JP6300129B2 - 光源装置およびプロジェクタ - Google Patents
光源装置およびプロジェクタ Download PDFInfo
- Publication number
- JP6300129B2 JP6300129B2 JP2016548512A JP2016548512A JP6300129B2 JP 6300129 B2 JP6300129 B2 JP 6300129B2 JP 2016548512 A JP2016548512 A JP 2016548512A JP 2016548512 A JP2016548512 A JP 2016548512A JP 6300129 B2 JP6300129 B2 JP 6300129B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- light quantity
- measuring means
- quantity measuring
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000005259 measurement Methods 0.000 claims description 80
- 230000003287 optical effect Effects 0.000 claims description 79
- 230000008859 change Effects 0.000 claims description 57
- 230000006870 function Effects 0.000 claims description 52
- 230000035945 sensitivity Effects 0.000 claims description 36
- 230000003595 spectral effect Effects 0.000 claims description 30
- 230000002596 correlated effect Effects 0.000 claims description 19
- 238000004364 calculation method Methods 0.000 claims description 11
- 230000001276 controlling effect Effects 0.000 claims description 5
- 230000002194 synthesizing effect Effects 0.000 claims description 2
- 239000013307 optical fiber Substances 0.000 description 29
- 239000003086 colorant Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 18
- 238000005286 illumination Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 16
- 230000014509 gene expression Effects 0.000 description 14
- 239000004065 semiconductor Substances 0.000 description 14
- 238000002834 transmittance Methods 0.000 description 11
- 230000000875 corresponding effect Effects 0.000 description 8
- 238000001514 detection method Methods 0.000 description 7
- 238000003384 imaging method Methods 0.000 description 7
- 230000010287 polarization Effects 0.000 description 7
- 241000276498 Pollachius virens Species 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000004973 liquid crystal related substance Substances 0.000 description 5
- 238000013016 damping Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000012937 correction Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/105—Controlling the light source in response to determined parameters
- H05B47/11—Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S2/00—Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
- Y02B20/40—Control techniques providing energy savings, e.g. smart controller or presence detection
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Projection Apparatus (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Circuit Arrangement For Electric Light Sources In General (AREA)
Description
一例として、本発明のプロジェクタに係わる従来のプロジェクタの一種の一部の一形態を説明する図である、図8を用いてプロジェクタの原理について述べる(参考:特開2004−252112号公報など)。
ここで、前記光均一化手段(FmA)として、例えば、光ガイドを使うことができ、これは、ロッドインテグレータ、ライトトンネルなどの名称でも呼ばれており、ガラスや樹脂などの光透過性の材料からなる角柱によって構成され、前記入射端(PmiA)に入力された光は、光ファイバと同じ原理に従って、前記光均一化手段(FmA)の側面で全反射を繰り返しながら、前記光均一化手段(FmA)の中を伝播することにより、仮に前記入射端(PmiA)に入力された光の分布にムラがあったとしても、前記射出端(PmoA)上の照度が十分に均一化されるように機能する。
ただし、図8においては、前記照明レンズ(Ej1A)と前記2次元光振幅変調素子(DmjA)との間にミラー(MjA)を配置してある。
そして前記2次元光振幅変調素子(DmjA)は、映像信号に従って、画素毎に光を投影レンズ(Ej2A)に入射される方向に向かわせる、あるいは入射されない方向に向かわせるように変調することにより、スクリーン(Tj)上に画像を表示する。
ここで、前記光均一化手段(FmB)は、入射側の前段フライアイレンズ(F1B)と射出側の後段フライアイレンズ(F2B)と照明レンズ(Ej1B)の組合せで構成される。
前記前段フライアイレンズ(F1B)、前記後段フライアイレンズ(F2B)ともに、同一焦点距離、同一形状の四角形のレンズを、縦横それぞれに多数並べたものとして形成されている。
一般にケーラー照明光学系とは、2枚のレンズから構成され、前段レンズが光を集めて対象面を照明するに際し、前段レンズは、対象面に光源像を結像するのではなく、後段レンズ中央の面上に光源像を結像し、後段レンズが前段レンズの外形の四角形を対象面(照明したい面)に結像するよう配置することにより、対象面を均一に照明するものである。
後段レンズの働きは、もしこれが無い場合は、光源が完全な点光源でなく有限の大きさを持つとき、その大きさに依存して対象面の四角形の周囲部の照度が落ちる現象を防ぐためで、後段レンズによって、光源の大きさに依存せずに、対象面の四角形の周囲部まで均一な照度にすることができる。
ただし、前記後段フライアイレンズ(F2B)の後段には、前記照明レンズ(Ej1B)を配置してあるため、対象面は、無限遠から前記照明レンズ(Ej1B)の焦点面上に引き寄せられる。
縦横に多数並んでいるケーラー照明光学系は、入射光軸(ZiB)に平行であり、それぞれの中心軸に対して略軸対称に光束が入力されるため、出力光束も略軸対称であるから、レンズ面に同じ角度で入射した光線は、レンズ面上の入射位置によらず、焦点面上の同じ点に向かうよう屈折される、というレンズの性質、即ちレンズのフーリエ変換作用により、全てのケーラー照明光学系の出力は、前記照明レンズ(Ej1B)の焦点面上の同じ対象面に結像される。
前記合成四角形の像の位置に2次元光振幅変調素子(DmjB)を配置することにより、前記射出端(PmoB)から出力された光によって、照明対象である前記2次元光振幅変調素子(DmjB)が照明される。
ただし、照明に際しては、前記照明レンズ(Ej1B)と前記2次元光振幅変調素子(DmjB)との間に偏光ビームスプリッタ(MjB)を配置して、これにより光が前記2次元光振幅変調素子(DmjB)に向けて反射されるようにしてある。
そして前記2次元光振幅変調素子(DmjB)は、映像信号に従って、画素毎に光の偏光方向を90度回転させる、あるいは回転させないように変調して反射することにより、回転させられた光のみが、前記偏光ビームスプリッタ(MjB)を透過して投影レンズ(Ej3B)に入射され、スクリーン(Tj)上に画像を表示する。
また、前記2次元光振幅変調素子(DmjB)には略平行光が入射されるよう、例えばその直前に、フィールドレンズ(Ej2B)が挿入される。
これらの欠点を克服した代替光源として、近年、LEDや半導体レーザ等の固体光源が注目されている。
このうち、LEDについては、放電ランプと比較して発熱損が小さく、また長寿命であるが、放射される光に関しては、放電ランプと同様に指向性が無いため、前記したプロジェクタや露光装置等の、特定の方向の光のみが利用可能な用途においては、光の利用効率が低いという問題があった。
また、高い指向性を活かして、光ファイバによる光伝送を高効率で行えるため、半導体レーザの設置場所と、プロジェクタなど、その光を利用する場所とを分離することが可能であり、装置設計の自由度を高めることができる。
プロジェクタの光源として、R,G,B3原色の一部または全部に半導体レーザを用いた場合、このような変化によって、画像全体の色や明るさが変化してしまうことになる。
したがって高忠実なプロジェクタに半導体レーザを応用する場合は、色、すなわち白バランスの安定化および明るさの安定化を行う必要がある。
前記した色度計は高価であり、プロジェクタに容易には組み込めないため、機器組込み用として好適な、安価な光センサを使わざるを得ないが、光センサのみを安価なものを使っても、色度計と同等の機能を作り込もうとすると、高コストな精密分光フィルタが必要になるため、簡易仕様の安価なフィルタで代替できる構成を実現する必要がある。
しかし、これまで、安価な光センサやフィルタを使って色度に相関する量を測定すること、および測定結果から効率的にR,G,Bそれぞれの半導体レーザへの投入電力を自動調整する技術が確立されていなかった。
例えば、特開2006−252777号公報には、分光感度特性の傾きが、光源の発光波長帯域において正の光センサと負の光センサとを用いて光量検出を行うことによって、発光波長が長くなる方向に変化しているか、それとも短くなる方向に変化しているか、あるいは変化が無いかの何れであるかを判別し、その結果に基づき、R,G,B各色光源の投入電力制御の基準レベルを増減する技術が記載されている。
しかし、この技術の場合、発光波長の時間的変化の方向のみを検出して制御するものであるため、光源の点灯直後の、光源自身の発熱による温度変化に伴う、比較的速い色変化は補正できるかも知れないが、非常に緩慢な環境温度の変化や長期間に亘る光源の劣化に伴う色変化には対応できない問題がある。
また、複数色の光源が同時に独立に色変化を起こす場合の、各色光源それぞれを、如何にして投入電力制御すればよいかについて未解決のままであった。
しかし、この技術では、R,G,B各色の光源を色順次で発光させるという元来の動作様式の特徴をうまく利用して、R,G,Bそれぞれの光が単独でR,G,B各色用光センサに入力されて自動的に生成される、合計9種類の信号を活用することが前提となっている。
したがって、もし、R,G,B各色の光源を色順次で発光させるのではなく、R,G,B各色の光源を連続発光させる光源装置においてこの技術を利用しようとすると、R,G,B各色の帯域フィルタと3個の等色関数フィルタとの組合わせに対応した9個の光センサを設置するなど、何らかの方法により、前記した合計9種類の信号を生成する必要があり、装置の構造が複雑化する欠点があった。
要素光源(U1)に設けられている、少なくとも1個の発光素子(Y1a,Y1b,…)は、駆動回路(P1a,P1b,…)によって駆動されて発光する。
なお、前記発光素子(Y1a,Y1b,…)の個々については、ここでは、例えば半導体レーザや、半導体レーザの放射光を、高調波発生・光パラメトリック効果などのような非線形光学現象を利用して波長変換する光源などであり、そのような光源の複数個を直列接続、あるいは並列接続、さらには直並列接続するなどして、1個の前記駆動回路(P1a,P1b,…)によって駆動できるものとしている。
制御回路(Mc)は、駆動回路制御信号(J1a,J1b,…,J2a,J2b,…)を介して前記駆動回路(P1a,P1b,…,P2a,P2b,…)毎に独立に制御し、それぞれの前記発光素子(Y1a,Y1b,…,Y2a,Y2b,…)に規定の電力を投入することができるように構成されている。
これら要素光源(U1,U2,…)のそれぞれの出力光束(Fo1,Fo2,…)から、それぞれ一部づつを抽出して集めた測定用出力光束(Fa1,Fa2,Fa3)を生成し、第1光量測定手段(A1)および第2光量測定手段(A2)、第3光量測定手段(A3)に入力する。
なお、複数個の前記出射端(Eo1,Eo2,…)からの放射光の総合方法としては、最も簡単には、前記出射端(Eo1,Eo2,…)が同一平面上に位置するように揃えて、前記光ファイバ(Ef1,Ef2,…)の出射端部を束ねる事により実現することができる。
前記光ファイバ(Ef1,Ef2,…)のそれぞれが導光する前記出力光束(Fo)の光量に相関する量を測定できるよう、前記出射端(Eo1,Eo2,…)からの放射光の一部を抽出して総合した測定用出力光束(Fa1,Fa2,Fa3)を生成し、図1のものと同様に、第1光量測定手段(A1)および第2光量測定手段(A2)、第3光量測定手段(A3)に入力する構成とすることができる。
なお、ここでは、前記光ファイバ(Ef1,Ef2,…)の全ての出射端部を束ね、白色光の出力光束(Fo)を生成するものを記載したが、R,G,B各波長帯域毎に前記出射端(Eo1,Eo2,…)を分けて束ね、色別の出力光束を生成するようにすることもできる。
(参考文献:「色の性質と技術」1986年10月10日初版第1刷,応用物理学会・光学懇話会編,朝倉書店発行)
なお、一般文献では、等色関数は、x,y,z 各文字の上に横棒を付した記号が使用されるが、本明細書では都合により前記したように表記する。
X = ∫S(λ)・xe(λ)・dλ
Y = ∫S(λ)・ye(λ)・dλ
Z = ∫S(λ)・ze(λ)・dλ
の積分計算で求められる。
ただし、積分は380nmから780nmの領域で行う。
そして、人間が感じる光の色および光の明るさは、前記した三刺激値 X,Y,Z を組合せた情報によって特定可能であるとされている。
なお、光の明るさを除外した光の色については、以下の式(式2)
x = X/{X+Y+Z}
y = Y/{X+Y+Z}
で計算される色度座標 x,y によって特定可能であるとされている。
したがって前記第1光量測定手段(A1)および前記第2光量測定手段(A2)、前記第3光量測定手段(A3)それぞれの分光感度特性を、前記した等色関数 xe(λ),ye(λ),ze(λ) それぞれと同じにすることにより、前記出力光束(Fo,Fo1,Fo2,…)の前記した三刺激値 X,Y,Z を直接に測定することができるから、これらの値を所望の値に維持することによって前記出力光束(Fo,Fo1,Fo2,…)の光の色および光の明るさを安定化させることが、本発明の光源装置の設計指針となる。
前記光センサ(C1)からの光検出信号(Sg1)は、光量測定回路(H1)によって増幅やAD変換等の必要な処理を行い、第1光量測定データ(Sh1)を生成する。
当然ながら、前記第1光量測定手段(A1)の分光感度特性には、前記特性フィルタ(Et1)に起因するものに加え、前記光センサ(C1)自身の分光感度特性が反映される。
なお、前記光量測定回路(H1,H2,H3)は、マルチプレクサと共通の1個のAD変換器を備えた、1個の光量測定回路に統合することもできる。
したがって、前記特性フィルタ(Et1,Et2,Et3)の分光透過率特性は、それに前記光センサ(C1,C2,C3)自身の分光感度特性が重畳した特性が、少なくとも前記した波長帯域のそれぞれの近傍において、前記した等色関数 xe(λ),ye(λ),ze(λ) それぞれと同じになるようにすればよい。
したがって、前記特性フィルタ(Et1,Et2,Et3)の分光透過率特性は、それに前記光センサ(C1,C2,C3)自身の分光感度特性が重畳した特性において、基準波長における透過率値および基準波長における波長の変化に対する透過率の変化率が、前記した等色関数についての基準波長における関数値および基準波長における波長の変化に対する関数の変化率と同じになるようにすればよい。
λro = 640
λgo = 530
λbo = 460
のように定義して、定められている等色関数 xe(λ),ye(λ),ze(λ) の数表を参照することにより、前記第1光量測定手段(A1)に対応する xe(λ) については、以下の式(式4)
xe(λro) = 0.4479
xe(λgo) = 0.1655
xe(λbo) = 0.2511
dxe/dλ(λ=λro) = -0.01742
dxe/dλ(λ=λgo) = 0.01204
dxe/dλ(λ=λbo) = -0.01114
また、前記第2光量測定手段(A2)に対応する ye(λ) については、以下の式(式5)
ye(λro) = 0.1750
ye(λgo) = 0.8620
ye(λbo) = 0.0739
dye/dλ(λ=λro) = -0.00736
dye/dλ(λ=λgo) = 0.01058
dye/dλ(λ=λbo) = 0.00342
また、前記第3光量測定手段(A3)に対応する ze(λ) については、以下の式(式6)
ze(λro) = 0.0
ze(λgo) = 0.0422
ze(λbo) = 1.5281
dze/dλ(λ=λro) = 0.0
dze/dλ(λ=λgo) = -0.00248
dze/dλ(λ=λbo) = -0.04810
を得る。
このフィルタは、前記した式3に定めた波長の近傍、すなわち、本光源装置に実装される前記発光素子(Y1a,Y1b,…,Y2a,Y2b,…)が有するバラツキ、および想定温度範囲における発光波長変動に起因する、波長変化の上限と下限で規定される帯域幅内での特性を確定すればよく、この帯域幅の外における分光透過率特性はどのようであっても構わない。
したがって、前記した色度計等に使われるフィルタに比べて格段に設計・製作が容易であるため、低コストで実現できる利点がある。
したがって前記制御回路(Mc)は、得られた三刺激値 X,Y,Z の値を前記した式2に適用することにより、色度座標 x,y を計算することができる。
図4の(b)は、色度座標と色の関係を表した色度図と呼ばれるものを概略図で示したもので、この表色系で表現可能な全ての色は、図の点線上もしくはその内部に位置し、赤色(R),緑色(G),青色(B),白色(W)の概略位置を記載してある。
なお、レーザ光のような単色光は図の点線上に位置する。 (ただし、RからBに至る直線部、いわゆる純紫軌跡を除く。)
また、純白の色度座標は 1/3,1/3 である。
したがって前記制御回路(Mc)は、前記第1光量測定手段(A1)および前記第2光量測定手段(A2)、前記第3光量測定手段(A3)から読み取った三刺激値 X,Y,Z を前記した式2に適用して色度座標を算出し、算出された色度座標のそれぞれの値 x,y と、それらそれぞれの目標値とを比較し、例えば、もし x が目標値より大きい場合は、前記駆動回路(P1a,P1b,…,P2a,P2b,…)のなかのRの波長帯域の発光素子を駆動するものの出力電力の総和を p %減少させ、かつGの波長帯域の発光素子を駆動するものの出力電力の総和、およびBの波長帯域の発光素子を駆動するものの出力電力の総和それぞれを {p/2} %づつ増加させ、また、もし y が目標値より大きい場合は、Gの波長帯域の発光素子を駆動するものの出力電力の総和を q %減少させ、かつBの波長帯域の発光素子を駆動するものの出力電力の総和を q %増加させるよう、前記駆動回路制御信号(J1a,J1b,…,J2a,J2b,…)を介して制御する。
そして適当な時間をおいて、再度、前記した光量測定データを取得する箇所にシーケンスを戻すようにすることにより、フィードバック制御ループが構築され、光の強度をあまり変化させずに、色度座標とその目標値との差異が小さくなるよう常に制御が行われることになり、光の色の安定化を図ることができる。
したがって光の色に相関する色相指示値に加えて、R,G,B各波長帯域の全てを総合した光の明るさをも安定化制御する場合には、前記制御回路(Mc)は、測定された Y の値を明度指示値として、これと目標値とを比較し、もし Y が目標値より大きい場合は、R,G,Bそれぞれの発光素子への投入電力のバランスを変えずに、総合的な投入電力を Q %減少させるよう、前記駆動回路制御信号(J1a,J1b,…,J2a,J2b,…)を介して制御することにより、光の色を変化させないで、光の明るさとその目標値との差異が小さくなる方向へフィードバック制御することにより、光の明るさの安定化を図ることができる。
ここでは、この点が改善されたフィードバック制御を実現する指針を示す。
ここで、光の強度とは、前記発光素子(Y1a,Y1b,…,Y2a,Y2b,…)のなかの一つの波長帯域に属するもの全ての光パワーに相関するもので、人間の視感度とは無関係である。
一方、光の明るさは、人間が感じる明るさであるから、同じ光パワー(密度)であっても、波長が変われば、人間の視感度の影響をうけて大きさが変化する。
そして、決定した前記係数を使用して、R,G,B各波長帯域のそれぞれの前記発光強度指示値を微小変化させるための変化量を決定し、これに基づいて前記制御回路(Mc)は、前記駆動回路制御信号(J1a,J1b,…,J2a,J2b,…)を介して前記駆動回路(P1a,P1b,…,P2a,P2b,…)の出力電力を設定することにより、色度座標 x,y および光の明るさ Y がその目標値に維持されるようフィードバック制御を行うことができる。
したがって、もし、同じ色であっても発光効率の異なる複数種類が混在する等により、前記した前提が成り立たない場合は、例えば、ある発光色のもので、発光効率が高い、種類Aの発光素子と、それより発光効率が10%低い、種類Bの発光素子とがあったとして、前記駆動回路制御信号(J1a,J1b,…,J2a,J2b,…)を介して前記制御回路(Mc)からの電力設定指令を受信したとき、種類Bの発光素子を駆動する駆動回路は、内部的には、指令された設定電力に対し10%増しの電力を設定する、などとする構成上の工夫により、容易に解決することができる。
例えば、R,G,B各波長帯域のそれぞれの前記発光強度指示値を全て1%増す場合、前記した出力電力の総和それぞれが、200W,300W,100Wであったならば、それぞれ202W,303W,101Wとすればよい。
その理由は、電力の増加と光量の増加とが相関している限り、それが直線的な関係になくても、少しずつ電力を変化させることにより、フィードバック制御により、徐々に目標値に向けて系の状態を変化させて行けるからである。
駆動回路に対する電力設定は、例えば設定データ長が8ビットであれば256階調であるなど、その細やかさが有限である。
したがって、電力を最小単位ずつ増して行く場合、全ての駆動回路の電力設定を一斉に1LSBだけ増すのではなく、例えば、1番目の駆動回路の電力設定を1LSBだけ増し、次は2番目の駆動回路の電力設定を1LSBだけ増し、…、というように、駆動回路を分けて増し、最後の駆動回路の電力設定を1LSBだけ増したら、次はまた1番目の駆動回路の電力設定を1LSBだけ増し、…、という仕方で増すようにすれば、電力設定の階調数を、駆動回路の個数倍に増すことができる利点がある。
ここで、被測定光束 S(λ) が、R,G,Bそれぞれ単色の3原色から成っていると近似すると、デルタ関数 δ(λ) を用いて以下の式(式7)
S(λ) = Sr・δ(λ−λro )
+ Sg・δ(λ−λgo )
+ Sb・δ(λ−λbo )
のように表せる。
ここで、R,G,Bそれぞれの基準波長を λro,λgo,λbo とし、また、R,G,B各波長帯域のそれぞれの前記発光強度指示値を Sr,Sg,Sb とした。
X = Sr・xe(λro) + Sg・xe(λgo) + Sb・xe(λbo)
= Hxr・Sr + Hxg・Sg + Hxb・Sb
ただし、
Hxr =xe(λro)
Hxg =xe(λgo)
Hxb =xe(λbo)
および Y に関する以下の式(式9)
Y = Sr・ye(λro) + Sg・ye(λgo) + Sb・ye(λbo)
= Hyr・Sr + Hyg・Sg + Hyb・Sb
ただし、
Hyr =ye(λro)
Hyg =ye(λgo)
Hyb =ye(λbo)
さらに Z に関する以下の式(式10)
Z = Sr・ze(λro) + Sg・ze(λgo) + Sb・ze(λbo)
= Hzr・Sr + Hzg・Sg + Hzb・Sb
ただし、
Hzr =ze(λro)
Hzg =ze(λgo)
Hzb =ze(λbo)
を得る。
Pr = kr・Sr
Pg = kg・Sg
Pb = kb・Sb
のように表すことができる。
X = Hxr・Sr + Hxg・Sg + Hxb・Sb
Y = Hyr・Sr + Hyg・Sg + Hyb・Sb
Z = Hzr・Sr + Hzg・Sg + Hzb・Sb
を解いて Sr,Sg,Sb を求めれば、これらと前記した Pr,Pg,Pb との比から、前記した式11の比例係数 kr,kg,kb を決定することができる。
なお、前記式12は、初等的な3元連立1次方程式であるから、容易に解くことができる。
その Pr,Pg,Pb の値にて実際に駆動したときの三刺激値 X,Y,Z を測定し、その測定値に基づいて前記した方程式12を解き、得られた Sr,Sg,Sb と、その元となった目標値 Srp,Sgp,Sbp との比を用いて、比例係数 kr,kg,kb を、以下の式(式13)
kr = kr・Srp/Sr
kg = kg・Sgp/Sg
kb = kb・Sbp/Sb
に従って補正すればよい。
(式13の各式の等号は、その右辺の計算結果を左辺の変数に代入する、という意味で、一般的プログラミング言語、例えばCにおける計算命令の記法に従って表記している。)
Srp = Sr + ΔSr
Sgp = Sg + ΔSg
Sbp = Sb + ΔSb
に従って目標値 Srp,Sgp,Sbp を更新し、前記した式11に従って電力を再設定して、三刺激値 X,Y,Z を測定する度に行うことにすればよい。
このようにすることにより、前記したように、前記比例係数 kr,kg,kb が真の比例定数ではなく、例えば飽和傾向を示すような、非直線的なものであっても、前記した式11で規定される、単なる比として補正が繰り返し行われるため、R,G,B各駆動回路の電力 Pr,Pg,Pb と発光強度指示値 Sr,Sg,Sb との正しい対応が維持される。
しかし x,y,Y の系と X,Y,Z の系とは、前記した式2と以下の式(式15)
X = Y・x/y
Z = Y・(1 − x − y)/y
によって互いに変換が可能であるため、光の色に相関する色相指示値として、色度座標または三刺激値の何れをも採用することができる。
前記した式8,式9,式10より、発光強度指示値 Sr,Sg,Sb を微小変化させたときの三刺激値 X,Y,Z の変化 ΔX,ΔY,ΔZ は、以下の式(式16)
ΔX = Hxr・ΔSr + Hxg・ΔSg + Hxb・ΔSb
ΔY = Hyr・ΔSr + Hyg・ΔSg + Hyb・ΔSb
ΔZ = Hzr・ΔSr + Hzg・ΔSg + Hzb・ΔSb
のように表すことができる。
ΔX = D・{Xp −X}
ΔY = D・{Yp −Y}
ΔZ = D・{Zp −Z}
によって Δx,Δy,ΔY の値を決めれば、前記した式16は ΔSr,ΔSg,ΔSb に関する初等的な3元連立1次方程式と見ることができ、全ての係数が決まっているため、容易に解くことができて、前記発光強度指示値の微小変化量 ΔSr,ΔSg,ΔSb の値を求めることができる。
前記した式14に従って、求めた ΔSr,ΔSg,ΔSb を元の Sr,Sg,Sb に加えて発光強度指示値の新しい目標値 Srp,Sgp,Sbp を算出し、前記した式13を介して、前記駆動回路(P1a,P1b,…,P2a,P2b,…)の電力 Pr,Pg,Pb を更新することができる。
先ず、係数 Hxr,Hxg,Hxb,Hyr,Hyg,Hyb,Hzr,Hzg,Hzb の値を、式8,式9,式10に従い事前に準備しておく。
前記制御回路(Mc)は、R,G,B各波長帯域のそれぞれの前記発光強度指示値たる Sr,Sg,Sb に対し、適当な初期目標値 Srp,Sgp,Sbp を定め、また、比例係数 kr,kg,kb の適当な初期値を定め、式11によって前記駆動回路(P1a,P1b,…,P2a,P2b,…)の電力 Pr,Pg,Pb を設定して発光素子(Y1a,Y1b,…,Y2a,Y2b,…)の駆動を開始し、適当に定めた暖機運転期間だけ待機する。
それを前記した式12に適用し、これを解くことにより得られた発光強度指示値 Sr,Sg,Sb と、元の目標値 Srp,Sgp,Sbp を式13に適用して比例係数 kr,kg,kb を更新する。
測定した三刺激値 X,Y,Z とその目標値 Xp,Yp,Zp とを式17に適用すると式16の左辺が決定されるから、これを3元連立1次方程式と見て解き、前記発光強度指示値の微小変化量 ΔSr,ΔSg,ΔSb の値を求める。
前記制御回路(Mc)は、前記発光強度指示値の現在の値 Sr,Sg,Sb に対し、いま求めた ΔSr,ΔSg,ΔSb を式14に適用して発光強度指示値の新しい目標値 Srp,Sgp,Sbp を算出し、式11に従って前記駆動回路(P1a,P1b,…,P2a,P2b,…)の電力 Pr,Pg,Pb を更新する。
そして三刺激値 X,Y,Z を読取る動作に戻り、以降、記載したシーケンスを繰り返すようにすることにより、フィードバック制御ループが構築される。
ただし、あまり小さくすると補正の完了までに過剰な時間が掛かるなどの不都合が生ずる可能性があるため、実験的に好適な値を決めるとよい。
上において述べた三刺激値 X,Y,Z が、その目標値 Xp,Yp,Zp に維持されるように制御する方法の場合、光の色の目標を維持したまま、例えば Sr が所定の値となるよう、光の明るさを小さくしたい場合は、三刺激値の目標値 Xp,Yp,Zp それぞれを、適当に決めた、ある同じ比率で縮小することを試行し、フィードバックループを実際に回してみて、Sr が所定の値になるような適当な比率が見つかるまで、試行錯誤する必要がある。
以下において、制御対象を x,y,Y とする場合について説明する。
T = X+Y+Z
は、前記した式8,式9,式10を用いて以下の式(式19)
T = { Hxr + Hyr + Hzr }・Sr
+ { Hxg + Hyg + Hzg }・Sg
+ { Hxb + Hyb + Hzb }・Sb
= Ir・Sr +Ig・Sg +Ib・Sb
ただし、
Ir =Hxr + Hyr + Hzr
Ig =Hxg + Hyg + Hzg
Ib =Hxb + Hyb + Hzb
のように表し、前記した式2の色度座標 x,y は、前記した式8,式9,式19を用いた以下の式(式20)
x = X/T
y = Y/T
のように表現することができる。
Δf = (δf/δu)・Δu + (δf/δv)・Δv + (δf/δw)・Δw
のように近似できる。
色度座標 x,y および光の明るさ Y が、前記発光強度指示値 Sr,Sg,Sb を変数とする関数であると見て、式20に式21を適用し、以下の式(式22)
Jxr = δx/δSr = { δX/δSr・T − X・δT/δSr }/{T・T}
= { Hxr・T − Ir・X }/{T・T}
= { Hxr − Ir・x }/T
Jxg = δx/δSg = { Hxg − Ig・x }/T
Jxb = δx/δSb = { Hxb − Ib・x }/T
Jyr = δy/δSr = { Hyr − Ir・y }/T
Jyg = δy/δSg = { Hyg − Ig・y }/T
Jyb = δy/δSb = { Hyb − Ib・y }/T
のように偏微分係数の値を具体的に決めれば、Sr,Sg,Sb を微小変化させたときの x,y,Y の変化量は、以下の式(式23)
Δx = Jxr・ΔSr +Jxg・ΔSg +Jxb・ΔSb
Δy = Jyr・ΔSr +Jyg・ΔSg +Jyb・ΔSb
ΔY = Hyr・ΔSr +Hyg・ΔSg +Hyb・ΔSb
のように表すことができる。 ただし、式23の3番目の( ΔY に関する)式は、式9から得られる次の関係に基づく。
δY/δSr = Hyr
δY/δSg = Hyg
δY/δSb = Hyb
Δx = D・{xp −x}
Δy = D・{yp −y}
ΔY = D・{Yp −Y}
によって Δx,Δy,ΔY の値を決めれば、前記した式23は、ΔSr,ΔSg,ΔSb に関する初等的な3元連立1次方程式と見ることができ、全ての係数が決まっているため、容易に解くことができて、前記発光強度指示値の微小変化量 ΔSr,ΔSg,ΔSb の値を求めることができる。
先ず、係数 Hxr,Hxg,Hxb,Hyr,Hyg,Hyb,Hzr,Hzg,Hzb および Ir,Ig,Ib の値を、式8,式9,式10,式19に従い事前に準備しておく。
前記制御回路(Mc)は、R,G,B各波長帯域のそれぞれの前記発光強度指示値たる Sr,Sg,Sb に対し、適当な初期目標値 Srp,Sgp,Sbp を定め、また、比例係数 kr,kg,kb の適当な初期値を定め、式11によって前記駆動回路(P1a,P1b,…,P2a,P2b,…)の電力 Pr,Pg,Pb を設定して発光素子(Y1a,Y1b,…,Y2a,Y2b,…)の駆動を開始し、適当に定めた暖機運転期間だけ待機する。
それを前記した式12に適用し、これを解くことにより得られた発光強度指示値 Sr,Sg,Sb と、元の目標値 Srp,Sgp,Sbp を式13に適用して比例係数 kr,kg,kb を更新する。
測定した三刺激値 X,Y,Z の値を式18および式20に適用して、三刺激値和 T および色度座標 x,y の値を求める。
また、これを式22に適用して、式23の右辺の係数 Jxr,Jxg,Jxb,Jyr,Jyg,Jyb を決定しておく。
値を求めた x,y,Y と、その目標値 xp,yp,Yp とを式24に適用すると式23の左辺が決定されるから、これを3元連立1次方程式と見て解き、前記発光強度指示値の微小変化量 ΔSr,ΔSg,ΔSb の値を求める。
前記制御回路(Mc)は、前記発光強度指示値の現在の値 Sr,Sg,Sb に対し、いま求めた ΔSr,ΔSg,ΔSb を式14に適用して発光強度指示値の新しい目標値 Srp,Sgp,Sbp を算出し、式11に従って前記駆動回路(P1a,P1b,…,P2a,P2b,…)の電力 Pr,Pg,Pb を更新する。
そして三刺激値 X,Y,Z を読取る動作に戻り、以降、記載したシーケンスを繰り返すようにすることにより、フィードバック制御ループが構築される。
理由は、例えば、本光源装置をプロジェクタに応用する場合、プロジェクタ本体の光学系の光の利用効率が、R,G,B各色で同じであるとは限らないからである。
例えば、あるプロジェクタ本体の光学系ではB色の利用効率が低いとすると、目標とする色度座標は、B色成分が多めの、青色がかったものとするとよいであろう。
したがって、目標とする色度座標は、本光源装置の出力光束(Fo,Fo1,Fo2,…)の色ではなく、本光源装置を利用する装置の出力に合わせて決めればよい。
Δx−Jxr・ΔSr = Jxg・ΔSg +Jxb・ΔSb
Δy−Jyr・ΔSr = Jyg・ΔSg +Jyb・ΔSb
のように組み換えた方程式を適用すればよく、これは初等的な2元連立1次方程式であるから容易に解くことができて、ΔSg まはた ΔSb を求めることができる。
Sg,Sb を別途決める場合についても同様である。
ただし、このようにした場合は、光の明るさ Y を目標値に維持することはできなくなるが、色度座標 x,y を目標値に維持するフィードバック制御は実行することができる。
同じ色であっても複数個の発光素子を集めた場合、発光波長のバラツキがあるため、それらを総合した光のスペクトル S(λ) は、正確には前記した式7のようなデルタ関数にはならない。
しかし、発光波長のバラツキがあっても、同じ波長帯域に属する全ての発光素子を総合し、その波長の平均値に等しい波長を有する、仮想的な単色光源に置き換えると考えれば、前記した議論が成立する。
また、仮想的な単色光源の波長として、平均波長を測定することなく基準波長 λro,λgo,λbo に決めてしまっているが、この差異は僅かである上、差異の影響は、前記した式16、あるいは式23を解いて得るベクトル ΔSr,ΔSg,ΔSb の方向が、僅かに変化することだけであり、フィードバックループのなかで、繰り返し再計算されて補正されるため、全く問題にならない。
しかし、本発明の光源装置においては、実質的に等色関数に等しい分光感度特性を有する光量測定手段によって三刺激値 X,Y,Z を測定しており、この点に関しては、デルタ関数での近似は行っていないため、前記したスペクトル幅の拡がりの影響は正しく反映される仕組みになっている。
前記したように本光源装置における色度座標等の計算の目的が正確な絶対値を確定することではないことを前提として、種々の近似計算を行っている。
そのため、目標値 xp,yp,Yp を数値で与えても、フィードバック制御によって達成される状態が所望のものになるかどうかは不明であり、このような使い方は適当ではない。
例えばプロジェクタに応用する場合で言えば、本光源装置をプロジェクタの実機に実際に搭載し、フィードバック制御を停止させた状態で、白色となるべき画像をスクリーンに投影させ、所望の白色が得られるよう、本光源装置のR,G,Bそれぞれの光の強度を手動で調整し、調整が完了したときの本光源装置自身による x,y,Y の測定値を、その目標値 xp,yp,Yp として記憶するとよい。
記憶された目標値の実際の値については無頓着でも構わず、それ以降は、フィードバック制御を実行すれば、所望の白色が得られる状態が達成される。
なお、言うまでもないが、前記したように、x,y,Y の系と X,Y,Z の系は、式2と式15とによって互いに変換が可能であるため、いま述べたことは、目標値 Xp,Yp,Zp に関しても同様である。
この場合、前記第1光量測定手段(A1)と前記第2光量測定手段(A2)と前記第3光量測定手段(A3)は、光センサ(C)を共有しており、前記第1光量測定手段(A1)として働く場合、前記第2光量測定手段(A2)として働く場合、前記第3光量測定手段(A3)として働く場合のそれぞれの場合において、前記光センサ(C)に前置する特性フィルタ(Et1,Et2,Et3)を置き換えるようにすればよい。
また図5では前記特性フィルタ(Et1,Et2,Et3)を回転させるものを記載したが、前記特性フィルタ(Et1,Et2,Et3)を一列に配置した枠を設け、それをソレノイド等によって往復移動させるようにしてもよい。
しかし、このように光センサ(C)を共有させることにすれば、前記第1光量測定手段(A1)と前記第2光量測定手段(A2)と前記第3光量測定手段(A3)とに切り換えての光量測定の時間間隔が、前記した変動の時間スケールより十分短い限り、前記した変動の影響を受けないようにできる利点が生まれる。
このように構成した前記第1光量測定手段(A1)の一例を、本発明の光源装置の一部を簡略化して示す模式図である図6に示す。
前記光センサ(C1a,C1b,C1c)それぞれの信号は、電流電圧変換アンプを構成する演算増幅器(Aia,Aib,Aic)の反転入力端子にそれぞれ接続される。
前記演算増幅器(Aia,Aib,Aic)の出力である光検出信号(Sia,Sib,Sic)は、可変抵抗(Ria,Rib,Ric)によって前記した反転入力端子に帰還されることにより、前記演算増幅器(Aia,Aib,Aic)はゲイン可変のアンプとして機能する。
前記演算増幅器(Ag)の出力である光検出信号(Sg1)は、可変抵抗(Rg)によって前記した反転入力端子に帰還されることにより、前記演算増幅器(Ag)はゲイン可変のアンプとして機能する。
前記光検出信号(Sg1)は、光量測定回路(H)により増幅やAD変換等の必要な処理を行い、第1光量測定データ(Sh1)を生成する。
そのため、R,G,B全てを合わせて分光透過率特性が整合された一つのフィルタを製作するよりも、R,G,Bそれぞれの波長帯域において個別に分光透過率特性を作り込んだ、3個のフィルタを製作し、特性のバラツキが生じた場合は、前記可変抵抗(Ria,Rib,Ric)によって後から調整できるようにする方が、フィルタの製作が格段に容易になるため、低コスト化できる利点が生まれる。
なお、図6は前記第1光量測定手段(A1)をこのように構成する場合の例であるが、前記第2光量測定手段(A2)、前記第3光量測定手段(A3)についても同様に構成することができる。
例えば、図5について説明した、光センサを共有して時間分割によって特性変化を与える技術と組み合わせることが可能である。
その際、例えば、円板状フィルタ支持体(Kt)には、波長帯域のそれぞれにおける各等色関数 xe(λro),xe(λgo),xe(λbo),ye(λro),ye(λgo),ye(λbo),ze(λro),ze(λgo),ze(λbo) それぞれの波長帯域近傍の分光透過率特性を実現する、9種類のフィルタを設けるようにすることにより、全体として1個の光センサ(C)のみを有するように構成することが可能である。
(前記した式6に記載のように ze(λro) は零であるから、実際的には8種類でよいことになる。)
この場合、図6に記載した光量測定手段において、3個の前記光検出信号(Sia,Sib,Sic)を前記演算増幅器(Ag)で加算して合成する回路の機能に相当する処理は、光量測定回路(H)より後段で行う。
光ファイバが破断すると、破断箇所から光パワーが漏洩して光ファイバを機械的に保護するために設けた被覆材に吸収され、被覆材が焼損に至る可能性があるため、光ファイバの破断が起きれば、それを検知して発光素子を消灯する安全対策が必要となる。
全体として大きなパワーを伝送する場合は、同じ色の光に対しても複数本の光ファイバに分割することが、光学系の構成上も、安全性の面からも有利であるが、その場合は、全光ファイバからの総合光量を監視するだけではなく、光ファイバ1本づつの光量を監視し、個別に破断を検知できることが望ましい。
なお、撮像素子としてカラー映像用撮像素子を使用することも可能である。
カラー映像用撮像素子の各画素には、R,G,Bのカラーフィルタの何れかが設けられているため、光量測定手段の形態としては、図6に関して説明した構成のうちの、9種類のフィルタを設けるものと同様であり、同様の利点が得られる。
本図に記載の光源装置は、R,G,B3原色に対応して、各色複数本の光ファイバ、すなわちR色光源用光ファイバ(EfR1,EfR2,…)、G色光源用光ファイバ(EfG1,EfG2,…)、B色光源用光ファイバ(EfB1,EfB2,…)は、それぞれ出射端を揃えて束ねられた、ファイババンドルとして構成され、これら3本のファイババンドルの出射端を、それぞれコリメータレンズ(EsR,EsG,EsB)で無限遠の像に変換した光束を、ミラー(HuR)およびダイクロイックミラー(HuG,HuB)を用いて色合成して、出力光束(Fo)を生成するように構成してある。
前記光均一化手段(Fm)の射出端(Pmo)以降の光学系については、先に図8に関して述べたものと同様である。
当然ながら、本発明の光源装置は、フライアイインテグレータによる光均一化手段を用いた、先に図9に関して述べたプロジェクタにおいても利用できる。
前記測定用出力光束(Fa)は、レンズからなる結像光学系(Ea)に入射され、前記ファイババンドルのR色出射端(EoR1,EoR2,…)およびG色出射端(EoG1,EoG2,…)、B色出射端(EoB1,EoB2,…)と共役な実像が撮像素子(Cc)の撮像面上に結像される。
前記撮像素子(Cc)によって撮影されたこれらの像の映像信号(Sg)は、前記した光量測定回路(H)に送られる。
前記結像光学系(Ea)の前または後に、図5に記載のものと同様に、特性フィルタ(Et1,Et2,Et3)を装着した円板状フィルタ支持体(Kt)を配置し、モータ等の回転機構(Km)によって前記特性フィルタ(Et1,Et2,Et3)を切り換え可能な構成としている。
また、前記撮像素子(Cc)の映像に基づき、前記R色出射端(EoR1,EoR2,…),前記G色出射端(EoG1,EoG2,…),前記B色出射端(EoB1,EoB2,…)それぞれの光量を別々に測定し、何れかに光量低下の異常が発生しないかどうかを監視する。
しかし、前記した波長帯域のうちの何れかに、実質的に波長の変化が生じない、あるいは無視できる前記発光素子が含まれる場合、前記第1光量測定手段(A1)および前記第2光量測定手段(A2)、前記第3光量測定手段(A3)の、その波長帯域における分光感度特性については、その波長における感度値が、XYZ表色系の3個の等色関数それぞれのその波長における感度値と一致していれば、波長の変化に対する感度の変化率に関しては一致していなくてもよい。
実際、発振波長が安定化された半導体レーザや、体積ブラッグ回折格子で構成された共振用反射器を有する半導体レーザや非線形光学高調波発振器などにおいて、このような取扱いが可能な発光素子が存在する。
例えば、その波長帯域がG色であるならば、前記光量測定手段におけるG色近傍の波長の変化に対する感度の変化率はどのようなものであっても構わない。
そのような、実質的に波長の変化が生じない、あるいは無視できる波長帯域が、1種類のみならず、2種類ある場合でも、本発明は適用可能であり、良好に機能する。
また、本明細書においては、「微小変化」なる用語が複数の箇所で現れているが、これは、前記した式21などの近似式において、実際に近似が成立することを期待して与える u,v,w の変化 Δu,Δv,Δw を指しており、通常は、小さい値であるほど近似の精度は向上するが、要求する精度の低さによっては、相当大きな値であっても実用的である場合もあるため、本光源装置の用途に照らして許容できる大きさが決まるものである。
A2 第2光量測定手段
A3 第3光量測定手段
Ag 演算増幅器
Ah1 光センサ回路部
Aia 演算増幅器
Aib 演算増幅器
Aic 演算増幅器
B 青色
C 光センサ
C1 光センサ
C1a 光センサ
C1b 光センサ
C1c 光センサ
C2 光センサ
C3 光センサ
Cc 撮像素子
DmjA 2次元光振幅変調素子
DmjB 2次元光振幅変調素子
Ea 結像光学系
Ec1 集光光学系
Ec2 集光光学系
Edm 拡散素子
Ef1 光ファイバ
Ef2 光ファイバ
EfB1 B色光源用光ファイバ
EfB2 B色光源用光ファイバ
EfG1 G色光源用光ファイバ
EfG2 G色光源用光ファイバ
EfR1 R色光源用光ファイバ
EfR2 R色光源用光ファイバ
Ei1 入射端
Ei2 入射端
Ej1A 照明レンズ
Ej1B 照明レンズ
Ej2A 投影レンズ
Ej2B フィールドレンズ
Ej3B 投影レンズ
Eo1 出射端
Eo2 出射端
EoB1 B色出射端
EoB2 B色出射端
EoG1 G色出射端
EoG2 G色出射端
EoR1 R色出射端
EoR2 R色出射端
EsB コリメータレンズ
EsG コリメータレンズ
EsR コリメータレンズ
Et1 特性フィルタ
Et1a 特性フィルタ
Et1b 特性フィルタ
Et1c 特性フィルタ
Et2 特性フィルタ
Et3 特性フィルタ
Eu 集光レンズ
F1B 前段フライアイレンズ
F2B 後段フライアイレンズ
Fa 測定用出力光束
Fa1 測定用出力光束
Fa2 測定用出力光束
Fa3 測定用出力光束
Fm 光均一化手段
FmA 光均一化手段
FmB 光均一化手段
Fo 出力光束
Fo1 出力光束
Fo2 出力光束
Ft1 測定用出力光束
Ft1a 測定用出力光束
Ft1b 測定用出力光束
Ft1c 測定用出力光束
G 緑色
H 光量測定回路
H1 光量測定回路
H2 光量測定回路
H3 光量測定回路
HuB ダイクロイックミラー
HuG ダイクロイックミラー
HuR ミラー
J1a 駆動回路制御信号
J1b 駆動回路制御信号
J2a 駆動回路制御信号
J2b 駆動回路制御信号
Ka 矢印
Km 回転機構
Kt 円板状フィルタ支持体
LCD 液晶デバイス
Mc 制御回路
MjA ミラー
MjB 偏光ビームスプリッタ
P1a 駆動回路
P1b 駆動回路
P2a 駆動回路
P2b 駆動回路
PcB 偏光整列機能素子
Pmi 入射端
PmiA 入射端
PmiB 入射端
Pmo 射出端
PmoA 射出端
PmoB 射出端
R 赤色
Rg 可変抵抗
Ria 可変抵抗
Rib 可変抵抗
Ric 可変抵抗
Rja 抵抗
Rjb 抵抗
Rjc 抵抗
Sg 映像信号
Sg1 光検出信号
Sh1 第1光量測定データ
Sh2 第2光量測定データ
Sh3 第3光量測定データ
Sia 光検出信号
Sib 光検出信号
Sic 光検出信号
SjA 光源
SjB 光源
Tj スクリーン
U1 要素光源
U2 要素光源
W 白色
Y1a 発光素子
Y1b 発光素子
Y2a 発光素子
Y2b 発光素子
ZiB 入射光軸
Claims (7)
- 狭い波長帯域で発光する発光素子(Y1a,Y1b,…)と前記発光素子(Y1a,Y1b,…)を駆動する駆動回路(P1a,P1b,…)を具備するユニットを1個の要素光源(U1)として、該要素光源(U1,U2,…)の複数個と、前記駆動回路(P1a,P1b,…,P2a,P2b,…)を制御する制御回路(Mc)と、を有し、前記発光素子(Y1a,Y1b,…,Y2a,Y2b,…)からの放射光を集めた出力光束(Fo,Fo1,Fo2,…)を外部に放射する光源装置であって、前記発光素子(Y1a,Y1b,…,Y2a,Y2b,…)は、発光波長が複数種類の異なる波長帯域に属するものを含んでおり、さらに前記光源装置は、前記出力光束(Fo,Fo1,Fo2,…)の総合的な光量を測定するために、出力光束(Fo,Fo1,Fo2,…)の光量に相関する量の光を受光する第1光量測定手段(A1)と第2光量測定手段(A2)と第3光量測定手段(A3)とを有し、前記第1光量測定手段(A1)、前記第2光量測定手段(A2)、前記第3光量測定手段(A3)それぞれの分光感度特性に関して、前記した波長帯域のそれぞれで定めた各基準波長における感度値が、XYZ表色系の3個の等色関数それぞれの同じ基準波長における感度値と一致し、かつ少なくとも一つの基準波長における波長の変化に対する感度の変化率が、XYZ表色系の3個の等色関数それぞれの同じ基準波長における波長の変化に対する感度の変化率と一致しており、前記制御回路(Mc)は、前記第1光量測定手段(A1)が生成する第1光量測定データ(Sh1)と、前記第2光量測定手段(A2)が生成する第2光量測定データ(Sh2)と、前記第3光量測定手段(A3)が生成する第3光量測定データ(Sh3)を少なくとも間欠的に取得して、前記出力光束(Fo,Fo1,Fo2,…)の総合的な光の色に相関する色相指示値を生成し、前記色相指示値とその目標値の差異が小さくなるよう、前記駆動回路(P1a,P1b,…,P2a,P2b,…)をフィードバック制御するものであって、前記制御回路(Mc)は、前記した波長帯域のそれぞれについての光の強度に相関する発光強度指示値を微小変化させたときの前記色相指示値の変化量を、前記した前記発光強度指示値の変化量を用いて、その線形演算で表すときの係数を決定し、前記係数を介した計算により前記した波長帯域のそれぞれについての前記発光強度指示値の変化量を決定し、前記した波長帯域のそれぞれについての前記発光強度指示値と、前記した波長帯域のそれぞれについてのその波長帯域に属する前記発光素子(Y1a,Y1b,…,Y2a,Y2b,…)に供給される電力の総合した値とを対応づけて前記駆動回路(P1a,P1b,…,P2a,P2b,…)を制御することを特徴とする光源装置。
- 前記制御回路(Mc)は、前記出力光束(Fo,Fo1,Fo2,…)の総合的な光の明るさに相関する明度指示値を生成し、前記明度指示値とその目標値の差異が小さくなるよう、前記駆動回路(P1a,P1b,…,P2a,P2b,…)をフィードバック制御することを特徴とする請求項1に記載の光源装置。
- 前記第1光量測定手段(A1)と前記第2光量測定手段(A2)と前記第3光量測定手段(A3)は、それぞれ光センサ(C1,C2,C3)を有し、特性フィルタ(Et1,Et2,Et3)を前記光センサ(C1,C2,C3)に前置することを特徴とする請求項1又は2に記載の光源装置。
- 前記第1光量測定手段(A1)と前記第2光量測定手段(A2)と前記第3光量測定手段(A3)は、同じ光量測定手段に対して特性変化を与えることにより、時間分割によって実現するものであり、前記第1光量測定手段(A1)と前記第2光量測定手段(A2)と前記第3光量測定手段(A3)は、光センサ(C)を共有しており、前記第1光量測定手段(A1)として働く場合、前記第2光量測定手段(A2)として働く場合、前記第3光量測定手段(A3)として働く場合のそれぞれの場合において、前記光センサ(C)に前置する特性フィルタ(Et1,Et2,Et3)を置き換えることを特徴とする請求項1又は2に記載の光源装置。
- 前記特性フィルタ(Et1,Et2,Et3)の少なくとも一つが複数のフィルタに分割されており、分割されたフィルタそれぞれに基づく信号を合成して前記した分光感度特性が実現されることを特徴とする請求項1〜3のいずれか1項に記載の光源装置。
- 前記第1光量測定手段(A1)または前記第2光量測定手段(A2)または前記第3光量測定手段(A3)が有する前記光センサの少なくとも一つが撮像素子であることを特徴とする請求項1〜5のいずれか1項に記載の光源装置。
- 請求項1〜6のいずれか1項に記載の光源装置を利用して画像を投影表示することを特徴とするプロジェクタ。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/074867 WO2016042662A1 (ja) | 2014-09-19 | 2014-09-19 | 光源装置およびプロジェクタ |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2016042662A1 JPWO2016042662A1 (ja) | 2017-04-27 |
JP6300129B2 true JP6300129B2 (ja) | 2018-03-28 |
Family
ID=55532725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016548512A Expired - Fee Related JP6300129B2 (ja) | 2014-09-19 | 2014-09-19 | 光源装置およびプロジェクタ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6300129B2 (ja) |
WO (1) | WO2016042662A1 (ja) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6507159B2 (en) * | 2001-03-29 | 2003-01-14 | Koninklijke Philips Electronics N.V. | Controlling method and system for RGB based LED luminary |
US7212287B2 (en) * | 2004-08-05 | 2007-05-01 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Providing optical feedback on light color |
TWI323141B (en) * | 2006-09-15 | 2010-04-01 | Coretronic Corp | Method of remedying a plurality of monochromatic light from a plurality of light-emitting diodes and the light-emitting diode control system utilizing the method |
JP5554992B2 (ja) * | 2006-12-11 | 2014-07-23 | コーニンクレッカ フィリップス エヌ ヴェ | 照明器具制御システム及び方法 |
JP5796275B2 (ja) * | 2010-06-02 | 2015-10-21 | セイコーエプソン株式会社 | 分光測定器 |
-
2014
- 2014-09-19 JP JP2016548512A patent/JP6300129B2/ja not_active Expired - Fee Related
- 2014-09-19 WO PCT/JP2014/074867 patent/WO2016042662A1/ja active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JPWO2016042662A1 (ja) | 2017-04-27 |
WO2016042662A1 (ja) | 2016-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5790811B2 (ja) | 光源装置およびプロジェクタ | |
JP5729522B2 (ja) | 光源装置およびプロジェクタ | |
JP5900806B2 (ja) | 光源装置およびプロジェクタ | |
US20160255313A1 (en) | Light source device and projector | |
JP5884887B2 (ja) | 光源装置およびプロジェクタ | |
JP6425110B2 (ja) | 光源装置およびプロジェクタ | |
JP2013182142A (ja) | マルチ画面表示装置 | |
US9532017B2 (en) | Light sensitivity controlling apparatus and projection-type display device equipped with same | |
JP5822007B2 (ja) | 光源装置およびプロジェクタ | |
JP2014187465A (ja) | 光源装置およびプロジェクタ | |
JP2016061866A (ja) | 光源装置およびプロジェクタ | |
JP6300129B2 (ja) | 光源装置およびプロジェクタ | |
US10031407B2 (en) | Light source unit and projector | |
JP2015125834A (ja) | 光源装置およびプロジェクタ | |
WO2016039104A1 (ja) | 光源装置およびプロジェクタ | |
JP2014157184A (ja) | 光源装置およびプロジェクタ | |
JP2016128871A (ja) | 光源装置および投写型表示装置 | |
JP2018061149A (ja) | 画像投射装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171025 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180202 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180215 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6300129 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |