODUs to form optical burst multiplexing. Segment, of course, the data transmission processing device can also reuse multiple optical burst channels and one optical burst multiplexing segment. Used as an optical burst multiplex section.
  • the optical burst slot multiplexing can be implemented by an M:l optical combiner or a fast optical switch; the optical burst add/drop multiplexing can be implemented by a 2x2 fast optical switch. When the 2x2 fast optical switch is in the through state, the optical time slot on the line is straight through, and no add/drop multiplexing occurs.
  • the optical time slot on the line is dropped (ie, drop ) to the local data transmission processing device, and the data transmission processing device can also be on the road (ie, add) an optical time slot to the line.
  • optical burst add/drop multiplexing can also be implemented by a 1x1 fast optical switch.
  • some light bursts on the line pass through a splitter, and part of the light energy is distributed to the local data transmission processing device.
  • the optical time slot that needs to be off the road is sent to the local through a 1x1 fast optical switch, and another part of the optical energy is on the line.
  • the optical burst on the local optical time slot is truncated by another 1x1 fast optical switch to make the optical time slot free.
  • the local data transmission processing device may use the above-mentioned vacated optical time slots by an optical combiner to perform add multiplexing on one optical burst in the optical burst channel.
  • the above optical burst slot multiplexing and optical burst add/drop multiplexing are performed at the optical layer.
  • the data transmission processing device may also intersect the optical burst channel with an optical burst channel mapped by other ODUs, wherein the intersection is performed at the optical layer.
  • the above crossover can be implemented by a fast optical switching array, wherein a fast optical switching array can be composed of an NxN fast optical switch.
  • Each input port of the fast optical switching array can be a signal at one wavelength, that is, a signal that is multiplexed by multiple optical burst channels, and the signal can pass through the dimming delay line of the input port and the signals of other input ports. Frame alignment with each other for time slot crossing.
  • the NxN fast optical switch exchanges the same optical time slots of each input port, and performs fast reconfiguration of each optical time slot, thereby achieving the intersection of the optical burst channels.
  • the foregoing crossover can also be implemented by other switching devices, which is not limited herein.
  • a plurality of optical time slots of one wavelength are divided into one frame, and there are at least two ways of dividing the optical time.
  • the first way to divide is: In a network, the frame length (the length of time of the frame) is fixed. For optical burst channels of different speed grades, each frame is divided into different numbers of optical slots, and the bandwidth of each optical slot is kept uniform. As shown in FIG. 4, for an optical burst channel of a 1.25G rate class, there is only one optical slot per frame (such as S1); for an optical burst channel of a 2.5G rate class, there are two optical slots per frame (such as S1 and S2), and so on, for the optical burst channel of the 100G rate class, there are 80 optical time slots per frame (such as S1 ⁇ S80).
  • the division The bandwidth of the optical time slot is 1.25G, which is the bandwidth of ODU0.
  • this method of dividing optical slots can support multiplexing and crossover with a minimum granularity of ODU0 even for optical burst channels of different rate grades.
  • the second division is: in a network, the frame period is fixed, and for the optical burst channels of different rate levels, each frame is divided into the same number of optical slots, so in this manner, for different rate levels In the optical burst channel, the bandwidth of the divided optical time slots is different. As shown in Table 2, 80 optical time slots are used as one frame. The bandwidth particle table of each optical time slot on the optical burst channel of different rate levels can be seen from the table. For the optical burst channel of the 100G rate class, each The bandwidth of the optical time slots is 1 bandwidth of ODU0.
  • the embodiments of the present invention provide an optical burst time slot switching network and a mature OTN network system by mapping an ODU to an optical burst transmission unit and mapping to an optical time slot and an optical burst channel step by step.
  • the architecture is compatible and unified.
  • the optical signals are exchanged in the all-optical mode, that is, the multiplexing and cross-over processes of the optical burst channels are implemented in the optical layer. Therefore, the multiplexing and crossover of the ODU are performed. It can also be realized on the optical layer, which saves a large amount of photoelectric, electro-optical conversion and electrical processing in the data transmission process.
  • the data processing process is compressed, and on the other hand, the data processing delay is effectively reduced.
  • the data processing method of the optical transport network in the embodiment of the present invention is described below. Referring to FIG. 5, the data processing method of the optical transport network in the embodiment of the present invention includes:
  • the data receiving processing device receives the optical burst channel from the line.
  • the data receiving processing device obtains two or more optical burst channels by demultiplexing the optical burst multiplexing segments on the line.
  • the above demultiplexing can be implemented by a 1: M fast optical switch, wherein the fast optical switch is used corresponding to the fast optical switch used in multiplexing, that is, if the multiplexing is a 2:1 fast optical switch , then the demultiplexing uses a 1: 2 fast optical switch.
  • the data transmission processing device performs photoelectric conversion on the optical burst optical signal on the acquired optical burst channel to obtain an optical burst transmission unit.
  • the optical burst is a basic exchange unit for carrying data signals, and each optical burst is separated by a period of matte protection time. Since each optical burst is equal in time, The time occupied by each optical burst and its guard time is referred to as an electrical time slot (in the electrical layer) or an optical time slot (in the optical layer). The length of time of each frame is called a frame period, and each frame is composed of the same number of optical bursts. The number of optical bursts may be one or multiple, and one optical burst transmission unit is one or more. A collection of light bursts of the gap.
  • the data transmission processing device demaps the optical burst transmission unit, and obtains an ODU from the payload area of the optical burst transmission unit.
  • the data transmission processing device demaps the ODU to obtain an optical payload unit.
  • the data transmission processing device decapsulates the optical payload unit to obtain service data.
  • the foregoing service data may be, for example, Ethernet type service signal data; Gigabit Ethernet service signal data, or 10 Gigabit Ethernet service signal data, or synchronous transmission mode signals (such as STM-8, STM-16), etc. , here is not limited.
  • the embodiments of the present invention provide an optical burst time slot switching network and a mature OTN network system by mapping an ODU to an optical burst transmission unit and mapping to an optical time slot and an optical burst channel step by step.
  • the architecture is compatible and unified.
  • the optical burst time-slot switching network the optical signals are exchanged in the all-optical mode, that is, the multiplexing and cross-over processes of the optical burst channels are implemented in the optical layer. Therefore, the multiplexing and crossover of the ODU are performed. It can also be realized on the optical layer, which saves a large amount of photoelectric, electro-optical conversion and electrical processing in the data transmission process. On the one hand, the data processing process is compressed, and on the other hand, the data processing delay is effectively reduced.
  • a data transmission processing apparatus in the embodiment of the present invention is described below. Referring to FIG. 6, the data transmission processing apparatus 600 in the embodiment of the present invention includes:
  • a packaging unit 601 configured to encapsulate service data into the optical payload unit;
  • the foregoing service data may be, for example, Ethernet type service signal data; Gigabit Ethernet service signal data, or 10 Gigabit Ethernet service signal data, or synchronous transmission mode signals (such as STM-8, STM-16), etc. There is no limit.
  • the first mapping unit 602 is configured to map the optical payload unit to the ODU.
  • the second mapping unit 603 is configured to map the ODU to the payload area of the optical burst transmission unit.
  • the optical burst is a basic switching unit on the optical layer that carries the service data, and each optical burst Separated by a period of matte protection, since each optical burst is equally long, the time occupied by each optical burst and its guard time is called an electrical time slot.
  • the electrical layer or optical time slot (in the optical layer). That is to say, the optical burst is an entity carried on the optical time slot, and has a one-to-one correspondence with the optical time slot.
  • the length of time per frame is called the frame period, and each frame consists of the same number of multiple optical bursts.
  • An optical burst channel is a collection of one or more optical bursts, or optical time slots.
  • a delivery unit is also a collection of one or more time slots.
  • FIG. 2 is a schematic diagram showing the structure of an optical burst optical signal including three optical bursts per frame.
  • Optical burst channel 1 is a collection of optical bursts of one optical slot
  • optical burst channel 2 is a collection of optical bursts of two optical slots. It is worth noting that in the case of such a framed structure in which each time slot is repeated in each frame, the "time slot" herein represents a set of time slots formed at the same position per frame.
  • the second mapping unit 603 may take an ODU whose signal time length is equal to the frame period of the optical burst transmission unit, and map it to the payload area of the optical burst transmission unit.
  • the code rate for mapping the ODU should be no higher than the code rate of the optical burst transmission unit (ie, the rate level of the ODU is not higher than the optical burst. Rate level of the transmitting unit).
  • the selection of the frame period of the optical burst transmission unit may also be related to the signal length of one ODU0. For example, the frame period of an optical burst transmission unit may be less than the signal length of one ODU.
  • the number of data bytes of the ODU to be selected may not be an integer.
  • the length of the signal, the bit rate, and the number of bytes can be guaranteed by the byte filling technique. The correct relationship between them is not detailed here.
  • the electro-optical conversion module 604 is configured to complete the mapped optical burst transmission list by the second mapping unit 603.
  • the element performs electro-optic conversion to form an optical burst optical signal.
  • the optical burst mapping module 605 is configured to carry the optical burst optical signal converted by the electro-optical conversion module 604 to the optical time slot of the optical burst channel, and the transmitting module 606 is configured to process the optical burst mapping module 605.
  • the optical burst channel is transmitted to the line.
  • the transmitting module 606 may further include: a multiplexing module (not shown) for processing the optical burst mapping module 606 to obtain a plurality of optical burst channels (ie, mapping multiple optical bursts of different ODU signal data)
  • the optical channel is multiplexed or optical burst multiplexed to form an optical burst multiplex section, wherein the optical burst slot multiplexing or optical burst add/drop multiplexing is performed in the optical layer.
  • the transmitting module 606 may further include: a cross module (not shown) for processing the optical burst mapping module 605 to obtain a plurality of optical burst channels (ie, multiple optical burst channels mapping different ODUs) The intersection is performed, wherein the above intersection is performed in the optical layer.
  • a cross module for processing the optical burst mapping module 605 to obtain a plurality of optical burst channels (ie, multiple optical burst channels mapping different ODUs) The intersection is performed, wherein the above intersection is performed in the optical layer.
  • the data transmission processing apparatus 600 may further include: a dividing unit, configured to divide the optical burst channels of different code rates, each frame into different numbers of optical slots, so that the bandwidth of each optical slot is equal; or The unit is used to divide the optical burst channels of different code rates, and each frame is divided into the same number of optical slots.
  • a dividing unit configured to divide the optical burst channels of different code rates, each frame into different numbers of optical slots, so that the bandwidth of each optical slot is equal
  • the unit is used to divide the optical burst channels of different code rates, and each frame is divided into the same number of optical slots.
  • the data transmission processing device 600 in the embodiment of the present invention may be used as the data transmission processing device in the foregoing device embodiment, and may be used to implement all the technical solutions in the foregoing device embodiments, and the functions of the various functional modules may be The method in the foregoing method is specifically implemented. For the specific implementation process, reference may be made to the related description in the foregoing embodiments, and details are not described herein again.
  • the embodiments of the present invention provide an optical burst time slot switching network and a mature OTN network system by mapping an ODU to an optical burst transmission unit and mapping to an optical time slot and an optical burst channel step by step.
  • the architecture is compatible and unified.
  • the optical signals are exchanged in the all-optical mode, that is, the multiplexing and cross-over processes of the optical burst channels are implemented in the optical layer. Therefore, the multiplexing and crossover of the ODU are performed. It can also be realized on the optical layer, which saves a large amount of photoelectric, electro-optical conversion and electrical processing in the data transmission process.
  • the data receiving processing apparatus 700 in the embodiment of the present invention includes: The obtaining unit 701 is configured to acquire an optical burst channel carried on the line.
  • the photoelectric conversion module 702 is configured to perform photoelectric conversion on the optical burst optical signal on the optical burst channel acquired by the obtaining unit 701 to obtain an optical burst transmission unit.
  • the first demapping module 703 is configured to demap the optical burst transmission unit processed by the photoelectric conversion module 702, and obtain an ODU from the payload area of the optical burst transmission unit.
  • the second demapping module 704 is configured to perform demapping on the ODU processed by the first demapping module 703 to obtain an optical payload unit.
  • the decapsulation unit 705 is configured to decapsulate the optical payload unit processed by the second demapping module 704 to obtain service data.
  • the acquiring unit 701 further includes: a demultiplexing unit, configured to be used on the line
  • the optical burst multiplex section is demultiplexed to obtain more than two optical burst channels.
  • the above demultiplexing can be implemented by a 1: M fast optical switch, wherein the fast optical switch is used corresponding to the fast optical switch used in multiplexing, that is, if the multiplexing is a 2:1 fast optical switch , then the demultiplexing uses a 1: 2 fast optical switch.
  • the data receiving processing apparatus 700 in the embodiment of the present invention may be used as the data receiving processing apparatus in the foregoing apparatus embodiment, and may be used to implement all the technical solutions in the foregoing apparatus embodiments, and the functions of the respective functional modules may be The method in the foregoing method is specifically implemented. For the specific implementation process, reference may be made to the related description in the foregoing embodiments, and details are not described herein again.
  • the embodiments of the present invention provide an optical burst time slot switching network and a mature OTN network system by mapping an ODU to an optical burst transmission unit and mapping to an optical time slot and an optical burst channel step by step.
  • the architecture is compatible and unified.
  • the optical signals are exchanged in the all-optical mode, that is, the multiplexing and cross-over processes of the optical burst channels are implemented in the optical layer. Therefore, the multiplexing and crossover of the ODU are performed. It can also be realized on the optical layer, which saves a large amount of photoelectric, electro-optical conversion and electrical processing in the data transmission process. On the one hand, the data processing process is compressed, and on the other hand, the data processing delay is effectively reduced.
  • the optical transmission network system in the embodiment of the present invention is described below.
  • the optical transmission network system in the embodiment of the present invention includes:
  • the data transmission processing device is configured to: encapsulate the service data into the optical payload unit; map the optical payload unit to the optical channel data unit; and map the optical channel data unit to a payload area of the optical burst transmission unit; Performing the optical burst conversion unit to form an optical burst optical signal; and carrying the optical burst optical signal to an optical time slot of the optical burst channel; and transmitting the optical burst channel to the line;
  • the data receiving and processing device is configured to: acquire an optical burst channel carried on the line; perform photoelectric conversion on the optical burst optical signal on the optical burst channel to obtain an optical burst transmission unit;
  • the optical channel data unit is demapped to obtain an optical payload unit; and the optical payload unit is decapsulated to obtain service data.
  • the data transmission processing device may take an ODU whose signal time length is equal to the frame period of the optical burst transmission unit, and map it to the payload area of the optical burst transmission unit.
  • the above mapping to the optical protrusion The signal length of the ODU of the payload area of the transmitting unit may also be greater than or less than the frame period of the optical burst transmission unit, which is not limited herein.
  • the data transmission processing apparatus in the embodiment of the present invention may be the data transmission processing apparatus 600 in the foregoing apparatus embodiment
  • the data receiving processing apparatus in the embodiment of the present invention may be the data receiving processing in the foregoing apparatus embodiment
  • the device 700 can be used to implement all the technical solutions in the foregoing device embodiments, and the functions of the respective functional modules can be specifically implemented according to the method in the foregoing method embodiment. For the specific implementation process, refer to the related description in the foregoing embodiment. I won't go into details here.
  • the embodiments of the present invention provide an optical burst time slot switching network and a mature OTN network system by mapping an ODU to an optical burst transmission unit and mapping to an optical time slot and an optical burst channel step by step.
  • the architecture is compatible and unified.
  • the optical signals are exchanged in the all-optical mode, that is, the multiplexing and cross-over processes of the optical burst channels are implemented in the optical layer. Therefore, the multiplexing and crossover of the ODU are performed. It can also be realized on the optical layer, which saves a large amount of photoelectric, electro-optical conversion and electrical processing in the data transmission process. On the one hand, the data processing process is compressed, and on the other hand, the data processing delay is effectively reduced.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division, and may be additionally implemented in actual implementation.
  • Sub-modes, such as multiple units or components, may be combined or integrated into another system, or some features may be omitted or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the components displayed by the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Time-Division Multiplex Systems (AREA)

Description

一种光传送网的数据处理方法、 相关 i殳备及系统 技术领域
本发明实施例涉及光通信领域, 尤其涉及一种光传送网的数据处理方法、 相关设备及系统。 背景技术
光传送网 (OTN, Optical Transport Network )是以波分复用技术为基础、 在光层组织网络的传送网,是目前主流的传送网技术。 由于在网络上传送的网 际互联协议(IP, Internet Protocol )业务和其他基于包传送数据业务的爆炸式 增长, 对传输容量的要求在不断迅猛增加, 密集波分复用 (DWDM , Dense Wavelength Division Multiplexing )技术和光放大器 ( OA, Optical Amplifier ) 技术的成熟和应用使传送网正在向以光联网技术为基础的光传送网发展。基于 OTN 的传送网的出现将使人们期望的智能光网络逐步变为现实, 为网络运营 者和客户提供安全可靠、 价格有效、 客户无关、 可管理、 可操作、 高效的新一 代光传送平台。 在 OTN中, 业务数据通过某种封装方法首先封装到光净荷单 元(OPU, Optical Payload Unit )里, 然后再映射到光通道数据单元( ODU, Optical channel Data Unit ) 里, 然后再映射到光传送单元 (OTU , Optical Transform Unit ), 经过电光转换, 光层的网络层次依次为光通道层、 光复用段 层, 和光传送段层。 ODU根据其速率主要分为如表 1所示的种类:
表 1
Figure imgf000003_0001
在 OTN里, 低阶的 ODU可以复用到高阶的 ODU。 例如, ODU1相对于 ODU2, ODU1为低阶的 ODU, ODU2为高阶的 ODU; ODU2相对于 ODU3 , ODU2为低阶的 ODU, ODU3为高阶的 ODU, 因此, 在上述将 ODU映射到 OUT之前, 可能需要将这个 ODU作为低阶的 ODU复用到高阶的 ODU里。
OTN 的一个重要特性是既提供波长级光通道的交叉和复用 (目前可以通 过可重构光分插复用器 ( ROADM, Reconfigurable optical add-drop multiplexer ) 进行), 也提供子波长颗粒 ODU级的交叉和复用。
由于 ODU的交叉和复用都是在电层通过电信号处理来进行的,也就是说, 要进行 ODU的交叉, 首先需要通过光接收机把光信号转为电信号, 然后再逐 层解出 ODU, 然后进行电交叉, 然后再逐层封装, 然后再通过光发射机转成 光信号, 可见, OTN的中间节点需要对传输数据进行光-电 -光的转换以及大量 的电信号处理, 数据处理过程复杂且数据处理时延较大。 发明内容
本发明实施例提供了一种光传送网的数据处理方法、相关设备及系统, 用 于筒化数据处理过程, 降低数据处理时延。
一种光传送网的数据处理方法, 包括:
封装业务数据到光净荷单元中;
映射上述光净荷单元到光通道数据单元;
将上述光通道数据单元映射到光突发传送单元的净荷区;
将上述光突发传送单元进行电光转换形成光突发光信号;
将上述光突发光信号承载到光突发通道的光时隙上;
将上述光突发通道发射到线路上。
一种光传送网的数据处理方法, 包括:
获取线路上承载的光突发通道;
对上述光突发通道上的光突发光信号进行光电转换, 得到光突发传送单 元;
对上述光突发传送单元进行解映射,从上述光突发传送单元的净荷区中获 得光通道数据单元;
对上述光通道数据单元进行解映射, 得到光净荷单元;
对上述光净荷单元解封装, 得到业务数据。 一种数据发射处理装置, 包括:
封装单元, 用于封装业务数据到光净荷单元中;
第一映射单元, 用于映射上述光净荷单元到光通道数据单元;
第二映射单元,用于将上述光通道数据单元映射到光突发传送单元的净荷 区;
电光转换模块,用于将上述光突发传送单元进行电光转换形成光突发光信 号;
光突发映射模块, 用于将上述光突发光信号承载到光突发通道的光时隙 上;
发射模块, 用于将上述光突发通道发射到线路上。
一种数据接收处理装置, 包括:
获取单元, 用于获取线路上承载的光突发通道;
光电转换模块, 用于对上述光突发通道上的光突发光信号进行光电转换, 得到光突发传送单元;
第一解映射模块, 用于对上述光突发传送单元进行解映射,从上述光突发 传送单元的净荷区中获得光通道数据单元;
第二解映射模块, 用于对上述光通道数据单元进行解映射,得到光净荷单 元;
解封装单元, 用于对上述光净荷单元解封装, 得到业务数据。
一种光传送网络系统, 包括:
数据发射处理装置和数据接收处理装置;
其中, 上述数据发射处理装置用于: 封装业务数据到光净荷单元中; 映射 上述光净荷单元到光通道数据单元;将上述光通道数据单元映射到光突发传送 单元的净荷区; 将上述光突发传送单元进行电光转换形成光突发光信号; 将上 述光突发光信号承载到光突发通道的光时隙上;将上述光突发通道发射到线路 上;
其中, 上述数据接收处理装置用于: 获取线路上承载的光突发通道; 对上 述光突发通道上的光突发光信号进行光电转换,得到光突发传送单元; 对上述 据单元; 对上述光通道数据单元进行解映射, 得到光净荷单元; 对上述光净荷 单元解封装, 得到业务数据。
从以上技术方案可以看出, 本发明实施例具有以下优点:
本发明实施例提供了通过将光通道数据单元(ODU, Optical channel Data Unit )映射到光突发传送单元, 并逐级映射到光时隙及光突发通道, 使光突发 时隙交换网络与已成熟的 OTN网络体系架构兼容并统一, 由于在光突发时隙 交换网络中, 光信号通过全光方式进行交换, 即光突发通道的复用、 交叉过程 在光层实现, 因此, 使得 ODU的复用、 交叉也可以在光层上实现, 节省了数 据传输过程中大量的光电、 电光转换和电处理, 一方面筒化了数据处理过程, 另一方面也有效降低了数据处理时延。 附图说明
图 1 为本发明提供的一种光传送网的数据处理方法一个实施例流程示意 图;
图 2为本发明提供的每帧包含三个光突发的光突发光信号结构示意图; 图 3为本发明提供的将 ODU填充到光突发传送单元的实施例示意图; 图 4为本发明提供的一种光时隙划分方式实施例示意图;
图 5 为本发明提供的一种光传送网的数据处理方法另一个实施例流程示 意图;
图 6为本发明提供的一种数据发射处理装置实施例结构示意图; 图 7为本发明提供的一种数据接收处理装置实施例结构示意图。 具体实施方式
本发明实施例提供了一种光传送网的数据处理方法、 相关设备及系统。 光突发交换或光突发时隙交换是一种新颖的子波长颗粒度的全光交换技 术。其核心思想是将一个波长划分为很多子波长的光时隙,将业务数据封装映 射到每个光时隙里。在网络中间节点, 光信号通过全光交换阵列等全光方式进 行交换。 筒单理解, 全光交换阵列就是 "光交换芯片", 对应于 "电交换芯片" 可以直接交换光突发包。通过全光交换阵列等全光方式进行交换光信号,省却 了中间节点光 -电-光的转换以及大量的电信号处理。 光突发时隙交换网络中的 数据处理方式可以如下:业务数据通过某种封装方式首先封装映射到光突发传 送单元( OBTU, Optical Burst Transport Unit )里, 然后通过电光转换将光突发 传送单元映射到光层的光突发通道( OBCh, Optical Burst Channel )的光时隙上, 然后通过光层的复用, 复用到光突发复用段 ( OBMS, Optical Burst Multiplex Section ), 然后再复用到光复用段( OMS, Optical Multiplexing Section )和光传 送段(OTS , Optical Transport Section )„ 需要说明的是, 光突发传送单元也可 称为光突发单元, 它表示一个光突发通道在电层上对应的电信号。在本发明中 统一使用光突发传送单元来描述。
下面对本发明实施例中的一种光传送网的数据处理方法进行描述,请参阅 图 1 , 本发明实施例中的光传送网的数据处理方法包括:
101、 封装业务数据到光净荷单元中;
数据发射处理装置将业务数据封装到光净荷单元(OPU, Optical Payload Unit )„ 上述业务数据例如可以为: 以太网类型的业务信号数据; 千兆以太网 业务信号数据,或万兆以太网业务信号数据,或同步传输模式信号(如 STM-8, STM-16 )等, 此处不作限定。
102、 映射上述光净荷单元到 ODU。
103、 将 ODU映射到光突发传送单元的净荷区;
本发明实施例中, 光突发是承载业务数据的光层上的基本交换单位,每个 光突发之间用一段无光的保护时间隔开, 由于每个光突发时间上都是等长的, 因此, 将每个光突发及其保护时间所占的时间称为一个电时隙(在电层中)或 者光时隙 (在光层中)。 也就是说, 光突发是承载于光时隙上的实体, 跟光时 隙是一一对应的关系。 其中, 每帧的时间长度称为帧周期, 每帧由相同数量的 多个光突发组成。一个光突发通道是一个或多个光突发、或者说光时隙的集合。 送单元也是一个或多个时隙的的集合。如图 2所示为每帧包含三个光突发的光 突发光信号结构示意图。 光突发通道 1为一个光时隙的光突发的集合, 光突发 通道 2为两个光时隙的光突发的集合。 值得注意的是, 在这种有帧结构、 每个 时隙在每帧中重复出现的情况下, 这里的 "时隙"表示每帧相同位置的时隙构 成的集合。
在一种应用场景下,数据发射处理装置可以取一个信号时间长度等于光突 发传送单元的帧周期(也即为光突发传送通道的帧周期)的 ODU, 将该 ODU 映射到光突发传送单元的净荷区, 其映射方式可参照图 3所示。 举例说明, 以 将速率等级为 1.25 吉(即 G )的 ODU (即 ODU0 )映射到速率等级为 10G的 光突发传送单元为例, 首先对 "速率等级" 进行说明, 速率等级是指 1.25G, 2.5G, 10G, 40G和 100G等业界公知的速率级别。 但速率等级并不一定严格 是这些速率, 而是可能略有差别, 如 10.7吉比特每秒(Gb/s )和 9.953吉比特 每秒(Gb/s ) 均为 10G这个速率等级。 H没速率等级为 1.25G的 ODU0的比 特率为 1.24416 Gb/s, 每个 ODU0的信号时间长度约为 98.354微秒(即 )。 在选取某个特定的保护时间的情况下, 速率等级为 10G的光突发传送单元的 码速率约为 10.882Gb/s。假设光突发传送单元的帧周期选择与 ODU0的信号时 间长度相等, 每个光突发传送单元的帧包含 8个光突发传送单元, 那么 ODU0 到这种光突发传送单元的映射可以如下: 将 ODU0通过通用映射规程( GMP, Generic Mapping Procedure )或其它映射方式 (例如异步映射规程 (AMP, Asynchronous Mapping Procedure ) , 比特同步映射规程 ( BMP, Bit-synchronous Mapping Procedure )等 )映射进光突发传送单元的净荷区。 具体的实现方法可 以是将 1.24416Gb/s的 ODU0读入緩存, 然后再以 OBTU的码速率将 ODU0 读出, 放置在光突发传送单元緩存区中净荷区的位置。 需要说明的是, 净荷区 内除了 ODU0 的数据字节, 还可以包含少量的光突发传送单元的开销字节, 具体开销可以参照 OTU的开销或其他网络映射方式的开销, 在此不作详述。 在实际应用中, 为了使得光突发传送单元能够正常读取 ODU, 用于映射 ODU 的码速率应该不高于该光突发传送单元的码速率(即 ODU的速率等级不高于 该光突发传送单元的速率等级), 在上述例子中, 选取的光突发传送单元的帧 周期刚好等于一个 ODU0的信号时间长度, 一个 ODU0的数据字节刚好可以 被映射到一个光突发传送单元中。在实际应用中, 光突发传送单元的帧周期的 选择也可以跟一个 ODU0 的信号时间长度没有关系, 例如, 一个光突发传送 单元的帧周期可以小于一个 ODU的信号时间长度, 这种情况下, 只需要取信 号时间长度等于一个光突发传送单元的帧周期的 ODU进行映射即可, 如图 3 所示。 在实际应用中, 可能会出现需要选取的 ODU的数据字节数不是整数个 的情况, 这时可以通过字节填充技术来保证信号时间长度、 比特率、 字节数之 间的正确关系, 此处不作详述。
进一步的, 在本发明实施例中, 数据发射处理装置还可以根据 ODU的信 号数据计算出前向纠错 ( FEC, Forward Error Correction )编码的比特数据并放 置在上述光突发传送单元緩存区中 FEC的位置。
在另一种应用场景下, 数据发射处理装置也可以将 ODU参照国际电信联 盟电信标准化组织 (ITU-T , International Telecommunication Union - Telecommunication Standardization Sector) G.709等标准建议,在 ODU中增力口开 销和 FEC后映射进同速率等级的 OTU, 然后, 从 OTU中取信号时间长度等 于一个光突发传送单元的帧周期的 ODU, 将其映射到该光突发传送单元的净 荷区。
进一步,在本发明实施例中,数据发射处理装置还可以在上述光突发传送 单元中加入前导码 (即 preamble )和保护时间, 前导码用以辅助进行同步、 频 率锁定、 相位锁定、 时钟恢复、 功率锁定等功能中的一种或多种, 保护时间用 于将每个光突发隔开, 以便当上述光突发传送单元在进行电光转换时,便于光 突发或光时隙进行交叉和突发接收。
104、 将光突发传送单元进行电光转换形成光突发光信号;
数据发射处理装置对承载 ODU的光突发传送单元进行电光转换, 得到光 突发光信号。
105、 将光突发光信号承载到光突发通道的光时隙上; 通道对应一个光突发传送单元,光突发通道与光突发传送单元包含相同的信号 数据, 只不过光突发传送单元是在电层上传输, 光突发通道是在光层上传输。 由于光突发通道是光突发光信号经过电光转换形成,光突发通道的速率等级为 光突发传送单元的速率等级,光突发通道占用的光时隙的数目与光突发传送单 元占用的电时隙的数目相同, 且上述电时隙和光时隙具有相同的时间长度。
106、 将光突发通道发射到线路上。
在一种应用场景中, 数据发射处理装置将上述光突发通道与由其它 ODU 映射的光突发通道进行光突发时隙复用或光突发分插复用, 形成光突发复用 段, 当然,数据发射处理装置也可以将多个光突发通道和一个光突发复用段复 用成一个光突发复用段。 其中, 光突发时隙复用可以通过一个 M:l 的光合路 器或快速光开关实现; 光突发分插复用可以通过 2x2 快速光开关来实现。 当 2x2快速光开关是直通状态时, 线路上的光时隙是直通的, 此时不发生分插复 用; 当 2x2光开关是交叉状态时, 线路上的光时隙被下路(即 drop )到本地数 据发射处理装置, 同时数据发射处理装置也可以上路(即 add )一个光时隙到 线路上。 当然, 光突发分插复用也可以通过 1x1快速光开关实现。 首先线路上 的若干光突发经过一个分路器, 一部分光能量被分到本地数据发射处理装置, 通过一个 1x1快速光开关将需要下路的光时隙下到本地,另一部分光能量在线 路上经过另一个 1x1 快速光开关将已下到本地的光时隙上的光突发截断以使 该光时隙空出。本地数据发射处理装置可以通过一个光合路器使用上述空出的 光时隙,对光突发通道中的一个光突发进行 add复用。 上述光突发时隙复用和 光突发分插复用均在光层进行。
在另一种应用场景中,数据发射处理装置还可以将上述光突发通道与由其 它 ODU映射的光突发通道进行交叉, 其中, 上述交叉在光层进行。 其中, 上 述交叉可以通过快速光交换阵列实现, 其中一个快速光交换阵列可以由一个 NxN 的快速光开关构成。 快速光交换阵列的每个输入端口可以是一个波长上 的信号, 即包含多个光突发通道复用过的一个信号, 该信号可以通过输入端口 的可调光延迟线与其他输入端口的信号彼此进行帧对齐, 以便进行时隙交叉。 NxN 快速光开关将各个输入端口的相同光时隙进行交换, 并且对每个光时隙 进行快速的重配置, 从而实现了光突发通道的交叉。 当然, 上述交叉也可以通 过其它交换设备实现, 此处不作限定。
在本发明实施例, 将一个波长的若干光时隙划分为一帧, 这种划分的方式 至少有两种。
第一种划分方式为: 在一个网络中, 将帧长(指帧的时间长度) 固定。 对 于不同速率等级的光突发通道,每帧划分不同数量的光时隙,保持每个光时隙 的带宽颗粒一致。 如图 4所示, 对于 1.25G速率等级的光突发通道, 每帧只有 1个光时隙(如 S1 );对于 2.5G速率等级的光突发通道,每帧有 2个光时隙(如 S1和 S2 ), 以此类推, 对于 100G速率等级的光突发通道, 每帧有 80个光时 隙(如 S1~S80 )。 也就是说, 对于上述各种不同速率等级的光突发通道, 划分 的光时隙的带宽颗粒均为 1.25G, 即 ODU0的带宽。 显而易见, 这种光时隙的 划分方法, 即使是不同速率等级的光突发通道, 都可以支持最小颗粒度为 ODU0的复用和交叉。
第二种划分方式为: 在一个网络中, 将帧周期固定, 对于不同速率等级的 光突发通道, 每帧划分相同数量的光时隙, 因此, 在这种方式下, 对于不同速 率等级的光突发通道, 所划分的光时隙的带宽颗粒是不同的。如表 2所示为将 80 个光时隙作为一帧, 不同速率等级的光突发通道上每个光时隙的带宽颗粒 表格, 由表可见, 对于 100G速率等级的光突发通道, 每个光时隙的带宽颗粒 为 1个 ODU0的带宽颗粒。
表 2
Figure imgf000011_0001
采用其它划分方式, 此处不作限定。
由上可见, 本发明实施例提供了通过将 ODU映射到光突发传送单元, 并 逐级映射到光时隙及光突发通道, 使光突发时隙交换网络与已成熟的 OTN网 络体系架构兼容并统一, 由于在光突发时隙交换网络中, 光信号通过全光方式 进行交换, 即光突发通道的复用、 交叉过程在光层实现, 因此, 使得 ODU的 复用、 交叉也可以在光层上实现, 节省了数据传输过程中大量的光电、 电光转 换和电处理,一方面筒化了数据处理过程, 另一方面也有效降低了数据处理时 延。 下面对本发明实施例中的一种光传送网的数据处理方法进行描述,请参阅 图 5 , 本发明实施例中光传送网的数据处理方法, 包括:
501、 获取线路上承载的光突发通道;
数据接收处理装置从线路上接收光突发通道。
在一种应用场景下, 若线路上承载的是采用复用方式发射的光突发通道, 即光突发复用段,则数据接收处理装置通过对线路上的光突发复用段进行解复 用, 获得两个以上的光突发通道。 其中, 上述解复用可以通过 1 : M的快速光 开关实现, 其中, 采用的快速光开关与复用时采用的快速光开关对应, 即若复 用时采用的是 2: 1的快速光开关, 则解复用采用 1 : 2的快速光开关。
502、 数据发射处理装置对获取的光突发通道上的光突发光信号进行光电 转换, 得到光突发传送单元;
本发明实施例中, 光突发是承载数据信号的基本交换单位,每个光突发之 间用一段无光的保护时间隔开, 由于每个光突发时间上都是等长的, 因此, 将 每个光突发及其保护时间所占的时间称为一个电时隙(在电层中)或者光时隙 (在光层中)。 其中, 每帧的时间长度称为帧周期, 每帧由相同数量的光突发 组成, 光突发的数量可以是一个, 也可以是多个, 一个光突发传送单元是一个 或多个时隙的光突发的集合。
503、 数据发射处理装置对光突发传送单元进行解映射, 从光突发传送单 元的净荷区中获得 ODU。
504、 数据发射处理装置对 ODU进行解映射, 得到光净荷单元。
505、 数据发射处理装置对上述光净荷单元解封装, 得到业务数据。
其中, 上述业务数据例如可以为: 以太网类型的业务信号数据; 千兆以太 网业务信号数据, 或万兆以太网业务信号数据, 或同步传输模式信号 (如 STM-8, STM-16 )等, 此处不作限定。
由上可见, 本发明实施例提供了通过将 ODU映射到光突发传送单元, 并 逐级映射到光时隙及光突发通道, 使光突发时隙交换网络与已成熟的 OTN网 络体系架构兼容并统一, 由于在光突发时隙交换网络中, 光信号通过全光方式 进行交换, 即光突发通道的复用、 交叉过程在光层实现, 因此, 使得 ODU的 复用、 交叉也可以在光层上实现, 节省了数据传输过程中大量的光电、 电光转 换和电处理,一方面筒化了数据处理过程, 另一方面也有效降低了数据处理时 延。 下面对本发明实施例中的一种数据发射处理装置进行描述, 请参阅图 6, 本发明实施例中的数据发射处理装置 600包括:
封装单元 601 , 用于封装业务数据到光净荷单元中; 上述业务数据例如可以为: 以太网类型的业务信号数据; 千兆以太网业务 信号数据, 或万兆以太网业务信号数据, 或同步传输模式信号 (如 STM-8 , STM-16 )等, 此处不作限定。
第一映射单元 602, 用于映射上述光净荷单元到 ODU中。
第二映射单元 603 , 用于将上述 ODU映射到光突发传送单元的净荷区; 本发明实施例中, 光突发是承载业务数据的光层上的基本交换单位,每个 光突发之间用一段无光的保护时间隔开, 由于每个光突发时间上都是等长的, 因此, 将每个光突发及其保护时间所占的时间称为一个电时隙(在电层中)或 者光时隙 (在光层中)。 也就是说, 光突发是承载于光时隙上的实体, 跟光时 隙是一一对应的关系。 其中, 每帧的时间长度称为帧周期, 每帧由相同数量的 多个光突发组成。一个光突发通道是一个或多个光突发、或者说光时隙的集合。 送单元也是一个或多个时隙的的集合。如图 2所示为每帧包含三个光突发的光 突发光信号结构示意图。 光突发通道 1为一个光时隙的光突发的集合, 光突发 通道 2为两个光时隙的光突发的集合。 值得注意的是, 在这种有帧结构、 每个 时隙在每帧中重复出现的情况下, 这里的 "时隙"表示每帧相同位置的时隙构 成的集合。
在本发明实施例中,第二映射单元 603可以取信号时间长度等于光突发传 送单元的帧周期的 ODU, 将其映射到光突发传送单元的净荷区。 在实际应用 中,为了使得光突发传送单元能够正常读取 ODU,用于映射 ODU的码速率应 该不高于该光突发传送单元的码速率(即 ODU的速率等级不高于该光突发传 送单元的速率等级)。 在实际应用中, 光突发传送单元的帧周期的选择也可以 跟一个 ODU0 的信号时间长度没有关系, 例如, 一个光突发传送单元的帧周 期可以小于一个 ODU的信号时间长度, 这种情况下, 只需要取信号时间长度 际应用中, 可能会出现需要选取的 ODU的数据字节数不是整数个的情况, 这 时可以通过字节填充技术来保证信号时间长度、 比特率、字节数之间的正确关 系, 此处不作详述。
电光转换模块 604, 用于将第二映射单元 603完成映射后的光突发传送单 元进行电光转换形成光突发光信号。
光突发映射模块 605 , 用于将电光转换模块 604转换得到的光突发光信号 承载到光突发通道的光时隙上; 发射模块 606, 用于将光突发映射模块 605处理后的光突发通道发射到线 路上。
进一步, 发射模块 606还可包括: 复用模块(图中未示出), 用于将光突 发映射模块 606处理得到的若干个光突发通道(即映射不同 ODU信号数据的 多个光突发通道)进行光突发时隙复用或光突发分插复用,形成光突发复用段, 其中, 上述光突发时隙复用或光突发分插复用在光层进行。
进一步, 发射模块 606还可包括: 交叉模块(图中未示出), 用于将光突 发映射模块 605处理得到的若干个光突发通道(即映射不同 ODU的多个光突 发通道)进行交叉, 其中, 上述交叉在光层进行。
进一步, 数据发射处理装置 600还可包括: 划分单元, 用于对不同码速率 的光突发通道, 每帧划分不同数量的光时隙, 使每个光时隙的带宽颗粒相等; 或者,划分单元用于对不同码速率的光突发通道,每帧划分相同数量的光时隙。
需要说明的是,本发明实施例中的数据发射处理装置 600可以如上述装置 实施例中的数据发射处理装置,可以用于实现上述装置实施例中的全部技术方 案, 其各个功能模块的功能可以根据上述方法实施例中的方法具体实现, 其具 体实现过程可参照上述实施例中的相关描述, 此处不再赘述。
由上可见, 本发明实施例提供了通过将 ODU映射到光突发传送单元, 并 逐级映射到光时隙及光突发通道, 使光突发时隙交换网络与已成熟的 OTN网 络体系架构兼容并统一, 由于在光突发时隙交换网络中, 光信号通过全光方式 进行交换, 即光突发通道的复用、 交叉过程在光层实现, 因此, 使得 ODU的 复用、 交叉也可以在光层上实现, 节省了数据传输过程中大量的光电、 电光转 换和电处理,一方面筒化了数据处理过程, 另一方面也有效降低了数据处理时 延。 下面对本发明实施例中的一种数据接收处理装置进行描述, 请参阅图 7, 本发明实施例中的数据接收处理装置 700包括: 获取单元 701 , 用于获取线路上承载的光突发通道。
光电转换模块 702, 用于对获取单元 701获取到的光突发通道上的光突发 光信号进行光电转换, 得到光突发传送单元。
第一解映射模块 703 , 用于对光电转换模块 702处理得到的光突发传送单 元进行解映射, 从该光突发传送单元的净荷区中获得 ODU。
第二解映射模块 704, 用于对第一解映射模块 703处理得到的 ODU进行 解映射, 得到光净荷单元。
解封装单元 705 , 用于对第二解映射模块 704处理得到的光净荷单元解封 装, 得到业务数据。
在一种应用场景下, 若线路上承载的是采用复用方式发射的光突发通道, 即光突发复用段, 则获取单元 701还包括: 解复用单元, 用于对线路上的光突 发复用段进行解复用, 获得两个以上的光突发通道。 其中, 上述解复用可以通 过 1 : M的快速光开关实现, 其中, 采用的快速光开关与复用时采用的快速光 开关对应, 即若复用时采用的是 2: 1的快速光开关, 则解复用采用 1 : 2的快 速光开关。
需要说明的是,本发明实施例中的数据接收处理装置 700可以如上述装置 实施例中的数据接收处理装置,可以用于实现上述装置实施例中的全部技术方 案, 其各个功能模块的功能可以根据上述方法实施例中的方法具体实现, 其具 体实现过程可参照上述实施例中的相关描述, 此处不再赘述。
由上可见, 本发明实施例提供了通过将 ODU映射到光突发传送单元, 并 逐级映射到光时隙及光突发通道, 使光突发时隙交换网络与已成熟的 OTN网 络体系架构兼容并统一, 由于在光突发时隙交换网络中, 光信号通过全光方式 进行交换, 即光突发通道的复用、 交叉过程在光层实现, 因此, 使得 ODU的 复用、 交叉也可以在光层上实现, 节省了数据传输过程中大量的光电、 电光转 换和电处理,一方面筒化了数据处理过程, 另一方面也有效降低了数据处理时 延。 下面对本发明实施例中的一种光传送网络系统进行描述,本发明实施例中 的光传送网络系统, 包括:
数据发射处理装置和数据接收处理装置; 其中, 上述数据发射处理装置用于: 封装业务数据到光净荷单元中; 映射 上述光净荷单元到光通道数据单元;将上述光通道数据单元映射到光突发传送 单元的净荷区; 将上述光突发传送单元进行电光转换形成光突发光信号; 将上 述光突发光信号承载到光突发通道的光时隙上;将上述光突发通道发射到线路 上;
其中, 上述数据接收处理装置用于: 获取线路上承载的光突发通道; 对上 述光突发通道上的光突发光信号进行光电转换,得到光突发传送单元; 对上述 据单元; 对上述光通道数据单元进行解映射, 得到光净荷单元; 对上述光净荷 单元解封装, 得到业务数据。
在本发明实施例中,上述数据发射处理装置可以取信号时间长度等于光突 发传送单元的帧周期的 ODU, 将其映射到光突发传送单元的净荷区, 当然, 上述映射到光突发传送单元的净荷区的 ODU的信号时间长度也可以大于或者 小于该光突发传送单元的帧周期, 此处不作限定。
需要说明的是,本发明实施例中的数据发射处理装置可以如上述装置实施 例中的数据发射处理装置 600, 本发明实施例中的数据接收处理装置可以如上 述装置实施例中的数据接收处理装置 700, 可以用于实现上述装置实施例中的 全部技术方案,其各个功能模块的功能可以根据上述方法实施例中的方法具体 实现, 其具体实现过程可参照上述实施例中的相关描述, 此处不再赘述。
由上可见, 本发明实施例提供了通过将 ODU映射到光突发传送单元, 并 逐级映射到光时隙及光突发通道, 使光突发时隙交换网络与已成熟的 OTN网 络体系架构兼容并统一, 由于在光突发时隙交换网络中, 光信号通过全光方式 进行交换, 即光突发通道的复用、 交叉过程在光层实现, 因此, 使得 ODU的 复用、 交叉也可以在光层上实现, 节省了数据传输过程中大量的光电、 电光转 换和电处理,一方面筒化了数据处理过程, 另一方面也有效降低了数据处理时 延。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的装置和方法, 可 以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性的, 例 如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外的划 分方式, 例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特 征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或直接耦合 或通信连接可以是通过一些接口, 装置或单元的间接耦合或通信连接, 可以是 电性, 机械或其它的形式。 单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者 也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部 单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元 中。上述集成的单元既可以采用硬件的形式实现, 也可以采用软件功能单元的 形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售 或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发 明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全 部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储 介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器, 或者网络设备等 )执行本发明各个实施例所述方法的全部或部分步骤。 而前述 的存储介质包括: U盘、 移动硬盘、 只读存储器(ROM, Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可以 存储程序代码的介质。
以上对本发明所提供的一种光传送网的数据处理方法、相关设备及系统进 行了详细介绍, 对于本领域的一般技术人员, 依据本发明实施例的思想, 在具 体实施方式及应用范围上均会有改变之处, 综上, 本说明书内容不应理解为对 本发明的限制。

Claims

权 利 要 求
1、 一种光传送网的业务数据处理方法, 其特征在于, 包括:
封装业务数据到光净荷单元中;
映射所述光净荷单元到光通道数据单元;
将所述光通道数据单元映射到光突发传送单元的净荷区;
将所述光突发传送单元进行电光转换形成光突发光信号;
将所述光突发光信号承载到光突发通道的光时隙上;
将所述光突发通道发射到线路上。
2、 根据权利要求 1所述的方法, 其特征在于,
所述将所述光通道数据单元映射到光突发传送单元的净荷区, 具体为: 将信号时间长度小于或等于光突发传送单元的帧周期的所述光通道数据 单元, 映射到光突发传送单元的净荷区。
3、 根据权利要求 1或 2所述的数据处理方法, 其特征在于,
所述光突发传送单元占用的电时隙的数目与所述光突发通道占用的光时 隙的数目相同, 其中, 所述电时隙与所述光时隙分别对应于电层和光层, 且所 述电时隙与所述光时隙具有相同的时间长度。
4、 根据权利要求 1至 3任一项所述的数据处理方法, 其特征在于, 所述光突发传送单元中还携带有前导码和保护时间。
5、 根据权利要求 1至 4任一项所述的数据处理方法, 其特征在于, 所述将所述光突发通道发射到线路上, 包括:
将所述光突发通道与由其它光通道数据单元映射的光突发通道进行光突 发时隙复用或光突发分插复用, 形成光突发复用段, 其中, 所述光突发时隙复 用或光突发分插复用在光层进行。
6、 根据权利要求 1至 4任一项所述的数据处理方法, 其特征在于, 所述将所述光突发通道发射到线路上, 包括:
将所述光突发通道与由其它光通道数据单元映射的光突发通道进行交叉, 其中, 所述交叉在光层进行。
7、 根据权利要求 1至 6任一项所述的数据处理方法, 其特征在于, 所述光通道数据单元对应的码速率不高于所述光突发传送单元的码速率。
8、 根据权利要求 1至 6任一项所述的数据处理方法, 其特征在于, 所述将所述光突发光信号承载到光突发通道的光时隙上之前包括: 对不同码速率的光突发通道,每帧划分不同数量的光时隙,使每个光时隙 的带宽颗粒相等。
9、 根据权利要求 1至 6任一项所述的数据处理方法, 其特征在于, 所述将所述光突发光信号承载到光突发通道的光时隙上之前包括: 对不同码速率的光突发通道, 每帧划分相同数量的光时隙。
10、 一种光传送网的数据处理方法, 其特征在于, 包括:
获取线路上承载的光突发通道;
对所述光突发通道上的光突发光信号进行光电转换, 得到光突发传送单 元;
对所述光突发传送单元进行解映射,从所述光突发传送单元的净荷区中获 得光通道数据单元;
对所述光通道数据单元进行解映射, 得到光净荷单元;
对所述光净荷单元解封装, 得到业务数据。
11、 根据权利要求 10所述的数据处理方法, 其特征在于, 所述获取线路 上承载的光突发通道, 包括:
对线路上的光突发复用段进行解复用, 获得两个以上的光突发通道; 所述对所述光突发通道上的光突发光信号进行光电转换, 包括:
12、 一种数据发射处理装置, 其特征在于, 包括:
封装单元, 用于封装业务数据到光净荷单元中;
第一映射单元, 用于映射所述光净荷单元到光通道数据单元;
第二映射单元,用于将所述光通道数据单元映射到光突发传送单元的净荷 区;
电光转换模块,用于将所述光突发传送单元进行电光转换形成光突发光信 号;
光突发映射模块, 用于将所述光突发光信号承载到光突发通道的光时隙 上; 发射模块, 用于将所述光突发通道发射到线路上。
13、 根据权利要求 12所述的数据发射处理装置, 其特征在于,
所述第二映射单元具体用于将信号时间长度小于或等于光突发传送单元 的帧周期的所述光通道数据单元, 映射到光突发传送单元的净荷区。
14、 根据权利要求 12或 13所述的装置, 其特征在于,
所述发射模块还包括:
复用模块,用于将所述光突发通道与由其它光通道数据单元映射的光突发 通道进行光突发时隙复用或光突发分插复用, 形成光突发复用段, 其中, 所述 光突发时隙复用或光突发分插复用在光层进行。
15、 根据权利要求 12或 13所述的装置, 其特征在于,
所述发射模块还包括:
交叉模块,用于将所述光突发通道与由其它光通道数据单元映射的光突发 通道进行交叉, 其中, 所述交叉在光层进行。
16、 根据权利要求 12至 15任一项所述的装置, 其特征在于,
所述数据发射处理装置还包括:
划分单元,用于对不同码速率的光突发通道,每帧划分不同数量的光时隙, 使每个光时隙的带宽颗粒相等。
17、 根据权利要求 12至 15任一项所述的装置, 其特征在于,
所述数据发射处理装置还包括:
划分单元,用于对不同码速率的光突发通道,每帧划分相同数量的光时隙。
18、 一种数据接收处理装置, 其特征在于, 包括:
获取单元, 用于获取线路上承载的光突发通道;
光电转换模块, 用于对所述光突发通道上的光突发光信号进行光电转换, 得到光突发传送单元;
第一解映射模块, 用于对所述光突发传送单元进行解映射,从所述光突发 传送单元的净荷区中获得光通道数据单元;
第二解映射模块, 用于对所述光通道数据单元进行解映射,得到光净荷单 元;
解封装单元, 用于对所述光净荷单元解封装, 得到业务数据。
19、 根据权利要求 18所述的装置, 其特征在于,
所述获取单元包括:
解复用单元, 用于对线路上的光突发复用段进行解复用, 获得两个以上的 光突发通道; 号进行光电转换。
20、 一种光传送网络系统, 其特征在于, 包括:
数据发射处理装置和数据接收处理装置;
其中, 所述数据发射处理装置用于: 封装业务数据到光净荷单元中; 映射 所述光净荷单元到光通道数据单元;将所述光通道数据单元映射到光突发传送 单元的净荷区; 将所述光突发传送单元进行电光转换形成光突发光信号; 将所 述光突发光信号承载到光突发通道的光时隙上;将所述光突发通道发射到线路 上;
其中, 所述数据接收处理装置用于: 获取线路上承载的光突发通道; 对所 述光突发通道上的光突发光信号进行光电转换,得到光突发传送单元; 对所述 据单元; 对所述光通道数据单元进行解映射, 得到光净荷单元; 对所述光净荷 单元解封装, 得到业务数据。
PCT/CN2012/075513 2012-05-15 2012-05-15 一种光传送网的数据处理方法、相关设备及系统 WO2012126421A2 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2012/075513 WO2012126421A2 (zh) 2012-05-15 2012-05-15 一种光传送网的数据处理方法、相关设备及系统
ES12759883.7T ES2647894T3 (es) 2012-05-15 2012-05-15 Método de procesamiento de datos en una red óptica de transporte, y dispositivo asociado y sistema
CN201280000554.0A CN102783178B (zh) 2012-05-15 2012-05-15 一种光传送网的数据处理方法、相关设备及系统
EP12759883.7A EP2838275B1 (en) 2012-05-15 2012-05-15 Data processing method in optical transport network, and related device and system
US14/541,950 US10085078B2 (en) 2012-05-15 2014-11-14 Data processing method, related device, and system for optical transport network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/075513 WO2012126421A2 (zh) 2012-05-15 2012-05-15 一种光传送网的数据处理方法、相关设备及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/541,950 Continuation US10085078B2 (en) 2012-05-15 2014-11-14 Data processing method, related device, and system for optical transport network

Publications (2)

Publication Number Publication Date
WO2012126421A2 true WO2012126421A2 (zh) 2012-09-27
WO2012126421A3 WO2012126421A3 (zh) 2013-04-18

Family

ID=46879797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/075513 WO2012126421A2 (zh) 2012-05-15 2012-05-15 一种光传送网的数据处理方法、相关设备及系统

Country Status (5)

Country Link
US (1) US10085078B2 (zh)
EP (1) EP2838275B1 (zh)
CN (1) CN102783178B (zh)
ES (1) ES2647894T3 (zh)
WO (1) WO2012126421A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104796798A (zh) * 2014-01-22 2015-07-22 中兴通讯股份有限公司 一种光突发传送网obtn的业务传输方法、源节点及宿节点
CN112788442A (zh) * 2019-11-08 2021-05-11 烽火通信科技股份有限公司 一种低速业务在otn网络中的承载方法及系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104702397B (zh) * 2013-12-05 2019-07-12 中兴通讯股份有限公司 一种obtn时隙长度调整方法、装置及节点
CN104796212B (zh) 2014-01-22 2019-07-05 中兴通讯股份有限公司 一种光突发传送网、节点和传输方法
CN104796214B (zh) * 2014-01-22 2019-03-26 中兴通讯股份有限公司 光突发传送网节点时隙同步的训练方法、节点设备和网络
CN103840878B (zh) * 2014-02-26 2016-04-13 烽火通信科技股份有限公司 Otn设备基于odu0/1颗粒的电交叉容量测试系统及方法
CN106559141B (zh) * 2015-09-25 2020-01-10 华为技术有限公司 一种信号发送、接收方法、装置及系统
CN107517115B (zh) * 2016-06-16 2021-11-12 中兴通讯股份有限公司 一种业务站点上下路的业务调整方法及装置
US10719394B2 (en) * 2017-10-25 2020-07-21 Innogrit Technologies Co., Ltd. Systems and methods for fast access of non-volatile storage devices
CN114866618A (zh) 2019-04-30 2022-08-05 华为技术有限公司 光传送网中的数据传输方法及装置
US10992387B2 (en) * 2019-09-12 2021-04-27 Google Llc Port replicator
CN115623361A (zh) * 2021-07-14 2023-01-17 中兴通讯股份有限公司 光业务单元的映射方法及装置、存储介质、电子装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020149820A1 (en) * 2000-12-22 2002-10-17 Liu Heyun H. Method and apparatus for transmitting over a slotted OBS network in in-band mode
CA2339902A1 (en) * 2001-03-07 2002-09-07 Cedric Don-Carolis Photonic communication system with sub-"line rate" bandwidth granularity
EP1361776B1 (en) * 2002-05-10 2008-06-25 Alcatel Lucent Method and apparatus for supporting operations and maintenance functionality in an optical burst switching network
EP1507437B1 (en) * 2003-08-14 2007-11-28 Nokia Siemens Networks Gmbh & Co. Kg A method and apparatus for aggregating incoming packets into optical bursts for an optical burst switched network
EP1523118B1 (en) 2003-10-09 2006-02-15 Alcatel Optical packet transmisson
CN100596043C (zh) * 2004-08-26 2010-03-24 华为技术有限公司 实现低速信号在光传输网络中透明传送的方法和装置
CN101155120B (zh) * 2006-09-29 2010-05-12 华为技术有限公司 一种路由设备、路由方法和传输交换网络
CN101159495B (zh) * 2006-10-08 2012-07-04 华为技术有限公司 无源光纤网络中信号传送系统、设备及方法
CN101242232B (zh) * 2007-02-09 2013-04-17 华为技术有限公司 实现以太网信号在光传送网中传输的方法、装置及系统
JP5094247B2 (ja) * 2007-07-06 2012-12-12 株式会社日立製作所 受動光網システムおよびその通信方法
US20090313465A1 (en) * 2008-05-23 2009-12-17 Verma Pramode K Methods and apparatus for securing optical burst switching (obs) networks
EP2139262A1 (en) * 2008-06-24 2009-12-30 Nokia Siemens Networks OY Method and device for processing data in an optical network and communication system comprising such device
CN101621714B (zh) 2008-06-30 2013-06-12 华为技术有限公司 节点、数据处理系统和数据处理方法
CN101677416B (zh) * 2008-09-19 2012-12-19 中国科学院西安光学精密机械研究所 一种超高速光突发交换网的组包和解包方法及其系统
CN101959083B (zh) * 2009-07-21 2013-12-04 华为技术有限公司 数据处理方法和数据处理设备
US8965209B2 (en) * 2011-07-07 2015-02-24 Adtran, Inc. Systems and methods for extending optical network services across non-optical channels

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2838275A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104796798A (zh) * 2014-01-22 2015-07-22 中兴通讯股份有限公司 一种光突发传送网obtn的业务传输方法、源节点及宿节点
CN104796798B (zh) * 2014-01-22 2019-07-30 中兴通讯股份有限公司 一种光突发传送网obtn的业务传输方法、源节点及宿节点
CN112788442A (zh) * 2019-11-08 2021-05-11 烽火通信科技股份有限公司 一种低速业务在otn网络中的承载方法及系统

Also Published As

Publication number Publication date
EP2838275B1 (en) 2017-10-04
US10085078B2 (en) 2018-09-25
EP2838275A4 (en) 2015-09-16
WO2012126421A3 (zh) 2013-04-18
CN102783178B (zh) 2015-07-29
CN102783178A (zh) 2012-11-14
ES2647894T3 (es) 2017-12-27
US20150071637A1 (en) 2015-03-12
EP2838275A2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
WO2012126421A2 (zh) 一种光传送网的数据处理方法、相关设备及系统
US11658759B2 (en) Method and apparatus for transmitting a signal in optical transport network
US10469168B2 (en) Disaggregated integrated synchronous optical network and optical transport network switching system
JP4708482B2 (ja) Otn上でdtmを伝送するための方法、装置、及び応用装置
JP5065492B2 (ja) 受動光ネットワークデータ伝送のための方法およびシステム
US9236969B2 (en) Super optical channel data unit signal supported by multiple wavelengths
US9497064B2 (en) Method and apparatus for transporting ultra-high-speed Ethernet service
EP2552122B1 (en) Method for Establishing End-To-End Service in an Optical Transport Network
JP5578957B2 (ja) デジタル伝送システム及びデジタル伝送方法
US9641916B2 (en) Optical channel data unit service transmission apparatus and method
WO2010105546A1 (zh) 光通道传送单元信号的传输方法和装置
JP5834425B2 (ja) クロスコネクトシステム及びクロスコネクト方法
JP5313351B2 (ja) 10ギガビット光ファイバーチャネルサービスを光伝送ネットワークに伝送する方法及び装置
WO2010086808A1 (en) Methods and systems for transmitting data in scalable passive optical networks
WO2016192480A1 (zh) 带宽调整的方法及装置
WO2011006403A1 (zh) 一种数据传输方法、系统以及运营商边缘节点
KR20130025889A (ko) G.709를 기반으로 하는 서비스 구성의 신호 제어 방법 및 시스템
JP2022539729A (ja) パケット処理方法及びデバイス
CN101350691B (zh) 一种业务汇聚和adm分插复用方法及设备
JP6299119B2 (ja) 伝送装置、伝送システム、及び伝送方法
US20230198622A1 (en) Providing Access To Client Overhead While Transparently Transmitting The Client Signal Over Multiple Optical Subcarriers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000554.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12759883

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2012759883

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012759883

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12759883

Country of ref document: EP

Kind code of ref document: A2