WO2016039104A1 - 光源装置およびプロジェクタ - Google Patents

光源装置およびプロジェクタ Download PDF

Info

Publication number
WO2016039104A1
WO2016039104A1 PCT/JP2015/073335 JP2015073335W WO2016039104A1 WO 2016039104 A1 WO2016039104 A1 WO 2016039104A1 JP 2015073335 W JP2015073335 W JP 2015073335W WO 2016039104 A1 WO2016039104 A1 WO 2016039104A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light quantity
measuring means
quantity measuring
value
Prior art date
Application number
PCT/JP2015/073335
Other languages
English (en)
French (fr)
Inventor
昌士 岡本
貴紀 鮫島
小田 史彦
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2016039104A1 publication Critical patent/WO2016039104A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]

Definitions

  • the present invention relates to a light source device using a light emitting element such as a semiconductor laser having a plurality of different wavelength bands, which can be used in an optical device such as a projector, and a projector using the light source device.
  • a light emitting element such as a semiconductor laser having a plurality of different wavelength bands
  • HID lamps high-intensity discharge lamps
  • TM DLP
  • liquid crystal projectors and photomask exposure apparatuses.
  • FIG. 10 is a diagram for explaining one form of a part of a conventional projector related to the projector of the present invention (reference: Japanese Patent Application Laid-Open No. 2004-252112, etc.).
  • a light condensing means (not shown) composed of a concave reflecting mirror, a lens, or the like.
  • FmA is input to the incident end (PmiA) and output from the exit end (PmoA).
  • a light guide can be used, which is also called a name such as a rod integrator or a light tunnel, and is a light transmissive material such as glass or resin.
  • the light homogenizing means (FmiA) repeats total reflection on the side surface of the light homogenizing means (FmA). By propagating through FmA), even if the distribution of light input to the incident end (PmiA) is uneven, the illuminance on the exit end (PmoA) is sufficiently uniformed. Function.
  • a hollow square tube the inner surface of which is a reflecting mirror
  • the illumination lens (Ej1A) is arranged so that a square image of the emission end (PmoA) is formed on the two-dimensional light amplitude modulation element (DmjA), and is output from the emission end (PmoA).
  • the two-dimensional light amplitude modulation element (DmjA) is illuminated with light.
  • a mirror (MjA) is disposed between the illumination lens (Ej1A) and the two-dimensional light amplitude modulation element (DmjA). Then, the two-dimensional light amplitude modulation element (DmjA) modulates the light so as to be directed to the direction in which the light is incident on the projection lens (Ej2A) or not to be incident on each pixel according to the video signal. An image is displayed on the screen (Tj).
  • the two-dimensional light amplitude modulation element as described above is sometimes called a light valve.
  • the DMD (TM) digital
  • DmjA two-dimensional light amplitude modulation element
  • Micromirror devices are often used.
  • FIG. 11 is a diagram for explaining one form of a kind (reference: Japanese Patent Application Laid-Open No. 2001-142141, etc.).
  • the light from the light source (SjB) composed of a high-intensity discharge lamp or the like is made into a uniform light beam by a fly-eye integrator with the help of collimator means (not shown) composed of a concave reflecting mirror or lens.
  • the light uniformizing means (FmB) is configured by a combination of an incident-side front stage fly-eye lens (F1B), an exit-side rear stage fly-eye lens (F2B), and an illumination lens (Ej1B).
  • Both the front fly-eye lens (F1B) and the rear fly-eye lens (F2B) are formed by arranging a large number of rectangular lenses having the same focal length and the same shape in the vertical and horizontal directions.
  • Each lens of the front-stage fly-eye lens (F1B) and the corresponding lens of the rear-stage fly-eye lens (F2B) in the subsequent stage constitute an optical system called Koehler illumination.
  • a large number of optical systems are arranged vertically and horizontally.
  • the Kohler illumination optical system is composed of two lenses.
  • the front lens collects light and illuminates the target surface, the front lens does not form a light source image on the target surface, but the center of the rear lens.
  • a light source image is formed on this surface, and the rear lens is arranged so as to form an image of the quadrangle of the outer shape of the front lens on the target surface (surface to be illuminated), thereby uniformly illuminating the target surface.
  • the function of the latter lens is to prevent the phenomenon that the illuminance around the square of the target surface falls depending on the size when the light source is not a perfect point light source but has a finite size if it is not
  • the rear lens can make the illuminance uniform to the periphery of the square of the target surface without depending on the size of the light source.
  • the optical system of FIG. 11 it is basically based on the fact that a substantially parallel light beam is input to the light homogenizing means (FmB), so the front fly-eye lens (F1B) and the rear fly-eye lens ( The distance from F2B) is set to be equal to the focal length thereof, and thus an image of the target surface of uniform illumination as the Kohler illumination optical system is generated at infinity.
  • the illumination lens (Ej1B) is disposed at the rear stage of the rear fly-eye lens (F2B), the target surface is drawn toward the focal plane of the illumination lens (Ej1B) from infinity.
  • the output light flux is also substantially axially symmetric. Because of the nature of the lens, that is, the Fourier transform action of the lens, all rays incident on the lens surface at the same angle are refracted toward the same point on the focal plane regardless of the incident position on the lens surface.
  • the output of the Koehler illumination optical system is imaged on the same target surface on the focal plane of the illumination lens (Ej1B).
  • a polarizing beam splitter (MjB) is disposed between the illumination lens (Ej1B) and the two-dimensional light amplitude modulation element (DmjB), so that light is transmitted to the two-dimensional light amplitude modulation element ( DmjB) is reflected.
  • the two-dimensional light amplitude modulation element (DmjB) rotates the polarization direction of light by 90 degrees for each pixel according to the video signal, or modulates and reflects the light so that only the rotated light is reflected. Then, the light passes through the polarizing beam splitter (MjB) and is incident on the projection lens (Ej3B) to display an image on the screen (Tj).
  • LCOS TM silicon liquid crystal device
  • DmjB two-dimensional light amplitude modulation element
  • a transmissive liquid crystal device (LCD) is also used in an optical arrangement suitable for it (reference: Japanese Patent Laid-Open No. Hei. No. 10-133303).
  • a dynamic color filter such as a color wheel is disposed after the light uniformizing means, and R, G, B (red and green, blue)
  • the two-dimensional light amplitude modulation element is illuminated as a color sequential light beam, and color display is realized by time division, or a dichroic mirror or dichroic prism is arranged at the subsequent stage of the light uniformizing means, and R, G, B
  • a dichroic mirror or dichroic prism To illuminate a two-dimensional light amplitude modulation element provided independently for each color with light separated into the three primary colors and arrange a dichroic mirror or dichroic prism to perform color synthesis of modulated light beams of the three primary colors R, G, and B
  • the optical system is omitted in FIGS.
  • the high-intensity discharge lamp described above has drawbacks such as low conversion efficiency from input power to optical power, that is, a large heat loss or a short life.
  • solid light sources such as LEDs and semiconductor lasers have attracted attention as alternative light sources that have overcome these drawbacks.
  • the LED has a smaller heat loss and a longer life than the discharge lamp, but the emitted light has no directivity like the discharge lamp.
  • the light use efficiency is low.
  • the semiconductor laser has a drawback that speckle is generated due to its high coherence, but it can be overcome by various technical improvements such as using a diffusion plate.
  • Advantages of high light utilization efficiency even in applications where only light in a specific direction can be used, such as the projectors and exposure apparatuses described above, because of low heat loss, long life, and high directivity There is.
  • the high directivity makes it possible to perform optical transmission with high efficiency, so it is possible to separate the installation location of the semiconductor laser from the location where the light is used, such as a projector. The degree of freedom can be increased.
  • the emission wavelength and emission intensity of the semiconductor laser change due to a temperature increase due to environmental temperature change or self-heating and further deterioration due to an increase in accumulated energization time.
  • a semiconductor laser is used as part of or all of the R, G, and B3 primary colors as the light source of the projector, the color and brightness of the entire image change due to such changes. Therefore, when applying a semiconductor laser to a high-fidelity projector, it is necessary to stabilize the color, that is, the white balance and the brightness.
  • the light emission wavelength becomes longer by detecting the amount of light using a positive light sensor and a negative light sensor in the light emission wavelength band of the spectral sensitivity characteristic. It is determined whether it is changing in the direction, changing in the direction of shortening, or not changing, and based on the result, the reference level of the input power control of the R, G, B color light sources Techniques to increase or decrease the are described.
  • this technology detects and controls only the direction of temporal change in the emission wavelength, so it corrects relatively fast color changes due to temperature changes due to the heat generated by the light source itself immediately after the light source is turned on. Although it may be possible, there is a problem that it cannot cope with a very slow environmental temperature change or a color change accompanying a deterioration of a light source over a long period of time. Further, it remains unsolved how to control the input power for each color light source when multiple color light sources cause color changes independently at the same time.
  • each of the R, G, B color light sources emits light in color sequential order.
  • the white balance is corrected by controlling each light sensor output so that the error from the target value becomes small for each of the three color matching functions in the XYZ color system, which is established by the Lighting Committee).
  • the technology is described.
  • the light of each of R, G, and B is singly utilized by making good use of the characteristic of the original operation mode in which light sources of R, G, and B colors are emitted in color sequence. It is assumed that a total of nine types of signals that are automatically input and input to the photosensors for each color are used.
  • an inconvenient wavelength component of the light emitted from the LED is obtained by changing the angle of the dichroic mirror based on the output from the LED light source and the detection result of the light detection sensor for detecting the color.
  • a problem to be solved by the present invention is to provide a light source device and a projector that can maintain the hue of an output light beam at a target hue by feedback control without continuing to perform complicated calculations such as solving simultaneous equations. It is to provide.
  • the light source device comprises a light emitting element (Y1a, Y1b,%) That emits light in a narrow wavelength band and a drive circuit (P1a, P1b,%) That drives the light emitting elements (Y1a, Y1b,.
  • the light emitting elements (Y1a, Y1b,..., Y2a, Y2b,...) Include elements whose emission wavelengths belong to a plurality of different wavelength bands, Further, the light source device receives an amount of light correlated with the light amount of the output light beam (Fo, Fo1, Fo2,%) In order to measure the total light amount of the output light beam (Fo, Fo1, Fo2,).
  • a first light quantity measuring means (A1), a second light quantity measuring means (A2) and a third light quantity measuring means (A3) With respect to the spectral sensitivity characteristics of the first light quantity measurement means (A1), the second light quantity measurement means (A2), and the third light quantity measurement means (A3), at each reference wavelength determined by each of the wavelength bands described above.
  • the sensitivity value matches the sensitivity value at the same reference wavelength of each of the three color matching functions of the XYZ color system, and the rate of change in sensitivity with respect to the change in wavelength at at least one reference wavelength is 3 in the XYZ color system.
  • the control circuit (Mc) includes first light quantity measurement data (Sh1) generated by the first light quantity measurement means (A1) and second light quantity measurement data (Sh2) generated by the second light quantity measurement means (A2). And the third light quantity measurement data (Sh3) generated by the third light quantity measurement means (A3) are acquired at least intermittently, and the total light of the output light beams (Fo, Fo1, Fo2,...) Is obtained.
  • a hue indication value that correlates with color is generated, and a change amount of the emission intensity indication value that correlates with the light intensity for each of the wavelength bands is determined so that a difference between the hue indication value and the target value is reduced.
  • Each appearance appears after assuming a plurality of appearance modes related to the appearance modes of the difference between the hue instruction value and the target value.
  • the control circuit (Mc) selects an appearance of the difference between the generated hue indication value and the target value from the plurality of assumed appearances of the difference, and the appearance of the selected difference.
  • the change amount of the emission intensity instruction value is determined in accordance with the information relating to the determination mode of the change amount of the emission intensity instruction value belonging to the aspect.
  • the control circuit (Mc) includes the hue instruction value correlated with the overall light color of the output light beam (Fo, Fo1, Fo2,%), A brightness instruction value correlated with the overall light brightness of the output light beam (Fo, Fo1, Fo2,%) Is generated, and in addition to the difference between the hue instruction value and its target value, the brightness instruction value and its target value.
  • the amount of change in the emission intensity instruction value for each of the wavelength bands is determined, and the drive circuits (P1a, P1b,..., P2a, P2b,...) Are feedback-controlled. To do.
  • the first light quantity measuring means (A1), the second light quantity measuring means (A2), and the third light quantity measuring means (A3) are respectively optical sensors (C1, C1). C2, C3), and characteristic filters (Et1, Et2, Et3) are placed in front of the optical sensors (C1, C2, C3).
  • the first light quantity measuring means (A1), the second light quantity measuring means (A2), and the third light quantity measuring means (A3) are identical to the same light quantity measuring means.
  • the first light quantity measuring means (A1), the second light quantity measuring means (A2), and the third light quantity measuring means (A3) are optical sensors.
  • (C) is shared, and when the first light quantity measuring means (A1) works, the second light quantity measuring means (A2), the third light quantity measuring means (A3), In the case, the characteristic filters (Et1, Et2, Et3) disposed in front of the optical sensor (C) are replaced.
  • At least one of the characteristic filters (Et1, Et2, Et3) is divided into a plurality of filters, and a signal based on each of the divided filters is synthesized to perform the above-described spectroscopy. Sensitivity characteristics are realized.
  • At least one of the optical sensors included in the first light quantity measuring means (A1), the second light quantity measuring means (A2), or the third light quantity measuring means (A3) is provided. It is an image sensor.
  • a projector according to a seventh aspect of the present invention is characterized in that an image is projected and displayed using the light source device according to the first to sixth aspects.
  • the block diagram which simplifies and shows the light source device of this invention is represented.
  • the block diagram which simplifies and shows the light source device of this invention is represented.
  • the block diagram which simplifies and shows a part of light source device of this invention is represented.
  • the schematic of the concept relevant to the technique of the light source device of this invention is represented.
  • the schematic of the concept relevant to the technique of the light source device of this invention is represented.
  • the schematic of the concept relevant to the technique of the light source device of this invention is represented.
  • the schematic diagram which simplifies and shows a part of light source device of this invention is represented.
  • the schematic diagram which simplifies and shows a part of light source device of this invention is represented.
  • the figure which simplifies and shows one form of the Example of the light source device of this invention is represented.
  • the figure explaining one form of one part of the kind of the conventional projector concerning the projector of this invention is represented.
  • the figure explaining one form of one part of the kind of the conventional projector concerning the projector of this invention is represented.
  • FIG. 1 is a block diagram which simplifies and shows the light source device of this invention.
  • At least one light emitting element (Y1a, Y1b,%) Provided in the element light source (U1) is driven by a drive circuit (P1a, P1b,%) To emit light.
  • a drive circuit P1a, P1b, etc.
  • a semiconductor laser or a radiated light of the semiconductor laser is utilized by utilizing a nonlinear optical phenomenon such as harmonic generation or an optical parametric effect.
  • a light source for wavelength conversion, etc. which can be driven by one drive circuit (P1a, P1b,...) By connecting a plurality of such light sources in series, in parallel, or in series-parallel connection. It is said.
  • the driving circuits (P1a, P1b,...) are DC / DC converters configured by a circuit of a system such as a step-down chopper or a step-up chopper, which is powered by a DC power supply (not shown) here. Yes, it is assumed that prescribed power can be input to the light emitting elements (Y1a, Y1b,).
  • the control circuit (Mc) is controlled independently for each of the drive circuits (P1a, P1b,..., P2a, P2b,%) Via drive circuit control signals (J1a, J1b,..., J2a, J2b, etc.
  • Each light emitting element (Y1a, Y1b,..., Y2a, Y2b,%) Can be supplied with a prescribed power.
  • the light source device of the present invention has a plurality of element light sources similar to the element light source (U1), and the light emitting elements (Y1a, Y1b,..., Y2a, Y2b,...) Included therein emit light. Wavelengths belonging to a plurality of different narrow wavelength bands are included, and the included wavelength bands are the three primary colors R, G, and B here. From the output light beams (Fo1, Fo2,%) Of each of the element light sources (U1, U2,...), A measurement output light beam (Fa1, Fa2, Fa3) obtained by extracting a part of each is generated.
  • the first light quantity measuring means (A1), the second light quantity measuring means (A2), and the third light quantity measuring means (A3) are input.
  • the output luminous flux (Fo1, Fo2,%) Illuminates a two-dimensional light amplitude modulation element provided separately for each color of R, G, and B, and a dichroic mirror
  • FIG. 2 is a block diagram showing the light source device of the present invention in a simplified manner
  • the light emitted from the light emitting elements (Y1a, Y1b,..., Y2a, Y2b,...) Is collected from, for example, a lens.
  • the light is focused on the incident end (Ei1, Ei2,%) Of the optical fiber (Ef1, Ef2,%) By the optical optical system (Ec1, Ec2,%) And propagates through the core of the optical fiber (Ef1, Ef2,. It is also possible to radiate from the emission ends (Eo1, Eo2,).
  • the radiated light from the emission ends (Eo1, Eo2,%) Of the optical fibers (Ef1, Ef2,%) Of the element light sources (U1, U2,%) are combined into one output light beam (Fo).
  • Output from the light source device As a comprehensive method of radiated light from a plurality of emission ends (Eo1, Eo2,%), The simplest method is to align the emission ends (Eo1, Eo2,%) On the same plane. This can be realized by bundling the emission ends of the optical fibers (Ef1, Ef2,). A part of the emitted light from the emission end (Eo1, Eo2,%) So that the amount correlated with the amount of the output light beam (Fo) guided by each of the optical fibers (Ef1, Ef2,%) Can be measured.
  • FIG. 4A is a schematic diagram of a concept related to the above. (Reference: “Color Properties and Technology”, October 10, 1986, first edition, first edition, edited by the Japan Society of Applied Physics, Optical Society, published by Asakura Shoten) (In the general literature, the color matching function uses a symbol with a horizontal bar on each of the x, y, and z characters. However, in this specification, it is expressed as described above for convenience.)
  • the tristimulus values X, Y, Z of the light beam to be measured represented by the spectrum S ( ⁇ ) with the wavelength ⁇ as a parameter use the color matching functions xe ( ⁇ ), ye ( ⁇ ), ze ( ⁇ ) described above. Thus, it is obtained by the integral calculation of the following formula (Formula 1).
  • X ⁇ S ( ⁇ ) ⁇ xe ( ⁇ ) ⁇ d ⁇
  • Y ⁇ S ( ⁇ ) ⁇ ye ( ⁇ ) ⁇ d ⁇
  • Z ⁇ S ( ⁇ ) ⁇ ze ( ⁇ ) ⁇ d ⁇
  • the integration is performed in the region from 380 nm to 780 nm.
  • the color of light perceived by humans and the brightness of light can be specified by information combining the aforementioned tristimulus values X, Y, and Z.
  • the above equation 1 is obtained by performing light quantity measurement using an optical sensor having a spectral sensitivity characteristic equal to each of the color matching functions xe ( ⁇ ), ye ( ⁇ ), and ze ( ⁇ ). Teaches that X, Y, Z can be measured. Accordingly, the spectral sensitivity characteristics of the first light quantity measuring means (A1), the second light quantity measuring means (A2), and the third light quantity measuring means (A3) are respectively expressed by the color matching functions xe ( ⁇ ) and ye ( ⁇ ), Ze ( ⁇ ), the tristimulus values X, Y, Z of the output luminous flux (Fo, Fo1, Fo2,...) Can be directly measured. It is a design guideline for the light source device of the present invention to stabilize the light color and light brightness of the output light beam (Fo, Fo1, Fo2,...) By maintaining the desired value.
  • the measurement output light beam (Fa1) is a characteristic filter (Et1).
  • the measurement output light beam (Ft1) that has been input to and transmitted therethrough is received by the optical sensor (C1).
  • the light detection signal (Sg1) from the optical sensor (C1) is subjected to necessary processing such as amplification and AD conversion by the light quantity measurement circuit (H1) to generate first light quantity measurement data (Sh1).
  • the spectral sensitivity characteristic of the first light quantity measuring means (A1) reflects the spectral sensitivity characteristic of the optical sensor (C1) itself in addition to the characteristic due to the characteristic filter (Et1).
  • the optical sensors (C2, C3) and the light quantity measurement circuits (H2, H3) at the subsequent stages are circuits comprising the optical sensor (C1) and the light quantity measurement circuit (H1) of the first light quantity measurement means (A1). You may comprise using the same thing as a part, and can produce
  • the light quantity measurement circuit (H1, H2, H3) can be integrated into one light quantity measurement circuit provided with one AD converter common to the multiplexer.
  • the spectral sensitivity characteristics of the first light quantity measuring means (A1), the second light quantity measuring means (A2), and the third light quantity measuring means (A3) are expressed by the color matching function xe ( ⁇ ), Ye ( ⁇ ), ze ( ⁇ ) to be the same as each of the spectral transmittance characteristics of the characteristic filters (Et1, Et2, Et3), and the optical sensors (C1, C2, C3) themselves.
  • the characteristic in which the spectral sensitivity characteristic is superimposed may be set to be the same as the color matching functions xe ( ⁇ ), ye ( ⁇ ), and ze ( ⁇ ).
  • this light source device includes only light emitting elements (Y1a, Y1b,..., Y2a, Y2b,...) That emit light in a narrow wavelength band in the wavelength band described above, the first light quantity measuring means (A1).
  • the spectral sensitivity characteristics of the second light quantity measuring means (A2) and the third light quantity measuring means (A3) are set to the color matching functions xe ( ⁇ ), ye at least in the vicinity of each wavelength band. It is sufficient if they are the same as ( ⁇ ) and ze ( ⁇ ).
  • the spectral transmittance characteristic of the characteristic filter (Et1, Et2, Et3) is a characteristic in which the spectral sensitivity characteristic of the optical sensor (C1, C2, C3) itself is superimposed on at least the vicinity of each of the wavelength bands described above.
  • the color matching functions xe ( ⁇ ), ye ( ⁇ ), and ze ( ⁇ ) may be the same as those described above.
  • the reference wavelength is determined in each of the wavelength bands, and the sensitivity value at the reference wavelength is determined. It is practical enough that the rate of change in sensitivity to changes in wavelength at the reference wavelength is the same as the function value at the reference wavelength for the color matching function and the rate of change in function for change in wavelength at the reference wavelength. is there. Therefore, the spectral transmittance characteristic of the characteristic filter (Et1, Et2, Et3) is a characteristic in which the spectral sensitivity characteristic of the optical sensor (C1, C2, C3) itself is superimposed on the transmittance value and the reference wavelength at the reference wavelength.
  • the change rate of the transmittance with respect to the change in wavelength at the reference color function may be the same as the function value at the reference wavelength for the color matching function and the change rate of the function with respect to the change in wavelength at the reference wavelength.
  • the sensitivity values at the respective reference wavelengths regarding the spectral sensitivity characteristics of the respective light quantity measuring means coincide with the sensitivity values at the same reference wavelength of the three color matching functions of the XYZ color system
  • the rate of change in sensitivity with respect to a change in wavelength at at least one reference wavelength matches the rate of change in sensitivity with respect to a change in wavelength at the same reference wavelength of each of the three color matching functions of the XYZ color system.
  • the sensitivity value at each reference wavelength and the sensitivity change rate with respect to the change in wavelength agree with the sensitivity value at the same reference wavelength and the sensitivity change rate with respect to the wavelength change of each of the three color matching functions of the XYZ color system.
  • the spectral sensitivity characteristic of each of the light quantity measuring means is that, at a certain reference wavelength, the rate of change of sensitivity with respect to the change in wavelength is the rate of change of sensitivity with respect to the change in wavelength of each color matching function. Those that do not match will be supplemented near the end of this specification.
  • wavelength bands that is, the emission wavelength bands of the R, G, and B light emitting elements (Y1a, Y1b,..., Y2a, Y2b,...)
  • the present light source device are, for example, 640 nm, 530 nm, and 465 nm as reference wavelengths.
  • the characteristic filters (Et1, Et2, Et3) may be manufactured so as to have spectral transmittances in accordance with the above-described equations 4, 5, and 6, respectively.
  • This filter emits light in the vicinity of the wavelength defined in Equation 3, that is, the variation of the light emitting elements (Y1a, Y1b,..., Y2a, Y2b,%) Mounted on the light source device, and the assumed temperature range. What is necessary is just to determine the characteristics within the bandwidth defined by the upper limit and the lower limit of the wavelength change caused by the wavelength variation, and the spectral transmittance characteristics outside this bandwidth may be any. Therefore, compared with the filter used for the above-mentioned chromaticity meter etc., since it is remarkably easy to design and manufacture, there exists an advantage which can be implement
  • FIG. 4B is a schematic diagram showing what is called a chromaticity diagram showing the relationship between chromaticity coordinates and colors. All colors that can be expressed in this color system are shown on the dotted line in the figure.
  • red (R), green (G), blue (B), and white (W) are described.
  • monochromatic light such as laser light is located on the dotted line in the figure. (However, the straight line from R to B, the so-called pure purple locus is excluded.)
  • the pure white chromaticity coordinates are 1/3 and 1/3.
  • the control circuit (Mc) uses the tristimulus values X, Y, Z read from the first light quantity measuring means (A1), the second light quantity measuring means (A2), and the third light quantity measuring means (A3).
  • the chromaticity coordinates are calculated by applying to the above-mentioned formula 2, and the respective values x, y of the calculated chromaticity coordinates are compared with their respective target values. For example, if x is larger than the target value In the drive circuit (P1a, P1b,..., P2a, P2b,%) Drives a light emitting element in the R wavelength band, reduces the total output power by p%, and emits light in the G wavelength band.
  • the driving circuit control signals (J1a, J1b,..., J2a, so as to reduce the total output power of the driving elements by q% and increase the total output power of the driving light emitting elements in the wavelength band B by q%. J2b,...) Then, at a suitable time, by returning the sequence to the place where the light intensity measurement data is acquired again, a feedback control loop is constructed, and the chromaticity coordinates and The control is always performed so that the difference from the target value becomes small, and the light color can be stabilized.
  • the above-described XYZ color system which is established by CIE, is configured to represent the brightness of light combining all the wavelength bands including the value of Y in the above-described formula 1. Therefore, in addition to the hue instruction value correlated with the color of light, in the case of stabilizing and controlling the brightness of all the R, G and B wavelength bands, the control circuit (Mc)
  • the Y value is used as a lightness instruction value, and this is compared with the target value. If Y is larger than the target value, the balance of the input power to the light emitting elements of R, G, and B is not changed.
  • the driving circuit control signals J1a, J1b,..., J2a, J2b, etc. So as to reduce the total input power by Q%, the brightness of the light is changed without changing the color of the light. By performing feedback control in such a direction that the difference from the target value becomes smaller, the brightness of light can be stabilized.
  • the values x, y and Y can be unified for the respective target values. Since the guideline for quantitatively determining the amount of change in the output power of the drive circuit corresponding to each of the wavelength bands of R, G, and B has not been shown, it has to be a trial and error feedback control, which is efficient It was not something. In the following, after showing a guideline for realizing feedback control in which this point is improved, a problem of the configuration according to the guideline and a configuration of the light source device of the present invention that avoids the problem will be described.
  • the control circuit (Mc) changes the light emission intensity indication value correlated with the light intensity of each of the R, G, and B wavelength bands, The amount of change that occurs in the chromaticity coordinates as the hue instruction value is determined.
  • the light intensity correlates with the optical power of all the light emitting elements (Y1a, Y1b,..., Y2a, Y2b,...) Belonging to one wavelength band, Is irrelevant.
  • the brightness of light is the brightness perceived by humans, even if the light power (density) is the same, the size changes under the influence of human visual sensitivity if the wavelength changes.
  • the total output power of the drive circuit that drives the light emitting element in one wavelength band and the light intensity of the component in the wavelength band are approximately proportionally correlated (in this specification, proportional to the amount of power). More specifically, the sum of the output powers of the driving circuits (P1a, P1b,..., P2a, P2b,.
  • the total output power Pg of the light emitting element driving device and the total output power Pb of the light emitting device driving the B wavelength band are respectively determined by the light intensity of the components in the R, G, B wavelength bands.
  • the light emission efficiency of the light emitting elements (Y1a, Y1b,..., Y2a, Y2b,...) Is different among the light emitting elements having different emission colors. Is different Although it may be, the same light emitting elements of the light emitting colors are assumed to be all the same luminous efficiency (more practically speaking the same manufacturer of the same type product). Therefore, if the above-mentioned premise is not satisfied due to a mixture of a plurality of types having different luminous efficiencies even in the same color, for example, a light emitting element of type A having a certain light emitting color and having high light emitting efficiency.
  • the drive circuit that drives the type B light emitting element internally sets power that is 10% higher than the commanded set power. Can be easily solved.
  • the emission intensity instruction values of the R, G, and B wavelength bands are R in the drive circuit (P1a, P1b,..., P2a, P2b,).
  • the sum of output powers Pr for driving light emitting elements in the wavelength band of P the sum of output powers Pg of driving light emitting elements in the wavelength band of G
  • the sum of output powers of driving light emitting elements in the wavelength band of P Pb It can be considered that each of these is independently proportional. For example, when the emission intensity instruction values for the R, G, and B wavelength bands are all increased by 1%, if the total output power is 200 W, 300 W, and 100 W, 202 W and 303 W, respectively. , 101W.
  • the power setting for the drive circuit is limited in its fineness, for example, 256 gradations if the setting data length is 8 bits. Therefore, when the power is increased by the minimum unit, the power setting of all the drive circuits is not increased by 1 LSB at the same time, but for example, the power setting of the first drive circuit is increased by 1 LSB, and then the second drive.
  • the power setting of the circuit is increased by 1 LSB, the number of drive circuits is increased separately, and the power setting of the last drive circuit is increased by 1 LSB, then the power setting of the first drive circuit is increased by 1 LSB again. ..,..., There is an advantage that the number of gradations for power setting can be increased by a factor of the number of drive circuits.
  • the measured light beam S ( ⁇ ) is composed of three primary colors of R, G, and B, it can be expressed as the following equation (Equation 7) using the delta function ⁇ ( ⁇ ).
  • S ( ⁇ ) Sr ⁇ ⁇ ( ⁇ - ⁇ ro) + Sg ⁇ ⁇ ( ⁇ - ⁇ go) + Sb ⁇ ⁇ ( ⁇ - ⁇ bo)
  • the reference wavelengths of R, G, and B are ⁇ ro, ⁇ go, and ⁇ bo, respectively
  • the emission intensity instruction values of the R, G, and B wavelength bands are Sr, Sg, and Sb.
  • Hxr xe ( ⁇ ro)
  • Hxg xe ( ⁇ go)
  • Hxb xe ( ⁇ bo)
  • Hyb ye ( ⁇ bo)
  • Z the following formula for Z
  • the sum of the output powers of the light emitting elements in the R wavelength band Pr, G wavelength bands The sum Pg of the output power of the light emitting element driving device and the sum Pb of the output power of the light emitting device driving the light emitting device in the B wavelength band are the emission intensity instruction values of the R, G, B wavelength bands, respectively.
  • Equation 12 the following equation (Equation 12) in which the measured values of the tristimulus values X, Y, and Z are applied to the left side of each of Equation 8, Equation 9, and Equation 10 described above.
  • X Hxr ⁇ Sr + Hxg ⁇ Sg + Hxb ⁇ Sb
  • Y Hyr ⁇ Sr + Hyg ⁇ Sg + Hyb ⁇ Sb
  • Z Hzr ⁇ Sr + Hzg ⁇ Sg + Hzb ⁇ Sb
  • the proportional coefficients kr, kg, and kb in the above-described equation 11 can be determined from the ratio of these to Pr, Pg, and Pb.
  • the equation 12 is an elementary ternary linear equation and can be easily solved in principle. However, continuing to execute such calculation in the feedback control loop causes the overhead of the control circuit (Mc), but a method for avoiding this problem will be described later.
  • the proportional coefficients kr, kg, kb are set to a safe initial value that is not yet determined but appropriately determined, based on the undefined kr, kg, kb, the emission intensity instruction values Sr, Pr, Pg, and Pb that will give rise to appropriately defined safe initial target values Srp, Sgp, and Sbp for Sg and Sb are tentatively determined by Equation 11 above.
  • the transition period until the temperature of the light emitting element reaches a steady state immediately after the lighting operation of the light source device is started or immediately after the brightness of the light source device is intentionally changed by the dimming operation is constant from each drive circuit. Even if power is supplied, the brightness of the light emitting element changes, and therefore the values of the proportional coefficients kr, kg, and kb are unstable. During this period, it is necessary to control the color and brightness of the light source device. Therefore, it is not necessary to determine the values of the proportional coefficients kr, kg, kb and the emission intensity instruction values Sr, Sg, Sb in the first place.
  • the values of the electric power Pr, Pg, and Pb are information held in the control circuit (Mc) itself of the light source device, and need not be measured for acquisition.
  • the light quantity measuring means for obtaining the emission intensity instruction values Sr, Sg, and Sb in the R, G, and B wavelength bands by measuring the first, second, and third light quantities can be provided separately from the measuring means, but a measure for realizing this without significant cost increase will be described later.
  • chromaticity coordinates x, y as hue indication values correlated with the color of light
  • Y is focused as lightness indication values correlated with the brightness of the light, and they are controlled for stabilization.
  • the system of x, y, Y and the system of X, Y, Z are the above-mentioned formula 2 and the following formula (formula 16).
  • Equation 17 the values of ⁇ x, ⁇ y, and ⁇ Y are determined by the above equation, Equation 17 can be regarded as an elementary ternary linear equation relating to ⁇ Sr, ⁇ Sg, and ⁇ Sb, and all the coefficients are determined.
  • the values of the minute change amounts ⁇ Sr, ⁇ Sg, ⁇ Sb of the emission intensity instruction value can be obtained.
  • the obtained ⁇ Sr, ⁇ Sg, ⁇ Sb is added to the original Sr, Sg, Sb to calculate new target values Srp, Sgp, Sbp of the emission intensity instruction values,
  • the electric power Pr, Pg, Pb of the drive circuits (P1a, P1b,..., P2a, P2b,...) Can be updated.
  • the target values Xp, Yp, Zp of the tristimulus values are determined. Cannot be satisfied, and it is necessary to give up giving up the brightness of the light and change the control mode so that the color of the light is kept at the target.
  • Sr is a predetermined value while maintaining the light color target.
  • chromaticity coordinates x, y that are hue instruction values correlated with the color of light and Y, which is a lightness instruction value correlated with the brightness of light are controlled, and x, y, Y are the target values xp. If it is possible to realize a control method that maintains, yp, Yp, for example, it is possible to perform feedback control that maintains only the chromaticity coordinates x, y at the target values while keeping the value of Sr unchanged.
  • the control target is x, y, Y will be described.
  • Equation 22 is applied to Equation 21, and the following Equation (Equation 23 )
  • the target chromaticity coordinates are not necessarily those corresponding to pure white. This is because, for example, when the light source device is applied to a projector, the light use efficiency of the optical system of the projector main body is not always the same for each of the R, G, and B colors. For example, if the use efficiency of B color is low in an optical system of a projector main body, the target chromaticity coordinates may be blue with a large B color component. Therefore, the target chromaticity coordinates may be determined according to the output of the apparatus using the light source device, not the color of the output light beam (Fo, Fo1, Fo2,...) Of the light source device.
  • a plurality of modes regarding the appearance modes are assumed in advance, and each appearance mode is assumed.
  • the emission intensity instruction values Sr, Sg, Sb obtained by the above-described method, and the chromaticity coordinates x, y and light that are the current hue instruction values by the measurement and the above-described calculation are the current hue instruction values by the measurement and the above-described calculation.
  • the hue instruction value and the target value that is, a plurality of chromaticity coordinates that are assumed in advance to be similar to the current chromaticity coordinate difference vector ⁇ x, ⁇ y.
  • a difference vector (representative point described later) is selected.
  • n Nxr ⁇ Nyb – Nxb ⁇ Nyr Get the solution.
  • Sbp Sb + ⁇ Sb
  • ⁇ Srn [ ⁇ Nyb ⁇ ⁇ x + Nxb ⁇ ⁇ y] / n
  • ⁇ Sbn [Nyr ⁇ ⁇ x ⁇ Nxr ⁇ ⁇ y] / n
  • FIG. 5 is a schematic diagram of a concept related to the technology of the light source device of the present invention.
  • This figure is a ⁇ x, ⁇ y coordinate system in which the coordinates xp, yp of the target value of chromaticity taken on the chromaticity diagram are the local origin (Op), and the x, y coordinate system is related by the equation 38 described above. It is attached.
  • the area to which the coordinate point (P) corresponding to the current difference ⁇ x, ⁇ y from the target value of chromaticity coordinates belongs is divided into, for example, eight types, and here, 0, ⁇ around the local origin (Op) in the counterclockwise direction / 4, ⁇ / 2, 3 ⁇ / 4, ⁇ , 5 ⁇ / 4, 3 ⁇ / 2, and 7 ⁇ / 4 are divided into declination regions (R0, R1,..., R7). Further, as shown in the figure, the angle centers of the respective deflection angle regions, that is, deflection angles of ⁇ / 8, 3 ⁇ / 8, 5 ⁇ / 8, 7 ⁇ / 8, 9 ⁇ / 8, 11 ⁇ / 8, 13 ⁇ / 8, and 15 ⁇ / 8.
  • a representative point (p0, p1,..., p7) on a normalized circle (Cp) having ⁇ and centered on the local origin (Op) and having a normalized radius rn is set. Then, the values ⁇ Srn and ⁇ Sbn of the equation 40 are calculated in advance for all ⁇ x and ⁇ y of the representative points (p0, p1,..., P7), and the control circuit (Mc) has a microprocessor.
  • the normalized radius rn may be an appropriate size. For example, a short axis length (about 0.001) or a long axis length (about 0) of a so-called MacAdam color matching ellipse near pure white. .002), for example, 0.005. (Reference: David L. MacAdam, JOSA Vol.32 May.1942 Fig.35)
  • the calculation procedure is as follows. First, after determining the target values xp, yp of the chromaticity coordinates and applying them to x, y in the above-described equation 27, the coefficients Nxr, Nxg, Nxb, Nyr, Nyg in the vicinity of the target chromaticity coordinates are obtained. , Nyb are determined in advance.
  • the above-described pre-calculation is performed by, for example, a personal computer, and the above-described array of normalized solutions ⁇ Srn, ⁇ Sbn, which is calculation result data, is transferred to the control circuit (Mc) of the light source device of the present invention. do it.
  • the chromaticity coordinate difference vectors ⁇ x, ⁇ y are determined according to Equation 38 described above.
  • This chromaticity coordinate difference vector corresponds to which of the representative points (p0, p1,..., P7) when focusing on the declination in the ⁇ x, ⁇ y coordinate plane of FIG. It is necessary to determine whether they are similar, but this can be determined by the following operation.
  • Equation 43 for the integer auxiliary variable j for index calculation: j ⁇ 0 If ⁇ y> 0 then j ⁇ j + 4 If ⁇ x> 0, j ⁇ j + 2 If abs ( ⁇ y)> abs ( ⁇ x), j ⁇ j + 1 (Note that abs () is a function that returns an absolute value.)
  • the value of j as a result of performing four operations is a value between 0 and 7, for example, corresponding to 0 of the index i described above.
  • Equation 46 sqrt ( ⁇ x ⁇ ⁇ x + ⁇ y ⁇ ⁇ y) Therefore, the solution ⁇ Sr or ⁇ Sb whose standardization has been canceled is expressed by the following equation (Equation 47) from Equation 45 described above.
  • ⁇ Sr D ⁇ ⁇ Srn [C [j]] ⁇ T ⁇ ⁇ r / rn
  • ⁇ Sb D ⁇ ⁇ Sbn [C [j]] ⁇ T ⁇ ⁇ r / rn
  • Equation 47 By applying the solution of Equation 47 thus obtained to Equation 35 described above, the values of the target values Srp, Sgp, Sbp of Sr, Sg, Sb can be updated. Further, when one of the light emission intensity instruction values Sr, Sg, Sb is determined separately for some reason, the solution of the equation 47 obtained as described above is temporarily applied to the equation 31 described above.
  • the combination light intensity indication value corresponding to the selected chromaticity coordinate difference vector described so far, which is obtained by the above-described previous calculation, is extracted, and the appropriate light emission intensity instruction is obtained.
  • the sum Pr of the output powers of driving the light emitting elements in the R wavelength band in the drive circuits P1a, P1b,..., P2a, P2b, etc.
  • the sum of output powers Pg for driving the light emitting elements in the G wavelength band and the sum of output powers Pb for driving the light emitting elements in the B wavelength band are as follows. It can be used effectively.
  • the control circuit (Mc) applies Sr, Sg, Sb obtained by solving the above-described equation 12 and the original target values Srp, Sgp, Sbp to the equation 13 and applies the proportional coefficient. Update kr, kg, kb. Then, the control circuit (Mc) applies the solution of the equation 47 to the equation 35 or 31 described above for the current values Sr, Sg, and Sb of the emission intensity instruction values to obtain new emission intensity instruction values.
  • Target values Srp, Sgp, and Sbp are calculated, and the electric power Pr, Pg, and Pb of the drive circuits (P1a, P1b,..., P2a, P2b,...) Are updated according to Equation 11.
  • the combination information of the change amount of the emission intensity instruction value obtained by the above-described previous calculation corresponding to the selected chromaticity coordinate difference vector is extracted, and the change value of the corresponding emission intensity instruction value is obtained.
  • the following is a summary of the feedback control method for obtaining.
  • Equation 9 and Equation 10 Coefficients Hxr, Hxg, Hxb, Hyr, Hyg, Hyb, Hzr, Hzg, Hzb and the values of Ir, Ig, Ib of Equation 20 and the chromaticity of Equation 27
  • the coefficients Nxr, Nxg, Nxb, Nyr, Nyg, Nyb are calculated by applying the target values xp, yp of the determined chromaticity coordinates to the coordinates x, y, and n is calculated based on Equation 30.
  • control circuit (Mc) the values of the coefficients Hxr, Hxg, Hxb, Hyr, Hyg, Hyb, Hzr, Hzg, and Hzb are prepared in advance.
  • the control circuit (Mc) determines appropriate initial target values Srp, Sgp, Sbp for the emission intensity instruction values Sr, Sg, Sb of the respective R, G, B wavelength bands, and proportional coefficients.
  • the proportional coefficients kr, kg, kb are updated by applying Sr, Sg, Sb obtained by solving Equation 12 and the original target values Srp, Sgp, Sbp to Equation 13. Then, by obtaining the first light quantity measurement data (Sh1), the second light quantity measurement data (Sh2), and the third light quantity measurement data (Sh3), tristimulus values X, Y, Z and T are obtained, and these are obtained.
  • the value of the chromaticity coordinates x, y can be obtained, that is, measured by applying the above equation 21.
  • Equation 45 For the chromaticity coordinate difference vector ⁇ x, ⁇ y of Equation 38 described above, when the index calculation auxiliary variable j is obtained based on Equation 43, the index conversion constant array C of Equation 44 is used as shown in Equation 45. , ⁇ Srn [0], ⁇ Srn [1],..., ⁇ Srn [7] and ⁇ Sbn [0], ⁇ Sbn [1],. Thus, a normalized solution of ⁇ Sr, ⁇ Sb that fits the measured chromaticity coordinates x, y is obtained.
  • the provisional ⁇ Sr and ⁇ Sb are obtained by Equation 46 and Equation 47, and further, the brightness instruction value Y and its value
  • the small change amount ⁇ Sr, ⁇ Sg, ⁇ Sb of the emission intensity instruction value is calculated by calculating the equation 35 via ⁇ ′ of the equation 37. Find the value of.
  • the control circuit (Mc) applies the solution of the above equation 47 to the above equation 35 or 31 for the current values Sr, Sg, Sb of the emission intensity instruction value, and a new target of the emission intensity instruction value.
  • the values Srp, Sgp, and Sbp are calculated, and the electric power Pr, Pg, and Pb of the drive circuits (P1a, P1b,..., P2a, P2b,...) Are updated according to Equation 11. Then, returning to the operation of acquiring the light quantity measurement data, and thereafter repeating the described sequence, a feedback control loop is constructed.
  • a plurality of modes relating to appearance modes are assumed in advance.
  • information on the determination mode of the change amount of the light emission intensity instruction value suitable for each appearance that is, the combination of the values of the light emission intensity instruction value change amounts ⁇ Sr, ⁇ Sg, ⁇ Sb, which is the solution of the simultaneous equations.
  • the mode of the difference between the hue instruction value and its target value that is, the current chromaticity coordinate difference vector
  • Those similar to ⁇ x and ⁇ y are selected from a plurality of chromaticity coordinate difference vectors assumed in advance, and correspond to the selected chromaticity coordinate difference vector.
  • Efficient feedback control can be performed without installing a high-performance microprocessor.
  • the validity of approximating the measured light beam S ( ⁇ ) with the delta function described in Equation 7 will be supplemented.
  • the spectrum S ( ⁇ ) of the combined light is accurately expressed as a delta function as shown in Equation 7 above.
  • the wavelength of the virtual monochromatic light source is determined to be the reference wavelengths ⁇ ro, ⁇ go, ⁇ bo without measuring the average wavelength.
  • the tristimulus values X, Y, Z are measured by the light quantity measuring means having a spectral sensitivity characteristic substantially equal to the color matching function. Since the approximation is not performed, the above-described influence of the spread of the spectrum width is correctly reflected.
  • the target values xp, yp, Yp of the feedback control As described above, various approximate calculations are performed on the assumption that the purpose of calculation of chromaticity coordinates and the like in this light source device is not to determine an accurate absolute value. For this reason, even if the target values xp, yp, Yp are given numerically, it is unclear whether or not the state achieved by the feedback control becomes a desired one, and such usage is not appropriate. For example, in the case of application to a projector, this light source device is actually mounted on the actual projector, and an image that should be white is projected on the screen with feedback control stopped so that a desired white color can be obtained.
  • the light intensity of each of R, G, and B of the light source device is manually adjusted, and when the adjustment is completed, the measured values of x, y, Y by the light source device itself are set to the target values xp, yp, Yp. It is good to memorize as. The actual value of the stored target value may be neglected, and thereafter, a state in which a desired white color is obtained is achieved by executing feedback control. Needless to say, as described above, the x, y, and Y systems and the X, Y, and Z systems can be converted to each other by the equations 2 and 16, so that The same applies to the values Xp, Yp, Zp.
  • the G-color emission intensity instruction value Sg is given as an example, and in order to explain the handling when this or ⁇ Sg is excluded from the unknown in the above-described Expression 24, the above-described Expression 26 is described. Then, the combination information of the change amount of the emission intensity instruction value obtained by the above-described previous calculation corresponding to the selected chromaticity coordinate difference vector is taken out, and the change value of the corresponding emission intensity instruction value is obtained. In the description of the calculation method for obtaining the above equation 28, which corresponds to the starting point, was obtained by modifying the above equation 26.
  • the number of unknown equations to be solved is reduced from three of ⁇ Sr, ⁇ Sg, and ⁇ Sb to two of ⁇ Sr or ⁇ Sb. This was to reduce the number. Therefore, in these calculations, there is no necessity to select the G color as an object to be excluded from the unknown in the equation. In the present invention, the R color or the B color may be selected and excluded from the unknown.
  • the calculation method can be determined in exactly the same way.
  • the number of the representative points (p0, p1,..., P7) prepared in the two-dimensional space of ⁇ x, ⁇ y prepared for the two unknowns described above is eight. If the same division is performed in the case of the number of pieces, since the selection is made in the three-dimensional space of ⁇ x, ⁇ y, ⁇ Y, the number of representative points is 32.
  • the light source device of the present invention may be configured so that the number of unknowns in the equation is three unless there is a large number of solutions to be prepared by calculation in advance for selection. .
  • the division of the existence area of the coordinate point (P) an example of dividing into eight areas such as the declination areas (R0, R1,..., R7) is illustrated.
  • the number may be increased to, for example, 16 divisions, or may be decreased to, for example, 4 divisions.
  • the existence area is divided by focusing only on the declination regardless of the distance ⁇ r of the coordinate point (P) from the local origin (Op).
  • the region is divided into polar declination regions (R0, R1,..., R7) centered on the local origin (Op), and the representative points (p0, p1) of each region are divided. ,..., P7), and the values [Delta] Srn and [Delta] Sbn of the normalized solution of Equation 40 are calculated and stored in advance for all [delta] x and [delta] y of the representative points (p0, p1,..., P7).
  • a representative point close to the coordinate point (P) is selected from the representative points (p0, p1,..., P7), By correcting the normalized solution belonging to the representative point selected by Equation 47 according to the ratio of the distance between the coordinate point (P) and the local origin (Op) to the distance of the local origin (Op).
  • the division of the region is not limited to the polar coordinate method as described above. For example, as shown in FIG. 6, the region is divided into quadrature rectangular regions and arranged in a lattice pattern in the same manner as described above.
  • the example in which the first light quantity measuring means (A1), the second light quantity measuring means (A2), and the third light quantity measuring means (A3) are configured as separate bodies has been described.
  • the first light quantity measuring means (A1), the second light quantity measuring means (A2), and the third light quantity measuring means (A3) are realized by time division by giving a characteristic change to the same light quantity measuring means. It can also be configured as follows. In this case, the first light quantity measurement means (A1), the second light quantity measurement means (A2), and the third light quantity measurement means (A3) share an optical sensor (C), and the first light quantity measurement means.
  • the characteristic placed in front of the optical sensor (C) The filters (Et1, Et2, Et3) may be replaced.
  • FIG. 7 is a schematic diagram showing a part of the light source device of the present invention in a simplified manner, in front of the optical sensor (C) installed ahead of the common measurement output light beam (Fa).
  • the disk-like filter support (Kt) with the characteristic filters (Et1, Et2, Et3) mounted thereon is arranged, and the disk-like filter support is shown as indicated by an arrow (Ka) by using a rotation mechanism (Km) such as a motor.
  • the characteristic filter (Et1) By rotating the body (Kt), when the characteristic filter (Et1) is located on the front surface of the optical sensor circuit portion (Ah1), it functions as the first light quantity measuring means (A1), and the characteristic filter (Et2) When it is located, it can serve as the second light quantity measuring means (A2), and when the characteristic filter (Et3) is located, it can serve as the third light quantity measuring means (A3).
  • the characteristic filter (Et 1, Et 2, Et 3) is rotated. However, a frame in which the characteristic filter (Et 1, Et 2, Et 3) is arranged in a row is provided and reciprocated by a solenoid or the like. You may do it.
  • the light source device of the present invention has the characteristic filters (Et1, Et2, Et3) of the first light quantity measuring means (A1), the second light quantity measuring means (A2), and the third light quantity measuring means (A3), respectively. Since the tristimulus values X, Y, Z are measured based on the difference in spectral sensitivity characteristics, the first light quantity measuring means (A1), the second light quantity measuring means (A2), and the first If each of the optical sensor elements of the three light quantity measuring means (A3) has different sensitivity changes due to changes over time, temperature drift, etc., there is a risk that an error will occur in the recognition of the color of the light.
  • the optical sensor (C) is shared in this way, the first light quantity measuring means (A1), the second light quantity measuring means (A2), and the third light quantity measuring means (A3) are switched. As long as the time interval of all light quantity measurements is sufficiently shorter than the time scale of the above-described fluctuation, there is an advantage that the influence of the above-described fluctuation can be avoided.
  • FIG. 3 or FIG. 7 an example in which each of the three color matching functions xe ( ⁇ ), ye ( ⁇ ), and ze ( ⁇ ) is realized by the characteristic filters (Et1, Et2, Et3) has been described.
  • a filter that realizes one color matching function is divided into a plurality of filters, and a signal based on each of the divided filters is synthesized to realize a spectral sensitivity characteristic that reproduces a desired color matching function. It is also possible to configure.
  • FIG. 8 is a schematic diagram showing a part of the light source device of the present invention in a simplified manner.
  • the measurement output light beam (Fa1) is incident on the characteristic filters (Et1a, Et1b, Et1c) realized by dividing the characteristic filter (Et1), and the measurement output light beams (Ft1a, Ft1b, Ft1c) transmitted therethrough.
  • the optical sensors (C1a, C1b, C1c) are incident on the optical sensors (C1a, C1b, C1c), respectively.
  • the signals of the optical sensors (C1a, C1b, C1c) are respectively connected to the inverting input terminals of operational amplifiers (Aia, Aib, Aic) constituting a current-voltage conversion amplifier.
  • An optical detection signal (Sia, Sib, Sic), which is an output of the operational amplifier (Aia, Aib, Aic), is fed back to the inverting input terminal by a variable resistor (Ria, Rib, Ric).
  • the amplifiers (Aia, Aib, Aic) function as variable gain amplifiers.
  • Each of the generated photodetection signals (Sia, Sib, Sic) is collectively connected to an inverting input terminal of an operational amplifier (Ag) constituting a summing amplifier via resistors (Rja, Rjb, Rjc).
  • the photodetection signal (Sg1) which is the output of the operational amplifier (Ag), is fed back to the inverting input terminal by a variable resistor (Rg), so that the operational amplifier (Ag) functions as a gain variable amplifier.
  • the light detection signal (Sg1) is subjected to necessary processing such as amplification and AD conversion by the light quantity measurement circuit (H) to generate first light quantity measurement data (Sh1).
  • the spectral transmittance characteristic of the characteristic filter has a characteristic in which the spectral sensitivity characteristic of the optical sensor (C1, C2, C3) itself is superimposed on at least the wavelength band described above.
  • the color matching functions xe ( ⁇ ), ye ( ⁇ ), and ze ( ⁇ ) may be the same. Therefore, rather than manufacturing a single filter in which the spectral transmittance characteristics are matched by combining all of R, G, and B, the spectral transmittance characteristics are individually created in the R, G, and B wavelength bands.
  • FIG. 8 shows an example in which the first light quantity measuring means (A1) is configured in this way, but the same applies to the second light quantity measuring means (A2) and the third light quantity measuring means (A3). Can be configured.
  • the configuration method described above is a method of combining signals generated and generated in parallel at the same time, but may be configured to combine signals generated in a time division manner.
  • it can be combined with the technique described with reference to FIG. 7 to share the optical sensor and change the characteristics by time division.
  • the color filter functions xe ( ⁇ ro), xe ( ⁇ go), xe ( ⁇ bo), ye ( ⁇ ro), ye ( ⁇ go) in each of the wavelength bands are provided on the disk-shaped filter support (Kt).
  • the optical sensor not only a light amount detecting device but also an image sensor can be used.
  • At least one of the optical sensors included in (A3) can be an image sensor.
  • the configuration for transmitting light using an optical fiber has been described with reference to FIG. 2, but since the optical fiber is made of fragile glass such as quartz, there is a drawback that there is a risk of breakage.
  • the optical fiber breaks, the optical power leaks from the breakage point and is absorbed by the coating material provided to mechanically protect the optical fiber, and the coating material may burn out. If it happens, it will be necessary to take a safety measure to detect it and turn off the light emitting element.
  • dividing the light of the same color into a plurality of optical fibers is advantageous from the standpoint of safety and configuration of the optical system. It is desirable not only to monitor the total light amount from all the optical fibers but also to monitor the light amount of each optical fiber and detect the breakage individually.
  • each optical fiber can be identified one by one, the amount of light can be monitored, and breakage can be detected individually. It becomes possible. It is also possible to use a color video image sensor as the image sensor. Since each pixel of the color image pickup device is provided with any of R, G, and B color filters, the light quantity measuring unit has nine types of configurations described with reference to FIG. Similar to the provision of a filter, the same advantages are obtained.
  • FIG. 9 is a diagram showing a simplified form of an embodiment of the light source device of the present invention
  • the light source device of the present invention is used as a mode for carrying out the present invention.
  • the light beam converted into an infinite image by the lens is color-synthesized using a mirror (HuR) and a dichroic mirror (HuG, HuB) to generate an output light beam (Fo). It is.
  • the output light beam (Fo) is input to the condenser lens (Eu), and the incident end (Pmi) of the light uniformizing means (Fm) by the rod integrator is passed through the diffusion element (Edm) for removing speckle. ).
  • the optical system after the exit end (Pmo) of the light uniformizing means (Fm) is the same as that described above with reference to FIG.
  • the light source device of the present invention can also be used in the projector described above with reference to FIG. 11 using light uniformizing means by a fly eye integrator.
  • the dichroic mirror (HuB) is formed so as to transmit as much R / G color light as possible and reflect as much B color light as possible. There are a lot of transmitted lights of B and B, and these lights are usually discarded as stray light.
  • a measurement output light beam (Fa) is obtained by effectively using this light. is there.
  • the measurement output light beam (Fa) is incident on an imaging optical system (Ea) including a lens, and the R emission end (EoR1, EoR2,...) And the G emission end (EoG1, EoG2,...) Of the fiber bundle.
  • a real image conjugate with the B color emission end (EoB1, EoB2,...) Is formed on the imaging surface of the imaging element (Cc).
  • the video signals (Sg) of these images taken by the image sensor (Cc) are sent to the light quantity measuring circuit (H).
  • a disk-like filter support (Kt) on which characteristic filters (Et1, Et2, Et3) are mounted is arranged in the same manner as that shown in FIG.
  • the characteristic filter (Et1, Et2, Et3) can be switched by the rotation mechanism (Km).
  • the control circuit (Mc) continuously selects the characteristic filters (Et1, Et2, Et3) by the rotation mechanism (Km), and sequentially connects the image sensor (Cc) with the first light quantity measuring means (A1).
  • the first light quantity measurement data (Sh1), the second light quantity measurement data (Sh2), and the third light quantity measurement data (Sh3) are acquired by functioning as the second light quantity measurement means (A2) and the third light quantity measurement means (A3).
  • the R color emitting end (EoR1, EoR2,...), The G color emitting end (EoG1, EoG2,...), The B color emitting end (EoB1, EoB2,. ) Measure each light quantity separately and monitor whether any abnormalities of light quantity decrease occur.
  • the sensitivity value at that wavelength is the sensitivity at that wavelength of each of the three color matching functions of the XYZ color system. As long as it matches the value, the rate of change in sensitivity with respect to the change in wavelength need not match.
  • any change rate of sensitivity with respect to the wavelength change in the vicinity of G color in the light amount measuring means may be used.
  • the present invention can be applied and functions well even when there are two types of wavelength bands that do not substantially change or can be ignored.
  • the chromaticity coordinates (Yxy color system) and the tristimulus values (XYZ color system) are used as hue indication values correlated with the color of light used in the processing inside the light source device.
  • RGB color system L * u * v * color system
  • L * a * b * color system any value can be used as long as it is a hue instruction value correlated with the chromaticity coordinates.
  • the term “minute change” appears in a plurality of locations. This is given in the expectation that approximation is actually established in the approximate expression such as Expression 22 described above. , V, w change ⁇ u, ⁇ v, ⁇ w. Usually, the smaller the value, the better the accuracy of approximation. However, depending on the required accuracy, even a considerably large value is practical. Therefore, the allowable size is determined in light of the application of the light source device.
  • the present invention can be used in an industry for designing and manufacturing a light source device using light emitting elements such as semiconductor lasers of a plurality of different wavelength bands that can be used in an optical device such as a projector.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Multimedia (AREA)
  • Projection Apparatus (AREA)
  • Mathematical Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Semiconductor Lasers (AREA)
  • Liquid Crystal (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

 本発明は、出力光束の色相を、フィードバック制御によって目標とする色相に維持することができる光源装置およびプロジェクタを提供することを目的とする。 本発明においては、発光素子は、発光波長が複数種類の異なる波長帯域に属するものを含んでおり、第1、第2、第3光量測定手段を有し、それらの分光感度特性の、各基準波長における感度値および波長の変化に対する感度の変化率が、XYZ表色系の3個の等色関数それぞれの同じ基準波長における感度値および波長の変化に対する感度の変化率と一致しており、制御回路は、光の色に相関する色相指示値を生成し、その目標値の差異が小さくなるよう、駆動回路をフィードバック制御するために、色相指示値とその目標値の差異の出現態様に関する複数の出現態様を想定した上で、発光強度指示値の変化量の決定態様に関する情報を保持しており、生成した色相指示値とその目標値の差異の態様に類似するものを、複数の想定した差異の出現態様のうちから選択する。

Description

光源装置およびプロジェクタ
 本発明は、例えば、プロジェクタなどの光学装置において使用可能な、複数種類の異なる波長帯域の、半導体レーザなどの発光素子を用いた光源装置、およびこの光源装置を利用したプロジェクタに関する。
 例えば、DLP(TM)プロジェクタや液晶プロジェクタのような画像表示用のプロジェクタや、フォトマスク露光装置においては、これまで、キセノンランプや超高圧水銀ランプなどの高輝度放電ランプ(HIDランプ)が使用されてきた。
 一例として、本発明のプロジェクタに係わる従来のプロジェクタの一種の一部の一形態を説明する図である、図10を用いてプロジェクタの原理について述べる(参考:特開2004-252112号公報など)。
 前記したように、高輝度放電ランプ等からなる光源(SjA)からの光は、凹面反射鏡やレンズ等からなる集光手段(図示を省略)の助けを借りるなどして、光均一化手段(FmA)の入射端(PmiA)に入力され、射出端(PmoA)から出力される。
 ここで、前記光均一化手段(FmA)として、例えば、光ガイドを使うことができ、これは、ロッドインテグレータ、ライトトンネルなどの名称でも呼ばれており、ガラスや樹脂などの光透過性の材料からなる角柱によって構成され、前記入射端(PmiA)に入力された光は、光ファイバと同じ原理に従って、前記光均一化手段(FmA)の側面で全反射を繰り返しながら、前記光均一化手段(FmA)の中を伝播することにより、仮に前記入射端(PmiA)に入力された光の分布にムラがあったとしても、前記射出端(PmoA)上の照度が十分に均一化されるように機能する。
 なお、いま述べた光ガイドに関しては、前記した、ガラスや樹脂などの光透過性の材料からなる角柱によって構成されるものの他に、中空の角筒で、その内面が反射鏡になっており、同様に内面で反射を繰り返しながら光を伝播させ、同様の機能を果たすものもある。
 前記射出端(PmoA)の四角形の像が、2次元光振幅変調素子(DmjA)上に結像されるよう、照明レンズ(Ej1A)を配置することにより、前記射出端(PmoA)から出力された光によって前記2次元光振幅変調素子(DmjA)が照明される。
 ただし、図10においては、前記照明レンズ(Ej1A)と前記2次元光振幅変調素子(DmjA)との間にミラー(MjA)を配置してある。
 そして前記2次元光振幅変調素子(DmjA)は、映像信号に従って、画素毎に光を投影レンズ(Ej2A)に入射される方向に向かわせる、あるいは入射されない方向に向かわせるように変調することにより、スクリーン(Tj)上に画像を表示する。
 なお、前記したような2次元光振幅変調素子は、ライトバルブと呼ばれることもあり、図10の光学系の場合は、前記2次元光振幅変調素子(DmjA)として、一般にDMD(TM)(ディジタル・マイクロミラー・デバイス)が使われることが多い。
 光均一化手段に関しては、前記した光ガイドの他に、フライアイインテグレータという名称で呼ばれるものもあり、この光均一化手段を使ったプロジェクタについて、一例として、本発明のプロジェクタに係わる従来のプロジェクタの一種の一部の一形態を説明する図である、図11を用いてその原理を述べる(参考:特開2001-142141号公報など)。
 高輝度放電ランプ等からなる光源(SjB)からの光は、凹面反射鏡やレンズ等からなるコリメータ手段(図示を省略)の助けを借りるなどして、略平行光束として、フライアイインテグレータによる光均一化手段(FmB)の入射端(PmiB)に入力され、射出端(PmoB)から出力される。
 ここで、前記光均一化手段(FmB)は、入射側の前段フライアイレンズ(F1B)と射出側の後段フライアイレンズ(F2B)と照明レンズ(Ej1B)の組合せで構成される。
 前記前段フライアイレンズ(F1B)、前記後段フライアイレンズ(F2B)ともに、同一焦点距離、同一形状の四角形のレンズを、縦横それぞれに多数並べたものとして形成されている。
 前記前段フライアイレンズ(F1B)の各レンズと、それぞれの後段にある、前記後段フライアイレンズ(F2B)の対応するレンズとは、ケーラー照明と呼ばれる光学系を構成しており、したがって、ケーラー照明光学系が縦横に多数並んでいることになる。
 一般にケーラー照明光学系とは、2枚のレンズから構成され、前段レンズが光を集めて対象面を照明するに際し、前段レンズは、対象面に光源像を結像するのではなく、後段レンズ中央の面上に光源像を結像し、後段レンズが前段レンズの外形の四角形を対象面(照明したい面)に結像するよう配置することにより、対象面を均一に照明するものである。
 後段レンズの働きは、もしこれが無い場合は、光源が完全な点光源でなく有限の大きさを持つとき、その大きさに依存して対象面の四角形の周囲部の照度が落ちる現象を防ぐためで、後段レンズによって、光源の大きさに依存せずに、対象面の四角形の周囲部まで均一な照度にすることができる。
 ここで、図11の光学系の場合、前記光均一化手段(FmB)には略平行光束が入力されることを基本としているため、前記前段フライアイレンズ(F1B)と前記後段フライアイレンズ(F2B)との間隔は、それらの焦点距離に等しくなるように配置され、よってケーラー照明光学系としての均一照明の対象面の像は無限遠に生成される。
 ただし、前記後段フライアイレンズ(F2B)の後段には、前記照明レンズ(Ej1B)を配置してあるため、対象面は、無限遠から前記照明レンズ(Ej1B)の焦点面上に引き寄せられる。
 縦横に多数並んでいるケーラー照明光学系は、入射光軸(ZiB)に平行であり、それぞれの中心軸に対して略軸対称に光束が入力されるため、出力光束も略軸対称であるから、レンズ面に同じ角度で入射した光線は、レンズ面上の入射位置によらず、焦点面上の同じ点に向かうよう屈折される、というレンズの性質、即ちレンズのフーリエ変換作用により、全てのケーラー照明光学系の出力は、前記照明レンズ(Ej1B)の焦点面上の同じ対象面に結像される。
 その結果、前記前段フライアイレンズ(F1B)の各レンズ面での照度分布が全て重ね合わされ、よって、ケーラー照明光学系が1個の場合よりも照度分布がより均一となった、1個の合成四角形の像が、前記入射光軸(ZiB)上に形成されることになる。
 前記合成四角形の像の位置に2次元光振幅変調素子(DmjB)を配置することにより、前記射出端(PmoB)から出力された光によって、照明対象である前記2次元光振幅変調素子(DmjB)が照明される。
 ただし、照明に際しては、前記照明レンズ(Ej1B)と前記2次元光振幅変調素子(DmjB)との間に偏光ビームスプリッタ(MjB)を配置して、これにより光が前記2次元光振幅変調素子(DmjB)に向けて反射されるようにしてある。
 そして前記2次元光振幅変調素子(DmjB)は、映像信号に従って、画素毎に光の偏光方向を90度回転させる、あるいは回転させないように変調して反射することにより、回転させられた光のみが、前記偏光ビームスプリッタ(MjB)を透過して投影レンズ(Ej3B)に入射され、スクリーン(Tj)上に画像を表示する。
 なお、図11の光学系の場合、前記2次元光振幅変調素子(DmjB)として、一般にLCOS(TM)(シリコン液晶デバイス)が使われることが多い。
 このような液晶デバイスの場合、規定の偏光方向の光の成分しか有効に変調できないため、普通は、規定の偏光方向に平行な成分はそのまま透過させるが、規定の偏光方向に垂直な成分のみ偏光方向を90度回転させ、結果として全ての光を有効利用できるようにするための偏光整列機能素子(PcB)が、例えば前記後段フライアイレンズ(F2B)の後段に挿入される。
 また、前記2次元光振幅変調素子(DmjB)には略平行光が入射されるよう、例えばその直前に、フィールドレンズ(Ej2B)が挿入される。
 なお、2次元光振幅変調素子に関しては、図11に記載したような反射型のものの他に、透過型の液晶デバイス(LCD)も、それに適合する光学配置にして使用される(参考:特開平10-133303号公報など)。
 ところで、通常のプロジェクタでは、画像をカラー表示するために、例えば、前記光均一化手段の後段にカラーホイールなどの動的色フィルタを配置して、R,G,B(赤および緑、青)の色順次光束として前記2次元光振幅変調素子を照明し、時分割によってカラー表示を実現したり、あるいは、前記光均一化手段の後段にダイクロイックミラーやダイクロイックプリズムを配置してR,G,Bの3原色に色分解した光で各色独立に設けた2次元光振幅変調素子を照明し、ダイクロイックミラーやダイクロイックプリズムを配置してR,G,Bの3原色の変調光束の色合成を行うための光学系を構成したりするが、複雑になることを避けるため、図10、図11においては省略してある。
 しかしながら、前記した高輝度放電ランプは、投入電力から光パワーへの変換効率が低い、すなわち発熱損が大きい、あるいは寿命が短い、などの欠点を有していた。
 これらの欠点を克服した代替光源として、近年、LEDや半導体レーザ等の固体光源が注目されている。
 このうち、LEDについては、放電ランプと比較して発熱損が小さく、また長寿命であるが、放射される光に関しては、放電ランプと同様に指向性が無いため、前記したプロジェクタや露光装置等の、特定の方向の光のみが利用可能な用途においては、光の利用効率が低いという問題があった。
 一方、半導体レーザについては、その高い可干渉性に起因してスペックルが発生するという欠点があるが、例えば拡散板を用いるなどの種々の技術的改良により克服が可能であり、LEDと同様に、発熱損が小さく、長寿命である上に、指向性が高いため、前記したプロジェクタや露光装置等の、特定の方向の光のみが利用可能な用途においても、光の利用効率が高いという利点がある。
 また、高い指向性を活かして、光ファイバによる光伝送を高効率で行えるため、半導体レーザの設置場所と、プロジェクタなど、その光を利用する場所とを分離することが可能であり、装置設計の自由度を高めることができる。
 ただし、半導体レーザは、同じ電流を流す場合でも、環境温度変化または自己発熱による温度上昇によって、さらに累積通電時間の増加に伴う劣化によって発光波長および発光強度が変化する。
 プロジェクタの光源として、R,G,B3原色の一部または全部に半導体レーザを用いた場合、このような変化によって、画像全体の色や明るさが変化してしまうことになる。
 したがって高忠実なプロジェクタに半導体レーザを応用する場合は、色、すなわち白バランスの安定化および明るさの安定化を行う必要がある。
 R,G,B3原色の光源の光を混合して白色を作る場合、人間が手動で行うのであれば、普通は、色度計を用いて色度を測定しながら、正しい白色になるよう、3原色の混合比を調整すればよいが、プロジェクタにおいて、この調整動作を自動的に行うことを低コストで実現しようとすると困難を伴う。
 何となれば、色度が測定できたとしても、後述するように、測定結果から効率的にR,G,Bそれぞれの半導体レーザへの投入電力を自動調整するためには、フィードバック制御ループのなかで、連立方程式を解くなどの複雑な計算を実行し続けることが必要で、機器組込み型のマイクロプロセッサにとっては計算負荷が過大になるが、これまで、そのような計算を簡略に行う処理方法が知られていなかったからである。
 また、前記した色度計は高価であり、プロジェクタに容易には組み込めないため、機器組込み用として好適な、安価な光センサを使わざるを得ないが、光センサのみを安価なものを使っても、色度計と同等の機能を作り込もうとすると、高コストな精密分光フィルタが必要になるため、簡易仕様の安価なフィルタで代替できる構成を実現する必要がある。
 光源として半導体レーザあるいはLEDを応用する場合の、特に発光波長が変化してしまう現象に対し、従来、問題を回避するための技術が開発されて来た。
 例えば、特開2006-252777号公報には、分光感度特性の傾きが、光源の発光波長帯域において正の光センサと負の光センサとを用いて光量検出を行うことによって、発光波長が長くなる方向に変化しているか、それとも短くなる方向に変化しているか、あるいは変化が無いかの何れであるかを判別し、その結果に基づき、R,G,B各色光源の投入電力制御の基準レベルを増減する技術が記載されている。
 しかし、この技術の場合、発光波長の時間的変化の方向のみを検出して制御するものであるため、光源の点灯直後の、光源自身の発熱による温度変化に伴う、比較的速い色変化は補正できるかも知れないが、非常に緩慢な環境温度の変化や長期間に亘る光源の劣化に伴う色変化には対応できない問題がある。
 また、複数色の光源が同時に独立に色変化を起こす場合の、各色光源それぞれを、如何にして投入電力制御すればよいかについて未解決のままであった。
 さらに、例えば特開2007-156211号公報には、R,G,B各色の光源を色順次で発光させるものにおいて、R,G,B各色用光センサのそれぞれの分光感度特性を、CIE(国際照明委員会)の制定になるXYZ表色系における3個の等色関数それぞれと同じものとして、それぞれの光センサ出力について目標値からの誤差が小さくなるように制御することにより白バランスを補正する技術が記載されている。
 しかし、この技術では、R,G,B各色の光源を色順次で発光させるという元来の動作様式の特徴をうまく利用して、R,G,Bそれぞれの光が単独でR,G,B各色用光センサに入力されて自動的に生成される、合計9種類の信号を活用することが前提となっている。
 したがって、もし、R,G,B各色の光源を色順次で発光させるのではなく、R,G,B各色の光源を連続発光させる光源装置においてこの技術を利用しようとすると、R,G,B各色の帯域フィルタと3個の等色関数フィルタとの組み合わせに対応した9個の光センサを設置するなど、何らかの方法により、前記した合計9種類の信号を生成する必要があり、装置の構造が複雑化する欠点があった。
 また、例えば特開2008-134378号公報には、LED光源からの出力と色を検出する光検出センサの検出結果に基づきダイクロイックミラーの角度を変化させ、LEDからの発光のうちの不都合な波長成分を捨てて色を補正する技術が記載されているが、不都合な光を捨てるため低効率であり、色を検出する光検出センサの実現方法については未解決であった。
特開2006-252777号公報 特開2007-156211号公報 特開2008-134378号公報
 本発明が解決しようとする課題は、連立方程式を解くなどの複雑な計算を実行し続けることなく、出力光束の色相を、フィードバック制御によって目標とする色相に維持できるようにした光源装置およびプロジェクタを提供することにある。
 本発明における第1の発明の光源装置は、狭い波長帯域で発光する発光素子(Y1a,Y1b,…)および前記発光素子(Y1a,Y1b,…)を駆動する駆動回路(P1a,P1b,…)を具備するユニットを1個の要素光源(U1)として、該要素光源(U1,U2,…)の複数個と、
 前記駆動回路(P1a,P1b,…,P2a,P2b,…)を制御する制御回路(Mc)と、
を有し、前記発光素子(Y1a,Y1b,…,Y2a,Y2b,…)からの放射光を集めた出力光束(Fo,Fo1,Fo2,…)を外部に放射する光源装置であって、
 前記発光素子(Y1a,Y1b,…,Y2a,Y2b,…)は、発光波長が複数種類の異なる波長帯域に属するものを含んでおり、
 さらに前記光源装置は、前記出力光束(Fo,Fo1,Fo2,…)の総合的な光量を測定するために、出力光束(Fo,Fo1,Fo2,…)の光量に相関する量の光を受光する第1光量測定手段(A1)と第2光量測定手段(A2)と第3光量測定手段(A3)とを有し、
 前記第1光量測定手段(A1)、前記第2光量測定手段(A2)および前記第3光量測定手段(A3)のそれぞれの分光感度特性に関して、前記した波長帯域のそれぞれで定めた各基準波長における感度値が、XYZ表色系の3個の等色関数それぞれの同じ基準波長における感度値と一致し、かつ少なくとも一つの基準波長における波長の変化に対する感度の変化率が、XYZ表色系の3個の等色関数それぞれの同じ基準波長における波長の変化に対する感度の変化率と一致しており、
 前記制御回路(Mc)は、前記第1光量測定手段(A1)が生成する第1光量測定データ(Sh1)と、前記第2光量測定手段(A2)が生成する第2光量測定データ(Sh2)と、前記第3光量測定手段(A3)が生成する第3光量測定データ(Sh3)とを少なくとも間欠的に取得して、前記出力光束(Fo,Fo1,Fo2,…)の総合的な光の色に相関する色相指示値を生成し、前記色相指示値とその目標値の差異が小さくなるよう、前記した波長帯域のそれぞれについての光の強度に相関する発光強度指示値の変化量を決定して前記駆動回路(P1a,P1b,…,P2a,P2b,…)をフィードバック制御するために、前記色相指示値とその目標値の差異の出現態様に関する複数の出現態様を想定した上で、各出現態様毎に、それぞれに適する前記発光強度指示値の変化量の決定態様に関する情報を保持しており、
 前記制御回路(Mc)は、生成した前記色相指示値とその目標値の差異の態様に類似するものを、前記した複数の想定した差異の出現態様のうちから選択し、選択された差異の出現態様に属する前記した前記発光強度指示値の変化量の決定態様に関する情報に従って、前記発光強度指示値の変化量を決定することを特徴とするものである。
 本発明における第2の発明の光源装置は、前記制御回路(Mc)は、前記出力光束(Fo,Fo1,Fo2,…)の総合的な光の色に相関する色相指示値に加えて、前記出力光束(Fo,Fo1,Fo2,…)の総合的な光の明るさに相関する明度指示値を生成し、前記色相指示値とその目標値の差異に加えて前記明度指示値とその目標値の差異が小さくなる、前記した波長帯域のそれぞれについての前記発光強度指示値の変化量を決定して前記駆動回路(P1a,P1b,…,P2a,P2b,…)をフィードバック制御することを特徴とするものである。
 本発明における第3の発明の光源装置は、前記第1光量測定手段(A1)と前記第2光量測定手段(A2)と前記第3光量測定手段(A3)とは、それぞれ光センサ(C1,C2,C3)を有し、特性フィルタ(Et1,Et2,Et3)を前記光センサ(C1,C2,C3)に前置することを特徴とするものである。
 本発明における第4の発明の光源装置は、前記第1光量測定手段(A1)と前記第2光量測定手段(A2)と前記第3光量測定手段(A3)とは、同じ光量測定手段に対して特性変化を与えることにより、時間分割によって実現するものであり、前記第1光量測定手段(A1)と前記第2光量測定手段(A2)と前記第3光量測定手段(A3)は、光センサ(C)を共有しており、前記第1光量測定手段(A1)として働く場合、前記第2光量測定手段(A2)として働く場合、前記第3光量測定手段(A3)として働く場合のそれぞれの場合において、前記光センサ(C)に前置する特性フィルタ(Et1,Et2,Et3)を置き換えることを特徴とするものである。
 本発明における第5の発明の光源装置は、前記特性フィルタ(Et1,Et2,Et3)の少なくとも一つが複数のフィルタに分割されており、分割されたフィルタそれぞれに基づく信号を合成して前記した分光感度特性が実現されることを特徴とするものである。
 本発明における第6の発明の光源装置は、前記第1光量測定手段(A1)または前記第2光量測定手段(A2)または前記第3光量測定手段(A3)が有する前記光センサの少なくとも一つが撮像素子であることを特徴とするものである。
 本発明における第7の発明のプロジェクタは、第1から6の発明に記載の光源装置を利用して画像を投影表示することを特徴とするものである。
 連立方程式を解くなどの複雑な計算を実行し続けることなく、出力光束の色相を、フィードバック制御によって目標とする色相に維持できるようにした光源装置およびプロジェクタを提供することができる。
本発明の光源装置を簡略化して示すブロック図を表す。 本発明の光源装置を簡略化して示すブロック図を表す。 本発明の光源装置の一部を簡略化して示すブロック図を表す。 本発明の光源装置の技術に関連する概念の概略図を表す。 本発明の光源装置の技術に関連する概念の概略図を表す。 本発明の光源装置の技術に関連する概念の概略図を表す。 本発明の光源装置の一部を簡略化して示す模式図を表す。 本発明の光源装置の一部を簡略化して示す模式図を表す。 本発明の光源装置の実施例の一形態を簡略化して示す図を表す。 本発明のプロジェクタに係わる従来のプロジェクタの一種の一部の一形態を説明する図を表す。 本発明のプロジェクタに係わる従来のプロジェクタの一種の一部の一形態を説明する図を表す。
 先ず、本発明の光源装置を簡略化して示すブロック図である図1を用いて、本発明を実施するための形態について説明する。
 要素光源(U1)に設けられている、少なくとも1個の発光素子(Y1a,Y1b,…)は、駆動回路(P1a,P1b,…)によって駆動されて発光する。
 なお、前記発光素子(Y1a,Y1b,…)の個々については、ここでは、例えば半導体レーザや、半導体レーザの放射光を、高調波発生・光パラメトリック効果などのような非線形光学現象を利用して波長変換する光源などであり、そのような光源の複数個を直列接続、あるいは並列接続、さらには直並列接続するなどして、1個の前記駆動回路(P1a,P1b,…)によって駆動できるものとしている。
 また、前記駆動回路(P1a,P1b,…)については、ここでは、直流電源(図示を省略)によって給電される、例えば降圧チョッパや昇圧チョッパなど方式の回路によって構成された、DC/DCコンバータであり、前記発光素子(Y1a,Y1b,…)に規定の電力を投入できるものとしている。
 制御回路(Mc)は、駆動回路制御信号(J1a,J1b,…,J2a,J2b,…)を介して前記駆動回路(P1a,P1b,…,P2a,P2b,…)毎に独立に制御し、それぞれの前記発光素子(Y1a,Y1b,…,Y2a,Y2b,…)に規定の電力を投入することができるように構成されている。
 本発明の光源装置は、前記要素光源(U1)と同様の要素光源の複数個を有しており、それらに含まれる発光素子(Y1a,Y1b,…,Y2a,Y2b,…)には、発光波長が複数種類の異なる狭い波長帯域に属するものを含んでおり、含まれる波長帯域を、ここではR,G,Bの3原色としている。
 これら要素光源(U1,U2,…)のそれぞれの出力光束(Fo1,Fo2,…)から、それぞれ一部ずつを抽出して集めた測定用出力光束(Fa1,Fa2,Fa3)を生成し、第1光量測定手段(A1)、第2光量測定手段(A2)および第3光量測定手段(A3)に入力する。
 なお、前記出力光束(Fo1,Fo2,…)は、例えば前記したプロジェクタの場合、R,G,Bの各色毎に分けて各色独立に設けた2次元光振幅変調素子を照明し、ダイクロイックミラーやダイクロイックプリズムを配置してR,G,Bの3原色の変調光束の色合成を行う使い方や、前記出力光束(Fo1,Fo2,…)の全部を混合して、例えば白色光として、前記した高輝度放電ランプ等からなる光源(SjA)からの光の代替としての使い方をすることができる。
 また、本発明の光源装置を簡略化して示すブロック図である図2のように、前記発光素子(Y1a,Y1b,…,Y2a,Y2b,…)から発せられた光は、例えばレンズから成る集光光学系(Ec1,Ec2,…)によって光ファイバ(Ef1,Ef2,…)の入射端(Ei1,Ei2,…)に集光され、前記光ファイバ(Ef1,Ef2,…)のコアを伝播して出射端(Eo1,Eo2,…)から放射されるようにすることもできる。
 要素光源(U1,U2,…)の光ファイバ(Ef1,Ef2,…)の出射端(Eo1,Eo2,…)からの放射光は、総合されて1個の出力光束(Fo)として本発明の光源装置から出力される。
 なお、複数個の前記出射端(Eo1,Eo2,…)からの放射光の総合方法としては、最も簡単には、前記出射端(Eo1,Eo2,…)が同一平面上に位置するように揃えて、前記光ファイバ(Ef1,Ef2,…)の出射端部を束ねる事により実現することができる。
 前記光ファイバ(Ef1,Ef2,…)のそれぞれが導光する前記出力光束(Fo)の光量に相関する量を測定できるよう、前記出射端(Eo1,Eo2,…)からの放射光の一部を抽出して総合した測定用出力光束(Fa1,Fa2,Fa3)を生成し、図1のものと同様に、第1光量測定手段(A1)、第2光量測定手段(A2)および第3光量測定手段(A3)に入力する構成とすることができる。
 なお、ここでは、前記光ファイバ(Ef1,Ef2,…)の全ての出射端部を束ね、白色光の出力光束(Fo)を生成するものを記載したが、R,G,B各波長帯域毎に前記出射端(Eo1,Eo2,…)を分けて束ね、色別の出力光束を生成するようにすることもできる。
 CIEの制定になるXYZ表色系においては、3個の等色関数 xe(λ),ye(λ),ze(λ) を定めており、この関数の特性を、本発明の光源装置の技術に関連する概念の概略図である図4の(a)に示す。
(参考文献:「色の性質と技術」1986年10月10日初版第1刷,応用物理学会・光学懇話会編,朝倉書店発行)
(なお、一般文献では、等色関数は、x,y,z 各文字の上に横棒を付した記号が使用されるが、本明細書では都合により前記したように表記する。)
 波長 λ をパラメータとするスペクトル S(λ) で表される被測定光束の三刺激値 X,Y,Z は、前記した等色関数 xe(λ),ye(λ),ze(λ) を用いて、以下の式(式1)の積分計算で求められる。
  X = ∫S(λ)・xe(λ)・dλ
  Y = ∫S(λ)・ye(λ)・dλ
  Z = ∫S(λ)・ze(λ)・dλ
 ただし、積分は380nmから780nmの領域で行う。
 そして、人間が感じる光の色および光の明るさは、前記した三刺激値 X,Y,Z を 組合せた情報によって特定可能であるとされている。
 なお、光の明るさを除外した光の色については、以下の式(式2)で計算される色度座標 x,y
  x = X/[X+Y+Z]
  y = Y/[X+Y+Z]
によって特定可能であるとされている。
 前記した式1は、前記した等色関数 xe(λ),ye(λ),ze(λ) それぞれと等しい分光感度特性を有する光センサを用いて光量測定を行うを行うことによって、三刺激値 X,Y,Z が測定できることを教えている。
したがって前記第1光量測定手段(A1)および前記第2光量測定手段(A2)、前記第3光量測定手段(A3)それぞれの分光感度特性を、前記した等色関数 xe(λ),ye(λ),ze(λ) それぞれと同じにすることにより、前記出力光束(Fo,Fo1,Fo2,…)の前記した三刺激値 X,Y,Z を直接に測定することができるから、これらの値を所望の値に維持することによって前記出力光束(Fo,Fo1,Fo2,…)の光の色および光の明るさを安定化させることが、本発明の光源装置の設計指針となる。
 本発明の光源装置の一部を簡略化して示すブロック図である図3に示すように、前記第1光量測定手段(A1)では、前記測定用出力光束(Fa1)は、特性フィルタ(Et1)に入力され、それを透過した測定用出力光束(Ft1)は、光センサ(C1)で受光される。
 前記光センサ(C1)からの光検出信号(Sg1)は、光量測定回路(H1)によって増幅やAD変換等の必要な処理を行い、第1光量測定データ(Sh1)を生成する。
 当然ながら、前記第1光量測定手段(A1)の分光感度特性には、前記特性フィルタ(Et1)に起因するものに加え、前記光センサ(C1)自身の分光感度特性が反映される。
 前記第2光量測定手段(A2)および前記第3光量測定手段(A3)についても同様であり、前記特性フィルタ(Et1)に代えて、分光感度特性が異なる特性フィルタ(Et2,Et3)を備え、それより後段の光センサ(C2,C3)および光量測定回路(H2,H3)については、前記第1光量測定手段(A1)の前記光センサ(C1)および前記光量測定回路(H1)からなる回路部分と同じものを使って構成してもよく、これにより第2光量測定データ(Sh2)および第3光量測定データ(Sh3)を生成することができる。
 なお、前記光量測定回路(H1,H2,H3)は、マルチプレクサと共通の1個のAD変換器を備えた、1個の光量測定回路に統合することもできる。
 前記したように、前記第1光量測定手段(A1)、前記第2光量測定手段(A2)および前記第3光量測定手段(A3)のそれぞれの分光感度特性を、前記した等色関数 xe(λ),ye(λ),ze(λ) それぞれと同じにするためには、前記特性フィルタ(Et1,Et2,Et3)の分光透過率特性は、それに前記光センサ(C1,C2,C3)自身の分光感度特性が重畳した特性が、前記した等色関数 xe(λ),ye(λ),ze(λ) それぞれと同じになるようにすればよい。
 ただし、本光源装置においては、前記した波長帯域における狭い波長帯域で発光する発光素子(Y1a,Y1b,…,Y2a,Y2b,…)しか含まれていないため、前記第1光量測定手段(A1)、前記第2光量測定手段(A2)および前記第3光量測定手段(A3)のそれぞれの分光感度特性を、少なくとも前記した波長帯域のそれぞれの近傍において、前記した等色関数 xe(λ),ye(λ),ze(λ) それぞれと同じにすれば十分である。
 したがって、前記特性フィルタ(Et1,Et2,Et3)の分光透過率特性は、それに前記光センサ(C1,C2,C3)自身の分光感度特性が重畳した特性が、少なくとも前記した波長帯域のそれぞれの近傍において、前記した等色関数 xe(λ),ye(λ),ze(λ) それぞれと同じになるようにすればよい。
 さらに、分光感度特性が前記した波長帯域の近傍において等色関数と同じになることを実現する上で、さらに近似して、前記した波長帯域のそれぞれで基準波長を定め、その基準波長における感度値および基準波長における波長の変化に対する感度の変化率が、前記した等色関数についての基準波長における関数値および基準波長における波長の変化に対する関数の変化率と同じになるようにしても十分実用的である。
 したがって、前記特性フィルタ(Et1,Et2,Et3)の分光透過率特性は、それに前記光センサ(C1,C2,C3)自身の分光感度特性が重畳した特性において、基準波長における透過率値および基準波長における波長の変化に対する透過率の変化率が、前記した等色関数についての基準波長における関数値および基準波長における波長の変化に対する関数の変化率と同じになるようにすればよい。
 因みに、当然ながら、前記光量測定手段それぞれの分光感度特性に関する、前記した、各基準波長における感度値が、XYZ表色系の3個の等色関数それぞれの同じ基準波長における感度値と一致し、かつ少なくとも一つの基準波長における波長の変化に対する感度の変化率が、XYZ表色系の3個の等色関数それぞれの同じ基準波長における波長の変化に対する感度の変化率と一致している、とは、各基準波長における感度値および波長の変化に対する感度の変化率が、XYZ表色系の3個の等色関数それぞれの同じ基準波長における感度値および波長の変化に対する感度の変化率と一致している、最も限定的態様を含んでいる。
 本明細書においては、主としてこの最も限定的態様に関して説明する。
 この最も限定的態様から外れる態様、すなわち前記光量測定手段それぞれの分光感度特性が、ある基準波長においては、波長の変化に対する感度の変化率が、等色関数それぞれの波長の変化に対する感度の変化率と一致しないものに関しては、本明細書の末尾付近において補足する。
 前記した波長帯域、すなわち本光源装置のR,G,Bの前記発光素子(Y1a,Y1b,…,Y2a,Y2b,…)の発光波長の帯域が、例えば、640nm,530nm,465nmを基準波長として、その近傍の狭い範囲に限定される場合の設計について考えるならば、等色関数の基準波長における関数値および波長の変化に対する関数の変化率は、以下の式(式3)
  λro = 640
  λgo = 530
  λbo = 460
のように定義して、定められている等色関数 xe(λ),ye(λ),ze(λ) の数表を参照することにより、前記第1光量測定手段(A1)に対応する xe(λ) については、以下の式(式4)
  xe(λro) = 0.4479
  xe(λgo) = 0.1655
  xe(λbo) = 0.2511
  dxe/dλ(λ=λro) = -0.01742
  dxe/dλ(λ=λgo) = 0.01204
  dxe/dλ(λ=λbo) = -0.01114
また、前記第2光量測定手段(A2)に対応する ye(λ) については、以下の式(式5)
  ye(λro) = 0.1750
  ye(λgo) = 0.8620
  ye(λbo) = 0.0739
  dye/dλ(λ=λro) = -0.00736
  dye/dλ(λ=λgo) = 0.01058
  dye/dλ(λ=λbo) = 0.00342
また、前記第3光量測定手段(A3)に対応する ze(λ) については、以下の式(式6)
  ze(λro) = 0.0
  ze(λgo) = 0.0422
  ze(λbo) = 1.5281
  dze/dλ(λ=λro) = 0.0
  dze/dλ(λ=λgo) = -0.00248
  dze/dλ(λ=λbo) = -0.04810
を得る。
 したがって、前記特性フィルタ(Et1,Et2,Et3)は、それぞれ前記した式4,式5,式6に従う分光透過率を有するように製作すればよい。
 このフィルタは、前記した式3に定めた波長の近傍、すなわち、本光源装置に実装される前記発光素子(Y1a,Y1b,…,Y2a,Y2b,…)が有するバラツキ、および想定温度範囲における発光波長変動に起因する、波長変化の上限と下限で規定される帯域幅内での特性を確定すればよく、この帯域幅の外における分光透過率特性はどのようであっても構わない。
 したがって、前記した色度計等に使われるフィルタに比べて格段に設計・製作が容易であるため、低コストで実現できる利点がある。
 ここまで述べたように構成された前記第1光量測定手段(A1)および前記第2光量測定手段(A2)、前記第3光量測定手段(A3)から読み取った前記第1光量測定データ(Sh1),前記第2光量測定データ(Sh2),前記第3光量測定データ(Sh3)は、それぞれ三刺激値 X,Y,Z に対応する。
 したがって前記制御回路(Mc)は、得られた三刺激値 X,Y,Z の値を前記した式2に適用することにより、色度座標 x,y を計算することができる。
 図4の(b)は、色度座標と色の関係を表した色度図と呼ばれるものを概略図で示したもので、この表色系で表現可能な全ての色は、図の点線上もしくはその内部に位置し、赤色(R),緑色(G),青色(B),白色(W)の概略位置を記載してある。
 なお、レーザ光のような単色光は図の点線上に位置する。(ただし、RからBに至る直線部、いわゆる純紫軌跡を除く。)
 また、純白の色度座標は 1/3,1/3 である。
 図において、白色の位置を基準に見ると、概ねRは右側、Gは上側、Bは下側に位置するから、白色光の色度座標は、R成分を増すと x 値が増加、G成分を増すと y 値が増加、B成分を増すと y 値が減少することになる。
 したがって前記制御回路(Mc)は、前記第1光量測定手段(A1)、前記第2光量測定手段(A2)および前記第3光量測定手段(A3)から読み取った三刺激値 X,Y,Z を前記した式2に適用して色度座標を算出し、算出された色度座標のそれぞれの値 x,y と、それらそれぞれの目標値とを比較し、例えば、もし x が目標値より大きい場合は、前記駆動回路(P1a,P1b,…,P2a,P2b,…)のなかのRの波長帯域の発光素子を駆動するものの出力電力の総和を p %減少させ、かつGの波長帯域の発光素子を駆動するものの出力電力の総和、およびBの波長帯域の発光素子を駆動するものの出力電力の総和のそれぞれを [p/2] %ずつ増加させ、また、もし y が目標値より大きい場合は、Gの波長帯域の発光素子を駆動するものの出力電力の総和を q %減少させ、かつBの波長帯域の発光素子を駆動するものの出力電力の総和を q %増加させるよう、前記駆動回路制御信号(J1a,J1b,…,J2a,J2b,…)を介して制御する。
 そして適当な時間をおいて、再度、前記した光量測定データを取得する箇所にシーケンスを戻すようにすることにより、フィードバック制御ループが構築され、光の強度をあまり変化させずに、色度座標とその目標値との差異が小さくなるよう常に制御が行われることになり、光の色の安定化を図ることができる。
 前記したCIEの制定になるXYZ表色系は、前記した式1の Y の値が含まれる波長帯域の全てを総合した光の明るさを表すように構成されている。
 したがって光の色に相関する色相指示値に加えて、R,G,B各波長帯域の全てを総合した光の明るさをも安定化制御する場合には、前記制御回路(Mc)は、測定された Y の値を明度指示値として、これと目標値とを比較し、もし Y が目標値より大きい場合は、R,G,Bそれぞれの発光素子への投入電力のバランスを変えずに、総合的な投入電力を Q %減少させるよう、前記駆動回路制御信号(J1a,J1b,…,J2a,J2b,…)を介して制御することにより、光の色を変化させないで、光の明るさとその目標値との差異が小さくなる方向へフィードバック制御することにより、光の明るさの安定化を図ることができる。
 しかしながら、いま述べた光の色の安定化、および光の明るさの安定化のためのフィードバック制御の仕方に関しては、値 x,y および Y を、統一的にそれぞれの目標値に向かわせるための、R,G,Bそれぞれの波長帯域に対応する前記駆動回路の出力電力の変化量を定量的に決める指針が示されていなかったため、試行錯誤的なフィードバック制御にならざるを得ず、効率的なものではなかった。
 以下においては、この点が改善されたフィードバック制御を実現する指針を示した上で、その指針に従う構成の問題点と、その問題を回避した本発明の光源装置の構成について説明する。
 改善されたフィードバック制御を実現するために、前記制御回路(Mc)は、R,G,B各波長帯域のそれぞれの光の強度に相関する前記発光強度指示値を微小変化させたときに、前記色相指示値たる色度座標に生じる変化量を決定する。
 ここで、光の強度とは、前記発光素子(Y1a,Y1b,…,Y2a,Y2b,…)のなかの一つの波長帯域に属するもの全ての光パワーに相関するもので、人間の視感度とは無関係である。
 一方、光の明るさは、人間が感じる明るさであるから、同じ光パワー(密度)であっても、波長が変われば、人間の視感度の影響をうけて大きさが変化する。
 そして、決定した前記係数を使用して、R,G,B各波長帯域のそれぞれの前記発光強度指示値を微小変化させるための変化量を決定し、これに基づいて前記制御回路(Mc)は、前記駆動回路制御信号(J1a,J1b,…,J2a,J2b,…)を介して前記駆動回路(P1a,P1b,…,P2a,P2b,…)の出力電力を設定することにより、色度座標 x,y および光の明るさ Y がその目標値に維持されるようフィードバック制御を行うことができる。
 ところで、ここでは、一つの波長帯域の発光素子を駆動する駆動回路の出力電力の総和とその波長帯域の成分の光の強さとは、概ね比例的に相関する性質(本明細書では電力光量比例則と呼ぶ)、詳しく言えば、前記駆動回路(P1a,P1b,…,P2a,P2b,…)のなかのRの波長帯域の発光素子を駆動するものの出力電力の総和 Pr 、Gの波長帯域の発光素子を駆動するものの出力電力の総和 Pg 、およびBの波長帯域の発光素子を駆動するものの出力電力の総和 Pb のそれぞれが、R,G,B各波長帯域の成分の光の強さに対し、概ね比例的に相関する性質を利用しているが、その前提として、前記発光素子(Y1a,Y1b,…,Y2a,Y2b,…)のそれぞれについて、発光色の異なる発光素子の間では発光効率は異なっても構わないが、発光色の同じ発光素子は、全て同じ発光効率(より実際的に言えば同一メーカの同種製品)であることを仮定している。
 したがって、もし、同じ色であっても発光効率の異なる複数種類が混在する等により、前記した前提が成り立たない場合は、例えば、ある発光色のもので、発光効率が高い、種類Aの発光素子と、それより発光効率が10%低い、種類Bの発光素子とがあったとして、前記駆動回路制御信号(J1a,J1b,…,J2a,J2b,…)を介して前記制御回路(Mc)からの電力設定指令を受信したとき、種類Bの発光素子を駆動する駆動回路は、内部的には、指令された設定電力に対し10%増しの電力を設定する、などとする構成上の工夫により、容易に解決することができる。
 したがって、前記した電力光量比例則を前提として、R,G,B各波長帯域のそれぞれの前記発光強度指示値は、前記駆動回路(P1a,P1b,…,P2a,P2b,…)のなかのRの波長帯域の発光素子を駆動するものの出力電力の総和 Pr 、Gの波長帯域の発光素子を駆動するものの出力電力の総和 Pg 、およびBの波長帯域の発光素子を駆動するものの出力電力の総和 Pb のそれぞれと、独立に比例関係にあると考えてよい。
例えば、R,G,B各波長帯域のそれぞれの前記発光強度指示値を全て1%増す場合、前記した出力電力の総和のそれぞれが、200W,300W,100Wであったならば、それぞれ202W,303W,101Wとすればよい。
 なお、前記した電力光量比例則について補足すると、電力光量比例則における比例の精度、すなわち直線性があまり良くなくても、問題にならない。
 その理由は、電力の増加と光量の増加とが相関している限り、それが直線的な関係になくても、少しずつ電力を変化させることにより、フィードバック制御により、徐々に目標値に向けて系の状態を変化させて行けるからである。
 また、前記した一つの波長帯域の発光素子を駆動する駆動回路の出力電力の総和を変化させるとき、対象駆動回路が複数存在する場合は、全ての駆動回路を同じ割合で変化させたり、異なる割合で変化させたり、特定のもののみを変化させたりなど、様々な形態が考えられるが、何れであっても構わない。
 駆動回路に対する電力設定は、例えば設定データ長が8ビットであれば256階調であるなど、その細やかさが有限である。
 したがって、電力を最小単位ずつ増して行く場合、全ての駆動回路の電力設定を一斉に1LSBだけ増すのではなく、例えば、1番目の駆動回路の電力設定を1LSBだけ増し、次は2番目の駆動回路の電力設定を1LSBだけ増し、…、というように、駆動回路を分けて増し、最後の駆動回路の電力設定を1LSBだけ増したら、次はまた1番目の駆動回路の電力設定を1LSBだけ増し、…、という仕方で増すようにすれば、電力設定の階調数を、駆動回路の個数倍に増すことができる利点がある。
 以下において、前記した改善されたフィードバック制御を実現する指針について定量的に説明する。
 ここで、被測定光束 S(λ) が、R,G,Bそれぞれ単色の3原色から成っていると近似すると、デルタ関数 δ(λ) を用いて以下の式(式7)のように表せる。
  S(λ) =  Sr・δ(λ-λro )
        + Sg・δ(λ-λgo )
        + Sb・δ(λ-λbo )
 ここで、R,G,Bそれぞれの基準波長を λro,λgo,λbo とし、また、R,G,B各波長帯域のそれぞれの前記発光強度指示値を Sr,Sg,Sb とした。
 前記した式7を、前記した式1の積分に適用することにより、三刺激値の X に関する以下の式(式8)
  X = Sr・xe(λro) + Sg・xe(λgo) + Sb・xe(λbo)
    = Hxr・Sr + Hxg・Sg + Hxb・Sb
  ただし、
  Hxr =xe(λro)
  Hxg =xe(λgo)
  Hxb =xe(λbo)
および Y に関する以下の式(式9)
  Y = Sr・ye(λro) + Sg・ye(λgo) + Sb・ye(λbo)
    = Hyr・Sr + Hyg・Sg + Hyb・Sb
  ただし、
  Hyr =ye(λro)
  Hyg =ye(λgo)
  Hyb =ye(λbo)
さらに Z に関する以下の式(式10)
  Z = Sr・ze(λro) + Sg・ze(λgo) + Sb・ze(λbo)
    = Hzr・Sr + Hzg・Sg + Hzb・Sb
  ただし、
  Hzr =ze(λro)
  Hzg =ze(λgo)
  Hzb =ze(λbo)
を得る。
 前記した電力光量比例則に関して述べた前記駆動回路(P1a,P1b,…,P2a,P2b,…)のなかのRの波長帯域の発光素子を駆動するものの出力電力の総和 Pr 、Gの波長帯域の発光素子を駆動するものの出力電力の総和 Pg 、およびBの波長帯域の発光素子を駆動するものの出力電力の総和 Pb のそれぞれは、R,G,B各波長帯域のそれぞれの前記発光強度指示値たる Sr,Sg,Sb に対し、それぞれ独立な比例係数 kr,kg,kb で結んだ以下の式(式11)
  Pr = kr・Sr
  Pg = kg・Sg
  Pb = kb・Sb
のように表すことができる。
 よって、前記した式8,式9,式10のそれぞれの左辺に対し、三刺激値 X,Y,Z の測定値を適用した、以下の方程式(式12)
  X = Hxr・Sr + Hxg・Sg + Hxb・Sb
  Y = Hyr・Sr + Hyg・Sg + Hyb・Sb
  Z = Hzr・Sr + Hzg・Sg + Hzb・Sb
を解いて Sr,Sg,Sb を求めれば、これらと前記した Pr,Pg,Pb との比から、前記した式11の比例係数 kr,kg,kb を決定することができる。
 なお、前記式12は、初等的な3元連立1次方程式であるから、原理的には容易に解くことができる。
 ただし、そのような計算をフィードバック制御ループのなかで実行し続けることは、制御回路(Mc)のオーバーヘッドを招くが、この問題の回避方法については後述する。
 最初、比例係数 kr,kg,kb には、未確定ではあるが適当に定めた安全な初期値が設定されているとして、未確定な kr,kg,kb に基づいて、発光強度指示値 Sr,Sg,Sb に対する適当に定めた安全な初期目標値 Srp,Sgp,Sbp を生ずるであろう Pr,Pg,Pb を、前記した式11によって仮決定する。
 その Pr,Pg,Pb の値にて実際に駆動したときの三刺激値 X,Y,Z を測定し、その測定値に基づいて前記した方程式12を解き、得られた Sr,Sg,Sb と、その元となった目標値 Srp,Sgp,Sbp との比を用いて、比例係数 kr,kg,kb を、以下の式(式13)
  kr ← kr・Srp/Sr
  kg ← kg・Sgp/Sg
  kb ← kb・Sbp/Sb
に従って補正すればよい。
(左向きの矢印 ← は、この記号の右辺の計算結果を左辺の変数に代入することを意味する。)
 この補正は、フィードバック制御ループにおける繰り返しのなかで、後述するように、Sr,Sg,Sb の微小変化量 ΔSr,ΔSg,ΔSb を決め、以下の式(式14)
  Srp = Sr + ΔSr
  Sgp = Sg + ΔSg
  Sbp = Sb + ΔSb
に従って目標値 Srp,Sgp,Sbp を更新し、前記した式11に従って電力を再設定して、三刺激値 X,Y,Z を測定する度に行うことにすればよい。
 このようにすることにより、前記したように、前記比例係数 kr,kg,kb が真の比例定数ではなく、例えば飽和傾向を示すような、非直線的なものであっても、前記した式11で規定される、単なる比として補正が繰り返し行われるため、R,G,B各駆動回路の電力 Pr,Pg,Pb と発光強度指示値 Sr,Sg,Sb との正しい対応が維持される。
 ただし、先述のように、前記した式12を解く計算をフィードバック制御ループのなかで実行し続けることが、制御回路(Mc)のオーバーヘッドを招く問題がある。
 しかし、本光源装置の点灯動作開始直後や、調光操作によって意図的に光源装置の明るさを変更した直後の、発光素子の温度が定常状態に達するまでの過渡期間は、各駆動回路から一定の電力を供給していても、発光素子の明るさが変化し、したがって比例係数 kr,kg,kb の値は不安定であるが、この期間は、光源装置の色や明るさを制御する必要が無いため、比例係数 kr,kg,kb や発光強度指示値 Sr,Sg,Sb の値を確定する必要が、そもそも無い。
 したがって、このような不安定な期間を過ぎて、各発光素子が安定動作に入った後に、前記光量測定データの取得と前記した計算によって、比例係数 kr,kg,kb を確定させれば、その値は、それ以降はほとんど変化しないため、極めて低頻度でその値の更新を行えばよく、前記した式11から直ちに導かれる以下の式(式15)
  Sr = Pr/kr
  Sg = Pg/kg
  Sb = Pb/kb
を用いて、その時点のR,G,B各駆動回路の電力 Pr,Pg,Pb から、その時点の発光強度指示値 Sr,Sg,Sb の値の決定を行うようにすることにより、この問題を回避することができる。
 因みに、電力 Pr,Pg,Pb の値は、本光源装置の制御回路(Mc)自身が内部に保持している情報であり、取得のために測定などを行う必要の無いものである。
 他方、この問題の回避のために、R,G,B各波長帯域の発光強度指示値 Sr,Sg,Sb を測定によって取得するための光量測定手段を、前記第1、第2、第3光量測定手段とは別に備えるようにすることもできるが、これを大したコスト増無しに実現する方策については後述する。
 前記したように、光の色に相関する色相指示値として色度座標 x,y に注目し、また光の明るさに相関する明度指示値として Y に注目し、それらを安定化制御することについて述べた。
 しかし x,y,Y の系と X,Y,Z の系とは、前記した式2と以下の式(式16)
  X = Y・x/y
  Z = Y・(1 - x - y)/y
によって互いに変換が可能であるため、光の色に相関する色相指示値として、色度座標または三刺激値の何れをも採用することができる。
 先ず、三刺激値 X,Y,Z が、その目標値 Xp,Yp,Zp に維持されるように制御する場合について説明する。
 前記した式8,式9,式10より、発光強度指示値 Sr,Sg,Sb を微小変化させたときの三刺激値 X,Y,Z の変化 ΔX,ΔY,ΔZ は、以下の式(式17)
  ΔX = Hxr・ΔSr + Hxg・ΔSg + Hxb・ΔSb
  ΔY = Hyr・ΔSr + Hyg・ΔSg + Hyb・ΔSb
  ΔZ = Hzr・ΔSr + Hzg・ΔSg + Hzb・ΔSb
のように表すことができる。
 フィードバック制御において、現在の三刺激値 X,Y,Z の値に対し、これらをその目標値 Xp,Yp,Zp に近づけるために、発光強度指示値 Sr,Sg,Sb に微小変化 ΔSr,ΔSg,ΔSb を与えると考えると、ダンピング係数 D = 0~1 として、以下の式(式18)
  ΔX = D・[Xp -X]
  ΔY = D・[Yp -Y]
  ΔZ = D・[Zp -Z]
によって Δx,Δy,ΔY の値を決めれば、前記した式17は ΔSr,ΔSg,ΔSb に関する初等的な3元連立1次方程式と見ることができ、全ての係数が決まっているため、原理的には容易に解くことができて、前記発光強度指示値の微小変化量 ΔSr,ΔSg,ΔSb の値を求めることができる。
 前記した式14に従って、求めた ΔSr,ΔSg,ΔSb を元の Sr,Sg,Sb に加えて発光強度指示値の新しい目標値 Srp,Sgp,Sbp を算出し、前記した式13を介して、前記駆動回路(P1a,P1b,…,P2a,P2b,…)の電力 Pr,Pg,Pb を更新することができる。
 なお、前記したダンピング係数は、これを小さくするほど ΔSr,ΔSg,ΔSb が全体的に小さく抑えられ、フィードバック制御の変化速度を低くして、行き過ぎや発振などの不安定現象を防止する効果がある。
 ただし、あまり小さくすると補正の完了までに過剰な時間が掛かるなどの不都合が生ずる可能性があるため、実験的に好適な値を決めるとよい。
 ところで、前記発光強度指示値 Sr,Sg,Sb のうちの一つ、例えば Sr を、何らかの事情により別途決める場合(例えば定格に達した場合など)は、三刺激値の目標値 Xp,Yp,Zp を満足させることはできず、光の明るさを維持することを断念して、光の色を、目標とするものに維持するよう、制御の様式を変更する必要がある。
 上において述べた三刺激値 X,Y,Z が、その目標値 Xp,Yp,Zp に維持されるように制御する方法の場合、光の色の目標を維持したまま、例えば Sr が所定の値となるよう、光の明るさを小さくしたい場合は、三刺激値の目標値 Xp,Yp,Zp それぞれを、適当に決めた、ある同じ比率で縮小することを試行し、フィードバックループを実際に回してみて、Sr が所定の値になるような適当な比率が見つかるまで、試行錯誤する必要がある。
 これに対し、光の色に相関する色相指示値たる色度座標 x,y と、光の明るさに相関する明度指示値たる Y とを制御対象とし、x,y,Y をその目標値 xp,yp,Yp に維持する制御方式を実現できれば、例えば Sr の値を不変にしたまま、色度座標 x,y のみを目標値に維持するフィードバック制御を行うことが可能となる。
 以下において、制御対象を x,y,Y とする場合について説明する。
 三刺激値 X,Y,Z の和、すなわち次式(式19)
  T = X+Y+Z
は、前記した式8,式9,式10を用いて以下の式(式20)
  T =  [ Hxr + Hyr + Hzr ]・Sr
     + [ Hxg + Hyg + Hzg ]・Sg
     + [ Hxb + Hyb + Hzb ]・Sb
    = Ir・Sr +Ig・Sg +Ib・Sb
  ただし、
  Ir =Hxr + Hyr + Hzr
  Ig =Hxg + Hyg + Hzg
  Ib =Hxb + Hyb + Hzb
のように表し、前記した式2の色度座標 x,y は、前記した式8,式9,式20を用いた以下の式(式21)
  x = X/T
  y = Y/T
のように表現することができる。
 一般に、関数 f = f(u,v,w) の変数 u,v,w が微小変化したときの関数の変化は、f の偏微分係数 δf/δu,δf/δv,δf/δw を用いて、以下の式(式22)のように近似できる。
  Δf = (δf/δu)・Δu + (δf/δv)・Δv + (δf/δw)・Δw
 色度座標 x,y および光の明るさ Y が、前記発光強度指示値 Sr,Sg,Sb を変数とする関数であると見て、式21に式22を適用し、以下の式(式23)のように偏微分係数の値
  Jxr = δx/δSr = [ δX/δSr・T - X・δT/δSr ]/[T・T]
     = [ Hxr・T - Ir・X ]/[T・T]
     = [ Hxr - Ir・x ]/T
  Jxg = δx/δSg = [ Hxg - Ig・x ]/T
  Jxb = δx/δSb = [ Hxb - Ib・x ]/T
  Jyr = δy/δSr = [ Hyr - Ir・y ]/T
  Jyg = δy/δSg = [ Hyg - Ig・y ]/T
  Jyb = δy/δSb = [ Hyb - Ib・y ]/T
を具体的に決めれば、Sr,Sg,Sb を微小変化させたときの x,y,Y の変化量は、以下の式(式24)
  Δx = Jxr・ΔSr +Jxg・ΔSg +Jxb・ΔSb
  Δy = Jyr・ΔSr +Jyg・ΔSg +Jyb・ΔSb
  ΔY = Hyr・ΔSr +Hyg・ΔSg +Hyb・ΔSb
のように表すことができる。
 ただし、式24の3番目の( ΔY に関する)式は、式9から得られる次の関係に基づく。
  δY/δSr = Hyr
  δY/δSg = Hyg
  δY/δSb = Hyb
 前記した式18に関して述べたものと同様に、フィードバック制御において、現在の x,y,Y の値に対し、これらをその目標値 xp,yp,Yp に近づけるために、Sr,Sg,Sb を微小変化させると考えると、ダンピング係数 D = 0~1 として、以下の式(式25)
  Δx = D・[xp -x]
  Δy = D・[yp -y]
  ΔY = D・[Yp -Y]
によって Δx,Δy,ΔY の値を決めれば、前記した式24は、ΔSr,ΔSg,ΔSb に関する初等的な3元連立1次方程式と見ることができ、全ての係数が決まっているため、原理的には容易に解くことができて、前記発光強度指示値の微小変化量 ΔSr,ΔSg,ΔSb の値を求めることができる。
 因みに、目標とする色度座標は、必ずしも純白に対応するものが良いとは限らない。理由は、例えば、本光源装置をプロジェクタに応用する場合、プロジェクタ本体の光学系の光の利用効率が、R,G,B各色で同じであるとは限らないからである。
 例えば、あるプロジェクタ本体の光学系ではB色の利用効率が低いとすると、目標とする色度座標は、B色成分が多めの、青色がかったものとするとよいであろう。
 したがって、目標とする色度座標は、本光源装置の出力光束(Fo,Fo1,Fo2,…)の色ではなく、本光源装置を利用する装置の出力に合わせて決めればよい。
 なお、何らかの事情(例えば定格に達した場合など)により、前記発光強度指示値 Sr,Sg,Sb のうちの一つを別途決める場合、例えば Sg を、したがって ΔSg を別途決める場合は、これを前記した式24の方程式の未知数から定数に変更して、以下の式(式26)
  Δx-Jxg・ΔSg = Jxr・ΔSr +Jxb・ΔSb
  Δy-Jyg・ΔSg = Jyr・ΔSr +Jyb・ΔSb
のように組み換えた方程式を適用すればよく、これは初等的な2元連立1次方程式であるから、原理的には容易に解くことができて、ΔSr まはた ΔSb を求めることができる。
 Sr,Sb を別途決める場合についても同様である。
 ただし、このようにした場合は、光の明るさ Y を目標値に維持することはできなくなるが、色度座標 x,y を目標値に維持するフィードバック制御は実行することができる。
 ここまでは、線形方程式である、前記した式24を解くことによって、前記発光強度指示値の微小変化量 ΔSr,ΔSg,ΔSb の値を求める事を前提として計算方法を説明してきた。
 しかし、本発明の光源装置のような機器組込み型のマイクロプロセッサの場合、数値計算、特に浮動小数点演算の処理能力に関して、パーソナルコンピュータ用のもののような高い性能を有するものを使えないことが多い。
 そのため、本発明の光源装置の前記制御回路(Mc)におけるフィードバック制御ループのなかで、前記したような連立方程式を繰り返し解く処理は、マイクロプロセッサのオーバーヘッドを招き易いという問題がある。
 そして、これを回避するために、高性能なマイクロプロセッサを使用すれば、光源装置の高コスト化を招くという問題がある。
 そこで本発明においては、測定された色相指示値たる色度座標 x,y が有するその目標値 xp,yp に対する差異 δx,δy について、その出現態様に関する複数の態様を予め想定して、各出現態様毎に、それぞれに適する前記発光強度指示値の変化量の決定態様、すなわち連立方程式の解である、発光強度指示値の変化量 ΔSr,ΔSg,ΔSb の値の組合せに関する情報を、予めの計算によって求め、準備しておくことを前提とする。
 その上で実際のフィードバック制御ループのなかでは、前記した方法で取得した前記発光強度指示値 Sr,Sg,Sb と、測定および前記した計算によって現在の色相指示値たる色度座標 x,y および光の明るさ Y とを取得し、前記色相指示値とその目標値の差異の態様、すなわち現在の色度座標差異ベクトル δx,δy に類似するものを、予め想定してあった複数の色度座標差異ベクトル(後述する代表点)から選択する。
 そして選択された色度座標差異ベクトルに対応する、前記した予めの計算によって求めてあった前記発光強度指示値の変化量の組合せ情報を取出して、適合する発光強度指示値の変化量 ΔSr,ΔSg,ΔSb の値を得るようにすることで、前記した問題を回避する。
 より具体的に言うと、ここでは、前記した差異についての出現態様に関する複数の態様として、色度座標差異ベクトル δx,δy の複数のパターンに着目することとする。
 具体的には、色度座標差異ベクトル δx,δy の偏角が出現し得る全範囲0~2π(単位はラジアン:πは円周率)を複数個の小範囲に分割した上で、それぞれの小範囲毎に規格化された絶対値(半径)を有する代表点を設定することとし、各代表点毎の方程式の解、すなわち適合する発光強度指示値の変化量 ΔSr,ΔSg,ΔSb の値の組合せを計算しておき、記憶しておくこととする。
 そのため、T の値に依存せず、x,y にのみ依存する以下の式(式27)
  Nxr = Jxr・T = [ Hxr - Ir・x ]
  Nxg = Jxg・T = [ Hxg - Ig・x ]
  Nxb = Jxb・T = [ Hxb - Ib・x ]
  Nyr = Jyr・T = [ Hyr - Ir・y ]
  Nyg = Jyg・T = [ Hyg - Ig・y ]
  Nyb = Jyb・T = [ Hyb - Ib・y ]
の量を定義して前記した式23の Jxr,Jxg,Jxb,Jyr,Jyg,Jyb の代わりに置き換えることにする。
 先に ΔSg を別途決めるとして掲げた式26に対し、ここでは一旦  ΔSg = 0  とおいた上で式27を適用すれば、以下の式(式28)
  Δx・T = Nxr・ΔSr +Nxb・ΔSb
  Δy・T = Nyr・ΔSr +Nyb・ΔSb
のように簡略化される。
 これに対し、前記した式25に記載の、現在の x,y に対する目標値 xp,yp との差異に基づく Δx,Δy の値を適用すれば、結局、方程式は以下の式(式29)
  D・[xp -x]・T = Nxr・ΔSr +Nxb・ΔSb
  D・[yp -y]・T = Nyr・ΔSr +Nyb・ΔSb
になるから、これを解くことにより、以下の式(式30)
  ΔSr = D・T・[  Nyb・[xp -x]-Nxb・[yp -y] ] /n
  ΔSb = D・T・[ -Nyr・[xp -x]+Nxr・[yp -y] ] /n
  ただし、
  n = Nxr・Nyb - Nxb・Nyr
の解を得る。
 なお、前記した式27の Nxr,Nxg,Nxb,Nyr,Nyg,Nyb の値を実際に求める場合は、その時点での x,y の値を用いる代わりに、目標値 xp,yp の値を用いても構わない。
 前記した式30の解の意味するところは、Sg を変化させずに、すなわち ΔSg = 0 とおいて、Sr,Sb のみを加減して、色度座標をその目標値 xp,yp に近づけるためには、Sr,Sb に与える変化量 ΔSr,ΔSb を、この解に従って決め、前記した式14に対応する、以下の式(式31)
  Srp = Sr + ΔSr
  Sgp = Sg      (変化無し)
  Sbp = Sb + ΔSb
によって Sr,Sg,Sb の目標値 Srp,Sgp,Sbp を決めればよい、ということである。
 ただし、ΔSg = 0 の下で、このように Sr,Sb を決定すると、 Y の値は、以下の式(式32)
  ΔY = Hyr・ΔSr + Hyb・ΔSb
で表される ΔY だけ増加して Y + ΔY となってしまうから、この変化が打ち消されるよう、Sr,Sg,Sb それぞれに共通の比率 ρ を乗じることにより、Y の値が目標値 Yp に維持されるようにすることができる。
 前記比率 ρ の具体的な値は、以下の式(式33)
  ρ = Yp /[Y + ΔY]
によって求めればよいが、これについてもダンピング係数 D' = 0~1 を適用した以下の式(式34)
  ρ' = 1 + [ρ-1]・D'
を ρ の代わりに乗じて、以下の式(式35)
  Srp = [Sr + ΔSr]・ρ'
  Sgp = Sg・ρ'
  Sbp = [Sb + ΔSb]・ρ'
によって Sr,Sg,Sb を変化させることで、急激な変化を防止することができる。
 なお、 Y とその目標値 Yp との差異、すなわち以下の式(式36)
  δY = Y - Yp
の δY によって前記した式33の Y を書き換えると、δY が Yp に比べて微小として近似すると、
  ρ = 1/ [1 + δY/Yp + ΔY/Yp]
    = 1 - δY/Yp - ΔY/Yp
となるから、前記した式34は、以下の式(式37)
  ρ' = 1 - D'・[δY + ΔY] /Yp
のように近似できる。
 なお、δY が微小でない場合でも、この計算は、フィードバック制御ループのなかで繰返し行われるため、Y は Yp に漸近して行って、やがて微小になるため問題は無い。
 前記した予めの計算は、解くべき方程式の解である、前記した式30に対して行なえばよいが、色度座標の目標値からの差異である以下の式(式38)
  δx = x - xp
  δy = y - yp
によって前記した式30を書き改めた以下の式(式39)
  ΔSr = D・T・[ -Nyb・δx + Nxb・δy ] /n
  ΔSb = D・T・[  Nyr・δx - Nxr・δy ] /n
について、例えば D,T を1などの好都合な値に規格化した上で、色度座標差異ベクトル δx,δy の大きさ(長さ)が規格化された、δx と δy の種々の組合せ、すなわち色度座標差異ベクトルの偏角の種々の場合分けに対して、予め規格化解ベクトル ΔSrn,ΔSbn を、前記した式39の規格化版である以下の式(式40)
  ΔSrn = [ -Nyb・δx + Nxb・δy ] /n
  ΔSbn = [   Nyr・δx - Nxr・δy ] /n
によって計算しておけばよい。
 そして、実際のフィードバック制御においては、近い偏角に対する規格化解ベクトル ΔSrn,ΔSbn を選択した上で、実際の色度座標差異ベクトル δx,δy の大きさ、および実際の D,T の大きさに基づいて、選択した規格化解ベクトル ΔSrn,ΔSbn に対して比例計算を施すことにより、実際の大きさを有する ΔSr,ΔSb を求めることができる。
 このことを、本発明の光源装置の技術に関連する概念の概略図である図5を用いて、具体的に説明する。
 本図は、色度図上にとった色度の目標値の座標 xp,yp を局所原点(Op)とする δx,δy 座標系であり、x,y 座標系とは前記した式38で関係づけられている。
 色度座標の目標値からの現時点の差異 δx,δy に対応する座標点(P)が属する領域を、例えば8種類に分けて、ここでは反時計方向の局所原点(Op)回りの0,π/4,π/2,3π/4,π,5π/4,3π/2,7π/4の偏角を境界とした偏角領域(R0,R1,…,R7)に分割する。
 さらに図のように、各偏角領域毎の角度中心、すなわちπ/8,3π/8,5π/8,7π/8,9π/8,11π/8,13π/8,15π/8の偏角 θ を有し、局所原点(Op)を中心とする、規格化半径 rn を有する規格化円(Cp)上の、代表点(p0,p1,…,p7)を設定する。
 その上で、前記代表点(p0,p1,…,p7)全ての δx,δy に対して前記した式40の解の値 ΔSrn,ΔSbn を予め計算し、前記制御回路(Mc)のマイクロプロセッサに記憶しておけばよい。
 ただし、前記した規格化半径 rn は、適当な大きさをとればよいが、例えば純白付近における、いわゆる MacAdam の等色楕円の短軸長さ(約0.001)や長軸長さ(約0.002)を参考にして、例えば0.005などとすればよい。
(参考文献:David L.MacAdam, JOSA Vol.32 May.1942 Fig.35)
 具体的には、次のような計算手順となる。
 先に、色度座標の目標値 xp,yp を決定した上で、それらを前記した式27の x,y に適用することにより、目標色度座標近傍における係数 Nxr,Nxg,Nxb,Nyr,Nyg,Nyb の値を決めておく。
 整数 i が、i = 0,1,…,7 なる値をとるとして、前記代表点(p0,p1,…,p7)の i 番目のものの偏角 θi は、以下の式(式41)
  θi = π・[ 2・i+1 ]/8
によって計算でき、また、i = 0,1,…,7 それぞれに対応する δx,δy が、以下の式(式42)
  δx = rn・cosθi
  δy = rn・sinθi
によって計算できるから、各 i 毎に前記した式40を計算することにより、規格化解 ΔSrn,ΔSbn の配列
   ΔSrn[0],ΔSrn[1],…,ΔSrn[7] および
   ΔSbn[0],ΔSbn[1],…,ΔSbn[7] 
が生成される。
 ここで、角括弧 [ ] の中は、配列のインデックスを表す。
 したがって、前記した規格化解 ΔSrn,ΔSbn の配列の各要素は、インデックス i を用いて一般化して、ΔSrn[i],ΔSbn[i] と表現することができる。
 なお、いま述べた予めの計算は、例えばパーソナルコンピュータによって行い、計算結果データである、前記した規格化解 ΔSrn,ΔSbn の配列を、本発明の光源装置の前記制御回路(Mc)に転送するようにすればよい。
 次に、本光源装置におけるフィードバック制御ループのなかで前記制御回路(Mc)が行う、ΔSr,ΔSg,ΔSb を決定するための計算手順について説明する。
 測定により、現在の色度座標 x,y が決定されれば、前記した式38に従って色度座標差異ベクトル δx,δy が決まる。
 この色度座標差異ベクトルが、図5の δx,δy 座標平面における偏角に着目したときに、前記代表点(p0,p1,…,p7)の何れに対応するか、言い換えれば、何れと最も類似しているかを決める必要があるが、それは、以下のような演算によって決定可能である。
 インデックス計算用の整数の補助変数 j に対する、以下の式(式43)
  j ← 0
  δy > 0 ならば j ← j + 4
  δx > 0 ならば j ← j + 2
  abs(δy) > abs(δx) ならば j ← j + 1
(ただし abs( ) は絶対値を返す関数)で表される4個の演算を施した結果の j の値は、0 ~ 7 の値となるが、例えば、前記したインデックス i の 0 に対応する j は 6 であるから、いまこれを 6 → 0 と表記することにすると、以降同様に、7 → 1 ,5 → 2 ,4 → 3 ,0 → 4 ,1 → 5 ,3 → 6 ,2 → 7 なる対応が成立するから、以下の式(式44)
  C[0] = 4,C[1] = 5,C[2] = 7,C[3] = 6,
  C[4] = 3,C[5] = 2,C[6] = 0,C[7] = 1
のように初期化されたインデックス換算用の整数の定数配列 C を定義すれば、次式  i = C[j]
のようにして j から i への変換を簡単に行うことができる。
 すなわち、δx,δy が求まれば、前記した式43に従って j を求め、前記した規格化解 ΔSrn,ΔSbn の配列から、以下の式(式45)
  ΔSrn = ΔSrn[ C[j] ]
  ΔSbn = ΔSbn[ C[j] ]
のようにして選択することにより、与えられた δx,δy に対応する規格化解 ΔSrn,ΔSbn を決定することができる。
 ただし、このようにして得た規格化解は、規格化半径 rn を有する前記規格化円(Cp)上のものであるから、実際のベクトル δx,δy の大きさに基づいて規格化を解除する必要がある。
 また、前記した式39から式40を得る際に行った、D,T の規格化も同様に解除する必要がある。
 ベクトル δx,δy の大きさ δr は、2乗根を返す関数 sqrt( ) を用いて、以下の式(式46)
  δr = sqrt( δx・δx + δy・δy )
のように書けるから、規格化を解除した解 ΔSr まはた ΔSb は、前記した式45より、以下の式(式47)
  ΔSr = D・ΔSrn[ C[j] ]・T・δr/rn
  ΔSb = D・ΔSbn[ C[j] ]・T・δr/rn
によって計算することができる。
 このようにして求めた式47の解を、前記した式35に対して適用することにより、Sr,Sg,Sb の目標値 Srp,Sgp,Sbp の値を更新することができる。
 また前記した、何らかの事情により、前記発光強度指示値 Sr,Sg,Sb のうちの一つを別途決める場合は、前記のようにして求めた式47の解を、前記した式31に対して一旦適用して得た Srp,Sgp,Sbp の値を、いま仮に Srp',Sgp',Sbp' と書くとして、例えば Sb の値を規定値 Sbf に設定したいときは、比率 Sbf/Sb' の値を計算し、これを前記した仮の値 Srp',Sgp',Sbp' にそれぞれ乗じて得た値を、それぞれ新しい Srp,Sgp,Sbp として更新すればよい。
 当然、 Sr や Sg の値を規定値に設定したい場合も、同様の仕方により計算することができる。
 なお、ここまでに述べた、選択された色度座標差異ベクトルに対応する、前記した予めの計算によって求めてあった前記発光強度指示値の変化量の組合せ情報を取出して、適合する発光強度指示値の変化量の値を得る場合でも、前記した前記駆動回路(P1a,P1b,…,P2a,P2b,…)のなかのRの波長帯域の発光素子を駆動するものの出力電力の総和 Pr 、およびGの波長帯域の発光素子を駆動するものの出力電力の総和 Pg 、Bの波長帯域の発光素子を駆動するものの出力電力の総和 Pb それぞれの決定に関しては、前記した式11,式13,式14を有効に使用することができる。
 つまり、前記したように、前記制御回路(Mc)は、前記した、方程式12を解いて求めた Sr,Sg,Sb と、元の目標値 Srp,Sgp,Sbp を式13に適用して比例係数 kr,kg,kb を更新する。
 そして前記制御回路(Mc)は、前記発光強度指示値の現在の値 Sr,Sg,Sb に対し、前記した式47の解を前記した式35または式31に適用して発光強度指示値の新しい目標値 Srp,Sgp,Sbp を算出し、式11に従って前記駆動回路(P1a,P1b,…,P2a,P2b,…)の電力 Pr,Pg,Pb を更新する。
 そして前記光量測定データを取得する動作に戻り、以降、記載したシーケンスを繰り返すようにすることにより、フィードバック制御ループが構築される。
 なお、いま述べた、Sr,Sg,Sb を求めることに関しては、前記したように、方程式12を解くことを頻繁に実行する必要が無いため、制御回路(Mc)のオーバーヘッドを招くことは無い。
 以上、選択された色度座標差異ベクトルに対応する、前記した予めの計算によって求めてあった前記発光強度指示値の変化量の組合せ情報を取出して、適合する発光強度指示値の変化量の値を得る場合のフィードバック制御の仕方についてまとめると、以下のようである。
 先ず、等色関数 xe(λ),ye(λ),ze(λ) に関する局所帯域等色関数情報、すなわちR,G,B各波長帯域の基準波長 λro,λgo,λbo における関数値 xe(λro),xe(λgo),xe(λbo),ye(λro),ye(λgo),ye(λbo),ze(λro),ze(λgo),ze(λbo) の値である、前記した式8,式9,式10の係数 Hxr,Hxg,Hxb,Hyr,Hyg,Hyb,Hzr,Hzg,Hzb と、式20の Ir,Ig,Ib の値を事前に準備した上で、式27の色度座標 x,y に対し、定めた色度座標の目標値 xp,yp を適用して係数 Nxr,Nxg,Nxb,Nyr,Nyg,Nyb を計算し、また n を式30に基づいて計算しておく。
 さらに、インデックス i = 0,1,…,7 それぞれに対応して、前記した式41と式42で与えられる色度座標差異ベクトル δx,δy の値を式40に代入して、規格化解ベクトル ΔSrn,ΔSbn の配列 ΔSrn[0],ΔSrn[1],…,ΔSrn[7] および ΔSbn[0],ΔSbn[1],…,ΔSbn[7] のそれぞれの値を、予めの計算によって求めておく。
 なお、前記したように、これらの計算はパーソナルコンピュータ等で実行し、計算結果の値を前記制御回路(Mc)に転送し、該制御回路(Mc)内で記憶するようにすることができる。
 また、前記制御回路(Mc)においては、前記した係数 Hxr,Hxg,Hxb,Hyr,Hyg,Hyb,Hzr,Hzg,Hzb の値を事前に準備しておく。
 前記制御回路(Mc)は、R,G,B各波長帯域のそれぞれの前記発光強度指示値たる Sr,Sg,Sb に対し、適当な初期目標値 Srp,Sgp,Sbp を定め、また、比例係数 kr,kg,kb の適当な初期値を定め、式11によって前記駆動回路(P1a,P1b,…,P2a,P2b,…)の電力 Pr,Pg,Pb を設定して発光素子(Y1a,Y1b,…,Y2a,Y2b,…)の駆動を開始し、適当に定めた暖機運転期間だけ待機する。
 前記した、方程式12を解いて求めた Sr,Sg,Sb と、元の目標値 Srp,Sgp,Sbp を式13に適用して比例係数 kr,kg,kb を更新する。
 そして前記第1光量測定データ(Sh1)、第2光量測定データ(Sh2)、第3光量測定データ(Sh3)を取得することによって三刺激値 X,Y,Z そして T が求められ、そしてこれらを前記した式21に適用して色度座標 x,y の値を求める、すなわち測定することができる。
 前記した式38の色度座標差異ベクトル δx,δy に対し、式43に基づいてインデックス計算用補助変数 j を求めると、式44のインデックス換算用定数配列 C を介して、式45のようにして、予めの計算によって求めておいた、配列 ΔSrn[0],ΔSrn[1],…,ΔSrn[7] および ΔSbn[0],ΔSbn[1],…,ΔSbn[7] のなかから選択することにより、測定された色度座標 x,y に適合する ΔSr,ΔSb の規格化解を得る。
 そして、δx,δy と T の実際の大きさや、適当に定めたダンピング係数 D = 0~1 に基づき、式46と式47により、仮の ΔSr,ΔSb を求め、さらに、明度指示値 Y とその目標値 Yp 、およびその差異 δY や適当に定めたダンピング係数 D' に基づき、式37の ρ' を介して、式35を計算することによって前記発光強度指示値の微小変化量 ΔSr,ΔSg,ΔSb の値を求める。
 前記制御回路(Mc)は、前記発光強度指示値の現在の値 Sr,Sg,Sb に対し、前記した式47の解を前記した式35または式31に適用して発光強度指示値の新しい目標値 Srp,Sgp,Sbp を算出し、式11に従って前記駆動回路(P1a,P1b,…,P2a,P2b,…)の電力 Pr,Pg,Pb を更新する。
 そして前記光量測定データを取得する動作に戻り、以降、記載したシーケンスを繰り返すようにすることにより、フィードバック制御ループが構築される。
 以上のように、本発明によれば、測定された色相指示値たる色度座標 x,y が有するその目標値 xp,yp に対する差異 δx,δy について、その出現態様に関する複数の態様を予め想定して、各出現態様毎に、それぞれに適する前記発光強度指示値の変化量の決定態様、すなわち連立方程式の解である、発光強度指示値の変化量 ΔSr,ΔSg,ΔSb の値の組合せに関する情報を、予めの計算によって求め、準備しておき、実際のフィードバック制御ループのなかでは、連立方程式を解くのではなく、前記色相指示値とその目標値の差異の態様、すなわち現在の色度座標差異ベクトル δx,δy に類似するものを、予め想定してあった複数の色度座標差異ベクトルから選択し、選択された色度座標差異ベクトルに対応する、前記した予めの計算によって求めてあった前記発光強度指示値の変化量の組合せ情報を取出して、適合する発光強度指示値の変化量 ΔSr,ΔSg,ΔSb の値を得るように光源装置を構成するため、高性能なマイクロプロセッサを搭載しなくても、効率的なフィードバック制御を行うことが可能となる。
 ここで、前記した式7に記載した、被測定光束 S(λ) をデルタ関数で近似することの妥当性について補足しておく。
 同じ色であっても複数個の発光素子を集めた場合、発光波長のバラツキがあるため、それらを総合した光のスペクトル S(λ) は、正確には前記した式7のようなデルタ関数にはならない。
 しかし、発光波長のバラツキがあっても、同じ波長帯域に属する全ての発光素子を総合し、その波長の平均値に等しい波長を有する、仮想的な単色光源に置き換えると考えれば、前記した議論が成立する。
 また、仮想的な単色光源の波長として、平均波長を測定することなく基準波長 λro,λgo,λbo に決めてしまっているが、この差異は僅かである上、差異の影響は、前記した式17、あるいは式24を解いて得るベクトル ΔSr,ΔSg,ΔSb の方向が、僅かに変化することだけであり、フィードバックループのなかで、繰り返し再計算されて補正されるため、全く問題にならない。
 なお、同じ波長帯域に属する全ての発光素子を総合した場合は、波長のバラツキに起因したスペクトル幅の拡がりが存在することになり、その結果、色度座標が少しだけ白色方向に移動する。
 しかし、本発明の光源装置においては、実質的に等色関数に等しい分光感度特性を有する光量測定手段によって三刺激値 X,Y,Z を測定しており、この点に関しては、デルタ関数での近似は行っていないため、前記したスペクトル幅の拡がりの影響は正しく反映される仕組みになっている。
 また、フィードバック制御の目標値 xp,yp,Yp についても補足しておく。
 前記したように本光源装置における色度座標等の計算の目的が正確な絶対値を確定することではないことを前提として、種々の近似計算を行っている。
 そのため、目標値 xp,yp,Yp を数値で与えても、フィードバック制御によって達成される状態が所望のものになるかどうかは不明であり、このような使い方は適当ではない。
 例えばプロジェクタに応用する場合で言えば、本光源装置をプロジェクタの実機に実際に搭載し、フィードバック制御を停止させた状態で、白色となるべき画像をスクリーンに投影させ、所望の白色が得られるよう、本光源装置のR,G,Bそれぞれの光の強度を手動で調整し、調整が完了したときの本光源装置自身による x,y,Y の測定値を、その目標値 xp,yp,Yp として記憶するとよい。
 記憶された目標値の実際の値については無頓着でも構わず、それ以降は、フィードバック制御を実行すれば、所望の白色が得られる状態が達成される。
 なお、言うまでもないが、前記したように、x,y,Y の系と X,Y,Z の系は、式2と式16とによって互いに変換が可能であるため、いま述べたことは、目標値 Xp,Yp,Zp に関しても同様である。
 先に、G色の発光強度指示値 Sg を一例として挙げ、これ、または ΔSg を前記した式24の未知数から外す場合の扱いについて説明するために、前記した式26を記載した。
 そして、選択された色度座標差異ベクトルに対応する、前記した予めの計算によって求めてあった前記発光強度指示値の変化量の組合せ情報を取出して、適合する発光強度指示値の変化量の値を得る計算方法についての説明の、出発点に相当する前記した式28は、前記した式26を変形して得たものであった。
 そもそも、本発明において、解くべき方程式の未知数を、ΔSr,ΔSg,ΔSb の3個から、ΔSr まはた ΔSb の2個に減らした理由は、選択のために予めの計算によって用意すべき解の個数を減らすためであった。
 したがって、これらの計算において、方程式の未知数から外す対象として、G色を選ぶことの必然性は存在せず、本発明においては、R色またはB色を選んで未知数から外すようにしても構わず、全く同様にして計算方法を決めることができる。
 因みに、先に説明した2個の未知数に対して用意した、δx,δy の2次元空間における前記代表点(p0,p1,…,p7)の個数が8個であったものを、未知数が3個の場合に同様の分割を行うと、δx,δy,δY の3次元空間のなかで選択することになるため、代表点の個数は32個になってしまう。
 しかし、このように、選択のために予めの計算によって用意すべき解の個数が多いことを厭わなければ、方程式の未知数を3個にするようにして本発明の光源装置を構成してもよい。
 このようにする場合は、前記したように、式27を式26に適用する代わりに、式27を前記した式24に適用して得られる次式
  Δx・T = Nxr・ΔSr +Nxg・ΔSg +Nxb・ΔSb
  Δy・T = Nyr・ΔSr +Nyg・ΔSg +Nyb・ΔSb
  ΔY = Hyr・ΔSr +Hyg・ΔSg +Hyb・ΔSb
に対し、前記した式25,式36,式38を適用した以下の式
  -δx・D・T = Nxr・ΔSr +Nxg・ΔSg +Nxb・ΔSb
  -δy・D・T = Nyr・ΔSr +Nyg・ΔSg +Nyb・ΔSb
  -δY・D = Hyr・ΔSr +Hyg・ΔSg +Hyb・ΔSb
において、D = 0~1 および T を1とおいた連立方程式を解き、規格化解の配列 ΔSrn[0],…,ΔSrn[31] と ΔSgn[0],…,ΔSgn[31] および ΔSbn[0],…,ΔSbn[31] を準備することになる。
 また、図5に示したように、前記座標点(P)の存在領域の分割として、前記偏角領域(R0,R1,…,R7)のように8分割するものを例示したが、この分割数を増して例えば16分割にしたり、減じて例えば4分割にしたりするようにしてもよい。
 さらに、図5に示したものでは、前記座標点(P)の、前記局所原点(Op)からの距離 δr には無関係に、偏角のみに着目して存在領域を分割したが、例えば、距離 δr のある境界値を設け、距離 δr がその境界値未満の場合と、その境界値以上の場合とに分割し、偏角による8分割と組み合わせて、合計16分割するように構成することも可能である。
 以上においては、図5に示したように、局所原点(Op)を中心とした、極座標的な偏角領域(R0,R1,…,R7)に分割し、各領域の代表点(p0,p1,…,p7)を設定した上で、前記代表点(p0,p1,…,p7)全ての δx,δy に対して前記した式40の規格化解の値 ΔSrn,ΔSbn を予め計算して記憶しておき、実際の座標点(P)に対する解 ΔSr まはた ΔSb を得る際は、前記代表点(p0,p1,…,p7)のうちから座標点(P)に近い代表点を選択し、それと前記局所原点(Op)の距離に対する、座標点(P)と前記局所原点(Op)の距離の比に応じて、前記した式47によって選択された代表点に属する規格化解を補正することにより、実際の座標点(P)に対する解 ΔSr または ΔSb を得る方法を説明した。
 しかし、領域の分割は、前記したような極座標的な仕方に限定されず、例えば図6に示すように、直交座標的な四角形領域に分割し、前記した方法と同様に、格子状に並んだ各領域の代表点(p0,p1,…,p15)を設定した上で、前記代表点(p0,p1,…,p15)全ての δx,δy に対して前記した式40の規格化解の値 ΔSrn,ΔSbn を予め計算して記憶しておき、実際の座標点(P)に対する解 ΔSr まはた ΔSb を得る際は、前記代表点(p0,p1,…,p15)のうちから座標点(P)に近い代表点を選択し、それと前記局所原点(Op)の距離に対する、座標点(P)と前記局所原点(Op)の距離の比に応じて、前記した式47によって選択された代表点に属する規格化解を補正することにより、実際の座標点(P)に対する解 ΔSr まはた ΔSb を得ることができる。
 なお、図6に記載の座標点(P)の場合は、それが四角形領域(R14)に含まれているから、その代表点(p14)を選択すればよい。
 先の図3では、前記第1光量測定手段(A1)と前記第2光量測定手段(A2)と前記第3光量測定手段(A3)とを別体のものとして構成する例を説明したが、前記第1光量測定手段(A1)と前記第2光量測定手段(A2)と前記第3光量測定手段(A3)は、同じ光量測定手段に対して特性変化を与えることにより、時間分割によって実現するように構成することもできる。
 この場合、前記第1光量測定手段(A1)と前記第2光量測定手段(A2)と前記第3光量測定手段(A3)は、光センサ(C)を共有しており、前記第1光量測定手段(A1)として働く場合、前記第2光量測定手段(A2)として働く場合、前記第3光量測定手段(A3)として働く場合のそれぞれの場合において、前記光センサ(C)に前置する特性フィルタ(Et1,Et2,Et3)を置き換えるようにすればよい。
 例えば、本発明の光源装置の一部を簡略化して示す模式図である図7に記載のように、共通の測定用出力光束(Fa)が向かう先に設置した光センサ(C)の前に、特性フィルタ(Et1,Et2,Et3)を装着した円板状フィルタ支持体(Kt)を配置し、モータ等による回転機構(Km)を用いて矢印(Ka)のように前記円板状フィルタ支持体(Kt)を回転させることにより、光センサ回路部(Ah1)の前面に前記特性フィルタ(Et1)が位置するときは前記第1光量測定手段(A1)として働き、前記特性フィルタ(Et2)が位置するときは前記第2光量測定手段(A2)として働き、前記特性フィルタ(Et3)が位置するときは前記第3光量測定手段(A3)として働くようにすることができる。
 また図7では前記特性フィルタ(Et1,Et2,Et3)を回転させるものを記載したが、前記特性フィルタ(Et1,Et2,Et3)を一列に配置した枠を設け、それをソレノイド等によって往復移動させるようにしてもよい。
 本発明の光源装置は、前記第1光量測定手段(A1)、前記第2光量測定手段(A2)、前記第3光量測定手段(A3)それぞれの前記特性フィルタ(Et1,Et2,Et3)が有する分光感度特性の相違に基づいて、三刺激値 X,Y,Z を測定するものであるため、もし、前記第1光量測定手段(A1)、前記第2光量測定手段(A2)、および前記第3光量測定手段(A3)のそれぞれの光センサ素子において、経時変化や温度ドリフト等の変動によって相異なる感度変化を生ずれば、光の色等の認識に誤差が生ずる恐れがある。
 しかし、このように光センサ(C)を共有させることにすれば、前記第1光量測定手段(A1)と前記第2光量測定手段(A2)と前記第3光量測定手段(A3)とに切り換えての光量測定の時間間隔が、前記した変動の時間スケールより十分短い限り、前記した変動の影響を受けないようにできる利点が生まれる。
 先に、発光強度指示値 Sr,Sg,Sb を求めるための計算をフィードバック制御ループのなかで実行し続けることが、制御回路(Mc)のオーバーヘッドを招く問題を回避するために、R,G,B各波長帯域の発光強度指示値 Sr,Sg,Sb を測定によって取得するための光量測定手段を、前記第1、第2、第3光量測定手段とは別に備えるとよい旨を先に述べたが、それの実現のために、光センサを追加するのではなく、そのための分光フィルタを、前記特性フィルタ(Et1,Et2,Et3)に加えて前記円板状フィルタ支持体(Kt)に配置するように構成することにより、大したコスト増無しにそれを実現することができる。
 先の図3または図7では、3個の等色関数 xe(λ),ye(λ),ze(λ) それぞれを、特性フィルタ(Et1,Et2,Et3)のそれぞれで実現する例を説明したが、1個の等色関数を実現するフィルタが複数のフィルタに分割されており、分割されたフィルタそれぞれに基づく信号を合成して、所望の等色関数を再現する分光感度特性を実現するように構成することも可能である。
 このように構成した前記第1光量測定手段(A1)の一例を、本発明の光源装置の一部を簡略化して示す模式図である図8に示す。
 測定用出力光束(Fa1)は、前記特性フィルタ(Et1)を分割して実現する特性フィルタ(Et1a,Et1b,Et1c)にそれぞれ入射され、それを透過した測定用出力光束(Ft1a,Ft1b,Ft1c)が、それぞれ光センサ(C1a,C1b,C1c)に入射する。
 前記光センサ(C1a,C1b,C1c)それぞれの信号は、電流電圧変換アンプを構成する演算増幅器(Aia,Aib,Aic)の反転入力端子にそれぞれ接続される。
 前記演算増幅器(Aia,Aib,Aic)の出力である光検出信号(Sia,Sib,Sic)は、可変抵抗(Ria,Rib,Ric)によって前記した反転入力端子に帰還されることにより、前記演算増幅器(Aia,Aib,Aic)はゲイン可変のアンプとして機能する。
 生成された前記光検出信号(Sia,Sib,Sic)それぞれは、抵抗(Rja,Rjb,Rjc)を介して加算アンプを構成する演算増幅器(Ag)の反転入力端子にまとめて接続される。
 前記演算増幅器(Ag)の出力である光検出信号(Sg1)は、可変抵抗(Rg)によって前記した反転入力端子に帰還されることにより、前記演算増幅器(Ag)はゲイン可変のアンプとして機能する。
 前記光検出信号(Sg1)は、光量測定回路(H)により増幅やAD変換等の必要な処理を行い、第1光量測定データ(Sh1)を生成する。
 前記したように、前記特性フィルタ(Et1,Et2,Et3)の分光透過率特性は、それに前記光センサ(C1,C2,C3)自身の分光感度特性が重畳した特性が、少なくとも前記した波長帯域のそれぞれの近傍において、前記した等色関数 xe(λ),ye(λ),ze(λ) それぞれと同じになるようにすればよい。
 そのため、R,G,B全てを合わせて分光透過率特性が整合された一つのフィルタを製作するよりも、R,G,Bそれぞれの波長帯域において個別に分光透過率特性を作り込んだ、3個のフィルタを製作し、特性のバラツキが生じた場合は、前記可変抵抗(Ria,Rib,Ric)によって後から調整できるようにする方が、フィルタの製作が格段に容易になるため、低コスト化できる利点が生まれる。
 なお、図8は前記第1光量測定手段(A1)をこのように構成する場合の例であるが、前記第2光量測定手段(A2)、前記第3光量測定手段(A3)についても同様に構成することができる。
 また、いま述べた構成方法は、同時並行的に分割生成された信号を合成するものであったが、時間分割的に生成された信号を合成するように構成してもよい。
 例えば、図7について説明した、光センサを共有して時間分割によって特性変化を与える技術と組み合わせることが可能である。
 その際、例えば、円板状フィルタ支持体(Kt)には、波長帯域のそれぞれにおける各等色関数 xe(λro),xe(λgo),xe(λbo),ye(λro),ye(λgo),ye(λbo),ze(λro),ze(λgo),ze(λbo) それぞれの波長帯域近傍の分光透過率特性を実現する、9種類のフィルタを設けるようにすることにより、全体として1個の光センサ(C)のみを有するように構成することが可能である。
(前記した式6に記載のように ze(λro) は零であるから、実際的には8種類でよいことになる。)
 この場合、図8に記載した光量測定手段において、3個の前記光検出信号(Sia,Sib,Sic)を前記演算増幅器(Ag)で加算して合成する回路の機能に相当する処理は、光量測定回路(H)より後段で行う。
 光センサとしては、光量の大小を検出するものだけでなく、撮像素子も使用可能であり、前記第1光量測定手段(A1)と前記第2光量測定手段(A2)と前記第3光量測定手段(A3)とが有する光センサの少なくとも一方を撮像素子とすることができる。
 図2に関連して光ファイバを用いて光を伝送する構成について説明したが、光ファイバは石英などの脆弱なガラスを素材としているため、破断の危険性があるという欠点がある。
 光ファイバが破断すると、破断箇所から光パワーが漏洩して光ファイバを機械的に保護するために設けた被覆材に吸収され、被覆材が焼損に至る可能性があるため、光ファイバの破断が起きれば、それを検知して発光素子を消灯する安全対策が必要となる。
 全体として大きなパワーを伝送する場合は、同じ色の光に対しても複数本の光ファイバに分割することが、光学系の構成上も、安全性の面からも有利であるが、その場合は、全光ファイバからの総合光量を監視するだけではなく、光ファイバ1本ずつの光量を監視し、個別に破断を検知できることが望ましい。
 前記したように、前記出射端(Eo1,Eo2,…)が同一平面上に位置するように揃えて、前記光ファイバ(Ef1,Ef2,…)の出射端部を束ねたものの場合、前記出射端(Eo1,Eo2,…)が位置する平面の像を、レンズ等を用いて撮像素子に投影することにより、光ファイバ1本ずつを識別して光量を監視し、個別に破断を検知することが可能となる。
 なお、撮像素子としてカラー映像用撮像素子を使用することも可能である。
 カラー映像用撮像素子の各画素には、R,G,Bのカラーフィルタの何れかが設けられているため、光量測定手段の形態としては、図8に関して説明した構成のうちの、9種類のフィルタを設けるものと同様であり、同様の利点が得られる。
 次に、本発明の光源装置の実施例の一形態を簡略化して示す図である図9を用いて、本発明を実施するための形態として、本発明の光源装置を利用した、本発明のプロジェクタの、特に光ファイバおよびその出射端以降の、より具体的な構成について述べる。
 本図に記載の光源装置は、R,G,B3原色に対応して、各色複数本の光ファイバ、すなわちR色光源用光ファイバ(EfR1,EfR2,…)、G色光源用光ファイバ(EfG1,EfG2,…)、B色光源用光ファイバ(EfB1,EfB2,…)は、それぞれ出射端を揃えて束ねられた、ファイババンドルとして構成され、これら3本のファイババンドルの出射端を、それぞれコリメータレンズ(EsR,EsG,EsB)で無限遠の像に変換した光束を、ミラー(HuR)およびダイクロイックミラー(HuG,HuB)を用いて色合成して、出力光束(Fo)を生成するように構成してある。
 そして、前記出力光束(Fo)は集光レンズ(Eu)に入力され、スペックルを除去するための拡散素子(Edm)を介して、ロッドインテグレータによる光均一化手段(Fm)の入射端(Pmi)に入射される。
 前記光均一化手段(Fm)の射出端(Pmo)以降の光学系については、先に図10に関して述べたものと同様である。
 当然ながら、本発明の光源装置は、フライアイインテグレータによる光均一化手段を用いた、先に図11に関して述べたプロジェクタにおいても利用できる。
 前記ダイクロイックミラー(HuB)は、R・G色の光を可能な限り多く透過し、かつB色の光を可能な限り多く反射するように作成されているが、R・G色の反射光、およびB色の透過光が少なからず存在し、普通これらの光は迷光として捨てられるが、図9の本光源装置においては、これを有効利用して測定用出力光束(Fa)を得るようにしてある。
 前記測定用出力光束(Fa)は、レンズからなる結像光学系(Ea)に入射され、前記ファイババンドルのR色出射端(EoR1,EoR2,…)およびG色出射端(EoG1,EoG2,…)、B色出射端(EoB1,EoB2,…)と共役な実像が撮像素子(Cc)の撮像面上に結像される。
 前記撮像素子(Cc)によって撮影されたこれらの像の映像信号(Sg)は、前記した光量測定回路(H)に送られる。
 前記結像光学系(Ea)の前または後に、図7に記載のものと同様に、特性フィルタ(Et1,Et2,Et3)を装着した円板状フィルタ支持体(Kt)を配置し、モータ等の回転機構(Km)によって前記特性フィルタ(Et1,Et2,Et3)を切り換え可能な構成としている。
 制御回路(Mc)は、前記回転機構(Km)により連続的に前記特性フィルタ(Et1,Et2,Et3)を選択し、前記撮像素子(Cc)を順々に第1光量測定手段(A1)と第2光量測定手段(A2)と第3光量測定手段(A3)として機能させ、第1光量測定データ(Sh1)と第2光量測定データ(Sh2)と第3光量測定データ(Sh3)を取得する。
 また、前記撮像素子(Cc)の映像に基づき、前記R色出射端(EoR1,EoR2,…),前記G色出射端(EoG1,EoG2,…),前記B色出射端(EoB1,EoB2,…)それぞれの光量を別々に測定し、何れかに光量低下の異常が発生しないかどうかを監視する。
 本明細書においては、最も複雑な状況に対して一般的に議論が可能なように、R,G,B全ての波長帯域において、発光素子の波長の変化が生ずることを想定した場合について述べた。
 しかし、前記した波長帯域のうちの何れかに、実質的に波長の変化が生じない、あるいは無視できる前記発光素子が含まれる場合、前記第1光量測定手段(A1)、前記第2光量測定手段(A2)、および前記第3光量測定手段(A3)の、その波長帯域における分光感度特性については、その波長における感度値が、XYZ表色系の3個の等色関数それぞれのその波長における感度値と一致していれば、波長の変化に対する感度の変化率に関しては一致していなくてもよい。
 実際、発振波長が安定化された半導体レーザや、体積ブラッグ回折格子で構成された共振用反射器を有する半導体レーザや非線形光学高調波発振器などにおいて、このような取扱いが可能な発光素子が存在する。
 例えば、その波長帯域がG色であるならば、前記光量測定手段におけるG色近傍の波長の変化に対する感度の変化率はどのようなものであっても構わない。
 そのような、実質的に波長の変化が生じない、あるいは無視できる波長帯域が、1種類のみならず、2種類ある場合でも、本発明は適用可能であり、良好に機能する。
 なお、本明細書においては、本光源装置内部における処理で使用する光の色に相関する色相指示値として、色度座標(Yxy表色系)および三刺激値(XYZ表色系)とする場合に言及し、具体的に説明して来たが、当然、これら以外の他の表色系、例えばRGB表色系やL*u*v*表色系、L*a*b*表色系などであっても、色度座標に相関する色相指示値であれば任意のものを採用することができる。
 また、本明細書においては、「微小変化」なる用語が複数の箇所で現れているが、これは、前記した式22などの近似式において、実際に近似が成立することを期待して与える u,v,w の変化 Δu,Δv,Δw を指しており、通常は、小さい値であるほど近似の精度は向上するが、要求する精度の低さによっては、相当大きな値であっても実用的である場合もあるため、本光源装置の用途に照らして許容できる大きさが決まるものである。
 本発明は、プロジェクタなどの光学装置において使用可能な、複数種類の異なる波長帯域の、半導体レーザなどの発光素子を用いた光源装置を設計・製造する産業において利用可能である。
A1   第1光量測定手段
A2   第2光量測定手段
A3   第3光量測定手段
Ag   演算増幅器
Ah1  光センサ回路部
Aia  演算増幅器
Aib  演算増幅器
Aic  演算増幅器
B    青色
C    光センサ
C1   光センサ
C1a  光センサ
C1b  光センサ
C1c  光センサ
C2   光センサ
C3   光センサ
Cc   撮像素子
Cp   規格化円
DmjA 2次元光振幅変調素子
DmjB 2次元光振幅変調素子
Ea   結像光学系
Ec1  集光光学系
Ec2  集光光学系
Edm  拡散素子
Ef1  光ファイバ
Ef2  光ファイバ
EfB1 B色光源用光ファイバ
EfB2 B色光源用光ファイバ
EfG1 G色光源用光ファイバ
EfG2 G色光源用光ファイバ
EfR1 R色光源用光ファイバ
EfR2 R色光源用光ファイバ
Ei1  入射端
Ei2  入射端
Ej1A 照明レンズ
Ej1B 照明レンズ
Ej2A 投影レンズ
Ej2B フィールドレンズ
Ej3B 投影レンズ
Eo1  出射端
Eo2  出射端
EoB1 B色出射端
EoB2 B色出射端
EoG1 G色出射端
EoG2 G色出射端
EoR1 R色出射端
EoR2 R色出射端
EsB  コリメータレンズ
EsG  コリメータレンズ
EsR  コリメータレンズ
Et1  特性フィルタ
Et1a 特性フィルタ
Et1b 特性フィルタ
Et1c 特性フィルタ
Et2  特性フィルタ
Et3  特性フィルタ
Eu   集光レンズ
F1B  前段フライアイレンズ
F2B  後段フライアイレンズ
Fa   測定用出力光束
Fa1  測定用出力光束
Fa2  測定用出力光束
Fa3  測定用出力光束
Fm   光均一化手段
FmA  光均一化手段
FmB  光均一化手段
Fo   出力光束
Fo1  出力光束
Fo2  出力光束
Ft1  測定用出力光束
Ft1a 測定用出力光束
Ft1b 測定用出力光束
Ft1c 測定用出力光束
G    緑色
H    光量測定回路
H1   光量測定回路
H2   光量測定回路
H3   光量測定回路
HuB  ダイクロイックミラー
HuG  ダイクロイックミラー
HuR  ミラー
J1a  駆動回路制御信号
J1b  駆動回路制御信号
J2a  駆動回路制御信号
J2b  駆動回路制御信号
Ka   矢印
Km   回転機構
Kt   円板状フィルタ支持体
LCD  液晶デバイス
Mc   制御回路
MjA  ミラー
MjB  偏光ビームスプリッタ
Op   局所原点
P    座標点
p0   代表点
p1   代表点
p14  代表点
p15  代表点
P1a  駆動回路
P1b  駆動回路
P2a  駆動回路
P2b  駆動回路
p7   代表点
PcB  偏光整列機能素子
Pmi  入射端
PmiA 入射端
PmiB 入射端
Pmo  射出端
PmoA 射出端
PmoB 射出端
R    赤色
R0   偏角領域
R1   偏角領域
R14  四角形領域
R7   偏角領域
Rg   可変抵抗
Ria  可変抵抗
Rib  可変抵抗
Ric  可変抵抗
Rja  抵抗
Rjb  抵抗
Rjc  抵抗
Sg   映像信号
Sg1  光検出信号
Sh1  第1光量測定データ
Sh2  第2光量測定データ
Sh3  第3光量測定データ
Sia  光検出信号
Sib  光検出信号
Sic  光検出信号
SjA  光源
SjB  光源
Tj   スクリーン
U1   要素光源
U2   要素光源
W    白色
Y1a  発光素子
Y1b  発光素子
Y2a  発光素子
Y2b  発光素子
ZiB  入射光軸

Claims (7)

  1.  狭い波長帯域で発光する発光素子(Y1a,Y1b,…)および前記発光素子(Y1a,Y1b,…)を駆動する駆動回路(P1a,P1b,…)を具備するユニットを1個の要素光源(U1)として、該要素光源(U1,U2,…)の複数個と、
     前記駆動回路(P1a,P1b,…,P2a,P2b,…)を制御する制御回路(Mc)と、
    を有し、前記発光素子(Y1a,Y1b,…,Y2a,Y2b,…)からの放射光を集めた出力光束(Fo,Fo1,Fo2,…)を外部に放射する光源装置であって、
     前記発光素子(Y1a,Y1b,…,Y2a,Y2b,…)は、発光波長が複数種類の異なる波長帯域に属するものを含んでおり、
     さらに前記光源装置は、前記出力光束(Fo,Fo1,Fo2,…)の総合的な光量を測定するために、出力光束(Fo,Fo1,Fo2,…)の光量に相関する量の光を受光する第1光量測定手段(A1)と第2光量測定手段(A2)と第3光量測定手段(A3)とを有し、
     前記第1光量測定手段(A1)、前記第2光量測定手段(A2)および前記第3光量測定手段(A3)のそれぞれの分光感度特性に関して、前記した波長帯域のそれぞれで定めた各基準波長における感度値が、XYZ表色系の3個の等色関数それぞれの同じ基準波長における感度値と一致し、かつ少なくとも一つの基準波長における波長の変化に対する感度の変化率が、XYZ表色系の3個の等色関数それぞれの同じ基準波長における波長の変化に対する感度の変化率と一致しており、
     前記制御回路(Mc)は、前記第1光量測定手段(A1)が生成する第1光量測定データ(Sh1)と、前記第2光量測定手段(A2)が生成する第2光量測定データ(Sh2)と、前記第3光量測定手段(A3)が生成する第3光量測定データ(Sh3)とを少なくとも間欠的に取得して、前記出力光束(Fo,Fo1,Fo2,…)の総合的な光の色に相関する色相指示値を生成し、前記色相指示値とその目標値の差異が小さくなるよう、前記した波長帯域のそれぞれについての光の強度に相関する発光強度指示値の変化量を決定して前記駆動回路(P1a,P1b,…,P2a,P2b,…)をフィードバック制御するために、前記色相指示値とその目標値の差異の出現態様に関する複数の出現態様を想定した上で、各出現態様毎に、それぞれに適する前記発光強度指示値の変化量の決定態様に関する情報を保持しており、
     前記制御回路(Mc)は、生成した前記色相指示値とその目標値の差異の態様に類似するものを、前記した複数の想定した差異の出現態様のうちから選択し、選択された差異の出現態様に属する前記した前記発光強度指示値の変化量の決定態様に関する情報に従って、前記発光強度指示値の変化量を決定することを特徴とする光源装置。
  2.  前記制御回路(Mc)は、前記出力光束(Fo,Fo1,Fo2,…)の総合的な光の明るさに相関する明度指示値を生成し、前記明度指示値とその目標値の差異が小さくなる、前記した波長帯域のそれぞれについての前記発光強度指示値の変化量を決定して前記駆動回路(P1a,P1b,…,P2a,P2b,…)をフィードバック制御することを特徴とする請求項1に記載の光源装置。
  3.  前記第1光量測定手段(A1)と前記第2光量測定手段(A2)と前記第3光量測定手段(A3)とは、それぞれ光センサ(C1,C2,C3)を有し、特性フィルタ(Et1,Et2,Et3)を前記光センサ(C1,C2,C3)に前置することを特徴とする請求項1または2に記載の光源装置。
  4.  前記第1光量測定手段(A1)と前記第2光量測定手段(A2)と前記第3光量測定手段(A3)とは、同じ光量測定手段に対して特性変化を与えることにより、時間分割によって実現するものであり、前記第1光量測定手段(A1)と前記第2光量測定手段(A2)と前記第3光量測定手段(A3)とは、光センサ(C)を共有しており、前記第1光量測定手段(A1)として働く場合、前記第2光量測定手段(A2)として働く場合、前記第3光量測定手段(A3)として働く場合のそれぞれの場合において、前記光センサ(C)に前置する特性フィルタ(Et1,Et2,Et3)を置き換えることを特徴とする請求項1または2に記載の光源装置。
  5.  前記特性フィルタ(Et1,Et2,Et3)の少なくとも一つが複数のフィルタに分割されており、分割されたフィルタそれぞれに基づく信号を合成して前記した分光感度特性が実現されることを特徴とする請求項3に記載の光源装置。
  6.  前記第1光量測定手段(A1)または前記第2光量測定手段(A2)または前記第3光量測定手段(A3)が有する前記光センサの少なくとも一つが撮像素子であることを特徴とする請求項1から5のいずれかに記載の光源装置。
  7.  請求項1から6のいずれかに記載の光源装置を利用して画像を投影表示することを特徴とするプロジェクタ。
PCT/JP2015/073335 2014-09-10 2015-08-20 光源装置およびプロジェクタ WO2016039104A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-184086 2014-09-10
JP2014184086A JP2016058568A (ja) 2014-09-10 2014-09-10 光源装置およびプロジェクタ

Publications (1)

Publication Number Publication Date
WO2016039104A1 true WO2016039104A1 (ja) 2016-03-17

Family

ID=55458860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073335 WO2016039104A1 (ja) 2014-09-10 2015-08-20 光源装置およびプロジェクタ

Country Status (2)

Country Link
JP (1) JP2016058568A (ja)
WO (1) WO2016039104A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006146033A (ja) * 2004-11-24 2006-06-08 Olympus Corp 画像表示装置におけるキャリブレーション方法および装置
JP2007156211A (ja) * 2005-12-07 2007-06-21 Matsushita Electric Ind Co Ltd 映像表示装置
JP2008160441A (ja) * 2006-12-22 2008-07-10 Toshiba Corp 投影装置
JP2011089840A (ja) * 2009-10-21 2011-05-06 Astro Design Inc 色評価システム及び色評価方法
JP2012119141A (ja) * 2010-11-30 2012-06-21 Fuji Electric Co Ltd Led照明の色度調整装置、照明装置の色度調整システム
JP2014187465A (ja) * 2013-03-22 2014-10-02 Ushio Inc 光源装置およびプロジェクタ
WO2015119184A1 (ja) * 2014-02-06 2015-08-13 ウシオ電機株式会社 光源装置およびプロジェクタ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006146033A (ja) * 2004-11-24 2006-06-08 Olympus Corp 画像表示装置におけるキャリブレーション方法および装置
JP2007156211A (ja) * 2005-12-07 2007-06-21 Matsushita Electric Ind Co Ltd 映像表示装置
JP2008160441A (ja) * 2006-12-22 2008-07-10 Toshiba Corp 投影装置
JP2011089840A (ja) * 2009-10-21 2011-05-06 Astro Design Inc 色評価システム及び色評価方法
JP2012119141A (ja) * 2010-11-30 2012-06-21 Fuji Electric Co Ltd Led照明の色度調整装置、照明装置の色度調整システム
JP2014187465A (ja) * 2013-03-22 2014-10-02 Ushio Inc 光源装置およびプロジェクタ
WO2015119184A1 (ja) * 2014-02-06 2015-08-13 ウシオ電機株式会社 光源装置およびプロジェクタ

Also Published As

Publication number Publication date
JP2016058568A (ja) 2016-04-21

Similar Documents

Publication Publication Date Title
JP5790811B2 (ja) 光源装置およびプロジェクタ
JP5729522B2 (ja) 光源装置およびプロジェクタ
JP5884887B2 (ja) 光源装置およびプロジェクタ
US9509967B2 (en) Light source device and projector
US10191362B2 (en) Light source unit and projector
US9749603B2 (en) Projector light source unit having intensity controller
JP5822007B2 (ja) 光源装置およびプロジェクタ
JP2018060077A (ja) 画像投射装置
US20110188002A1 (en) Image projector
JP2014187465A (ja) 光源装置およびプロジェクタ
JP2016061866A (ja) 光源装置およびプロジェクタ
WO2016039104A1 (ja) 光源装置およびプロジェクタ
JP6194865B2 (ja) センサ回路、補正方法およびプロジェクタ装置
JP6300129B2 (ja) 光源装置およびプロジェクタ
JP2015125834A (ja) 光源装置およびプロジェクタ
JP5880496B2 (ja) 光源装置およびプロジェクタ
JP2014157184A (ja) 光源装置およびプロジェクタ
JP2016128871A (ja) 光源装置および投写型表示装置
JP2018061149A (ja) 画像投射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839460

Country of ref document: EP

Kind code of ref document: A1