WO2016039202A1 - 鉄道車両用軸受異常検知システム - Google Patents

鉄道車両用軸受異常検知システム Download PDF

Info

Publication number
WO2016039202A1
WO2016039202A1 PCT/JP2015/074664 JP2015074664W WO2016039202A1 WO 2016039202 A1 WO2016039202 A1 WO 2016039202A1 JP 2015074664 W JP2015074664 W JP 2015074664W WO 2016039202 A1 WO2016039202 A1 WO 2016039202A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
detection
bearing
detection system
railway vehicle
Prior art date
Application number
PCT/JP2015/074664
Other languages
English (en)
French (fr)
Other versions
WO2016039202A8 (ja
Inventor
伊藤 浩義
克義 鈴木
Original Assignee
Ntn株式会社
伊藤 浩義
克義 鈴木
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014186085A external-priority patent/JP2016055840A/ja
Priority claimed from JP2014203977A external-priority patent/JP2016075479A/ja
Priority claimed from JP2014203976A external-priority patent/JP2016075478A/ja
Application filed by Ntn株式会社, 伊藤 浩義, 克義 鈴木 filed Critical Ntn株式会社
Priority to EP15840358.4A priority Critical patent/EP3192715B1/en
Priority to CN201580048501.XA priority patent/CN106687353A/zh
Publication of WO2016039202A1 publication Critical patent/WO2016039202A1/ja
Priority to US15/453,301 priority patent/US10352821B2/en
Publication of WO2016039202A8 publication Critical patent/WO2016039202A8/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F15/00Axle-boxes
    • B61F15/12Axle-boxes with roller, needle, or ball bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/04Detectors for indicating the overheating of axle bearings and the like, e.g. associated with the brake system for applying the brakes in case of a fault
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/08Railway vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/08Railway vehicles
    • G01M17/10Suspensions, axles or wheels

Definitions

  • This invention relates to a railway vehicle bearing abnormality detection system for detecting an abnormality of an axle bearing in a railway vehicle.
  • An object of the present invention is to provide a railway vehicle bearing abnormality detection system capable of accurately determining abnormality of a railway vehicle bearing.
  • the railway vehicle bearing abnormality detection system includes one or more incorporated into at least one axle box 3 provided on at least one bogie 2 of the railway vehicle 1, as a whole.
  • a railway vehicle bearing abnormality detection system 100 that detects an abnormality of a rolling bearing 17 by causing the railway vehicle 1 to travel on a traveling rail 20.
  • a plurality of vibration detection devices 15 for detecting vibrations of the corresponding rolling bearings 17;
  • An analysis device 6 for determining an abnormality of the rolling bearing 17 based on detection data indicating the vibration of the corresponding rolling bearing 17 detected by each of the vibration detecting devices 15;
  • a plurality of reception response detection start means 13 respectively connected to the vibration detection device 15, each reception response detection start means 13 corresponding to the connected vibration detection device 15 when receiving a detection start signal.
  • Reception response detection starting means 13 for detecting vibration of the rolling bearing 17;
  • at least one measurement start command transmission device 4 that is installed apart from the railway vehicle 1 and transmits the detection start signal to the reception response detection start means 13.
  • the measurement start command transmission device 4 transmits a detection start signal to the reception response detection start means 13.
  • the reception response detection start unit 13 causes the vibration detection device 15 to detect the vibration of the rolling bearing 17.
  • the analysis device 6 determines the abnormality of the rolling bearing 17 based on the detection data detected by the vibration detection device 15.
  • the measurement start command transmission device 4 is installed away from the railway vehicle 1, and preferably, when a certain rolling bearing 17 of the plurality of rolling bearings 17 passes over a joint or a point portion of the traveling rail 20,
  • the reception response detection start means 13 connected to the vibration detection device 15 corresponding to the rolling bearing 17 is installed in a place where the detection start signal is not received.
  • the measurement start command transmitting device 4 is moved from the point or joint of the traveling rail 20 to a position along the traveling rail 20 (that is, within a predetermined distance range from the traveling rail 20 in the orthogonal direction of the traveling rail 20). Install in a position separated in the longitudinal direction.
  • the reception response detection start means 13 receives the detection start signal from the measurement start command transmission device 4 at a timing avoiding the passage time on the joint or the point portion, and the vibration detection device 15 vibrates the rolling bearing 17. Is detected.
  • the vibration detection device 15 detects vibration while avoiding the passage of a joint or a point portion, so that an extra vibration waveform other than the vibration waveform due to the bearing abnormality does not appear in the detection data. Detection data that is a waveform becomes clear. Therefore, it is possible to accurately determine the abnormality of the bearing 17 for the railway vehicle without including the vibration waveform resulting from passing through the joint or the point portion of the traveling rail 20 in the detection data.
  • the measurement start command transmission device 13 may be installed at a position away from the joint or the point portion of the traveling rail 20 by a distance determined in the rail longitudinal direction. The determined distance is determined by the result of a test or simulation. As a result, the reception response detection start means 13 from the measurement start command transmission device 4 before or after the rail car 1 travels along the traveling rail 20 and the vibration detection target axle box 3 passes the joint or the point portion.
  • the vibration detection device 15 is caused to detect the vibration of the rolling bearing 17. Therefore, only the vibration of the rolling bearing 17 can be reliably detected by the vibration detection device 15.
  • a plurality of the reception response detection start means 13 are provided for each axle box 3 provided with the rolling bearing 17 that is a vibration detection target, and when each reception response detection start means 13 receives the detection start signal, the subsequent vibration is detected. You may transmit a detection start signal with respect to the reception response detection start means 13 corresponding to the rolling bearing 17 which is a detection target. According to this, all the reception response detection start means 13 automatically receive the detection start signal only by the measurer installing the measurement start command transmission device and turning on the power. For this reason, the operation process with respect to each reception response detection start means 13 corresponding to the rolling bearing 17 which is a subsequent vibration detection target can be omitted. Therefore, the operability can be simplified.
  • a plurality of the measurement start command transmitting devices 4 are provided, and the traveling rail 20 has a plurality of joints or point portions, and the measurement is performed at a distance determined in the rail longitudinal direction for each of the joints or point portions.
  • Each start command transmission device 4 may be installed. According to this, the measurement resulting from the transmission time between the reception response detection start unit 13 (slave unit) and the reception response detection start unit 13 (slave unit) provided in the rolling bearing 17 that is a subsequent vibration detection target. The total sum of the time lags (time delays for transmission) can be reduced. At the same time, the measurement time lag between the slave units can be made constant. For this reason, the delay time necessary to avoid the measurement timing of the subsequent slave unit from being coincident with the joint of the traveling rail 20 or the passage of the point portion may not be provided.
  • the measurement start command transmission device 4 may be installed in a vehicle base that travels and inspects the railway vehicle 1.
  • Each of the plurality of vibration detection devices 15 detects the vibration of the corresponding rolling bearing 17 under the condition that the drive motor for driving the railway vehicle 1 is in a non-energized state and the speed of the railway vehicle 1 is It may be 25 km / h or more and 35 km / h or less. According to this, for example, after the railway vehicle 1 is set to a constant vehicle speed by the drive motor, the drive motor is deenergized and the railway vehicle 1 is caused to travel with inertial force. Thereafter, the vibration of the rolling bearing 17 is detected. Thereby, when detecting the vibration of the rolling bearing 17, harmful noise due to electromagnetic waves from the drive motor is reduced.
  • a plurality of detection data transmission devices 13 connected to each of the plurality of vibration detection devices 15 and transmitting detection data indicating the vibrations of the corresponding rolling bearings 17 detected by the vibration detection devices 15;
  • a data collection device 45 that is installed away from the railway vehicle 1 and that receives and collects the detection data transmitted from the detection data transmission device 13.
  • the analysis device 6 collects the data by the data collection device 45. Abnormalities of the plurality of rolling bearings 17 are determined based on the detected data.
  • the detection data transmission device 13 transmits the detection data detected by the vibration detection device 15.
  • the data collection device 45 receives and collects the detection data transmitted from the detection data transmission device 13.
  • the analysis device 6 determines the abnormality of the rolling bearing 17 based on the detection data collected by the data collection device 45.
  • the data collection device 45 receives and collects the detection data transmitted from the detection data transmission device 13, for example, compared with data transmission using a wire or a recording medium, the incidental work of the electric wire and the data extraction work are performed. do not need. Therefore, the detection data can be easily extracted and the cost can be reduced.
  • the measurement start command transmission device 4 and the data collection device 45 may be installed within a predetermined distance range from the traveling rail 20 in a direction orthogonal to the traveling rail 20.
  • the predetermined distance is the position of the measurement start command transmission device 4 at which the reception response detection start means 13 can receive the detection start signal from the measurement start command transmission device 4, and the data collection device 45 is the detection data transmission device 13.
  • the position of the data collection device 45 which can receive the detection data from is shown.
  • One or a plurality of railway vehicle bearing abnormality detection systems are incorporated in at least one axle box 3 provided in at least one carriage 2 of the railway vehicle 1 as a whole.
  • a bearing abnormality detection system for a railway vehicle that detects an abnormality of the rolling bearing 17 by causing the railway vehicle 1 to travel on the traveling rail 20;
  • a plurality of vibration detection devices 15 for detecting vibrations of the corresponding rolling bearings 17 and disturbance vibrations, respectively;
  • a plurality of vibration measurement start means 53 connected to each of the vibration detection devices 15, each vibration measurement start means 53, when the corresponding vibration detection device 15 detects a disturbance vibration, Vibration measurement starting means 53 for starting vibration measurement of the bearing 17;
  • an analysis device 6 for determining an abnormality of the rolling bearing 17 based on detection data obtained from the vibration measurement started.
  • the disturbance vibration may be detected when a detection value detected by the vibration detection device is a predetermined value or more.
  • This predetermined value is a value that serves as a trigger for handling the detection by the vibration detection device as detection data indicating the vibration of the rolling bearing 17, and is detected when, for example, the vehicle passes a joint or a point portion of the traveling rail 20. Is the value to be This predetermined value is determined in advance based on results of tests, simulations, and the like.
  • the vibration measurement starting unit 53 starts measuring the vibration of the rolling bearing 17 when detecting disturbance vibration.
  • the analysis device 6 determines the abnormality of the rolling bearing 17 based on the vibration measurement data obtained from the started vibration measurement. As described above, since detection of disturbance vibration is used as an opportunity, the subsequent detection value is handled as detection data indicating the vibration of the rolling bearing 17, so that the vibration detector 15 can be used for starting vibration measurement. There is no need to provide a separate device for starting measurement. Therefore, the configuration of the entire apparatus can be simplified and the cost can be reduced.
  • the vibration detection device 15 starts vibration measurement at the time of detecting disturbance vibration generated when passing through the joint or the point portion, and captures the detected value as detection data indicating the vibration of the rolling bearing 17. Since an extra vibration waveform other than the vibration waveform due to the bearing abnormality does not appear in the detection data, the detection data that is the vibration waveform due to the bearing abnormality becomes clear. Therefore, it is possible to accurately determine the abnormality of the bearing 17 for the railway vehicle without including the vibration waveform resulting from passing through the joint or the point portion of the traveling rail 20 in the detection data.
  • the plurality of detection data is further connected to each of the plurality of vibration detection devices 15 and transmits detection data indicating the vibration of the corresponding rolling bearing 17 detected by each of the vibration detection devices 15.
  • a transmission device 13 a data collection device 45 that is installed within a predetermined distance range from the traveling rail 20 in a direction orthogonal to the traveling rail 20, and that receives and collects the detection data transmitted from the detection data transmission device 13; Is provided.
  • the predetermined distance indicates the position of the data collection device 45 that can receive the detection data transmitted from the detection data transmission device 13.
  • Each detection data transmission device 13 transmits the detection data detected by the corresponding vibration detection device 15.
  • the data collection device 45 receives and collects detection data wirelessly transmitted from the detection data transmission device 13. For this reason, for example, unlike the case of data transmission by wire or recording media, there is no need for an incidental work of electric wires or an operation of taking out data. Therefore, the detection data can be easily extracted and the cost can be reduced.
  • the data collection device 45 may receive and collect the detection data together with an ID associated with each vibration detection device. Since the detection data is collected together with the ID in the data collecting device 45 in this way, it is immediately identified which rolling bearing 17 incorporated in the axle box 3 is abnormal.
  • it further comprises a data storage server 46 for storing the detected data and the ID transmitted from the data collection device 45 via a telephone line, and the analysis device 6 includes the data storage server.
  • the abnormality of each rolling bearing 17 may be determined based on the detection data and the ID transmitted from 46. According to this, acquisition of detection data can be simplified and the analysis time can be shortened.
  • the analysis device 6 is When the analysis value obtained by frequency analysis of the detection data is equal to or greater than a threshold value relating to the set vibration, it is diagnosed that the rolling bearing 17 of the detection data is abnormal. When the analysis value is less than the threshold value, the rolling bearing 17 of the detection data is normal.
  • a diagnostic unit 50 for diagnosing the presence A storage unit 51 for storing an analysis result diagnosed by the diagnosis unit 50; A display unit 52 for displaying an analysis result diagnosed by the diagnostic unit 50; You may have.
  • the threshold is determined, for example, by a result of experiment or simulation.
  • the diagnosis unit 50 diagnoses that the rolling bearing 17 is abnormal when the analysis value is greater than or equal to the threshold value, and diagnoses that the rolling bearing 17 is normal when the analysis value is less than the threshold value.
  • the storage unit 51 stores the diagnosed diagnosis result. Since the analysis result is displayed on the display unit 52, the measurer can visually check the analysis result without delay.
  • the analysis result diagnosed by the diagnosis unit 50 may be transmitted to the data storage server 46 together with the ID. According to this, since the analysis result is transmitted to the data storage server 46 together with the ID, the analysis result can be browsed and confirmed for each ID as necessary.
  • an electronic device for browsing the analysis result recorded in the data storage server 46 for each ID may be further provided.
  • the electronic device includes various electronic devices such as a personal computer, a mobile phone, a smartphone, or a PDA.
  • the data storage server 46 can be accessed and the analysis result can be browsed and confirmed for each ID.
  • the administrator who manages the system not only the administrator who manages the system but also the administrator who manages the peripheral devices including the railway vehicle 1 accesses the data storage server 46 using the various devices described above to obtain bearing replacement information. It is possible to easily obtain information such as maintenance information and information order arrangements.
  • the relationship between the ID and the bearing model number, axle box and vehicle number related to the rolling bearing corresponding to the ID, and the acquisition date of the detection data corresponds to the detection data.
  • FIG. 1 is a perspective view showing an external appearance of a railway vehicle bearing abnormality detection system according to a first embodiment. It is a block diagram of the control system of the bearing abnormality detection system of FIG. It is a figure which shows the example of attachment of the measurement start command transmission / reception apparatus and vibration detection apparatus of the bearing abnormality detection system of FIG.
  • FIG. 5 is an end view taken along line AA in FIG. 4. It is a circuit diagram which shows schematically the structure of the processing circuit of the bearing abnormality detection system of FIG. It is a figure which shows the example of a vibration measurement by the bearing abnormality detection system of FIG.
  • FIG. 10 is a block diagram of a control system of the bearing abnormality detection system of FIG. 9. It is a figure which shows the example of a vibration measurement by the bearing abnormality detection system of FIG. It is a figure which shows the example of a vibration measurement by the bearing abnormality detection system for rail vehicles which concerns on 4th Embodiment. It is a perspective view which shows the external appearance of the railway vehicle bearing abnormality detection system which concerns on 5th Embodiment.
  • this bearing abnormality detection system 100 includes a plurality of rolling bearings as a whole that are incorporated in at least one axle box 3 provided in at least one carriage 2 of a railway vehicle 1. It is a device that detects abnormalities.
  • the railway vehicle 1 is various railway vehicles including, for example, a Shinkansen.
  • the bearing abnormality detection system detects the vibration of the bearing from the outside without taking out the bearing from the axle box 3 when, for example, inspecting the bearing or the like at the vehicle station during vehicle inspection.
  • FIG. 2 is a perspective view showing an appearance of the bearing abnormality detection system 100.
  • the bearing abnormality detection system 100 includes a measurement start command transmission device (master device) 4, a plurality of slave device sets 5, and an analysis device 6.
  • the measurement start command transmission device 4 is installed at a location away from the railway vehicle 1, for example, in the vicinity of the traveling rail 20.
  • a plurality of handset sets 5 are provided for each axle box 3 for vibration detection.
  • Each of the plurality of slave sets 5 is detachably provided at a specific location of the railcar 1 as will be described later.
  • the analysis device 6 is realized by a processor of a personal computer, for example.
  • the measurement start command transmission device 4 transmits a detection start signal to the measurement start command transmission / reception device (reception response detection start means) 13 in each slave unit set 5.
  • the measurement start command transmission device 4 is installed in the vicinity of the traveling rail 20 and at a predetermined distance from the joint between the rails and the point portion in the rail longitudinal direction.
  • the installation location of the measurement start command transmission device 4 is such that a distance from the measurement start command transmission device 4 is within a predetermined range when the slave set 5 installed in the axle box 3 to be subjected to vibration detection approaches the measurement start command transmission device 4.
  • the axle box 3 which is a position where the slave set 5 can receive the detection start signal transmitted from the measurement start command transmission device 4 and which is a vibration detection target above the joint and the point portion.
  • the measurement start command transmission device 4 can transmit a detection start signal to the slave set 5.
  • FIG. 3 is a block diagram of a control system of the bearing abnormality detection system 100.
  • the measurement start command transmission device 4 includes a power supply 7, a power supply circuit 8, a communication circuit 9, a communication module 10, and an antenna 11.
  • the power supply voltage supplied from the power supply 7 is changed to a desired voltage by the power supply circuit 8 and supplied to the communication circuit 9, the communication module 10, and the antenna 11 in the subsequent stage.
  • the detection start signal is converted into an electromagnetic wave having a frequency determined by the communication circuit 9 and transmitted to the measurement start command transmission / reception device 13 of the handset set 5 via the communication module 10 and the antenna 11. For example, when a ZigBee module is used for the communication module 10, the power consumption can be reduced.
  • Each cordless handset set 5 includes a vibration detection device 15 and a measurement start command transmission / reception device (reception response detection start means) 13. These vibration detection device 15 and measurement start command transmission / reception device 13 are electrically connected via an electric wire 16.
  • FIG. 4 is a diagram showing an example of attachment of the measurement start command transmission / reception device 13 and the vibration detection device 15 of the bearing abnormality detection system.
  • FIG. 5 is an end view taken along line AA of FIG.
  • FIG. 5 is an enlarged view of the vicinity of the wheel 19 of the leading vehicle in FIG.
  • the vibration detection device 15 detects vibration of the rolling bearing 17, vibration at the time of passing through the joint of the traveling rail 20 and the point portion, and the like.
  • a pair of axle boxes 3 are provided at a lower portion of the carriage 2 in the vehicle width direction, and one or a plurality of rolling bearings 17 are incorporated in each of the axle boxes 3.
  • Two axles 18 are provided in parallel to one carriage 2.
  • a plurality of rolling bearings 17 are incorporated into one axle box 3 at a predetermined interval.
  • the rolling bearing 17 is, for example, a ball bearing, a cylindrical roller bearing, or a tapered roller bearing.
  • the outer ring of the rolling bearing 17 is fitted to the inner peripheral surface of each axle box 3, and the axle 18 is fitted to the inner ring of the rolling bearing 17.
  • Wheels 19 are attached to both ends of the axle 18 in the axial direction. These wheels 19 are rotatably supported by rolling bearings 17 and can travel on two rails 20 laid in parallel on the track.
  • a bolt 21 made of a magnetic material is fastened to the axle box 3.
  • the bolt 21 is, for example, a hexagon bolt.
  • the head surface of the hexagon bolt exposed from the axle box 3 can attract the permanent magnet 12 of the vibration detection device 15, and thus the vibration detection device 15 can be fixed.
  • the vibration detection device 15 includes, for example, a case (not shown), a vibration detection element 23, a processing circuit 24, a permanent magnet 12 (FIG. 4), a power supply circuit 25, and a recording unit. 40 and a recording medium 22.
  • a processing circuit 24 mounted on a printed circuit board is accommodated in the case.
  • the processing circuit 24 has a plurality of electronic components, and these electronic components are soldered to one side or both sides of the printed circuit board.
  • the printed circuit board for example, a highly rigid glass-filled epoxy resin is desirable.
  • a vibration detection element 23 for detecting the operation state of the rolling bearing 17 and a holder made of a magnetic material are attached to one end of the case in the axial direction.
  • the vibration detection element 23 is, for example, a piezoelectric acceleration sensor. A wide range of vibrations can be detected by using the piezoelectric vibration detecting element 23.
  • a lead wire is connected from a lead terminal of the vibration detecting element 23 to a connection terminal provided in the processing circuit 24.
  • a permanent magnet 12 is provided at the tip of the holder, and this permanent magnet 12 is attracted to the head surface of the bolt 21 in the axle box 3, thereby fixing the vibration detecting device 15. . Therefore, the vibration detection device 15 is detachably attached to the head surface of the bolt 21 by the permanent magnet 12.
  • the plurality of vibration detection devices 15 are preferably attached above or below the axle box 3.
  • FIG. 6 is a circuit diagram schematically showing the configuration of the processing circuit 24 of the vibration detecting apparatus.
  • the processing circuit 24 includes an operational amplifier circuit 26, a filter circuit 27, a microcomputer 28, and a reference voltage circuit 29.
  • An output signal of the vibration detection element 23 is input from the operational amplifier circuit 26 to the microcomputer 28 via the filter circuit 27.
  • the filter circuit 27 is configured by a band-pass filter in which a certain frequency band is set in order to extract a nearby frequency including the bearing natural frequency.
  • the filter circuit 27 may be configured by a combination of a high pass filter and a low pass filter.
  • the microcomputer 28 should normally be in a sleep state and be activated when a signal is received.
  • the analog output signal of the acceleration sensor which is the vibration detecting element 23 is A / D converted inside the microcomputer 28 and then recorded in the recording means 40 as shown in FIG. Thereafter, data is transferred from the recording means 40 to the recording medium 22.
  • the recording means 40 is, for example, a random access memory (abbreviated as RAM: Random Access Memory) that can rewrite data. If the recording medium 22 is, for example, a micro SD card, the vibration detection device 15 can be made compact.
  • a power supply voltage is supplied to the vibration detection element 23 and the processing circuit 24.
  • the power supply voltage is a desired voltage.
  • Power supply bypass capacitors C1 to C4 are connected to the vibration detecting element 23 and the processing circuit 24.
  • the power supply bypass capacitors C1 to C4 bypass the noise superimposed on the DC power supply to supply a stable power supply voltage, and to suppress fluctuations in the power supply voltage, between the power supply line L1 and the GND (ground) line L2. Connected to.
  • a power supply bypass capacitor C1 is connected between the power supply line L1 and the GND line L2 of the vibration detecting element 23.
  • the power supply bypass capacitor C1 supplies a stable power supply voltage to the vibration detecting element 23, and suppresses fluctuations in the supplied power supply voltage.
  • An analog output signal from the vibration detection element 23 is input to one input terminal of the operational amplifier 31 in the operational amplifier circuit 26 via the resistor 30.
  • a power supply bypass capacitor C2 is connected between the power supply line L1 and the GND line L2 of the operational amplifier 31.
  • noise is bypassed and a stable power supply voltage is supplied to the operational amplifier circuit 26, and fluctuations in the supplied power supply voltage are suppressed.
  • An output signal from the operational amplifier 31 is input to the other input terminal via a capacitor 32 and a resistor 33 connected in parallel to the capacitor 32.
  • the operational amplifier 31 amplifies and outputs a difference between inputs (inverted input and non-inverted input) to two input terminals.
  • the amplified output signal is input to one input terminal of the operational amplifier 36 in the filter circuit 27 via the resistors 34 and 35 connected in series.
  • a power supply bypass capacitor C3 is connected between the power supply line L1 and the GND line L2 of the operational amplifier 36. By this power supply bypass capacitor C3, noise is bypassed to the filter circuit 27 and a stable power supply voltage is supplied, and fluctuations in the supplied power supply voltage are suppressed.
  • An output signal from the operational amplifier 36 is input to the other input terminal and fed back between the resistors 34 and 35 via the capacitor 37.
  • the filter circuit 27 extracts only a predetermined frequency band corresponding to the natural vibration of the bearing and removes an unnecessary frequency band.
  • natural vibrations of the bearing occur as the rolling element passes through.However, if an abnormality occurs on the rolling surface of the bearing, vibration occurs at the passing period of the rolling element according to the bearing rotation speed. Peaks are superimposed. Therefore, the filter circuit 27 can remove or attenuate the frequency components other than the natural vibration component of the bearing with respect to the output signal from the operational amplifier circuit 26, thereby accurately extracting the frequency component at the time of abnormality.
  • the bearing rotational speed is determined so as to correspond to the rotational speed of the drive motor of the railway vehicle, for example.
  • the analog output signal that has passed through the filter circuit 27 is input to the microcomputer 28 via the resistor 38 and the like.
  • the analog output signal is temporarily recorded in the recording means 40 (FIG. 3) after A / D conversion.
  • a reference voltage circuit 29 is connected to the microcomputer 28 so that an excessive voltage is not applied.
  • a power supply bypass capacitor C4 is connected between the power supply line L1 and the GND line L2 of the reference voltage circuit 29. By this power supply bypass capacitor C4, noise is bypassed to the reference voltage circuit 29 and a stable power supply voltage is supplied, and fluctuations in the supplied power supply voltage are suppressed.
  • the measurement start command transmission / reception device (reception response detection start means) 13 in each slave unit set 5 includes a power supply 41, a power supply circuit 42, a communication circuit 43, a communication module 44, an antenna 14, and the like.
  • the measurement start command transmission / reception device (reception response detection start means) 13 is constituted by a so-called communication device including a processor and a memory.
  • the power supply voltage supplied from the power supply 41 is changed to a desired voltage by the power supply circuit 42 and supplied to the communication circuit 43, the communication module 44, and the antenna 14.
  • a detection start signal from the measurement start command transmission device 4 is received by the antenna 14 of the measurement start command transmission / reception device 13 and then transmitted to the vibration detection device 15 via the communication circuit 43 and the electric wire 16. Thereby, the vibration detector 15 can detect the vibration of the rolling bearing.
  • FIG. 7 is a diagram showing an example of vibration measurement by the bearing abnormality detection system 100.
  • one point portion Pt is provided in the travel range of the railway vehicle.
  • the measurement start command transmission device 4 and the plurality of measurement start command transmission / reception devices 13 are all turned on. .
  • rolling that is the first vibration detection target of the front carriage 2 in the leading vehicle as a vehicle speed (for example, 25 km / h or more and 35 km / h or less) determined by running the railcar 1 along the running rail 20.
  • the measurement start command transmission / reception device (reception response detection starting means) 13 of the first slave unit set 5 ⁇ / b> A is installed in the vicinity of the traveling rail 20.
  • the detection start signal radio wave is received from the measured start command transmitter 4.
  • the vibration detecting device 15 of the first slave unit set 5A connected to the measurement start command transmitting / receiving device 13 detects the vibration of the rolling bearing incorporated in the head axle box, that is, the corresponding axle box. Further, the measurement start command transmission / reception device 13 of the first slave unit set 5A transmits a radio wave of the detection start signal to the measurement start command transmission / reception device 13 of the second slave unit set 5B, and the vibration of the second slave unit set 5B. The detection device 15 detects the vibration of the rolling bearing incorporated in the corresponding axle box.
  • the measurement start command transmission / reception device 13 transmits a detection start signal radio wave to the next measurement start command reception device 13, so that the measurement start commands for the subsequent slave sets 5C, 5D, 5E, 5F are transmitted.
  • Radio waves of detection start signals are sequentially transmitted to the transmission / reception device 13 to sequentially detect vibrations of the rolling bearings that are vibration detection targets incorporated in the axle boxes corresponding to the respective slave unit sets 5.
  • the measurement start command transmission device 4 and the plurality of measurement start command transmission / reception devices 13 are turned off.
  • the analysis device 6 determines the abnormality of each rolling bearing.
  • the amplitude threshold value is stored in advance in the memory of the personal computer in which the analysis device 6 is realized.
  • the processor of the personal computer may determine abnormality based on the result of calculation such as comparison.
  • the vibration waveform may be processed as an analog signal or A / D converted and processed as a digital signal.
  • the reception response detection start means 13 detects the detection start signal from the measurement start command transmission device 4 while avoiding passage of a joint or a point portion. , And by causing the vibration detection device 15 to detect the vibration of the rolling bearing 17, an extra vibration waveform other than the vibration waveform due to the bearing abnormality does not appear in the detection data. Some detection data becomes clear.
  • the analysis device 6 determines the abnormality of the rolling bearing 17 based on such detection data. Therefore, it is possible to accurately determine the abnormality of the bearing 17 for the railway vehicle without including the vibration waveform resulting from passing through the joint or the point portion of the traveling rail 20 in the detection data.
  • the measurement start command transmission / reception device 13 that has received the detection start signal sequentially sends the detection start signal to the measurement start command transmission / reception device 13 corresponding to the axle box 3 provided with the rolling bearing that is the subsequent vibration detection target. It has a function to transmit. For this reason, the measurer can omit the operation process for each measurement start command transmitting / receiving device 13 corresponding to the subsequent vibration detection target by installing the measurement start command transmitting device 4 and turning on the power. Therefore, the operability can be simplified. In addition, since the measurement start command transmission / reception device 13 automatically receives the radio wave of the detection start signal, the vibration measurement is started, so that variations in measurement conditions are reduced.
  • a railway vehicle bearing abnormality detection system will be described.
  • the same reference numerals are assigned to portions corresponding to the matters described in the preceding form in the present embodiment, and overlapping descriptions are omitted.
  • the other parts of the configuration are the same as those described in advance unless otherwise specified. The same effect is obtained from the same configuration.
  • the embodiments can be partially combined as long as the combination does not hinder.
  • FIG. 8 is a diagram illustrating an example of vibration measurement by the bearing abnormality detection system 100 according to the second embodiment.
  • two point portions Pt are provided in the travel range of the railway vehicle 1, and the distance between them is substantially equal to the length of one vehicle 1.
  • first and second measurement start command transmitting devices 4A and 4B are installed.
  • the second child device set 5A is transferred from the first measurement start command transmission device 4A to the first child device set 5A
  • the second child device set 5B is transferred from the first child device set 5A to the second child device set 5B.
  • a detection start signal is transmitted in the order from the machine set 5B to the third child machine set 5C, and from the third child machine set 5C to the fourth child machine set 5D. Set to start vibration measurement.
  • the fifth slave unit set 5E in the succeeding vehicle 1 receives the detection start signal from the second measurement start command transmitting device 4B, the rolling bearing that is the object of vibration detection is received. Start vibration measurement. Similar to the leading vehicle, the fifth handset 5E is set to transmit a detection start signal to the sixth handset 5F.
  • the measurement time lag time delay required for transmission
  • the measurement time lag between the slave sets can be made constant. Therefore, the delay time necessary to avoid the measurement timing of the subsequent slave unit set from coincident with the passage of the joint or the point portion may not be provided.
  • each measurement start command transmission / reception device 13 receives a detection start signal at a timing when the axle box of each vehicle carriage 2 passes through the vicinity of the measurement start command transmission devices 4A and 4B, respectively.
  • Each vibration measurement may be started. That is, the interval between the measurement start command transmitters 4A and 4B may be substantially equal to the interval between the two carriages in one vehicle. Then, it is assumed that one rolling bearing that is a vibration detection target is provided for each cart.
  • Each of the handset sets 5A,..., 5F is set to start measurement only when receiving the radio wave of the detection start signal transmitted from the measurement start command transmitting devices 4A, 4B.
  • the vehicle travel speed is set to a predetermined vehicle speed when the first handset 5A receives the radio wave of the detection start signal from the measurement start command transmission device 4A.
  • FIG. 9 is a perspective view showing an appearance of a bearing abnormality detection system 100A according to the third embodiment.
  • This bearing abnormality detection system 100A includes a data collection device 45 and a data storage server 46 in addition to the bearing abnormality detection system 100 (FIG. 2) according to the first embodiment.
  • FIG. 10 is a block diagram of a control system of this bearing abnormality detection system.
  • the measurement start command transmission / reception device 13 in each slave unit set 5 includes, for example, a case (not shown), a power supply 41, a power supply circuit 42, a communication circuit 43, a communication module 44, an antenna 14, and a permanent magnet 47 (see FIG. 9).
  • a power source 41, a power circuit 42, a communication circuit 43, and a communication module 44 are accommodated in the case.
  • a permanent magnet 47 (FIG. 9) is provided in a part of the case, and the permanent magnet 47 (FIG. 9) is attracted and fixed to the head surface of the bolt near the axle box.
  • the antenna 14 may be appropriately fixed to the vehicle body using an adhesive tape or the like as a separate body from the case.
  • the power supply voltage supplied from the power supply 41 is changed to a desired voltage by the power supply circuit 42 and supplied to the communication circuit 43, the communication module 44, and the antenna 14.
  • the recording medium does not necessarily need to be a detachable recording medium (a recording medium such as a micro SD card as described in the first embodiment).
  • the detection data detected by the vibration detection device 15 is recorded in the recording means 40 of the microcomputer 28 in the vibration detection device 15 (see FIG. 6 described in regard to the first embodiment). After that, it is transferred to the measurement start command transmission / reception device 13 via the electric wire 16.
  • the microcomputer 28 (FIG. 6) in each vibration detection device 15 stores an ID associated with each vibration detection device, that is, each child device set, and detection data is transferred together with this ID.
  • the measurement start command transmission / reception device 13 maintains a state in which radio waves are transmitted from the antenna 14.
  • the measurement start command transmission / reception device 13 has a function as a detection data transmission device that transmits detection data in addition to the function as the above-described reception response detection start means.
  • the data collection device 45 is installed at a location far from the railway vehicle, for example, in the vicinity of the traveling rail 20 (FIG. 11) and ahead of the measurement start command transmission device 4 in the vehicle traveling direction.
  • the data collection device 45 includes an antenna 45 a that receives the detection data transmitted from the measurement start command transmission / reception device 13. When the measurement start command transmission / reception device 13 passes in the vicinity of the data collection device 45, the data collection device 45 receives and collects detection data wirelessly via the antenna 45a.
  • the analysis device 6 determines the abnormality of each rolling bearing from the detection data and ID transmitted from the data storage server 46.
  • the analysis device 6 includes a diagnosis unit 50, a storage unit 51, and a display unit 52.
  • the diagnosis unit 50 diagnoses that the bearing is abnormal when the analysis value obtained by frequency analysis of the detection data is equal to or greater than the threshold value, and diagnoses that the bearing is normal when the analysis value is less than the threshold value.
  • the storage unit 51 stores the analysis result diagnosed by the diagnosis unit 50.
  • the display unit 52 displays the analysis result diagnosed by the diagnosis unit 50.
  • the data storage server 46 may transmit and record the analysis result diagnosed by the diagnosis unit 50 together with the ID.
  • the data storage server 46 is accessed using various electronic devices such as a personal computer, a mobile phone, a smartphone, or a PDA, and the analysis result recorded in the data storage server 46 is extracted using the ID as a key. You can confirm that.
  • the administrator who manages this apparatus not only the administrator who manages this apparatus, but also the administrator who manages the peripheral devices including this railway vehicle accesses the data storage server 46 using the above-mentioned various devices to obtain bearing replacement information, etc. Maintenance information and information ordering arrangements can be easily obtained.
  • FIG. 11 is a diagram showing an example of vibration measurement by the bearing abnormality detection system 100A.
  • one point portion Pt is provided in the travel range of the railway vehicle 1.
  • the measurement start command transmission device 4 the plurality of measurement start command transmission / reception devices 13, and the power supply of the data collection device 45 are before that. Are all turned on.
  • the measurement start command transmitting / receiving device (reception response detection starting means) 13 of the first slave unit set 5 ⁇ / b> A is installed in the vicinity of the traveling rail 20.
  • the detection start signal radio wave is received from the measurement start command transmitter 4.
  • the vibration detecting device 15 of the first slave unit set 5A connected to the measurement start command transmitting / receiving device 13 detects the vibration of the rolling bearing incorporated in the head axle box, that is, the corresponding axle box. Further, the measurement start command transmission / reception device 13 of the first slave unit set 5A transmits a radio wave of the detection start signal to the measurement start command transmission / reception device 13 of the second slave unit set 5B, and the vibration of the second slave unit set 5B. The detection device 15 detects the vibration of the rolling bearing incorporated in the corresponding axle box.
  • the measurement start command transmission / reception device 13 transmits a detection start signal radio wave to the next measurement start command transmission / reception device 13 to thereby measure the measurement start commands of the subsequent slave sets 5C, 5D, 5E, 5F.
  • Radio waves of detection start signals are sequentially transmitted to the transmission / reception device 13 to sequentially detect vibrations of the rolling bearings that are vibration detection targets incorporated in the axle boxes corresponding to the respective slave unit sets 5.
  • the detection data detected by each vibration detection device 15 and the ID for each slave set 5 are recorded in the recording means of the microcomputer in each vibration detection device 15 and then transferred to the measurement start command transmission / reception device 13.
  • the measurement start command transmission / reception device 13 maintains a state in which radio waves are transmitted from the antenna 14.
  • the measurement start command transmission / reception device 13 receives the detection data and ID wirelessly. collect. Instead, when the measurement start command transmission / reception device 13 passes in the vicinity of the data collection device 45, the measurement start command transmission / reception device 13 transmits the detection data and the ID at the timing when the data transmission command is received from the data collection device 45. May be. After running the railway vehicle 1 in this way, the measurement start command transmission device 4 and the plurality of measurement start command transmission / reception devices 13 are turned off.
  • the data collection device 45 receives and collects detection data transmitted from the measurement start command transmission / reception device 13 which is a detection data transmission device. For this reason, for example, ancillary work of electric wires and data extraction work are not required as compared with data transmission by wire or recording media. Therefore, the detection data can be easily extracted and the cost can be reduced. Since the detection data is collected by the data collection device 45 together with the ID associated with each slave unit set, it can be immediately identified which rolling bearing 17 incorporated in which axle box 3 is abnormal.
  • a railway vehicle bearing abnormality detection system will be described.
  • the same reference numerals are given to the portions corresponding to the matters described in the preceding forms in each embodiment, and the overlapping description is omitted.
  • the other parts of the configuration are the same as those described in advance unless otherwise specified. The same effect is obtained from the same configuration.
  • the embodiments can be partially combined as long as the combination does not hinder.
  • FIG. 12 is a diagram showing an example of vibration measurement by the bearing abnormality detection system 100A according to the fourth embodiment.
  • two point portions Pt are provided in the travel range of the railway vehicle 1, and the distance between them is substantially equal to the length of one vehicle 1. Therefore, the transmission of the detection start signal and the measurement of each vibration detection target are as described for the bearing abnormality detection system according to the second embodiment.
  • the second measurement start command transmitters 4A and 4B are configured to generate disturbance vibrations before the first slave unit set 5A and the fifth slave unit set 5E pass the joints and point portions of the travel rails at the determined travel speed. It will be installed so that it will not be affected.
  • the drive motor is preferably de-energized to cause the railway vehicle 1 to travel with inertial force. Thereafter, the vibration of each rolling bearing 17 is detected. Thereby, when the vibration of each rolling bearing 17 is detected, harmful noise due to electromagnetic waves from the drive motor is reduced.
  • the detection data recorded in the data collection device 45 is transferred together with the ID to the data storage server 46 which is a storage means via radio such as a telephone line.
  • the data storage server 46 the relationship between the ID of the detection data, the bearing model number, the axle box, the vehicle number, and the measurement date is stored in association with the detection data.
  • the detection data and ID stored in the data storage server 46 can be transmitted to the analysis device 6 using, for example, a wireless LAN, Wi-Fi, Bluetooth (registered trademark), a ZigBee module, or the like.
  • FIG. 13 is a perspective view showing an external appearance of a bearing abnormality detection system 100B according to the fifth embodiment.
  • This bearing abnormality detection system 100B is different from the bearing abnormality detection system 100A (FIG. 9) according to the third embodiment. The point is that the measurement start command transmission device 4 (FIG. 9) is not provided.
  • FIG. 14 is a block diagram of a control system of the bearing abnormality detection system 100B.
  • the measurement start command transmission / reception device 13A in each slave unit set 5 includes a case (not shown), a vibration measurement start unit 53, a power supply 41, a power supply circuit 42, a communication circuit 43, a communication module 44, an antenna 14, And a permanent magnet 47 (FIG. 13). That is, the measurement start command transmission / reception device 13A includes a so-called communication device including a processor and a memory.
  • the vibration measurement starting means 53, the power supply 41, the power supply circuit 42, the communication circuit 43, and the communication module 44 are accommodated.
  • a permanent magnet 47 (FIG. 13) is provided in a part of the case, and the permanent magnet 47 (FIG. 13) is attracted and fixed to the head surface of the bolt near the axle box.
  • the antenna 14 may be appropriately fixed to the vehicle body using an adhesive tape or the like as a separate body from the case.
  • the vibration measurement start means 53 includes a vibration measurement start determination unit 53a realized by the processor of the measurement start command transmission / reception device 13A and a vibration data recording unit 53b realized by the memory of the measurement start command transmission / reception device 13A.
  • the vibration measurement start determination unit 53a monitors the detection value of the vibration detection device 15 via the electric wire 16 or the like, and determines whether or not the detection value is equal to or greater than a predetermined value.
  • the vibration data recording unit 53b starts to measure the vibration of the rolling bearing and captures and records it as vibration data.
  • the vibration detection device 15 detects vibration when the wheel 19 of the leading vehicle 1 passes through a joint or a point portion of the traveling rail 20. As shown in FIG. 14, when the vibration measurement start determination unit 53a determines that the detected value is equal to or greater than a certain value, the vibration data recording unit 53b starts to measure the vibration of the rolling bearing and captures and records it as vibration data. .
  • FIG. 15A shows an example of a vibration waveform due to the passage of rolling elements when an abnormality occurs in the bearing outer ring
  • FIG. 15B shows an example of a vibration waveform when a normal bearing passes the point portion of the running rail. Show.
  • the detection value by the vibration detection device 14 when passing through the joint or the point portion of the traveling rail passes through the traveling rail portion without the joint or the point portion due to normal bearing rotation. Sometimes it is larger than the detected value detected by the vibration detector 15 (FIG. 14).
  • the peak of the vibration waveform does not appear regularly like the passage cycle of the bearing rolling element unlike the bearing when the abnormality occurs in the bearing outer ring. Therefore, when a peak appears in the detected value, it is easy to determine whether it is caused by passing through a joint or a point portion or caused by an abnormality occurring in the bearing outer ring. For example, when a detection value equal to or greater than a certain value per certain time is detected once, it may be determined that the vehicle has passed a joint or a point portion of the traveling rail.
  • the predetermined time is determined according to the speed of the railway vehicle, for example.
  • the power supply voltage supplied from the power supply 41 is changed to a desired voltage by the power supply circuit 42 and supplied to the communication circuit 43, the communication module 44, and the antenna 14.
  • the detection data recorded in the vibration data recording unit 53 b is converted into an electromagnetic wave having a frequency determined by the communication circuit 43 and transmitted via the communication module 44 and the antenna 14.
  • the measurement start command transmission / reception device 13A that functions as a transmission device for transmission data maintains a state in which radio waves are transmitted from the antenna 14.
  • the vibration detection device 15 detects not only the vibration of the rolling bearing 17 but also the vibration at the time of passing through the joint of the traveling rail 20 and the point portion as described above.
  • the bearing abnormality detection system does not include the measurement start command transmission device 4 (FIG. 10).
  • the data collection device 45 is installed at a location distant from the railway vehicle, for example, in the vicinity of the traveling rail 20 (FIG. 16) and ahead of the point portion Pt (FIG. 16) in the vehicle traveling direction. .
  • FIG. 16 is a diagram showing an example of vibration measurement by the bearing abnormality detection system 100B.
  • one point portion Pt is provided in the travel range of the railway vehicle 1.
  • all the power supplies of the plurality of slave sets 5A to 5F and the data collection device 45 are turned on before that.
  • the rolling bearing that is the first vibration detection target of the front carriage 2 in the leading vehicle 1 as a vehicle speed (for example, 25 km / h or more and 35 km / h or less) determined by traveling the rail vehicle 1 along the traveling rail 20.
  • a trigger for starting vibration measurement the vibration measuring device 15 of the first handset 5A after the point box Pt passes the point part Pt of the traveling rail 20 is used as a trigger for starting the vibration measurement. Detect vibration.
  • the measurement start command transmission / reception device 13A of the first handset set 5A transmits a radio wave of the detection start signal to the measurement start command transmission / reception device 13A one behind, respectively, thereby the measurement start command of the second handset set 5B.
  • Radio waves of the detection start signal are sequentially transmitted to the transmission / reception device 13A.
  • the vibration detection device 15 of the second slave unit set 5B detects the vibration of the next bearing, that is, the corresponding bearing.
  • the preceding measurement start command transmission / reception device 13A transmits the radio wave of the detection start signal to the measurement start command transmission / reception devices 13A of the subsequent slave sets 5C, 5D, 5E, 5F, and sequentially detects each vibration detection device 15. Detects the vibration of the bearing.
  • a time lag that is obtained and set in advance based on the traveling speed of the vehicle and the distance between the handset sets is provided so that vibration is measured at a position that does not hit the point portion Pt. Vibration may be measured. Or you may measure a vibration also at the timing which passed each point part Pt of the traveling rail 20 similarly to the 1st subunit
  • the detection data detected by each vibration detection device 15 and the ID for each slave set 5 are recorded in the recording means of the microcomputer in each vibration detection device 15 and then recorded in the vibration data recording in the measurement start command transmission / reception device 13A. Forwarded to the department.
  • the measurement start command transmission / reception device 13A is held in a state where radio waves are transmitted from the antenna 14.
  • the measurement start command transmission / reception device 13A receives and collects the detection data and ID wirelessly.
  • the measurement start command transmission / reception device 13A transmits the detection data and the ID at the timing when the data transmission command is received from the data collection device 45. May be. After the railway vehicle 1 has traveled in this way, the plurality of measurement start command transmission / reception devices 13A are turned off.
  • the rolling bearing 17 of the rolling bearing 17 is subsequently used with reference to a point in time when a vibration detection value greater than a certain value due to the joint or the point portion is detected. Since vibration measurement is started, there is no need to separately provide a command device for starting vibration measurement. Therefore, the configuration of the entire apparatus can be simplified and the cost can be reduced.
  • the vibration detection device 15 is caused by a bearing abnormality by taking in a detection value detected after detection of a detection value of a certain value or more due to the joint or the point portion as vibration data of the rolling bearing 17. Since no vibration waveform other than the vibration waveform appears, the detection data that is the vibration waveform due to the bearing abnormality is clarified. Therefore, it is possible to accurately determine the abnormality of the bearing 17 for the railway vehicle without including the vibration waveform resulting from passing through the joint or the point portion of the traveling rail 20 in the detection data.
  • a railway vehicle bearing abnormality detection system will be described.
  • the same reference numerals are given to the portions corresponding to the matters described in the preceding forms in each embodiment, and the overlapping description is omitted.
  • the other parts of the configuration are the same as those described in advance unless otherwise specified. The same effect is obtained from the same configuration.
  • the embodiments can be partially combined as long as the combination does not hinder.
  • FIG. 17 is a diagram illustrating an example of vibration measurement by the bearing abnormality detection system 100B according to the sixth embodiment.
  • two point portions Pt are provided in the travel range of the railway vehicle 1, and the distance between them is substantially equal to the length of one vehicle 1.
  • the vibration measuring device of the first slave unit set 5A attached to the hexagon bolt of the axle box is the leading bearing. Measure vibration.
  • the detection start signal is transmitted in the order from the third handset 5C to the fourth handset 5D, and measurement of each vibration detection target is started.
  • the fifth handset 5E in the succeeding vehicle 1 is set to start measurement after passing through the first point portion Pt and transmit a detection start signal to the sixth handset 5F. The By setting in this way, the measurement of each of the child device sets 5A to 5F is performed at almost the same timing.
  • the slave sets 5A to 5F that have passed through the first point portion Pt and measured the vibration of the bearings then pass through the second point portion Pt, but pass through the first point portion Pt. Since the vibration of the bearing is measured later, it is preferable not to measure the vibration of the bearing after passing through the second point portion Pt.
  • the measurement of bearing vibration by each of the handset sets 5A to 5F is performed at a predetermined traveling speed and not at the time of passing over the joint of the traveling rail 20 or the point portion Pt but at a position not affected by disturbance vibration.
  • the railcar 1 is preferably driven with inertial force with the drive motor being de-energized. In this case, when the vibration of each rolling bearing 17 is detected, there is no fear that the vibration measuring device receives electromagnetic noise generated by the drive motor.
  • vibration measurement start means is provided in the measurement start command transmission / reception device of each slave unit set, it is not limited to this example.
  • vibration measurement starting means may be provided in the vibration detection device of each slave unit set.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

 鉄道車両用の軸受の異常判定を正確に行うことができる鉄道車両用軸受異常検知システムを提供する。この鉄道車両用軸受異常検知システム(100)は、台車(2)に設けられた軸箱(3)に組み込まれる複数の転がり軸受(17)の異常を検知する。この軸受異常検知システム(100)は、各転がり軸受の振動を検出する振動検出装置(15)と、振動検出装置(15)で検出された検出データに基づいて転がり軸受(17)の異常を判断する解析装置(6)と、検出開始信号を受信して、振動検出装置(15)に転がり軸受の振動を検出させる受信応答検出開始手段(13)とを有する。さらに、鉄道車両から離れて設置され、受信応答検出開始手段(13)に検出開始信号を送信する測定開始指令送信装置(4)を有する。

Description

鉄道車両用軸受異常検知システム 関連出願
 本出願は、2014年9月12日出願の特願2014-186085ならびに2014年10月2日出願の特願2014-203976および特願2014-203977の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、鉄道車両における車軸軸受の異常を検知する鉄道車両用軸受異常検知システムに関する。
 鉄道車両においては、車軸軸受に異常が発生した場合、車両の運転を停止するなどの処置が必要となり、多大な損失が発生する。そこで、各種検出素子を軸受装置に取り付け、この軸受装置の運転状態を検出する鉄道車両用センサ付軸受装置が提案されている(特許文献1)。
特許第4529602号公報
 前記鉄道車両用センサ付軸受装置による軸受の振動検出では、車両走行時における、車輪のレールの継ぎ目やポイント部の通過時に発生する外乱振動が、軸受の異常に起因する振動波形と共に検出されるため、軸受の異常判定が正確にできないという問題がある。
 この発明の目的は、鉄道車両用の軸受の異常判定を正確に行うことができる鉄道車両用軸受異常検知システムを提供することである。
 以下、便宜上理解を容易にするために、実施形態の符号を参照して説明する。
 この発明の第1の構成に係る鉄道車両用軸受異常検知システムは、鉄道車両1の少なくとも1つの台車2に設けられた少なくとも1つの軸箱3にそれぞれ1つまたは複数組み込まれる、全体として複数の転がり軸受17の異常を、前記鉄道車両1を走行レール20上で走行させて検知する鉄道車両用軸受異常検知システム100であって、
 対応する前記各転がり軸受17の振動をそれぞれ検出する複数の振動検出装置15と、
 これら振動検出装置15それぞれで検出された対応する前記転がり軸受17の振動を示す検出データに基づいて前記転がり軸受17の異常を判断する解析装置6と、
 前記振動検出装置15にそれぞれ接続された複数の受信応答検出開始手段13であって、各受信応答検出開始手段13は、検出開始信号を受信すると、接続された前記振動検出装置15に前記対応する転がり軸受17の振動を検出させる受信応答検出開始手段13と、
 前記鉄道車両1から離れて設置され、前記受信応答検出開始手段13に前記検出開始信号を送信する少なくとも1つの測定開始指令送信装置4とを備える。
 この構成によると、測定開始指令送信装置4は、受信応答検出開始手段13に検出開始信号を送信する。受信応答検出開始手段13は、前記検出開始信号を受信すると、振動検出装置15に転がり軸受17の振動を検出させる。解析装置6は、振動検出装置15で検出された検出データに基づいて前記転がり軸受17の異常を判断する。
 測定開始指令送信装置4は、鉄道車両1から離れて設置され、好ましくは、前記複数の転がり軸受17のうちのある転がり軸受17が前記走行レール20の継ぎ目またはポイント部上を通過する時に、その転がり軸受17に対応する前記振動検出装置15に接続された前記受信応答検出開始手段13が前記検出開始信号を受信しない場所に設置される。例えば、測定開始指令送信装置4を、走行レール20に沿った位置(すなわち、走行レール20の直交方向において走行レール20から所定距離範囲内)で、且つ、走行レール20のポイント部や継ぎ目からレール長手方向に離れた位置に設置する。これにより、継ぎ目やポイント部上の通過時を避けたタイミングで受信応答検出開始手段13が、測定開始指令送信装置4からの検出開始信号を受信して、振動検出装置15に転がり軸受17の振動を検出させる。
 振動検出装置15は、継ぎ目やポイント部の通過時を避けて振動を検出することにより、軸受異常に起因する振動波形以外の余分な振動波形が検出データに現れないため、軸受異常に起因する振動波形である検出データが明確になる。したがって、走行レール20の継ぎ目やポイント部を通過することに起因する振動波形を検出データに含めずに鉄道車両用の軸受17の異常判定を正確に行うことができる。
 前記測定開始指令送信装置13が、前記走行レール20の前記継ぎ目または前記ポイント部からレール長手方向に定められた距離離れた位置に設置されても良い。
 前記定められた距離は、試験やシミュレーション等の結果により定められる。
 これにより、鉄道車両1を走行レール20に沿って走行させて振動検出対象の軸箱3が継ぎ目やポイント部を通過する前または後に、受信応答検出開始手段13が、測定開始指令送信装置4からの検出開始信号を受信して、振動検出装置15に転がり軸受17の振動を検出させる。したがって、振動検出装置15に転がり軸受17の振動のみを確実に検出させることができる。
 前記受信応答検出開始手段13が、振動検出対象である転がり軸受17が設けられた前記軸箱3毎に複数設けられ、各受信応答検出開始手段13が前記検出開始信号を受信すると、後続の振動検出対象である転がり軸受17に対応する受信応答検出開始手段13に対して検出開始信号を送信しても良い。これによれば、測定者が測定開始指令送信装置等を設置して電源を投入するだけで、全ての受信応答検出開始手段13が自動的に検出開始信号を受信する。このため、後続の振動検出対象である転がり軸受17に対応する各受信応答検出開始手段13に対する操作処理を省略することができる。したがって、操作性の簡便化が図られる。
 前記測定開始指令送信装置4が複数設けられ、前記走行レール20には前記継ぎ目またはポイント部が複数存在し、これら継ぎ目またはポイント部ごとに、前記レール長手方向に定められた距離離れて、前記測定開始指令送信装置4がそれぞれ設置されても良い。これによれば、受信応答検出開始手段13(子機)と、後続の振動検出対象である転がり軸受17に設けられる受信応答検出開始手段13(子機)との間の送信時間に起因する測定のタイムラグ(送信に掛かる時間遅れ)の総和を小さくすることができる。これと共に子機間の測定のタイムラグを一定にすることができる。そのため、後続する子機の測定タイミングが走行レール20の継ぎ目やポイント部の通過と一致することを避けるために必要な遅延時間は、設けられなくてもよい。
 前記鉄道車両1を走行させて点検する車両基地に、前記測定開始指令送信装置4が設置されても良い。
 前記複数の振動検出装置15のそれぞれが、対応する前記転がり軸受17の振動を検出する条件が、前記鉄道車両1を走行駆動させる駆動モータが非通電状態で、且つ、前記鉄道車両1の速度が25km/h以上35km/h以下であっても良い。これによれば、鉄道車両1を、例えば、駆動モータにより一定の車速にした後、前記駆動モータを非通電状態にして鉄道車両1を慣性力で走行させる。その後転がり軸受17の振動を検出する。これにより、転がり軸受17の振動を検出するとき、前記駆動モータからの電磁波による有害なノイズが少なくなる。
 好ましい実施形態によれば、さらに、
 前記複数の振動検出装置15それぞれに接続され、これら振動検出装置15それぞれで検出された対応する前記転がり軸受17の振動を示す検出データを送信する複数の検出データ送信装置13と、
 前記鉄道車両1から離れて設置され、前記検出データ送信装置13から送信された前記検出データを受信して収集するデータ収集装置45と、を備え
 前記解析装置6が、前記データ収集装置45によって収集された前記検出データに基づいて前記複数の転がり軸受17の異常を判断する。
 検出データ送信装置13は、この振動検出装置15で検出された検出データを送信する。データ収集装置45は、検出データ送信装置13から送信された検出データを受信して収集する。解析装置6は、データ収集装置45に収集した検出データに基づいて前記転がり軸受17の異常を判断する。
 データ収集装置45は、検出データ送信装置13から送信された検出データを受信して収集するため、例えば、有線や記録メディア等でのデータ伝送に比べて、電線の付帯工事やデータの取り出し作業を必要としない。したがって、検出データを簡易に取り出すことができるうえ、コスト低減を図ることができる。
 前記測定開始指令送信装置4および前記データ収集装置45が、前記走行レール20の直交方向において前記走行レール20から所定距離範囲内に設置されても良い。
 前記所定距離は、受信応答検出開始手段13が測定開始指令送信装置4からの検出開始信号を受信可能な測定開始指令送信装置4の位置であり、また、データ収集装置45が検出データ送信装置13からの検出データを受信可能なデータ収集装置45の位置を示す。
 この発明の第2の構成に係る鉄道車両用軸受異常検知システムは、鉄道車両1の少なくとも1つの台車2に設けられた少なくとも1つの軸箱3にそれぞれ1つまたは複数組み込まれる、全体として複数の転がり軸受17の異常を、前記鉄道車両1を走行レール20上で走行させて検知する鉄道車両用軸受異常検知システムであって、
 対応する前記転がり軸受17の振動、および外乱振動をそれぞれ検出する複数の振動検出装置15と、
 これら振動検出装置15それぞれに接続された複数の振動測定開始手段53であって、各振動測定開始手段53は、対応する振動検出装置15が外乱振動を検出すると、その振動検出装置15に前記転がり軸受17の振動測定を開始させる、振動測定開始手段53と、
 この開始された振動測定から得られる検出データに基づいて前記転がり軸受17の異常を判断する解析装置6とを備える。
 前記外乱振動は、前記振動検出装置によって検出される検出値が、定められた値以上の場合に検出してもよい。この定められた値は、振動検出装置による検出を転がり軸受17の振動を示す検出データとして扱うためのトリガとなる値であって、例えば、走行レール20の継ぎ目やポイント部を通過したときに検出される値である。この定められた値は試験やシミュレーション等の結果に基づいて予め定められる。
 この構成によると、振動測定開始手段53は、外乱振動を検出すると、転がり軸受17の振動測定を開始する。解析装置6は、この開始された振動測定から得られる振動測定データに基づいて転がり軸受17の異常を判断する。前記のように、外乱振動の検出を契機として、それ以後の検出値を転がり軸受17の振動を示す検出データとして扱うため、振動検出装置15を振動測定開始のためにも用いることができ、振動測定開始のための装置を別途設ける必要がない。よって装置全体の構成を簡単化でき、コスト低減を図ることができる。
 また、振動検出装置15は、継ぎ目やポイント部の通過時に発生する外乱振動を検出した時点で振動測定を開始して、検出される検出値を転がり軸受17の振動を示す検出データとして取り込むことにより、軸受異常に起因する振動波形以外の余分の振動波形が検出データに現れないため、軸受異常に起因する振動波形である検出データが明確になる。したがって、走行レール20の継ぎ目やポイント部を通過することに起因する振動波形を検出データに含めずに鉄道車両用の軸受17の異常判定を正確に行うことができる。
 好ましい実施形態によれば、さらに、前記複数の振動検出装置15それぞれに接続され、これら振動検出装置15それぞれで検出された対応する前記転がり軸受17の振動を示す検出データを送信する複数の検出データ送信装置13と、前記走行レール20の直交方向において前記走行レール20から所定距離範囲内に設置され、前記検出データ送信装置13から送信された前記検出データを受信して収集するデータ収集装置45とを備える。
 前記所定距離は、検出データ送信装置13から送信される検出データを受信可能なデータ収集装置45の位置を示す。
 各検出データ送信装置13は、対応する振動検出装置15で検出された検出データを送信する。データ収集装置45は、検出データ送信装置13から無線送信された検出データを受信して収集する。このため、例えば、有線や記録メディア等でのデータ伝送とは異なり、電線の付帯工事やデータの取り出し作業を必要としない。したがって、検出データを簡易に取り出すことができるうえ、コスト低減を図ることができる。
 前記データ収集装置45が、前記振動検出装置毎に関連付けられたIDと共に前記検出データを受信して収集しても良い。このように検出データがIDと共にデータ収集装置45に収集されるため、いずれの軸箱3に組み込まれた転がり軸受17が異常であるかが直ぐに特定される。
 好ましい実施形態によれば、さらに、前記データ収集装置45から電話回線を介して伝送される、前記検出データおよび前記IDを蓄積するデータ蓄積サーバ46を備え、前記解析装置6が、前記データ蓄積サーバ46から伝送される前記検出データおよび前記IDに基づいて、各転がり軸受17の異常を判断しても良い。これによれば、検出データの取得を簡略化できると共に、解析時間の短縮にも繋がる。
 前記解析装置6が、
  前記検出データを周波数解析した解析値が、設定した振動に関する閾値以上の場合、その検出データの転がり軸受17が異常であると診断し、閾値未満の場合、その検出データの転がり軸受17が正常であると診断する診断部50と、
  この診断部50で診断された解析結果を記憶する記憶部51と、
  前記診断部50で診断された解析結果を表示する表示部52と、
を有してもよい。
 前記閾値は、例えば、実験やシミュレーション等の結果により定められる。
 この構成によると、診断部50が、解析値が閾値以上の場合、転がり軸受17が異常であると診断し、閾値未満の場合、転がり軸受17が正常であると診断する。記憶部51は、診断した診断結果を記憶する。この解析結果が表示部52に表示されるため、測定者は、前記解析結果を遅滞なく目視確認し得る。
 さらに、または代わりに、前記診断部50で診断された解析結果が、前記データ蓄積サーバ46に、前記IDと共に伝送されてもよい。これによれば、解析結果が、前記IDと共にデータ蓄積サーバ46に伝送されるため、解析結果が必要に応じてID毎に閲覧して確認されることができる。
 好ましい実施形態によれば、さらに、前記データ蓄積サーバ46に記録された解析結果をID毎に閲覧させる電子機器を備えても良い。前記電子機器は、パーソナルコンピュータ、携帯電話、スマートフォン、またはPDA等の各種電子機器を含む。このような電子機器を用いてデータ蓄積サーバ46にアクセスして、解析結果をID毎に閲覧して確認することができる。この解析結果は、本システムを管理する管理者のみならず、この鉄道車両1を含む周辺機器を管理する管理者が、前述の各種機器を用いてデータ蓄積サーバ46にアクセスして、軸受交換情報等のメンテナンス情報や情報発注手配等の情報を容易に取得することができる。
 好ましい実施形態によれば、さらに、前記IDと、そのIDに対応する転がり軸受に関連する、軸受型番、軸箱および車両番号と、前記検出データの取得日との関係を、前記検出データと対応させて記憶する記憶手段46を備える。これによれば、検出データの整理、管理等に伴う作業負担を軽減することができる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1から第6の実施形態に係る鉄道車両用軸受異常検知システムの設置例を示す図である。 第1の実施形態に係る鉄道車両用軸受異常検知システムの外観を示す斜視図である。 図2の軸受異常検知システムの制御系のブロック図である。 図1の軸受異常検知システムの測定開始指令送受信装置および振動検出装置の取付例を示す図である。 図4のA-A線から見た端面図である。 図1の軸受異常検知システムの処理回路の構成を概略示す回路図である。 図2の軸受異常検知システムによる振動測定例を示す図である。 第2の実施形態に係る鉄道車両用軸受異常検知システムによる振動測定例を示す図である。 第3の実施形態に係る鉄道車両用軸受異常検知システムの外観を示す斜視図である。 図9の軸受異常検知システムの制御系のブロック図である。 図9の軸受異常検知システムによる振動測定例を示す図である。 第4の実施形態に係る鉄道車両用軸受異常検知システムによる振動測定例を示す図である。 第5の実施形態に係る鉄道車両用軸受異常検知システムの外観を示す斜視図である。 図13の軸受異常検知システムの制御系のブロック図である。 図13の軸受異常検知システムで検出される外乱の振動波形の例を示すグラフである。 図13の軸受異常検知システムで検出される振動波形であって、レールの継ぎ目やポイント部を通過する時の振動波形の例を示すグラフである。 図13の軸受異常検知システムによる振動測定例を示す図である。 第6の実施形態に係る鉄道車両用軸受異常検知システムによる振動測定例を示す図である。
 この発明の第1の実施形態に係る鉄道車両用軸受異常検知システムを図1ないし図7と共に説明する。図1に示すように、この軸受異常検知システム100は、鉄道車両1の少なくとも1つの台車2に設けられた少なくとも1つの軸箱3にそれぞれ1つまたは複数組み込まれる、全体として複数の転がり軸受の異常を検知する装置である。鉄道車両1は、例えば、新幹線等を含む種々の鉄道車両である。軸受異常検知システムは、例えば、車両点検時に車両所において軸受等の点検を行う際に、軸箱3から軸受を取り出さずに外部からその軸受の振動を検出する。
 図2は、この軸受異常検知システム100の外観を示す斜視図である。図1および図2に示すように、この軸受異常検知システム100は、測定開始指令送信装置(親機)4と、複数の子機セット5と、解析装置6とを有する。測定開始指令送信装置4は、鉄道車両1から離れた場所、例えば、走行レール20の近傍に設置される。子機セット5は、振動検出対象の軸箱3毎に複数設けられる。これら複数の子機セット5は、それぞれ、後述するように鉄道車両1の特定の箇所に着脱自在に設けられる。解析装置6は、例えばパーソナルコンピュータのプロセッサにおいて実現される。
 測定開始指令送信装置4は、各子機セット5における測定開始指令送受信装置(受信応答検出開始手段)13に検出開始信号を送信する。測定開始指令送信装置4を、走行レール20の近傍であって、それらレール間の継ぎ目やポイント部からレール長手方向に所定距離離れた位置に設置する。測定開始指令送信装置4の設置場所は、この測定開始指令送信装置4に対し、振動検出対象の軸箱3に設置した子機セット5が近づいて測定開始指令送信装置4からの距離が所定範囲内となったとき、測定開始指令送信装置4から発信される検出開始信号をこの子機セット5が受信可能な位置で、且つ、前記継ぎ目やポイント部の上方を振動検出対象である軸箱3が通過時に軸箱3の内部の軸受に発生する外乱振動を予め含めないように、前記継ぎ目やポイント部から前記所定距離離れた位置である。鉄道車両1が走行レール20に沿って走行する際に測定開始指令送信装置4の電源を投入させておけば、測定開始指令送信装置4は検出開始信号を子機セット5に送信できる。
 図3は、この軸受異常検知システム100の制御系のブロック図である。
 測定開始指令送信装置4は、電源7と、電源回路8と、通信回路9と、通信モジュール10と、アンテナ11とを有する。電源7から供給される電源電圧は、電源回路8により所望の電圧とされて、後段の通信回路9、通信モジュール10、およびアンテナ11に供給される。前記検出開始信号は、通信回路9により定められた周波数からなる電磁波に変換され、通信モジュール10およびアンテナ11を介して子機セット5の測定開始指令送受信装置13に送信する。前記通信モジュール10に、例えば、ZigBeeモジュールを使用すると消費電力を小さくすることができる。
 各子機セット5は、それぞれ、振動検出装置15と、測定開始指令送受信装置(受信応答検出開始手段)13とを有する。これら振動検出装置15と測定開始指令送受信装置13とは電線16を介して電気的に接続される。
 ここで図4は、軸受異常検知システムの測定開始指令送受信装置13および振動検出装置15の取付例を示す図である。図5は、図4のA-A線から見た端面図である。図5は、図1の先頭車両の車輪19付近の拡大図である。これら図1,図4および図5に示すように、振動検出装置15は、転がり軸受17の振動および走行レール20の継ぎ目やポイント部の通過時の振動等を検出する。台車2の下部に車幅方向に離隔して一対の軸箱3が設けられ、これら軸箱3にそれぞれ1つまたは複数の転がり軸受17が組み込まれている。1台の台車2に対し、2本の車軸18が平行に設けられる。1つの軸箱3に対し、例えば、定められた間隔を空けて複数の転がり軸受17が組み込まれている。転がり軸受17は、例えば、玉軸受、円筒ころ軸受、円すいころ軸受である。
 各軸箱3の内周面に転がり軸受17の外輪がそれぞれ嵌合され、転がり軸受17の内輪に車軸18が嵌合される。車軸18の軸方向両端部には車輪19がそれぞれ取り付けられる。これら車輪19が転がり軸受17により回転自在に支持されて、軌道上に平行に敷設された2本のレール20上を走行できる。軸箱3には、磁性体からなるボルト21が締結されている。ボルト21は、例えば、六角ボルトである。軸箱3から露出する六角ボルトの頭面は振動検出装置15の永久磁石12を吸引でき、これにより振動検出装置15が固定され得る。
 図3に示すように、振動検出装置15は、例えば、ケース(図示せず)と、振動検出素子23と、処理回路24と、永久磁石12(図4)と、電源回路25と、記録手段40と、記録メディア22とを有する。前記ケースの内部に、例えば、プリント基板に実装された処理回路24が収納される。処理回路24は、複数の電子部品を有し、前記プリント基板の片面または両面にこれら電子部品が半田付けされる。プリント基板としては、例えば、剛性の高いガラス入りエポキシ樹脂が望ましい。
 前記ケースの軸方向一端部に、転がり軸受17の運転状態を検出する振動検出素子23と、磁性体からなるホルダが取り付けられている。振動検出素子23は、例えば、圧電型の加速度センサである。圧電型の振動検出素子23を使用することで、広範囲な振動を検出し得る。前記ケースの内部において、振動検出素子23のリード端子から、処理回路24に設けた接続端子にリード線が結線されている。
 図4に示すように、前記ホルダの先端部に永久磁石12が設けられ、この永久磁石12が、軸箱3におけるボルト21の頭面に吸引されて、これにより振動検出装置15が固定される。したがって、振動検出装置15は、ボルト21の頭面に永久磁石12により着脱自在に取り付けられる。なお複数の振動検出装置15は、軸箱3の上方または下方に取り付けられることが望ましい。
 図6は、この振動検出装置の処理回路24の構成を概略示す回路図である。
 処理回路24は、演算増幅回路26と、フィルタ回路27と、マイクロコンピュータ28と、基準電圧回路29とを有する。振動検出素子23の出力信号は、演算増幅回路26からフィルタ回路27を介してマイクロコンピュータ28に入力される。フィルタ回路27は、軸受固有振動数を含むその付近の周波数を取り出すために、一定の周波数帯域が設定されたバンドパスフィルタによって構成される。なお、フィルタ回路27は、ハイパスフィルタとローパスフィルタの組み合わせで構成されても良い。
 マイクロコンピュータ28は通常スリープ状態とし、信号を受信した時点で起動するようにすると良い。振動検出素子23である加速度センサのアナログ出力信号は、マイクロコンピュータ28内部でA/D変換された後に、図3に示すように、記録手段40に記録される。その後、記録手段40から記録メディア22にデータを転走する。前記記録手段40は、例えば、データの書換えが可能なランダムアクセスメモリ(略称RAM:Random Access Memory)である。前記記録メディア22が、例えば、マイクロSDカードであれば、振動検出装置15のコンパクト化が図られる。
 図6に示すように、振動検出素子23および処理回路24に電源電圧が供給される。電源電圧は所望の電圧とされる。これら振動検出素子23および処理回路24には、電源バイパスコンデンサC1~C4が接続される。電源バイパスコンデンサC1~C4は、直流電源に重畳するノイズをバイパスして、安定した電源電圧を供給する目的や、電源電圧の変動を抑える目的で、電源ラインL1とGND(グランド)ラインL2の間に接続される。
 振動検出素子23の電源ラインL1とGNDラインL2の間には、電源バイパスコンデンサC1が接続される。この電源バイパスコンデンサC1により、振動検出素子23に安定した電源電圧が供給され、且つ、この供給される電源電圧の変動が抑えられる。振動検出素子23からのアナログ出力信号は、抵抗30を介して、演算増幅回路26における演算増幅器31の一方の入力端子に入力される。
 この演算増幅器31の電源ラインL1とGNDラインL2の間には、電源バイパスコンデンサC2が接続される。この電源バイパスコンデンサC2により、演算増幅回路26には、ノイズがバイパスされて安定した電源電圧が供給され、且つ、この供給される電源電圧の変動が抑えられる。演算増幅器31からの出力信号は、コンデンサ32およびこのコンデンサ32に並列接続された抵抗33を介して、他方の入力端子に入力される。前記演算増幅器31は、2つの入力端子への入力(反転入力、非反転入力)の差を増幅して出力する。
 増幅された出力信号は、直列接続された抵抗34,35を介して、フィルタ回路27における演算増幅器36の一方の入力端子に入力される。この演算増幅器36の電源ラインL1とGNDラインL2の間には、電源バイパスコンデンサC3が接続される。この電源バイパスコンデンサC3により、フィルタ回路27にノイズがバイパスされて安定した電源電圧が供給され、且つ、この供給される電源電圧の変動が抑えられる。演算増幅器36からの出力信号は、他方の入力端子に入力されると共に、コンデンサ37を介して抵抗34,35間に帰還される。
 フィルタ回路27が、軸受の固有振動に対応した所定の周波数帯域のみを抽出し、不要な周波数帯域を除去する。軸受の正常運転時は、転動体の回転通過に伴う軸受の固有振動が発生するが、軸受の転がり面に異常が発生した場合には、軸受回転数に応じた転動体の通過周期で振動のピークが重畳される。そこで、演算増幅回路26からの出力信号に対し、フィルタ回路27が、軸受の固有振動成分以外の周波数成分を除去または減衰させることで、異常時の周波数成分を精度良く抽出し得る。前記軸受回転数は、例えば、この鉄道車両の駆動モータの回転数に対応するように定められる。
 フィルタ回路27を通過したアナログ出力信号は、抵抗38等を介して、マイクロコンピュータ28に入力される。このマイクロコンピュータ28内部において、アナログ出力信号は、A/D変換された後に前記記録手段40(図3)に一時的に記録される。マイクロコンピュータ28に、過大な電圧が印加されないように基準電圧回路29が接続される。この基準電圧回路29の電源ラインL1とGNDラインL2の間には、電源バイパスコンデンサC4が接続される。この電源バイパスコンデンサC4により、基準電圧回路29にノイズがバイパスされて安定した電源電圧が供給され、且つ、この供給される電源電圧の変動が抑えられる。
 図3に示すように、各子機セット5における測定開始指令送受信装置(受信応答検出開始手段)13は、電源41と、電源回路42と、通信回路43と、通信モジュール44と、アンテナ14とを有する。すなわち、測定開始指令送受信装置(受信応答検出開始手段)13は、プロセッサおよびメモリを備えたいわゆる通信機器から構成される。電源41から供給される電源電圧は、電源回路42により所望の電圧とされて、通信回路43、通信モジュール44、およびアンテナ14に供給される。
 測定開始指令送信装置4からの検出開始信号は、測定開始指令送受信装置13のアンテナ14で受信された後、通信回路43および電線16を介して、振動検出装置15に送信される。これにより、振動検出装置15が転がり軸受の振動を検出できる。
 図7は、この軸受異常検知システム100による振動測定例を示す図である。この例では、鉄道車両の走行範囲内にポイント部Ptが1箇所設けられる。鉄道車両1の点検時にこの鉄道車両1を車両所(車両基地)で走行させるために、その前に、測定開始指令送信装置4および複数の測定開始指令送受信装置13の電源を全てONにしておく。次に鉄道車両1を走行レール20に沿って走行させて車速を定められた車速(例えば25km/h以上35km/h以下)として、先頭車両における前側の台車2の最初の振動検出対象である転がり軸受が設けられた軸箱が走行レール20のポイント部手前Paを通過時、第1の子機セット5Aの測定開始指令送受信装置(受信応答検出開始手段)13が、走行レール20の近傍に設置された測定開始指令送信装置4から検出開始信号の電波を受信する。
 これにより、前記測定開始指令送受信装置13に接続された、第1の子機セット5Aの振動検出装置15が、先頭の軸箱つまり対応する軸箱に組み込まれた転がり軸受の振動を検出する。さらに第1の子機セット5Aの測定開始指令送受信装置13が、第2の子機セット5Bの測定開始指令送受信装置13に検出開始信号の電波を送信し、第2の子機セット5Bの振動検出装置15が、対応する軸箱に組み込まれた転がり軸受の振動を検出する。
 以下同様に、測定開始指令送受信装置13がそれぞれ1つ後方の測定開始指令受信装置13に検出開始信号の電波を送信することで、後続の子機セット5C,5D,5E,5Fの測定開始指令送受信装置13に検出開始信号の電波を順々に送信して、各子機セット5に対応する軸箱に組み込まれた振動検出対象である転がり軸受の振動を順次検出する。鉄道車両1をこのように走行させた後、測定開始指令送信装置4および複数の測定開始指令送受信装置13の電源をOFFにする。各振動検出装置15で検出された検出データは、図2に示すように、記録メディア22に転送された後、解析装置6が各転がり軸受の異常を判定する。例えば、解析装置6が実現されるパーソナルコンピュータのメモリには、予め振幅閾値が格納されており、検出データである振動波形のピークがこの振幅閾値を超えた場合に、その転がり軸受の異常を判定してもよい。その他、軸受の振動波形について、前記パーソナルコンピュータのプロセッサが、比較などの演算の結果に基づき異常を判定してもよい。また、振動波形は、アナログ信号のまま処理されても、A/D変換されてディジタル信号として処理されてもよい。
 以上説明した本実施形態に係る鉄道車両用軸受異常検知システム100によれば、継ぎ目やポイント部の通過時を避けて、受信応答検出開始手段13が、測定開始指令送信装置4からの検出開始信号を受信して、振動検出装置15に転がり軸受17の振動を検出させることにより、軸受異常に起因する振動波形以外の余分な振動波形が検出データに現れないため、軸受異常に起因する振動波形である検出データが明確になる。
 解析装置6は、このような検出データに基づいて転がり軸受17の異常を判断する。したがって、走行レール20の継ぎ目やポイント部を通過することに起因する振動波形を検出データに含めずに鉄道車両用の軸受17の異常判定を正確に行うことができる。
 また、検出開始信号を受信した測定開始指令送受信装置13は、後続の振動検出対象である転がり軸受が設けられた軸箱3に対応する測定開始指令送受信装置13に対し、順次、検出開始信号を送信する機能を有する。このため、測定者は、測定開始指令送信装置4等を設置して電源を投入することで、後続の振動検出対象に対応する各測定開始指令送受信装置13に対する操作処理を省略することができる。したがって、操作性の簡便化が図られる。また、測定開始指令送受信装置13が自動で検出開始信号の電波を受信することで振動測定が開始されるので、測定条件のばらつきが小さくなる。
 第2の実施形態に係る鉄道車両用軸受異常検知システムについて説明する。
 以下の説明においては、本形態で先行する形態で説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
 図8は、第2の実施形態に係る軸受異常検知システム100による振動測定例を示す図である。この例では、鉄道車両1の走行範囲内にポイント部Ptが2箇所設けられ、これらの間隔は、1台の車両1の長さとほぼ等しい。これら2箇所のポイント部Ptに対応して、第1,第2の測定開始指令送信装置4A,4Bを設置している。この場合、先頭車両1において、第1の測定開始指令送信装置4Aから第1の子機セット5Aへ、この第1の子機セット5Aから第2の子機セット5Bへ、この第2の子機セット5Bから第3の子機セット5Cへ、この第3の子機セット5Cから第4の子機セット5Dへ、との順で検出開始信号を送信し各振動検出対象である転がり軸受の振動測定を開始するように設定される。
 第1の子機セット5Aと同様に、後続車両1における第5の子機セット5Eが、第2の測定開始指令送信装置4Bから検出開始信号を受信すると、この振動検出対象である転がり軸受の振動測定を開始する。先頭車両と同様に、第5の子機セット5Eは第6の子機セット5Fに検出開始信号を送信するように設定される。このように設定することで、子機セット間の送信時間に起因する測定のタイムラグ(送信に掛かる時間遅れ)の総和を小さくすることができる。これと共に、子機セット間の測定のタイムラグを一定にすることができる。そのため、後続する子機セットの測定タイミングが継ぎ目やポイント部の通過と一致することを避けるために必要な遅延時間は、設けられなくてもよい。
 なお、図示しないが、各車両台車2の軸箱が、測定開始指令送信装置4A,4Bの近傍を各々通過するタイミングで、各測定開始指令送受信装置13がそれぞれ検出開始信号を受信することにより、各々振動測定を開始しても良い。すなわち、測定開始指令送信装置4A,4Bの間隔を、1つの車両内の2つの台車の間隔とほぼ等しくしてもよい。そして、振動検出対象である転がり軸受が、各台車に1つずつ設けられているとする。各々の子機セット5A,…,5Fは、測定開始指令送信装置4A,4Bから送信される検出開始信号の電波を受信したときのみに、測定を開始するように設定される。車両走行速度は、測定開始指令送信装置4Aから第1の子機セット5Aが検出開始信号の電波を受信するときに、定められた車速になっているようにされる。
 この場合、ある台車の子機セットから別の台車の子機セットへの検出開始信号の電波を送信する必要がなく、また、全ての軸箱の振動測定が同じタイミングで行われるため、振動測定の条件にばらつきが発生しにくい。
 次に、第3の実施形態に係る軸受異常検知システムについて説明する。
 以下の説明においても、本形態で先行する形態で説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
 図9は、第3の実施形態に係る軸受異常検知システム100Aの外観を示す斜視図である。この軸受異常検知システム100Aは、第1の実施形態に係る軸受異常検知システム100(図2)に加えて、データ収集装置45およびデータ蓄積サーバ46を有する。
 図10は、この軸受異常検知システムの制御系のブロック図である。
 各子機セット5における測定開始指令送受信装置13は、例えば、図示外のケースと、電源41と、電源回路42と、通信回路43と、通信モジュール44と、アンテナ14と、永久磁石47(図9)とを有する。前記ケースに、電源41、電源回路42、通信回路43、および通信モジュール44が収納される。前記ケースの一部に永久磁石47(図9)が設けられ、この永久磁石47(図9)が、軸箱近傍にあるボルトの頭面に吸引固定される。アンテナ14は、前記ケースとは別体として適宜車両ボディに粘着テープ等を用いて固定されても良い。
 電源41から供給される電源電圧は、電源回路42により所望の電圧とされて、通信回路43、通信モジュール44、およびアンテナ14に供給される。
 なお、本実施形態では、記録メディアは、必ずしも着脱可能な記録メディア(第1の実施形態で説明したようなマイクロSDカードのような記録メディア)である必要はない。
 図10に示すように、振動検出装置15で検出された検出データは、この振動検出装置15内のマイクロコンピュータ28(第1の実施形態に関して説明した図6を参照)の記録手段40に記録された後、電線16を介して、測定開始指令送受信装置13に転送される。各振動検出装置15内のマイクロコンピュータ28(図6)には、振動検出装置毎つまり子機セット毎に関連付けられたIDを記憶させ、このIDと共に検出データが転送される。測定開始指令送受信装置13は、このアンテナ14から電波を送信した状態を維持する。測定開始指令送受信装置13は、前述の受信応答検出開始手段としての機能と共に、検出データを送信する検出データ送信装置としての機能を有する。
 データ収集装置45は、鉄道車両から離れた場所で、例えば、走行レール20(図11)の近傍で測定開始指令送信装置4よりも車両進行方向前方に設置される。データ収集装置45は、測定開始指令送受信装置13から送信された検出データを受信するアンテナ45aを備える。このデータ収集装置45の近傍を測定開始指令送受信装置13が通過する時、データ収集装置45は、アンテナ45aを介して無線により検出データを受信し収集する。
 その後、検出データおよびIDは、必要に応じて、例えば、電話回線48、中継器49を介してデータ蓄積サーバ46に伝送されて記録される。解析装置6は、データ蓄積サーバ46から伝送される検出データおよびIDから、各転がり軸受の異常を判断する。この解析装置6は、診断部50と、記憶部51と、表示部52とを有する。
 診断部50は、検出データを周波数解析した解析値が閾値以上のとき軸受が異常であると診断し、閾値未満のとき軸受が正常であると診断する。記憶部51は、診断部50で診断された解析結果を記憶する。表示部52は、診断部50で診断した解析結果を表示する。なお、データ蓄積サーバ46に、診断部50で診断した解析結果を前記IDと共に伝送して記録するようにしても良い。
 この場合、例えば、パーソナルコンピュータ、携帯電話、スマートフォン、またはPDA等の各種電子機器を用いてデータ蓄積サーバ46にアクセスして、このデータ蓄積サーバ46に記録された解析結果を、IDをキーとして抽出して確認し得る。この解析結果は、本装置を管理する管理者のみならず、この鉄道車両を含む周辺機器を管理する管理者が、前述の各種機器を用いてデータ蓄積サーバ46にアクセスして、軸受交換情報等のメンテナンス情報や情報発注手配等の情報を容易に取得し得る。
 図11は、この軸受異常検知システム100Aによる振動測定例を示す図である。この例では、鉄道車両1の走行範囲内にポイント部Ptが1箇所設けられる。鉄道車両1の点検時にこの鉄道車両1を車両所(車両基地)で走行させるために、その前に、測定開始指令送信装置4、複数の測定開始指令送受信装置13、およびデータ収集装置45の電源を全てONにしておく。
 次に鉄道車両1を走行レール20に沿って走行させて定められた車速(例えば25km/h以上35km/h以下)として、先頭車両1における前側の台車2の最初の振動検出対象である転がり軸受が設けられた軸箱が走行レール20のポイント部手前Paを通過時、第1の子機セット5Aの測定開始指令送受信装置(受信応答検出開始手段)13が、走行レール20の近傍に設置された測定開始指令送信装置4から検出開始信号の電波を受信する。
 これにより、前記測定開始指令送受信装置13に接続された、第1の子機セット5Aの振動検出装置15が、先頭の軸箱つまり対応する軸箱に組み込まれた転がり軸受の振動を検出する。さらに第1の子機セット5Aの測定開始指令送受信装置13が、第2の子機セット5Bの測定開始指令送受信装置13に検出開始信号の電波を送信し、第2の子機セット5Bの振動検出装置15が、対応する軸箱に組み込まれた転がり軸受の振動を検出する。
 以下同様に、測定開始指令送受信装置13がそれぞれ1つ後方の測定開始指令送受信装置13に検出開始信号の電波を送信することで、後続の子機セット5C,5D,5E,5Fの測定開始指令送受信装置13に検出開始信号の電波を順々に送信して、各子機セット5に対応する軸箱に組み込まれた振動検出対象である転がり軸受の振動を順次検出する。各振動検出装置15で検出された検出データおよび子機セット5毎のIDは、各振動検出装置15内におけるマイクロコンピュータの記録手段に記録された後、測定開始指令送受信装置13に転送される。測定開始指令送受信装置13はアンテナ14から電波を送信した状態を維持する。
 その後、測定開始指令送信装置4よりも車両進行方向前方に設置されたデータ収集装置45の近傍を、測定開始指令送受信装置13が通過時、データ収集装置45は無線により検出データおよびIDを受信し収集する。代わりに、データ収集装置45の近傍を測定開始指令送受信装置13が通過時、データ収集装置45からのデータ伝送指令を受けたタイミングで、前記測定開始指令送受信装置13が検出データおよびIDを伝送しても良い。鉄道車両1をこのように走行させた後、測定開始指令送信装置4および複数の測定開始指令送受信装置13の電源をOFFにする。
 以上説明した本実施形態に係る鉄道車両用軸受異常検知システム100Aによれば、データ収集装置45が、検出データ送信装置である測定開始指令送受信装置13から送信された検出データを受信して収集するため、例えば、有線や記録メディア等でのデータ伝送に比べて、電線の付帯工事やデータの取り出し作業を必要としない。したがって、検出データを簡易に取り出すことができるうえ、コスト低減を図ることができる。検出データは、子機セット毎に関連付けられたIDと共にデータ収集装置45に収集されるため、いずれの軸箱3に組み込まれた転がり軸受17が異常であるかを直ぐに特定することができる。
 第4の実施形態に係る鉄道車両用軸受異常検知システムについて説明する。
 以下の説明においては、各形態で先行する形態で説明している事項に対応している部分には同一の参照符を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
 図12は、第4の実施形態に係る軸受異常検知システム100Aによる振動測定例を示す図である。この例では、鉄道車両1の走行範囲内にポイント部Ptが2箇所設けられ、これらの間隔は、1台の車両1の長さとほぼ等しい。したがって、検出開始信号の送信および各振動検出対象の測定に関しては、第2の実施形態に係る軸受異常検知システムに関して説明したとおりである。
 第2の測定開始指令送信装置4A,4Bは、第1の子機セット5Aおよび第5の子機セット5Eが定められた走行速度で走行レールの継ぎ目やポイント部を通過する前、外乱振動の影響を受けない位置となるように設置される。この場合、鉄道車両1を、例えば、駆動モータにより一定の車速にした後、前記駆動モータを非通電状態にして鉄道車両1を慣性力で走行させるのが好ましい。その後、各転がり軸受17の振動を検出する。これにより、各転がり軸受17の振動を検出するとき、前記駆動モータからの電磁波による有害なノイズが少なくなる。
 データ収集装置45に記録された検出データは、IDと共に電話回線等の無線を介して、記憶手段であるデータ蓄積サーバ46に転送される。このデータ蓄積サーバ46内において、検出データのIDと、軸受型番、軸箱、車両番号、および測定日との関係を、前記検出データと対応させて記憶する。データ蓄積サーバ46内に保存された検出データおよびIDは、例えば、無線LAN,Wi-Fi,Bluetooth(登録商標),ZigBeeモジュール等を利用して解析装置6に伝送し得る。
 次に、第5の実施形態に係る軸受異常検知システムについて説明する。
 以下の説明においても、本形態で先行する形態で説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
 図13は、第5の実施形態に係る軸受異常検知システム100Bの外観を示す斜視図であるこの軸受異常検知システム100Bが、第3の実施形態に係る軸受異常検知システム100A(図9)と異なる点は、測定開始指令送信装置4(図9)を備えていない点である。
 図14は、この軸受異常検知システム100Bの制御系のブロック図である。
 各子機セット5における測定開始指令送受信装置13Aは、図示外のケースと、振動測定開始手段53と、電源41と、電源回路42と、通信回路43と、通信モジュール44と、アンテナ14と、永久磁石47(図13)とを有する。すなわち、測定開始指令送受信装置13Aは、プロセッサおよびメモリを備えたいわゆる通信機器から構成される。前記ケースに、振動測定開始手段53、電源41、電源回路42、通信回路43、および通信モジュール44が収納される。前記ケースの一部に永久磁石47(図13)が設けられ、この永久磁石47(図13)が、軸箱近傍にあるボルトの頭面に吸引固定される。アンテナ14は、前記ケースとは別体として適宜車両ボディに粘着テープ等を用いて固定されても良い。
 振動測定開始手段53は、測定開始指令送受信装置13Aのプロセッサで実現される振動測定開始判断部53aと、測定開始指令送受信装置13Aのメモリで実現される振動データ記録部53bとを有する。振動測定開始判断部53aは、電線16等を介して、振動検出装置15の検出値を監視し検出値が定められた一定値以上であるか否かを判断する。検出値が定められた一定値以上であると振動測定開始判断部53aで判断されると、振動データ記録部53bは、以後転がり軸受の振動測定を開始し振動データとして取り込み記録する。
 この例では、第1の実施形態に関して説明した図1に示すように、先頭車両1の車輪19が走行レール20の継ぎ目やポイント部を通過したときの振動を振動検出装置15が検出し、図14に示すように、その検出値が一定値以上であると振動測定開始判断部53aで判断されると、振動データ記録部53bが、以後転がり軸受の振動測定を開始し振動データとして取り込み記録する。
 図15Aは、軸受外輪に異常が発生しているときの転動体の通過による振動波形の例を示し、図15Bは、正常な軸受が走行レールのポイント部を通過したときの振動波形の例を示す。これら図15A,15Bに示すように、走行レールの継ぎ目やポイント部を通過したときの振動検出装置14による検出値は、正常な軸受回転で継ぎ目やポイント部のない走行レール部分を通過している時に振動検出装置15(図14)で検出される検出値よりも大きい。
 継ぎ目やポイント部を通過時の検出は単発的に発生し、急激に増加した検出値は徐々に減衰する。また、軸受外輪に異常が発生しているときの軸受のように振動波形のピークが軸受転動体の通過周期のように規則的には現れない。そのため、検出値にピークが現れた際に、それが、継ぎ目やポイント部を通過することに起因したものか、軸受外輪に発生した異常に起因したものかを判別するのは容易である。例えば、一定時間あたりにある一定値以上の検出値が1回検出された場合、走行レールの継ぎ目やポイント部を通過したと判断しても良い。前記一定時間は、例えば、この鉄道車両の車速に応じて定められる。
 図14に示すように、電源41から供給される電源電圧は、電源回路42により所望の電圧とされて、通信回路43、通信モジュール44、およびアンテナ14に供給される。振動データ記録部53bに記録した検出データは、通信回路43により定められた周波数からなる電磁波に変換され、通信モジュール44およびアンテナ14を介して送信される。送信データの送信装置として機能する測定開始指令送受信装置13Aは、アンテナ14から電波を送信した状態を維持する。
 図14に示す構成要素に関して、このように説明した要素以外は、第3の実施形態における相当する構成要素と同様に機能する。ただし、振動検出装置15は、転がり軸受17の振動のみでなく、上述のように走行レール20の継ぎ目やポイント部の通過時の振動も検出する。また、本実施形態に係る軸受異常検知システムは、測定開始指令送信装置4(図10)を備えていない。なお、本実施形態において、データ収集装置45は、鉄道車両から離れた場所で、例えば、走行レール20(図16)の近傍でポイント部Pt(図16)よりも車両進行方向前方に設置される。
 図16は、この軸受異常検知システム100Bによる振動測定例を示す図である。この例では、鉄道車両1の走行範囲内にポイント部Ptが1箇所設けられる。鉄道車両1の点検時にこの鉄道車両1を車両所(車両基地)で走行させるために、その前に、複数の子機セット5A~5Fおよびデータ収集装置45の電源を全てONにしておく。
 次に鉄道車両1を走行レール20に沿って走行させて定められた車速(例えば25km/h以上35km/h以下)として、先頭車両1における前側の台車2の最初の振動検出対象である転がり軸受が設けられた軸箱が走行レール20のポイント部Ptを通過したことを、振動測定開始のトリガとして、ポイント部Pt通過後、第1の子機セット5Aの振動測定装置15が先頭の軸受の振動を検出する。
 さらに第1の子機セット5Aの測定開始指令送受信装置13Aがそれぞれ1つ後方の測定開始指令送受信装置13Aに検出開始信号の電波を送信することで、第2の子機セット5Bの測定開始指令送受信装置13Aに検出開始信号の電波を順々に送信する。これにより、第2の子機セット5Bの振動検出装置15が次の軸受、つまり対応する軸受の振動を検出する。以下同様に、先行する測定開始指令送受信装置13Aが後続の子機セット5C,5D,5E,5Fの測定開始指令送受信装置13Aに検出開始信号の電波を送信して、順次、各振動検出装置15が軸受の振動を検出する。
 なお、第2の子機セット5B以降は、ポイント部Ptに掛からない位置で振動を測定するように、予め車両の走行速度と子機セット間の距離に基づいて求めて設定したタイムラグを設けて振動を測定しても良い。あるいは、第2の子機セット5B以降についても、第1の子機セット5Aと同様に、各々走行レール20のポイント部Ptを通過したタイミングで振動を測定しても良い。
 各振動検出装置15で検出された検出データおよび子機セット5毎のIDは、各振動検出装置15内におけるマイクロコンピュータの記録手段に記録された後、測定開始指令送受信装置13A内における振動データ記録部に転送される。測定開始指令送受信装置13Aは、アンテナ14から電波を送信した状態で保持される。
 その後、車両進行方向前方に設置されたデータ収集装置45の近傍を、測定開始指令送受信装置13Aが通過時、データ収集装置45は無線により検出データおよびIDを受信し収集する。代わりに、データ収集装置45の近傍を測定開始指令送受信装置13Aが通過時、データ収集装置45からのデータ伝送指令を受けたタイミングで、前記測定開始指令送受信装置13Aは検出データおよびIDを伝送しても良い。鉄道車両1をこのように走行させた後、複数の測定開始指令送受信装置13Aの電源をOFFにする。
 以上説明した本実施形態に係る鉄道車両用軸受異常検知システム100Bによれば、継ぎ目やポイント部に起因した、一定値以上の振動検出値を検出した時点を基準として、それ以降に転がり軸受17の振動測定を開始するため、振動測定開始のための指令装置等を別途設ける必要がない。よって装置全体の構成を簡単化でき、コスト低減を図ることができる。
 また振動検出装置15は、継ぎ目やポイント部に起因した、一定値以上の検出値を検出した時点よりも後に検出される検出値を転がり軸受17の振動データとして取り込むことにより、軸受異常に起因する振動波形以外の振動波形が現れないため、軸受異常に起因する振動波形である検出データが明確になる。したがって、走行レール20の継ぎ目やポイント部を通過することに起因する振動波形を検出データに含めずに鉄道車両用の軸受17の異常判定を正確に行うことができる。
 第6の実施形態に係る鉄道車両用軸受異常検知システムについて説明する。
 以下の説明においては、各形態で先行する形態で説明している事項に対応している部分には同一の参照符を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
 図17は、第6の実施形態に係る軸受異常検知システム100Bによる振動測定例を示す図である。この例では、鉄道車両1の走行範囲内にポイント部Ptが2箇所設けられ、これらの間隔は、1台の車両1の長さとほぼ等しい。先頭車両台車の前側の軸箱が走行レール20の1箇所目のポイント部Ptを通過した後、前記軸箱の六角ボルトに取り付けた、第1の子機セット5Aの振動測定装置が先頭の軸受の振動を測定する。
 この場合、図16に示した第5の実施形態と同様に、第1の子機セット5Aから第2の子機セット5Bへ、第2の子機セット5Bから第3の子機セット5Cへ、第3の子機セット5Cから第4の子機セット5Dへ、との順で検出開始信号を送信し各振動検出対象の測定を開始するように設定される。また、後続車両1における第5の子機セット5Eは、1箇所目のポイント部Ptを通過した後、測定を開始し、第6の子機セット5Fに検出開始信号を送信するように設定される。このように設定することで、各子機セット5A~5Fの測定がほぼ同一のタイミングで行われる。
 なお1箇所目のポイント部Ptを通過し、軸受の振動を測定した各子機セット5A~5Fは、その後、2箇所目のポイント部Ptを通過するが、1箇所目のポイント部Ptを通過後に軸受の振動を測定しているので、2箇所目のポイント部Ptを通過後には軸受の振動を測定しないのが好ましい。
 各々の子機セット5A~5Fによる軸受振動の測定は、所定の走行速度、かつ、走行レール20の継ぎ目やポイント部Pt上の通過時ではなく、外乱振動の影響を受けない位置での測定となるように設定される。また、鉄道車両1を、例えば、駆動モータにより一定の車速にした後、前記駆動モータを非通電状態にして鉄道車両1を慣性力で走行させるのが好ましい。この場合、各転がり軸受17の振動を検出するとき、前記駆動モータが発する電磁ノイズを振動測定装置が受ける心配がなくなる。
 各子機セットの測定開始指令送受信装置に振動測定開始手段を設けたが、この例に限定されるものではない。例えば、振動測定開始手段を各子機セットの振動検出装置に設けても良い。
1…鉄道車両
2…台車
3…軸箱
4…測定開始指令送信装置
6…解析装置
13…測定開始指令送受信装置(受信応答検出開始手段)
15…振動検出装置
17…転がり軸受
20…走行レール

Claims (17)

  1.  鉄道車両の少なくとも1つの台車に設けられた少なくとも1つの軸箱にそれぞれ1つまたは複数組み込まれる、全体として複数の転がり軸受の異常を、前記鉄道車両を走行レール上で走行させて検知する鉄道車両用軸受異常検知システムであって、
     対応する前記転がり軸受の振動をそれぞれ検出する複数の振動検出装置と、
     これら振動検出装置それぞれで検出された対応する前記転がり軸受の振動を示す検出データに基づいて前記転がり軸受の異常を判断する解析装置と、
     前記振動検出装置にそれぞれ接続された複数の受信応答検出開始手段であって、各受信応答検出開始手段は、検出開始信号を受信すると、接続された振動検出装置に前記対応する転がり軸受の振動を検出させる受信応答検出開始手段と、
     前記鉄道車両から離れて設置され、前記受信応答検出開始手段に前記検出開始信号を送信する少なくとも1つの測定開始指令送信装置と、
    を備えた、鉄道車両用軸受異常検知システム。
  2.  請求項1に記載の鉄道車両用軸受異常検知システムにおいて、前記測定開始指令送信装置が、前記転がり軸受のうちのある転がり軸受が前記走行レールの継ぎ目またはポイント部上を通過する時に、その転がり軸受に対応する前記振動検出装置に接続された前記受信応答検出開始手段が前記検出開始信号を受信しない場所に設置される、鉄道車両用軸受異常検知システム。
  3.  請求項1に記載の鉄道車両用軸受異常検知システムにおいて、前記測定開始指令送信装置が、前記走行レールの継ぎ目またはポイント部からレール長手方向に定められた距離離れた位置に設置される、鉄道車両用軸受異常検知システム。
  4.  請求項1ないし請求項3に記載の鉄道車両用軸受異常検知システムにおいて、前記受信応答検出開始手段が、振動検出対象である転がり軸受が設けられた前記軸箱毎に複数設けられ、各受信応答検出開始手段が前記検出開始信号を受信すると、後続の振動検出対象である転がり軸受に対応する受信応答検出開始手段に対して検出開始信号を送信する、鉄道車両用軸受異常検知システム。
  5.  請求項2もしくは請求項3または請求項2もしくは請求項3に従属する請求項4に記載の鉄道車両用軸受異常検知システムにおいて、前記測定開始指令送信装置が複数設けられ、前記走行レールには前記継ぎ目または前記ポイント部が複数存在し、これら継ぎ目またはポイント部ごとに、前記レール長手方向に定められた距離離れて、前記測定開始指令送信装置がそれぞれ設置される、鉄道車両用軸受異常検知システム。
  6.  請求項1ないし請求項5のいずれか1項に記載の鉄道車両用軸受異常検知システムにおいて、前記鉄道車両を走行させて点検する車両基地に、前記走行レールおよび前記測定開始指令送信装置が設置される、鉄道車両用軸受異常検知システム。
  7.  請求項1ないし請求項6のいずれか1項に記載の鉄道車両用軸受異常検知システムにおいて、前記複数の振動検出装置のそれぞれが、対応する前記転がり軸受の振動を検出する条件が、前記鉄道車両を走行駆動させる駆動モータが非通電状態で、且つ、前記鉄道車両の速度が25km/h以上で35km/h以下である、鉄道車両用軸受異常検知システム。
  8.  請求項1ないし請求項7のいずれか1項に記載の鉄道車両用軸受異常検知システムにおいて、さらに、
     前記複数の振動検出装置それぞれに接続され、これら振動検出装置それぞれで検出された対応する前記転がり軸受の振動を示す検出データを送信する複数の検出データ送信装置と、
     前記鉄道車両から離れて設置され、前記検出データ送信装置から送信された前記検出データを受信して収集するデータ収集装置と、を備え、
     前記解析装置が、前記データ収集装置によって収集された前記検出データに基づいて前記複数の転がり軸受の異常を判断する、鉄道車両用軸受異常検知システム。
  9.  請求項8に記載の鉄道車両用軸受異常検知システムにおいて、前記測定開始指令送信装置および前記データ収集装置が、前記走行レールの直交方向において前記走行レールから所定距離範囲内に設置された、鉄道車両用軸受異常検知システム。
  10.  鉄道車両の少なくとも1つの台車に設けられた少なくとも1つの軸箱にそれぞれ1つまたは複数組み込まれる、全体として複数の転がり軸受の異常を、前記鉄道車両を走行レール上で走行させて検知する鉄道車両用軸受異常検知システムであって、
     対応する前記転がり軸受の振動、および外乱振動をそれぞれ検出する複数の振動検出装置と、
     これら振動検出装置それぞれに接続された複数の振動測定開始手段であって、各振動測定開始手段は、対応する振動検出装置が外乱振動を検出すると、その振動検出装置に前記転がり軸受の振動測定を開始させる、振動測定開始手段と、
     この開始された振動測定から得られる振動データに基づいて前記転がり軸受の異常を判断する解析装置と、
    を備えた、鉄道車両用軸受異常検知システム。
  11.  請求項10に記載の鉄道車両用軸受異常検知システムにおいて、さらに、
     前記複数の振動検出装置それぞれに接続され、これら振動検出装置それぞれで検出された対応する前記転がり軸受の振動を示す検出データを送信する複数の検出データ送信装置と、
     前記走行レールの直交方向において前記走行レールから所定距離範囲内に設置され、前記検出データ送信装置から送信された前記検出データを受信して収集するデータ収集装置と、
    を備えた、鉄道車両用軸受異常検知システム。
  12.  請求項8、請求項9または請求項11に記載の鉄道車両用軸受異常検知システムにおいて、前記データ収集装置が、前記振動検出装置毎に関連付けられたIDと共に前記検出データを受信して収集する、鉄道車両用軸受異常検知システム。
  13.  請求項12に記載の鉄道車両用軸受異常検知システムにおいて、さらに、
     前記データ収集装置から電話回線を介して伝送される、前記検出データおよび前記IDを蓄積するデータ蓄積サーバを備え、
     前記解析装置が、前記データ蓄積サーバから伝送される前記検出データおよび前記IDに基づいて、各転がり軸受の異常を判断する、鉄道車両用軸受異常検知システム。
  14.  請求項11ないし請求項13のいずれか1項に記載の鉄道車両用軸受異常検知システムにおいて、
     前記解析装置が、
      前記検出データを周波数解析した解析値が、設定した振動に関する閾値以上の場合、その検出データの転がり軸受が異常であると診断し、閾値未満の場合、その検出データの転がり軸受が正常であると診断する診断部と、
      この診断部で診断された解析結果を記憶する記憶部と、
      前記診断部で診断された解析結果を表示する表示部と、
    を有する、鉄道車両用軸受異常検知システム。
  15.  請求項13または請求項13に従属する請求項14に記載の鉄道車両用軸受異常検知システムにおいて、
     前記診断部で診断された解析結果が、前記データ蓄積サーバに、前記IDと共に伝送される、鉄道車両用軸受異常検知システム。
  16.  請求項15に記載の鉄道車両用軸受異常検知システムにおいて、さらに、
     前記データ蓄積サーバに記録された解析結果をID毎に閲覧させる電子機器を備えた、鉄道車両用軸受異常検知システム。
  17.  請求項12または請求項12に従属する請求項13ないし請求項16のいずれか1項に記載の鉄道車両用軸受異常検知システムにおいて、さらに、
     前記IDと、そのIDに対応する転がり軸受に関連する、軸受型番、軸箱および車両番号と、前記検出データの取得日との関係を、前記検出データと対応させて記憶する記憶手段を備えた、鉄道車両用軸受異常検知システム。
PCT/JP2015/074664 2014-09-12 2015-08-31 鉄道車両用軸受異常検知システム WO2016039202A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15840358.4A EP3192715B1 (en) 2014-09-12 2015-08-31 Bearing abnormality sensing system for railway vehicle
CN201580048501.XA CN106687353A (zh) 2014-09-12 2015-08-31 铁路车辆用轴承的异常检测系统
US15/453,301 US10352821B2 (en) 2014-09-12 2017-03-08 Bearing abnormality sensing system for railway vehicle

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-186085 2014-09-12
JP2014186085A JP2016055840A (ja) 2014-09-12 2014-09-12 鉄道車両用軸受異常検知装置
JP2014203977A JP2016075479A (ja) 2014-10-02 2014-10-02 鉄道車両用軸受異常検知装置
JP2014-203976 2014-10-02
JP2014203976A JP2016075478A (ja) 2014-10-02 2014-10-02 鉄道車両用軸受異常検知装置
JP2014-203977 2014-10-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/453,301 Continuation US10352821B2 (en) 2014-09-12 2017-03-08 Bearing abnormality sensing system for railway vehicle

Publications (2)

Publication Number Publication Date
WO2016039202A1 true WO2016039202A1 (ja) 2016-03-17
WO2016039202A8 WO2016039202A8 (ja) 2017-03-16

Family

ID=55458954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074664 WO2016039202A1 (ja) 2014-09-12 2015-08-31 鉄道車両用軸受異常検知システム

Country Status (4)

Country Link
US (1) US10352821B2 (ja)
EP (1) EP3192715B1 (ja)
CN (1) CN106687353A (ja)
WO (1) WO2016039202A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105890741A (zh) * 2016-03-29 2016-08-24 安徽大学 轨边跟随式列车轮对轴承声音采集装置
WO2017163771A1 (ja) * 2016-03-23 2017-09-28 Ntn株式会社 振動測定ユニット、振動測定システム、および振動測定方法
WO2017163819A1 (ja) * 2016-03-23 2017-09-28 Ntn株式会社 鉄道用異常診断システムおよびデータ収集装置
JP2017181255A (ja) * 2016-03-30 2017-10-05 Ntn株式会社 振動測定ユニット、振動測定システム、および振動測定方法
CN107255560A (zh) * 2017-07-04 2017-10-17 西安理工大学 一种基于压力数据的高速列车制动管故障分类与诊断方法
WO2017221611A1 (ja) * 2016-06-21 2017-12-28 Ntn株式会社 振動測定装置および異常診断システム
WO2018190131A1 (ja) * 2017-04-14 2018-10-18 Ntn株式会社 状態監視ユニットおよび状態監視システム
WO2019159227A1 (ja) * 2018-02-13 2019-08-22 三菱電機株式会社 鉄道車両の状態監視システム
CN110450817A (zh) * 2019-09-11 2019-11-15 上海应用技术大学 轴箱振动的轮径差检测系统和方法
WO2020049739A1 (ja) * 2018-09-07 2020-03-12 三菱電機株式会社 列車機器管理システム、情報収集装置、地上システムおよび列車機器管理方法
CN117054094A (zh) * 2023-09-14 2023-11-14 昆山铭驰自动化科技有限公司 一种轴承振动检测设备及其使用方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110207810B (zh) * 2018-02-28 2021-11-30 常州路航轨道交通科技有限公司 轴箱振动检测系统
EP3832284A4 (en) * 2018-07-31 2022-03-16 Nippon Steel Corporation INSPECTION SYSTEM, INSPECTION PROCESS AND PROGRAM
CN109142524A (zh) * 2018-08-14 2019-01-04 唐智科技湖南发展有限公司 一种轨道损伤检测方法、装置及设备
CN110530658A (zh) * 2019-09-28 2019-12-03 河北工程大学 一种高速铁路车辆振动检测系统及其检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02310464A (ja) * 1989-05-25 1990-12-26 Koyo Seiko Co Ltd 鉄道車両用軸受の損傷診断装置
WO2001089903A1 (en) * 2000-05-25 2001-11-29 Daimlerchrysler Rail Systems Gmbh Monitoring system for railway vehicles
DE102009016763A1 (de) * 2009-04-07 2010-10-21 Siemens Aktiengesellschaft Vorrichtung zur Übertragung von Informationen
WO2013146502A1 (ja) * 2012-03-28 2013-10-03 Ntn株式会社 鉄道車両用軸受の異常検知システム
JP2014215164A (ja) * 2013-04-25 2014-11-17 Ntn株式会社 振動測定ユニットおよびこれを用いた振動測定システム
WO2015137218A1 (ja) * 2014-03-10 2015-09-17 Ntn株式会社 鉄道車両用軸受異常検知装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138616A (en) * 1979-04-16 1980-10-29 Kansai Electric Power Co Inc:The Bearing fault discriminating device
US5150618A (en) * 1989-07-06 1992-09-29 Servo Corporation Of America Acoustic bearing defect detector
US5433111A (en) * 1994-05-05 1995-07-18 General Electric Company Apparatus and method for detecting defective conditions in railway vehicle wheels and railtracks
US5579013A (en) * 1994-05-05 1996-11-26 General Electric Company Mobile tracking unit capable of detecting defective conditions in railway vehicle wheels and railtracks
IT1309554B1 (it) * 1999-03-04 2002-01-23 Skf Ind Spa Gruppo cuscinetto per un assile ferroviario.
JP3874110B2 (ja) * 2002-08-30 2007-01-31 日本精工株式会社 異常診断システム
US7184930B2 (en) 2002-08-30 2007-02-27 Nsk Ltd. Method and device for monitoring status of mechanical equipment and abnormality diagnosing device
JP4963006B2 (ja) * 2002-09-09 2012-06-27 Ntn株式会社 ワイヤレスセンサシステムおよびワイヤレスセンサ付車輪用軸受装置
JP4529602B2 (ja) 2004-09-13 2010-08-25 日本精工株式会社 異常診断装置及び異常診断方法
US7860663B2 (en) * 2004-09-13 2010-12-28 Nsk Ltd. Abnormality diagnosing apparatus and abnormality diagnosing method
WO2006043511A1 (ja) 2004-10-18 2006-04-27 Nsk Ltd. 機械設備の異常診断システム
JP4569437B2 (ja) * 2005-08-31 2010-10-27 日本精工株式会社 異常診断装置
JP4527585B2 (ja) * 2005-03-30 2010-08-18 財団法人鉄道総合技術研究所 軸受監視システム、及び軸受監視プログラム
JP2006341659A (ja) * 2005-06-07 2006-12-21 Sumitomo Metal Ind Ltd 鉄道車両の異常検知方法
ATE544654T1 (de) * 2005-12-23 2012-02-15 Asf Keystone Inc Überwachungssystem für eisenbahnzüge
JP2008268187A (ja) * 2007-03-26 2008-11-06 Nippon Steel Corp 極低速回転機械の異常診断方法及び装置
JP2011203454A (ja) 2010-03-25 2011-10-13 Fuji Xerox Co Ltd 画像形成装置及びプログラム
JP2013257265A (ja) * 2012-06-14 2013-12-26 Ntn Corp 鉄道車両用軸受の異常検知システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02310464A (ja) * 1989-05-25 1990-12-26 Koyo Seiko Co Ltd 鉄道車両用軸受の損傷診断装置
WO2001089903A1 (en) * 2000-05-25 2001-11-29 Daimlerchrysler Rail Systems Gmbh Monitoring system for railway vehicles
DE102009016763A1 (de) * 2009-04-07 2010-10-21 Siemens Aktiengesellschaft Vorrichtung zur Übertragung von Informationen
WO2013146502A1 (ja) * 2012-03-28 2013-10-03 Ntn株式会社 鉄道車両用軸受の異常検知システム
JP2014215164A (ja) * 2013-04-25 2014-11-17 Ntn株式会社 振動測定ユニットおよびこれを用いた振動測定システム
WO2015137218A1 (ja) * 2014-03-10 2015-09-17 Ntn株式会社 鉄道車両用軸受異常検知装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163771A1 (ja) * 2016-03-23 2017-09-28 Ntn株式会社 振動測定ユニット、振動測定システム、および振動測定方法
WO2017163819A1 (ja) * 2016-03-23 2017-09-28 Ntn株式会社 鉄道用異常診断システムおよびデータ収集装置
CN105890741A (zh) * 2016-03-29 2016-08-24 安徽大学 轨边跟随式列车轮对轴承声音采集装置
CN105890741B (zh) * 2016-03-29 2017-11-10 安徽大学 轨边跟随式列车轮对轴承声音采集装置
JP2017181255A (ja) * 2016-03-30 2017-10-05 Ntn株式会社 振動測定ユニット、振動測定システム、および振動測定方法
CN109313071A (zh) * 2016-06-21 2019-02-05 Ntn株式会社 振动测定装置及异常诊断系统
WO2017221611A1 (ja) * 2016-06-21 2017-12-28 Ntn株式会社 振動測定装置および異常診断システム
WO2018190131A1 (ja) * 2017-04-14 2018-10-18 Ntn株式会社 状態監視ユニットおよび状態監視システム
CN107255560A (zh) * 2017-07-04 2017-10-17 西安理工大学 一种基于压力数据的高速列车制动管故障分类与诊断方法
WO2019159227A1 (ja) * 2018-02-13 2019-08-22 三菱電機株式会社 鉄道車両の状態監視システム
JPWO2019159227A1 (ja) * 2018-02-13 2021-03-11 三菱電機株式会社 鉄道車両の状態監視システム
JP7090655B2 (ja) 2018-02-13 2022-06-24 三菱電機株式会社 鉄道車両の状態監視システム
WO2020049739A1 (ja) * 2018-09-07 2020-03-12 三菱電機株式会社 列車機器管理システム、情報収集装置、地上システムおよび列車機器管理方法
JPWO2020049739A1 (ja) * 2018-09-07 2021-04-01 三菱電機株式会社 列車機器管理システム、情報収集装置、地上システムおよび列車機器管理方法
CN110450817A (zh) * 2019-09-11 2019-11-15 上海应用技术大学 轴箱振动的轮径差检测系统和方法
CN110450817B (zh) * 2019-09-11 2024-05-17 上海应用技术大学 轴箱振动的轮径差检测系统和方法
CN117054094A (zh) * 2023-09-14 2023-11-14 昆山铭驰自动化科技有限公司 一种轴承振动检测设备及其使用方法
CN117054094B (zh) * 2023-09-14 2024-02-23 佳木斯电机股份有限公司 一种轴承振动检测设备及其使用方法

Also Published As

Publication number Publication date
EP3192715B1 (en) 2021-03-17
WO2016039202A8 (ja) 2017-03-16
US20170176287A1 (en) 2017-06-22
US10352821B2 (en) 2019-07-16
CN106687353A (zh) 2017-05-17
EP3192715A4 (en) 2018-05-30
EP3192715A1 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
WO2016039202A1 (ja) 鉄道車両用軸受異常検知システム
EP3025926B1 (en) Condition monitoring system for monitoring a condition of a bearing unit for a vehicle
WO2013146502A1 (ja) 鉄道車両用軸受の異常検知システム
WO2017221611A1 (ja) 振動測定装置および異常診断システム
JP5595266B2 (ja) 軌道車両の台車コンポーネントのエラー監視装置
CA2962116C (en) Method for state determination in a rail vehicle
WO2017163819A1 (ja) 鉄道用異常診断システムおよびデータ収集装置
AU2008271145A1 (en) Acoustic monitoring of railcar running gear and railcars
JP2013257265A5 (ja)
JP2013257265A (ja) 鉄道車両用軸受の異常検知システム
JP2005231427A (ja) 軌道モニタリング装置
WO2015137218A1 (ja) 鉄道車両用軸受異常検知装置
JP2016055840A (ja) 鉄道車両用軸受異常検知装置
JP2016075478A (ja) 鉄道車両用軸受異常検知装置
WO2015137219A1 (ja) 鉄道車両用軸受異常検知装置
JP2016075479A (ja) 鉄道車両用軸受異常検知装置
JP7090655B2 (ja) 鉄道車両の状態監視システム
WO2014175092A1 (ja) 振動測定ユニットおよびこれを用いた振動測定システム
JP2008209229A (ja) 物理量測定装置、異常診断装置および異常診断方法
CN104271428A (zh) 用于调查轮轨接触的方法
JP2018081003A (ja) 異常診断装置、異常診断システム、および異常診断方法
JP2005227172A (ja) 回転機械の診断ユニットおよび診断システム
CN214648315U (zh) 走行部轨道车辆在线监测轴保系统
Hofmeister et al. Ruggedized and Improved MEMS-based Sensors for Rolling Stock.
WO2018190131A1 (ja) 状態監視ユニットおよび状態監視システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015840358

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015840358

Country of ref document: EP