WO2016041242A1 - 一种重复多次拉制单晶硅用石英坩埚及其制造方法 - Google Patents

一种重复多次拉制单晶硅用石英坩埚及其制造方法 Download PDF

Info

Publication number
WO2016041242A1
WO2016041242A1 PCT/CN2014/090685 CN2014090685W WO2016041242A1 WO 2016041242 A1 WO2016041242 A1 WO 2016041242A1 CN 2014090685 W CN2014090685 W CN 2014090685W WO 2016041242 A1 WO2016041242 A1 WO 2016041242A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
quartz
crucible
manufacturing
quartz crucible
Prior art date
Application number
PCT/CN2014/090685
Other languages
English (en)
French (fr)
Inventor
司继成
Original Assignee
南通路博石英材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通路博石英材料有限公司 filed Critical 南通路博石英材料有限公司
Publication of WO2016041242A1 publication Critical patent/WO2016041242A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for

Definitions

  • the invention relates to a fused silica crucible prepared by an arc method for repeatedly drawing single crystal silicon in the photovoltaic field or the semiconductor industry, and reducing the microbubble content in the quartz deuterium bubble depletion layer and suppressing the use of microbubbles in the quartz crucible.
  • the method of expansion in the process is not limited to a fused silica crucible prepared by an arc method for repeatedly drawing single crystal silicon in the photovoltaic field or the semiconductor industry, and reducing the microbubble content in the quartz deuterium bubble depletion layer and suppressing the use of microbubbles in the quartz crucible.
  • Monocrystalline silicon which is widely used in semiconductor devices and solar cells, is mainly prepared by the Czochralski (Cz method) in the prior art.
  • Czochralski the growth of single crystal silicon is carried out in a crystal pulling furnace, and the initial raw material polycrystalline silicon is loaded into a quartz crucible and melted by a heater surrounding the quartz crucible. The seed crystals are then immersed in molten silicon and then slowly pulled up and rotated relatively to complete the growth of single crystal silicon.
  • quartz crucibles play a very important role as a container for carrying containers while being subjected to continuous high temperatures and molten silicon.
  • the rotary die vacuum method is the main manufacturing method for preparing quartz crucibles, that is, the quartz sand is molded on the inner surface of a rotating mold having a certain hole, and the quartz sand is heated by an electric discharge arc disposed inside the mold. It is formed by cooling after melting.
  • a vacuum is applied from the outside of the mold to form a quartz crucible having a two-layer composite structure in which the inner side is a bubble depletion layer (also referred to as a transparent layer) and the outer layer is a bubble composite layer (also referred to as a bubble layer).
  • the microbubbles are present in the bubble depletion layer of the quartz crucible; at the same time, due to the characteristic that the quartz glass has a viscosity of 106 dPa ⁇ s even at a high temperature of 1700 ° C, the quartz sand having a surface portion which has been melted under the dual action of viscosity and inertia The surrounding unmelted quartz sand is wrapped with a large amount of air contained between the quartz sand particles, which eventually leads to the formation of a quartz crucible having a high microbubble content in the micron range. And concentrated in the inner surface 1mm depth.
  • the above microbubbles will slowly expand and grow in a continuous high temperature environment, and merge, which seriously affects the use time of the quartz crucible.
  • the microbubbles concentrated in the surface layer of the crucible, once broken, will bring the impurities of the quartz fragments into the molten silicon liquid, which will aggravate the reaction degree of the quartz crucible and the molten silicon liquid, which will seriously lead to serious production such as silicon leakage. accident. Since quartz crucibles are disposable consumables, monocrystalline silicon growers are eager to withstand the high temperature for a longer period of time due to cost pressure, meeting the demand for multiple crystal pulling.
  • the invention relates to a quartz crucible for repeatedly drawing single crystal silicon, which comprises an inner layer (also called a transparent layer) with bubbles and a bubble-rich outer layer (also called a bubble layer), and the inner layer of the quartz crucible
  • the microbubble bulk density in the inner surface of the depletion layer at a depth of 1 mm is less than 0.0005%, and the bubble volume density in the outer bubble layer is 40% to 80%.
  • the present invention also relates to a method of producing the above-described quartz crucible capable of repeatedly drawing single crystal silicon.
  • the center of the graphite electrode used in the quartz crucible melting process has a small hole having a diameter of 3 to 10 mm.
  • a gas or a mixture of several gases of hydrogen, nitrogen, helium, argon or other inert gas is introduced during the melting of the quartz crucible.
  • the content of one of the gases in the mixed gas is from 1% to 99%.
  • the gas enters the inner cavity of the graphite mold through the central hole of the graphite electrode.
  • the pressure of the gas to be introduced is 0.05 to 0.2 MPa, and the flow rate is 0.5 to 4 m 3 /h.
  • the introduction of the gas begins after the quartz sand is scraped to form a crucible shaped body, before the vacuum is turned on.
  • the end of the gas supply is after the vacuum is turned off.
  • the quartz crucible used for drawing single crystal silicon is as follows:
  • the mold is equipped with a channel capable of applying suction/exhaustion, the chamber through the mold jacket is connected to a vacuum pump; a quartz crucible heat shield is disposed above the mold, the quartz crucible heat shield
  • the graphite electrode group can be movably mounted above the mold (the axis of the electrode group is coaxial with the rotation axis), and the graphite electrode in the graphite electrode group has a small hole in the middle, which can be in quartz
  • the formation phase of the crucible melts into the inner cavity of the quartz crucible shaped body;
  • the heat shield moves to 40 ⁇ 80mm from the edge of the upper edge of the mold, and the bottom of the graphite electrode is 15cm below the upper mouth of the mold. 10cm above the upper mouth, the power is 400 ⁇ 800kW, the quartz crucible shaped embryo body continues to be heated to melt and form, the duration is 2 to 15 minutes;
  • the arc portion of the electrode group forming the third power P3 is re-melted for the first time T1
  • the arc of the fourth power P4 is remelted to the bottom for the second time T2 to the fifth power P5.
  • the arc is remelted to the R corner bend for the third time T3; and satisfies: T1>T3 and T2>T3, P5>P3 and P4>P3;
  • the quartz crucible prepared by the method capable of repeatedly drawing single crystal silicon repeatedly reduces the content of microbubbles in the quartz deuterium bubble depletion layer, especially the microbubble content in the inner surface of the bubble depletion layer at a depth of 1 mm, while suppressing
  • the expansion of these residual microbubbles can prevent accidents such as silicon leakage due to the violent reaction between the silicon liquid and the crucible due to the expansion and rupture of the bubbles, prolong the use time of the quartz crucible, and satisfy the multiple feeding and drawing of the single crystal manufacturer.
  • Fig. 1 is a schematic view showing the preparation of a quartz crucible by a rotary die vacuum method and an auxiliary construction.
  • Fig. 2 is a view showing a quartz crucible which can be used for repeatedly drawing single crystal silicon according to the present invention.
  • Fig. 3 is a microbubble condition (magnification 100 times) in a quartz crucible bubble depletion slice prepared by a conventional ordinary melting technique.
  • Figure 4 is a microbubble condition (magnification 100 times) in a quartz crucible bubble depletion slice prepared by the method of the present invention.
  • the invention develops a quartz crucible which can be used for repeatedly drawing single crystal silicon and a manufacturing method thereof, and adopts mechanical equipment known in the art to pass through the center hole of the graphite electrode to pass through the quartz crucible melting process.
  • a gas or a mixture of hydrogen, nitrogen, helium, argon or other inert gas using different powers at different stages of melting, remelting and refining the inner surface of the quartz glass crucible to form bubble depletion
  • the microbubble has a bulk density of less than 0.0005% in the inner surface of the layer at a depth of 1 mm, and can suppress the expansion of these residual microbubbles during high temperature use.
  • the mold was rotated at a speed of 110 rpm, and after the quartz sand was molded in a mold with a molding tool, the quartz sand forming body and the mold jacket were brought into a designated position.
  • the mold was rotated at a speed of 100 rpm, the heat shield was moved to a distance of 15 mm from the edge of the upper surface of the die jacket, and the gas was introduced into the quartz ⁇ shape embryo from a small hole in the graphite electrode at a pressure of 0.06 MPa and a flow rate of 0.8 m 3 /h.
  • the internal cavity of the body is opened by a vacuum pump connected to the die jacket and evacuated at a pressure of -0.07 MPa.
  • the bottom of the graphite electrode group is arced 5 cm above the upper mouth of the die, and the power of 220 kW is heated to melt the quartz crucible body.
  • the gas was continuously turned on for 1.5 minutes, then closed, and then pumped at a pressure of -0.01 MPa.
  • the heat shield was moved to a distance of 40 mm from the upper edge of the die jacket.
  • the bottom of the graphite electrode group was 10 cm above the upper mouth of the mold, and the power was 450 kW.
  • the quartz crucible shaped body continues to be heated to form a melt for 2 minutes.
  • the vacuum pump was turned off, the mold was rotated at a speed of 95 rpm, the heat shield was moved to a distance of 15 mm from the upper edge of the die jacket, and the graphite electrode group was adjusted so that the bottom portion thereof was located at the middle of the straight wall portion of the quartz crucible, and the power was 500 kW to remelt the straight wall portion. , for 2 minutes; adjust the graphite electrode group so that the bottom is 5cm away from the bottom of the quartz crucible, the power is 600kW and the bottom is remelted for 1.5 minutes; the graphite electrode set is adjusted to be 10cm from the bottom of the quartz crucible, and the power is 700kW to the R angle bend Remelting for 1 minute;
  • the mold was rotated at a speed of 90 rpm, and after the quartz sand was molded in a mold with a molding tool, the quartz sand forming body and the mold jacket were brought into a designated position.
  • the mold was rotated at a speed of 85 rpm, the heat shield was moved to a distance of 25 mm from the upper edge of the die jacket, and the gas entered the quartz ⁇ shape embryo from a small hole in the graphite electrode at a pressure of 0.1 MPa and a flow rate of 1.2 m 3 /h.
  • the internal cavity of the body is opened by a vacuum pump connected to the die jacket and evacuated at a pressure of -0.08 MPa.
  • the bottom of the graphite electrode group is arced 8 cm above the upper mouth of the die, and the power of 400 kW is heated to melt the quartz crucible body.
  • the gas was continuously turned on for 3 minutes, then closed, and then pumped at a pressure of -0.015 MPa.
  • the heat shield was moved to a distance of 50 mm from the upper edge of the die jacket, and the bottom of the graphite electrode group was placed 5 cm below the upper mouth of the mold, and the power was 650 kW.
  • the quartz crucible shaped body continues to be heated to form a melt for 4 minutes.
  • the vacuum pump was turned off, the mold was rotated at a speed of 80 rpm, the heat shield was moved to a distance of 30 mm from the edge of the upper end of the mold casing, and the graphite electrode group was adjusted so that the bottom portion thereof was located at the middle of the straight wall portion of the quartz crucible, and the power was 650 kW to remelt the straight wall portion. , lasting for 3 minutes; adjusting the graphite electrode group so that the bottom is 8 cm away from the bottom of the quartz crucible, the power is 700 kW, and the bottom is remelted for 2 minutes; the graphite electrode set is adjusted so that the bottom is 13 cm from the bottom of the quartz crucible, and the power is 800 kW. The part is remelted for 1 minute;
  • a graphite electrode with a diameter of 55 mm was taken, and a hole having a diameter of 8 mm was opened at the center of the electrode, and it was installed and used.
  • the mold was rotated at a speed of 75 rpm, and after the quartz sand was molded in a mold with a molding tool, the quartz sand forming body and the mold jacket were brought into a designated position.
  • the mold was rotated at a speed of 70 rpm, the heat shield was moved to a distance of 40 mm from the edge of the upper end of the die jacket, and the gas was introduced into the quartz ⁇ shape embryo from a small hole in the graphite electrode at a pressure of 0.18 MPa and a flow rate of 2.5 m 3 /h.
  • the internal cavity of the body is opened by a vacuum pump connected to the die jacket and evacuated at a pressure of -0.09 MPa.
  • the bottom of the graphite electrode group is arced 13 cm above the upper mouth of the die, and the power of the 550 kW is heated to melt the quartz crucible body.
  • the gas was continuously turned on for 5 minutes, then closed, and then pumped at a pressure of -0.02 MPa.
  • the heat shield was moved to a distance of 60 mm from the upper edge of the die jacket, and the bottom of the graphite electrode group was placed 10 cm below the upper mouth of the mold, and the power was 800 kW.
  • the quartz crucible shaped body continues to be heated to melt form for a duration of 7 minutes.
  • the vacuum pump was turned off, the mold was rotated at a speed of 68 rpm, the heat shield was moved to a distance of 40 mm from the upper edge of the die jacket, and the graphite electrode group was adjusted so that the bottom portion thereof was located in the middle of the straight wall portion of the quartz crucible, and the power was 820 kW to the straight wall portion. Melt for 3 minutes; adjust the graphite electrode group so that the bottom is 15cm away from the bottom of the quartz crucible, the power is 880kW and the bottom is remelted for 4 minutes; the graphite electrode set is adjusted so that the bottom is 18cm away from the bottom of the quartz crucible, and the power is 960kW to the R angle. The bend is remelted for 2 minutes;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种重复多次拉制单晶硅用石英坩埚及其制造方法,其中石英坩埚内表面1mm深度内的微气泡体积密度(气泡体积/总体积×100%)低于0.0005%;该方法包括在石英坩埚熔制过程中通入氢气、氮气、氦气、氩气或其他惰性气体中的一种气体或几种混合气体,取代石英砂颗粒间残留的空气,对石英玻璃坩埚内表面再熔融精细化处理,去除气泡空乏层中包裹的微气泡,并且能够抑制残留的微气泡在坩埚高温使用过程中的膨胀现象。用此方法制备的石英坩埚能够长时间承受连续高温的特点,足可满足单晶厂家多次投料、拉制单晶的需求。

Description

一种重复多次拉制单晶硅用石英坩埚及其制造方法 技术领域
本发明涉及在光伏领域或半导体行业中,能够重复多次用于拉制单晶硅的电弧法制备的熔融石英坩埚,以及降低石英坩埚气泡空乏层中微气泡含量和抑制微气泡在石英坩埚使用过程中膨胀的方法。
背景技术
单晶硅,其广泛应用于半导体器件和太阳能电池,在现有技术中主要通过直拉法(Czochralski,Cz法)制备。根据直拉法,单晶硅的生长是在晶体提拉炉中进行,将初始原料多晶硅装填到石英坩埚中,通过环绕石英坩埚的加热器将其熔化。然后将晶种浸入熔融的硅液中,然后缓慢地向上提拉和相对旋转来完成单晶硅的生长。在此生长过程中,石英坩埚担任着非常重要的角色,作为承载盛装容器,同时又要承受连续高温和熔融硅液的侵蚀。
在目前现有的技术中,旋转模具真空法是制备石英坩埚的主要制造方法,即将石英砂在旋转的、具有一定孔洞的模具内表面成型,通过设置在模具内部的电极放电电弧加热石英砂使其熔化后冷却形成。在制备过程中,从模具的外侧抽真空,从而形成内侧为气泡空乏层(也称透明层)、外层为气泡复合层(也称气泡层)的这种具有双层复合结构的石英坩埚。
根据紧密堆积理论,石英砂颗粒之间总是存在一定的空隙(空隙中包含着空气),在石英坩埚制造过程中即使抽真空,也无法将所有的空气排尽,这些空气以直径在微米级的微气泡存在石英坩埚的气泡空乏层中;同时由于石英玻璃即使在1700℃的高温下其黏度为106dPa·S这一特性,在黏性和惯性的双重作用下,表面部分已经熔化的石英砂会将周围未熔的石英砂包裹,同时夹杂着石英砂颗粒的之间所包含着的大量的空气,最终导致形成的石英坩埚内表层具有很高的微气泡含量,这些气泡的直径在微米级,且集中在内表面1mm深度内。
在单晶硅生长过程中,上述微气泡会在连续高温环境下慢慢膨胀长大,合并,严重影响石英坩埚的使用时间。尤其是集中在坩埚内表层的微气泡,一旦破裂,会将石英碎片杂质带入到熔融的硅液中,加剧石英坩埚与熔融硅液的反应程度,严重的将会导致漏硅这样严重的生产事故。由于石英坩埚为一次性消耗品,单晶硅生长厂家出于成本压力,迫切希望石英坩埚能够承受更长时间的高温,满足多次拉晶的需求。
同时需要一种降低石英坩埚中气泡空乏层中微气泡含量,抑制微气泡在石英坩埚使 用过程中膨胀,满足多次投料、拉晶需求的石英坩埚制备方法。
发明内容
本发明涉及一种重复多次拉制单晶硅用石英坩埚,其包括气泡空乏的内层(也称透明层)和富含气泡的外层(也称气泡层),该石英坩埚内层气泡空乏层的内表面1mm深度内的微气泡体积密度低于0.0005%,外层气泡层中气泡体积密度为40%~80%。
本发明还涉及制造上述能够重复多次拉制单晶硅使用石英坩埚的方法。
在石英坩埚熔制过程中采用的石墨电极中心有一直径为3~10mm的小孔。
在石英坩埚熔制过程中通入氢气、氮气、氦气、氩气或其他惰性气体中的一种气体或几种混合气体。
其中,通入混合气体时,混合气中某一种气体的含量为1%~99%。
气体经过石墨电极的中心孔进入到石墨模具的内腔。
通入气体的压力为0.05~0.2Mpa,流量为0.5~4m3/h。
通入气体开始是在石英砂刮制形成坩埚形状胚体后,开启抽真空之前。
通入气体结束是在关闭抽真空之后。
在石英坩埚制备的不同阶段,调节模具旋转速度、遮热装置与模具外套上口边缘距离、通入气体的压力及流量、真空泵抽气压力、电极位置和熔制功率,来实现能够重复多次拉制单晶硅使用的石英坩埚,具体方法步骤如下:
(1)向旋转的模具中供给石英砂原料形成坩埚形状胚体:将模具连同模具外套安装到旋转轴上,使该模具在电机驱动下围绕该旋转轴以50~120转/分钟的速度旋转,以便将石英砂良好地压到模具的内壁上;用具有一定尺寸弧度的成型棒将压在模具内壁的石英砂刮制成所需要的形状。所述的模具装备有能够施加吸气/抽气的通道,这些通过模具外套的腔室被连接到真空泵;将石英坩埚遮热装置设置于所述模具的上方,所述的石英坩埚遮热装置可在模具上方上下移动;将石墨电极组可移动地安装在模具上方(电极组的轴线与旋转轴同轴),所述的石墨电极组中的石墨电极为中间开有小孔,可在石英坩埚熔制形成阶段向石英坩埚形状胚体内部空腔通入气体;
(2)形成石英玻璃坩埚:调节模具以70~100转/分钟的速度旋转,遮热装置移动至距离模具外套上口边缘15~50mm,气体从石墨电极中的小孔以压力为0.05~0.2Mpa,流量为0.5~4m3/h进入石英坩埚形状胚体内部空腔,开启与模具外套连接的真空泵并以压力为-0.1~-0.05MPa进行抽气,石墨电极组底部距模具上口5~20cm起弧,功率为200~600kW对石英坩埚形状胚体加热使其熔化。持续通入气体1~10分钟后关闭,再以压力为-0.03~ 0MPa进行抽气,遮热装置移动至距离模具外套上口边缘40~80mm,石墨电极组底部在模具上口以下15cm~模具上口以上10cm位置,功率为400~800kW对石英坩埚形状胚体继续加热使其熔化成型,持续时间为2~15分钟;
(3)利用电弧熔融使所述石英玻璃坩埚内表面再熔融精细化处理:关闭真空泵,模具以50~120转/分钟速度旋转,遮热装置移动至距离模具外套上口边缘10~50mm,调节石墨电极组底部距石英坩埚底部5mm~坩埚直壁部中间位置,功率为450~1200kW,对步骤(2)所形成的石英坩埚直壁部、底部和R角弯曲部的内表面分别再熔融,使内表面存在的微气泡进一步减少。其中,分别以使得电极组形成第三功率P3的电弧对直壁部再熔融,持续第一时间T1,以第四功率P4的电弧对底部再熔融,持续第二时间T2,以第五功率P5的电弧对R角弯曲部再熔融,持续第三时间T3;且满足:T1>T3且T2>T3,P5>P3且P4>P3;
(4)自然冷却、出炉步骤:保持上述(3)步骤的1~30分钟后切断电源,自然冷却5~30分钟后出炉;得到内层气泡空乏层的内表面1mm深度内的微气泡体积密度(气泡体积/总体积×100%)低于0.0008%,尤其是低于0.0005%,外层气泡层的气泡体积密度为40%~80%的重复多次拉制单晶硅使用的石英坩埚。
通过本方法制备的能够重复多次拉制单晶硅使用的石英坩埚,降低了石英坩埚气泡空乏层中微气泡的含量,尤其是气泡空乏层中内表面1mm深度内的微气泡含量,同时抑制了这些残留微气泡的膨胀,因此可以防止由于气泡膨胀、破裂而导致的硅液与坩埚的剧烈反应而发生漏硅等事故,延长石英坩埚的使用时间,满足单晶厂家多次投料、拉制单晶的需求。
附图说明
图1是表示旋转模具真空法制备石英坩埚及辅助构建示意图。
图2是表示本发明的能够重复多次拉制单晶硅使用的石英坩埚。
图3是采用现有普通熔制技术制备的石英坩埚气泡空乏层切片中微气泡状况(放大100倍)。
图4是采用本发明方法制备的石英坩埚气泡空乏层切片中微气泡状况(放大100倍)。
附图标记说明:1中心有一直径为3~10mm小孔的石墨电极,2中间有开孔且可以在模具上方上下移动的遮热装置,3石英坩埚形状胚体,4具有一定孔洞的模具,5可以抽真空和旋转的模具外套,6石英坩埚气泡空乏的内层(透明层),7石英坩埚气泡空乏层的表层(1mm深),8石英坩埚富含气泡的外层(气泡层)。
具体实施例
本发明开发了一种能够重复多次拉制单晶硅使用的石英坩埚及其制造方法,采用本领域中已知的机械设备,通过增加石墨电极中心孔,在石英坩埚熔制过程中通入氢气、氮气、氦气、氩气或其他惰性气体中的一种气体或几种混合气体,在熔制的不同阶段采用不同的功率,对石英玻璃坩埚内表面再熔融精细化处理,形成气泡空乏层中内表面1mm深度内微气泡体积密度低于0.0005%,并能抑制这些残留的微气泡在坩埚高温使用过程中膨胀。
下面将结合附图和具体实施例对本发明作进一步说明,但不作为对本发明的限定。
实施例1
取直径为20mm的石墨电极,中心开直径为3mm的孔,安装好,备用。
调节二级减压阀使气体出口压力为0.06Mpa,调节流量计阀门控制流量为0.8m3/h,接好氢气,备用。10英寸模具和模具外套备用。
模具以110转/分钟的速度旋转,将石英砂在模具中用成型工具成型后,石英砂形成体和模具外套一起进入指定位置。
调节模具以100转/分钟的速度旋转,遮热装置移动至距离模具外套上口边缘15mm,气体从石墨电极中的小孔以压力为0.06Mpa,流量为0.8m3/h进入石英坩埚形状胚体内部空腔,开启与模具外套连接的真空泵并以压力为-0.07MPa进行抽气,石墨电极组底部距模具上口以上5cm起弧,功率为220kW对石英坩埚形状胚体加热使其熔化。持续通入气体1.5分钟后关闭,再以压力为-0.01MPa进行抽气,遮热装置移动至距离模具外套上口边缘40mm,石墨电极组的底部在模具上口以上10cm位置,功率为450kW对石英坩埚形状胚体继续加热使其熔化成型,持续时间为2分钟。
关闭真空泵,模具以95转/分钟速度旋转,遮热装置移动至距离模具外套上口边缘15mm,调节石墨电极组使其底部位于石英坩埚直壁部中间位置,功率为500kW对直壁部再熔融,持续2分钟;调节石墨电极组使底部其距石英坩埚底部5cm,功率为600kW对底部再熔融,持续1.5分钟;调节石墨电极组使其距石英坩埚底部10cm,功率为700kW对R角弯曲部再熔融,持续1分钟;
切断电源,自然冷却5分钟,出炉。
实施例2
取直径为40mm的石墨电极,电极中心开直径为5mm的孔,安装好,备用。
调节减压阀使气体出口压力为0.1Mpa,调节流量计阀门控制流量为1.2m3/h,接好氮气和氦气混合气(其中氮气占20%,氦气占80%),备用。20英寸模具和模具外套备用。
模具以90转/分钟的速度旋转,将石英砂在模具中用成型工具成型后,石英砂形成体和模具外套一起进入指定位置。
调节模具以85转/分钟的速度旋转,遮热装置移动至距离模具外套上口边缘25mm,气体从石墨电极中的小孔以压力为0.1Mpa,流量为1.2m3/h进入石英坩埚形状胚体内部空腔,开启与模具外套连接的真空泵并以压力为-0.08MPa进行抽气,石墨电极组底部距模具上口以上8cm起弧,功率为400kW对石英坩埚形状胚体加热使其熔化。持续通入气体3分钟后关闭,再以压力为-0.015MPa进行抽气,遮热装置移动至距离模具外套上口边缘50mm,石墨电极组的底部在模具上口以下5cm位置,功率为650kW对石英坩埚形状胚体继续加热使其熔化成型,持续时间为4分钟。
关闭真空泵,模具以80转/分钟速度旋转,遮热装置移动至距离模具外套上口边缘30mm,调节石墨电极组使其底部位于石英坩埚直壁部中间位置,功率为650kW对直壁部再熔融,持续3分钟;调节石墨电极组使其底部距石英坩埚底部8cm,功率为700kW对底部再熔融,持续2分钟;调节石墨电极组使其底部距石英坩埚底部13cm,功率为800kW对R角弯曲部再熔融,持续1分钟;
切断电源,自然冷却10分钟,出炉。
实施例3
取直径为55mm的石墨电极,电极中心开直径为8mm的孔,安装好,备用。
调节减压阀使气体出口压力为0.18Mpa,调节流量计阀门控制流量为2.5m3/h,接好氩气,备用。28英寸模具和模具外套备用。
模具以75转/分钟的速度旋转,将石英砂在模具中用成型工具成型后,石英砂形成体和模具外套一起进入指定位置。
调节模具以70转/分钟的速度旋转,遮热装置移动至距离模具外套上口边缘40mm,气体从石墨电极中的小孔以压力为0.18Mpa,流量为2.5m3/h进入石英坩埚形状胚体内部空腔,开启与模具外套连接的真空泵并以压力为-0.09MPa进行抽气,石墨电极组底部距模具上口以上13cm起弧,功率为550kW对石英坩埚形状胚体加热使其熔化。持续通入气体5分钟后关闭,再以压力为-0.02MPa进行抽气,遮热装置移动至距离模具外套上口边缘60mm,石墨电极组的底部在模具上口以下10cm位置,功率为800kW对石英坩埚形状胚体继续加热使其熔化成型,持续时间为7分钟。
关闭真空泵,模具以68转/分钟速度旋转,遮热装置移动至距离模具外套上口边缘40mm,调节石墨电极组使其底部位于石英坩埚直壁部中间位置,功率为820kW对直壁部再 熔融,持续3分钟;调节石墨电极组使其底部距石英坩埚底部15cm,功率为880kW对底部再熔融,持续4分钟;调节石墨电极组使其底部距石英坩埚底部18cm,功率为960kW对R角弯曲部再熔融,持续2分钟;
切断电源,自然冷却15分钟,出炉。
虽然本发明已经以较佳实施例披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种变动与修改,因此,本发明的保护范围应当以权利要求所限定的范围为准。

Claims (16)

  1. 一种重复多次拉制单晶硅用石英坩埚的制造方法,其中所述的石英坩埚包括气泡空乏的透明内层和富含气泡的外层,所述制造方法包括如下步骤:
    第一步,向旋转的模具中供给石英砂原料形成坩埚形状胚体的步骤,其具体分为:
    1)将模具构建成具有能够施加吸气/抽气的通道,使得模具内腔通过这些通道经过模具外套的腔室被连接到真空泵;
    2)将模具连同模具外套安装到旋转轴上,使该模具在电机驱动下围绕该旋转轴以第一旋转速度旋转,以便将石英砂良好地压到模具的内壁上;
    3)用具有一定尺寸弧度的成型棒将压在模具内壁的石英砂刮制成所需要的形状;
    4)将石英坩埚的遮热装置设置于所述模具的上方,所述遮热装置能够在模具上方上下移动;
    5)将石墨电极组可移动地安装在模具上方,使得所述电极组的轴线与所述的旋转轴同轴;
    其中,所述的石墨电极组的各石墨电极为中心开有小孔,能够在石英坩埚熔制形成阶段向石英坩埚形状胚体内部空腔通入气体;
    第二步,石英玻璃坩埚形成步骤,其具体分为:
    1)使得所述的模具以第二旋转速度旋转,并使得所述的遮热装置移动至距离模具外套上口边缘的第一距离处;
    2)将气体从石墨电极中的小孔以第一压力、第一流量进入石英坩埚形状胚体的内部空腔;
    3)开启与模具外套连接的真空泵并以第一抽气压力进行抽气;
    4)使得石墨电极组位于第一位置起弧,形成第一功率的电弧对石英坩埚形状胚体加热使其熔化;
    5)持续通入气体第一时间T1后关闭;
    6)接着以第二抽气压力进行抽气,使得所述的遮热装置移动至距离模具外套上口边缘的第二距离处;
    7)再使得石墨电极组位于第二位置,形成第二功率的电弧对石英坩埚形状胚体继续加热使其熔化成型,持续第二时间T2;
    第三步,利用电弧熔融使所述石英玻璃坩埚内表面再熔融精细化处理的步骤,其具体分为:
    1)关闭真空泵;
    2)将所述模具以第三旋转速度旋转,使得遮热装置移动至距离模具外套上口边缘的第三距离处;
    3)将上述的第二步石英玻璃坩埚形成步骤所形成石英坩埚的内表面虚拟地划分为直壁部、 底部和R角弯曲部,并分别对各个部分进行再熔融,以使得其各部分的内表面存在的微气泡进一步减少;其具体细分为:
    3.1)直壁部再熔融步骤:将石墨电极组置于第三位置,以使得电极组形成的第三功率P3的电弧对直壁部再熔融,持续第三时间T3;
    3.2)底部再熔融步骤:将石墨电极组置于第四位置,以使得电极组形成的第四功率P4的电弧对底部再熔融,持续第四时间T4;
    3.3)R角弯曲部再熔融步骤:将石墨电极组置于第五位置,以使得电极组形成的第五功率P5的电弧对R角弯曲部再熔融,持续第五时间T5;
    其中,所述第三时间、第四时间和第五时间满足:T3>T5且T4>T5,所述第三功率、第四功率和第五功率满足:P5>P3且P4>P3;
    第四步,自然冷却出炉步骤:其具体分为:
    1)第三步持续1~30分钟后切断电源,自然冷却5~30分钟后出炉;
    2)得到外层气泡层的气泡体积密度为40%~80%,内层气泡空乏层气泡体积密度低于0.0008%的石英玻璃坩埚。
  2. 根据权利要求1所述的制造方法,其中石英玻璃坩埚内表面1mm深度内气泡体积密度低于0.0005%。
  3. 根据权利要求1所述的制造方法,其特征在于:使得气泡空乏层厚度占整个坩埚壁厚20%~50%,且气泡层厚度占整个坩埚壁厚50%~80%。
  4. 根据权利要求1所述的制造方法,其特征在于:石墨电极中心有一直径为3~10mm的小孔,气体由此小孔进入。
  5. 根据权利要求1所述的制造方法,其特征在于:通入的气体为氢气、氮气、氦气、氩气或其他惰性气体中的一种气体或几种混合气体。
  6. 根据权利要求5所述的制造方法,其特征在于:通入的混合气中某一种气体的含量为1~99%。
  7. 根据权利要求1所述的制造方法,其特征在于:通入气体的第一压力为0.05~0.2Mpa,第一流量为0.5~4m3/h。
  8. 根据权利要求1所述的制造方法,其特征在于:所述持续通入气体第一时间为1~10分钟,继续加热持续第二时间为2~15分钟。
  9. 根据权利要求1所述的制造方法,其特征在于:所述的第一旋转速度为50~120转/分钟,第二旋转速度为70~100转/分钟,第三旋转速度为50~120转/分钟。
  10. 根据权利要求1所述的制造方法,其特征在于:所述的第一抽气压力为-0.1~-0.05MPa,第二抽气压力为-0.03~0MPa。
  11. 根据权利要求1所述的制造方法,其特征在于:所述的遮热装置移动至距离模具外套上口边缘的第一距离为15~50mm,第二距离为40~80mm,第三距离为10~50mm。
  12. 根据权利要求1所述的制造方法,其特征在于:所述的石墨电极组第一位置为电极组底部距模具上口以上5~20cm,第二位置为电极组底部在模具上口以下15cm~模具上口以上10cm,第三位置为电极组底部位于石英坩埚直壁部中间位置高度,第四位置为电极组底部距石英坩埚底部5~20cm,第五位置为电极组底部距石英坩埚底部10~30cm。
  13. 根据权利要求1所述的制造方法,其特征在于:所述的第一功率为200~600kW,第二功率为400~800kW,第三功率为450~850kW,第四功率为600~1000kW,第五功率为700~1200kW。
  14. 根据权利要求1所述的制造方法,其特征在于:所述的直壁部再熔融第三时间为1~10分钟,底部再熔融第四时间为1~15分钟,R角弯曲部再熔融第五时间为1~5分钟。
  15. 一种重复多次拉制单晶硅用石英坩埚,其特征在于:根据上述权利要求1~14的制造方法所制造,该石英玻璃坩埚的外层气泡层的气泡体积密度为40%~80%,内层气泡空乏层气泡体积密度低于0.0008%的石英玻璃坩埚。
  16. 根据权利要求15所述的石英坩埚,其特征在于:石英玻璃坩埚内表面1mm深度内气泡体积密度低于0.0005%。
PCT/CN2014/090685 2014-08-07 2014-11-10 一种重复多次拉制单晶硅用石英坩埚及其制造方法 WO2016041242A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410384473.6A CN104150755B (zh) 2014-08-07 2014-08-07 一种重复多次拉制单晶硅用石英坩埚及其制造方法
CN201410384473.6 2014-08-07

Publications (1)

Publication Number Publication Date
WO2016041242A1 true WO2016041242A1 (zh) 2016-03-24

Family

ID=51876424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090685 WO2016041242A1 (zh) 2014-08-07 2014-11-10 一种重复多次拉制单晶硅用石英坩埚及其制造方法

Country Status (2)

Country Link
CN (1) CN104150755B (zh)
WO (1) WO2016041242A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108642560A (zh) * 2018-05-21 2018-10-12 宁晋晶兴电子材料有限公司 一种大尺寸石英坩埚的制备方法
CN113747625A (zh) * 2021-09-16 2021-12-03 宁夏盾源聚芯半导体科技股份有限公司 组合导气石墨电极及无内表面气泡群石英坩埚制备方法
CN114379115A (zh) * 2021-12-31 2022-04-22 浙江德鸿碳纤维复合材料有限公司 一种碳碳埚托及其制备方法
CN115196862A (zh) * 2021-04-09 2022-10-18 新沂市中鑫光电科技有限公司 一种高纯石英坩埚透明层的制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104150755B (zh) * 2014-08-07 2015-06-17 南通路博石英材料有限公司 一种重复多次拉制单晶硅用石英坩埚及其制造方法
CN106544726A (zh) * 2016-11-30 2017-03-29 江苏恒合科技有限公司 一种拉晶、加料、化料、分离杂质同步进行的连续拉制单晶硅棒的方法
CN107287652A (zh) * 2017-05-29 2017-10-24 德令哈晶辉石英材料有限公司 一种抑制熔融硅液面振动的石英坩埚及其制备方法
CN109112613B (zh) * 2017-06-22 2021-03-12 内蒙古欧晶科技股份有限公司 石英坩埚制备工艺
CN113735421A (zh) * 2020-05-28 2021-12-03 隆基绿能科技股份有限公司 一种石英坩埚制造方法和成型装置
CN114195368B (zh) * 2021-12-17 2024-03-19 上海大学 一种高温熔铸法制备熔融石英制品的控压装置
CN114347218A (zh) * 2021-12-28 2022-04-15 宁夏盾源聚芯半导体科技股份有限公司 提高直拉单晶硅棒尾部氧含量的石英坩埚的制备装置及方法和石英坩埚
CN115745382A (zh) * 2022-12-22 2023-03-07 宁夏鑫晶新材料科技有限公司 一种改善透明层微气泡的石英坩埚制备工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724888A (zh) * 2008-10-31 2010-06-09 日本超精石英株式会社 硅单晶提拉用石英玻璃坩埚的制造方法
CN103502513A (zh) * 2012-01-13 2014-01-08 信越石英株式会社 单晶硅提拉用二氧化硅容器及其制造方法
CN104150755A (zh) * 2014-08-07 2014-11-19 南通路博石英材料有限公司 一种重复多次拉制单晶硅用石英坩埚及其制造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101624258A (zh) * 2008-07-10 2010-01-13 日本超精石英株式会社 石英玻璃坩埚的制造方法
FR2954764B1 (fr) * 2009-12-30 2011-12-30 Saint Gobain Quartz Sas Creuset en silice

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724888A (zh) * 2008-10-31 2010-06-09 日本超精石英株式会社 硅单晶提拉用石英玻璃坩埚的制造方法
CN103502513A (zh) * 2012-01-13 2014-01-08 信越石英株式会社 单晶硅提拉用二氧化硅容器及其制造方法
CN104150755A (zh) * 2014-08-07 2014-11-19 南通路博石英材料有限公司 一种重复多次拉制单晶硅用石英坩埚及其制造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108642560A (zh) * 2018-05-21 2018-10-12 宁晋晶兴电子材料有限公司 一种大尺寸石英坩埚的制备方法
CN115196862A (zh) * 2021-04-09 2022-10-18 新沂市中鑫光电科技有限公司 一种高纯石英坩埚透明层的制备方法
CN113747625A (zh) * 2021-09-16 2021-12-03 宁夏盾源聚芯半导体科技股份有限公司 组合导气石墨电极及无内表面气泡群石英坩埚制备方法
CN113747625B (zh) * 2021-09-16 2022-05-03 宁夏盾源聚芯半导体科技股份有限公司 组合导气石墨电极及无内表面气泡群石英坩埚制备方法
CN114379115A (zh) * 2021-12-31 2022-04-22 浙江德鸿碳纤维复合材料有限公司 一种碳碳埚托及其制备方法

Also Published As

Publication number Publication date
CN104150755B (zh) 2015-06-17
CN104150755A (zh) 2014-11-19

Similar Documents

Publication Publication Date Title
WO2016041242A1 (zh) 一种重复多次拉制单晶硅用石英坩埚及其制造方法
CN100595352C (zh) 太阳能级多晶硅大锭的制备方法
KR101423075B1 (ko) 도핑된 상부 벽 부위를 가지는 도가니 및 그 제조 방법
CN100432023C (zh) 单晶硅拉制炉用热场炭/炭坩埚的制备方法
US6886364B2 (en) Method for producing quartz glass crucible
CN105442037A (zh) 一种高速单晶生长装置
KR20090064303A (ko) 대경의 실리콘 단결정 잉곳 중의 핀홀 결함의 저감을 가능하게 하는 대경 실리콘 단결정 잉곳 인상용 고순도 석영 유리 도가니
WO2000059837A1 (en) Method for manufacturing quartz glass crucible
KR20080108000A (ko) 단결정 제조 방법
CN103849928A (zh) 一种多片式导模法蓝宝石晶片生长工艺
JP4781020B2 (ja) シリコン単結晶引き上げ用石英ガラスルツボおよびシリコン単結晶引き上げ用石英ガラスルツボの製造方法
TWI422716B (zh) 長晶方法
CN102220633A (zh) 一种半导体级单晶硅生产工艺
CN110983427A (zh) 一种用于大直径单晶硅棒的多次取段复投工艺
CN109112613A (zh) 新型石英坩埚制备工艺
CN202297866U (zh) 多晶硅铸锭炉的氩气降温装置
US8555674B2 (en) Quartz glass crucible for silicon single crystal pulling operation and process for manufacturing the same
CN214218910U (zh) 一种半导体加工用硅材料热熔成锭装置
CN109111102A (zh) 一种半导体级石英坩埚及其制造方法
KR102089460B1 (ko) 실리콘카바이드 단결정의 제조 방법
KR101703691B1 (ko) 석영 유리 도가니 및 그 제조 방법, 및 실리콘 단결정의 제조 방법
CN209144025U (zh) 一种半导体级石英坩埚
CN114455815A (zh) 一种低气泡膨胀石英坩埚制造方法
CN102775048A (zh) 一种大直径石英坩埚制造装置及制造方法
CN211036174U (zh) 一种晶体生长装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14902026

Country of ref document: EP

Kind code of ref document: A1