WO2016039351A1 - 絶縁電線、コイルおよび電気・電子機器ならびに絶縁電線の製造方法 - Google Patents

絶縁電線、コイルおよび電気・電子機器ならびに絶縁電線の製造方法 Download PDF

Info

Publication number
WO2016039351A1
WO2016039351A1 PCT/JP2015/075501 JP2015075501W WO2016039351A1 WO 2016039351 A1 WO2016039351 A1 WO 2016039351A1 JP 2015075501 W JP2015075501 W JP 2015075501W WO 2016039351 A1 WO2016039351 A1 WO 2016039351A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
insulated wire
glass transition
transition temperature
conductor
Prior art date
Application number
PCT/JP2015/075501
Other languages
English (en)
French (fr)
Inventor
佳祐 池田
秀雄 福田
Original Assignee
古河電気工業株式会社
古河マグネットワイヤ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 古河マグネットワイヤ株式会社 filed Critical 古河電気工業株式会社
Priority to CN201580048164.4A priority Critical patent/CN107004466B/zh
Priority to EP15840156.2A priority patent/EP3193338B1/en
Priority to KR1020177009501A priority patent/KR102020366B1/ko
Publication of WO2016039351A1 publication Critical patent/WO2016039351A1/ja
Priority to US15/453,472 priority patent/US10037833B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0275Disposition of insulation comprising one or more extruded layers of insulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/065Insulating conductors with lacquers or enamels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • H01B13/148Selection of the insulating material therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • H01B13/24Sheathing; Armouring; Screening; Applying other protective layers by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/301Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen or carbon in the main chain of the macromolecule, not provided for in group H01B3/302
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/308Wires with resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/292Protection against damage caused by extremes of temperature or by flame using material resistant to heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material

Definitions

  • the present invention relates to an insulated wire, a coil, an electric / electronic device, and a method of manufacturing the insulated wire.
  • winding parts also referred to as coil processing and bending processing
  • insulated electric wires are very narrow parts.
  • winding parts also referred to as coil processing and bending processing
  • the performance of a rotating machine such as the motor is determined by how many coils obtained by coiling an insulated wire can be inserted into the stator slots.
  • a flat wire whose cross-sectional shape of the conductor is similar to a rectangle (square or rectangle) is used.
  • Patent Document 2 proposes using in combination.
  • a resin composition having a phase separation structure in which a polyetheretherketone resin is used as a continuous phase and a resin having a relative dielectric constant of 2.6 or less is used as a dispersed phase may be used.
  • Patent Document 3 proposes. Furthermore, in order to improve insulation with a resin having a low relative dielectric constant, a fluorine resin comprising a copolymer of perfluoroethylene and a perfluorinated alkoxyethylene with respect to an aromatic polyether ketone resin may be used. Patent Document 4 proposes mixing at 50% by mass.
  • the insulated wire When a current flows through the insulated wire incorporated in the electrical device, the insulated wire becomes hot due to the heat generated.
  • the electric devices used in automobiles and the like are becoming smaller and higher in output year by year, and the temperature inside the device is rising along with this, and in some cases, the temperature may exceed 200 ° C.
  • the breakdown voltage (BDV; Break Down Voltage) of the coiled and wound insulated wire housed in the stator slot is It turned out to fall.
  • BDV Break Down Voltage
  • the collapse of the film depends on the degree of crystallinity of the resin constituting the film.
  • the degree of crystallinity of the resin is low, for example, in the case of polyetheretherketone (PEEK) having a degree of crystallinity of 36.4%, the thickness of the film may be shrunk by 30% at a compression pressure of 10 to 20 MPa. I understand. Therefore, it was found that when a resin having a high degree of crystallinity is used, the film breakage is suppressed while the elongation at break decreases.
  • the thermal aging resistance is excellent and mechanical properties are maintained or improved without depending on the crystallinity of the resin used, and the dielectric breakdown voltage after heating in the iron core winding state is reduced.
  • An object of the present invention is to provide a suppressed insulated wire, a coil using the same, and an electric / electronic device. Another object of the present invention is to provide a method of manufacturing such an insulated wire.
  • the present inventors examined in the mixed resin which combined at least 2 type of resin in order to make these make it compatible. Specifically, various studies were conducted in consideration of the characteristics of the insulated wire under a high temperature environment supposing the inside of the apparatus in which the insulated wire is used, particularly in an environment of 200 ° C. which may actually occur. As a result, it has been found that a combination of a crystalline resin and a resin having a different glass transition temperature is effective, and the present invention has been made by further investigation.
  • An insulated wire having at least one insulating layer on the outer periphery of a conductor, In at least one layer of the insulating layer, a crystalline resin (A), and a resin (B) whose glass transition temperature measured by thermomechanical analysis is 30 ° C. or more higher than the glass transition temperature of the crystalline resin (A)
  • An insulated wire comprising: a mixed resin of: and the mixed mass ratio of the mixed resin (the mass of the crystalline resin (A): the mass of the resin (B)) is 90:10 to 51:49.
  • the crystalline resin (A) is characterized by containing at least one selected from polyetheretherketone, polyetherketoneketone, polyetherketone, polyetherketoneetherketoneketone and polyphenylene sulfide ((3) The insulated wire as described in 1) or (2).
  • the resin (B) is characterized by containing at least one selected from polyphenyl sulfone, polysulfone, polyether sulfone, polyether imide, and thermoplastic polyimide.
  • thermosetting resin layer containing at least one selected from polyamide imide, polyether imide, polyimide, and H-type polyester is provided on the outer periphery of the conductor (1) to (5)
  • the manufacturing method of the insulated wire characterized by including the process of extrusion-molding the resin composition containing the said mixed resin on the outer periphery of the said conductor, and forming the said insulating layer.
  • a method comprising forming a thermosetting resin layer containing at least one selected from polyamide imide, polyether imide, polyimide and H-type polyester on the outer periphery of the conductor (9) The manufacturing method of the insulated wire as described.
  • the heat aging resistance is excellent and mechanical properties are maintained or improved without depending on the crystallinity of the resin used, and the dielectric breakdown voltage after heating in a core wound state It has become possible to provide an insulated wire in which the drop in the volume is suppressed, a coil and an electric / electronic device using the same. Further, according to the present invention, it is possible to provide a method for producing the above-described excellent insulated wire.
  • FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of the insulated wire of the present invention.
  • FIG. 2 is the schematic sectional drawing which showed typically the film crushing which arises when it heats in the state with which the insulated wire was wound.
  • the insulated wire (also referred to as an insulated wire) of the present invention has a conductor and at least one insulating layer on the outer periphery of the conductor.
  • at least one of the insulating layers preferably has an extrusion-coated resin layer.
  • FIG. 1 schematically shows a cross-sectional view of the insulated wire 1 according to a preferred embodiment of the present invention.
  • an insulating layer is formed on the outer periphery of the conductor 11, and the insulating layer is an insulated wire having a two-layer configuration in which the thermosetting resin layer 12 and the extrusion coating resin layer 13 are stacked in contact with the conductor.
  • the insulated wire has the thermosetting resin layer 12.
  • FIG. 2 schematically shows the film breakage that occurs when the wound insulated wire is heated, and shows the phenomenon that occurs when pressure is applied from the upper side of the drawing. Note that the drawing on the right is the one where the film was crushed.
  • the total thickness of the wire coating (total thickness of all insulating layers: total thickness from the conductor to the surface) in a cross section perpendicular to the longitudinal direction of the insulated wire of the present invention is preferably 50 to 300 ⁇ m, more preferably 60 to 200 ⁇ m .
  • a conductor used for this invention what is conventionally used by the insulated wire can be used, and metal conductors, such as a copper wire and an aluminum wire, are mentioned.
  • metal conductors such as a copper wire and an aluminum wire
  • it is a conductor of low oxygen copper having an oxygen content of 30 ppm or less, more preferably 20 ppm or less of low oxygen copper or oxygen free copper. If the oxygen content is 30 ppm or less, there is no generation of voids due to oxygen contained in the welded portion when it is melted by heat to weld the conductor, and the deterioration of the electrical resistance in the welded portion is prevented and the welded portion Can maintain the strength of
  • the conductor used in the present invention may be any shape such as circular (round shape), rectangular (flat shape) or hexagonal shape in cross section, but the rectangular conductor is compared to the circular one, and the conductor at the time of winding is It is preferable because the space factor of the conductor to the stator slot is high.
  • the size (cross-sectional shape) of the rectangular conductor is not particularly limited, but the width (long side) is preferably 1 to 5 mm, more preferably 1.4 to 4.0 mm, and the thickness (short side) is 0.4 -3.0 mm is preferable, and 0.5-2.5 mm is more preferable.
  • curvature radius r is a shape which provided chamfer (curvature radius r) in four corners of a rectangle.
  • the curvature radius r is preferably equal to or less than 0.6 mm, and more preferably 0.2 to 0.4 mm.
  • the size is not particularly limited, but the diameter is preferably 0.3 to 3.0 mm, and more preferably 0.4 to 2.7 mm.
  • Extrusion-coated resin layer In the insulated wire of the present invention, at least one insulating layer is made of a mixed resin composed of at least two resins.
  • the insulating layer is preferably an extrusion-molded extrusion-coated resin layer.
  • resin which forms an extrusion coating resin layer is a thermoplastic resin which can be extrusion-molded.
  • the extrusion-coated resin layer may be provided on the outer periphery of the conductor in contact with the conductor, or may be provided on the outside of another insulating layer, for example, a thermosetting resin layer.
  • the extrusion-coated resin layer may be a single layer or a plurality of layers.
  • the extrusion-coated resin layer is a crystalline resin (A) and a resin having a glass transition temperature (Tg) measured by thermomechanical analysis that is 30 ° C. or more higher than the glass transition temperature of the crystalline resin (A) ( B) mixed resin.
  • Tg glass transition temperature
  • Thermoplastic resins are roughly classified into crystalline resins and non-crystalline resins.
  • Crystalline resins have crystalline regions in which molecular chains are regularly arranged, and those having a high ratio of the amount of the crystallized regions are crystallized. The degree is high.
  • the crystalline resin has a glass transition temperature (Tg) and a melting point which is not exhibited by the noncrystalline resin, and a volume change (shrinkage) occurs with crystallization.
  • Tg glass transition temperature
  • shrinkage volume change
  • mechanical strength, chemical resistance, slidability, rigidity and springability are generally superior as compared with non-crystalline resins.
  • At least one of the mixed resins used in the present invention is a crystalline resin (A).
  • the crystalline resin (A) for example, polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyetherketone (PEK), polyetheretherketoneketone (PEEKK), polyetherketoneetherketoneketone (PEKEKK), polyketone (PK), polyphenylene sulfide (PPS), polymethylpentene (PMP), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-ethylene copolymer Aliphatic polyamide including polyamide (6, 66, 11, 12, 610, 46), polyamide 6T, 9T, M, combined (ETFE), tetrafluoroethylene-perfluoroalkylvinylether copolymer (PFA) D6, aromatic polyamide containing polyphthalamide, polyethylene terephthalate (PET), poly
  • these resins also include those modified.
  • modified polyetheretherketone m-PEEK
  • PEEK modified polyetheretherketone
  • polyetheretherketone PEEK
  • PEKK polyetherketoneketone
  • PEK polyetherketone
  • PEKEKK polyetherketoneetherketoneketone
  • PPS polyphenylene sulfide
  • PEEK examples include KetaSpire KT-820 (trade name of Solvay Specialty Polymers, Inc.), PEEK 450G (trade name of Victrex Japan, trade name), and as modified PEEK, AvaSpire AV-650 (produced by Solvay Specialty Polymers, Inc.
  • PEKK is super engineering plastic PEKK (made by Arkema Japan, trade name), PEK is HT-G22 (made by Victrex, trade name), PEKEKK is ST-STG 45 (made by VICTTREX)
  • PPS include commercially available products such as Juranex 0220A9 (manufactured by Polyplastics Co., Ltd., trade name) and PPS FZ-2100 (manufactured by DIC, trade name).
  • the degree of crystallinity includes relative degree of crystallinity and absolute degree of crystallinity, and in the present invention means relative degree of crystallinity.
  • the relative crystallinity degree and the absolute crystallinity degree can be determined as follows.
  • the heat of crystal melting and the heat of crystallization are obtained by differential scanning calorimetry. For example, PPS is heated at a rate of 5 ° C./min, and the heat absorption amount (heat of fusion) attributable to melting observed in the region exceeding 300 ° C. and heat generation amount attributable to crystallization observed around 150 ° C. (crystal Heat of transformation) is observed.
  • the heat of fusion of a perfect crystal is a theoretical value, and the heat of fusion of a perfect crystal can not be observed, and is a value theoretically determined assuming a completely crystallized state. .
  • the crystallinity degree of the crystalline resin to be used is high, it is hard to produce film crushing.
  • the glass transition temperature (Tg) measured by thermomechanical analysis is a glass of crystalline resin (A)
  • Use resin (B) which is 30 ° C. or more higher than the transition temperature.
  • the glass transition temperature (Tg) of the resin (B) is preferably 40 ° C. or more higher than the glass transition temperature of the crystalline resin (A), more preferably 50 ° C. or more, and further preferably 60 ° C. or more preferable.
  • the upper limit of the difference between the glass transition temperatures of the crystalline resin (A) and the resin (B) is not particularly limited, but is practically 200 ° C. or less, preferably 150 ° C. or less.
  • the glass transition temperature (Tg) of the resin (B) By setting the glass transition temperature (Tg) of the resin (B) relative to the glass transition temperature of the crystalline resin (A) in the above range, the elasticity of the crystalline resin (A) at the glass transition temperature (Tg) at the time of heating Since the resin (B) suppresses the decrease in the rate, as a result, it is possible to suppress the rate of decrease in the film during winding and heating. As the difference between the glass transition temperatures of the crystalline resin (A) and the resin (B) increases, the region in which the elastic modulus of the two decreases decreases, so that a more preferable result can be obtained against film breakage during heating.
  • the glass transition temperature difference between the crystalline resin (A) and the resin (B) is less than 30 ° C., the decrease in elastic modulus can not be suppressed, which is preferable in the measurement of the dielectric breakdown voltage after heating in the iron core winding state I can not get results.
  • 70 degreeC or more is preferable, 80 degreeC or more is more preferable, 90 degreeC or more is further more preferable, and, as for the glass transition temperature (Tg) of resin (A), 100 degreeC or more is especially preferable.
  • Tg glass transition temperature
  • the upper limit is not particularly limited, it is practically 200 ° C. or less.
  • the glass transition temperature (Tg) can be measured by thermomechanical analysis (TMA), differential scanning calorimetry (DSC), or differential mechanical analysis (DMA), but in the present invention, thermomechanical analysis It is the glass transition temperature (Tg) calculated
  • thermomechanical analysis refers to measuring the deformation of the material as a function of temperature or time by applying a non-oscillating load such as compression, tension, or bending while changing the temperature of the sample by a constant program.
  • a thermomechanical analyzer for example, thermomechanical analyzer (TMA / SS), TMA7000 series manufactured by Hitachi High-Tech Science Co., Ltd.) or a dynamic viscoelasticity analyzer (for example, DMA manufactured by Perkin Elmer) 8000) (all are trade names).
  • TMA thermomechanical analyzer
  • TMA7000 series manufactured by Hitachi High-Tech Science Co., Ltd.
  • DMA dynamic viscoelasticity analyzer
  • Tg glass transition temperature
  • the resin (B) may be a crystalline resin or a noncrystalline resin.
  • non-crystalline resin polyare (PAR), polysulfone (PSU), polyether sulfone (PES), polyamide imide (PAI), polyether imide (PEI), thermoplastic polyimide (TPI) polycarbonate (PC), modified polyphenylene Ether (m-PPE), polyvinyl chloride (PVC), polystyrene (PS), ABS resin, AS resin, acrylic resin (PMMA) can be mentioned.
  • thermoplastic polyimide (TPI) is mentioned.
  • a noncrystalline resin does not have a melting point, and only a glass transition temperature (Tg) exists.
  • the non-crystalline resin is transparent, has a small change in volume at the time of cooling and solidification, is excellent in creep resistance, weather resistance and impact resistance, has low water absorption, but is poor in chemical resistance and causes stress cracks.
  • the resin (B) has a higher glass transition temperature (Tg) and is excellent in heat aging resistance. Therefore, polyphenyl sulfone (PPSU), polysulfone (PSU), polyether sulfone (PES), polyether imide (PEI) And at least one selected from thermoplastic polyimides (TPI).
  • PPSU polyphenyl sulfone
  • PSU polysulfone
  • PES polyether sulfone
  • PEI polyether imide
  • TPI thermoplastic polyimides
  • PPSU for example, Radel R5800 (manufactured by Solvay Advanced Polymers, trade name), as PSU, for example, Eudel PSU (manufactured by Solvay Advanced Polymers, trade name), as PES, for example, Sumika Excel 4800G (Sumitomo Chemical Co., Ltd.) Company-made products (trade names), PES (made by Mitsui Chemicals, trade name), Ultrazone E (made by BASF Japan Ltd., trade names), Radel A (made by Solvay Advanced Polymers, trade names), PEI, for example, Commercial products such as Ultem 1010 (Sabik Innovative Plastics Co., Ltd., trade name) and TPI include Aurum PL450C (Mitsui Chemical Co., Ltd., trade name).
  • the mixing mass ratio of the crystalline resin (A) to the resin (B) is 90:10 to 51:49, 90: 10 to 60:40 is preferable, and 80:20 to 60:40 is more preferable.
  • the mixing mass ratio in the above-mentioned range, it is possible to maintain or improve mechanical properties and adhesion and to suppress a decrease in the dielectric breakdown voltage at the time of winding. Above all, the elongation at break in the tensile test can be improved.
  • PEEK and PEI, or PEEK and TPI when the PEEK that is the crystalline resin (A) is 51% by mass or more, the elongation at break under the following measurement conditions exceeds 100%.
  • the mixed mass ratio of the crystalline resin (A) exceeds 90, the decrease in the dielectric breakdown voltage during winding is not suppressed, and when it is less than 51, the elongation at break decreases and the heat aging resistance is poor.
  • the elongation at break of the resin used for the extrusion-coated resin layer was measured as follows.
  • the resin used for the extrusion-coated resin layer is compression molded to a thickness of 0.15 mm using a hot press and processed into a sheet.
  • the obtained sheet is punched into a dumbbell piece (IEC-S type), and this is used as a test piece.
  • the elongation average value between the marked lines at the time of breakage needs to be 80% or more.
  • the thickness of the extrusion-coated resin layer is preferably 5 ⁇ m or more, and more preferably 15 ⁇ m or more, from the viewpoint of preventing insulation failure.
  • the thickness of the extrusion-coated resin layer provided on one of the two opposing sides and the other of the two corresponding sides among the four sides of the rectangle is either 200 micrometers or less are preferable.
  • a mixed resin of resin (A) and resin (B) to be used for the extrusion-coated resin layer using a co-extruder on the outer peripheral surface of the conductor (also referred to as enameled wire) on which the conductor or thermosetting resin layer is formed
  • the respective resins are extruded simultaneously to form an extruded coated resin layer.
  • the mixed resin is brought into the molten state at a temperature higher than the glass transition temperature of the resin, and is brought into contact with the conductor or the enameled wire by extrusion.
  • the extrusion coating resin is thermally fused to the thermosetting resin layer to form an extrusion coating resin layer.
  • the thermoplastic resin layer (for example, a layer made of the mixed resin used in the present invention) can also be formed using an organic solvent or the like and a thermoplastic resin.
  • the extrusion temperature conditions are preferably divided into at least three zones such as C1, C2 and C3 in order from the resin input side to adjust the temperature of the cylinder in the extruder, and further, the head portion (H) and the die portion (D) Adjust the temperature of
  • the temperature of C1 is preferably 260 to 310 ° C.
  • the temperature of C2 is preferably 300 to 380 ° C.
  • the temperature of C3 is preferably 310 to 380 ° C.
  • the temperature of the head portion (H) is preferably 320 to 390 ° C.
  • the temperature of the die portion (D) is preferably 320 to 390 ° C.
  • the extrusion die uses a die that is similar to the conductor and provides the required thickness.
  • the insulated wire of the present invention may be provided with another insulating layer in addition to the above-mentioned extrusion coated resin layer.
  • another insulating layer in addition to the above-mentioned extrusion coated resin layer.
  • a thermosetting resin layer in this case, also referred to as an enamel layer
  • it is provided between the conductor and the extrusion-coated resin layer.
  • thermosetting resin layer is preferably provided with at least one layer of enamel resin, but may be a plurality of layers.
  • one layer of a thermosetting resin layer in order to increase thickness, what was baked repeatedly the same varnish is included, and what was formed with a different varnish is counted as another layer.
  • polyimide resins having excellent heat resistance such as polyimide (PI), polyamide imide (PAI), polyester imide (PEsI), polyether imide (PEI), polyimide hydantoin modified polyester and the like, and class H polyester (HPE) are preferable.
  • resins selected from polyamideimide (PAI), polyetherimide (PEI), polyimide (PI) and H-type polyester (HPE) are particularly preferable.
  • the polyamideimide (PAI) may be any thermosetting one, and is a commercially available product (for example, trade name: U-imide (manufactured by Unitika), trade name: U-varnish (manufactured by Ube Industries, Ltd.), trade name: HCI Obtained by directly reacting tricarboxylic acid anhydride and diisocyanates in a polar solvent or using a series (made by Hitachi Chemical Co., Ltd.) or in a conventional manner, or diamines to tricarboxylic acid anhydride in a polar solvent Can be reacted first to introduce an imide bond and then amidated with diisocyanates to obtain a product.
  • Polyamideimide has a lower thermal conductivity than other resins, a high dielectric breakdown voltage, and can be baked and cured.
  • Polyether imide can mention the commercial item of Ultem 1010 (Sabik Innovative Plastics company make, brand name), for example.
  • the polyimide is not particularly limited, and a common polyimide such as a wholly aromatic polyimide and a thermosetting aromatic polyimide can be used.
  • a polyamic acid solution obtained by reacting an aromatic tetracarboxylic acid dianhydride and an aromatic diamine in a polar solvent using a commercially available product (Hitachi Chemical Co., Ltd., trade name: HI406) or by a conventional method What is obtained by making it imidate by heat processing at the time of baking at the time of use and coating can be used.
  • the H-type polyester is a compound obtained by modifying a resin by adding a phenol resin or the like among the aromatic polyester, and refers to one having a heat-resistant class of H-type.
  • Examples of commercially available H type polyester include Isonel 200 (trade name, manufactured by Schenecta International, Inc.).
  • enamel resins may be used singly or in combination of two or more.
  • the thickness of the thermosetting resin layer is 60 ⁇ m or less in that the number of times of passing through the baking furnace when forming the enamel layer can be reduced and the adhesion between the conductor and the thermosetting resin layer can be prevented from being extremely reduced. Is preferable, and 50 ⁇ m or less is more preferable. Further, in order not to impair the withstand voltage characteristics and the heat resistance characteristics which are characteristics necessary for the enameled wire as the insulated wire, it is preferable that the thermosetting resin layer has a certain thickness.
  • the lower limit of the thickness of the thermosetting resin layer is not particularly limited as long as it does not cause pinholes, and is preferably 3 ⁇ m or more, and more preferably 6 ⁇ m or more.
  • the thickness of the thermosetting resin layer provided on one of the two opposing sides and the other of the two corresponding sides among the four sides of the rectangle is preferably 60 ⁇ m or less.
  • the thermosetting resin layer can be formed by applying and baking a resin varnish containing the above-mentioned enamel resin on the conductor preferably a plurality of times.
  • the resin varnish contains an organic solvent and the like in order to make the thermosetting resin varnish.
  • the organic solvent is not particularly limited as long as it does not inhibit the reaction of the thermosetting resin, and, for example, N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (DMAC), N, N-dimethylformamide Amide solvents such as (DMF), urea solvents such as N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea and tetramethylurea, lactone solvents such as ⁇ -butyrolactone and ⁇ -caprolactone, propylene carbonate Carbonate solvents, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, ethyl a
  • amide solvents, phenol solvents and urea solvents are preferable, and in that they do not have a hydrogen atom that easily inhibits the crosslinking reaction by heating, etc.
  • the above-mentioned amide solvents, the above-mentioned phenol solvents, the above-mentioned urea solvents and dimethyl sulfoxide are preferable, and the above-mentioned amide solvents and dimethyl sulfoxide are particularly preferable.
  • the resin varnish used in the present invention does not affect the properties, and the bubble forming nucleating agent, antioxidant, antistatic agent, ultraviolet light inhibitor, light stabilizer, fluorescent brightening agent, pigment, dye, compatibilizer
  • Various additives such as lubricants, reinforcing agents, flame retardants, crosslinking agents, crosslinking aids, plasticizers, thickeners, viscosity reducing agents and elastomers may be contained. Further, a layer made of a resin containing these additives may be laminated on the obtained insulated wire, or a paint containing these additives may be coated.
  • the resin varnish may be baked by adding a powder having a high aspect ratio, such as glass fiber or carbon nanotube, to the paint in order to improve the elastic modulus of the thermosetting resin layer.
  • a powder having a high aspect ratio such as glass fiber or carbon nanotube
  • the method of applying the resin varnish may be a conventional method, for example, a method of using a varnish coating die having a similar shape of the conductor shape, and a “universal die” formed in a parallel cross section if the conductor cross section is square.
  • dies called is mentioned.
  • the conductor coated with a resin varnish containing an enamel resin is baked in a baking furnace in a conventional manner.
  • the specific baking conditions depend on the shape of the furnace used, etc., in the case of an approximately 5 m natural convection vertical furnace, the passage time is set to 10 to 90 seconds at 400 to 500 ° C. Can be achieved by
  • the method for producing an insulated wire of the present invention is a method for producing an insulated wire having at least one insulating layer including an extrusion-coated resin layer on the outer periphery of a conductor as described above.
  • the extrusion-coated resin layer is made of a mixed resin of resin (A) and resin (B) having different glass transition temperatures (Tg), and the resin (A) is crystalline Resin having a glass transition temperature (Tg) measured by thermomechanical analysis of the resin (B) higher by at least 30 ° C. than the glass transition temperature of the crystalline resin (A), and the mixed resin
  • Tg glass transition temperature measured by thermomechanical analysis of the resin (B) higher by at least 30 ° C. than the glass transition temperature of the crystalline resin (A)
  • the mixed mass ratio of (mass of crystalline resin (A): mass of resin (B)) is 90:10 to 51:49.
  • the manufacturing method of the insulated wire of this invention includes the process of extrusion-molding the resin composition containing said mixed resin, for example on the outer periphery of a conductor, and forming the said extrusion coating resin layer.
  • the details of the method of forming the individual layers are as described for the extrusion-coated resin layer and the thermosetting resin layer.
  • the insulated wire of the present invention can be used in fields requiring voltage resistance and heat resistance, such as various electric devices.
  • the insulated wire of the present invention is coiled and used for a motor, a transformer, etc., and can constitute a high-performance electrical device.
  • it is suitably used as a winding for a drive motor of an HV (hybrid car) or an EV (electric car).
  • HV hybrid car
  • EV electric car
  • the insulated wire of the present invention is used for a motor coil, it is also referred to as a motor coil insulated wire.
  • it is suitably used as an insulating winding for an electronic / electrical device having a temperature exceeding 200 ° C., particularly for a drive motor for HV and EV.
  • PEEK Polyether ether ketone
  • PPSU polyphenyl sulfone
  • the extrusion temperature conditions were set to C1: 300 ° C., C2: 370 ° C., C3: 380 ° C., H: 390 ° C., D: 390 ° C.
  • C1, C2, and C3 are temperatures of cylinders in the extruder, and indicate temperatures of three zones in order from the resin input side.
  • H indicates the temperature of the head and D indicates the temperature of the die.
  • the above resin was extrusion-coated using an extrusion die and then water-cooled to obtain an insulated wire having a 30 ⁇ m-thick extrusion-coated resin layer made of a mixed resin of PEEK and PPSU on a conductor.
  • Examples 2 to 4 and Comparative Examples 1 to 5 An insulated wire was produced in the same manner as in Example 1 except that the resins were combined as shown in Tables 1 and 2 below.
  • Example 5 In the following procedure, an insulated wire having the extrusion-coated resin layer and the thermosetting resin layer shown in FIG. 1 was produced.
  • PAI polyamide imide resin
  • the obtained enameled wire was used as a core wire, and an extrusion coated resin layer of a second insulating layer was formed on the outside of this enamel layer.
  • Resins to be extrusion coated include polyetheretherketone (PEEK) (manufactured by Solvay Specialty Polymers, trade name: KetaSpire KT-880, glass transition temperature (Tg) 143 ° C.) and polyetherimide (PEI) (Sabik Innovative Plastics) The trade name: Ultem 1010, glass transition temperature (Tg) 213 ° C.] was used at a mass ratio in Table 1 below.
  • the extrusion temperature conditions were set to C1: 300 ° C., C2: 370 ° C., C3: 380 ° C., H: 390 ° C., D: 390 ° C.
  • C1, C2, and C3 are temperatures of cylinders in the extruder, and indicate temperatures of three zones in order from the resin input side.
  • H indicates the temperature of the head and D indicates the temperature of the die.
  • the above resin is extrusion coated using an extrusion die and then water cooled to obtain a total thickness (enamel layer and extrusion coating) having an extrusion coated resin layer of 150 ⁇ m in thickness consisting of a mixed resin of PEEK and PEI on an enameled wire Total thickness of resin layer) An insulated wire of 189 ⁇ m was obtained.
  • the resin used is the following resin.
  • PAI polyamide imide resin
  • PI Polyimide resin
  • Crystalline resin A
  • PEEK Polyether ether ketone
  • PES Polyether ketone
  • Victrex trade name: HT-G22, glass transition temperature (Tg) 162 ° C.
  • PPS Polyphenylene phenylene sulfide
  • PPS Polyphenylene phenylene sulfide
  • PEKK Polyether ketone ketone
  • Resin (B) Polyphenyl sulfone (PPSU) (manufactured by Solvay Advanced Polymers, trade name: Radel R5800, glass transition temperature (Tg) 218 ° C.) -Polyether imide (PEI) (manufactured by Subic Innovative Plastics, trade name: Ultem 1010, glass transition temperature (Tg) 213 ° C.) Thermoplastic polyimide (TPI) (manufactured by Mitsui Chemicals, Inc., trade name: Aurum PL450C, glass transition temperature (Tg) 225 ° C.) -Polysulfone (PSU) (manufactured by Solvay Advanced Polymers, trade name: Udel P-1700, glass transition temperature (Tg) 83 ° C.) -Polyether sulfone (PES) (manufactured by Sumitomo Chemical Co., Ltd., trade name: Sumica Excel 3600 G, glass transition temperature (Tg)
  • Syndiotactic polystyrene (SPS) [made by Idemitsu Kosan, trade name: Zarek S 105, glass transition temperature (Tg) 100 ° C.] Perfluoroethylene propene copolymer (FEP) (manufactured by Daikin Industries, trade name: NP-101, glass transition temperature (Tg) 80 ° C.)
  • SPS Syndiotactic polystyrene
  • FEP Perfluoroethylene propene copolymer
  • Tg Glass transition temperature
  • the glass transition temperatures of the crystalline resin (A) and the resin (B) used for the extrusion-coated resin layer of the second insulating layer were determined by thermal mechanical analysis (TMA).
  • TMA thermal mechanical analysis
  • the thermomechanical analysis (TMA) was measured in TMA mode using a dynamic viscoelasticity measurement device (manufactured by Perkin Elmer, trade name: DMA 8000).
  • the breaking elongation of the resin used for the extrusion-coated resin layer of the second insulating layer was evaluated as follows.
  • the resin used for the extrusion-coated resin layer of the second insulating layer was compression-molded to a thickness of 0.15 mm by a hot press to prepare a sheet.
  • the obtained sheet was punched into a dumbbell piece (IEC-S type) to prepare a test piece.
  • a tensile test was performed at a tensile speed of 20 m / min using a tensile tester (Autograph, manufactured by Shimadzu Corporation, trade name: AGS-J).
  • Heat resistant aging test The heat aging characteristics were evaluated as follows. Straight according to JIS C 3216-6 “Winding test method – Part 1: General items” “3. Heat shock (applicable to enameled wire and tape winding)”, 1% stretched in the length direction After leaving each insulated wire for 500 hours in a 200 degreeC high temperature tank, it was visually confirmed whether the crack has generate
  • Comparative Examples 4 and 5 in which the glass transition temperature (Tg) of the resin (B) to be combined with the crystalline resin (A) is lower than the glass transition temperature (Tg) of the crystalline resin (A)
  • the difference is less than 30 ° C.
  • the post-heating dielectric breakdown voltage (BDV) is not compatible with the elongation at break and the heat aging resistance. Evaluation is poor.
  • the insulated wire of the present invention is excellent in the heat aging resistance at a high temperature of 200 ° C. by using the resin of the extrusion coated resin layer of the insulating layer as a combination of the resins of the present invention. Is maintained or improved without deterioration, and the coating collapse is suppressed. Furthermore, the decrease in the dielectric breakdown voltage after heating in the iron core winding state was suppressed. As described above, it was possible to achieve both the suppression of the decrease in the dielectric breakdown voltage and the mechanical characteristics, which were difficult in the prior art. Moreover, the insulated wire which has the said outstanding performance was able to be manufactured with the manufacturing method of the insulated wire of this invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Insulating Of Coils (AREA)

Abstract

 導体の外周に、少なくとも1層の絶縁層を有する絶縁電線であって、絶縁層の少なくとも1層が、結晶性樹脂(A)、および熱機械分析で測定されたガラス転移温度が、該結晶性樹脂(A)のガラス転移温度より30℃以上高い樹脂(B)との混合樹脂からなり、かつ該混合樹脂の混合質量比(結晶性樹脂(A)の質量:樹脂(B)の質量)が90:10~51:49である絶縁電線、コイル、電気・電子機器及び絶縁電線の製造方法。

Description

絶縁電線、コイルおよび電気・電子機器ならびに絶縁電線の製造方法
 本発明は、絶縁電線、コイルおよび電気・電子機器ならびに絶縁電線の製造方法に関する。
 最近の電気・電子機器(電気機器ともいう)では、インバータ素子のスイッチングによって発生するサージ電圧による劣化(インバータサージ劣化)を防止するため、数百Vのサージ電圧に耐えうるような絶縁電線(ワイヤ)が求められる場合がある(特許文献1参照)。
 また、モーターや変圧器に代表される電気機器は、小型化および高性能化が進展し、絶縁電線を巻線加工(コイル加工、曲げ加工ともいう)した巻線(コイル)を非常に狭い部分へ押し込んで使用するような使い方が多く見られるようになった。具体的には、絶縁電線をコイル加工したコイルをステータースロット中に何本入れられるかにより、そのモーターなどの回転機の性能が決定するといっても過言ではない。その結果、ステータースロット断面積に対する導体の断面積の比率(占積率)を向上させるため、ごく最近では、導体の断面形状が矩形(正方形や長方形)に類似した平角線が使用されている。
 通常、絶縁電線の絶縁層に使用される樹脂は1種類であるが、最近になって、2種類の樹脂を混合した混合樹脂の使用が提案されている。
 例えば、耐熱軟化性と可とう性に優れたポリエーテルスルホン樹脂の耐薬品性に乏しく、クラックを発生しやすいという欠点を補うために、ポリフェニレンスルフィド樹脂またはポリエーテルエーテルケトン樹脂を10~50質量%併用することが、特許文献2で提案されている。また、耐熱性と高いPDIVを達成するために、ポリエーテルエーテルケトン樹脂を連続相とし、比誘電率が2.6以下の樹脂を分散相とする相分離構造を有する樹脂組成物を用いることが、特許文献3で提案されている。さらに、比誘電率の低い樹脂で絶縁性を向上させるために、芳香族ポリエーテルケトン樹脂に対して、パーフルオロエチレンとパーフルオロ化されたアルコキシエチレンとの共重合体からなるフッ素樹脂を5~50質量%混合することが、特許文献4で提案されている。
特許第5391324号公報 特開2010-123389号公報 特開2013-109874号公報 国際公開第2013/088968号パンフレット
 電気機器に組み込まれた絶縁電線に電流が流れると、絶縁電線は発生する熱により高温になる。自動車などで用いる電気機器は年々小型化、高出力化しており、これに伴って装置内部の高温化が起こっており、場合によっては200℃を超えるような温度にもなる。本発明者らの検討によれば、このような高温下では、例えば、ステータースロットに収められている、コイル加工して巻きつけられた絶縁電線の、絶縁破壊電圧(BDV;Break Down Voltage)が低下することがわかった。
 この原因を解析した結果、狭い空間で巻きつけられた絶縁電線のうち、圧力がかかっている部分の絶縁電線の皮膜が、例えば、図2に示すように、潰れて薄くなっていることが原因であることがわかった。
 この皮膜の潰れは、皮膜を構成する樹脂の結晶化度に依存する。樹脂の結晶化度が低い場合、例えば、結晶化度が36.4%のポリエーテルエーテルケトン(PEEK)の場合、圧縮圧が10~20MPaで、皮膜の厚みが、30%も潰れてしまうことがわかった。このため、結晶化度の高い樹脂を使用すると、皮膜潰れが抑制される一方、破断伸び率が低下することがわかった。
 従って、本発明は、使用する樹脂の結晶化度に依存することなく、耐熱老化性に優れ、しかも機械的特性が維持もしくは改善され、鉄心巻付け状態での加熱後の絶縁破壊電圧の低下が抑制された絶縁電線、これを用いたコイルおよび電気・電子機器を提供することを課題とする。
 さらに本発明は、このような優れた絶縁電線の製造方法を提供することを課題とする。
 上述のように、1種類の樹脂では、使用する樹脂の結晶化度を高めて皮膜潰れを抑制すると、逆に破断伸び率が低下することから、皮膜潰れの抑制と、破断伸び率の低下の抑制を両立させることが困難であった。このため、本発明者らはこれらを両立させるべく、少なくとも2種の樹脂を組み合わせた混合樹脂での検討を行った。具体的には、絶縁電線が使用される装置内部を想定した高温環境下、特に現実に起こりうる200℃の環境下における絶縁電線の特性をも考慮し、種々の検討を行った。この結果、結晶性樹脂とガラス転移温度の異なる樹脂の組み合わせが有効であることを見出し、さらに検討を加えることで、本発明に至った。
 すなわち、本発明の上記課題は、以下の手段によって達成された。
(1)導体の外周に、少なくとも1層の絶縁層を有する絶縁電線であって、
 前記絶縁層の少なくとも1層が、結晶性樹脂(A)、および熱機械分析で測定されたガラス転移温度が、該結晶性樹脂(A)のガラス転移温度より30℃以上高い樹脂(B)との混合樹脂からなり、かつ該混合樹脂の混合質量比(結晶性樹脂(A)の質量:樹脂(B)の質量)が90:10~51:49であることを特徴とする絶縁電線。
(2)前記樹脂(B)のガラス転移温度が、前記結晶性樹脂(A)のガラス転移温度より50℃以上高いことを特徴とする(1)に記載の絶縁電線。
(3)前記結晶性樹脂(A)が、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリエーテルケトン、ポリエーテルケトンエーテルケトンケトンおよびポリフェニレンサルファイドから選択される少なくとも1種を含むことを特徴とする(1)または(2)に記載の絶縁電線。
(4)前記樹脂(B)が、ポリフェニルサルホン、ポリサルホン、ポリエーテルサルホン、ポリエーテルイミドおよび熱可塑性ポリイミドから選択されるから選択される少なくとも1種を含むことを特徴とする(1)~(3)のいずれか1項に記載の絶縁電線。
(5)前記混合樹脂からなる絶縁層が、押出被覆樹脂層であることを特徴とする(1)~(4)のいずれか1項に記載の絶縁電線。
(6)前記導体の外周に、ポリアミドイミド、ポリエーテルイミド、ポリイミドおよびH種ポリエステルから選択される少なくとも1種を含む熱硬化性樹脂層を有することを特徴とする(1)~(5)のいずれか1項に記載の絶縁電線。
(7)前記(1)~(6)のいずれか1項に記載の絶縁電線を巻線加工したコイル。
(8)前記(7)に記載のコイルを用いた電子・電気機器。
(9)導体の外周に、少なくとも1層の絶縁層を有する絶縁電線の製造方法であって、
 前記絶縁層の少なくとも1層が、結晶性樹脂(A)、および熱機械分析で測定されたガラス転移温度が、該結晶性樹脂(A)のガラス転移温度より30℃以上高い樹脂(B)との混合樹脂からなり、かつ該混合樹脂の混合質量比(結晶性樹脂(A)の質量:樹脂(B)の質量)が90:10~51:49であり、
 前記導体の外周に、前記混合樹脂を含む樹脂組成物を押出成形して、前記絶縁層を形成する工程を含むことを特徴とする絶縁電線の製造方法。
(10)前記導体の外周に、ポリアミドイミド、ポリエーテルイミド、ポリイミドおよびH種ポリエステルから選択される少なくとも1種を含む熱硬化性樹脂層を形成する工程を含むことを特徴とする(9)に記載の絶縁電線の製造方法。
 本発明により、従来のように、使用する樹脂の結晶化度に依存することなく、耐熱老化性に優れ、しかも機械的特性が維持もしくは改善され、鉄心巻付け状態での加熱後の絶縁破壊電圧の低下が抑制された絶縁電線、これを用いたコイルおよび電気・電子機器を提供することが可能となった。
 また、本発明により、上記のような優れた絶縁電線の製造方法が提供できる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は、本発明の絶縁電線の好ましい実施態様を示す概略断面図である。 図2は、絶縁電線が巻き付けられた状態で加熱された場合に生じる皮膜潰れを模式的に示した概略断面図である。
<<絶縁電線>>
 本発明の絶縁電線(絶縁ワイヤともいう)は、導体と、導体の外周に、少なくとも1層の絶縁層を有する。この絶縁電線は、絶縁層の少なくとも1層が、押出被覆樹脂層を有することが好ましい。
 ここで、図1に、本発明の好ましい実施形態に係る絶縁電線1の断面図を模式的に示した。ここでは、導体11の外周に絶縁層が形成され、この絶縁層が、導体に接して熱硬化性樹脂層12と押出被覆樹脂層13が積層された2層構成からなる絶縁電線である。なお、絶縁電線が熱硬化性樹脂層12を有することは、本発明において、特に好ましい態様である。
 図2では、巻き付けられた絶縁電線が加熱された場合に生じる皮膜潰れを模式的に示したものであり、図面の上方から圧がかかった場合に起こる現象を示したものである。なお、右側の図面が、皮膜潰れが生じたものである。
 本発明の絶縁電線の長手方向と垂直な断面における電線皮膜の総厚み(全ての絶縁層の厚みの合計:導体から表面までの合計厚さ)は50~300μmが好ましく、60~200μmがより好ましい。
 以下、導体、押出皮膜樹脂層、押出皮膜樹脂層以外の絶縁層を順に説明する。
<導体>
 本発明に用いる導体としては、従来、絶縁電線で用いられているものを使用することができ、銅線、アルミニウム線などの金属導体が挙げられる。好ましくは、酸素含有量が30ppm以下の低酸素銅、さらに好ましくは20ppm以下の低酸素銅または無酸素銅の導体である。酸素含有量が30ppm以下であれば、導体を溶接するために熱で溶融させた場合、溶接部分に含有酸素に起因するボイドの発生がなく、溶接部分における電気抵抗の悪化を防止するとともに溶接部分の強度を保持することができる。
 本発明で使用する導体は、断面形状は、円形(丸形状)、矩形(平角形状)あるいは六角形等いずれの形状でも構わないが、矩形の導体は円形のものと比較し、巻線時におけるステータースロットに対する導体の占積率が高いため、好ましい。
 矩形の導体の大きさ(断面形状)は、特に限定はないが、幅(長辺)は1~5mmが好ましく、1.4~4.0mmがより好ましく、厚み(短辺)は0.4~3.0mmが好ましく、0.5~2.5mmがより好ましい。幅(長辺)と厚み(短辺)の長さの割合は、厚み:幅=1:1~1:4が好ましい。
 また、矩形の4隅に面取り(曲率半径r)を設けた形状であることが望ましい。曲率半径rは、0.6mm以下が好ましく、0.2~0.4mmがより好ましい。
 断面が円形の導体の場合、大きさ(断面形状)は、特に限定はないが、直径は0.3~3.0mmが好ましく、0.4~2.7mmがより好ましい。
<押出被覆樹脂層>
 本発明の絶縁電線では、少なくとも1層の絶縁層は、少なくとも2種の樹脂からなる混合樹脂からなる。
 この絶縁層は、押出成形された押出被覆樹脂層であることが好ましい。このため、以下、押出被覆樹脂層として説明する。なお、押出被覆樹脂層を形成する樹脂は、押出成形可能な熱可塑性樹脂である。
 押出被覆樹脂層は、導体外周に、導体に接して設けられても、他の絶縁層、例えば、熱硬化性樹脂層の外側に設けられてもよい。
 また、押出被覆樹脂層は、1層であっても複数層であってもよい。
 本発明において、押出被覆樹脂層は結晶性樹脂(A)と、熱機械分析で測定されたガラス転移温度(Tg)が、該結晶性樹脂(A)のガラス転移温度より30℃以上高い樹脂(B)との混合樹脂からなる。
 熱可塑性樹脂は、結晶性樹脂と非結晶性樹脂に大別され、結晶性樹脂は、分子鎖が規則正しく配列された結晶領域を有し、この結晶化領域の量の比率が高いものを結晶化度が高いという。
 結晶性樹脂には、ガラス転移温度(Tg)と非結晶性樹脂では示さない融点が存在し、結晶化に伴い容積変化(収縮)が生じる。しかしながら、非結晶性樹脂と比較して、一般に機械的強度、耐薬品性、摺動性、剛性・バネ性に優れる。
 本発明で使用する混合樹脂は、少なくとも一方が結晶性樹脂(A)である。
 結晶性樹脂(A)としては、例えば、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトンケトン(PEEKK)、ポリエーテルケトンエーテルケトンケトン(PEKEKK)、ポリケトン(PK)、ポリフェニレンサルファイド(PPS)、ポリメチルペンテン(PMP)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-エチレン共重合体(ETFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリアミド6、66、11、12、610、46を含む脂肪族ポリアミド、ポリアミド6T、9T、MXD6、ポリフタルアミドを含む芳香族ポリアミド、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリジシクロヘキシレンジメチレンテレフタレート(PCT)、ポリフェニレンエーテル(PPE)、ポリフェニレンオキサイド(PPO)、液晶ポリマー(LCP)を含む芳香族ポリエステル、シンジオタクチックポリスチレン(SPS)、ポリアセタール(POM)、ポリビニルアルコール(PVA)、ポリ塩化ビニリデン(PVDC)、ポリエチレン(PE)、ポリプロピレン(PP)等が挙げられる。
 本発明では、これらの樹脂は、変性されたものをも包含する。例えば、変性ポリエーテルエーテルケトン(m-PEEK)は、PEEKに含まれる。
 このうち、弾性率が高く皮膜潰れに強い樹脂が適していることから、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルケトン(PEK)、ポリエーテルケトンエーテルケトンケトン(PEKEKK)およびポリフェニレンサルファイド(PPS)から選択される少なくとも1種が好ましい。
 PEEKとしては、例えば、キータスパイアKT-820(ソルベイスペシャリティポリマーズ社製、商品名)、PEEK450G(ビクトレックスジャパン社製、商品名)、変性PEEKとしては、アバスパイアAV-650(ソルベイスペシャリティポリマーズ社製、商品名)、PEKKとしては、スーパーエンプラPEKK(アルケマジャパン社製、商品名)、PEKとしては、HT-G22(ビクトレックス社製、商品名)、PEKEKKとしては、ST-STG45(ビクトレックス社製、商品名)、PPSとしては、ジュラネックス0220A9(ポリプラスチックス社製、商品名)、PPS FZ-2100(DIC社製、商品名)等の市販品を挙げることができる。
 なお、結晶化度には、相対的結晶化度と絶対的結晶化度があり、本発明では、相対的結晶化度を意味する。
 相対的結晶化度と絶対的結晶化度は以下のようにして求められる。
 相対結晶化度(%)=[(結晶融解熱量-結晶化熱量)/(結晶融解熱量)]×100
 絶対結晶化度(%)=[結晶融解熱量/樹脂の完全結晶の融解熱]×100
 結晶融解熱量と結晶化熱量は、示差走査熱量分析によって得られる。
 例えば、PPSを、5℃/minの速度で昇温させ、300℃を超える領域で見られる融解に起因する吸熱量(融解熱量)と150℃周辺で見られる結晶化に起因する発熱量(結晶化熱量)が観測される。一方、完全結晶の融解熱は、理論上の値であり、完全結晶の融解熱そのものを観測することはできず、完全に結晶化した状態を想定して、理論的に求められた値である。
 使用する結晶性樹脂の結晶化度が高い場合、皮膜潰れが生じにくい。一方で、機械的特性、特に破断の伸び率が低下し、しかも導体と皮膜、皮膜間での密着性が悪化する。
 本発明では、上記結晶性樹脂の結晶化度による皮膜潰れの抑制と機械的特性の両立を、組み合わせる樹脂(B)との関係により達成した。
 このため、本発明では、使用する結晶性樹脂(A)の結晶化度を考慮する必要がない。
 なお、本発明では、機械的特性に加えて、導体と絶縁層や、絶縁層間の密着性も低下することなく維持もしくは改善することができる。
 本発明では、上記結晶性樹脂(A)とともに、熱機械分析〔TMA:Thermomechanical Analysis、TMA法、TMA測定とも称す〕で測定されたガラス転移温度(Tg)が、結晶性樹脂(A)のガラス転移温度より30℃以上高い樹脂(B)を使用する。
 樹脂(B)の上記ガラス転移温度(Tg)は、結晶性樹脂(A)のガラス転移温度より、40℃以上高いことが好ましく、50℃以上高いことがより好ましく、60℃以上高いことがさらに好ましい。なお結晶性樹脂(A)と樹脂(B)のガラス転移温度の差の上限は、特に限定されるものではないが、実際的には200℃以下であり、150℃以下が好ましい。
 結晶性樹脂(A)のガラス転移温度に対する樹脂(B)のガラス転移温度(Tg)を上記の範囲にすることで、加熱時の、ガラス転移温度(Tg)における結晶性樹脂(A)の弾性率の低下を樹脂(B)が抑制するため、結果として巻きつけ加熱時における皮膜の減少率を抑制できる。結晶性樹脂(A)と樹脂(B)のガラス転移温度の差が大きいほど、両者の弾性率が低下する領域が離れるため、加熱時の皮膜潰れに対してより好ましい結果が得られる。逆に結晶性樹脂(A)と樹脂(B)のガラス転移温度差が30℃未満であると弾性率の低下を抑制できず、鉄心巻付け状態での加熱後の絶縁破壊電圧の測定で好ましい結果が得られない。
 樹脂(A)のガラス転移温度(Tg)は、70℃以上が好ましく、80℃以上がより好ましく、90℃以上がさらに好ましく、100℃以上が特に好ましい。上限は、特に限定されるものではないが、現実的には200℃以下である。
 ガラス転移温度(Tg)は熱機械分析(TMA)、示差走査熱量測定(DSC:Differential Scanning Calorimetry)、動的粘弾性測定(DMA:Dynamic Mechanical Analysis)で測定できるが、本発明では、熱機械分析(TMA)で求めたガラス転移温度(Tg)である。
 ここで、熱機械分析(TMA)とは、試料の温度を一定のプログラムによって変化させながら、圧縮、引張り、曲げなどの非振動的荷重を加えてその物質の変形を温度又は時間の関数として測定する方法である。熱機械分析は、熱機械分析装置(例えば、株式会社日立ハイテクサイエンス社製、熱機械的分析装置(TMA/SS)、TMA7000シリーズ)または動的粘弾性測定装置(例えば、Perkin Elmer社製、DMA 8000)(いずれも商品名)で測定できる。
 なお、熱機械分析(TMA)では、熱機械分析における変曲点からガラス転移温度(Tg)を算出する。
 樹脂(B)は、結晶性樹脂であっても非結晶性樹脂であっても構わない。
 非結晶性樹脂としては、ポリアレート(PAR)、ポリスルホン(PSU)、ポリエーテルスルホン(PES)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、熱可塑性ポリイミド(TPI)ポリカーボネート(PC)、変性ポリフェニレンエーテル(m-PPE)、ポリ塩化ビニル(PVC)、ポリスチレン(PS)、ABS樹脂、AS樹脂、アクリル樹脂(PMMA)が挙げられる。また、結晶性樹脂としては、熱可塑性ポリイミド(TPI)が挙げられる。
 なお、非結晶性樹脂は、結晶性樹脂と異なり融点が存在せず、ガラス転移温度(Tg)のみが存在する。また、非結晶性樹脂は透明で冷却固化時の容積変化が少なく、クリープ性、耐候性、耐衝撃性に優れ、吸水性が少ない反面、耐薬品性に乏しく、ストレスクラックを生じる。
 樹脂(B)は、よりガラス転移温度(Tg)が高く、耐熱老化性に優れることから、ポリフェニルサルホン(PPSU)、ポリサルホン(PSU)、ポリエーテルサルホン(PES)、ポリエーテルイミド(PEI)および熱可塑性ポリイミド(TPI)から選択される少なくとも1種が好ましい。
 PPSUとしては、例えば、レーデルR5800(ソルベイアドバンストポリマー社製、商品名)、PSUとしては、例えば、ユーデルPSU(ソルベイアドバンストポリマーズ社製、商品名)、PESとしては、例えば、スミカエクセル4800G(住友化学社製、商品名)、PES(三井化学社製、商品名)、ウルトラゾーンE(BASFジャパン社製、商品名)、レーデルA(ソルベイアドバンストポリマーズ社製、商品名)、PEIとしては、例えば、ウルテム1010(サビックイノベーティブプラスチック社製、商品名)、TPIとしては、オーラムPL450C(三井化学株式会社製、商品名)等の市販品を挙げることができる。
 本発明において、結晶性樹脂(A)と樹脂(B)の混合質量比(結晶性樹脂(A)の質量:樹脂(B)の質量)は、90:10~51:49であり、90:10~60:40が好ましく、80:20~60:40がより好ましい。
 混合質量比を上記範囲に設定することで、機械的特性および密着性を維持もしくは改善し、かつ巻き付け時の絶縁破壊電圧の低下を抑制することができる。
 なかでも、引張試験における破断伸び率を向上することができる。
 例えば、PEEKとPEIやPEEKとTPIでは、結晶性樹脂(A)であるPEEKが51質量%以上であると、下記測定条件による破断伸び率は100%を超える。
 結晶性樹脂(A)の混合質量比が90を超えると巻き付け時の絶縁破壊電圧の低下が抑制されず、また51を下回ると破断伸び率が低下し、かつ耐熱老化性が劣る。
 ここで、押出被覆樹脂層に使用する樹脂の破断伸び率は、以下のようにして測定した。
 押出被覆樹脂層に使用する樹脂を、ホットプレスを用いて厚さ0.15mmに圧縮成型し、シートに加工する。得られたシートをダンベル片(IEC-S型)に打ち抜き、これを試験片とする。引張試験機を用い、引張速度20m/minで引張試験を行う。チャック間を25mmとし、n=5の試験において破断時の標線間の伸び平均値を求める。ここで、破断時の標線間の伸び平均値は、80%以上となることが必要である。
 押出被覆樹脂層の厚さは、250μm以下が好ましく、180μm以下がより好ましい。押出被覆樹脂層の厚さを上記の好ましい範囲にすることで、剛性を有する押出被覆樹脂層を用いた絶縁電線が十分な可とう性を有し、加工前後での電気絶縁性維持特性の変化に影響を与えない。一方、押出被覆樹脂層の厚さは、絶縁不良を防止できる点で、5μm以上が好ましく、15μm以上がさらに好ましい。この好適な実施態様においては、導体が矩形の場合、矩形の4辺のうちの、一方の対向する2辺および他方の対応する2辺に設けられた押出被覆樹脂層の厚さは、いずれも200μm以下が好ましい。
(押出被覆樹脂層の形成方法)
 導体または熱硬化性樹脂層を形成した導体(エナメル線ともいう)の外周面に、共押出機を用いて、押出被覆樹脂層に使用する樹脂(A)と樹脂(B)の混合樹脂または、それぞれの樹脂を同時に押出して、押出被覆樹脂層を形成する。混合樹脂は、樹脂のガラス転移温度よりも高い温度で溶融状態とし、導体またはエナメル線に押出して接触させる。熱硬化性樹脂層を有するエナメル線の場合は、熱硬化性樹脂層に押出被覆樹脂を熱融着させて押出被覆樹脂層を形成する。
 なお、熱可塑性樹脂層(例えば、本発明で使用する混合樹脂からなる層)は、有機溶媒等と熱可塑性樹脂を用いて形成することもできる。
 押出機のスクリューは、特に限定されるものではなく、例えば30mmフルフライト、L/D=20、圧縮比3のスクリューが挙げられる。押出温度条件は、樹脂投入側から順に、C1、C2、C3と少なくとも3ゾーンに区分して、押出機内のシリンダーの温度を調整することが好ましく、さらにヘッド部(H)、ダイス部(D)の温度を調節する。C1の温度は、260~310℃が好ましく、C2の温度は、300~380℃が好ましく、C3の温度は、310~380℃が好ましい。また、ヘッド部(H)の温度は、320~390℃が好ましく、ダイス部(D)の温度は、320~390℃が好ましい。押出ダイは、導体と相似形で、必要な厚みが得られるダイスを使用する。
<熱硬化性樹脂層>
 本発明の絶縁電線は、上記の押出被覆樹脂層以外に、他の絶縁層を設けてもよい。
 他の絶縁層のうち、本発明では、導体と押出被覆樹脂層の密着性を改良するために熱硬化性樹脂層(この場合、エナメル層とも称す)を導体の外周に設けることが好ましく、特に好ましくは、導体と押出被覆樹脂層の間に設ける。
 熱硬化樹脂層はエナメル樹脂で少なくとも1層設けるのが好ましいが、複数層であってもよい。なお、熱硬化性樹脂層の1層とは、厚みを増すために同じワニスを繰り返し焼付けたものを含み、異なったワニスで形成したしたものは別の層としてカウントする。
 熱硬化性樹脂層を形成するエナメル樹脂としては、従来用いられているものを使用することができる。例えば、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエステルイミド(PEsI)、ポリエーテルイミド(PEI)、ポリイミドヒダントイン変性ポリエステル、ポリアミド(PA)、ホルマール、ポリウレタン(PU)、ポリエステル(PE)、ポリビニルホルマール、エポキシ、ポリヒダントインが挙げられる。このうち、耐熱性に優れる、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエステルイミド(PEsI)、ポリエーテルイミド(PEI)、ポリイミドヒダントイン変性ポリエステルなどのポリイミド系樹脂およびH種ポリエステル(HPE)が好ましい。
 本発明では、特に、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリイミド(PI)およびH種ポリエステル(HPE)から選択される樹脂がなかでも好ましい。
 ポリアミドイミド(PAI)は、熱硬化性のものであればよく、市販品(例えば、商品名:Uイミド(ユニチカ社製)、商品名:U-ワニス(宇部興産社製)、商品名:HCIシリーズ(日立化成社製))を用いるか、常法により、例えば極性溶媒中でトリカルボン酸無水物とジイソシアネート類を直接反応させて得たもの、または、極性溶媒中でトリカルボン酸無水物にジアミン類を先に反応させて、まずイミド結合を導入し、ついでジイソシアネート類でアミド化して得たものを用いることができる。なお、ポリアミドイミドは、他の樹脂に比べ熱伝導率が低く、絶縁破壊電圧が高く、焼付け硬化が可能である。
 ポリエーテルイミドは、例えば、ウルテム1010(サビックイノベーティブプラスチック社製、商品名)の市販品を挙げることができる。
 ポリイミドは、特に制限はなく、全芳香族ポリイミドおよび熱硬化性芳香族ポリイミドなど、通常のポリイミドを用いることができる。例えば、市販品(日立化成社製、商品名:HI406)を用いるか、常法により、芳香族テトラカルボン酸二無水物と芳香族ジアミン類を極性溶媒中で反応させて得られるポリアミド酸溶液を用い、被覆する際の、焼き付け時の加熱処理によってイミド化させることによって得られるものを用いることができる。
 H種ポリエステル(HPE)とは、芳香族ポリエステルのうちフェノール樹脂などを添加することによって樹脂を変性させたもので、耐熱クラスがH種であるものを言う。市販のH種ポリエステルは、Isonel200(商品名、米スケネクタディインターナショナル社製)等を挙げることができる。
 エナメル樹脂は、これらを1種独で使用してもよく、また2種以上を混合して使用してもよい。
 熱硬化性樹脂層の厚さは、エナメル層を形成するときの焼付炉を通す回数を減らし、導体と熱硬化性樹脂層との接着力が極端に低下することを防止できる点で、60μm以下が好ましく、50μm以下がより好ましい。また、絶縁電線としてのエナメル線に必要な特性である、耐電圧特性、耐熱特性を損なわないためには、熱硬化性樹層がある程度の厚さを有しているのが好ましい。熱硬化性樹層の厚さの下限は、ピンホールが生じない程度の厚さであれば特に制限されるものではなく、3μm以上が好ましく、6μm以上がより好ましい。導体が矩形の場合、矩形の4辺のうちの、一方の対向する2辺および他方の対応する2辺に設けられた熱硬化性樹脂層の厚さは、いずれも60μm以下が好ましい。
 熱硬化性樹脂層は、上述のエナメル樹脂を含む樹脂ワニスを導体上に好ましくは複数回塗布、焼付して形成することができる。
 樹脂ワニスは、熱硬化性樹脂をワニス化させるために有機溶媒等を含有する。有機溶媒としては、熱硬化性樹脂の反応を阻害しない限りは特に制限はなく、例えば、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAC)、N,N-ジメチルホルムアミド(DMF)等のアミド系溶媒、N,N-ジメチルエチレンウレア、N,N-ジメチルプロピレンウレア、テトラメチル尿素等の尿素系溶媒、γ-ブチロラクトン、γ-カプロラクトン等のラクトン系溶媒、プロピレンカーボネート等のカーボネート系溶媒、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、酢酸エチル、酢酸n-ブチル、ブチルセロソルブアセテート、ブチルカルビトールアセテート、エチルセロソルブアセテート、エチルカルビトールアセテート等のエステル系溶媒、ジグライム、トリグライム、テトラグライム等のグライム系溶媒、トルエン、キシレン、シクロヘキサン等の炭化水素系溶媒、クレゾール、フェノール、ハロゲン化フェノールなどのフェノール系溶媒、スルホラン等のスルホン系溶媒、ジメチルスルホキシド(DMSO)が挙げられる。
 これらのうち、高溶解性、高反応促進性等に着目すると、アミド系溶媒、フェノール系溶媒および尿素系溶媒が好ましく、加熱による架橋反応を阻害しやすい水素原子をもたない等の点で、上記アミド系溶媒、上記フェノール系溶媒、上記尿素系溶媒およびジメチルスルホキシドが好ましく、上記アミド系溶媒およびジメチルスルホキシドが特に好ましい。
 本発明に用いる樹脂ワニスは、特性に影響を及ぼさない範囲で、気泡化核剤、酸化防止剤、帯電防止剤、紫外線防止剤、光安定剤、蛍光増白剤、顔料、染料、相溶化剤、滑剤、強化剤、難燃剤、架橋剤、架橋助剤、可塑剤、増粘剤、減粘剤およびエラストマーなどの各種添加剤を含有してもよい。また、得られる絶縁電線に、これらの添加剤を含有する樹脂からなる層を積層してもよいし、これらの添加剤を含有する塗料をコーティングしてもよい。
 樹脂ワニスは、熱硬化性樹脂層の弾性率を向上させるために、ガラスファイバーやカーボンナノチューブなど、高いアスペクト比を有する粉体を塗料に添加して、焼き付けてもよい。このようにすることで、加工時に線の流れ方向に粉体が整列し、曲げ方向における弾性率が強化される。
 樹脂ワニスを塗布する方法は、常法でよく、例えば、導体形状の相似形としたワニス塗布用ダイスを用いる方法、導体断面形状が四角形であるならば井桁状に形成された「ユニバーサルダイス」と呼ばれるダイスを用いる方法が挙げられる。エナメル樹脂を含む樹脂ワニスを塗布した導体は、常法にて焼付炉で焼き付けされる。具体的な焼付条件はその使用される炉の形状などに左右されるが、およそ5mの自然対流式の竪型炉であれば、400~500℃にて通過時間を10~90秒に設定することにより達成することができる。
<絶縁電線の製造方法>
 本発明の絶縁電線の製造方法は、上記のような、導体の外周に、押出被覆樹脂層を含む、少なくとも1層の絶縁層を有する絶縁電線を製造する方法である。
 すなわち、本発明の製造方法により得られる絶縁電線は、押出被覆樹脂層が、互いにガラス転移温度(Tg)の異なる樹脂(A)と樹脂(B)の混合樹脂からなり、樹脂(A)が結晶性樹脂であって、樹脂(B)の熱機械分析で測定されたガラス転移温度(Tg)が、結晶性樹脂(A)のガラス転移温度より30℃以上高い樹脂であって、かつこの混合樹脂の混合質量比(結晶性樹脂(A)の質量:樹脂(B)の質量)が90:10~51:49である。
 また、本発明の絶縁電線の製造方法は、例えば、導体の外周に、上記の混合樹脂を含む樹脂組成物を押出成形して、前記押出被覆樹脂層を形成する工程を含む。
 個々の層の形成方法の詳細は、押出被覆樹脂層、熱硬化性樹脂層において説明した通りである。
<用途>
 本発明の絶縁電線は、各種電気機器など、耐電圧性や耐熱性を必要とする分野に利用可能である。例えば、本発明の絶縁電線はコイル加工してモーターやトランスなどに用いられ、高性能の電気機器を構成できる。特にHV(ハイブリッドカー)やEV(電気自動車)の駆動モーター用の巻線として好適に用いられる。このように、本発明によれば、上記の絶縁電線をコイル化して用いた、電子・電気機器、特にHVおよびEVの駆動モーターを提供できる。なお、本発明の絶縁電線がモーターコイルに用いられる場合にはモーターコイル用絶縁電線とも称する。
 特に、200℃を超えるような温度にもなる電子・電気機器、特にHVおよびEVの駆動モーター用の絶縁巻線として好適に用いられる。
 以下に、本発明を実施例に基づいて、さらに詳細に説明するが、これらは本発明を制限するものではない。
実施例1
 以下の手順で、図1において、熱硬化性樹脂層を有さない態様の絶縁電線を作製した。
 1.8×3.3mm(厚さ×幅)で四隅の面取り半径r=0.3mmの平角導体(酸素含有量15ppmの銅)を準備した。この導体の外周に、以下のようにして、第2の絶縁層の押出被覆樹脂層を形成した。
 押出被覆する樹脂に、ポリエーテルエーテルケトン(PEEK)〔ソルベイスペシャリティポリマーズ社製、商品名:キータスパイアKT-880、ガラス転移温度(Tg)143℃〕とポリフェニルサルホン(PPSU)〔ソルベイスペシャリティポリマーズ社製、商品名:レーデルR-5800、ガラス転移温度(Tg)218℃〕を下記表1の質量比で用いた。
 押出機のスクリューは、30mmフルフライト、L/D=20、圧縮比3を用いた。押出温度条件は、C1:300℃、C2:370℃、C3:380℃、H:390℃、D:390℃に設定した。ここで、C1、C2、C3は押出機内のシリンダーの温度であり、樹脂投入側から順に3ゾーンの温度をそれぞれ示す。また、Hはヘッド部、Dはダイス部の温度を示す。
 押出ダイを用いて、上記樹脂を押出被覆した後、水冷することで、導体上にPEEKとPPSUの混合樹脂からなる厚さ30μmの押出被覆樹脂層を有する絶縁電線を得た。
実施例2~4、比較例1~5
 下記表1および2に示すように樹脂を組み合わせた以外は、実施例1と同様にして、絶縁電線を作製した。
実施例5
 以下の手順で、図1に示す、押出被覆樹脂層および熱硬化性樹脂層を有する絶縁電線を作製した。
 1.8×3.3mm(厚さ×幅)で四隅の面取り半径r=0.3mmの平角導体(酸素含有量15ppmの銅)を準備した。第1の絶縁層である熱硬化性樹脂層の形成に際しては、導体の形状と相似形のダイスを使用して、ポリアミドイミド樹脂(PAI)ワニス(日立化成製、商品名:HI406)を導体へコーティングし、450℃に設定した炉長8mの焼付炉内を、焼き付け時間15秒となる速度で通過させ、この1回の焼き付け工程で厚さ5μmのエナメルを形成した。これを繰り返して計8回行うことで厚さ39μmのエナメル層を形成し、皮膜厚さ39μmのエナメル線を得た。
 得られたエナメル線を心線とし、このエナメル層の外側に第2の絶縁層の押出被覆樹脂層を形成した。
 押出被覆する樹脂に、ポリエーテルエーテルケトン(PEEK)〔ソルベイスペシャリティポリマーズ製、商品名:キータスパイアKT-880、ガラス転移温度(Tg)143℃〕とポリエーテルイミド(PEI)〔サビックイノベーティブプラスチックス社製、商品名:ウルテム1010、ガラス転移温度(Tg)213℃〕を下記表1の質量比で用いた。
 押出機のスクリューは、30mmフルフライト、L/D=20、圧縮比3を用いた。押出温度条件は、C1:300℃、C2:370℃、C3:380℃、H:390℃、D:390℃に設定した。ここで、C1、C2、C3は押出機内のシリンダーの温度であり、樹脂投入側から順に3ゾーンの温度をそれぞれ示す。また、Hはヘッド部、Dはダイス部の温度を示す。
 押出ダイを用いて、上記樹脂を押出被覆した後、水冷することで、エナメル線上にPEEKとPEIの混合樹脂からなる厚さ150μmの押出被覆樹脂層を有する、合計厚さ(エナメル層と押出被覆樹脂層の厚さの合計)189μmの絶縁電線を得た。
実施例6~10、比較例6および7
 下記表1および2に示すように、第1の絶縁層の熱硬化性樹脂層および第2の絶縁層の押出被覆樹脂層の樹脂を組み合わせた以外は、実施例5と同様にして、絶縁電線を作製した。
 なお、使用した樹脂は、以下の樹脂である。
熱硬化性樹脂
・ポリアミドイミド樹脂(PAI)ワニス(日立化成製、商品名:HI406)
・ポリイミド樹脂(PI)ワニス(ユニチカ社製、商品名:Uイミド)
結晶性樹脂(A)
・ポリエーテルエーテルケトン(PEEK)〔ソルベイスペシャリティポリマーズ社製、商品名:キータスパイアKT-880、ガラス転移温度(Tg)143℃〕
・ポリエーテルケトン(PEK)〔ビクトレックス社製、商品名:HT-G22、ガラス転移温度(Tg)162℃〕
・ポリフェニレンフェニレンサルファイド(PPS)〔ポリプラスチックス社製、商品名:ジュラネックス0220A9、ガラス転移温度(Tg)89℃〕
・ポリエーテルケトンケトン(PEKK)〔アルケマジャパン社製、商品名:スーパーエンプラPEKK、ガラス転移温度(Tg)160℃〕
樹脂(B)
・ポリフェニルサルホン(PPSU)〔ソルベイアドバンストポリマー社製、商品名:レーデルR5800、ガラス転移温度(Tg)218℃〕
・ポリエーテルイミド(PEI)〔サビックイノベーティブプラスチック社製、商品名:ウルテム1010、ガラス転移温度(Tg)213℃〕
・熱可塑性ポリイミド(TPI)〔三井化学株式会社製、商品名:オーラムPL450C、ガラス転移温度(Tg)225℃〕
・ポリサルホン(PSU)〔ソルベイアドバンストポリマー社製、商品名:ユーデルP-1700、ガラス転移温度(Tg)83℃〕
・ポリエーテルサルホン(PES)〔住友化学社製、商品名:スミカエクセル3600G、ガラス転移温度(Tg)225℃〕
・高密度ポリエチレン(HDPE)〔プライムポリマー社製、商品名:ハイゼックス5000SF、ガラス転移温度(Tg)0℃以下〕
・シンジオタクチックポリスチレン(SPS)〔出光興産社製、商品名:ザレックS105、ガラス転移温度(Tg)100℃〕
・パーフルオロエチレンプロペンコポリマー(FEP)〔ダイキン工業社製、商品名:NP-101、ガラス転移温度(Tg)80℃〕
 上記のようにして作製した各絶縁電線に対して、以下の項目の評価を行った。
〔ガラス転移温度(Tg)〕
 第2の絶縁層の押出被覆樹脂層に使用する結晶性樹脂(A)と樹脂(B)のガラス転移温度を、熱機械分析(TMA)により求めた。熱機械分析(TMA)は、動的粘弾性測定装置(Perkin Elmer社製、商品名:DMA 8000)を使用し、TMAモードで測定した。
〔鉄芯巻付、加熱後絶縁破壊電圧(BDV)〕
 以下のようにして、加熱後の電気絶縁性維持特性を評価した。
 各絶縁電線を、直径が30mmの鉄芯に10回巻付けて恒温槽内で200℃まで昇温させて30分保持した。恒温槽から取り出した後に、鉄芯に巻き付けたままの状態で鉄芯を銅粒に挿し込み、巻き付けた絶縁電線の一端を電極につなぎ、8kVの電圧において絶縁破壊を起こすことなく1分間の通電を保持できれば合格であり、下記表1および2に「B」で示した。
 また、10kVの電圧において絶縁破壊を起こすことなく1分間の通電を保持できれば特に優れているとし、「A」で表示した。
 なお、8kVの電圧の通電を1分間保持できず、絶縁破壊した場合を不合格とし、「C」で表示した。ここで、絶縁破壊する場合、電線の可とう性が乏しくなり電線表面に白化等の変化が生じ、亀裂まで生じることもある。
 なお、表1および2には、巻付けBDVとして示した。
〔破断伸び率〕
 以下のようにして、第2の絶縁層の押出被覆樹脂層に使用する樹脂の破断伸びを評価した。
 第2の絶縁層の押出被覆樹脂層に使用する樹脂をホットプレスで、厚さ0.15mmに圧縮成型し、シートを作製した。得られたシートをダンベル片(IEC-S型)に打ち抜き、試験片を作製した。測定には引張試験機(オートグラフ 島津製作社製、商品名:AGS-J)を用い、引張速度20m/minで引張試験を行った。チャック間を25mmとし、試験数n=5の試験において破断時の標線間の伸び平均値が80%以上となるものを合格とし、「A」で表示し、80%未満となるものを不合格とし、「C」で表示した。
〔耐熱老化試験〕
 以下のようにして、耐熱老化特性を評価した。
 JIS C 3216-6「巻線試験方法-第1部:全般事項」の「3.耐熱衝撃(エナメル線及びテープ巻線に適用)」を参考に、長さ方向に1%伸張した直状の各絶縁電線を、200℃の高温槽内に500時間静置した後に、絶縁層に亀裂が発生しているか否かを目視にて確認した。
 絶縁層のいずれにも亀裂が確認できなかった場合を合格として「B」で表示し、亀裂が確認できた場合を不合格として「C」で表示した。
 また、同様にして、上記高温槽内に1000時間を越えて静置しても、熱硬化性樹脂層および押出被覆樹脂層のいずれにも亀裂が確認できなかった場合を、特に優れるとして「A」で表示した。
 得られた結果をまとめて、下記表1および2に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記表1および2の結果から、以下のことがわかる。
 絶縁層の押出被覆樹脂層の樹脂が結晶性樹脂のみである従来の絶縁電線では、比較例1からわかるように、鉄心巻付け状態で200℃の高温に加熱されると、加熱後の絶縁破壊電圧(BDV)が低下する。また、結晶性樹脂(A)と組み合わせる樹脂(B)のガラス転移温度(Tg)が、結晶性樹脂(A)のガラス転移温度(Tg)より低い比較例4および5や、結晶性樹脂(A)のガラス転移温度(Tg)より高くても、その差が30℃未満である比較例2では、加熱後絶縁破壊電圧(BDV)と、破断伸び率、耐熱老化性とが両立せず、いずれかの評価が劣っている。
 また、比較例3、6および7では、ガラス転移温度(Tg)の関係は満たすものの、結晶性樹脂(A)の配合量が少なく、破断伸び率と耐熱老化性のいずれの評価も劣っている。
 これに対して、本発明の絶縁電線は、絶縁層の押出被覆樹脂層の樹脂を、本発明の樹脂の組み合わせとすることで、200℃の高温での耐熱老化性に優れ、しかも機械的特性が低下することなく維持もしくは改善され、被覆潰れが抑制された。さらに、鉄心巻付け状態での加熱後の絶縁破壊電圧の低下が抑制された。このように、従来の技術で困難であった、絶縁破壊電圧の低下抑制と機械的特性を両立させることができた。
 また、本発明の絶縁電線の製造方法により、上記優れた性能を有する絶縁電線を製造することができた。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2014年9月9日に日本国で特許出願された特願2014-183638に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
1 絶縁電線
11 導体
12 熱硬化性樹脂層
13 押出被覆樹脂層

Claims (10)

  1.  導体の外周に、少なくとも1層の絶縁層を有する絶縁電線であって、
     前記絶縁層の少なくとも1層が、結晶性樹脂(A)、および熱機械分析で測定されたガラス転移温度が、該結晶性樹脂(A)のガラス転移温度より30℃以上高い樹脂(B)との混合樹脂からなり、かつ該混合樹脂の混合質量比(結晶性樹脂(A)の質量:樹脂(B)の質量)が90:10~51:49であることを特徴とする絶縁電線。
  2.  前記樹脂(B)のガラス転移温度が、前記結晶性樹脂(A)のガラス転移温度より50℃以上高いことを特徴とする請求項1に記載の絶縁電線。
  3.  前記結晶性樹脂(A)が、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリエーテルケトン、ポリエーテルケトンエーテルケトンケトンおよびポリフェニレンサルファイドから選択される少なくとも1種を含むことを特徴とする請求項1または2に記載の絶縁電線。
  4.  前記樹脂(B)が、ポリフェニルサルホン、ポリサルホン、ポリエーテルサルホン、ポリエーテルイミドおよび熱可塑性ポリイミドから選択される少なくとも1種を含むことを特徴とする請求項1~3のいずれか1項に記載の絶縁電線。
  5.  前記混合樹脂からなる絶縁層が、押出被覆樹脂層であることを特徴とする請求項1~4のいずれか1項に記載の絶縁電線。
  6.  前記導体の外周に、ポリアミドイミド、ポリエーテルイミド、ポリイミドおよびH種ポリエステルから選択される少なくとも1種を含む熱硬化性樹脂層を有することを特徴とする請求項1~5のいずれか1項に記載の絶縁電線。
  7.  請求項1~6のいずれか1項に記載の絶縁電線を巻線加工したコイル。
  8.  請求項7に記載のコイルを用いた電子・電気機器。
  9.  導体の外周に、少なくとも1層の絶縁層を有する絶縁電線の製造方法であって、
     前記絶縁層の少なくとも1層が、結晶性樹脂(A)、および熱機械分析で測定されたガラス転移温度が、該結晶性樹脂(A)のガラス転移温度より30℃以上高い樹脂(B)との混合樹脂からなり、かつ該混合樹脂の混合質量比(結晶性樹脂(A)の質量:樹脂(B)の質量)が90:10~51:49であり、
     前記導体の外周に、前記混合樹脂を含む樹脂組成物を押出成形して、前記絶縁層を形成する工程を含むことを特徴とする絶縁電線の製造方法。
  10.  前記導体の外周に、ポリアミドイミド、ポリエーテルイミド、ポリイミドおよびH種ポリエステルから選択される少なくとも1種を含む熱硬化性樹脂層を形成する工程を含むことを特徴とする請求項9に記載の絶縁電線の製造方法。
PCT/JP2015/075501 2014-09-09 2015-09-08 絶縁電線、コイルおよび電気・電子機器ならびに絶縁電線の製造方法 WO2016039351A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580048164.4A CN107004466B (zh) 2014-09-09 2015-09-08 绝缘电线、线圈和电气/电子设备以及绝缘电线的制造方法
EP15840156.2A EP3193338B1 (en) 2014-09-09 2015-09-08 Insulated electric wire, coil, electric/electronic device, and method for manufacturing insulated electric wire
KR1020177009501A KR102020366B1 (ko) 2014-09-09 2015-09-08 절연 전선, 코일 및 전기·전자기기, 및 절연 전선의 제조 방법
US15/453,472 US10037833B2 (en) 2014-09-09 2017-03-08 Insulated wire, coil, and electrical or electronic equipment, and method of producing the insulated wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-183638 2014-09-09
JP2014183638A JP6133249B2 (ja) 2014-09-09 2014-09-09 絶縁電線、コイルおよび電気・電子機器ならびに絶縁電線の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/453,472 Continuation US10037833B2 (en) 2014-09-09 2017-03-08 Insulated wire, coil, and electrical or electronic equipment, and method of producing the insulated wire

Publications (1)

Publication Number Publication Date
WO2016039351A1 true WO2016039351A1 (ja) 2016-03-17

Family

ID=55459095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075501 WO2016039351A1 (ja) 2014-09-09 2015-09-08 絶縁電線、コイルおよび電気・電子機器ならびに絶縁電線の製造方法

Country Status (7)

Country Link
US (1) US10037833B2 (ja)
EP (1) EP3193338B1 (ja)
JP (1) JP6133249B2 (ja)
KR (1) KR102020366B1 (ja)
CN (1) CN107004466B (ja)
MY (1) MY171713A (ja)
WO (1) WO2016039351A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037029A3 (en) * 2016-08-26 2018-06-28 Danfoss Power Electronics A/S Insulated electrical inductor and insulated sealing arrangement thereof
US12041632B2 (en) 2016-02-05 2024-07-16 Nec Corporation Communication system
CN118412181A (zh) * 2024-06-28 2024-07-30 佳腾电业(赣州)股份有限公司 一种绝缘电线及其制备方法、线圈和电子/电气设备

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017123948A1 (en) * 2016-01-13 2017-07-20 Martin Weinberg Polyamide electrical insulation for use in liquid filled transformers
CN110799594B (zh) * 2017-06-20 2022-10-14 索尔维特殊聚合物美国有限责任公司 层状结构
WO2019176254A1 (ja) 2018-03-12 2019-09-19 古河電気工業株式会社 集合導線、集合導線の製造方法およびセグメントコイル
JP2020024977A (ja) * 2018-08-06 2020-02-13 信越ポリマー株式会社 電磁波シールドフィルム及びその製造方法、並びに電磁波シールドフィルム付きプリント配線板及びその製造方法
JP7124723B2 (ja) * 2019-01-16 2022-08-24 株式会社オートネットワーク技術研究所 融着層付き絶縁電線
JP2020123613A (ja) * 2019-01-29 2020-08-13 信越ポリマー株式会社 電磁波シールドフィルム、回路基板、及び回路基板の製造方法
CN114270454A (zh) 2019-03-29 2022-04-01 美国埃赛克斯古河电磁线有限责任公司 具有热塑性绝缘部的磁导线
KR102640125B1 (ko) * 2019-08-23 2024-02-22 제우스 컴퍼니 인크. 중합체-코팅된 와이어
US11708491B2 (en) * 2019-10-02 2023-07-25 Essex Furukawa Magnet Wire Usa Llc Polymeric insulating films
FR3109848B1 (fr) * 2020-04-30 2022-12-16 Arkema France Conducteur isolé apte à être utilisé dans un bobinage, bobinage en dérivant et procédés de fabrication correspondants.
EP4293688A1 (en) * 2022-06-15 2023-12-20 Arkema France Use of a composition having low permittivity over a high temperature range
CN117294052B (zh) * 2023-11-27 2024-03-19 坎德拉(深圳)新能源科技有限公司 飞轮储能电机以及飞轮储能装置
CN118398280B (zh) * 2024-06-28 2024-09-20 佳腾电业(赣州)股份有限公司 绝缘电线及其制备方法、绕线组、电气设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0362414U (ja) * 1989-10-24 1991-06-19
JP5391341B1 (ja) * 2013-02-05 2014-01-15 古河電気工業株式会社 耐インバータサージ絶縁ワイヤ

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391324A (en) 1977-01-24 1978-08-11 Hitachi Ltd Transformer
JPH05225832A (ja) * 1992-02-07 1993-09-03 Furukawa Electric Co Ltd:The 絶縁電線
JP2715213B2 (ja) 1992-03-13 1998-02-18 株式会社日立製作所 軽水炉炉内構造物の表面改質方法
FR2854900B1 (fr) * 2003-05-16 2007-07-27 Nexans Composition pour couche adherente, conducteur electrique revetu d'une telle couche adherente et procede de fabrication d'un tel conducteur electrique
EP2142600B1 (en) * 2007-04-23 2014-07-23 Solvay Specialty Polymers USA, LLC. Thermoplastic polymer mixtures, and applications thereof
JP5306742B2 (ja) * 2008-08-28 2013-10-02 古河電気工業株式会社 絶縁ワイヤ
JP2010067521A (ja) * 2008-09-11 2010-03-25 Sumitomo Electric Ind Ltd 絶縁電線及びその製造方法、並びに、電気コイル及びモータ
JP2010100770A (ja) * 2008-10-27 2010-05-06 Mitsubishi Gas Chemical Co Inc 熱可塑性樹脂の製造方法、ポリエステル樹脂及びポリカーボネート樹脂、ならびにそれらの用途
JP2010123389A (ja) * 2008-11-19 2010-06-03 Sumitomo Electric Ind Ltd 絶縁電線
EP2474984A4 (en) * 2009-09-02 2013-07-03 Furukawa Electric Co Ltd MULTILAYER INSULATED WIRE AND TRANSFORMER USING THE SAME
JP5922571B2 (ja) * 2010-03-25 2016-05-24 古河電気工業株式会社 発泡電線及びその製造方法
US8017699B1 (en) * 2010-10-20 2011-09-13 Sabic Innovative Plastics Ip B.V. Polyimide polyphenylsulfone blends with improved flame resistance
JP2012243614A (ja) * 2011-05-20 2012-12-10 Sumitomo Electric Wintec Inc 絶縁電線及びそれを用いた電機コイル、モータ
JP2013033607A (ja) * 2011-08-01 2013-02-14 Hitachi Cable Ltd 絶縁電線及びその製造方法
JP2013109874A (ja) 2011-11-18 2013-06-06 Hitachi Cable Ltd 絶縁電線
JP5975042B2 (ja) 2011-12-14 2016-08-23 ダイキン工業株式会社 絶縁電線
JP5699971B2 (ja) * 2012-03-28 2015-04-15 日立金属株式会社 絶縁電線
JP5391324B1 (ja) 2012-11-30 2014-01-15 古河電気工業株式会社 耐インバータサージ絶縁ワイヤ及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0362414U (ja) * 1989-10-24 1991-06-19
JP5391341B1 (ja) * 2013-02-05 2014-01-15 古河電気工業株式会社 耐インバータサージ絶縁ワイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3193338A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12041632B2 (en) 2016-02-05 2024-07-16 Nec Corporation Communication system
WO2018037029A3 (en) * 2016-08-26 2018-06-28 Danfoss Power Electronics A/S Insulated electrical inductor and insulated sealing arrangement thereof
CN118412181A (zh) * 2024-06-28 2024-07-30 佳腾电业(赣州)股份有限公司 一种绝缘电线及其制备方法、线圈和电子/电气设备

Also Published As

Publication number Publication date
EP3193338A4 (en) 2018-04-18
US10037833B2 (en) 2018-07-31
KR20170078609A (ko) 2017-07-07
EP3193338B1 (en) 2021-05-19
JP2016058230A (ja) 2016-04-21
KR102020366B1 (ko) 2019-09-20
EP3193338A1 (en) 2017-07-19
US20170178765A1 (en) 2017-06-22
CN107004466A (zh) 2017-08-01
MY171713A (en) 2019-10-24
CN107004466B (zh) 2020-12-08
JP6133249B2 (ja) 2017-05-24

Similar Documents

Publication Publication Date Title
WO2016039351A1 (ja) 絶縁電線、コイルおよび電気・電子機器ならびに絶縁電線の製造方法
TWI639168B (zh) Insulated wire and method of manufacturing same
WO2016039350A1 (ja) 絶縁電線、コイルおよび電気・電子機器ならびに絶縁電線の製造方法
JP6382224B2 (ja) 絶縁ワイヤ、コイルおよび電気・電子機器ならびに皮膜剥離防止絶縁ワイヤの製造方法
TWI700710B (zh) 絕緣線、線圈及電氣、電子機器
TWI656538B (zh) Insulated wire, motor coil, electrical and electronic equipment, and method of manufacturing insulated wire
US20160322126A1 (en) Insulated wire, coil, and electrical/electronic equipment, and method of preventing cracking of insulated wire
WO2016072425A1 (ja) 絶縁ワイヤおよび回転電機
US9892819B2 (en) Insulated wire, coil, and electronic/electrical equipment
WO2015098639A1 (ja) 多層絶縁電線、コイルおよび電気・電子機器
KR20180118660A (ko) 절연 전선, 코일 및 전기·전자 기기
WO2017073643A1 (ja) 絶縁電線、絶縁電線の製造方法、コイル、回転電機および電気・電子機器
JP6490505B2 (ja) 絶縁電線、コイル及び電気・電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015840156

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015840156

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177009501

Country of ref document: KR

Kind code of ref document: A