WO2016039412A1 - Antibacterial agent and method for producing antibacterial agent - Google Patents

Antibacterial agent and method for producing antibacterial agent Download PDF

Info

Publication number
WO2016039412A1
WO2016039412A1 PCT/JP2015/075696 JP2015075696W WO2016039412A1 WO 2016039412 A1 WO2016039412 A1 WO 2016039412A1 JP 2015075696 W JP2015075696 W JP 2015075696W WO 2016039412 A1 WO2016039412 A1 WO 2016039412A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial agent
antibacterial
cyanoacrylate
organic acid
acid
Prior art date
Application number
PCT/JP2015/075696
Other languages
French (fr)
Japanese (ja)
Inventor
千頭邦夫
山本繁男
飯田大介
岡田純
Original Assignee
チカミミルテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by チカミミルテック株式会社 filed Critical チカミミルテック株式会社
Priority to JP2016547498A priority Critical patent/JPWO2016039412A1/en
Publication of WO2016039412A1 publication Critical patent/WO2016039412A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/02Saturated carboxylic acids or thio analogues thereof; Derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/06Unsaturated carboxylic acids or thio analogues thereof; Derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/34Nitriles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/36Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N61/00Biocides, pest repellants or attractants, or plant growth regulators containing substances of unknown or undetermined composition, e.g. substances characterised only by the mode of action

Definitions

  • the present invention relates to an antibacterial agent containing cyanoacrylate polymer particles as an active ingredient and a method for producing the same.
  • antibacterial agents having an antibacterial effect against bacteria such as Gram-positive bacteria.
  • Patent Document 1 describes an antibacterial agent containing cyanoacrylate polymer particles conjugated with an antibiotic as an active ingredient as an antibacterial agent for vancomycin-resistant gram-positive bacteria.
  • the cyanoacrylate polymer particles are obtained by anionic polymerization of a cyanoacrylate monomer that is used, for example, as an adhesive for wound closure in the surgical field. Cyanoacrylate-based polymer particles are porous, and a desired substance can be conjugated inside.
  • VRE vancomycin-resistant enterococci
  • Patent Document 2 discloses particles that adhere to the cell wall of Gram-positive bacteria and do not adhere to mammalian cell membranes and have a particle size of 5 ⁇ m or less, and that are substantially free of antibacterial active ingredients against Gram-positive bacteria.
  • An antibacterial agent for Gram-positive bacteria contained as an active ingredient is described.
  • Patent Document 2 uses particles composed of a cyanoacrylate polymer, and when a single particle that is not conjugated with an antibacterial drug is first applied to bacteria, a lysis phenomenon was found following specific adhesion between the particles and the bacterial cell wall. Is.
  • Patent Document 2 Since the antibacterial agent of Patent Document 2 is an antibacterial agent that transcends the bacterial drug resistance mechanism, it can be applied to gram-positive bacteria exhibiting multidrug resistance typified by methicillin-resistant Staphylococcus aureus (MRSA) and VRE, It is also said that the emergence of new multidrug-resistant bacteria, which is a major problem in the use of antibiotics, can be avoided.
  • MRSA methicillin-resistant Staphylococcus aureus
  • VRE methicillin-resistant Staphylococcus aureus
  • Patent Document 3 describes an antibacterial agent for Gram-positive bacteria that contains Kumazasa leaf extract as an active ingredient. It is said that Kumazasa leaf extract does not show antibacterial activity against Escherichia coli or Pseudomonas aeruginosa, which are Gram-negative bacteria, but shows antibacterial activity against Gram-positive bacteria.
  • Patent Document 4 describes that cyanoacrylate polymer particles conjugated with amino acids are synthesized by anionic polymerization of cyanoacrylate monomers in the presence of amino acids to synthesize cyanoacrylate polymer particles having an average particle diameter of less than 1000 nm.
  • the amino acid-conjugated particles of Patent Document 4 are said to be useful for the treatment and prevention of cancer because they can damage cancer cells by inducing apoptosis-like cell death to cancer cells.
  • Legionella which is a Gram-negative bacterium, is a non-acid-fast bacterium, and is said to grow by infesting other predatory protozoa such as amoeba using metabolites of other bacteria and algae. Legionella bacteria in the biofilm inhabited by these organisms are considered to be protected from the outside world. Since the biofilm is formed in a pipe or a filter, the biofilm serves as a protective film, and it has been difficult to kill Legionella even by sterilization with, for example, a chlorine agent.
  • an object of the present invention is to provide an antibacterial agent having an antibacterial action against more bacterial species and a method for producing the same.
  • the first characteristic constitution of the antibacterial agent according to the present invention for achieving the above object is that it contains, as an active ingredient, cyanoacrylate polymer particles containing an organic acid in at least one form of conjugation or mixing.
  • Patent Documents 1 and 2 also have antibacterial properties against gram-negative bacteria (such as Escherichia coli, Legionella, Pseudomonas aeruginosa, Salmonella, and Klebsiella pneumoniae) for which antibacterial effects have not been observed.
  • the antibacterial agent of the present invention can be lysed by contacting cyanoacrylate polymer particles obtained by conjugating or mixing an organic acid with a peptidoglycan layer of Gram-positive bacteria.
  • the antibacterial agent of the present invention is a cyanoacrylate polymer particle in which an organic acid as an antibacterial active ingredient acts on an outer membrane (capsule) composed of lipopolysaccharide of Gram-negative bacteria cells, and an organic acid is conjugated or mixed.
  • an organic acid as an antibacterial active ingredient acts on an outer membrane (capsule) composed of lipopolysaccharide of Gram-negative bacteria cells, and an organic acid is conjugated or mixed.
  • the antibacterial agent of the present invention can control the antibacterial activity by changing the concentration of cyanoacrylate polymer particles conjugated or mixed with an organic acid.
  • concentration of cyanoacrylate polymer particles conjugated or mixed with organic acid can be kept constant, and the antibacterial activity can be controlled by changing only the concentration of organic acid. It can be demonstrated.
  • the antibacterial agent of the present invention is recognized as having an excellent cleaning effect on pipes and the like on which scale is deposited. Furthermore, as shown in Example 6 described later, a biofilm or the like formed in a pipe or a filter can be decomposed using the antibacterial agent of the present invention. As for these cleaning / decomposing effects, the cleaning / decomposing performance can be controlled by changing only the concentration of the organic acid.
  • the antibacterial agent of the present invention has not only an excellent antibacterial effect but also an excellent cleaning effect on piping and the like. Therefore, the antibacterial performance of the antibacterial agent of the present invention, in addition to sterilizing Legionella, which is a Gram-negative bacterium that requires anti-infection measures especially in cooling devices and water circulation facilities, Biofilm to be washed can be cleaned and decomposed. Further, the antibacterial agent of the present invention is effective not only for cooling devices and water circulation facilities but also for toilets and kitchens.
  • a sheet prepared by applying a dispersion containing the antibacterial agent of the present invention to a nonwoven fabric or the like can be used as an antibacterial sheet that exhibits antibacterial performance against various bacteria.
  • the antibacterial property of the antibacterial sheet is excellent in safety and lasts gently for a long time.
  • the second characteristic constitution of the antibacterial agent according to the present invention is that it is produced by anionic polymerization of the cyanoacrylate monomer in the presence of a cyanoacrylate monomer, a saccharide and an organic acid.
  • the antibacterial agent of the present invention can be produced by synthesizing cyanoacrylate polymer particles in which an organic acid is efficiently conjugated or mixed by anion polymerization of a cyanoacrylate monomer.
  • the third characteristic configuration of the antibacterial agent according to the present invention is that the average particle size of the cyanoacrylate polymer particles is less than 1000 nm.
  • the cyanoacrylate polymer particles can be handled as so-called nanoparticles.
  • the antibacterial agent of the present invention is used in the form of a dispersion, if the cyanoacrylate polymer particles are nanoparticles, the particles do not aggregate and settle, and the dispersion stability is excellent.
  • the fourth characteristic constitution of the antibacterial agent according to the present invention is that it is produced by anionic polymerization of the cyanoacrylate monomer in the presence of a surfactant.
  • the average particle diameter of the cyanoacrylate polymer particles can be reduced to about 10 to 50 nm. If the average particle size of the cyanoacrylate polymer particles can be reduced in this way, the specific surface area of the cyanoacrylate polymer particles can be greatly increased, and the number of antibacterial nanoparticles can be increased at the same concentration. Therefore, the antibacterial power can be greatly improved. If the antibacterial activity is desired to be maintained, the concentration of the antibacterial agent can be lowered, so that the cost can be reduced.
  • miniaturization can improve the transparency of the antibacterial nanoparticle dispersion, and the spray nozzle used when spraying the antibacterial nanoparticle dispersion is less likely to be clogged.
  • the improvement of the transparency of the dispersion is effective when the antibacterial agent of the present invention is actually applied to the liquid. For example, when an antibacterial agent is applied in the liquid in the culture or rearing of fish, the transparency is improved, so that the stress on the fish can be reduced, and the state of the liquid in the tank of the ornamental fish is easy to see. Become.
  • the fifth characteristic configuration of the antibacterial agent according to the present invention is that the antibacterial agent is produced by anionic polymerization of the cyanoacrylate monomer in the presence of the cyanoacrylate monomer, the surfactant and the organic acid.
  • the cyanoacrylate monomer is anionically polymerized, and cyanoacrylate polymer particles in which an organic acid is efficiently conjugated or mixed are synthesized.
  • Antibacterial agents can be manufactured.
  • the average particle diameter of the cyanoacrylate polymer particles can be reduced to about 10 to 50 nm.
  • the sixth characteristic configuration of the antibacterial agent according to the present invention is that the cyanoacrylate monomer is butyl cyanoacrylate.
  • the seventh characteristic configuration of the antibacterial agent according to the present invention is that the organic acid is selected from the group consisting of glycolic acid, fumaric acid, citric acid, acetic acid and lactic acid.
  • an organic acid having antibacterial properties can be used.
  • the eighth characteristic configuration of the antibacterial agent according to the present invention is that the saccharide is a polysaccharide having a hydroxyl group.
  • the first characteristic means of the method for producing an antibacterial agent according to the present invention is that the antibacterial agent is produced by anionic polymerization of the cyanoacrylate monomer in the presence of a cyanoacrylate monomer, a saccharide and an organic acid.
  • the antibacterial agent of the present invention can be produced by synthesizing cyanoacrylate polymer particles obtained by anionic polymerization of a cyanoacrylate monomer and efficiently conjugating or mixing an organic acid.
  • the second characteristic means of the method for producing an antibacterial agent according to the present invention is that the step is performed in the presence of a surfactant.
  • the average particle diameter of the cyanoacrylate polymer particles can be reduced to about 10 to 50 nm.
  • the third characteristic means of the method for producing an antibacterial agent according to the present invention is that the antibacterial agent is produced by anionic polymerization of the cyanoacrylate monomer in the presence of a cyanoacrylate monomer, a surfactant and an organic acid. .
  • the cyanoacrylate monomer is anionically polymerized, and cyanoacrylate polymer particles in which an organic acid is efficiently conjugated or mixed are synthesized to produce the present invention.
  • Antibacterial agents can be manufactured.
  • the average particle diameter of the cyanoacrylate polymer particles can be reduced to about 10 to 50 nm.
  • the antibacterial agent of the present invention contains, as an active ingredient, cyanoacrylate polymer particles containing an organic acid in at least any form of conjugation or mixing.
  • the antibacterial agent in the present invention contains cyanoacrylate polymer particles containing an organic acid as an active ingredient in a form of conjugation or mixing.
  • This embodiment demonstrates the case where it is set as the aspect of the cyanoacrylate polymer particle (organic acid conjugate particle
  • the antibacterial agent may be any form such as a particle dispersion, a particulate form, a granular form, etc., as long as it contains cyanoacrylate polymer particles containing an organic acid as an active ingredient in at least any form of conjugation or mixing. It may be.
  • the dispersion may take a form such as a suspension or a colloidal liquid, but is not limited thereto.
  • the cyanoacrylate polymer portion of the conjugated particle is obtained by anionic polymerization of a cyanoacrylate monomer.
  • the cyanoacrylate monomer used is preferably an alkyl cyanoacrylate monomer (the alkyl group preferably has 1 to 8 carbon atoms), and is particularly used as an adhesive for sutures in the surgical field. It is preferable to use butyl cyanoacrylate represented by the formula.
  • butyl cyanoacrylate such as isobutyl cyanoacrylate, n-butyl-2-cyanoacrylate, sec-butyl cyanoacrylate, tert-butyl cyanoacrylate, etc. can be used, and methyl cyanoacrylate, ethyl cyanoacrylate ( Other alkyl cyanoacrylates such as adhesive for false eyelashes) and propyl cyanoacrylate may be selected.
  • isobutyl cyanoacrylate, n-butyl-2-cyanoacrylate, and ethyl cyanoacrylate are excellent in safety.
  • saccharides may be used for stabilizing the polymerization. That is, the “cyanoacrylate polymer particles” of the present invention include those containing a polymerization stabilizer such as a saccharide.
  • the saccharide is not particularly limited, and may be any of a monosaccharide having a hydroxyl group, a disaccharide having a hydroxyl group, and a polysaccharide having a hydroxyl group, and is particularly preferably a polysaccharide.
  • monosaccharides include glucose, mannose, ribose and fructose, and glucose is preferred.
  • the disaccharide include maltose, trehalose, lactose and sucrose.
  • polysaccharide dextran, mannan, or the like used for the polymerization of conventionally known cyanoacrylate polymer particles can be used.
  • These sugars may be either cyclic or chain-like, and when they are cyclic, they may be any one of pyranose type, furanose type and the like.
  • isomers of sugar there are various isomers of sugar, and any of them may be used.
  • monosaccharides exist in a pyranose type or furanose type form, and disaccharides are those in which they are ⁇ -bonded or ⁇ -bonded, and sugars in such a normal form can be used as they are.
  • any one having a function of stabilizing the polymerization of anionic polymerization such as polyethylene glycol and a surfactant, can be used.
  • the saccharides, polyethylene glycols and surfactants mentioned above can be used alone or in combination of two or more.
  • dextran is preferable, and dextran having a degree of polymerization having an average molecular weight of about 10,000 to 500,000 is preferable, but is not limited thereto.
  • nonionic surfactants and ionic surfactants can be used as the surfactant, but are not limited thereto.
  • the ionic surfactant is preferably an anionic surfactant, but is not limited thereto.
  • nonionic surfactant for example, Tween 20 (polyoxyethylene sorbitan monolaurate) can be used, and as an anionic surfactant, for example, alkylbenzenesulfonic acid or a salt thereof, sodium lauryl sulfate, sodium laureth sulfate, etc. can be used. It is not limited. Nonionic surfactants and anionic surfactants may be used simultaneously. At this time, the anionic surfactant is preferably used in a smaller amount (about 1/10) than the nonionic surfactant.
  • the organic acid-conjugated particles are less likely to aggregate over time. That is, because the organic acid-conjugated particles are produced by anionic polymerization, the organic acid-conjugated particles themselves have an anionic property, and the organic acid-conjugated particles repel each other by using an anionic surfactant. It is presumed that this prevents aggregation. Further, the anionic surfactant may be used (input) at any stage at the start of polymerization and after the end of polymerization.
  • the cyanoacrylate polymer particles are porous, and a desired substance can be conjugated inside.
  • the desired substance may be conjugated to the inside of the cyanoacrylate polymer particles by immersing the cyanoacrylate polymer particles in an aqueous solution of the desired substance or adding the desired substance.
  • the desired substance may be conjugated to the produced particles by performing the above-described anionic polymerization in the presence of the desired substance.
  • an organic acid is conjugated to the cyanoacrylate polymer particles. Conjugation refers to a state in which a foreign substance is held in, for example, a hydrophilic molecule.
  • glycolic acid As the organic acid, glycolic acid, fumaric acid, citric acid, acetic acid, lactic acid and the like having antibacterial properties can be used.
  • these organic acids at least one or more can be selected and used.
  • glycolic acid has the smallest molecular weight among organic acids and is excellent in permeability. These organic acids can be used as long as they have antibacterial properties.
  • Water can be used as a solvent for the polymerization reaction.
  • Purified water, ion-exchanged water, distilled water, pure water, tap water, ground water, etc. may be appropriately selected as the water depending on the product application having different required purity.
  • the antibacterial agent of the present invention can be produced by performing anionic polymerization of a cyanoacrylate monomer in the presence of a cyanoacrylate monomer, a saccharide and an organic acid.
  • the polymerization reaction is performed, for example, by dissolving a polymerization stabilizer such as an organic acid and a saccharide to be conjugated to water as a solvent, adding a cyanoacrylate monomer under stirring, and continuing stirring. be able to.
  • reaction temperature is not specifically limited, It is good to carry out at room temperature.
  • the reaction time is not particularly limited because the reaction rate varies depending on the pH of the reaction solution, the type of solvent and the concentration of the polymerization stabilizer, and may be appropriately selected depending on these factors, but is usually about 1 to 6 hours. It is.
  • the concentration of the cyanoacrylate monomer in the polymerization reaction solution at the start of the reaction is not particularly limited, but is usually about 0.01 to 5%, preferably about 0.1 to 3%.
  • the concentration of the organic acid in the polymerization reaction solution at the start of the reaction is not particularly limited, but is usually about 0.01 wt% to 10 wt%, preferably about 0.05 wt% to 5 wt%, more preferably 0.05 wt% to 3 wt%. It may be about%.
  • the concentration of the saccharide in the polymerization reaction solution at the start of the reaction is not particularly limited, but is usually about 0.01 to 5%, preferably about 0.1 to 3%.
  • the antibacterial agent of the present invention can be produced by anionic polymerization of the cyanoacrylate monomer by the polymerization reaction described above and synthesizing cyanoacrylate polymer particles (organic acid-conjugated particles) efficiently conjugated with an organic acid. If two or more organic acids are allowed to coexist during anionic polymerization, an antibacterial agent having organic acid-conjugated particles conjugated with two or more organic acids can be produced.
  • the synthesized organic acid-conjugated particles can be used as an antibacterial agent in the state of a particle dispersion dispersed in a solvent.
  • the obtained particle dispersion hardly changes over time in the particle size distribution during storage, and the particles do not aggregate or settle even when stored at rest, and is excellent in dispersion stability.
  • the concentration of the organic acid-conjugated particles may be about 0.01 wt% to 5 wt%, preferably about 0.05 wt% to 3 wt%, more preferably about 0.1 wt% to 2 wt%.
  • the synthesized organic acid-conjugated particles can be recovered by conventional filtration such as centrifugal ultrafiltration and used as an antibacterial agent in a particulate or granular state. Furthermore, the organic acid conjugate particles recovered by filtration can be used as an antibacterial agent in a state of a particle dispersion in which the particles are dispersed in a solvent such as water.
  • the particle size of the synthesized organic acid-conjugated particles is not particularly limited, but is usually nano-order size (less than 1000 nm), preferably 1 nm to 1000 nm, more preferably about 10 nm to 600 nm.
  • the particle size can be adjusted by adjusting the concentration of cyanoacrylate monomer in the reaction solution and the reaction time.
  • the particle size can also be adjusted by changing the concentration and type of the polymerization stabilizer.
  • the average particle diameter of the organic acid-conjugated particles can be reduced to about 10 to 50 nm.
  • the pH of the reaction solution affects the polymerization rate.
  • the pH of the reaction solution is high, the hydroxyl ion concentration is high, so that the polymerization is fast, and when the pH is low, the polymerization is slow. Therefore, the pH is preferably about 1 to 4.
  • organic acid-conjugated particles can be stably synthesized at an appropriate speed due to the acidity of an organic acid without using hydrochloric acid as in the prior art.
  • the salt (NaCl) that is an impurity is not generated by the neutralization.
  • the particle dispersion has high transparency because of the small average particle diameter of the organic acid-conjugated particles. Such a particle dispersion having high transparency is less uncomfortable during use.
  • the antibacterial agent of the present invention can be lysed by contacting organic acid-conjugated particles with a peptidoglycan layer of Gram-positive bacteria.
  • the antibacterial agent of the present invention has antibacterial properties against gram-negative bacteria that have not been recognized as having an antibacterial effect in the past (for example, Patent Documents 1 and 2). This is because the organic acid, which is an antibacterial active ingredient, acts on the outer membrane (capsular membrane) composed of lipopolysaccharides of Gram-negative bacterial cells, and the organic acid-conjugated particles pass through the outer membrane by breaking it. As a result of contacting the organic acid-conjugated particles with a peptidoglycan layer, it is considered that lysis was possible.
  • Examples of the target bacterial species to which the antibacterial agent of the present invention has an antibacterial effect include, but are not limited to, gram-negative bacteria and gram-positive bacteria that are bacteria that synthesize cell walls.
  • Gram-negative bacteria include Escherichia coli, Legionella, Pseudomonas aeruginosa, Salmonella, Neisseria pneumoniae
  • Gram-positive bacteria include Staphylococcus aureus (methicillin-resistant Staphylococcus aureus (MRSA)), enterococci ( Vancomycin-resistant enterococci (VRE)), streptococci (pneumococcus streptococci, oral streptococci, pyogenes streptococci, peptostreptococcus bacteria, etc.), diphtheria, propionibacterium acnes, acid-fast bacilli Tuberculosis mycobacteria and the like), but is not limited thereto.
  • MRSA methicillin-resistant Sta
  • biofilms and the like formed in pipes and filters can be decomposed using the antibacterial agent of the present invention.
  • inorganic salts such as calcium carbonate, calcium sulfate, silica, and the like contained in the water deposit on the inner wall as a scale.
  • the scale is very hard and hardly soluble in water. For example, even if a metal tool is used, it is difficult to scrape off manually.
  • the antibacterial agent of the present invention is used, the scale can be easily removed by washing.
  • glycolic acid when glycolic acid is used as the organic acid in the antibacterial agent of the present invention, glycolic acid has the smallest molecular weight among organic acids and is excellent in permeability, and thus has an excellent cleaning and removing effect on the scale.
  • the antibacterial agent of the present invention has not only an excellent antibacterial effect but also an excellent cleaning effect on piping and the like. Therefore, the antibacterial performance of the antibacterial agent of the present invention, in addition to sterilizing Legionella, which is a Gram-negative bacterium that requires anti-infection measures especially in cooling devices and water circulation facilities, Biofilm to be washed can be cleaned and decomposed.
  • a sheet prepared by applying a dispersion containing the antibacterial agent of the present invention to which a glycolic acid is applied is applied to a nonwoven fabric or the like, it is useful for preventing and treating acne in addition to antibacterial effects against various bacteria.
  • the sheet can be used as a patch for preventing bedsores such as bedridden patients.
  • the antibacterial agent of the present invention was produced as follows.
  • glycolic acid organic acid: manufactured by Wako Pure Chemical Industries, Ltd.
  • dextran produced by Wako Pure Chemical Industries, Ltd.
  • the reaction solution was filtered through a 5 ⁇ m sized membrane filter (manufactured by Sartorius: Mini Zalto), and purified water was added to prepare a 0.1 wt% antibacterial nanoparticle dispersion (glycolic acid concentration 0.05 wt%).
  • the average particle size of the organic acid-conjugated particles obtained at this time was 170 nm as measured by a usual method using a Zetasizer (Nano-ZS90 manufactured by Malvern).
  • FIG. 1 shows a photograph of the organic acid-conjugated particles observed with an electron microscope ( ⁇ 50000).
  • Example 2 Using the 0.1 wt% antibacterial nanoparticle dispersion prepared in Example 1 (glycolic acid concentration 0.05 wt%: Invention Example 1), Escherichia coli NBRC 3972, Gram-negative bacteria, Staphylococcus aureus (Staphylococcus aureus subsp. Aureus NBRC 12732, Gram-positive bacteria), antibacterial effect on methicillin-resistant Staphylococcus aureus (MRSA: Staphylococcus aureus IID 1677, Gram-positive bacteria) was examined.
  • MRSA Staphylococcus aureus IID 1677, Gram-positive bacteria
  • the antibacterial nanoparticle dispersion liquid of Inventive Example 1 has about 1/50 of the number of bacteria reduced after 24 hours against E. coli and almost detected after 24 hours against S. aureus and MRSA. It was recognized that the number of bacteria had decreased to an infeasible level. Therefore, it was recognized that the antibacterial agent of the present invention has antibacterial properties against gram-negative bacteria and gram-positive bacteria.
  • Example 1 In place of the 0.1 wt% antibacterial nanoparticle dispersion (glycolic acid: Invention Example 1) prepared in Example 1, cyanoacrylate polymer particles conjugated with glycine, an amino acid (Comparative Example 1: For example, Patent Document 4) ) Dispersion (0.1 wt%) was tested for antibacterial effects against E. coli, Staphylococcus aureus and MRSA. The number of viable bacteria was measured according to the above method. The results are shown in Table 2.
  • the dispersion of Comparative Example 1 showed no significant reduction in the number of bacteria compared to S. aureus and MRSA even after 24 hours against E. coli (a reduction of about a quarter). It was observed that the number of bacteria decreased from 1/1000 to an almost undetectable level after 24 hours for Staphylococcus aureus and MRSA. Therefore, it was recognized that the dispersion liquid of Comparative Example 1 has antibacterial properties only for Gram-positive bacteria.
  • Comparative Example 2 Instead of the 0.1 wt% antibacterial nanoparticle dispersion (glycolic acid: Invention Example 1) prepared in Example 1, a dispersion (0.1 wt%) of cyanoacrylate polymer particles (Comparative Example 2) was used. The antibacterial effects against E. coli, Staphylococcus aureus and MRSA were examined. The number of viable bacteria was measured according to the above method. The results are shown in Table 3.
  • the dispersion of Comparative Example 2 showed no significant reduction in the number of bacteria compared to S. aureus and MRSA even after 24 hours against E. coli (a reduction of about 1/5). It was observed that the number of bacteria decreased from 1/100 to almost undetectable levels after 24 hours for Staphylococcus aureus and MRSA. Therefore, it was recognized that the dispersion liquid of Comparative Example 2 has antibacterial properties only for Gram-positive bacteria.
  • Example 3 Instead of the 0.1 wt% antibacterial nanoparticle dispersion prepared in Example 1 (glycolic acid concentration 0.05 wt%: Invention Example 1), a solution of glycolic acid (Comparative Example 3) (0.05 wt%) was used. Used to examine the antibacterial effect against E. coli. The number of viable bacteria was measured according to the above method. The results are shown in Table 4.
  • Comparative Example 3 showed no significant decrease in the number of bacteria compared to S. aureus and MRSA even after 24 hours against E. coli (a decrease of about one third). .
  • the antibacterial effect (about 1/50) of the organic acid-conjugated particles (glycolic acid) of Invention Example 1 against E. coli is antibacterial against the Escherichia coli of the cyanoacrylate polymer particles of Comparative Example 2. It was recognized that there was a remarkable antibacterial effect as compared with the effect (a reduction of about 1/5) and the antibacterial effect of glycolic acid of Comparative Example 3 on E. coli (a reduction of about 1/3). That is, by using cyanoacrylate polymer particles (Comparative Example 2) and glycolic acid (Comparative Example 3) alone, organic acid-conjugated particles of the Invention Example 1 (cyanoacrylate polymer particles conjugated with glycolic acid). It was recognized that it has a remarkable antibacterial effect synergistically.
  • Example 3 0.1 wt% antibacterial nanoparticles using fumaric acid and citric acid as organic acids in the same manner as the 0.1 wt% antibacterial nanoparticle dispersion (glycolic acid: Invention Example 1) prepared in Example 1 Dispersions (Invention Examples 2 and 3) were prepared.
  • the control physiological saline and the sample (Invention Examples 1 to 3) were diluted with physiological saline so that they would be 100 times, 1000 times, and 10,000 times after the bacterial inoculation. In culture. Samples including the control (Invention Examples 1 to 3) were statically cultured at 28 ° C. for 24 hours, and the number of colonies was counted. The results are shown in Table 5.
  • the antibacterial agent of the present invention also has antibacterial properties against gram-negative bacteria by containing organic acid-conjugated particles using glycolic acid, fumaric acid and citric acid as organic acids. Similar results were obtained when lactic acid was used as the organic acid (data not shown). Further, in this example, the case where the concentration of the antibacterial nanoparticle dispersion was set to 0.1 wt% was shown, but similar results were obtained when the concentration was 0.01 wt% or 10 wt% (data not shown). ).
  • Example 4 Using the 0.1 wt% antibacterial nanoparticle dispersion prepared in Example 1 (glycolic acid: Invention Example 1), the number of surviving Legionella pneumophila GIFU 9134 (Gram negative bacteria) in this dispersion was measured. Legionella was added to control purified water and the dispersion of Invention Example 1 and allowed to stand at room temperature, and the number of viable bacteria after 6, 24 and 48 hours at the start was counted. The results are shown in Table 6.
  • Example 1 of the present invention As a result, the control purified water showed no change in the number of bacteria even after 48 hours, but in Example 1 of the present invention, it was recognized that it decreased to about 1 / 70,000 after 48 hours. . Thereby, it was recognized that the antibacterial agent of this invention has remarkable antibacterial property also to Legionella bacteria.
  • the behavior of the antibacterial nanoparticle dispersion liquid for Legionella bacteria and Escherichia coli, which are Gram-negative bacteria is considered to be the same, even when the test for Escherichia coli of Example 2 (up to 24 hours) was performed for up to 48 hours, It is expected to decrease to about 1 / tens of thousands as in the embodiment.
  • Example 5 By a method according to the antibacterial nanoparticle dispersion (glycolic acid) prepared in Example 1, a dispersion having a glycolic acid concentration of 3.0 wt% (Invention Example 4) was prepared by adding glycolic acid after the polymerization reaction. . Using this dispersion, a cleaning test of the scale deposited on the metal plate was performed. Water was used as a control.
  • Example 4 of the present invention Using the dispersion liquid and water of Example 4 of the present invention, the dispersion liquid and water were soaked into separate fabrics, and these fabrics were pressed against the metal plate on which the scales were adhered with a constant pressure, and the longitudinal direction The scale was washed by reciprocating 20 times, and the state after washing was observed. The results are shown in FIG.
  • the circle in the left side of FIG. 2 was washed using the dispersion liquid of Example 4 of the present invention, and it was recognized that the scale was successfully washed and removed.
  • the circle in the right side of FIG. 2 was washed with water, and it was recognized that the remaining washing of the scale was conspicuous.
  • the antibacterial agent of the present invention has an excellent cleaning effect on the metal plate and the like on which the scale is deposited.
  • Example 6 Using the 0.1 wt% antibacterial nanoparticle dispersion prepared in Example 1 (glycolic acid 0.05 wt%: Invention Example 1), a biofilm degradation test was performed. Water was used as a control.
  • Example 1 of the present invention Using the dispersion liquid and water of Example 1 of the present invention, 60 mL of the dispersion liquid and water were put into separate beakers (100 mL), biofilms of almost the same size were put into them, and a magnetic stirrer was used. Each beaker was stirred under conditions of 800 rpm ⁇ 24 hours. The state of decomposition of the biofilm piece after stirring was visually observed. The results are shown in FIG.
  • the inside of the left beaker in FIG. 3 was stirred using the dispersion liquid of Inventive Example 1, and it was recognized that the biofilm could be finely decomposed.
  • the inside of the beaker on the right side of FIG. 3 was stirred using water, and it was recognized that a large lump of biofilm was still conspicuous.
  • biofilm used as a hotbed of Legionella can be washed and decomposed by the antibacterial performance of the antibacterial agent of the present invention.
  • Example 7 In the 0.1 wt% antibacterial nanoparticle dispersion prepared in Example 1 (glycolic acid: Invention Example 1) and cyanoacrylate polymer particles conjugated with an amino acid (glycine) (Comparative Example 1), the respective particles The diameter was measured. The particle size was measured by a conventional method using a Zetasizer (Nano-ZS90 manufactured by Malvern). The result of the normal distribution of the particle diameter is shown in FIG.
  • the antibacterial nanoparticles in Inventive Example 1 were recognized to have a sharper distribution than the particles in Comparative Example 1 at about 100 to 300 nm. Therefore, the antibacterial agent of the present invention increases the transparency of the particle dispersion due to the small average particle diameter of the antibacterial nanoparticles and the sharpness of the normal distribution.
  • Example 8 In 200 g of purified water placed in a 500 mL container, 0.4 g of glycolic acid (organic acid: manufactured by Wako Pure Chemical Industries, Ltd.) and 2.0 mL of Tween 20 (manufactured by Sigma Aldrich Japan LLC) as a nonionic surfactant are dissolved. Furthermore, 2.0 g of isobutyl cyanoacrylate was dropped, and a polymerization reaction was performed using a magnetic stirrer (RS-1DN manufactured by AS ONE) under conditions of 600 rpm and 2 hours at room temperature. The reaction solution was filtered through a 5 ⁇ m-size membrane filter (manufactured by Sartorius: Mini Zalto) to prepare a 1.0 wt% antibacterial nanoparticle dispersion.
  • RS-1DN magnetic stirrer
  • the particle size of the antibacterial nanoparticles obtained at this time was measured by a conventional method using a Zetasizer (Nano-ZS90 manufactured by Malvern). The result of the normal distribution of the particle diameter is shown in FIG. As a result, the antibacterial nanoparticles in Invention Example 5 were recognized to have a sharp distribution at about 10 to 50 nm. The average particle diameter of the antibacterial nanoparticles of Invention Example 5 was 25 nm.
  • FIG. 6 shows a photograph of the antibacterial nanoparticle dispersion obtained in this example. According to this, it was recognized that the dispersion liquid of this example is in a state of high transparency. This is thought to be because the average particle diameter of the antibacterial nanoparticles obtained in this example was as fine as 25 nm, and thus the transparency was improved.
  • Example 9 In 200 g of purified water in a 500 mL container, 0.4 g of glycolic acid (organic acid: manufactured by Wako Pure Chemical Industries, Ltd.), 2.0 mL of Tween 20 (manufactured by Sigma Aldrich Japan LLC) as a nonionic surfactant, and anion As a surfactant, 0.2 mL of sodium alkylbenzene sulfonate (manufactured by Sigma Aldrich Japan GK) is dissolved, 2.0 g of isobutyl cyanoacrylate is further added dropwise, and a magnetic stirrer (RS-1DN manufactured by AS ONE) is used. The polymerization reaction was performed under conditions of 600 rpm and 2 hours at room temperature. The reaction solution was filtered through a 5 ⁇ m-size membrane filter (manufactured by Sartorius: Mini Zalto) to prepare a 1.0 wt% antibacterial nanoparticle dispersion.
  • glycolic acid organic acid: manufactured by Wako Pure Chemical Industries
  • the particle size of the antibacterial nanoparticles obtained at this time was measured by a conventional method using a Zetasizer (Nano-ZS90 manufactured by Malvern). The result of the normal distribution of the particle diameter is shown in FIG. As a result, the antibacterial nanoparticles in Invention Example 6 were recognized to have a sharp distribution at about 20 to 70 nm. The average particle diameter of the antibacterial nanoparticles of Invention Example 6 was 27 nm.
  • Example 10 The antibacterial nanoparticle dispersion prepared by adding a nonionic surfactant in Example 8 (Invention Example 5: average particle diameter 25 nm, 40 mg / L) and the antibacterial nanoparticle dispersion prepared in Example 1 (present)
  • Invention Example 1 The antibacterial effect on bacteria of the genus Bacillus subtilis ISW 1214 was examined for an average particle size of 155 nm and 40 mg / L. For the control, a dispersion of cyanoacrylate polymer particles of Comparative Example 1 was used.
  • the bacterial solution having a turbidity of about 0.05 was inoculated into the dispersions of Invention Examples 1 and 5 and Comparative Example 1, and then allowed to stand at 30 ° C. for about 8 hours to examine the turbidity of the dispersion. The results are shown in FIG.
  • the present invention can be used for an antibacterial agent containing cyanoacrylate polymer particles as an active ingredient and a method for producing the same.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Toxicology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Provided are: an antibacterial agent containing, as an active ingredient, cyanoacrylate polymer particles which include, by at least some form of incorporating or mixing, organic acid; and a method for producing an antibacterial agent which is produced by performing a step for subjecting a cyanoacrylate monomer to anionic polymerization, in the presence of the cyanoacrylate monomer, a saccharide and organic acid.

Description

抗菌剤および抗菌剤の製造方法Antibacterial agent and method for producing antibacterial agent
 本発明は、シアノアクリレートポリマー粒子を有効成分として含有する抗菌剤およびその製造方法に関する。 The present invention relates to an antibacterial agent containing cyanoacrylate polymer particles as an active ingredient and a method for producing the same.
 従来、グラム陽性菌などの細菌に対する抗菌効果を有する抗菌剤として、例えば以下の技術が知られていた。 Conventionally, for example, the following techniques have been known as antibacterial agents having an antibacterial effect against bacteria such as Gram-positive bacteria.
 特許文献1には、バンコマイシン耐性グラム陽性細菌用抗菌剤として、抗生物質を抱合するシアノアクリレートポリマー粒子を有効成分として含有する抗菌剤が記載してある。シアノアクリレートポリマー粒子は、例えば外科領域において傷口の縫合のための接着剤として用いられているシアノアクリレート系モノマーをアニオン重合させたものである。シアノアクリレート系ポリマー粒子は多孔性であり、内部に所望の物質を抱合させることが可能である。特許文献1の抗菌剤では、シアノアクリレート系ポリマー粒子に抗生物質を抱合させることにより、種々の抗生物質に耐性を獲得し、当該抗生物質の投与では抗菌不可能となったバンコマイシン耐性腸球菌(VRE)に対しても、抗生物質の抗菌作用が発揮され、VREの増殖を抑制できるようになっている。 Patent Document 1 describes an antibacterial agent containing cyanoacrylate polymer particles conjugated with an antibiotic as an active ingredient as an antibacterial agent for vancomycin-resistant gram-positive bacteria. The cyanoacrylate polymer particles are obtained by anionic polymerization of a cyanoacrylate monomer that is used, for example, as an adhesive for wound closure in the surgical field. Cyanoacrylate-based polymer particles are porous, and a desired substance can be conjugated inside. In the antibacterial agent of Patent Document 1, vancomycin-resistant enterococci (VRE) that has acquired resistance to various antibiotics by conjugating antibiotics to cyanoacrylate polymer particles and has become impossible to antibacterial by administration of the antibiotics. ), The antibacterial action of antibiotics is exerted, and the growth of VRE can be suppressed.
 特許文献2には、グラム陽性細菌の細胞壁に接着し、哺乳動物の細胞膜には接着しない、粒径が5μm以下の粒子であって、グラム陽性細菌に対する抗菌活性成分を実質的に含まない粒子を有効成分として含有する、グラム陽性細菌用抗菌剤が記載してある。特許文献2は、シアノアクリレートポリマーから成る粒子を使用しており、抗菌薬を抱合しない粒子単体を細菌に初めて適用したところ、粒子と細菌の細胞壁との特異的な接着に次ぐ溶菌現象を見出したものである。特許文献2の抗菌剤は、細菌の薬剤耐性機構を超越した抗菌剤であるため、メチシリン耐性黄色ブドウ球菌(MRSA)やVREに代表される多剤耐性を示すグラム陽性細菌に適用可能であり、また、抗生物質の使用において大きな問題となる新たな多剤耐性菌の出現を回避することもできるとされている。 Patent Document 2 discloses particles that adhere to the cell wall of Gram-positive bacteria and do not adhere to mammalian cell membranes and have a particle size of 5 μm or less, and that are substantially free of antibacterial active ingredients against Gram-positive bacteria. An antibacterial agent for Gram-positive bacteria contained as an active ingredient is described. Patent Document 2 uses particles composed of a cyanoacrylate polymer, and when a single particle that is not conjugated with an antibacterial drug is first applied to bacteria, a lysis phenomenon was found following specific adhesion between the particles and the bacterial cell wall. Is. Since the antibacterial agent of Patent Document 2 is an antibacterial agent that transcends the bacterial drug resistance mechanism, it can be applied to gram-positive bacteria exhibiting multidrug resistance typified by methicillin-resistant Staphylococcus aureus (MRSA) and VRE, It is also said that the emergence of new multidrug-resistant bacteria, which is a major problem in the use of antibiotics, can be avoided.
 特許文献3には、クマザサ葉抽出物を有効成分として含むグラム陽性細菌用抗菌剤が記載してある。クマザサ葉抽出物は、グラム陰性細菌である大腸菌や緑膿菌に対しては抗菌活性を示さず、グラム陽性細菌に対して抗菌活性を示すとされている。 Patent Document 3 describes an antibacterial agent for Gram-positive bacteria that contains Kumazasa leaf extract as an active ingredient. It is said that Kumazasa leaf extract does not show antibacterial activity against Escherichia coli or Pseudomonas aeruginosa, which are Gram-negative bacteria, but shows antibacterial activity against Gram-positive bacteria.
 一方、シアノアクリレートポリマー粒子は抗菌剤以外にも使用されていることが公知である。例えば特許文献4には、シアノアクリレートモノマーをアミノ酸の共存下でアニオン重合させることにより、アミノ酸を抱合したナノサイズ(平均粒子径1000nm未満)のシアノアクリレートポリマー粒子を合成したことが記載してある。特許文献4のアミノ酸抱合粒子は、がん細胞に対してアポトーシス様の細胞死を誘導してがん細胞を障害できるため、がんの治療と予防に有用であるとされている。 On the other hand, it is known that cyanoacrylate polymer particles are used in addition to antibacterial agents. For example, Patent Document 4 describes that cyanoacrylate polymer particles conjugated with amino acids are synthesized by anionic polymerization of cyanoacrylate monomers in the presence of amino acids to synthesize cyanoacrylate polymer particles having an average particle diameter of less than 1000 nm. The amino acid-conjugated particles of Patent Document 4 are said to be useful for the treatment and prevention of cancer because they can damage cancer cells by inducing apoptosis-like cell death to cancer cells.
国際公開第2008/126846号International Publication No. 2008/126646 国際公開第2009/084494号International Publication No. 2009/084494 特開2010-59100号公報JP 2010-59100 A 国際公開第2010/101178号International Publication No. 2010/101178
 グラム陰性菌であるレジオネラ菌は非抗酸性細菌で、他の細菌や藻類の代謝産物を利用したり、アメーバ等の細菌捕食性原生動物に寄生して増殖するとされている。これら生物が生息する生物膜(バイオフィルム)の内部にいるレジオネラ菌は、外界から保護されていると考えられている。当該バイオフィルムは配管や濾過器内等に形成されるため、バイオフィルムが保護膜となって、例えば塩素剤による殺菌によってもレジオネラ菌を死滅させることは困難であった。 Legionella, which is a Gram-negative bacterium, is a non-acid-fast bacterium, and is said to grow by infesting other predatory protozoa such as amoeba using metabolites of other bacteria and algae. Legionella bacteria in the biofilm inhabited by these organisms are considered to be protected from the outside world. Since the biofilm is formed in a pipe or a filter, the biofilm serves as a protective film, and it has been difficult to kill Legionella even by sterilization with, for example, a chlorine agent.
 上述した特許文献1~4に記載された技術においては、グラム陰性菌に対して抗菌効果は認められていなかった。 In the techniques described in Patent Documents 1 to 4 described above, no antibacterial effect was observed against Gram-negative bacteria.
 従って、本発明の目的は、より多くの菌種に対して抗菌作用を有する抗菌剤およびその製造方法を提供することにある。 Therefore, an object of the present invention is to provide an antibacterial agent having an antibacterial action against more bacterial species and a method for producing the same.
 上記目的を達成するための本発明に係る抗菌剤の第一特徴構成は、有機酸を抱合或いは混合の少なくとも何れかの形態により含むシアノアクリレートポリマー粒子を有効成分として含有する点にある。 The first characteristic constitution of the antibacterial agent according to the present invention for achieving the above object is that it contains, as an active ingredient, cyanoacrylate polymer particles containing an organic acid in at least one form of conjugation or mixing.
 本構成によれば、有効成分として有機酸を抱合或いは混合の少なくとも何れかの形態により含むシアノアクリレートポリマー粒子を含有するものであれば、粒子分散液、粒子状、粒状等の態様で抗菌剤として供することができる。 According to this configuration, as long as it contains cyanoacrylate polymer particles containing an organic acid as an active ingredient in at least any form of conjugation or mixing, it can be used as an antibacterial agent in the form of particle dispersion, particulate, granular, etc. Can be provided.
 従来、有機酸を含んだシアノアクリレートポリマー粒子の抗菌活性は知られていない。本発明の抗菌剤のように、有機酸を抱合或いは混合させたシアノアクリレートポリマー粒子を有効成分とすることで、後述の実施例2~4で示すように、グラム陽性菌の他、従来(例えば特許文献1,2)では抗菌効果の認められなかったグラム陰性菌(大腸菌、レジオネラ菌、緑膿菌、サルモネラ菌、肺炎桿菌等)にも抗菌性を有する。本発明の抗菌剤は、グラム陽性菌のペプチドグリカン層に有機酸を抱合或いは混合させたシアノアクリレートポリマー粒子が接触して溶菌させることができる。また、本発明の抗菌剤は、抗菌活性成分である有機酸がグラム陰性菌細胞のリポ多糖により構成される外膜(莢膜)に作用し、有機酸を抱合或いは混合させたシアノアクリレートポリマー粒子が当該外膜を破壊して通過し、その内側にあるペプチドグリカン層に有機酸を抱合或いは混合させたシアノアクリレートポリマー粒子が接触した結果、溶菌させることができたと考えられる。 Conventionally, the antibacterial activity of cyanoacrylate polymer particles containing an organic acid is not known. By using cyanoacrylate polymer particles conjugated or mixed with an organic acid as an active ingredient like the antibacterial agent of the present invention, as shown in Examples 2 to 4 described later, in addition to Gram-positive bacteria, Patent Documents 1 and 2) also have antibacterial properties against gram-negative bacteria (such as Escherichia coli, Legionella, Pseudomonas aeruginosa, Salmonella, and Klebsiella pneumoniae) for which antibacterial effects have not been observed. The antibacterial agent of the present invention can be lysed by contacting cyanoacrylate polymer particles obtained by conjugating or mixing an organic acid with a peptidoglycan layer of Gram-positive bacteria. In addition, the antibacterial agent of the present invention is a cyanoacrylate polymer particle in which an organic acid as an antibacterial active ingredient acts on an outer membrane (capsule) composed of lipopolysaccharide of Gram-negative bacteria cells, and an organic acid is conjugated or mixed. As a result, the cyanoacrylate polymer particles conjugated or mixed with the organic acid were brought into contact with the peptidoglycan layer on the inner side of the outer membrane.
 本発明の抗菌剤は、有機酸を抱合或いは混合させたシアノアクリレートポリマー粒子の濃度を変えることにより抗菌力をコントロールすることができる。また、有機酸を抱合或いは混合させたシアノアクリレートポリマー粒子の濃度を一定にして、有機酸の濃度のみを変更することにより抗菌力をコントロールすることができ、これにより種々の菌に対し抗菌性能を発揮することができる。 The antibacterial agent of the present invention can control the antibacterial activity by changing the concentration of cyanoacrylate polymer particles conjugated or mixed with an organic acid. In addition, the concentration of cyanoacrylate polymer particles conjugated or mixed with organic acid can be kept constant, and the antibacterial activity can be controlled by changing only the concentration of organic acid. It can be demonstrated.
 また、後述の実施例5で示すように、本発明の抗菌剤は、スケールが析出した配管等に対して優れた洗浄効果を有しているものと認められている。さらに、後述の実施例6で示すように、配管や濾過器内等に形成されるバイオフィルム等を、本発明の抗菌剤を使用して分解することができる。尚、これら洗浄・分解効果についても、有機酸の濃度のみを変更することにより洗浄・分解性能をコントロールすることができる。 Also, as shown in Example 5 to be described later, the antibacterial agent of the present invention is recognized as having an excellent cleaning effect on pipes and the like on which scale is deposited. Furthermore, as shown in Example 6 described later, a biofilm or the like formed in a pipe or a filter can be decomposed using the antibacterial agent of the present invention. As for these cleaning / decomposing effects, the cleaning / decomposing performance can be controlled by changing only the concentration of the organic acid.
 このように、本発明の抗菌剤は、優れた抗菌効果だけでなく、配管等に対して優れた洗浄効果を有している。従って、本発明の抗菌剤が有する抗菌性能により、冷却装置や水の循環施設において特に感染防止対策が必要とされるグラム陰性菌であるレジオネラ菌等を殺菌することに加え、レジオネラ菌の温床とされるバイオフィルムを洗浄・分解することができる。また、本発明の抗菌剤は、冷却装置や水の循環施設に加えて、トイレ・キッチン等の水回りにも有効である。 Thus, the antibacterial agent of the present invention has not only an excellent antibacterial effect but also an excellent cleaning effect on piping and the like. Therefore, the antibacterial performance of the antibacterial agent of the present invention, in addition to sterilizing Legionella, which is a Gram-negative bacterium that requires anti-infection measures especially in cooling devices and water circulation facilities, Biofilm to be washed can be cleaned and decomposed. Further, the antibacterial agent of the present invention is effective not only for cooling devices and water circulation facilities but also for toilets and kitchens.
 さらに、本発明の抗菌剤を有する分散液を不織布等に塗布して作製されたシートは、種々の菌に対し抗菌性能を発揮する抗菌性シートとして利用することができる。当該抗菌性シートの抗菌性は、安全性に優れ、緩やかに長時間持続する。 Furthermore, a sheet prepared by applying a dispersion containing the antibacterial agent of the present invention to a nonwoven fabric or the like can be used as an antibacterial sheet that exhibits antibacterial performance against various bacteria. The antibacterial property of the antibacterial sheet is excellent in safety and lasts gently for a long time.
 本発明に係る抗菌剤の第二特徴構成は、シアノアクリレートモノマー、糖類および有機酸の共存下において、前記シアノアクリレートモノマーをアニオン重合させることにより製造される点にある。 The second characteristic constitution of the antibacterial agent according to the present invention is that it is produced by anionic polymerization of the cyanoacrylate monomer in the presence of a cyanoacrylate monomer, a saccharide and an organic acid.
 本構成によれば、シアノアクリレートモノマーがアニオン重合し、有機酸を効率良く抱合或いは混合したシアノアクリレートポリマー粒子を合成して、本発明の抗菌剤を製造することができる。 According to this configuration, the antibacterial agent of the present invention can be produced by synthesizing cyanoacrylate polymer particles in which an organic acid is efficiently conjugated or mixed by anion polymerization of a cyanoacrylate monomer.
 本発明に係る抗菌剤の第三特徴構成は、前記シアノアクリレートポリマー粒子の平均粒子径を1000nm未満とした点にある。 The third characteristic configuration of the antibacterial agent according to the present invention is that the average particle size of the cyanoacrylate polymer particles is less than 1000 nm.
 本構成によれば、シアノアクリレートポリマー粒子を所謂ナノ粒子として扱うことができる。例えば、本発明の抗菌剤を分散液の状態で供する場合、シアノアクリレートポリマー粒子をナノ粒子とすれば、粒子が凝集・沈降することがなく、分散安定性に優れるものとなる。 According to this configuration, the cyanoacrylate polymer particles can be handled as so-called nanoparticles. For example, when the antibacterial agent of the present invention is used in the form of a dispersion, if the cyanoacrylate polymer particles are nanoparticles, the particles do not aggregate and settle, and the dispersion stability is excellent.
 本発明に係る抗菌剤の第四特徴構成は、さらに界面活性剤の存在下において、前記シアノアクリレートモノマーをアニオン重合させることにより製造される点にある。 The fourth characteristic constitution of the antibacterial agent according to the present invention is that it is produced by anionic polymerization of the cyanoacrylate monomer in the presence of a surfactant.
 本構成によれば、シアノアクリレートポリマー粒子の平均粒子径を10~50nm程度まで微細化することができる。このようにシアノアクリレートポリマー粒子の平均粒子径を微細化できるようになれば、シアノアクリレートポリマー粒子の比表面積を大幅に増大させることができ、同一濃度において抗菌ナノ粒子の数を増加させることができるため、抗菌力を大幅に向上させることができる。抗菌力を維持したい場合は抗菌剤の濃度を下げることができるため、コストダウンを図ることができる。 According to this configuration, the average particle diameter of the cyanoacrylate polymer particles can be reduced to about 10 to 50 nm. If the average particle size of the cyanoacrylate polymer particles can be reduced in this way, the specific surface area of the cyanoacrylate polymer particles can be greatly increased, and the number of antibacterial nanoparticles can be increased at the same concentration. Therefore, the antibacterial power can be greatly improved. If the antibacterial activity is desired to be maintained, the concentration of the antibacterial agent can be lowered, so that the cost can be reduced.
 さらに、このような微細化により、抗菌ナノ粒子の分散液の透明度を向上させることができ、抗菌ナノ粒子の分散液を噴霧するときに使用するスプレーノズルが詰まり難くなる。当該分散液の透明度が向上することにより、実際に液中に本発明の抗菌剤を適用するときに有効である。例えば、魚類の養殖や飼育において、液中にて抗菌剤を適用すれば、透明度が向上するため、魚類のストレスを軽減することができ、さらに観賞用魚の水槽内等の液中の様子が見易くなる。 Furthermore, such miniaturization can improve the transparency of the antibacterial nanoparticle dispersion, and the spray nozzle used when spraying the antibacterial nanoparticle dispersion is less likely to be clogged. The improvement of the transparency of the dispersion is effective when the antibacterial agent of the present invention is actually applied to the liquid. For example, when an antibacterial agent is applied in the liquid in the culture or rearing of fish, the transparency is improved, so that the stress on the fish can be reduced, and the state of the liquid in the tank of the ornamental fish is easy to see. Become.
 本発明に係る抗菌剤の第五特徴構成は、シアノアクリレートモノマー、界面活性剤および有機酸の共存下において、前記シアノアクリレートモノマーをアニオン重合させることにより製造される点にある。 The fifth characteristic configuration of the antibacterial agent according to the present invention is that the antibacterial agent is produced by anionic polymerization of the cyanoacrylate monomer in the presence of the cyanoacrylate monomer, the surfactant and the organic acid.
 本構成によれば、上述した糖類に替えて界面活性剤を使用することで、シアノアクリレートモノマーがアニオン重合し、有機酸を効率良く抱合或いは混合したシアノアクリレートポリマー粒子を合成して、本発明の抗菌剤を製造することができる。 According to this configuration, by using a surfactant in place of the saccharide described above, the cyanoacrylate monomer is anionically polymerized, and cyanoacrylate polymer particles in which an organic acid is efficiently conjugated or mixed are synthesized. Antibacterial agents can be manufactured.
 また、本構成であれば、シアノアクリレートポリマー粒子の平均粒子径を10~50nm程度まで微細化することができる。 Further, with this configuration, the average particle diameter of the cyanoacrylate polymer particles can be reduced to about 10 to 50 nm.
 本発明に係る抗菌剤の第六特徴構成は、前記シアノアクリレートモノマーをブチルシアノアクリレートとした点にある。 The sixth characteristic configuration of the antibacterial agent according to the present invention is that the cyanoacrylate monomer is butyl cyanoacrylate.
 本構成によれば、外科領域において傷口の縫合のための接着剤として用いられているブチルシアノアクリレートを使用するため、取り扱いに優れている。 According to this configuration, since butyl cyanoacrylate used as an adhesive for suturing a wound is used in the surgical field, it is excellent in handling.
 本発明に係る抗菌剤の第七特徴構成は、前記有機酸がグリコール酸、フマル酸、クエン酸、酢酸、乳酸からなる群より選択される点にある。 The seventh characteristic configuration of the antibacterial agent according to the present invention is that the organic acid is selected from the group consisting of glycolic acid, fumaric acid, citric acid, acetic acid and lactic acid.
 本構成によれば、抗菌性を有する有機酸を使用することができる。 According to this configuration, an organic acid having antibacterial properties can be used.
 本発明に係る抗菌剤の第八特徴構成は、前記糖類を、水酸基を有する多糖類とした点にある。 The eighth characteristic configuration of the antibacterial agent according to the present invention is that the saccharide is a polysaccharide having a hydroxyl group.
 本構成の糖類を使用することで、シアノアクリレートモノマーを重合させる際に、重合安定化を図ることができる。 </ RTI> By using the saccharide of this configuration, it is possible to stabilize the polymerization when the cyanoacrylate monomer is polymerized.
 本発明に係る抗菌剤の製造方法の第一特徴手段は、シアノアクリレートモノマー、糖類および有機酸の共存下において、前記シアノアクリレートモノマーをアニオン重合させる工程を行うことにより製造される点にある。 The first characteristic means of the method for producing an antibacterial agent according to the present invention is that the antibacterial agent is produced by anionic polymerization of the cyanoacrylate monomer in the presence of a cyanoacrylate monomer, a saccharide and an organic acid.
 本手段によれば、シアノアクリレートモノマーがアニオン重合し、有機酸を効率良く抱合或いは混合したシアノアクリレートポリマー粒子を合成して、本発明の抗菌剤を製造することができる。 According to this means, the antibacterial agent of the present invention can be produced by synthesizing cyanoacrylate polymer particles obtained by anionic polymerization of a cyanoacrylate monomer and efficiently conjugating or mixing an organic acid.
 本発明に係る抗菌剤の製造方法の第二特徴手段は、前記工程が、界面活性剤の存在下で行われる点にある。 The second characteristic means of the method for producing an antibacterial agent according to the present invention is that the step is performed in the presence of a surfactant.
 本手段によれば、シアノアクリレートポリマー粒子の平均粒子径を10~50nm程度まで微細化することができる。 According to this means, the average particle diameter of the cyanoacrylate polymer particles can be reduced to about 10 to 50 nm.
 本発明に係る抗菌剤の製造方法の第三特徴手段は、シアノアクリレートモノマー、界面活性剤および有機酸の共存下において、前記シアノアクリレートモノマーをアニオン重合させる工程を行うことにより製造される点にある。 The third characteristic means of the method for producing an antibacterial agent according to the present invention is that the antibacterial agent is produced by anionic polymerization of the cyanoacrylate monomer in the presence of a cyanoacrylate monomer, a surfactant and an organic acid. .
 本手段によれば、上述した糖類に替えて界面活性剤を使用することで、シアノアクリレートモノマーがアニオン重合し、有機酸を効率良く抱合或いは混合したシアノアクリレートポリマー粒子を合成して、本発明の抗菌剤を製造することができる。 According to this means, by using a surfactant in place of the saccharide described above, the cyanoacrylate monomer is anionically polymerized, and cyanoacrylate polymer particles in which an organic acid is efficiently conjugated or mixed are synthesized to produce the present invention. Antibacterial agents can be manufactured.
 また、本手段であれば、シアノアクリレートポリマー粒子の平均粒子径を10~50nm程度まで微細化することができる。 Further, with this means, the average particle diameter of the cyanoacrylate polymer particles can be reduced to about 10 to 50 nm.
有機酸抱合粒子を電子顕微鏡で観察した写真図である。It is the photograph which observed the organic acid conjugate particle | grains with the electron microscope. 配管に析出したスケールを洗浄し、洗浄後の様子を観察した写真図である。It is the photograph figure which wash | cleaned the scale deposited on piping and observed the mode after washing | cleaning. バイオフィルムを撹拌し、撹拌後の様子を観察した写真図である。It is the photograph which stirred the biofilm and observed the mode after stirring. 粒子径の正規分布の結果を示したグラフである。It is the graph which showed the result of the normal distribution of a particle diameter. ノニオン界面活性剤を添加したときに得られた抗菌ナノ粒子の粒子径の正規分布の結果を示したグラフである。It is the graph which showed the result of the normal distribution of the particle diameter of the antibacterial nanoparticle obtained when a nonionic surfactant was added. 抗菌ナノ粒子分散液の写真図である。It is a photograph figure of an antibacterial nanoparticle dispersion liquid. ノニオン界面活性剤およびアニオン界面活性剤を添加したときに得られた抗菌ナノ粒子の粒子径の正規分布の結果を示したグラフである。It is the graph which showed the result of the normal distribution of the particle diameter of the antibacterial nanoparticle obtained when a nonionic surfactant and an anionic surfactant were added. 抗菌効果について調べた結果を示したグラフである。It is the graph which showed the result investigated about the antibacterial effect.
 以下、本発明の実施形態を図面に基づいて説明する。
 本発明の抗菌剤は、有機酸を抱合或いは混合の少なくとも何れかの形態により含むシアノアクリレートポリマー粒子を有効成分として含有する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The antibacterial agent of the present invention contains, as an active ingredient, cyanoacrylate polymer particles containing an organic acid in at least any form of conjugation or mixing.
 本発明における抗菌剤は、有効成分として有機酸を抱合或いは混合の少なくとも何れかの形態により含むシアノアクリレートポリマー粒子を含有する。本実施形態では、有機酸を抱合した形態であるシアノアクリレートポリマー粒子(有機酸抱合粒子)の態様とした場合について説明する。また、当該抗菌剤は、有効成分として有機酸を抱合或いは混合の少なくとも何れかの形態により含むシアノアクリレートポリマー粒子を含有するものであれば、粒子分散液、粒子状、粒状等、どのような態様であってもよい。分散液は、懸濁液やコロイド液等の態様を取り得るが、これらに限定されるものではない。 The antibacterial agent in the present invention contains cyanoacrylate polymer particles containing an organic acid as an active ingredient in a form of conjugation or mixing. This embodiment demonstrates the case where it is set as the aspect of the cyanoacrylate polymer particle (organic acid conjugate particle | grains) which is the form which conjugate | bonded organic acid. In addition, the antibacterial agent may be any form such as a particle dispersion, a particulate form, a granular form, etc., as long as it contains cyanoacrylate polymer particles containing an organic acid as an active ingredient in at least any form of conjugation or mixing. It may be. The dispersion may take a form such as a suspension or a colloidal liquid, but is not limited thereto.
 抱合粒子のシアノアクリレートポリマー部分は、シアノアクリレートモノマーをアニオン重合して得られる。用いられるシアノアクリレートモノマーは、アルキルシアノアクリレートモノマー(アルキル基の炭素数は好ましくは1~8)が好ましく、特に外科領域において傷口の縫合のための接着剤として用いられており、下記の化1の式で表されるブチルシアノアクリレートとするのがよい。 The cyanoacrylate polymer portion of the conjugated particle is obtained by anionic polymerization of a cyanoacrylate monomer. The cyanoacrylate monomer used is preferably an alkyl cyanoacrylate monomer (the alkyl group preferably has 1 to 8 carbon atoms), and is particularly used as an adhesive for sutures in the surgical field. It is preferable to use butyl cyanoacrylate represented by the formula.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 シアノアクリレートモノマーは、イソブチルシアノアクリレート、n-ブチル-2-シアノアクリレート、sec-ブチルシアノアクリレート、tert-ブチルシアノアクリレート等のブチルシアノアクリレートを使用することができ、さらにメチルシアノアクリレート、エチルシアノアクリレート(つけまつげ用接着剤)、プロピルシアノアクリレート等、他のアルキルシアノアクリレートを選択しても良い。特に、イソブチルシアノアクリレート、n-ブチル-2-シアノアクリレート、エチルシアノアクリレートであれば、安全性に優れている。 As the cyanoacrylate monomer, butyl cyanoacrylate such as isobutyl cyanoacrylate, n-butyl-2-cyanoacrylate, sec-butyl cyanoacrylate, tert-butyl cyanoacrylate, etc. can be used, and methyl cyanoacrylate, ethyl cyanoacrylate ( Other alkyl cyanoacrylates such as adhesive for false eyelashes) and propyl cyanoacrylate may be selected. In particular, isobutyl cyanoacrylate, n-butyl-2-cyanoacrylate, and ethyl cyanoacrylate are excellent in safety.
 アニオン重合では、重合安定化のために糖類を使用するとよい。即ち、本発明の「シアノアクリレートポリマー粒子」には、糖類のような重合安定剤を含むものも包含される。糖類は特に限定されず、水酸基を有する単糖類、水酸基を有する二糖類及び水酸基を有する多糖類のいずれであってもよいが、特に多糖類とするのがよい。単糖類としては、例えばグルコース、マンノース、リボース及びフルクトース等が挙げられ、グルコースが好ましい。二糖類としては、例えばマルトース、トレハロース、ラクトース及びスクロース等が挙げられる。多糖類としては、従来公知のシアノアクリレートポリマー粒子の重合に用いられているデキストランや、マンナン等を用いることができる。これらの糖は、環状、鎖状のいずれの形態であってもよく、また、環状の場合、ピラノース型やフラノース型等のいずれであってもよい。また、糖には種々の異性体が存在するがそれらのいずれでもよい。通常、単糖は、ピラノース型又はフラノース型の形態で存在し、二糖は、それらがα結合又はβ結合したものであり、このような通常の形態にある糖をそのまま用いることができる。 In anionic polymerization, saccharides may be used for stabilizing the polymerization. That is, the “cyanoacrylate polymer particles” of the present invention include those containing a polymerization stabilizer such as a saccharide. The saccharide is not particularly limited, and may be any of a monosaccharide having a hydroxyl group, a disaccharide having a hydroxyl group, and a polysaccharide having a hydroxyl group, and is particularly preferably a polysaccharide. Examples of monosaccharides include glucose, mannose, ribose and fructose, and glucose is preferred. Examples of the disaccharide include maltose, trehalose, lactose and sucrose. As the polysaccharide, dextran, mannan, or the like used for the polymerization of conventionally known cyanoacrylate polymer particles can be used. These sugars may be either cyclic or chain-like, and when they are cyclic, they may be any one of pyranose type, furanose type and the like. In addition, there are various isomers of sugar, and any of them may be used. Usually, monosaccharides exist in a pyranose type or furanose type form, and disaccharides are those in which they are α-bonded or β-bonded, and sugars in such a normal form can be used as they are.
 また、上述した糖類に替えて、ポリエチレングリコールや界面活性剤等、アニオン重合の重合安定化の機能を有するものであれば使用できる。 Further, in place of the above-mentioned saccharides, any one having a function of stabilizing the polymerization of anionic polymerization, such as polyethylene glycol and a surfactant, can be used.
 上述した糖類、ポリエチレングリコールおよび界面活性剤は単独で用いることもできるし、2種以上を組み合わせて用いることもできる。上記した糖類のうちデキストランが好ましく、デキストランとしては、平均分子量1万~50万程度の重合度であるデキストランが好ましいが、これに限定されるものではない。また、界面活性剤としてはノニオン界面活性剤やイオン性界面活性剤を使用することができるが、これらに限定されるものではない。当該イオン性界面活性剤はアニオン界面活性剤を使用するのが好ましいが、これらに限定されるものではない。
 ノニオン界面活性剤として、例えばTween20(ポリオキシエチレンソルビタンモノラウレート)が使用でき、アニオン界面活性剤として、例えばアルキルベンゼンスルホン酸或いはその塩、ラウリル硫酸ナトリウム、ラウレス硫酸ナトリウム等が使用できるが、これらに限定されるものではない。
 ノニオン界面活性剤およびアニオン界面活性剤は同時に使用してもよい。このときアニオン界面活性剤はノニオン界面活性剤より少量(10分の1程度)とするのがよい。
The saccharides, polyethylene glycols and surfactants mentioned above can be used alone or in combination of two or more. Of the saccharides described above, dextran is preferable, and dextran having a degree of polymerization having an average molecular weight of about 10,000 to 500,000 is preferable, but is not limited thereto. Further, nonionic surfactants and ionic surfactants can be used as the surfactant, but are not limited thereto. The ionic surfactant is preferably an anionic surfactant, but is not limited thereto.
As a nonionic surfactant, for example, Tween 20 (polyoxyethylene sorbitan monolaurate) can be used, and as an anionic surfactant, for example, alkylbenzenesulfonic acid or a salt thereof, sodium lauryl sulfate, sodium laureth sulfate, etc. can be used. It is not limited.
Nonionic surfactants and anionic surfactants may be used simultaneously. At this time, the anionic surfactant is preferably used in a smaller amount (about 1/10) than the nonionic surfactant.
 ノニオン界面活性剤およびアニオン界面活性剤を併用することにより、有機酸抱合粒子の経時的な凝集が起こり難くなる。つまり、その理由は、有機酸抱合粒子はアニオン重合により生成するため、当該有機酸抱合粒子自身がアニオン性を有し、アニオン界面活性剤を使用することにより、有機酸抱合粒子同士が反発し合って凝集を防ぐものと推察される。また、アニオン界面活性剤は、重合開始時および重合終了後の何れの段階において使用(投入)しても良い。 By using a nonionic surfactant and an anionic surfactant in combination, the organic acid-conjugated particles are less likely to aggregate over time. That is, because the organic acid-conjugated particles are produced by anionic polymerization, the organic acid-conjugated particles themselves have an anionic property, and the organic acid-conjugated particles repel each other by using an anionic surfactant. It is presumed that this prevents aggregation. Further, the anionic surfactant may be used (input) at any stage at the start of polymerization and after the end of polymerization.
 シアノアクリレートポリマー粒子は多孔性であり、内部に所望の物質を抱合させることが可能である。シアノアクリレートポリマー粒子を形成した後、シアノアクリレートポリマー粒子を所望の物質の水溶液中に浸漬する或いは所望の物質を添加する等によりシアノアクリレートポリマー粒子の内部に所望の物質を抱合させてもよいし、所望の物質の共存下において、上記したアニオン重合を行なうことにより、生成される粒子中に所望の物質を抱合させてもよい。本発明では、シアノアクリレートポリマー粒子に有機酸を抱合させる。抱合とは、例えば親水性の分子に外来の物質が保持される状態のことをいう。
 尚、本実施形態のようにシアノアクリレートポリマー粒子に有機酸を抱合させる態様に限定されず、シアノアクリレートポリマー粒子および有機酸が混合している態様とするものであってもよい。当該混合とは、シアノアクリレートポリマー粒子および有機酸が共存し混じりあっている態様であればよい。
The cyanoacrylate polymer particles are porous, and a desired substance can be conjugated inside. After forming the cyanoacrylate polymer particles, the desired substance may be conjugated to the inside of the cyanoacrylate polymer particles by immersing the cyanoacrylate polymer particles in an aqueous solution of the desired substance or adding the desired substance. The desired substance may be conjugated to the produced particles by performing the above-described anionic polymerization in the presence of the desired substance. In the present invention, an organic acid is conjugated to the cyanoacrylate polymer particles. Conjugation refers to a state in which a foreign substance is held in, for example, a hydrophilic molecule.
In addition, it is not limited to the aspect which conjugated an organic acid to a cyanoacrylate polymer particle like this embodiment, You may set it as the aspect which the cyanoacrylate polymer particle and the organic acid are mixing. The said mixing should just be an aspect with which the cyanoacrylate polymer particle and the organic acid coexist and are mixed.
 有機酸は、抗菌性を有するグリコール酸、フマル酸、クエン酸、酢酸、乳酸等を使用することができる。これらの有機酸のうち、少なくとも1つ以上を選択して使用することができる。特にグリコール酸は、有機酸の中で最も分子量が小さく、浸透性に優れている。これら有機酸は、抗菌性を有するものであればその誘導体を使用することができる。 As the organic acid, glycolic acid, fumaric acid, citric acid, acetic acid, lactic acid and the like having antibacterial properties can be used. Among these organic acids, at least one or more can be selected and used. In particular, glycolic acid has the smallest molecular weight among organic acids and is excellent in permeability. These organic acids can be used as long as they have antibacterial properties.
 重合反応の溶媒としては、水を使用することができる。水は、要求される純度が異なる製品用途に応じて精製水、イオン交換水、蒸留水、純水、水道水、地下水等を適宜選択すればよい。 Water can be used as a solvent for the polymerization reaction. Purified water, ion-exchanged water, distilled water, pure water, tap water, ground water, etc. may be appropriately selected as the water depending on the product application having different required purity.
 本発明の抗菌剤は、シアノアクリレートモノマー、糖類および有機酸の共存下において、シアノアクリレートモノマーをアニオン重合させる工程を行うことにより製造することができる。具体的には、重合反応は、例えば、溶媒である水に抱合させるべき有機酸および糖類などの重合安定剤を溶解させた後、撹拌下にてシアノアクリレートモノマーを加え、撹拌を続けることにより行なうことができる。反応温度は、特に限定されないが、室温で行なうのがよい。反応時間は、反応液のpH、溶媒の種類及び重合安定剤の濃度に応じて反応速度が異なり、これらの要素に応じて適宜選択すればよいため特に限定されないが、通常、1~6時間程度である。 The antibacterial agent of the present invention can be produced by performing anionic polymerization of a cyanoacrylate monomer in the presence of a cyanoacrylate monomer, a saccharide and an organic acid. Specifically, the polymerization reaction is performed, for example, by dissolving a polymerization stabilizer such as an organic acid and a saccharide to be conjugated to water as a solvent, adding a cyanoacrylate monomer under stirring, and continuing stirring. be able to. Although reaction temperature is not specifically limited, It is good to carry out at room temperature. The reaction time is not particularly limited because the reaction rate varies depending on the pH of the reaction solution, the type of solvent and the concentration of the polymerization stabilizer, and may be appropriately selected depending on these factors, but is usually about 1 to 6 hours. It is.
 反応開始時の重合反応液中のシアノアクリレートモノマーの濃度は特に限定されないが、通常、0.01~5%程度、好ましくは0.1~3%程度である。反応開始時の重合反応液中の有機酸の濃度は、特に限定されないが、通常0.01wt%~10wt%程度、好ましくは0.05wt%~5wt%程度、さらに好ましくは0.05wt%~3wt%程度とすればよい。反応開始時の重合反応液中の糖類の濃度は、特に限定されないが、通常、0.01~5%程度、好ましくは0.1~3%程度である。 The concentration of the cyanoacrylate monomer in the polymerization reaction solution at the start of the reaction is not particularly limited, but is usually about 0.01 to 5%, preferably about 0.1 to 3%. The concentration of the organic acid in the polymerization reaction solution at the start of the reaction is not particularly limited, but is usually about 0.01 wt% to 10 wt%, preferably about 0.05 wt% to 5 wt%, more preferably 0.05 wt% to 3 wt%. It may be about%. The concentration of the saccharide in the polymerization reaction solution at the start of the reaction is not particularly limited, but is usually about 0.01 to 5%, preferably about 0.1 to 3%.
 上述した重合反応により、シアノアクリレートモノマーがアニオン重合し、有機酸を効率良く抱合したシアノアクリレートポリマー粒子(有機酸抱合粒子)を合成して、本発明の抗菌剤を製造することができる。アニオン重合の際に2種類以上の有機酸を共存させれば、2種類以上の有機酸を抱合した有機酸抱合粒子を有する抗菌剤を製造することができる。 The antibacterial agent of the present invention can be produced by anionic polymerization of the cyanoacrylate monomer by the polymerization reaction described above and synthesizing cyanoacrylate polymer particles (organic acid-conjugated particles) efficiently conjugated with an organic acid. If two or more organic acids are allowed to coexist during anionic polymerization, an antibacterial agent having organic acid-conjugated particles conjugated with two or more organic acids can be produced.
 重合反応の結果、合成された有機酸抱合粒子は、溶媒中に分散した粒子分散液の状態で抗菌剤として供することができる。得られた粒子分散液は、保存時に粒子径分布の経時的変化がほとんどなく、静置保存しても粒子が凝集・沈降することがなく、分散安定性に優れる。このとき有機酸抱合粒子の濃度は、0.01wt%~5wt%程度、好ましくは0.05wt%~3wt%程度、さらに好ましくは0.1wt%~2wt%程度とすればよい。 As a result of the polymerization reaction, the synthesized organic acid-conjugated particles can be used as an antibacterial agent in the state of a particle dispersion dispersed in a solvent. The obtained particle dispersion hardly changes over time in the particle size distribution during storage, and the particles do not aggregate or settle even when stored at rest, and is excellent in dispersion stability. At this time, the concentration of the organic acid-conjugated particles may be about 0.01 wt% to 5 wt%, preferably about 0.05 wt% to 3 wt%, more preferably about 0.1 wt% to 2 wt%.
 また、合成された有機酸抱合粒子は、遠心式限外濾過等の常法の濾過により回収して、粒子状或いは粒状の状態で抗菌剤として供することができる。さらに、濾過によって回収した有機酸抱合粒子を、水などの溶媒に分散させた粒子分散液の状態で抗菌剤として供することができる。 Further, the synthesized organic acid-conjugated particles can be recovered by conventional filtration such as centrifugal ultrafiltration and used as an antibacterial agent in a particulate or granular state. Furthermore, the organic acid conjugate particles recovered by filtration can be used as an antibacterial agent in a state of a particle dispersion in which the particles are dispersed in a solvent such as water.
 合成された有機酸抱合粒子の粒径は、特に限定されるものではないが、通常、ナノオーダーサイズ(1000nm未満)、好ましくは1nm~1000nm、さらに好ましくは10nm~600nm程度である。尚、当該粒径は、反応液中のシアノアクリレートモノマーの濃度や反応時間を調節することにより調節することが可能である。また、重合安定剤として糖類を用いる場合には、当該重合安定剤の濃度や種類を変えることによっても、粒子サイズを調節することができる。また、界面活性剤の存在下において、前記シアノアクリレートモノマーをアニオン重合させた場合は、有機酸抱合粒子の平均粒子径を10~50nm程度まで微細化することができる。 The particle size of the synthesized organic acid-conjugated particles is not particularly limited, but is usually nano-order size (less than 1000 nm), preferably 1 nm to 1000 nm, more preferably about 10 nm to 600 nm. The particle size can be adjusted by adjusting the concentration of cyanoacrylate monomer in the reaction solution and the reaction time. Moreover, when using saccharides as a polymerization stabilizer, the particle size can also be adjusted by changing the concentration and type of the polymerization stabilizer. When the cyanoacrylate monomer is anionically polymerized in the presence of a surfactant, the average particle diameter of the organic acid-conjugated particles can be reduced to about 10 to 50 nm.
 アニオン重合は水酸化物イオンにより開始されるので、反応液のpHは、重合速度に影響する。反応液のpHが高い場合には、水酸イオンの濃度が高くなるので重合が速く、pHが低い場合には重合が遅くなる。そのため、pHを1~4程度とするのがよい。本発明の抗菌剤の製造方法では、従来のように塩酸を用いることなく、有機酸の酸性により適正な速さで安定的に有機酸抱合粒子を合成することができる。また、粒子分散液としても従来のように水酸化ナトリウムによる中和の必要がないため、中和によって不純物である塩(NaCl)が生成することはない。また、当該粒子分散液は、有機酸抱合粒子の平均粒子径の小ささゆえ、透明度が高くなる。このように高い透明度を有する粒子分散液は、使用に際しての違和感が少なくなる。 Since anionic polymerization is initiated by hydroxide ions, the pH of the reaction solution affects the polymerization rate. When the pH of the reaction solution is high, the hydroxyl ion concentration is high, so that the polymerization is fast, and when the pH is low, the polymerization is slow. Therefore, the pH is preferably about 1 to 4. In the method for producing an antibacterial agent of the present invention, organic acid-conjugated particles can be stably synthesized at an appropriate speed due to the acidity of an organic acid without using hydrochloric acid as in the prior art. Further, since the particle dispersion does not need to be neutralized with sodium hydroxide as in the prior art, the salt (NaCl) that is an impurity is not generated by the neutralization. Further, the particle dispersion has high transparency because of the small average particle diameter of the organic acid-conjugated particles. Such a particle dispersion having high transparency is less uncomfortable during use.
 本発明の抗菌剤は、グラム陽性菌のペプチドグリカン層に有機酸抱合粒子が接触して溶菌させることができる。また、本発明の抗菌剤は、従来(例えば特許文献1,2)では抗菌効果の認められなかったグラム陰性菌にも抗菌性を有する。これは、抗菌活性成分である有機酸がグラム陰性菌細胞のリポ多糖により構成される外膜(莢膜)に作用し、有機酸抱合粒子が当該外膜を破壊して通過し、その内側にあるペプチドグリカン層に有機酸抱合粒子が接触した結果、溶菌させることができたと考えられる。 The antibacterial agent of the present invention can be lysed by contacting organic acid-conjugated particles with a peptidoglycan layer of Gram-positive bacteria. In addition, the antibacterial agent of the present invention has antibacterial properties against gram-negative bacteria that have not been recognized as having an antibacterial effect in the past (for example, Patent Documents 1 and 2). This is because the organic acid, which is an antibacterial active ingredient, acts on the outer membrane (capsular membrane) composed of lipopolysaccharides of Gram-negative bacterial cells, and the organic acid-conjugated particles pass through the outer membrane by breaking it. As a result of contacting the organic acid-conjugated particles with a peptidoglycan layer, it is considered that lysis was possible.
 本発明の抗菌剤が抗菌効果を有する対象菌種としては、例えば細胞壁を合成する細菌であるグラム陰性細菌やグラム陽性細菌等が挙げられるが、これらに限定されない。グラム陰性細菌の具体例としては、大腸菌、レジオネラ菌、緑膿菌、サルモネラ菌、肺炎桿菌等が挙げられ、グラム陽性細菌としては、黄色ブドウ球菌(メチシリン耐性黄色ブドウ球菌(MRSA))、腸球菌(バンコマイシン耐性腸球菌(VRE))、レンサ球菌(肺炎レンサ球菌、口腔レンサ球菌、化膿レンサ球菌、ペプトストレプトコッカス属細菌等)、ジフテリア菌、プロピオニバクテリウム・アクネス、抗酸菌(結核菌、非結核性抗酸菌等)等が挙げられるが、これらに限定されない。 Examples of the target bacterial species to which the antibacterial agent of the present invention has an antibacterial effect include, but are not limited to, gram-negative bacteria and gram-positive bacteria that are bacteria that synthesize cell walls. Specific examples of Gram-negative bacteria include Escherichia coli, Legionella, Pseudomonas aeruginosa, Salmonella, Neisseria pneumoniae, and Gram-positive bacteria include Staphylococcus aureus (methicillin-resistant Staphylococcus aureus (MRSA)), enterococci ( Vancomycin-resistant enterococci (VRE)), streptococci (pneumococcus streptococci, oral streptococci, pyogenes streptococci, peptostreptococcus bacteria, etc.), diphtheria, propionibacterium acnes, acid-fast bacilli Tuberculosis mycobacteria and the like), but is not limited thereto.
 また、配管や濾過器内等に形成されるバイオフィルム等を、本発明の抗菌剤を使用して分解することができる。 In addition, biofilms and the like formed in pipes and filters can be decomposed using the antibacterial agent of the present invention.
 さらに、一般に、配管内に水(流体)を通す機器・配管系統においては、水中に含まれる炭酸カルシウム、硫酸カルシウム、シリカ等の無機塩類がスケールとして内壁に析出することが知られていた。当該スケールは、非常に硬く、水に溶けにくい難溶性物質であり、例えば金属製の工具を使用しても人力で削り落とすのは困難であった。本発明の抗菌剤を使用した場合は、スケールを容易に洗浄除去することができる。特に本発明の抗菌剤において有機酸としてグリコール酸を使用した場合には、グリコール酸が有機酸の中で最も分子量が小さく、浸透性に優れているため、スケールの洗浄除去効果に優れている。 Furthermore, in general, in equipment and piping systems that allow water (fluid) to pass through the piping, it has been known that inorganic salts such as calcium carbonate, calcium sulfate, silica, and the like contained in the water deposit on the inner wall as a scale. The scale is very hard and hardly soluble in water. For example, even if a metal tool is used, it is difficult to scrape off manually. When the antibacterial agent of the present invention is used, the scale can be easily removed by washing. In particular, when glycolic acid is used as the organic acid in the antibacterial agent of the present invention, glycolic acid has the smallest molecular weight among organic acids and is excellent in permeability, and thus has an excellent cleaning and removing effect on the scale.
 このように、本発明の抗菌剤は、優れた抗菌効果だけでなく、配管等に対して優れた洗浄効果を有している。従って、本発明の抗菌剤が有する抗菌性能により、冷却装置や水の循環施設において特に感染防止対策が必要とされるグラム陰性菌であるレジオネラ菌等を殺菌することに加え、レジオネラ菌の温床とされるバイオフィルムを洗浄・分解することができる。 Thus, the antibacterial agent of the present invention has not only an excellent antibacterial effect but also an excellent cleaning effect on piping and the like. Therefore, the antibacterial performance of the antibacterial agent of the present invention, in addition to sterilizing Legionella, which is a Gram-negative bacterium that requires anti-infection measures especially in cooling devices and water circulation facilities, Biofilm to be washed can be cleaned and decomposed.
 また、グリコール酸を適用した本発明の抗菌剤を有する分散液を不織布等に塗布して作製されたシートをフェイスマスクに利用すれば、雑菌に対する抗菌効果に加え、にきびの予防や治療にも役立つ。さらに当該シートは寝たきり患者等の床ずれ予防の貼付剤としても利用できる。 In addition, if a sheet prepared by applying a dispersion containing the antibacterial agent of the present invention to which a glycolic acid is applied is applied to a nonwoven fabric or the like, it is useful for preventing and treating acne in addition to antibacterial effects against various bacteria. . Further, the sheet can be used as a patch for preventing bedsores such as bedridden patients.
 本発明の実施例について説明する。 Examples of the present invention will be described.
〔実施例1〕
 以下のようにして本発明の抗菌剤を製造した。
[Example 1]
The antibacterial agent of the present invention was produced as follows.
 500mLの容器に入れた精製水200gに、グリコール酸(有機酸:和光純薬工業株式会社製)0.4gおよびデキストラン(和光純薬工業株式会社製)1.6gを溶解させ、さらにイソブチルシアノアクリレート2.0gを滴下してマグネチックスターラー(AS ONE社製 RS-1DN)を使用して、室温下で600rpm、2時間の条件により重合反応を行った。反応液を5μmサイズのメンブレンフィルター(ザルトリウス社製:ミニザルト)にて濾過した後、精製水を加えて0.1wt%の抗菌ナノ粒子分散液(グリコール酸濃度0.05wt%)を作製した。 In 200 g of purified water in a 500 mL container, 0.4 g of glycolic acid (organic acid: manufactured by Wako Pure Chemical Industries, Ltd.) and 1.6 g of dextran (produced by Wako Pure Chemical Industries, Ltd.) are dissolved, and isobutyl cyanoacrylate is further added. 2.0 g was dropped, and a polymerization reaction was performed using a magnetic stirrer (RS-1DN, manufactured by AS ONE) under conditions of 600 rpm and 2 hours at room temperature. The reaction solution was filtered through a 5 μm sized membrane filter (manufactured by Sartorius: Mini Zalto), and purified water was added to prepare a 0.1 wt% antibacterial nanoparticle dispersion (glycolic acid concentration 0.05 wt%).
 このとき得られた有機酸抱合粒子の平均粒子径は、ゼータサイザー(Malvern社製Nano-ZS90)を用いて常法により測定したところ、170nmであった。図1に当該有機酸抱合粒子を電子顕微鏡(×50000)で観察した写真図を示した。 The average particle size of the organic acid-conjugated particles obtained at this time was 170 nm as measured by a usual method using a Zetasizer (Nano-ZS90 manufactured by Malvern). FIG. 1 shows a photograph of the organic acid-conjugated particles observed with an electron microscope (× 50000).
〔実施例2〕
 実施例1で作製した0.1wt%の抗菌ナノ粒子分散液(グリコール酸濃度0.05wt%:本発明例1)を使用して、大腸菌(Escherichia coli NBRC 3972、グラム陰性菌)、黄色ブドウ球菌(Staphylococcus aureus subsp. aureus NBRC 12732、グラム陽性菌)、メチシリン耐性黄色ブドウ球菌(MRSA:Staphylococcus aureus IID 1677、グラム陽性菌)に対する抗菌効果について調べた。
[Example 2]
Using the 0.1 wt% antibacterial nanoparticle dispersion prepared in Example 1 (glycolic acid concentration 0.05 wt%: Invention Example 1), Escherichia coli NBRC 3972, Gram-negative bacteria, Staphylococcus aureus (Staphylococcus aureus subsp. Aureus NBRC 12732, Gram-positive bacteria), antibacterial effect on methicillin-resistant Staphylococcus aureus (MRSA: Staphylococcus aureus IID 1677, Gram-positive bacteria) was examined.
 これら菌液を抗菌ナノ粒子分散液に接種後、SCDLP培地で10倍希釈して室温に放置し、開始時、1,6,24時間後の生菌数を計測した。尚、抗菌ナノ粒子分散液に対するコントロール(対照)として、大腸菌は精製水、黄色ブドウ球菌およびMRSAは生理食塩水を使用した。結果を表1に示した。 These bacterial solutions were inoculated into an antibacterial nanoparticle dispersion, diluted 10-fold with SCDLP medium and allowed to stand at room temperature, and the number of viable bacteria after 1, 6, 24 hours was counted at the start. As controls for the antibacterial nanoparticle dispersion, purified water was used for Escherichia coli, and physiological saline was used for Staphylococcus aureus and MRSA. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 この結果、本発明例1の抗菌ナノ粒子分散液は、大腸菌に対して24時間後には約50分の1程度に菌数が減少し、黄色ブドウ球菌およびMRSAに対して24時間後にはほぼ検出できないレベルまで菌数が減少したと認められた。よって、本発明の抗菌剤は、グラム陰性菌およびグラム陽性菌に抗菌性を有するものと認められた。 As a result, the antibacterial nanoparticle dispersion liquid of Inventive Example 1 has about 1/50 of the number of bacteria reduced after 24 hours against E. coli and almost detected after 24 hours against S. aureus and MRSA. It was recognized that the number of bacteria had decreased to an infeasible level. Therefore, it was recognized that the antibacterial agent of the present invention has antibacterial properties against gram-negative bacteria and gram-positive bacteria.
(比較例1)
 実施例1で作製した0.1wt%の抗菌ナノ粒子分散液(グリコール酸:本発明例1)に替えて、アミノ酸であるグリシンを抱合させたシアノアクリレートポリマー粒子(比較例1:例えば特許文献4)の分散液(0.1wt%)を使用して、大腸菌、黄色ブドウ球菌およびMRSAに対する抗菌効果について調べた。生菌数の計測は上記手法に準じて行った。結果を表2に示した。
(Comparative Example 1)
In place of the 0.1 wt% antibacterial nanoparticle dispersion (glycolic acid: Invention Example 1) prepared in Example 1, cyanoacrylate polymer particles conjugated with glycine, an amino acid (Comparative Example 1: For example, Patent Document 4) ) Dispersion (0.1 wt%) was tested for antibacterial effects against E. coli, Staphylococcus aureus and MRSA. The number of viable bacteria was measured according to the above method. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 この結果、比較例1の分散液は、大腸菌に対して24時間後であっても黄色ブドウ球菌およびMRSAに比べて有意な菌数の減少は認められず(約4分の1程度の減少)、黄色ブドウ球菌およびMRSAに対して24時間後には1000分の1からほぼ検出できないレベルまで菌数が減少したと認められた。よって、比較例1の分散液は、グラム陽性菌のみに抗菌性を有するものと認められた。 As a result, the dispersion of Comparative Example 1 showed no significant reduction in the number of bacteria compared to S. aureus and MRSA even after 24 hours against E. coli (a reduction of about a quarter). It was observed that the number of bacteria decreased from 1/1000 to an almost undetectable level after 24 hours for Staphylococcus aureus and MRSA. Therefore, it was recognized that the dispersion liquid of Comparative Example 1 has antibacterial properties only for Gram-positive bacteria.
(比較例2)
 実施例1で作製した0.1wt%の抗菌ナノ粒子分散液(グリコール酸:本発明例1)に替えて、シアノアクリレートポリマー粒子(比較例2)の分散液(0.1wt%)を使用して、大腸菌、黄色ブドウ球菌およびMRSAに対する抗菌効果について調べた。生菌数の計測は上記手法に準じて行った。結果を表3に示した。
(Comparative Example 2)
Instead of the 0.1 wt% antibacterial nanoparticle dispersion (glycolic acid: Invention Example 1) prepared in Example 1, a dispersion (0.1 wt%) of cyanoacrylate polymer particles (Comparative Example 2) was used. The antibacterial effects against E. coli, Staphylococcus aureus and MRSA were examined. The number of viable bacteria was measured according to the above method. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 この結果、比較例2の分散液は、大腸菌に対して24時間後であっても黄色ブドウ球菌およびMRSAに比べて有意な菌数の減少は認められず(約5分の1程度の減少)、黄色ブドウ球菌およびMRSAに対して24時間後には100分の1からほぼ検出できないレベルまで菌数が減少したと認められた。よって、比較例2の分散液は、グラム陽性菌のみに抗菌性を有するものと認められた。 As a result, the dispersion of Comparative Example 2 showed no significant reduction in the number of bacteria compared to S. aureus and MRSA even after 24 hours against E. coli (a reduction of about 1/5). It was observed that the number of bacteria decreased from 1/100 to almost undetectable levels after 24 hours for Staphylococcus aureus and MRSA. Therefore, it was recognized that the dispersion liquid of Comparative Example 2 has antibacterial properties only for Gram-positive bacteria.
(比較例3)
 実施例1で作製した0.1wt%の抗菌ナノ粒子分散液(グリコール酸濃度0.05wt%:本発明例1)に替えて、グリコール酸(比較例3)の溶液(0.05wt%)を使用して、大腸菌に対する抗菌効果について調べた。生菌数の計測は上記手法に準じて行った。結果を表4に示した。
(Comparative Example 3)
Instead of the 0.1 wt% antibacterial nanoparticle dispersion prepared in Example 1 (glycolic acid concentration 0.05 wt%: Invention Example 1), a solution of glycolic acid (Comparative Example 3) (0.05 wt%) was used. Used to examine the antibacterial effect against E. coli. The number of viable bacteria was measured according to the above method. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 この結果、比較例3の溶液は、大腸菌に対して24時間後であっても黄色ブドウ球菌およびMRSAに比べて有意な菌数の減少は認められなかった(約3分の1程度の減少)。 As a result, the solution of Comparative Example 3 showed no significant decrease in the number of bacteria compared to S. aureus and MRSA even after 24 hours against E. coli (a decrease of about one third). .
 上述した結果より、本発明例1の有機酸抱合粒子(グリコール酸)の大腸菌(グラム陰性菌)に対する抗菌効果(約50分の1程度)は、比較例2のシアノアクリレートポリマー粒子の大腸菌に対する抗菌効果(約5分の1程度の減少)、および、比較例3のグリコール酸の大腸菌に対する抗菌効果(約3分の1程度の減少)に比べて、顕著な抗菌効果があると認められた。即ち、シアノアクリレートポリマー粒子(比較例2)、グリコール酸(比較例3)の単独の場合よりも、本発明例1の有機酸抱合粒子(グリコール酸を抱合したシアノアクリレートポリマー粒子)とすることで、相乗的に顕著な抗菌効果を有するものと認められた。 From the results described above, the antibacterial effect (about 1/50) of the organic acid-conjugated particles (glycolic acid) of Invention Example 1 against E. coli (about 1/50) is antibacterial against the Escherichia coli of the cyanoacrylate polymer particles of Comparative Example 2. It was recognized that there was a remarkable antibacterial effect as compared with the effect (a reduction of about 1/5) and the antibacterial effect of glycolic acid of Comparative Example 3 on E. coli (a reduction of about 1/3). That is, by using cyanoacrylate polymer particles (Comparative Example 2) and glycolic acid (Comparative Example 3) alone, organic acid-conjugated particles of the Invention Example 1 (cyanoacrylate polymer particles conjugated with glycolic acid). It was recognized that it has a remarkable antibacterial effect synergistically.
〔実施例3〕
 実施例1で作製した0.1wt%の抗菌ナノ粒子分散液(グリコール酸:本発明例1)と同様の手法で、有機酸としてフマル酸およびクエン酸を使用した0.1wt%の抗菌ナノ粒子分散液(本発明例2,3)をそれぞれ作製した。
Example 3
0.1 wt% antibacterial nanoparticles using fumaric acid and citric acid as organic acids in the same manner as the 0.1 wt% antibacterial nanoparticle dispersion (glycolic acid: Invention Example 1) prepared in Example 1 Dispersions (Invention Examples 2 and 3) were prepared.
 これら抗菌ナノ粒子分散液中における大腸菌(グラム陰性菌)の生存数の測定を行った。大腸菌は、平板培地(37℃,1日間培養)から大腸菌のコロニーを採取し、生理食塩水3mLに懸濁し、OD600=0.013相当となるように調製した。
 菌懸濁液10μLを検体1mLに接種した。コントロールの生理食塩水および検体(本発明例1~3)は、菌接種後100倍、1000倍、10000倍となるように生理食塩水で希釈し、希釈液1mLをNutrient寒天平板培地混釈法で培養した。
 コントロールを含む検体(本発明例1~3)を28℃で24時間静置培養し、コロニー数を計測した。結果を表5に示した。
The number of surviving E. coli (Gram-negative bacteria) in these antibacterial nanoparticle dispersions was measured. E. coli was prepared by collecting colonies of E. coli from a plate medium (cultured at 37 ° C. for 1 day), suspending in 3 mL of physiological saline, and corresponding to OD 600 = 0.013.
10 mL of the bacterial suspension was inoculated into 1 mL of the sample. The control physiological saline and the sample (Invention Examples 1 to 3) were diluted with physiological saline so that they would be 100 times, 1000 times, and 10,000 times after the bacterial inoculation. In culture.
Samples including the control (Invention Examples 1 to 3) were statically cultured at 28 ° C. for 24 hours, and the number of colonies was counted. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 この結果、コントロールの生理食塩水では、希釈液それぞれにおいて大腸菌の存在が確認されたが、本発明例1~3においては、いずれも希釈液それぞれにおいて大腸菌の存在は確認されなかった。 As a result, in the control physiological saline, the presence of E. coli was confirmed in each of the diluted solutions, but in each of the inventive examples 1 to 3, the presence of E. coli was not confirmed in each of the diluted solutions.
 従って、本発明の抗菌剤は、有機酸としてグリコール酸、フマル酸およびクエン酸を使用した有機酸抱合粒子を含有することで、グラム陰性菌にも抗菌性を有するものと認められた。尚、有機酸として乳酸を使用した場合においても同様の結果が得られた(データは示さない)。
 また、本実施例では抗菌ナノ粒子分散液の濃度を0.1wt%とした場合について示したが0.01wt%、或いは10wt%とした場合においても同様の結果が得られた(データは示さない)。
Therefore, it was recognized that the antibacterial agent of the present invention also has antibacterial properties against gram-negative bacteria by containing organic acid-conjugated particles using glycolic acid, fumaric acid and citric acid as organic acids. Similar results were obtained when lactic acid was used as the organic acid (data not shown).
Further, in this example, the case where the concentration of the antibacterial nanoparticle dispersion was set to 0.1 wt% was shown, but similar results were obtained when the concentration was 0.01 wt% or 10 wt% (data not shown). ).
〔実施例4〕
 実施例1で作製した0.1wt%の抗菌ナノ粒子分散液(グリコール酸:本発明例1)を使用して、この分散液中におけるレジオネラ菌(Legionella pneumophila GIFU 9134:グラム陰性菌)の生存数の測定を行った。
 レジオネラ菌は、コントロールの精製水および本発明例1の分散液に加え、室温で放置し、開始時、6,24,48時間後の生菌数を計測した。結果を表6に示した。
Example 4
Using the 0.1 wt% antibacterial nanoparticle dispersion prepared in Example 1 (glycolic acid: Invention Example 1), the number of surviving Legionella pneumophila GIFU 9134 (Gram negative bacteria) in this dispersion Was measured.
Legionella was added to control purified water and the dispersion of Invention Example 1 and allowed to stand at room temperature, and the number of viable bacteria after 6, 24 and 48 hours at the start was counted. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 この結果、コントロールの精製水では、48時間後においても菌数に変化は見られなかったが、本発明例1においては、48時間後において7万分の1程度に減少していると認められた。これにより、本発明の抗菌剤は、レジオネラ菌にも顕著な抗菌性を有するものと認められた。
 尚、グラム陰性菌であるレジオネラ菌と大腸菌に対する抗菌ナノ粒子分散液の挙動は同様であると考えられるため、実施例2の大腸菌に対する試験(24時間まで)を48時間まで行った場合も、本実施例のように数万分の1程度に減少することが期待される。
As a result, the control purified water showed no change in the number of bacteria even after 48 hours, but in Example 1 of the present invention, it was recognized that it decreased to about 1 / 70,000 after 48 hours. . Thereby, it was recognized that the antibacterial agent of this invention has remarkable antibacterial property also to Legionella bacteria.
In addition, since the behavior of the antibacterial nanoparticle dispersion liquid for Legionella bacteria and Escherichia coli, which are Gram-negative bacteria, is considered to be the same, even when the test for Escherichia coli of Example 2 (up to 24 hours) was performed for up to 48 hours, It is expected to decrease to about 1 / tens of thousands as in the embodiment.
〔実施例5〕
 実施例1で作製した抗菌ナノ粒子分散液(グリコール酸)に準じた方法で、重合反応後にグリコール酸を添加してグリコール酸濃度3.0wt%(本発明例4)となる分散液を作製した。この分散液を使用して、金属板に析出したスケールの洗浄試験を行った。コントロールとして水を使用した。
Example 5
By a method according to the antibacterial nanoparticle dispersion (glycolic acid) prepared in Example 1, a dispersion having a glycolic acid concentration of 3.0 wt% (Invention Example 4) was prepared by adding glycolic acid after the polymerization reaction. . Using this dispersion, a cleaning test of the scale deposited on the metal plate was performed. Water was used as a control.
 本発明例4の分散液および水を使用し、当該分散液および水を別々の布地に浸み込ませ、これら布地をスケールが付着した金属板上に対して一定の圧力で押圧し、縦方向に20回往復動させることによりスケールを洗浄し、洗浄後の様子を観察した。結果を図2に示した。 Using the dispersion liquid and water of Example 4 of the present invention, the dispersion liquid and water were soaked into separate fabrics, and these fabrics were pressed against the metal plate on which the scales were adhered with a constant pressure, and the longitudinal direction The scale was washed by reciprocating 20 times, and the state after washing was observed. The results are shown in FIG.
 図2の左側の円内は本発明例4の分散液を使用して洗浄したものであり、スケールを良好に洗浄除去できたものと認められた。一方、図2の右側の円内は水を使用して洗浄したものであり、スケールの洗浄残りが目立つと認められた。 The circle in the left side of FIG. 2 was washed using the dispersion liquid of Example 4 of the present invention, and it was recognized that the scale was successfully washed and removed. On the other hand, the circle in the right side of FIG. 2 was washed with water, and it was recognized that the remaining washing of the scale was conspicuous.
 従って、本発明の抗菌剤は、スケールが析出した金属板等に対して優れた洗浄効果を有しているものと認められた。 Therefore, it was recognized that the antibacterial agent of the present invention has an excellent cleaning effect on the metal plate and the like on which the scale is deposited.
〔実施例6〕
 実施例1で作製した0.1wt%の抗菌ナノ粒子分散液(グリコール酸0.05wt%:本発明例1)を使用して、バイオフィルムの分解試験を行った。コントロールとして水を使用した。
Example 6
Using the 0.1 wt% antibacterial nanoparticle dispersion prepared in Example 1 (glycolic acid 0.05 wt%: Invention Example 1), a biofilm degradation test was performed. Water was used as a control.
 本発明例1の分散液および水を使用し、当該分散液および水を別々のビーカー(100mL)にそれぞれ60mL投入し、これらにほぼ同じ大きさのバイオフィルムを投入し、マグネチックスターラーを使用して、各ビーカーを800rpm×24時間の条件で撹拌した。撹拌後のバイオフィルム片の分解状態を目視にて観察した。結果を図3に示した。 Using the dispersion liquid and water of Example 1 of the present invention, 60 mL of the dispersion liquid and water were put into separate beakers (100 mL), biofilms of almost the same size were put into them, and a magnetic stirrer was used. Each beaker was stirred under conditions of 800 rpm × 24 hours. The state of decomposition of the biofilm piece after stirring was visually observed. The results are shown in FIG.
 図3の左側のビーカー内は本発明例1の分散液を使用して撹拌したものであり、バイオフィルムを細かく分解できたものと認められた。一方、図3の右側のビーカー内は水を使用して撹拌したものであり、依然として大きな塊のバイオフィルムが目立つと認められた。 The inside of the left beaker in FIG. 3 was stirred using the dispersion liquid of Inventive Example 1, and it was recognized that the biofilm could be finely decomposed. On the other hand, the inside of the beaker on the right side of FIG. 3 was stirred using water, and it was recognized that a large lump of biofilm was still conspicuous.
 従って、本発明の抗菌剤が有する抗菌性能により、レジオネラ菌の温床とされるバイオフィルムを洗浄・分解することができるものと認められた。 Therefore, it was recognized that the biofilm used as a hotbed of Legionella can be washed and decomposed by the antibacterial performance of the antibacterial agent of the present invention.
〔実施例7〕
 実施例1で作製した0.1wt%の抗菌ナノ粒子分散液(グリコール酸:本発明例1)、および、アミノ酸(グリシン)を抱合させたシアノアクリレートポリマー粒子(比較例1)において、それぞれの粒子径を測定した。粒子径は、ゼータサイザー(Malvern社製Nano-ZS90)を用いて常法により測定した。当該粒子径の正規分布の結果を図4に示した。
Example 7
In the 0.1 wt% antibacterial nanoparticle dispersion prepared in Example 1 (glycolic acid: Invention Example 1) and cyanoacrylate polymer particles conjugated with an amino acid (glycine) (Comparative Example 1), the respective particles The diameter was measured. The particle size was measured by a conventional method using a Zetasizer (Nano-ZS90 manufactured by Malvern). The result of the normal distribution of the particle diameter is shown in FIG.
 この結果、本発明例1における抗菌ナノ粒子は、約100~300nmにおいて、比較例1の粒子よりもシャープな分布をしているものと認められた。従って、本発明の抗菌剤は、抗菌ナノ粒子の平均粒子径の小ささや正規分布のシャープさにより、粒子分散液の透明度が高くなる。 As a result, the antibacterial nanoparticles in Inventive Example 1 were recognized to have a sharper distribution than the particles in Comparative Example 1 at about 100 to 300 nm. Therefore, the antibacterial agent of the present invention increases the transparency of the particle dispersion due to the small average particle diameter of the antibacterial nanoparticles and the sharpness of the normal distribution.
〔実施例8〕
 500mLの容器に入れた精製水200gに、グリコール酸(有機酸:和光純薬工業株式会社製)0.4gおよびノニオン界面活性剤としてTween20(シグマアルドリッチジャパン合同会社製)2.0mLを溶解させ、さらにイソブチルシアノアクリレート2.0gを滴下しマグネチックスターラー(AS ONE社製 RS-1DN)を使用して、室温下で600rpm、2時間の条件により重合反応を行った。反応液は5μmサイズのメンブレンフィルター(ザルトリウス社製:ミニザルト)にて濾過し、1.0wt%の抗菌ナノ粒子分散液を作製した。
Example 8
In 200 g of purified water placed in a 500 mL container, 0.4 g of glycolic acid (organic acid: manufactured by Wako Pure Chemical Industries, Ltd.) and 2.0 mL of Tween 20 (manufactured by Sigma Aldrich Japan LLC) as a nonionic surfactant are dissolved. Furthermore, 2.0 g of isobutyl cyanoacrylate was dropped, and a polymerization reaction was performed using a magnetic stirrer (RS-1DN manufactured by AS ONE) under conditions of 600 rpm and 2 hours at room temperature. The reaction solution was filtered through a 5 μm-size membrane filter (manufactured by Sartorius: Mini Zalto) to prepare a 1.0 wt% antibacterial nanoparticle dispersion.
 このとき得られた抗菌ナノ粒子(本発明例5)の粒子径は、ゼータサイザー(Malvern社製Nano-ZS90)を用いて常法により測定した。当該粒子径の正規分布の結果を図5に示した。この結果、本発明例5における抗菌ナノ粒子は、約10~50nmにおいて、シャープな分布をしているものと認められた。本発明例5の抗菌ナノ粒子の平均粒子径は25nmであった。 The particle size of the antibacterial nanoparticles obtained at this time (Invention Example 5) was measured by a conventional method using a Zetasizer (Nano-ZS90 manufactured by Malvern). The result of the normal distribution of the particle diameter is shown in FIG. As a result, the antibacterial nanoparticles in Invention Example 5 were recognized to have a sharp distribution at about 10 to 50 nm. The average particle diameter of the antibacterial nanoparticles of Invention Example 5 was 25 nm.
 図6に本実施例で得られた抗菌ナノ粒子分散液の写真図を示した。これによれば本実施例の分散液は透明度が高い状態であると認められた。これは、本実施例で得られた抗菌ナノ粒子の平均粒子径が25nmと非常に微細であるため、透明度が向上したと考えられる。 FIG. 6 shows a photograph of the antibacterial nanoparticle dispersion obtained in this example. According to this, it was recognized that the dispersion liquid of this example is in a state of high transparency. This is thought to be because the average particle diameter of the antibacterial nanoparticles obtained in this example was as fine as 25 nm, and thus the transparency was improved.
〔実施例9〕
 500mLの容器に入れた精製水200gに、グリコール酸(有機酸:和光純薬工業株式会社製)0.4gと、ノニオン界面活性剤としてTween20(シグマアルドリッチジャパン合同会社製)2.0mLと、アニオン界面活性剤としてアルキルベンゼンスルホン酸ナトリウム0.2mL(シグマアルドリッチジャパン合同会社製)とを溶解させ、さらにイソブチルシアノアクリレート2.0gを滴下しマグネチックスターラー(AS ONE社製 RS-1DN)を使用して、室温下で600rpm、2時間の条件により重合反応を行った。反応液は5μmサイズのメンブレンフィルター(ザルトリウス社製:ミニザルト)にて濾過し、1.0wt%の抗菌ナノ粒子分散液を作製した。
Example 9
In 200 g of purified water in a 500 mL container, 0.4 g of glycolic acid (organic acid: manufactured by Wako Pure Chemical Industries, Ltd.), 2.0 mL of Tween 20 (manufactured by Sigma Aldrich Japan LLC) as a nonionic surfactant, and anion As a surfactant, 0.2 mL of sodium alkylbenzene sulfonate (manufactured by Sigma Aldrich Japan GK) is dissolved, 2.0 g of isobutyl cyanoacrylate is further added dropwise, and a magnetic stirrer (RS-1DN manufactured by AS ONE) is used. The polymerization reaction was performed under conditions of 600 rpm and 2 hours at room temperature. The reaction solution was filtered through a 5 μm-size membrane filter (manufactured by Sartorius: Mini Zalto) to prepare a 1.0 wt% antibacterial nanoparticle dispersion.
 このとき得られた抗菌ナノ粒子(本発明例6)の粒子径は、ゼータサイザー(Malvern社製Nano-ZS90)を用いて常法により測定した。当該粒子径の正規分布の結果を図7に示した。この結果、本発明例6における抗菌ナノ粒子は、約20~70nmにおいて、シャープな分布をしているものと認められた。本発明例6の抗菌ナノ粒子の平均粒子径は27nmであった。 The particle size of the antibacterial nanoparticles obtained at this time (Invention Example 6) was measured by a conventional method using a Zetasizer (Nano-ZS90 manufactured by Malvern). The result of the normal distribution of the particle diameter is shown in FIG. As a result, the antibacterial nanoparticles in Invention Example 6 were recognized to have a sharp distribution at about 20 to 70 nm. The average particle diameter of the antibacterial nanoparticles of Invention Example 6 was 27 nm.
〔実施例10〕
 実施例8においてノニオン界面活性剤を添加して作製した抗菌ナノ粒子分散液(本発明例5:平均粒子径25nm、40mg/L)、および、実施例1で作製した抗菌ナノ粒子分散液(本発明例1:平均粒子径155nm、40mg/L)について、バチルス属(Bacillus subtilis ISW 1214株)の細菌に対する抗菌効果について調べた。コントロールは比較例1のシアノアクリレートポリマー粒子の分散液を使用した。
Example 10
The antibacterial nanoparticle dispersion prepared by adding a nonionic surfactant in Example 8 (Invention Example 5: average particle diameter 25 nm, 40 mg / L) and the antibacterial nanoparticle dispersion prepared in Example 1 (present) Invention Example 1: The antibacterial effect on bacteria of the genus Bacillus subtilis ISW 1214 was examined for an average particle size of 155 nm and 40 mg / L. For the control, a dispersion of cyanoacrylate polymer particles of Comparative Example 1 was used.
 濁度0.05程度の菌液を本発明例1,5および比較例1の分散液に接種後、30℃にて約8時間放置し、分散液の濁度を調べた。結果を図8に示した。 The bacterial solution having a turbidity of about 0.05 was inoculated into the dispersions of Invention Examples 1 and 5 and Comparative Example 1, and then allowed to stand at 30 ° C. for about 8 hours to examine the turbidity of the dispersion. The results are shown in FIG.
 その結果、コントロールである比較例1の分散液では、4時間経過後の濁度は1以上にまで上昇したが、本発明例1,5の分散液では、4時間経過後の濁度は何れも0.1未満であったため、優れた抗菌性を有するものと認められた。特に、ノニオン界面活性剤を添加して作製した本発明例5の分散液では、約4~8時間経過した後であっても、実験開始後の濁度を下回っているため、特に優れた抗菌性を有するものと認められた。 As a result, in the dispersion of Comparative Example 1 as a control, the turbidity after 4 hours increased to 1 or more, but in the dispersions of Invention Examples 1 and 5, the turbidity after 4 hours passed Was less than 0.1, it was recognized as having excellent antibacterial properties. In particular, in the dispersion of Invention Example 5 prepared by adding a nonionic surfactant, the turbidity after the start of the experiment was below even after about 4 to 8 hours. It was recognized as having sex.
 本発明は、シアノアクリレートポリマー粒子を有効成分として含有する抗菌剤およびその製造方法に利用できる。 The present invention can be used for an antibacterial agent containing cyanoacrylate polymer particles as an active ingredient and a method for producing the same.

Claims (11)

  1.  有機酸を抱合或いは混合の少なくとも何れかの形態により含むシアノアクリレートポリマー粒子を有効成分として含有する抗菌剤。 An antibacterial agent containing, as an active ingredient, cyanoacrylate polymer particles containing an organic acid in at least any form of conjugation or mixing.
  2.  シアノアクリレートモノマー、糖類および有機酸の共存下において、前記シアノアクリレートモノマーをアニオン重合させることにより製造される請求項1に記載の抗菌剤。 The antibacterial agent according to claim 1, which is produced by anionic polymerization of the cyanoacrylate monomer in the presence of a cyanoacrylate monomer, a saccharide and an organic acid.
  3.  前記シアノアクリレートポリマー粒子の平均粒子径が1000nm未満である請求項1または2に記載の抗菌剤。 The antibacterial agent according to claim 1 or 2, wherein the average particle diameter of the cyanoacrylate polymer particles is less than 1000 nm.
  4.  さらに界面活性剤の存在下において、前記シアノアクリレートモノマーをアニオン重合させることにより製造される請求項2に記載の抗菌剤。 The antibacterial agent according to claim 2, which is produced by anionic polymerization of the cyanoacrylate monomer in the presence of a surfactant.
  5.  シアノアクリレートモノマー、界面活性剤および有機酸の共存下において、前記シアノアクリレートモノマーをアニオン重合させることにより製造される請求項1に記載の抗菌剤。 The antibacterial agent according to claim 1, which is produced by anionic polymerization of the cyanoacrylate monomer in the presence of a cyanoacrylate monomer, a surfactant and an organic acid.
  6.  前記シアノアクリレートモノマーがブチルシアノアクリレートである請求項2または4または5に記載の抗菌剤。 The antibacterial agent according to claim 2, 4 or 5, wherein the cyanoacrylate monomer is butyl cyanoacrylate.
  7.  前記有機酸がグリコール酸、フマル酸、クエン酸、酢酸、乳酸からなる群より選択される請求項1~6の何れか一項に記載の抗菌剤。 The antibacterial agent according to any one of claims 1 to 6, wherein the organic acid is selected from the group consisting of glycolic acid, fumaric acid, citric acid, acetic acid and lactic acid.
  8.  前記糖類が、水酸基を有する多糖類である請求項2または4に記載の抗菌剤。 The antibacterial agent according to claim 2 or 4, wherein the saccharide is a polysaccharide having a hydroxyl group.
  9.  シアノアクリレートモノマー、糖類および有機酸の共存下において、前記シアノアクリレートモノマーをアニオン重合させる工程を行うことにより製造される抗菌剤の製造方法。 A method for producing an antibacterial agent produced by anionic polymerization of the cyanoacrylate monomer in the presence of a cyanoacrylate monomer, a saccharide and an organic acid.
  10.  前記工程が、界面活性剤の存在下で行われる請求項9に記載の抗菌剤の製造方法。 The method for producing an antibacterial agent according to claim 9, wherein the step is performed in the presence of a surfactant.
  11.  シアノアクリレートモノマー、界面活性剤および有機酸の共存下において、前記シアノアクリレートモノマーをアニオン重合させる工程を行うことにより製造される抗菌剤の製造方法。 A method for producing an antibacterial agent produced by anionic polymerization of the cyanoacrylate monomer in the presence of a cyanoacrylate monomer, a surfactant and an organic acid.
PCT/JP2015/075696 2014-09-11 2015-09-10 Antibacterial agent and method for producing antibacterial agent WO2016039412A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016547498A JPWO2016039412A1 (en) 2014-09-11 2015-09-10 Antibacterial agent and method for producing antibacterial agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-185387 2014-09-11
JP2014185387 2014-09-11

Publications (1)

Publication Number Publication Date
WO2016039412A1 true WO2016039412A1 (en) 2016-03-17

Family

ID=55459156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075696 WO2016039412A1 (en) 2014-09-11 2015-09-10 Antibacterial agent and method for producing antibacterial agent

Country Status (2)

Country Link
JP (1) JPWO2016039412A1 (en)
WO (1) WO2016039412A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017081852A (en) * 2015-10-28 2017-05-18 チカミミルテック株式会社 Antibacterial agent, and method for producing the antibacterial agent
WO2018193847A1 (en) * 2017-04-18 2018-10-25 チカミミルテック株式会社 Algae growth inhibitor and method for inhibiting algae growth
JP2021116264A (en) * 2020-01-27 2021-08-10 三菱鉛筆株式会社 Antibacterial particle water dispersion
JP2023000739A (en) * 2021-06-18 2023-01-04 三菱鉛筆株式会社 antimicrobial particle dispersion
JP7454386B2 (en) 2020-01-27 2024-03-22 三菱鉛筆株式会社 Water-based ink composition for writing instruments

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060273A (en) * 2003-08-08 2005-03-10 Daiichi Seimou Co Ltd Organic acid preparation
WO2008126846A1 (en) * 2007-04-09 2008-10-23 Yokohama City University Antibacterial agent for vancomycin-resistant gram-positive bacterium
WO2013108871A1 (en) * 2012-01-19 2013-07-25 Shirotake Shoichi Antibacterial agent against plant disease-causing bacteria

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060273A (en) * 2003-08-08 2005-03-10 Daiichi Seimou Co Ltd Organic acid preparation
WO2008126846A1 (en) * 2007-04-09 2008-10-23 Yokohama City University Antibacterial agent for vancomycin-resistant gram-positive bacterium
WO2013108871A1 (en) * 2012-01-19 2013-07-25 Shirotake Shoichi Antibacterial agent against plant disease-causing bacteria

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GAO,Y. ET AL.: "In Vitro Release Kinetics of Antituberculosis Drugs from Nanoparticles Assessed Using a Modified Dissolution Apparatus", BIOMED RESEARCH INTERNATIONAL, 2013, [retrieved on 20151106] *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017081852A (en) * 2015-10-28 2017-05-18 チカミミルテック株式会社 Antibacterial agent, and method for producing the antibacterial agent
WO2018193847A1 (en) * 2017-04-18 2018-10-25 チカミミルテック株式会社 Algae growth inhibitor and method for inhibiting algae growth
JPWO2018193847A1 (en) * 2017-04-18 2020-03-05 チカミミルテック株式会社 Algae growth inhibitor and method for suppressing algae growth
JP7134442B2 (en) 2017-04-18 2022-09-12 チカミミルテック株式会社 Algae growth inhibitor and method for inhibiting algae growth
JP2021116264A (en) * 2020-01-27 2021-08-10 三菱鉛筆株式会社 Antibacterial particle water dispersion
JP7324720B2 (en) 2020-01-27 2023-08-10 三菱鉛筆株式会社 antibacterial particle water dispersion
JP7454386B2 (en) 2020-01-27 2024-03-22 三菱鉛筆株式会社 Water-based ink composition for writing instruments
JP2023000739A (en) * 2021-06-18 2023-01-04 三菱鉛筆株式会社 antimicrobial particle dispersion

Also Published As

Publication number Publication date
JPWO2016039412A1 (en) 2017-07-13

Similar Documents

Publication Publication Date Title
WO2016039412A1 (en) Antibacterial agent and method for producing antibacterial agent
Arabi Shamsabadi et al. Antimicrobial mode-of-action of colloidal Ti3C2T x MXene nanosheets
Hendessi et al. Antibacterial sustained-release coatings from halloysite nanotubes/waterborne polyurethanes
Dai et al. Functional silver nanoparticle as a benign antimicrobial agent that eradicates antibiotic-resistant bacteria and promotes wound healing
JP6002757B2 (en) Composition and method of antibacterial metal nanoparticles
Smetana et al. Biocidal activity of nanocrystalline silver powders and particles
US10577247B2 (en) Hybrid nanomaterial of graphene oxide nanomaterial and cationic quaternized chitosan
Chen et al. Enhanced antimicrobial efficacy of bimetallic porous CuO microspheres decorated with Ag nanoparticles
Grumezescu et al. In vitro activity of the new water-dispersible Fe 3 O 4@ usnic acid nanostructure against planktonic and sessile bacterial cells
Mohammed et al. Assessment of antimicrobial activity of chitosan/silver nanoparticles hydrogel and cryogel microspheres
Habimana et al. One particle, two targets: A combined action of functionalised gold nanoparticles, against Pseudomonas fluorescens biofilms
Awasthi et al. Dose dependent enhanced antibacterial effects and reduced biofilm activity against Bacillus subtilis in presence of ZnO nanoparticles
Yang et al. Biocompatible graphene-based nanoagent with NIR and magnetism dual-responses for effective bacterial killing and removal
Ulagesan et al. Biogenic preparation and characterization of Pyropia yezoensis silver nanoparticles (Py AgNPs) and their antibacterial activity against Pseudomonas aeruginosa
JP2016056481A (en) Antibacterial sheet and method for producing antibacterial sheet
Safavi et al. The study of nano silver (NS) antimicrobial activity and evaluation of using NS in tissue culture media
Altaf et al. Effective inhibition and eradication of pathogenic biofilms by titanium dioxide nanoparticles synthesized using Carum copticum extract
Vijayakumar et al. Intracellular biogenic silver nanoparticles for the generation of carbon supported antiviral and sustained bactericidal agents
JP2017081852A (en) Antibacterial agent, and method for producing the antibacterial agent
Gupta et al. Comparative assessment of antibacterial efficacy for cobalt nanoparticles, bulk cobalt and standard antibiotics: a concentration dependant study
US20180027804A1 (en) Particle based enhanced removal for disinfection of surfaces
Paunova-Krasteva et al. Destruction of Pseudomonas aeruginosa pre-formed biofilms by cationic polymer micelles bearing silver nanoparticles
Selim et al. Novel blade-like structure of reduced graphene oxide/α-Mn2O3 nanocomposite as an antimicrobial active agent against aerobic and anaerobic bacteria
Demarchi et al. Synthesis of Ag@ Fe2O3 nanocomposite based on O-carboxymethylchitosan with antimicrobial activity
Qu et al. Carboxymethyl cellulose capped zinc oxide nanoparticles dispersed in ionic liquid and its antimicrobial effects against foodborne pathogens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547498

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839412

Country of ref document: EP

Kind code of ref document: A1