WO2016038881A1 - 位置推定装置、位置推定システム、方法および記録媒体 - Google Patents

位置推定装置、位置推定システム、方法および記録媒体 Download PDF

Info

Publication number
WO2016038881A1
WO2016038881A1 PCT/JP2015/004546 JP2015004546W WO2016038881A1 WO 2016038881 A1 WO2016038881 A1 WO 2016038881A1 JP 2015004546 W JP2015004546 W JP 2015004546W WO 2016038881 A1 WO2016038881 A1 WO 2016038881A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
wireless device
devices
wireless
inter
Prior art date
Application number
PCT/JP2015/004546
Other languages
English (en)
French (fr)
Inventor
裕之 井倉
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016547701A priority Critical patent/JP6607190B2/ja
Publication of WO2016038881A1 publication Critical patent/WO2016038881A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location

Definitions

  • the present invention relates to a position estimation device, a position estimation system, a method, and a recording medium, and in particular, position estimation that estimates the position of each wireless device based on the inter-device distance estimated from the radio wave propagation time between a plurality of wireless devices.
  • the present invention relates to an apparatus, a position estimation system, a method, and a recording medium.
  • GPS Global Positioning System
  • radio waves transmitted from multiple GPS satellites are received by a single receiver, and the position of the receiver is estimated from the time difference between the arrival of those radio waves.
  • GPS satellites are equipped with atomic clocks, and by periodically correcting the atomic clocks, it is possible to transmit radio waves with accurate timing. ing.
  • an accurate timepiece is usually very expensive, and it is difficult to mount on the terminal side in terms of cost.
  • Patent Documents 1 to 6 disclose techniques for estimating the position of a wireless device constituting a wireless network system.
  • Patent Document 1 and Patent Document 2 estimate the position of a mobile station using a radio wave reception delay time in a mobile communication system.
  • the position is estimated using the arrival time differences of radio waves from a plurality of base stations.
  • the position of the mobile station is calculated by measuring the delay time of radio waves from a mobile station whose position is to be obtained to a plurality of base station antennas provided on the outer periphery of the zone. .
  • Patent Document 3 discloses a technique for estimating the position of a mobile station by measuring received radio wave intensity from a plurality of base stations.
  • the method of estimating the position using the radio field strength has the advantage of being low-cost compared to other methods, the radio field strength is greatly affected by the surrounding environment, so the position estimation accuracy is very low.
  • Japanese Patent Application Laid-Open No. 2004-228561 improves the disadvantage that the position estimation accuracy of the method of estimating the position using the radio wave intensity is low by using a neural network.
  • Patent Document 4 discloses a method for estimating the positions of a plurality of sensor nodes from the results of distance measurement between sensor nodes.
  • the technique disclosed in Patent Document 4 eliminates a location estimation value with low reliability by obtaining an angle between anchor nodes whose positions are known from a distance measurement result and comparing the angle with a predetermined threshold value. Therefore, a method for improving the accuracy of the overall position information is used.
  • Patent Document 5 is a technique related to a wireless device that can autonomously estimate the position of a wireless device that constitutes a wireless ad hoc network. According to Patent Document 5, a calculation distance calculated by a wireless device based on a temporary self-position and a temporary position of a wireless device existing in the vicinity is a measured distance between the wireless device existing in the vicinity and the wireless device. The tentative self-position is autonomously corrected sequentially so as to approach the position, and the self-position is determined.
  • Patent Document 6 discloses a distance measurement method based on a direct spread spectrum method.
  • Patent Document 1 and Patent Document 2 When estimating the positional relationship between wireless devices using radio wave propagation delay in wireless communication, the techniques disclosed in Patent Document 1 and Patent Document 2 estimate the distance from a base station whose position is known. This is a method for estimating the position of an unknown mobile station. Therefore, it has been difficult to use for position estimation using communication distance measurement between wireless devices whose positions are unknown.
  • Japanese Patent Laid-Open No. 2004-228561 improves the disadvantage that the position estimation accuracy of the method of estimating the position using the radio wave intensity is low by using a neural network. However, even if improvements are made, the position estimation accuracy using the radio wave intensity is still lower in position estimation accuracy than the position estimation using the radio wave delay time difference and the arrival direction.
  • Patent Document 4 After verifying the position estimation accuracy of a target node whose position is unknown, it is converted into an anchor node whose position is known, so that a communication distance between wireless devices whose positions are unknown is measured. It is possible to use for position estimation using. However, once a certain target node is converted to an anchor node, the probability of the position related to the anchor node is cleared and is not used for the next position estimation. Therefore, this technique has a problem that the position estimation accuracy cannot be increased even if re-measurement is performed.
  • Patent Document 4 since the technique disclosed in Patent Document 4 does not consider the difference in the probability included in each distance measurement value, the accuracy is improved by measuring the difference in the quality of the communication environment and the communication path. There is a problem that can not be.
  • Patent Document 5 increases position estimation accuracy by repeating re-measurement.
  • this technology also does not take into consideration the accuracy in distance measurement between wireless devices or the accuracy of the position at the time of temporary position estimation, and accuracy by measuring the difference in the quality of the communication environment and communication path There is a problem that improvement cannot be made.
  • Patent Document 6 Although the technique disclosed in Patent Document 6 can be used for measuring the distance between wireless devices, there is no description regarding estimating the position of the wireless device.
  • An object of the present invention is to provide a position estimation apparatus, a position estimation system, and a method capable of estimating a position with high accuracy in an application in which a relative position relationship is grasped by wireless apparatuses having unknown positions performing wireless communication with each other. And providing a recording medium.
  • a position estimation apparatus In order to achieve the above object, a position estimation apparatus according to an aspect of the present invention is provided. Inter-device distance between other wireless devices measured by transmitting and receiving wireless signals output by each wireless device whose position is unknown, and reception of the wireless signal used for measuring the distance between the devices Distance measurement data collecting means for collecting the accuracy of the distance between the devices calculated based on the quality; Initial position estimating means for calculating the relative position of each wireless device and the probability of the relative position based on the inter-device distance collected from each wireless device for the first time and the probability of the inter-device distance; Used to calculate the inter-device distance and the inter-device distance accuracy collected by re-measurement of each wireless device, and the relative position of each wireless device and the relative position accuracy before the re-measurement.
  • Distance data updating means for updating the distance between the devices and the certainty of the distance between the devices based on the distance between the devices and the certainty of the distance between the devices; Based on the distance between the devices and the probability of the distance between the devices updated by the distance data updating means, the relative position of each wireless device and the probability of the relative position are updated, and the relative of the updated wireless devices is updated.
  • the device-to-device distance and the device-to-device distance based on the accuracy of the device-to-device distance and the device-to-device distance collected based on the next re-measurement of each wireless device
  • position data updating means for instructing the distance data updating means to update the certainty.
  • the position estimation system which is another form of this invention is: Each wireless device whose position is unknown is calculated based on the inter-device distance between other wireless devices measured by transmitting and receiving a radio signal, and the reception quality of the radio signal used to measure the inter-device distance A plurality of wireless devices that output the certainty of the distance between the devices in a predetermined cycle; A position estimation device that collects the device-to-device distance and the device-to-device distance output by each wireless device, calculates a device relative position of each wireless device, and outputs a device position estimation result; The position estimation device calculates a relative position of each wireless device and a probability of the relative position based on the distance between the devices and the probability of the distance between the devices collected for the first time by the measurement of each wireless device.
  • Initial position estimation means the inter-device distance and the inter-device distance collected by re-measurement of each wireless device, the relative position of each wireless device and the relative position of the previous round of the re-measurement Distance data updating means for updating the distance between the devices and the probability of the distance between the devices based on the distance between the devices used in the calculation of the certainty and the certainty of the distance between the devices; and the distance data updating means Update the relative position of each wireless device and the certainty of the relative position based on the updated inter-device distance and the inter-device distance probability.
  • Position data updating means for instructing the distance data updating means to update the certainty of the distance.
  • the position estimation method includes: Inter-device distance between other wireless devices measured by transmitting and receiving wireless signals output by each wireless device whose position is unknown, and reception of the wireless signal used for measuring the distance between the devices Collect the accuracy of the distance between the devices calculated based on quality, Calculating the relative position of each wireless device and the probability of the relative position based on the initial distance collected from each wireless device and the probability of the distance between the devices; Used to calculate the inter-device distance and the inter-device distance accuracy collected by re-measurement of each wireless device, and the relative position of each wireless device and the relative position accuracy before the re-measurement.
  • a computer-readable recording medium on which a position estimation program according to another embodiment of the present invention is recorded is a computer, Inter-device distance between other wireless devices measured by transmitting and receiving wireless signals output by each wireless device whose position is unknown, and reception of the wireless signal used for measuring the distance between the devices
  • Distance measurement data collection function means for collecting the accuracy of the distance between the devices calculated based on the quality
  • An initial position estimation function means for calculating a relative position of each wireless device and a probability of the relative position based on the inter-device distance collected from each wireless device for the first time and the probability of the inter-device distance; Used to calculate the inter-device distance and the inter-device distance accuracy collected by re-measurement of each wireless device, and the relative position of each wireless device and the relative position accuracy before the re-measurement.
  • Distance data update function means for updating the distance between the devices and the certainty of the distance between the devices based on the distance between the devices and the certainty of the distance between the devices; Based on the distance between the devices updated by the distance data update function means and the likelihood of the distance between the devices, the relative position of each wireless device and the probability of the relative position are updated, and the updated wireless device A position estimation result including a relative position is output, and the inter-device distance and the inter-device distance based on the probability of the inter-device distance collected based on the next re-measurement of each wireless device and the inter-device distance A program is recorded that functions as position data update function means for instructing the distance data update function means to update the probability of distance.
  • the present invention can perform position estimation with high accuracy in an application in which a relative position relationship is grasped by wireless communication between wireless devices whose positions are unknown.
  • FIG. 1 is a block diagram showing the configuration of the position estimation system according to the first embodiment of the present invention.
  • the position estimation system 100 includes a plurality of wireless devices 11, 12, 13 to 1n (n is a natural number) and a position estimation device 20.
  • the positions of the wireless devices 11 to 1n are unknown.
  • Each wireless device confirms the distance measurement value calculated based on the device-to-device distance measured by transmitting / receiving a wireless signal and the reception quality of the wireless signal used to measure the device-to-device distance. Are output at a predetermined cycle.
  • the position estimation device 20 collects the inter-device distances output from the wireless devices 11, 12, 13 to 1n and the certainty of the distance measurement values, and determines the relative position of each wireless device and the certainty of the relative position. It is a device that calculates and outputs a device position estimation result.
  • the position estimation device 20 includes an initial position estimation means 1, a distance data update means 2, and a position data update means 3.
  • the initial position estimation means 1 calculates the relative position of each wireless device and the likelihood of the relative position based on the distance between devices and the probability of the distance between devices collected for the first time by measurement of each wireless device.
  • the distance data updating means 2 is based on the inter-device distance and the inter-device distance accuracy collected by the re-measurement of each wireless device, and the inter-device distance and the inter-device distance accuracy before the re-measurement.
  • the distance between devices and the certainty of the distance between devices are updated.
  • the distance between devices before the re-measurement and the probability of the distance between devices are the relative position of each wireless device and the distance between the devices and the distance between the devices used in the calculation of the certainty of the relative position in the previous round. It is a certainty.
  • the position data updating unit 3 updates the relative position of each wireless device and the certainty of the relative position based on the inter-device distance updated by the distance data updating unit 2 and the probability of the inter-device distance, and each updated wireless device.
  • the position estimation result including the relative position of is output.
  • the position data updating unit 3 updates the distance between the devices and the certainty of the distance between the devices based on the distance between the devices collected based on the next remeasurement and the certainty of the distance between the devices. 2 is instructed.
  • the position estimation device 20 uses the position data update unit 3 to determine the relative position and the relative position of each wireless device based on the inter-device distance updated by the distance data update unit 2 and the likelihood of the inter-device distance. Update the likelihood. Then, the position data update unit 3 further causes the distance data update unit 2 to update the inter-device distance and the probability of the inter-device distance in order to further improve the accuracy of the estimated device position.
  • FIG. 2 is a block diagram showing the configuration of the position estimation apparatus according to the first embodiment of the present invention.
  • the position estimation device 20 includes a distance measurement data collection unit 21 as an example of a distance measurement data collection unit and an initial position estimation unit 22 as an example of an initial position estimation unit. Furthermore, the position estimation device 20 of the first embodiment includes a distance data update unit 23 as an example of a distance data update unit and a position data update unit 24 as an example of a position data update unit.
  • the distance measurement data collection unit 21 collects the distance between devices and the likelihood of the distance between the devices, which are output by each wireless device whose position is unknown at a predetermined cycle. Each wireless device transmits / receives a wireless signal to measure the distance between the other wireless devices, and determines the accuracy of the distance between the devices based on the reception quality of the wireless signal used to measure the distance between the devices. calculate.
  • the initial position estimation unit 22 calculates the relative position of each wireless device and the likelihood of the relative position based on the inter-device distance collected from each wireless device for the first time and the likelihood of the inter-device distance.
  • the distance data update unit 23 is based on the inter-device distance and the inter-device distance accuracy collected by the re-measurement of each wireless device, and the inter-device distance and the inter-device distance accuracy before the re-measurement.
  • the distance between devices and the certainty of the distance between devices are updated.
  • the distance between devices before the re-measurement and the probability of the distance between devices are the relative position of each wireless device and the distance between the devices and the distance between the devices used in the calculation of the certainty of the relative position in the previous round. It is a certainty.
  • the position data updating unit 24 updates the relative position of each wireless device and the certainty of the relative position based on the inter-device distance and the certainty of the inter-device distance updated by the distance data updating unit 23, and each of the updated wireless devices
  • the position estimation result including the relative position of is output.
  • the position data update unit 24 updates the inter-device distance and the inter-device distance certainty update based on the inter-device distance and the inter-device distance probability collected based on the next remeasurement of each wireless device.
  • the data update unit 23 is instructed.
  • the position estimation device 20 uses the position data update unit 24 to check the relative position and the relative position of each wireless device based on the inter-device distance updated by the distance data update unit 23 and the probability of the inter-device distance. Update the likelihood. Then, the position data update unit 24 further causes the distance data update unit 23 to update the inter-device distance and the probability of the inter-device distance in order to further improve the accuracy of the estimated device position.
  • FIG. 3 is a flowchart for explaining the processing flow of the position estimation method according to the first embodiment of the present invention.
  • the position estimation method of the first embodiment performs the following processing.
  • the relative position of each wireless device and the probability of the relative position are calculated based on the distance between the devices collected from each wireless device for the first time and the probability of the distance between the devices (S102).
  • the inter-device distance and the inter-device distance based on the inter-device distance and the inter-device distance accuracy collected by the re-measurement of each wireless device and the accuracy of the inter-device distance and the inter-device distance before the re-measurement.
  • the probability of distance is updated (S103). Note that the inter-device distance and the inter-device distance accuracy before the remeasurement are the relative position of each wireless device and the inter-device distance and inter-device distance used in the calculation of the relative position accuracy in the previous round. It is the certainty of distance.
  • the relative position of each wireless device and the certainty of the relative position are updated based on the updated distance between the devices and the certainty of the distance between the devices (S104).
  • the position estimation result including the updated relative position of each wireless device is output, and the update processing from step S103 is repeated to further update the device relative position and the relative position probability (S105). That is, the processing from the update of the inter-device distance and the inter-device distance reliability based on the inter-device distance and the inter-device distance probability collected based on the next remeasurement of each wireless device is repeated.
  • the position estimation program will be described for a computer-readable recording medium on which the position estimation program of the first embodiment is recorded.
  • FIG. 4 is a block diagram showing a hardware configuration of the position estimation apparatus according to the first embodiment of the present invention.
  • the position estimation device 20 can be realized by the same hardware configuration as a general computer device, and has the following configuration.
  • the position estimation device 20 includes a CPU (Central Processing Unit) 31, a main storage unit 32, and an auxiliary storage unit 33, which are control units.
  • the main storage unit 32 includes a RAM (Random Access Memory) and the like
  • the auxiliary storage unit 33 includes a hard disk device including a non-volatile memory such as a magnetic disk or a semiconductor memory.
  • the position estimation apparatus 20 includes a communication control unit 34 that transmits and receives data by wireless communication, a display unit 35 that uses a display, an input unit 36 that performs key operations, and a system bus that interconnects the above-described components. 37 etc. are included.
  • the position estimation device 20 implements its operation by mounting circuit components including hardware components such as LSI (Large Scale Integration) in which a program for realizing each function is incorporated in the position estimation device 20. May be. Further, the position estimation device 20 of the present embodiment may be realized in software by executing a program that provides each function of each component by the CPU 31 on the computer processing device.
  • This program is a general-purpose semiconductor recording device such as CF (Compact Flash (registered trademark)) and SD (Secure Digital), a magnetic recording medium such as a flexible disk, or a CD-ROM (Compact Disk Read). It can be distributed in the form of an optical recording medium such as “Only Memory”.
  • the function of the position estimation apparatus 20 of the present embodiment may be realized by software by reading the position estimation program recorded on such a recording medium and executing it by the CPU 31 on the computer processing apparatus.
  • the CPU 31 loads the program stored in the auxiliary storage unit 33 to the main storage unit 32 and executes it, or directly executes it on the auxiliary storage unit 33 to control the operation, thereby controlling the position estimation device 20.
  • Each function is realized by software.
  • FIG. 5 shows a configuration of functional means realized by a computer-readable recording medium in which the program according to the first embodiment of the present invention is recorded.
  • the program of the present embodiment causes the computer to function as the distance measurement data collection function unit 101, the initial position estimation function unit 102, the distance data update function unit 103, and the position data update function unit 104.
  • the distance measurement data collection function unit 101 calculates the inter-device distance between other wireless devices measured by transmitting / receiving a radio signal and the reception quality of the radio signal used to measure the inter-device distance. Collect the certainty of the distance between devices.
  • the radio signal is a signal output at a predetermined cycle by each radio apparatus whose position is unknown.
  • the initial position estimation function unit 102 calculates the relative position of each wireless device and the probability of the relative position based on the distance between the devices and the probability of the distance between the devices collected from each wireless device for the first time.
  • the distance data update function means 103 is based on the inter-device distance and the inter-device distance accuracy collected by the re-measurement of each wireless device, and the inter-device distance and the inter-device distance accuracy before the re-measurement.
  • the inter-device distance and the certainty of the inter-device distance are updated.
  • the distance between devices before the re-measurement and the probability of the distance between devices are the relative position of each wireless device and the distance between the devices and the distance between the devices used in the calculation of the certainty of the relative position in the previous round. It is a certainty.
  • the position data update function means 104 updates the relative position of each wireless device and the probability of the relative position based on the distance between the devices updated by the distance data update function means 103 and the probability of the distance between the devices.
  • a position estimation result including the relative position of the wireless device is output.
  • the position data update function means 104 updates the inter-device distance and the inter-device distance certainty based on the inter-device distance and the inter-device distance accuracy collected based on the next remeasurement of each wireless device.
  • the distance data update function means 103 is instructed.
  • the position data update function unit 104 updates the relative position and the relative position probability of each wireless device. .
  • the position data update function unit 104 further causes the distance data update function unit 103 to update the inter-device distance and the probability of the inter-device distance in order to further improve the accuracy of the estimated device position.
  • FIG. 6 is a block diagram showing the configuration of the position estimation system according to the second embodiment of the present invention.
  • the position estimation system includes a plurality of wireless devices 30 whose positions are unknown, and a position estimation device 40 that calculates a relative position of each wireless device 30 and outputs a device position estimation result. It has become.
  • the position estimation device 40 measures the distance between each wireless device 30 and another wireless device, and the probability of the distance measurement value calculated based on the reception quality of the wireless signal used for the measurement of the distance. To report. Receiving the measurement and reporting instructions, each wireless device 30 measures the distance from other wireless devices in a predetermined cycle, calculates the probability of the distance measurement value, and reports it to the position estimation device 40.
  • the position estimation device 40 calculates a device relative position by a method described later based on the distance between the devices collected from the plurality of wireless devices 30 and the probability of the distance between the devices, and outputs a device position estimation result. And the position estimation apparatus 40 uses the re-measurement data repeatedly performed by the radio
  • Each wireless device 30 performs wireless communication with other wireless devices, measures a signal propagation delay time, and calculates a distance. There are several methods for measuring the propagation delay time. For example, each wireless device 30 may hold a common timer in the network system and calculate the distance from the difference between the transmission time of a signal from another wireless device and the reception time of the signal. Further, the time for the signal to reciprocate between the two wireless devices may be measured, and the distance between the two wireless devices may be calculated from the measured reciprocating time. In the delay measurement circuit disclosed in Patent Document 6, the distance is calculated from the round-trip time in which the timing pulse signal transmitted from the transmission side is turned back at the reception side and the transmission side receives again.
  • FIG. 7 is a block diagram illustrating a configuration example of a wireless device used in the position estimation system according to the second embodiment.
  • a method is employed in which a distance is calculated from a round trip time in which a timing pulse signal transmitted from a transmission side and spread using a spreading code is returned on the reception side and re-received on the transmission side.
  • the wireless device 30 of the present embodiment includes a transmission unit (TX: Transmitter) including a timing pulse signal generation circuit 301 and a data modulation circuit 302, and a reception unit (RX: Receiver) including a delay measurement circuit 304 and a data demodulation circuit 305.
  • TX Transmitter
  • RX Receiver
  • a transmission RF (Radio frequency) circuit 303 which is a radio signal transmission circuit
  • a reception RF circuit 306 which is a radio signal reception circuit
  • a control circuit 307 including a processor are included.
  • Each wireless device 30 transmits the timing pulse signal created using the timing pulse signal generation circuit 301 to other wireless devices in the vicinity, and uses the delay measurement circuit 304 to calculate the time difference between the timing pulse signals that are returned. taking measurement.
  • each wireless device 30 receives a timing pulse signal returned from a plurality of other wireless devices within a communicable range.
  • Each wireless device 30 can identify the timing pulse signal returned from which wireless device by the identification information inserted when the other wireless device returns the timing pulse signal.
  • the control circuit 307 calculates the distance to another wireless device based on the transmission / reception time difference of the timing pulse signal output from the delay measurement circuit 304.
  • Each wireless device 30 measures the delay time, and also measures the SN (Signal to Noise) ratio of the received signal and the delay spread (also referred to as delay spread) of the received signal used when measuring the delay time. To do.
  • the S / N ratio and delay spread of the received signal are used to calculate the accuracy of the inter-device distance measurement value, as will be described later.
  • the delay spread is a parameter representing the multipath delay characteristic of the reflected wave, and represents a standard deviation with respect to the delay time of the power delay profile.
  • each wireless device 30 may analyze the delay time and calculate the inter-device distance.
  • each wireless device that has measured the delay time modulates the measured delay time by the data modulation circuit 302 and transmits the modulated delay time to a specific wireless device via the transmission RF circuit 303.
  • the radio signal received via the reception RF circuit 306 is converted into a baseband signal, the data demodulation circuit 305 demodulates the data, and the control circuit 307 analyzes the delay time.
  • FIG. 8 is a block diagram illustrating a configuration example of the delay measurement circuit 304 of the wireless device 30.
  • FIG. 9 is a diagram illustrating an example of a power profile of a received signal in the wireless device 30.
  • matched filter 311 a correlation coefficient generation circuit 312, a power calculation circuit 313, and a peak detection circuit 314.
  • the frequency received by the reception RF circuit 306 is down-converted to an optimum frequency for the matched filter 311, and input data (I, Q) is input to the matched filter 311.
  • input data I, Q
  • a correlation coefficient for the timing pulse signal is supplied from the correlation coefficient generation circuit 312 to the matched filter 311.
  • the matched filter 311 calculates a correlation value between the input data and the code string of the timing pulse signal, and outputs a cross-correlation vector value corresponding to the degree of the correlation.
  • the cross-correlation vector value output from the matched filter 311 is converted into power by the power calculation circuit 313, and a power profile is generated.
  • This power profile has a waveform having a peak as shown in FIG.
  • the power profile output from the power calculation circuit 313 is input to the peak detection circuit 314, and the peak detection circuit 314 measures the time at the peak point of the power profile, thereby obtaining the arrival time of the timing pulse signal. Further, the delay spread can be obtained from this power profile.
  • the certainty ( ⁇ ) of the distance between wireless devices represents the standard deviation of the measured value of the distance between wireless devices, and is a non-negative real value that becomes 0 when most probable.
  • the accuracy ( ⁇ ) of the distance between wireless devices is obtained by the following formula.
  • F (d) ⁇ G (r)
  • F () and G () are polynomial functions.
  • the coefficient is a value unique to the wireless device, and is measured in advance for each wireless device and obtained by fitting to the argument.
  • the certainty ( ⁇ ) of the distance between wireless devices is calculated by each wireless device, but may be calculated by a specific wireless device as described above. Furthermore, it may be configured such that the position estimation device 40 calculates the wireless quality data together with the distance between the wireless devices to the position estimation device 40.
  • ⁇ Configuration of position estimation device The distance between wireless devices and the probability of the distance between wireless devices, which are data measured and calculated by each wireless device 30, are collected by the position estimating device 40, and the position estimating device 40 estimates the wireless device position.
  • the distance between wireless devices and the certainty of the distance between wireless devices may be referred to as “inter-wireless device distance data”.
  • FIG. 10 is a block diagram illustrating a configuration of the position estimation apparatus 40 according to the second embodiment.
  • a wireless device distance measurement data collection unit 401 includes a wireless device distance measurement data collection unit 401, an initial wireless device position estimation unit 402, a wireless device distance update unit 403, a movement vector generation unit 404, and a wireless device position update unit 405. It has become.
  • the wireless device distance measurement data collection unit 401 instructs each wireless device 30 to measure the distance between wireless devices, and uses the wireless device 30 and the reliability of the wireless device distance as measurement data from each wireless device 30. Collect, accumulate and organize. As described above, the wireless device 30 measures the distance between wireless devices at a predetermined cycle, and sequentially reports the measurement data to the position estimation device 40.
  • the operations of the initial measurement phase and the remeasurement phase are performed as described later, and the accuracy of the output device position estimation result is gradually increased by repeatedly executing the operation of the remeasurement phase.
  • the position estimation device 40 performs the operation of the initial measurement phase to estimate the initial wireless device position of each wireless device whose position is not yet determined.
  • the wireless device position is expressed as a relative position. That is, it is assumed that the wireless device to be used as a reference is determined, and the device position of another wireless device is expressed by relative coordinates based on the position coordinates of the wireless device.
  • the wireless device distance measurement data collection unit 401 collects the wireless device distance and the certainty (initial measurement data) of the wireless device distance first reported from each wireless device 30 to the initial wireless device position estimation unit 402. Sent. Even when the initial position of the wireless device related to the collected wireless device distance data or the like is not estimated, the wireless device distance data or the like is sent to the initial wireless device position estimation unit 402.
  • the initial wireless device position estimation unit 402 estimates the initial wireless device position and the reliability of the wireless device position, as will be described later, based on the initial measurement data and the reliability of the wireless device distance and the wireless device distance.
  • the position estimation device 40 executes the operation of the re-measurement phase to increase the estimation accuracy of the estimated wireless device position. This re-measurement phase is repeated until the end condition is reached.
  • the position estimation device 40 that has received the remeasurement data uses the wireless device distance update unit 403, the movement vector generation unit 404, and the wireless device position update unit 405 based on the wireless device distance data that is remeasurement data, etc. Increase estimation accuracy of wireless device position.
  • the wireless device distance measurement data collection unit 401 sends to the wireless device distance update unit 403 the wireless device distance and the certainty of the wireless device distance obtained by remeasurement collected from each wireless device 30.
  • the wireless device distance updating unit 403 is based on the wireless device distance and the wireless device distance used in the previous round, and the wireless device distance and the wireless device distance collected in the remeasurement.
  • the probability of the updated distance between wireless devices and the distance between wireless devices is calculated.
  • the distance between wireless devices and the certainty of the distance between wireless devices used in the previous round are the certainty of the distance between the wireless devices and the distance between the wireless apparatuses used for estimating the position of the wireless device in the previous round. . That is, in the first remeasurement phase to be executed, the distance between wireless devices used in the previous round and the accuracy of the distance between wireless devices are the distances collected between the first wireless devices used for estimating the initial wireless device position. And the certainty of the distance between wireless devices. In the remeasurement phase executed after the next time, the wireless device distance update unit 403 updated by the wireless device distance update unit 403 in the previous remeasurement phase is the probability of the wireless device distance.
  • the movement vector generation unit 404 generates a movement vector, which is a vector representing the deviation direction and the amount of deviation of the wireless device position, using the updated distance between wireless devices and the certainty of the distance between wireless devices. Details of the movement vector generation will be described later.
  • the wireless device position updating unit 405 updates the wireless device position using the movement vector.
  • the wireless device position update unit 405 outputs the updated wireless device position as a device position estimation result, and issues an update instruction based on the next remeasurement data to the wireless device distance update unit 403.
  • the wireless device distance update unit 403 obtains the wireless device distance and the probability of the wireless device distance based on the next remeasurement from the wireless device distance measurement data collection unit 401, Further updates of the certainty of the distance between devices and the distance between wireless devices. Then, a movement vector is generated based on the updated distance between the wireless devices and the probability of the distance between the wireless devices, and further updated wireless device positions are obtained as estimation results.
  • FIG. 11 is a flowchart illustrating the processing flow of the position estimation method according to the second embodiment of the present invention.
  • the process of the position estimation method is divided into two stages, an initial measurement phase and a remeasurement phase.
  • the initial measurement phase the initial values of the relative positions of all the wireless devices that perform position estimation and the certainty of those positions are obtained.
  • the obtained wireless device position is updated in consideration of the change in distance due to re-measurement.
  • wireless apparatus position to output by repeating remeasurement is raised sequentially.
  • step S201 to step S203 is an initial measurement phase.
  • Steps S204 to S208 are processing of the remeasurement phase.
  • the position estimation device 40 instructs each wireless device 30 to start measuring the distance to the surrounding wireless devices (S201). For example, when a position estimation operation start is instructed from an external device (not shown), in the position estimation device 40, the wireless device distance measurement data collection unit 401 issues a measurement start instruction to each wireless device 30.
  • the wireless device 30 that has received the measurement start instruction, as described above, is based on the distance between the wireless device 30 measured by transmitting and receiving the wireless signal and the reception quality of the wireless signal used to measure the distance.
  • the probability of the measured value is calculated and reported to the position estimation device 40.
  • wireless apparatus 30 performs this measurement and a report repeatedly with a predetermined period.
  • the wireless device distance measurement data collection unit 401 sequentially collects the wireless device distances and the certainty of the wireless device distances reported by each wireless device 30.
  • the wireless device distance measurement data collection unit 401 collects the wireless device distance and the reliability of the wireless device distance received first based on the initial measurement of the wireless device 30 (S202), the wireless device distance measurement data collection unit 401 collects the initial measurement data. The data is transferred to the initial wireless device position estimation unit 402.
  • the initial wireless device position estimation unit 402 which has received the first measurement data of the wireless device distance and the reliability of the wireless device distance, determines the wireless device position and the wireless based on the wireless device distance and the reliability of the wireless device distance. An initial value of the accuracy of the device position is obtained (S203).
  • each wireless device 30 Since the position of each wireless device 30 is unknown, a wireless device serving as a specific reference is determined, and the relative position coordinates of the other wireless devices are calculated from the distance between the wireless devices, with the position coordinates being (0, 0). That is, among the plurality of wireless devices 30, the initial wireless device position estimating unit 402 calculates the relative position coordinates of the other wireless devices when the position coordinate of the reference wireless device is (0, 0). Further, the certainty of the calculated position of the wireless device is obtained from the certainty of the distance between the wireless devices used for the calculation. Details of the calculation of the wireless device position and its probability will be described later.
  • the position estimation device 40 obtains the above-described wireless device position (relative position) and the initial value of the certainty of the wireless device position for all target wireless devices.
  • the re-measurement phase is performed to increase the accuracy of the initial value.
  • the re-measurement data is used to update the wireless device distance and the reliability of the wireless device distance by the wireless device distance update unit 403.
  • the initial wireless device position estimation unit 402 notifies the wireless device distance update unit 403 that the initial value of the wireless device position and the certainty of the wireless device position has been obtained.
  • the obtained wireless device position, the initial value of the certainty of the wireless device position, and the distance between the wireless devices used for the calculation and the certainty of the distance between the wireless devices are registered in a predetermined storage area. To do.
  • the wireless device distance update unit 403 instructed to perform the remeasurement phase requests the wireless device distance measurement data collection unit 401 to transfer the remeasurement data.
  • the inter-radio device distance measurement data collection unit 401 that sequentially collects the measurement data from the radio device 30 transfers the remeasurement data collected from the radio device 30 in response to a request from the inter-radio device distance update unit 403. .
  • the wireless device distance measurement data collection unit 401 instructs the wireless device 30 to transmit measurement data based on a request from the wireless device distance update unit 403, and remeasures the data collected based on the instruction. You may comprise so that data may be transferred.
  • the wireless device distance update unit 403 receives the wireless device distance and the reliability of the wireless device distance in the remeasurement data (S204).
  • the wireless device distance update unit 403 When the wireless device distance update unit 403 receives the reliability of the remeasurement data between the wireless device distance and the wireless device distance, the wireless device distance update unit 403 updates the wireless device distance and the reliability of the wireless device distance (S205). Details of this update processing will be described later, but the distance between wireless devices in remeasurement data and the certainty of the distance, the wireless device position used in the previous round and the calculation of the certainty of the position, and the distance between the wireless devices. Update based on the likelihood of the distance.
  • the wireless device distance and the reliability of the wireless device distance updated by the wireless device distance update unit 403 are used to update the wireless device position and the reliability of the wireless device position in step S206. Registered in the storage area.
  • the wireless device position and the wireless device distance used for calculating the wireless device position and the reliability of the wireless device position in the previous round are registered in a predetermined storage area. For example, if this re-measurement phase is a process performed immediately after the initial measurement phase, the wireless device position used in the initial measurement phase and the distance between the wireless devices used to calculate the initial value of the position are confirmed. The likelihood is registered in a predetermined storage area. If this re-measurement phase is a process of the re-measurement phase that is repeatedly performed thereafter, the distance between the wireless devices updated by the wireless device distance update unit 403 in the process of the previous step S205 and the probability of the distance. Are registered in a predetermined storage area.
  • the wireless device distance update unit 403 notifies the movement vector generation unit 404 that the wireless device distance and the reliability of the wireless device distance have been updated.
  • the position of the wireless device and the certainty of the position are updated (S206).
  • the update processing of the wireless device position and the probability thereof is performed by the movement vector generation unit 404 and the wireless device position update unit 405.
  • the movement vector generation unit 404 is a vector that represents the wireless device position shift direction and shift amount using the wireless device distance updated by the wireless device distance update unit 403 and the probability of the distance. A certain movement vector is generated. Then, the wireless device position updating unit 405 updates the wireless device position and the probability of the position using the movement vector.
  • the wireless device position update unit 405 outputs the updated wireless device position as a device position estimation result to an external device (not shown) (S207).
  • the wireless device position update unit 405 confirms the end condition of the process (S208). If the end condition is not reached (S208, NO), the wireless device position update unit 405 performs the update process based on the remeasurement data again. An instruction is given to the distance update unit 403. In this case, the processing from step S204 to step S208 is repeated.
  • step S208 if the end condition is reached (S208, YES), the wireless device position update unit 405 ends the processing of the position estimation device 40.
  • a termination condition may be a case where a termination instruction is received from an external device (not shown).
  • the termination condition may be determined by performing the remeasurement phase process a predetermined number of times.
  • the termination condition may be determined by the fact that the radio device position probability obtained in step S206 has reached a predetermined value. Further, at this time, the number of wireless devices for which the certainty of the wireless device position has reached a predetermined value may be designated.
  • the calculation of the initial position of the wireless device is obtained by using the simultaneous equations of the coordinates of each wireless device position and the distance between the wireless devices as a determinant so that the mean square value of the error in the distance between the wireless devices is minimized.
  • the certainty of the estimated value of the wireless device position represents a standard deviation of the estimated value of the wireless device position, and is a non-negative real value that is 0 when most likely.
  • the accuracy of the estimated value of the wireless device position is obtained by propagating the reliability of the wireless device position.
  • determining the probability of the position of a wireless device by propagating is the probability of the position of the wireless device of another wireless device by using the certainty of the position of the wireless device and the certainty of the distance between the wireless devices.
  • the certainty of a certain wireless device position means that the certainty is obtained using the certainty of the wireless device position and the certainty of the distance between the wireless devices that have been determined before.
  • FIG. 12 is a diagram showing a method of propagating the radio device position.
  • n 0 , n 1 , and n 2 are wireless devices, respectively.
  • the distance between the wireless device n 0 and the wireless device n 1 is d 01
  • the distance between the wireless device n 0 and the wireless device n 2 is d 02
  • the probability of the distance d 01 is ⁇ 01
  • the probability of the distance d 02 is ⁇ 02
  • the probability of the distance d 12 is ⁇ 12 .
  • the probability ⁇ 1 of the estimated value of the position of the wireless device n 1 is obtained by the following equation from the additivity theorem of normal distribution.
  • sigma 0 means the likelihood of the position of the wireless device n 0, the wireless device n 0 is a wireless device that is a reference relative position.
  • the probability sigma 1 estimate of the position of the wireless device n 1 is determined using a the probability sigma 0 position of the wireless device n 0 has been finalized, the the probability sigma 01 of the distance d 01.
  • the probability sigma 2 estimates the position of the wireless device n 2 is given by the following equation.
  • max () means a function that extracts the larger one of the values in parentheses.
  • ⁇ 2 max ( ⁇ ( ⁇ 0 2 + r ( ⁇ ) ⁇ ⁇ 02 2 ), ⁇ ( ⁇ 1 2 + r ( ⁇ ) ⁇ ⁇ 12 2 ))
  • r ( ⁇ ) max (cos ( ⁇ ), sin ( ⁇ )).
  • ⁇ and ⁇ can be obtained by the following equation using the cosine theorem.
  • the angle ⁇ is an angle formed by a line segment connecting the wireless device n 0 and the wireless device n 1 and a line segment connecting the wireless device n 0 and the wireless device n 2 .
  • the angle ⁇ is an angle formed by a line segment connecting the radio device n 1 and the radio device n 0 and a line segment connecting the radio device n 1 and the radio device n 2 .
  • FIG. 13 is a flowchart for explaining the flow of processing for updating the distance between wireless devices and updating the position of the wireless device. This processing flow corresponds to the processing in steps S205 and S206 in FIG.
  • Update (S301) As described above, the distance between wireless devices used for the previous wireless device position estimation and the certainty of the distance are registered in a predetermined storage area. Then, the distance between the wireless devices updated by the processing in step S301 and the probability of the distance are registered in the predetermined storage area and used for updating the wireless device position.
  • the reliability of the wireless device position is updated (S302).
  • a movement vector is generated based on the change in the inter-device distance between the inter-radio device distance used for the previous radio device position estimation and the updated inter-radio device distance, and the reliability of the radio device position updated in step S302. (S303).
  • step S303 The movement vector generated in step S303 is added to the position vector corresponding to the previous wireless device position to estimate the updated wireless device position (S304).
  • the wireless device distance update unit 403 updates the wireless device distance and the probability of the distance as follows.
  • the distance between the wireless devices used for the previous estimation of the device position is d old , and the probability of the distance is ⁇ old .
  • the distance between the wireless devices obtained by this remeasurement is d meas
  • the probability of the distance is ⁇ meas .
  • the wireless device distance d new after update and the probability ⁇ new of the distance are obtained by the following equations.
  • Te is the elapsed time after calculation
  • is the forgetting factor.
  • the elapsed time Te after calculation is the elapsed time from the previous distance calculation to the distance calculation by the current remeasurement.
  • the forgetting factor ⁇ is set to an appropriate value depending on the characteristics of the system. For example, in a system in an environment where a large position change is expected, ⁇ is increased to reduce the influence of old data.
  • the movement vector generation unit 404 updates the probability of the wireless device position with the update of the distance between the wireless devices.
  • the reliability of the updated wireless device position is the same as the above-mentioned wireless device initial position and the reliability of the wireless device position in the calculation of the certainty by using the updated distance between wireless devices and the certainty of the distance. Calculate with a simple method.
  • the movement vector generation unit 404 generates a movement vector indicating the movement direction and the amount of change using the updated radio apparatus position likelihood and the updated inter-radio apparatus distance.
  • the movement vector is a vector used to update the position of the wireless device, and is calculated by propagating the influence using the update result of the inter-wireless device distance and the reliability of the wireless device position.
  • “calculate by propagating the influence” means that if a certain wireless device position is moved according to the movement vector, the influence on other wireless devices in the vicinity according to the movement of the wireless device position. Is given as a movement vector for the wireless device. Specifically, when the position of the wireless device moves according to a certain movement vector, the distance between the wireless devices becomes longer or shorter, but the change in length is weighted by the probability of each wireless device position. The movement vector with respect to the position of the adjacent wireless device is obtained.
  • FIG. 14 is a diagram showing a method for generating a movement vector.
  • the distance of the wireless device n 0 and the wireless device n 1 may become d 01 'from d 01, moving vector m 1 of the wireless device n 1 is calculated by the following equation.
  • n 0 is the position vector of radio apparatus n 0
  • n 1 is the position vector of radio apparatus n 1
  • ⁇ 0 is the probability of the updated position of radio apparatus n 0
  • ⁇ 1 is the update of radio apparatus n 1 The probability of the position is shown.
  • is a unit vector from the wireless device n 0 to the wireless device n 1
  • “(d 01 ′ ⁇ d 01 )” is the distance between the wireless devices.
  • “ ⁇ 1 / ( ⁇ 0 + ⁇ 1 )” indicates the weight of the moving distance of the wireless device n 1 . That is, the influence (movement vector) that the wireless device n 1 receives when the wireless device n 0 moves is shown.
  • the movement vector is also calculated for the wireless device n 3 adjacent to the wireless device n 1 .
  • the movement vector m 3 of the wireless device n 3 is calculated by the following equation.
  • ⁇ 3 m 1 ⁇ ⁇ 3 / ( ⁇ 1 + ⁇ 3 )
  • ⁇ 3 indicates the likelihood of the updated position of the wireless device n 3 .
  • the movement vector is similarly calculated for other adjacent wireless devices, and the movement vector is propagated. However, the number of wireless device stages to propagate is limited to reduce the amount of calculation. In addition, when different movement vectors are set for the same wireless device in another route, the movement vectors are offset by adding the movement vectors.
  • the wireless device position update unit 405 updates the wireless device position.
  • the wireless device position is updated by adding the movement vector to the position vector of the wireless device position before the update.
  • the wireless device position is updated, and the wireless device position estimation result is output.
  • the update of the distance between the wireless devices based on the re-measurement data and the update of the wireless device position based on it are repeated, and the estimation result of the wireless device position corresponding to each re-measurement phase is external. Output to the device. Then, the re-measurement of the distance between the wireless devices and the update of the wireless device position are repeated to gradually improve the estimation accuracy of the wireless device position.
  • the remeasurement phase is executed at regular intervals and the wireless device position estimation result corresponding to the remeasurement phase is output, thereby tracking the position of the moved wireless device. Can also be requested.
  • the estimation accuracy of the wireless device position temporarily decreases, but the position estimation accuracy can be increased again by repeating the remeasurement phase.
  • FIG. 15 is a block diagram showing a hardware configuration of the position estimation apparatus according to the second embodiment of the present invention.
  • the position estimation device 50 includes a wireless circuit 501, a processor 502, an instruction memory 503, a shared memory 504, and a data memory 505.
  • the wireless device distance data acquired by each wireless device is wirelessly transmitted to the position estimation device 50.
  • the position estimation device 50 receives the wireless device distance data by the wireless circuit 501 and temporarily stores it in the shared memory 504.
  • the instruction memory 503 stores a program describing procedures of an initial wireless device position estimation function, a wireless device distance update function, a movement vector generation function, and a wireless device position update function.
  • the inter-wireless device distance data stored in the shared memory 504 is processed by the processor 502 executing each program stored in the instruction memory 503, and the position of each wireless device is estimated.
  • Distance measurement data collection means for collecting the accuracy of the distance between the devices calculated based on the reception quality of the radio signal;
  • Initial position estimating means for calculating the relative position of each wireless device and the probability of the relative position based on the inter-device distance collected from each wireless device for the first time and the probability of the inter-device distance; Used to calculate the inter-device distance and the inter-device distance accuracy collected by re-measurement of each wireless device, and the relative position of each wireless device and the relative position accuracy before the re-measurement.
  • Distance data updating means for updating the distance between the devices and the certainty of the distance between the devices based on the distance between the devices and the certainty of the distance between the devices; Based on the distance between the devices and the probability of the distance between the devices updated by the distance data updating means, the relative position of each wireless device and the probability of the relative position are updated, and the relative of the updated wireless devices is updated.
  • the device-to-device distance and the device-to-device distance based on the accuracy of the device-to-device distance and the device-to-device distance collected based on the next re-measurement of each wireless device
  • a position data updating means for instructing the distance data updating means to update the certainty.
  • the accuracy of the inter-device distance represents a standard deviation of the measured value of the inter-device distance, and is a non-negative real value that is 0 when most probable.
  • the relative position probability of each wireless device represents a standard deviation of the estimated value of the relative position, and is a non-negative real value that is 0 when most likely, and the initial position estimating means , Based on the reliability of the relative position of the confirmed wireless device and the certainty of the inter-device distance between the confirmed wireless device and the certainty of the relative position is determined, The position estimation apparatus according to Supplementary Note 1 or Supplementary Note 2, wherein the relative position probability of the reference wireless device is first calculated as 0.
  • the distance data update means takes into account the elapsed time from the previous distance calculation to the distance calculation by the current remeasurement with respect to the probability of the distance between the apparatuses used last time, The position estimation device according to any one of supplementary notes 1 to 3, wherein the probability of the distance between the devices is updated.
  • the said distance data update means multiplies the forgetting coefficient determined by system environment, and changes the said elapsed time, The position estimation apparatus of Additional remark 4 characterized by the above-mentioned.
  • the position data update unit updates the reliability of the relative position of each wireless device based on the inter-device distance updated by the distance data update unit and the probability of the inter-device distance, and updated. Calculating the movement change amount of the relative position of each wireless device based on the inter-device distance and the probability of the updated relative position of each wireless device, and updating the relative position of each wireless device.
  • the position estimation apparatus according to any one of supplementary notes 1 to 5.
  • the movement change amount of the relative position of each wireless device is a movement vector indicating the movement direction and the change amount, and the position data updating means is configured to determine the relative position to the change amount of the movement direction.
  • the position estimation apparatus according to appendix 6, wherein the movement vector is calculated by weighting.
  • the said position data update means adds the said produced
  • the position estimation apparatus described in 1. Each radio
  • a plurality of wireless devices that output the certainty of the distance between the devices calculated based on a predetermined cycle; and A position estimation device that collects the device-to-device distance and the device-to-device distance output by each wireless device, calculates a device relative position of each wireless device, and outputs a device position estimation result;
  • the position estimation device includes: An initial position estimating means for calculating a relative position of each wireless device and a probability of the relative position on the basis of the distance between the devices and the probability of the distance between the devices collected for the first time by the measurement of each wireless device; Used to calculate the inter-device distance and the inter-device distance accuracy collected by re-measurement of each wireless device, and the relative position of each wireless device and the relative position accuracy before the re-measurement.
  • Distance data updating means for updating the distance between the devices and the certainty of the distance between the devices based on the distance between the devices and the certainty of the distance between the devices; Based on the distance between the devices and the probability of the distance between the devices updated by the distance data updating means, the relative position of each wireless device and the probability of the relative position are updated, and the relative of the updated wireless devices is updated.
  • the position estimation result including the position is output, and the distance between the devices and the reliability of the distance between the devices are updated based on the accuracy of the distance between the devices and the distance between the devices collected based on the next remeasurement.
  • a position data updating means for instructing the distance data updating means.
  • the certainty of the inter-device distance represents a standard deviation of the measured value of the inter-device distance, and is a non-negative real value that is 0 when most probable.
  • the position estimation system according to appendix 9, wherein the certainty is calculated based on a signal-to-noise ratio and a delay spread, which are reception qualities of radio signals used when measuring the distance between the devices.
  • the probability of the relative position of each wireless device represents a standard deviation of the estimated value of the relative position, and is a non-negative real value that is 0 when most probable.
  • the position estimation system Based on the reliability of the relative position of the confirmed wireless device and the certainty of the inter-device distance between the confirmed wireless device and the certainty of the relative position is determined, 11.
  • the position estimation system according to appendix 9 or appendix 10, wherein the relative position probability of the reference wireless device is first calculated as 0.
  • the distance data update means takes into account the elapsed time from the previous distance calculation to the distance calculation by the current remeasurement with respect to the probability of the distance between the apparatuses used last time, The position estimation system according to any one of appendices 9 to 11, wherein the probability of the distance between the devices is updated.
  • the position estimation system according to supplementary note 12, wherein the distance data update unit changes the elapsed time by multiplying by a forgetting factor determined by a system environment.
  • the said position data update means updated the reliability of the relative position of each said radio
  • the position estimation system according to any one of supplementary notes 9 to 13.
  • the movement change amount of the relative position of each wireless device is a movement vector indicating the movement direction and the change amount, and the position data updating unit is configured to determine the relative position to the change amount of the movement direction. 15.
  • the said position data update means adds the said produced
  • a position estimation method comprising repeating the process from the update of the inter-device distance and the probability of the inter-device distance.
  • the accuracy of the inter-device distance represents a standard deviation of the measured value of the inter-device distance, and is a non-negative real value that is 0 when most probable. 18.
  • the relative position accuracy of each wireless device represents a standard deviation of the estimated value of the relative position, and is a non-negative real value that is 0 when most likely, and the relative position accuracy.
  • the position estimation method Calculated based on the certainty of the relative position of the confirmed wireless device and the certainty of the inter-device distance to the confirmed wireless device, and among the confirmed wireless devices, the relative of the reference wireless device 19.
  • the position estimation method according to appendix 17 or appendix 18, wherein the position probability is first calculated as 0.
  • the update of the inter-device distance and the inter-device distance accuracy is performed by calculating the elapsed time from the previous distance calculation to the distance calculation by the current re-measurement with respect to the accuracy of the inter-device distance used last time.
  • the position estimation method according to any one of supplementary notes 17 to 19, wherein updating is performed in consideration.
  • the movement change amount of the relative position of each wireless device is a movement vector indicating the movement direction and the change amount, and the movement vector is weighted by the probability of the relative position to the change amount of the movement direction.
  • the position estimation method according to supplementary note 23 wherein the relative position of the wireless device is updated by adding the generated movement vector to the previously estimated position vector corresponding to the wireless device.
  • Inter-device distance between other wireless devices measured by transmitting and receiving wireless signals output by each wireless device whose position is unknown, and reception of the wireless signal used for measuring the distance between the devices
  • Distance measurement data collection function means for collecting the accuracy of the distance between the devices calculated based on the quality
  • An initial position estimation function means for calculating a relative position of each wireless device and a probability of the relative position based on the inter-device distance collected from each wireless device for the first time and the probability of the inter-device distance; Used to calculate the inter-device distance and the inter-device distance accuracy collected by re-measurement of each wireless device, and the relative position of each wireless device and the relative position accuracy before the re-measurement.
  • Distance data update function means for updating the distance between the devices and the certainty of the distance between the devices based on the distance between the devices and the certainty of the distance between the devices; Based on the distance between the devices updated by the distance data update function means and the likelihood of the distance between the devices, the relative position of each wireless device and the probability of the relative position are updated, and the updated wireless device A position estimation result including a relative position is output, and the inter-device distance and the inter-device distance based on the probability of the inter-device distance collected based on the next re-measurement of each wireless device and the inter-device distance Position data update function means for instructing the distance data update function means to update the probability of distance; A computer-readable recording medium on which a position estimation program for functioning is recorded.
  • the accuracy of the inter-device distance represents a standard deviation of the measured value of the inter-device distance, and is a non-negative real value that is 0 when most probable.
  • the probability of the relative position of each wireless device represents a standard deviation of the estimated value of the relative position, and is a non-negative real value that becomes 0 when most likely, and the initial position estimating function means Is calculated on the basis of the relative position accuracy of the confirmed wireless device for which the certainty of the relative position is confirmed and the probability of the inter-device distance to the confirmed wireless device, 27.
  • the distance data update function means takes into account the elapsed time from the previous distance calculation to the distance calculation by the current remeasurement with respect to the probability of the distance between the apparatuses used last time, A computer-readable recording medium recorded with the position estimation program according to any one of supplementary notes 25 to 27, wherein the probability of the distance between the devices is updated.
  • the distance data update function unit is configured to change the elapsed time by multiplying by a forgetting factor determined by a system environment, and the computer-readable record in which the position estimation program according to supplementary note 28 is recorded Medium.
  • the position data update function means updates the probability of the relative position of each of the wireless devices based on the distance between the devices updated by the distance data update function means and the probability of the distance between the devices, Calculating a movement change amount of the relative position of each wireless device based on the updated inter-device distance and the probability of the relative position of each updated wireless device, and updating the relative position of each wireless device; A computer-readable recording medium on which the position estimation program according to any one of supplementary notes 25 to 29 is recorded.
  • the movement change amount of the relative position of each wireless device is a movement vector indicating the movement direction and the change amount, and the position data update function means determines the probability of the relative position to the change amount of the movement direction.
  • the said position data update function means adds the said produced

Abstract

 位置が未知の無線装置同士が無線通信を行うことで相対的な位置関係を把握するという用途において、高い精度で位置推定を行う。各無線装置は、他の無線装置との間の距離を測定し、該距離の測定に用いた無線信号の受信品質に基づいて距離測定値の確からしさを算出する。位置推定装置は、装置間距離および装置間距離の確からしさに基づいて各無線装置の相対位置および該相対位置の確からしさを算出する。位置推定装置は、再測定に基づいて収集した装置間距離および装置間距離の確からしさに基づいて、装置間距離および装置間距離の確からしさを更新する。そして、更新した装置間距離および装置間距離の確からしさに基づいて各無線装置の相対位置および相対位置の確からしさを更新する。位置推定装置は、再測定に基づく更新を繰り返すことで相対位置の確からしさの精度を高める。

Description

位置推定装置、位置推定システム、方法および記録媒体
 本発明は、位置推定装置、位置推定システム、方法および記録媒体に関し、特に、複数の無線装置間の電波伝搬時間から推定される装置間距離を基に、各無線装置の位置を推定する位置推定装置、位置推定システム、方法および記録媒体に関する。
 位置情報は、ナビゲーションシステム、地図情報サービス等の広い分野に利用されている。位置情報を取得する手段として、最も有名なシステムにGPS(Global Positioning System)がある。
 GPSでは、複数のGPS衛星から発信される電波を1つの受信機で受信し、それらの電波の到達する時間差から受信装置の位置を推定している。電波の到達時間差を正確に求めるために、GPS衛星には原子時計が搭載されており、さらに定期的にその原子時計の補正を行うことによって、正確なタイミングで電波を送信することが可能になっている。ただし、通常、このように正確な時計は非常に高価であり、端末側に搭載するのは、コスト的に困難である。
 無線ネットワークシステムを構成する無線装置の位置を推定する技術が、特許文献1乃至6に開示されている。
 特許文献1および特許文献2が開示する技術は、移動通信システムにおいて電波の受信遅延時間を利用して移動局の位置を推定するものである。特許文献1の技術では、複数の基地局からの電波の到来時間差を利用して位置を推定している。また、特許文献2の技術では、位置を求めたい移動局から、ゾーンの外周部に設けられた複数の基地局アンテナへの電波の遅延時間を測定することにより移動局の位置を算出している。
 特許文献3は、複数の基地局からの受信電波強度を測定して移動局の位置を推定する技術を開示する。電波強度を利用して位置を推定する手法は、他の手法に比べて低コストであるという利点があるものの、電波強度は周辺環境に大きな影響を受けるため、位置推定精度が非常に低いという欠点もある。特許文献3は、電波強度を利用して位置を推定する手法の位置推定精度が低いという欠点を、ニューラルネットワークを用いることで改善している。
 特許文献4には、センサーノード間の距離測定結果より複数のセンサーノードの位置を推定する手法が開示されている。特許文献4が開示する技術は、距離測定結果より、位置が既知であるアンカーノード間の角度を求め、この角度を所定の閾値と比較することにより、信頼性が低いロケーション推定値を排除することにより、全体的な位置情報の精度を高める手法を用いている。
 特許文献5は、無線アドホックネットワークを構成する無線装置の位置を自律的に推定可能な無線装置に関する技術である。特許文献5によれば、無線装置が、仮の自己位置と近傍に存在する無線装置の仮の位置とに基づいて演算した演算距離が、自己と近傍に存在する無線装置との間の測定距離に近づくように仮の自己位置を自律的に順次修正し、自己の位置を決定する。
 特許文献6には、直接拡散スペクトラム方式に基づく距離測定方法が開示されている。
特許第3393417号公報 特許第3629370号公報 特許第3165391号公報 特許第5020411号公報 特開2006-287897号公報 特開昭64-23184号公報
 無線通信における電波伝搬遅延を用いて無線装置間の位置関係を推定するとき、特許文献1や特許文献2が開示する技術は、位置が既知の基地局からの距離を推定することにより、位置が未知の移動局の位置を推定する手法である。そのため、位置が未知の無線装置間の通信距離測定を用いた位置推定に使用することは困難であった。
 特許文献3は、電波強度を利用して位置を推定する手法の位置推定精度が低いという欠点を、ニューラルネットワークを用いることで改善するものである。しかし、改善を加えたとしても、電波強度を利用して位置を推定する手法は、電波の遅延時間差や到来方向を用いた位置推定に比べ、依然として位置推定精度は低い。
 特許文献4が開示する技術は、位置が未知のターゲットノードの位置推定精度の検証を行った後、位置が既知であるアンカーノードに変換されるため、位置が未知の無線装置間の通信距離測定を用いた位置推定に用いることは可能ではある。しかし、あるターゲットノードが一旦アンカーノードに変換されたときは、そのアンカーノードに係る位置の確からしさがクリアされ、次回の位置推定に利用されない。そのため、この技術は、再測定をおこなっても、位置推定精度を高めることができないという問題がある。
 いずれにせよ、特許文献4が開示する技術では、個々の距離測定値に含まれる確からしさの違いが考慮されていないため、通信環境や通信パスの質の違いを測定することによる精度向上を行うことができないという問題がある。
 特許文献5が開示する技術は、再測定を繰り返すことにより、位置推定精度を高めることを行っている。しかし、この技術においても、無線装置間の距離測定における確からしさや、仮の位置推定時の位置の確からしさが考慮されておらず、通信環境や通信パスの質の違いを測定することによる精度向上を行うことができないという問題がある。
 特許文献6が開示する技術は、無線装置間の距離測定には使用できるが、無線装置の位置を推定することに関する記載はない。
 本発明の目的は、位置が未知の無線装置が相互に無線通信を行うことで相対的な位置関係を把握するという用途において、高い精度で位置推定が可能な位置推定装置、位置推定システム、方法および記録媒体を提供することにある。
 上記の目的を実現するために、本発明の一形態である位置推定装置は、
 位置が未知の各無線装置が所定の周期で出力する、無線信号を送受信して測定した他の無線装置との間の装置間距離と、該装置間距離の測定に用いた前記無線信号の受信品質に基づいて算出した該装置間距離の確からしさとを収集する距離測定データ収集手段と、
 前記各無線装置から初回に収集した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置および該相対位置の確からしさを算出する初期位置推定手段と、
 前記各無線装置の再測定により収集した前記装置間距離および前記装置間距離の確からしさと、該再測定の前の回の前記各無線装置の相対位置および該相対位置の確からしさの算出で使用した前記装置間距離および前記装置間距離の確からしさとに基づいて、前記装置間距離および前記装置間距離の確からしさを更新する距離データ更新手段と、
 前記距離データ更新手段が更新した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置および前記相対位置の確からしさを更新し、該更新した前記各無線装置の相対位置を含む位置推定結果を出力するとともに、前記各無線装置の次の回の再測定に基づいて収集した前記装置間距離および前記装置間距離の確からしさに基づく前記装置間距離および前記装置間距離の確からしさの更新を前記距離データ更新手段に指示する位置データ更新手段と、を含むことを特徴とする。
 また、本発明の別の形態である位置推定システムは、
 位置が未知の各無線装置が、無線信号を送受信して測定した他の無線装置との間の装置間距離と、該装置間距離の測定に用いた前記無線信号の受信品質に基づいて算出した装置間距離の確からしさとを所定の周期で出力する、複数の無線装置と、
 前記各無線装置が出力する前記装置間距離と前記装置間距離を収集して、前記各無線装置の装置相対位置を算出して装置位置推定結果を出力する位置推定装置と、を含み、
 前記位置推定装置は、前記各無線装置の測定により初回に収集した前記装置間距離および前記装置間距離の確からしさに基づいて、前記各無線装置の相対位置および該相対位置の確からしさを算出する初期位置推定手段と、前記各無線装置の再測定により収集した前記装置間距離および前記装置間距離の確からしさと、該再測定の前の回の前記各無線装置の相対位置および該相対位置の確からしさの算出で使用した前記装置間距離および前記装置間距離の確からしさとに基づいて、前記装置間距離および前記装置間距離の確からしさを更新する距離データ更新手段と、前記距離データ更新手段が更新した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置および前記相対位置の確からしさを更新し、該更新した前記各無線装置の相対位置を含む位置推定結果を出力するとともに、次の回の再測定に基づいて収集した前記装置間距離および前記装置間距離の確からしさに基づく前記装置間距離および前記装置間距離の確からしさの更新を前記距離データ更新手段に指示する位置データ更新手段と、を含むことを特徴とする。
 また、本発明の他の形態である位置推定方法は、
 位置が未知の各無線装置が所定の周期で出力する、無線信号を送受信して測定した他の無線装置との間の装置間距離と、該装置間距離の測定に用いた前記無線信号の受信品質に基づいて算出した該装置間距離の確からしさとを収集し、
 前記各無線装置から初回に収集した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置および該相対位置の確からしさを算出し、
 前記各無線装置の再測定により収集した前記装置間距離および前記装置間距離の確からしさと、該再測定の前の回の前記各無線装置の相対位置および該相対位置の確からしさの算出で使用した前記装置間距離および前記装置間距離の確からしさとに基づいて、前記装置間距離および前記装置間距離の確からしさを更新し、
 更新した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置および前記相対位置の確からしさを更新し、
 該更新した前記各無線装置の相対位置を含む位置推定結果を出力するとともに、前記各無線装置の次の回の再測定に基づいて収集した前記装置間距離および前記装置間距離の確からしさに基づく前記装置間距離および前記装置間距離の確からしさの更新からの処理を繰り返す、ことを特徴とする。
 さらに、本発明の他の形態である位置推定プログラムが記録されたコンピュータ読み取り可能な記録媒体は、コンピュータを、
 位置が未知の各無線装置が所定の周期で出力する、無線信号を送受信して測定した他の無線装置との間の装置間距離と、該装置間距離の測定に用いた前記無線信号の受信品質に基づいて算出した該装置間距離の確からしさとを収集する距離測定データ収集機能手段と、
 前記各無線装置から初回に収集した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置および該相対位置の確からしさを算出する初期位置推定機能手段と、
 前記各無線装置の再測定により収集した前記装置間距離および前記装置間距離の確からしさと、該再測定の前の回の前記各無線装置の相対位置および該相対位置の確からしさの算出で使用した前記装置間距離および前記装置間距離の確からしさとに基づいて、前記装置間距離および前記装置間距離の確からしさを更新する距離データ更新機能手段と、
 前記距離データ更新機能手段が更新した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置および前記相対位置の確からしさを更新し、該更新した前記各無線装置の相対位置を含む位置推定結果を出力するとともに、前記各無線装置の次の回の再測定に基づいて収集した前記装置間距離および前記装置間距離の確からしさに基づく前記装置間距離および前記装置間距離の確からしさの更新を前記距離データ更新機能手段に指示する位置データ更新機能手段と、して機能させるプログラムが記録されていることを特徴とする。
 本発明は、位置が未知の無線装置同士が無線通信を行うことで相対的な位置関係を把握するという用途において、高い精度で位置推定を行うことができる。
本発明の第1の実施形態の位置推定システムの構成を示すブロック図である。 本発明の第1の実施形態の位置推定装置の構成を示すブロック図である。 本発明の第1の実施形態の位置推定方法の処理の流れを説明するフロー図である。 本発明の第1の実施形態の位置推定装置のハードウェア構成を示すブロック図である。 本発明の第1の実施形態のプログラムが記録されたコンピュータ読み取り可能な記録媒体により実現される機能手段の構成を示すブロック図である。 本発明の第2の実施形態の位置推定システムの構成を示すブロック図である。 本発明の第2の実施形態の位置推定システムで用いる無線装置の構成例を示すブロック図である。 無線装置の遅延測定回路の構成例を示すブロック図である。 無線装置における受信信号の電力プロファイルの例を示す図である。 本発明の第2の実施形態の位置推定装置の構成を示すブロック図である。 本発明の第2の実施形態の位置推定方法の処理の流れを説明するフロー図である。 無線装置位置の確からしさの伝搬手法を示す図である。 装置間距離の更新と装置位置の更新の処理の流れを説明するフロー図である。 移動ベクトルの生成手法を示す図である。 本発明の第2の実施形態の位置推定装置のハードウェア構成を示すブロック図である。
 本発明を実施するための形態について図面を参照して説明する。
 尚、実施の形態は例示であり、開示の装置及びシステムは、以下の実施の形態の構成には限定されない。
 (第1の実施形態)
 最初に第1の実施形態の位置推定システムを説明する。
 図1は、本発明の第1の実施形態の位置推定システムの構成を示すブロック図である。
 第1の実施形態の位置推定システム100は、複数の無線装置11、12、13乃至1n(nは自然数)および位置推定装置20を含んで、構成される。
 無線装置11乃至1nの各無線装置は、位置が未知である。
 各無線装置は、無線信号を送受信して測定した他の無線装置との間の装置間距離と、該装置間距離の測定に用いた無線信号の受信品質に基づいて算出した距離測定値の確からしさとを、所定の周期で出力する。
 位置推定装置20は、無線装置11、12、13乃至1nの各無線装置が出力する装置間距離と距離測定値の確からしさを収集して、各無線装置の相対位置と相対位置の確からしさを算出して装置位置推定結果を出力する装置である。
 位置推定装置20は、初期位置推定手段1、距離データ更新手段2および位置データ更新手段3を含む構成になっている。
 初期位置推定手段1は、各無線装置の測定により初回に収集した装置間距離および装置間距離の確からしさに基づいて、各無線装置の相対位置および相対位置の確からしさを算出する。
 距離データ更新手段2は、各無線装置の再測定で収集した装置間距離および装置間距離の確からしさと、該再測定の前の回の装置間距離および装置間距離の確からしさとに基づいて、装置間距離および装置間距離の確からしさを更新する。再測定の前の回の装置間距離および装置間距離の確からしさとは、前の回に各無線装置の相対位置および該相対位置の確からしさの算出で使用した装置間距離および装置間距離の確からしさのことである。
 位置データ更新手段3は、距離データ更新手段2が更新した装置間距離および装置間距離の確からしさに基づいて各無線装置の相対位置および相対位置の確からしさを更新し、該更新した各無線装置の相対位置を含む位置推定結果を出力する。
 そして、位置データ更新手段3は、次の回の再測定に基づいて収集した装置間距離および装置間距離の確からしさに基づく装置間距離および装置間距離の確からしさの更新を、距離データ更新手段2に指示する。
 以上のように、位置推定装置20は、距離データ更新手段2が更新する装置間距離および装置間距離の確からしさに基づいて、位置データ更新手段3が各無線装置の相対位置および相対位置の確からしさを更新する。そして、位置データ更新手段3は、推定した装置位置の精度をさらに高めるために、距離データ更新手段2による装置間距離および装置間距離の確からしさの更新をさらに実行させる。
 このような距離データ更新手段2と位置データ更新手段3による更新の繰り返しを実行することにより、高い精度の位置推定結果を得ることができる。
 第1の実施形態の位置推定装置を説明する。
 図2は、本発明の第1の実施形態の位置推定装置の構成を示すブロック図である。
 第1の実施形態の位置推定装置20は、距離測定データ収集手段の一例としての距離測定データ収集部21、および初期位置推定手段の一例としての初期位置推定部22を含む構成になっている。さらに第1の実施形態の位置推定装置20は、距離データ更新手段の一例としての距離データ更新部23、および位置データ更新手段の一例としての位置データ更新部24を含む構成になっている。
 距離測定データ収集部21は、位置が未知の各無線装置が所定の周期で出力する、他の無線装置との間の装置間距離と該装置間距離の確からしさとを収集する。各無線装置は、無線信号を送受信して他の無線装置との間の装置間距離を測定し、該装置間距離の測定に用いた無線信号の受信品質に基づいて装置間距離の確からしさを算出する。
 初期位置推定部22は、各無線装置から初回に収集した装置間距離および装置間距離の確からしさに基づいて、各無線装置の相対位置および該相対位置の確からしさを算出する。
 距離データ更新部23は、各無線装置の再測定で収集した装置間距離および装置間距離の確からしさと、該再測定の前の回の装置間距離および装置間距離の確からしさとに基づいて、装置間距離および装置間距離の確からしさを更新する。再測定の前の回の装置間距離および装置間距離の確からしさとは、前の回に各無線装置の相対位置および該相対位置の確からしさの算出で使用した装置間距離および装置間距離の確からしさのことである。
 位置データ更新部24は、距離データ更新部23が更新した装置間距離および装置間距離の確からしさに基づいて各無線装置の相対位置および相対位置の確からしさを更新し、該更新した各無線装置の相対位置を含む位置推定結果を出力する。
 そして、位置データ更新部24は、各無線装置の次の回の再測定に基づいて収集した装置間距離および装置間距離の確からしさに基づく装置間距離および装置間距離の確からしさの更新を距離データ更新部23に指示する。
 以上のように、位置推定装置20は、距離データ更新部23が更新する装置間距離および装置間距離の確からしさに基づいて、位置データ更新部24が各無線装置の相対位置および相対位置の確からしさを更新する。そして、位置データ更新部24は、推定した装置位置の精度をさらに高めるために、距離データ更新部23による装置間距離および装置間距離の確からしさの更新をさらに実行させる。
 このような距離データ更新部23と位置データ更新部24による更新の繰り返しを実行することにより、高い精度の位置推定結果を得ることができる。
 第1の実施形態の位置推定方法を説明する。
 図3は、本発明の第1の実施形態の位置推定方法の処理の流れを説明するフロー図である。
 第1の実施形態の位置推定方法は以下の処理を行う。
 位置が未知の各無線装置が所定の周期で出力する、無線信号を送受信して測定した他の無線装置との間の装置間距離と、該装置間距離の測定に用いた無線信号の受信品質に基づいて算出した該装置間距離の確からしさとを収集する(S101)。
 各無線装置から初回に収集した装置間距離および装置間距離の確からしさに基づいて各無線装置の相対位置および該相対位置の確からしさを算出する(S102)。
 各無線装置の再測定により収集した装置間距離および装置間距離の確からしさと、該再測定の前の回の装置間距離および装置間距離の確からしさとに基づいて、装置間距離および装置間距離の確からしさを更新する(S103)。なお、再測定の前の回の装置間距離および装置間距離の確からしさとは、前の回に各無線装置の相対位置および該相対位置の確からしさの算出で使用した装置間距離および装置間距離の確からしさのことである。
 更新した装置間距離および装置間距離の確からしさに基づいて各無線装置の相対位置および相対位置の確からしさを更新する(S104)。
 更新した各無線装置の相対位置を含む位置推定結果を出力するとともに、ステップS103からの更新処理を繰り返して装置相対位置と相対位置の確からしさをさらに更新する(S105)。つまり、各無線装置の次の回の再測定に基づいて収集した装置間距離および装置間距離の確からしさに基づく装置間距離および前記装置間距離の確からしさの更新からの処理を繰り返す。
 このようなステップS103とステップS104による更新の繰り返しが行われることにより、高い精度の位置推定結果を得ることができる。
 第1の実施形態の位置推定プログラムが記録されたコンピュータ読み取り可能な記録媒体について、位置推定プログラムを説明する。
 図4は、本発明の第1の実施形態の位置推定装置のハードウェア構成を示すブロック図である。
 図4を参照すると、位置推定装置20は、一般的なコンピュータ装置と同様のハードウェア構成によって実現することができ、次の構成を備える。
 ハードウェア構成として位置推定装置20は、制御部であるCPU(Central Processing Unit)31、主記憶部32、補助記憶部33を含む。主記憶部32は、RAM(Random Access Memory)等で構成され、補助記憶部33は、磁気ディスク、半導体メモリ等の不揮発メモリから構成されるハードディスク装置を含む。
 また、ハードウェア構成として位置推定装置20は、無線通信によりデータの送受信を行う通信制御部34、ディスプレイによる表示部35、キー操作を行う入力部36、上記各構成要素を相互に接続するシステムバス37等を含む。
 本実施形態の位置推定装置20は、その動作を、位置推定装置20の内部に各機能を実現するプログラムを組み込んだLSI(Large Scale Integration)等のハードウェア部品からなる回路部品を実装して実現してもよい。また、本実施形態の位置推定装置20は、各構成要素の各機能を提供するプログラムを、コンピュータ処理装置上のCPU31で実行することにより、ソフトウェア的に実現してもよい。なお、このプログラムは、CF(Compact Flash(登録商標))及びSD(Secure Digital)等の汎用的な半導体記録デバイス、フレキシブルディスク(Flexible Disk)等の磁気記録媒体、又はCD-ROM(Compact Disk Read Only Memory)などの光学記録媒体などの形態で、流通され得る。このような記録媒体に記録された位置推定プログラムを読み込んで、コンピュータ処理装置上のCPU31で実行することにより、本実施形態の位置推定装置20の機能をソフトウェア的に実現してもよい。
 すなわち、CPU31は、補助記憶部33に格納されているプログラムを、主記憶部32にロードして実行し、あるいは補助記憶部33上で直接実行し、動作を制御することにより、位置推定装置20の各機能をソフトウェア的に実現する。
 本発明の第1の実施形態のプログラムが記録されたコンピュータ読み取り可能な記録媒体により実現される機能手段の構成を、図5に示す。
 本実施形態のプログラムは、コンピュータを、距離測定データ収集機能手段101、初期位置推定機能手段102、距離データ更新機能手段103および位置データ更新機能手段104として機能させる。
 距離測定データ収集機能手段101は、無線信号を送受信して測定した他の無線装置との間の装置間距離と、該装置間距離の測定に用いた無線信号の受信品質に基づいて算出した該装置間距離の確からしさとを収集する。上記無線信号は、位置が未知の各無線装置が所定の周期で出力する信号である。
 初期位置推定機能手段102は、各無線装置から初回に収集した装置間距離および装置間距離の確からしさに基づいて、各無線装置の相対位置および該相対位置の確からしさを算出する。
 距離データ更新機能手段103は、各無線装置の再測定により収集した装置間距離および装置間距離の確からしさと、該再測定の前の回の装置間距離および装置間距離の確からしさとに基づいて、装置間距離および装置間距離の確からしさを更新する。再測定の前の回の装置間距離および装置間距離の確からしさとは、前の回に各無線装置の相対位置および該相対位置の確からしさの算出で使用した装置間距離および装置間距離の確からしさのことである。
 位置データ更新機能手段104は、距離データ更新機能手段103が更新した装置間距離および装置間距離の確からしさに基づいて各無線装置の相対位置および相対位置の確からしさを更新し、該更新した各無線装置の相対位置を含む位置推定結果を出力する。
 そして、位置データ更新機能手段104は、各無線装置の次の回の再測定に基づいて収集した装置間距離および装置間距離の確からしさに基づく装置間距離および装置間距離の確からしさの更新を距離データ更新機能手段103に指示する。
 以上のように、距離データ更新機能手段103が更新する装置間距離および装置間距離の確からしさに基づいて、位置データ更新機能手段104が各無線装置の相対位置および相対位置の確からしさを更新する。
 そして、位置データ更新機能手段104は、推定した装置位置の精度をさらに高めるために、距離データ更新機能手段103による装置間距離および装置間距離の確からしさの更新をさらに実行させる。
 このような距離データ更新機能手段103と位置データ更新機能手段104による更新の繰り返しを実行することにより、高い精度の位置推定結果を得ることができる。
 以上に説明したように、本実施形態では、位置が未知の無線装置が相互に無線通信を行うことで相対的な位置関係を把握するという用途において、高い精度で位置推定を行うことができる。
 (第2の実施形態)
 図6は、本発明の第2の実施形態の位置推定システムの構成を示すブロック図である。
 第2の実施形態の位置推定システムは、位置が未知の複数の無線装置30と、各無線装置30の相対位置を算出して装置位置推定結果を出力する位置推定装置40と、を含む構成になっている。
 位置推定装置40は、各無線装置30に対して、他の無線装置との間の距離を測定し、該距離の測定に用いた無線信号の受信品質に基づいて算出した距離測定値の確からしさを報告するように指示する。測定と報告の指示を受けた各無線装置30は、所定の周期で他の無線装置との間の距離を測定し、その距離測定値の確からしさを算出して位置推定装置40に報告する。
 位置推定装置40は、複数の無線装置30から収集した装置間距離とその装置間距離の確からしさに基づいて、後述する方法により装置相対位置を算出して装置位置推定結果を出力する。そして、位置推定装置40は、無線装置30により繰り返し行われる再測定データを逐次使用して、出力する装置位置推定結果の精度を徐々に高めてゆく。
 <無線装置間距離の算出>
 まず、図7乃至図9を参照して、無線装置30による他の無線装置との間の距離の算出について説明する。
 各無線装置30は他の無線装置との間で無線通信を行い、信号の伝搬遅延時間を測定して距離を算出する。伝搬遅延時間を測定する方法としては、いくつかの方法がある。例えば、各無線装置30はネットワークシステム内で共通のタイマーを保持し、他の無線装置からの信号の送信時刻と、その信号の受信時刻との差から距離を算出するようにしてもよい。また、信号が2つの無線装置間を往復する時間を計測し、その計測した往復時間から2つの無線装置間の距離を算出するようにしてもよい。特許文献6が開示する遅延測定回路では、送信側が送信したタイミングパルス信号を、受信側で折り返して送信側が再受信するラウンドトリップ時間から距離を算出する。
 図7は、第2の実施形態の位置推定システムで用いる無線装置の構成例を示すブロック図である。
 本実施形態では、送信側が送信した、拡散符号を用いて拡散されたタイミングパルス信号を、受信側で折り返して送信側に再受信するラウンドトリップ時間から距離を算出する方法を採用している。
 本実施形態の無線装置30は、タイミングパルス信号生成回路301とデータ変調回路302を含む送信部(TX:Transmitter)、および遅延測定回路304とデータ復調回路305を含む受信部(RX:Receiver)を、備える。その他に、無線信号の送信回路である送信RF(Radio Frequency)回路303、無線信号の受信回路である受信RF回路306、およびプロセッサを備えた制御回路307を含む構成になっている。
 各無線装置30は、タイミングパルス信号生成回路301を用いて作成したタイミングパルス信号を周辺の他の無線装置に送信し、折り返して戻ってきたタイミングパルス信号の時間差を、遅延測定回路304を用いて測定する。
 このとき、各無線装置30は、通信が可能な範囲の複数の他の無線装置から折り返して戻ってきたタイミングパルス信号を受信することになる。そして、各無線装置30は、他の無線装置がタイミングパルス信号を折り返す際に挿入する識別情報により、どの無線装置から戻ってきたタイミングパルス信号であるかを識別することができる。
 制御回路307は、遅延測定回路304が出力するタイミングパルス信号の送受信の時間差に基づいて、他の無線装置との間の距離を算出する。
 また、各無線装置30は、遅延時間を測定するとともに、その遅延時間を測定するときに用いた受信信号のSN(Signal to Noise)比および受信信号の遅延広がり(遅延スプレッドとも称する。)も測定する。受信信号のSN比および遅延広がりは、後述するように、装置間距離測定値の確からしさの算出に用いる。なお、遅延広がりは、反射波によるマルチパスの遅延特性を表すパラメータで、電力遅延プロファイルの遅延時間に対する標準偏差を表す。
 なお、遅延時間の測定に基づいて各無線装置30が装置間距離を算出する代わりに、特定の無線装置が遅延時間等を解析して装置間距離を算出するように、構成してもよい。その場合、遅延時間を測定した各無線装置は、測定した遅延時間をデータ変調回路302で変調し、送信RF回路303を介して特定の無線装置に送信する。そして、特定の無線装置では、受信RF回路306を介して受信した無線信号をベースバンド信号に変換し、データ復調回路305でデータを復調し、制御回路307で遅延時間を解析する。
 図8は、無線装置30の遅延測定回路304の構成例を示すブロック図である。
 また、図9は、無線装置30における受信信号の電力プロファイルの例を示す図である。
 図8の遅延測定回路304は、マッチドフィルタ311、相関係数生成回路312、電力演算回路313およびピーク検出回路314を含む構成になっている。
 受信RF回路306で受信された周波数が、マッチドフィルタ311に最適な周波数にダウンコンバートされて、マッチドフィルタ311に入力データ(I,Q)が入力される。同時に、相関係数生成回路312からタイミングパルス信号用の相関係数がマッチドフィルタ311に与えられる。
 マッチドフィルタ311は、入力データとタイミングパルス信号の符号列との相関値を計算して、その相関の程度に応じた相互相関ベクトル値を出力する。
 マッチドフィルタ311が出力した相互相関ベクトル値は、電力演算回路313で電力に変換され、電力プロファイルが生成される。この電力プロファイルは、図9のようなピークを持つ波形となる。
 電力演算回路313が出力した電力プロファイルはピーク検出回路314に入力され、ピーク検出回路314において該電力プロファイルのピーク点の時間を測定することにより、タイミングパルス信号の到達時間が求められる。また、この電力プロファイルから遅延広がりも求めることができる。
 <無線装置間距離の確からしさの算出>
 受信信号のSN比(r)および遅延広がり(d)を用いて、無線装置間距離の確からしさ(σ)を算出する。
 無線装置間距離の確からしさ(σ)は、その無線装置間距離の測定値の標準偏差を表しており、最も確からしいときは0となるような非負の実数値となる。
 無線装置間距離の確からしさ(σ)は、下記の式で求める。
 σ=F(d)・G(r)
 ここで、関数F( )、G( )は多項式関数である。その係数は、無線装置固有の値であり、無線装置毎にあらかじめ測定し、引数に対してフィッティングして求めておく。
 例えば、F(d)=Σai・diという式で表されるとすると、係数aiは実測結果からフィッティングして求めるという意味である。
 なお、本実施形態では、無線装置間距離の確からしさ(σ)を各無線装置で計算するとしているが、前述したような特定の無線装置で計算してもよい。また、さらに、無線装置間距離と共に無線品質データを位置推定装置40に送って、位置推定装置40が算出するように構成してもよい。
 <位置推定装置の構成>
 各無線装置30が測定して算出したデータである無線装置間距離と無線装置間距離の確からしさは位置推定装置40により収集され、位置推定装置40が無線装置位置を推定する。なお、以降の説明において、「無線装置間距離と無線装置間距離の確からしさ」を「無線装置間距離データ等」と称する場合もある。
 第2の実施形態の位置推定装置40の無線装置位置の推定について説明する。
 図10は、第2の実施形態の位置推定装置40の構成を示すブロック図である。
 図10の位置推定装置40は、無線装置間距離測定データ収集部401、初期無線装置位置推定部402、無線装置間距離更新部403、移動ベクトル生成部404および無線装置位置更新部405を含む構成になっている。
 無線装置間距離測定データ収集部401は、各無線装置30に対して無線装置間距離の測定を指示して、各無線装置30から無線装置間距離と無線装置間距離の確からしさを測定データとして収集し、蓄積して整理する。前述したように、無線装置30は所定の周期で無線装置間距離の測定を行い、その測定データを位置推定装置40に逐次報告してくる。
 位置推定装置40では、後述するように初期測定フェーズと再測定フェーズの動作が行われ、再測定フェーズの動作が繰り返し実行されることにより、出力される装置位置推定結果の精度が徐々に高まる。
 まず、位置推定装置40は初期測定フェーズの動作を実行して、位置が未定の各無線装置の初期無線装置位置を推定する。なお、無線装置位置は相対位置として表現される。つまり、基準とする無線装置を決め、その無線装置の位置座標を基準とした相対座標で他の無線装置の装置位置が表現されるものとする。
 無線装置間距離測定データ収集部401で収集した、各無線装置30から最初に報告された無線装置間距離と無線装置間距離の確からしさ(初回測定データ)は、初期無線装置位置推定部402に送られる。また、収集した無線装置間距離データ等に係る無線装置の初期位置が推定されていない場合も、その無線装置間距離データ等は初期無線装置位置推定部402に送られる。
 初期無線装置位置推定部402は、初回測定データである無線装置間距離と無線装置間距離の確からしさに基づいて、後述するように初期無線装置位置と無線装置位置の確からしさを推定する。
 初期無線装置位置では位置推定精度が低いので、位置推定装置40は再測定フェーズの動作を実行して、推定した無線装置位置の推定精度を高める。この再測定フェーズは、終了の条件に達するまでは繰り返して実行される。
 再測定データを受信した位置推定装置40は、無線装置間距離更新部403、移動ベクトル生成部404および無線装置位置更新部405を用いて再測定データである無線装置間距離データ等に基づいて、無線装置位置の推定精度を高める。
 つまり、無線装置間距離測定データ収集部401は、各無線装置30から収集した再測定による無線装置間距離と無線装置間距離の確からしさを、無線装置間距離更新部403に送る。
 無線装置間距離更新部403は、前の回で使用した無線装置間距離と無線装置間距離の確からしさと、再測定で収集した無線装置間距離と無線装置間距離の確からしさとに基づいて、更新した無線装置間距離と無線装置間距離の確からしさを算出する。ここで、前の回で使用した無線装置間距離と無線装置間距離の確からしさとは、前の回で無線装置位置の推定に用いた無線装置間距離と無線装置間距離の確からしさである。つまり、最初に実行される再測定フェーズにおいて、前の回で使用した無線装置間距離と無線装置間距離の確からしさとは、初期無線装置位置の推定に用いた最初に収集した無線装置間距離と無線装置間距離の確からしさである。次回以降に実行される再測定フェーズでは、前回の再測定フェーズで無線装置間距離更新部403が更新した無線装置間距離と無線装置間距離の確からしさである。
 移動ベクトル生成部404は、更新した無線装置間距離と無線装置間距離の確からしさを用いて、無線装置位置のずれ方向とずれの量を表すベクトルである移動ベクトルを生成する。移動ベクトル生成の詳細については後述する。
 そして、無線装置位置更新部405は、その移動ベクトルを用いて無線装置位置を更新する。
 無線装置位置更新部405は、更新した無線装置位置を装置位置推定結果として出力するとともに、無線装置間距離更新部403に対して次の再測定データによる更新指示を出す。
 無線装置間距離更新部403は、更新指示に基づいて、無線装置間距離測定データ収集部401から次の再測定に基づく無線装置間距離と無線装置間距離の確からしさを取得して、無線装置間距離と無線装置間距離の確からしさのさらなる更新を行う。そして、該更新された無線装置間距離と無線装置間距離の確からしさに基づいて移動ベクトルが生成されて、それによりさらに更新された無線装置位置が推定結果として得られる。
 <位置推定方法の処理の流れ>
 図11を参照して本発明の第2の実施形態の位置推定方法の処理の流れを説明する。
 図11は、本発明の第2の実施形態の位置推定方法の処理の流れを説明するフロー図である。
 上述した位置推定装置40の説明からもわかるように、位置推定方法の処理は初期測定フェーズと再測定フェーズとの2段階に分かれる。初期測定フェーズでは、位置推定を行うすべての無線装置の相対位置およびそれらの位置の確からしさの初期値を求める。再測定フェーズでは、再測定による距離の変化分を考慮して、求めた無線装置位置を更新する。そして、再測定を繰り返すことにより出力する無線装置位置の精度を順次高める。
 図11において、ステップS201からステップS203の処理は初期測定フェーズである。そして、ステップS204からステップS208が再測定フェーズの処理である。
 まずは、初期測定フェーズを実施する。
 位置推定装置40は、各無線装置30に対して周辺の無線装置との間の距離の測定開始を指示する(S201)。例えば、図示しない外部装置から位置推定動作の開始を指示されると、位置推定装置40では無線装置間距離測定データ収集部401が各無線装置30に対する測定開始指示を出すものとする。
 測定開始の指示を受けた無線装置30は、前述のごとく、無線信号の送受信により測定した他の無線装置との間の距離と、該距離の測定に用いた無線信号の受信品質に基づいて距離測定値の確からしさを算出して位置推定装置40に報告する。そして、無線装置30は、この測定と報告を所定の周期で繰り返して実行する。
 位置推定装置40では無線装置間距離測定データ収集部401が、各無線装置30が報告する無線装置間距離と無線装置間距離の確からしさを逐次収集する。
 無線装置間距離測定データ収集部401は、無線装置30の初回測定に基づく最初に報告を受けた無線装置間距離と無線装置間距離の確からしさを収集する(S202)と、その初回測定データを初期無線装置位置推定部402に転送する。
 無線装置間距離と無線装置間距離の確からしさの初回測定データを受けた初期無線装置位置推定部402は、その無線装置間距離と無線装置間距離の確からしさに基づいて、無線装置位置と無線装置位置の確からしさの初期値を求める(S203)。
 なお、各無線装置30は位置が未知なので、特定の基準となる無線装置を決め、その位置座標を(0,0)として、他の無線装置の相対位置座標を無線装置間距離から算出する。すなわち、複数の無線装置30のうち、基準となる無線装置の位置座標を(0,0)としたときの、他の無線装置の相対位置座標を、初期無線装置位置推定部402は算出する。また、算出した無線装置位置の確からしさを、算出に使用した無線装置間距離の確からしさから求める。無線装置位置およびその確からしさの算出の詳細については後述する。
 位置推定装置40では、上述した無線装置位置(相対位置)とその無線装置位置の確からしさの初期値を、対象とするすべての無線装置に対して求める。
 対象とするすべての無線装置に対して無線装置位置とその無線装置位置の確からしさの初期値を求めたら、その初期値の精度を高めるために再測定フェーズを実施する。
 再測定フェーズでは、再測定データを使用して無線装置間距離更新部403による無線装置間距離と無線装置間距離の確からしさの更新から実施される。
 初期フェーズの終了時には初期無線装置位置推定部402が、無線装置位置とその無線装置位置の確からしさの初期値を求めた旨を無線装置間距離更新部403に通知する。このとき、求めた無線装置位置とその無線装置位置の確からしさの初期値およびその算出に使用した無線装置間距離と無線装置間距離の確からしさは、所定の記憶領域に登録されているものとする。
 再測定フェーズの実施を指示された無線装置間距離更新部403は、無線装置間距離測定データ収集部401に対して再測定データの転送を要求する。
 無線装置30からの測定データを逐次収集している無線装置間距離測定データ収集部401は、無線装置30から収集した再測定データを、無線装置間距離更新部403からの要求に応じて転送する。なお、無線装置間距離測定データ収集部401は、無線装置間距離更新部403の要求に基づいて無線装置30に対して測定データを送信するように指示し、その指示に基づいて収集した再測定データを転送するように構成してもよい。
 以上のようにして、無線装置間距離更新部403は、再測定データの無線装置間距離と無線装置間距離の確からしさを受信する(S204)。
 無線装置間距離更新部403は、再測定データの無線装置間距離と無線装置間距離の確からしさを受信すると、無線装置間距離と無線装置間距離の確からしさを更新する(S205)。この更新処理の詳細は後述するが、再測定データの無線装置間距離と該距離の確からしさと、前の回に無線装置位置と該位置の確からしさの算出に使用した無線装置間距離と該距離の確からしさに基づいて更新する。
 そして、無線装置間距離更新部403が更新した無線装置間距離と無線装置間距離の確からしさは、ステップS206で無線装置位置と無線装置位置の確からしさの更新に使用するために、前述した所定の記憶領域に登録される。
 なお、前の回に無線装置位置と無線装置位置の確からしさの算出に使用した無線装置間距離と無線装置間距離の確からしさは、所定の記憶領域に登録されている。例えば、この再測定フェーズが、初期測定フェーズの直後に行われる処理であれば、初期測定フェーズで無線装置位置と該位置の確からしさの初期値算出に使用した無線装置間距離と該距離の確からしさが所定の記憶領域に登録されている。また、この再測定フェーズが、その後繰り返し行われる再測定フェーズの処理であれば、前の回のステップS205の処理で無線装置間距離更新部403が更新した無線装置間距離と該距離の確からしさが所定の記憶領域に登録されている。
 無線装置間距離更新部403は、無線装置間距離と無線装置間距離の確からしさを更新した旨を移動ベクトル生成部404に通知する。
 更新された無線装置間距離と無線装置間距離の確からしさに基づいて、無線装置位置と該位置の確からしさが更新される(S206)。
 無線装置位置とその確からしさの更新処理は、移動ベクトル生成部404と無線装置位置更新部405により行われる。
 詳細は後述するが、移動ベクトル生成部404は、無線装置間距離更新部403が更新した無線装置間距離と該距離の確からしさを用いて、無線装置位置のずれ方向とずれ量を表すベクトルである移動ベクトルを生成する。そして、無線装置位置更新部405は、その移動ベクトルを用いて無線装置位置と該位置の確からしさを更新する。
 無線装置位置更新部405は、更新した無線装置位置を装置位置推定結果として、図示しない外部装置に出力する(S207)。
 そして、無線装置位置更新部405は、処理の終了条件を確認し(S208)、終了条件に至ってない場合には(S208、NO)、再測定データに基づく更新処理を再度実行するように無線装置間距離更新部403に指示を出す。この場合は、ステップS204からステップS208の処理が繰り返される。
 また、ステップS208において、終了条件に達した場合には(S208、YES)、無線装置位置更新部405は位置推定装置40の処理を終了する。
 ここで、終了条件は任意に設定できる。たとえば、図示しない外部装置から終了指示を受けた場合を終了の条件としてもよい。再測定フェーズの処理を所定回数実施することを以て、終了の条件としてもよい。また、ステップS206で得られた無線装置位置の確からしさが所定の値に達したことを以て、終了の条件としてもよい。また、このとき、無線装置位置の確からしさが所定の値に達した無線装置の数を指定するようにしてもよい。
 <無線装置初期位置とその確からしさの推定>
 次に、無線装置の初期位置とその確からしさの推定について説明する。
 ここでは、平面空間における位置が未定の無線装置の相対位置を求める。
 無線装置初期位置の算出は、各無線装置位置の座標と無線装置間距離の連立方程式を行列式として、無線装置間距離の誤差の2乗平均値が最小になるように求める。
 例えば、まず、3台の無線装置を選択し、その3台の無線装置間の距離から三角形を作り、その三角形を基準とした無線装置間の相対位置を求める。そして、相対位置が求まったその三角形の各頂点の無線装置をアンカーノードとして、特許文献4(特許5020411号公報)で紹介されているような手法で、他の無線装置の装置位置を順次求める。
 なお、特許文献4で紹介されている手法では、無線装置間距離の個々の通信状態による確からしさが反映されていないが、本実施形態では、無線装置の初期位置を求めると同時に、その位置の確からしさを計算する。
 無線装置位置の推定値の確からしさは、無線装置位置の推定値の標準偏差を表し、最も確からしいときは0となる非負の実数値である。
 無線装置位置の推定値の確からしさは、無線装置位置の確からしさを伝搬させて求める。なお、無線装置位置の確からしさを伝搬させて求めるとは、確定した無線装置位置の確からしさと無線装置間距離の確からしさを使って、別の無線装置の無線装置位置の確からしさを求めることを意味する。言い換えれば、ある無線装置位置の確からしさは、その前に確定した無線装置位置の確からしさと無線装置間距離の確からしさを用いて求めることを意味する。
 図12は無線装置位置の確からしさの伝搬手法を示す図である。
 n、n、nは、それぞれ無線装置である。無線装置nと無線装置nとの間の距離をd01、無線装置nと無線装置nとの間の距離をd02、そして無線装置nと無線装置nとの間の距離をd12とする。また、距離d01の確からしさをσ01、距離d02の確からしさをσ02、そして距離d12の確からしさをσ12とする。
 無線装置nの位置の推定値の確からしさσは、正規分布の加法性の定理から、次式で求められる。
 σ=√(σ 2+σ01 2
 ここで、σは、無線装置nの位置の確からしさを意味し、無線装置nは相対位置の基準となる無線装置である。なお、無線装置の位置の確からしさの算出は、相対位置の基準となる無線装置から順に求めるものとし、相対位置の基準となる無線装置の位置の確からしさはσ=0として算出済みであるとしている。
 つまり、無線装置nの位置の推定値の確からしさσは、確定している無線装置nの位置の確からしさσと、距離d01の確からしさσ01を使って求めている。
 また、無線装置nの位置の推定値の確からしさσは次式で求められる。ここでmax()は、括弧内の値のうちで大きい方を抽出する関数を意味する。
 σ=max(√(σ 2+r(θ)・σ02 2),√(σ 2+r(φ)・σ12 2))
 ここで、r(θ)=max(cos(θ),sin(θ))とする。
 また、θ、φは、余弦定理を用いて以下の式で求められる。
 θ=acos((d01 2+d02 2-d12 2)/(2d02・d01))
 φ=acos((d01 2+d12 2-d02 2)/(2d12・d01))
 このような計算を繰り返すことにより、各無線装置の初期位置の確からしさを順に求めてゆく。角度θは、無線装置nと無線装置nとを結ぶ線分と、無線装置nと無線装置nとを結ぶ線分とがなす角度である。角度φは、無線装置nと無線装置nとを結ぶ線分と、無線装置nと無線装置nとを結ぶ線分とがなす角度である。
 <再測定データによる精度の向上>
 各無線装置30の初期位置の推定値およびその確からしさを求めたら、無線装置間距離を再測定し、その再測定した無線装置間距離に基づいて漸近的に位置の推定精度を高めてゆく。
 図13は、無線装置間距離の更新と無線装置位置の更新の処理の流れを説明するフロー図である。この処理フローは、図11におけるステップS205とS206の処理に相当する。
 ここでは、以下の処理が行われる。
 前回の無線装置位置推定に用いた無線装置間距離および該距離の確からしさと、再測定で測定した無線装置間距離および該距離の確からしさに基づいて無線装置間距離および該距離の確からしさを更新する(S301)。前述したように、前回の無線装置位置推定に用いた無線装置間距離および該距離の確からしさは所定の記憶領域に登録されている。そして、当該ステップS301の処理で更新した無線装置間距離および該距離の確からしさはその所定の記憶領域に登録されて、無線装置位置の更新に使われる。
 ステップS301で更新した無線装置間距離および該距離の確からしさに基づいて、無線装置位置の確からしさを更新する(S302)。
 前回の無線装置位置推定に用いた無線装置間距離と更新した無線装置間距離との装置間距離の変化分と、ステップS302で更新した無線装置位置の確からしさとに基づいて移動ベクトルを生成する(S303)。
 前回の無線装置位置に対応する位置ベクトルに、ステップS303で生成した移動ベクトルを加算して、更新した無線装置位置を推定する(S304)。
 無線装置間距離および該距離の確からしさの更新、無線装置位置の確からしさの更新、移動ベクトルの生成および無線装置位置の更新について順次説明する。
 <無線装置間距離およびその距離の確からしさの更新>
 無線装置間距離更新部403は、無線装置間距離およびその距離の確からしさを次のように更新する。
 前回の装置位置の推定に用いた無線装置間距離をdold、その距離の確からしさをσoldとする。
 また、今回の再測定で得られた無線装置間距離をdmeas、その距離の確からしさをσmeasとする。
 更新後の無線装置間距離dnew、およびその距離の確からしさσnewは次の式で求める。
 dnew=((σold+β・Te)・dmeas+σmeas・dold)/((σold+β・Te)+σmeas)
 σnew=(σold+β・Te)・σmeas/((σold+β・Te)+σmeas)
 ここで、Teは算出後経過時間、βは忘却係数とする。
 算出後経過時間Teとは、前回の距離算出から今回の再測定による距離算出までの経過時間である。忘却係数βはシステムの特性によって、適当な値を設定する。例えば、大きな位置の変動が予想される環境のシステムでは、βを大きくして、古いデータの影響を小さくする。
 <無線装置位置の確からしさの更新>
 移動ベクトル生成部404は、無線装置間距離の更新に伴い無線装置位置の確からしさの更新を行う。更新された無線装置位置の確からしさは、更新された無線装置間距離およびその距離の確からしさを使用して、前述の無線装置初期位置とその確からしさの算出における無線装置位置の確からしさと同様な手法で算出する。
 <移動ベクトルの生成>
 移動ベクトル生成部404は、更新した無線装置位置の確からしさと更新した無線装置間距離を使用して移動方向と変化量を示す移動ベクトルを生成する。移動ベクトルは、無線装置位置を更新するために用いるベクトルであり、無線装置間距離と無線装置位置の確からしさの更新結果を用いて、影響を伝搬させて計算する。
 なお、「影響を伝搬させて計算する」とは、ある無線装置位置を移動ベクトルに応じて移動させたとした場合、その無線装置位置の移動に応じて、周辺にある他の無線装置に与える影響の度合いを、その無線装置に対する移動ベクトルとして与えることを云う。具体的には、ある移動ベクトルに従って無線装置位置が移動した場合に、無線装置間距離が長くなったり、短くなったりするが、その長さの変化分に、各無線装置位置の確からしさで重みづけ配分して、隣接する無線装置位置に対する移動ベクトルを求める。
 図14は移動ベクトルの生成手法を示す図である。
 無線装置間距離の再測定の結果、無線装置nと無線装置nの距離がd01からd01’になった場合、無線装置nの移動ベクトルmは以下の式で計算する。
 m=((n-n)/|n-n|)・(d01’-d01)・(σ/(σ+σ))
 ここで、nは無線装置nの位置ベクトル、nは無線装置nの位置ベクトル、σは無線装置nの更新された位置の確からしさ、σは無線装置nの更新された位置の確からしさを示す。
 また、「(n-n)/|n-n|」は、無線装置nから無線装置nに向かう単位ベクトル、「(d01’-d01)」は無線装置間距離の変化分、「σ/(σ+σ)」は無線装置nの移動距離の重みを示している。つまり、無線装置nが移動するにあたって無線装置nが受ける影響分(移動ベクトル)を示している。
 次に、無線装置nに隣接する無線装置nに対しても、移動ベクトルを計算する。
 無線装置nの移動ベクトルmは以下の式で計算する。
 m=m・σ/(σ+σ)
 ここで、σは無線装置nの更新された位置の確からしさを示す。
 他の隣接する無線装置に対しても同様に移動ベクトルを計算して、移動ベクトルを伝搬させてゆく。ただし、伝搬する無線装置の段数は計算量削減のため、制限しておく。また、別ルートで同じ無線装置に異なる移動ベクトルが設定された場合は、その移動ベクトルを加算することにより相殺する。
 このような処理を繰り返して、対象とする複数の無線装置の移動ベクトルを順次計算する。
 <無線装置位置の更新>
 移動ベクトル生成部404が生成した移動ベクトルに基づいて、無線装置位置更新部405は無線装置位置を更新する。無線装置位置の更新は、更新前の無線装置位置の位置ベクトルに移動ベクトルを加算することにより行う。
 以上により、無線装置位置の更新が行われ、無線装置位置の推定結果が出力される。
 再測定フェーズが繰り返し実行されることにより、再測定データに基づく無線装置間距離の更新と、それに基づく無線装置位置の更新が繰り返され、各再測定フェーズに対応した無線装置位置の推定結果が外部装置に出力される。そして、無線装置間距離の再測定と、無線装置位置の更新を繰り返すことによって、徐々に無線装置位置の推定精度を高めてゆく。
 例えば、無線装置位置の推定結果が必要な限り、一定の間隔で再測定フェーズを実行して再測定フェーズに対応した無線装置位置の推定結果を出力することにより、移動した無線装置の位置を追随して求めることもできる。無線装置が移動した場合には、一時的に無線装置位置の推定精度が落ちるが、再測定フェーズを繰り返すことにより、位置推定精度を再度高めることができる。
 (位置推定装置のハードウェア構成)
 図15は本発明の第2の実施形態の位置推定装置のハードウェア構成を示すブロック図である。
 位置推定装置50は、無線回路501、プロセッサ502、命令メモリ503、共有メモリ504およびデータメモリ505を含む構成になっている。
 各無線装置が取得した無線装置間距離データ等は位置推定装置50に無線伝送される。
 位置推定装置50は、無線回路501で無線装置間距離データ等を受信して一旦共有メモリ504に格納する。
 命令メモリ503には、初期無線装置位置推定機能、無線装置間距離更新機能、移動ベクトル生成機能および無線装置位置更新機能の各手順を記述したプログラムが格納されている。
 共有メモリ504に格納された無線装置間距離データ等は、プロセッサ502が命令メモリ503に格納された各プログラムを実行することにより処理されて、各無線装置の位置の推定処理が行われる。
 以上に説明したように、本実施形態によれば、位置が未知の無線装置が相互に無線通信を行うことで相対的な位置関係を把握するという用途において、高い精度で位置推定を行うことができる。
 なお、上記の実施形態の一部または全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1) 位置が未知の各無線装置が所定の周期で出力する、無線信号を送受信して測定した他の無線装置との間の装置間距離と、該装置間距離の測定に用いた前記無線信号の受信品質に基づいて算出した該装置間距離の確からしさとを収集する距離測定データ収集手段と、
 前記各無線装置から初回に収集した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置および該相対位置の確からしさを算出する初期位置推定手段と、
 前記各無線装置の再測定により収集した前記装置間距離および前記装置間距離の確からしさと、該再測定の前の回の前記各無線装置の相対位置および該相対位置の確からしさの算出で使用した前記装置間距離および前記装置間距離の確からしさとに基づいて、前記装置間距離および前記装置間距離の確からしさを更新する距離データ更新手段と、
 前記距離データ更新手段が更新した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置および前記相対位置の確からしさを更新し、該更新した前記各無線装置の相対位置を含む位置推定結果を出力するとともに、前記各無線装置の次の回の再測定に基づいて収集した前記装置間距離および前記装置間距離の確からしさに基づく前記装置間距離および前記装置間距離の確からしさの更新を前記距離データ更新手段に指示する位置データ更新手段と、を備えることを特徴とする位置推定装置。
(付記2) 前記装置間距離の確からしさは該装置間距離の測定値の標準偏差を表し、最も確からしいときは0となる非負の実数値であって、前記装置間距離の確からしさを、該装置間距離を測定する際に用いた無線信号の受信品質であるSN比および遅延広がりに基づいて算出したものであることを特徴とする付記1に記載の位置推定装置。
(付記3) 前記各無線装置の相対位置の確からしさは、該相対位置の推定値の標準偏差を表し、最も確からしいときは0となる非負の実数値であって、前記初期位置推定手段は、前記相対位置の確からしさが確定している確定無線装置の相対位置の確からしさと該確定無線装置との間の装置間距離の確からしさとに基づいて算出し、前記確定無線装置のうち、基準とする無線装置の相対位置の確からしさを0として最初に計算することを特徴とする付記1または付記2に記載の位置推定装置。
(付記4) 前記距離データ更新手段は、前回使用した前記装置間距離の確からしさに対して前回の距離算出から今回の再測定による距離算出までの経過時間を考慮して、前記装置間距離および前記装置間距離の確からしさを更新することを特徴とする付記1乃至3のいずれかの付記に記載の位置推定装置。
(付記5) 前記距離データ更新手段は、システム環境により決まる忘却係数を乗算して前記経過時間を変化させることを特徴とする付記4に記載の位置推定装置。
(付記6) 前記位置データ更新手段は、前記距離データ更新手段が更新した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置の確からしさを更新し、更新した前記装置間距離および該更新した前記各無線装置の相対位置の確からしさに基づいて前記各無線装置の相対位置の移動変化量を算出して前記各無線装置の相対位置を更新することを特徴とする付記1乃至5のいずれかの付記に記載の位置推定装置。
(付記7) 前記各無線装置の相対位置の移動変化量は移動方向と変化量を示す移動ベクトルであって、前記位置データ更新手段は、前記移動方向の変化量に前記相対位置の確からしさで重みづけして該移動ベクトルを算出することを特徴とする付記6に記載の位置推定装置。
(付記8) 前記位置データ更新手段は、前回推定した前記無線装置に対応する位置ベクトルに、前記生成した移動ベクトルを加算して前記無線装置の相対位置の更新を行うことを特徴とする付記7に記載の位置推定装置。
(付記9) 位置が未知の各無線装置が、無線信号を送受信して測定した他の無線装置との間の装置間距離と、該装置間距離の測定に用いた前記無線信号の受信品質に基づいて算出した装置間距離の確からしさとを所定の周期で出力する、複数の無線装置と、
 前記各無線装置が出力する前記装置間距離と前記装置間距離を収集して、前記各無線装置の装置相対位置を算出して装置位置推定結果を出力する位置推定装置と、を含み、
 前記位置推定装置は、
  前記各無線装置の測定により初回に収集した前記装置間距離および前記装置間距離の確からしさに基づいて、前記各無線装置の相対位置および該相対位置の確からしさを算出する初期位置推定手段と、
  前記各無線装置の再測定により収集した前記装置間距離および前記装置間距離の確からしさと、該再測定の前の回の前記各無線装置の相対位置および該相対位置の確からしさの算出で使用した前記装置間距離および前記装置間距離の確からしさとに基づいて、前記装置間距離および前記装置間距離の確からしさを更新する距離データ更新手段と、
  前記距離データ更新手段が更新した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置および前記相対位置の確からしさを更新し、該更新した前記各無線装置の相対位置を含む位置推定結果を出力するとともに、次の回の再測定に基づいて収集した前記装置間距離および前記装置間距離の確からしさに基づく前記装置間距離および前記装置間距離の確からしさの更新を前記距離データ更新手段に指示する位置データ更新手段と、を備えることを特徴とする位置推定システム。
(付記10) 前記装置間距離の確からしさは該装置間距離の測定値の標準偏差を表し、最も確からしいときは0となる非負の実数値であって、前記無線装置は、前記装置間距離の確からしさを、該装置間距離を測定する際に用いた無線信号の受信品質であるSN比および遅延広がりに基づいて算出することを特徴とする付記9に記載の位置推定システム。
(付記11) 前記各無線装置の相対位置の確からしさは、該相対位置の推定値の標準偏差を表し、最も確からしいときは0となる非負の実数値であって、前記初期位置推定手段は、前記相対位置の確からしさが確定している確定無線装置の相対位置の確からしさと該確定無線装置との間の装置間距離の確からしさとに基づいて算出し、前記確定無線装置のうち、基準とする無線装置の相対位置の確からしさを0として最初に計算することを特徴とする付記9または付記10に記載の位置推定システム。
(付記12) 前記距離データ更新手段は、前回使用した前記装置間距離の確からしさに対して前回の距離算出から今回の再測定による距離算出までの経過時間を考慮して、前記装置間距離および前記装置間距離の確からしさを更新することを特徴とする付記9乃至11のいずれかの付記に記載の位置推定システム。
(付記13)前記距離データ更新手段は、システム環境により決まる忘却係数を乗算して前記経過時間を変化させることを特徴とする付記12に記載の位置推定システム。
(付記14) 前記位置データ更新手段は、前記距離データ更新手段が更新した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置の確からしさを更新し、更新した前記装置間距離および該更新した前記各無線装置の相対位置の確からしさに基づいて前記各無線装置の相対位置の移動変化量を算出して前記各無線装置の相対位置を更新することを特徴とする付記9乃至13のいずれかの付記に記載の位置推定システム。
(付記15) 前記各無線装置の相対位置の移動変化量は移動方向と変化量を示す移動ベクトルであって、前記位置データ更新手段は、前記移動方向の変化量に前記相対位置の確からしさで重みづけして該移動ベクトルを算出することを特徴とする付記14に記載の位置推定システム。
(付記16) 前記位置データ更新手段は、前回推定した前記無線装置に対応する位置ベクトルに、前記生成した移動ベクトルを加算して前記無線装置の相対位置の更新を行うことを特徴とする付記15に記載の位置推定システム。
(付記17) 位置が未知の各無線装置が所定の周期で出力する、無線信号を送受信して測定した他の無線装置との間の装置間距離と、該装置間距離の測定に用いた前記無線信号の受信品質に基づいて算出した該装置間距離の確からしさとを収集し、
 前記各無線装置から初回に収集した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置および該相対位置の確からしさを算出し、
 前記各無線装置の再測定により収集した前記装置間距離および前記装置間距離の確からしさと、該再測定の前の回の前記各無線装置の相対位置および該相対位置の確からしさの算出で使用した前記装置間距離および前記装置間距離の確からしさとに基づいて、前記装置間距離および前記装置間距離の確からしさを更新し、
 更新した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置および前記相対位置の確からしさを更新し、
 該更新した前記各無線装置の相対位置を含む位置推定結果を出力するとともに、前記各無線装置の次の回の再測定に基づいて収集した前記装置間距離および前記装置間距離の確からしさに基づく前記装置間距離および前記装置間距離の確からしさの更新からの処理を繰り返すことを特徴とする位置推定方法。
(付記18) 前記装置間距離の確からしさは該装置間距離の測定値の標準偏差を表し、最も確からしいときは0となる非負の実数値であって、前記装置間距離の確からしさを、該装置間距離を測定する際に用いた無線信号の受信品質であるSN比および遅延広がりに基づいて算出したものであることを特徴とする付記17に記載の位置推定方法。
(付記19) 前記各無線装置の相対位置の確からしさは、該相対位置の推定値の標準偏差を表し、最も確からしいときは0となる非負の実数値であって、前記相対位置の確からしさが確定している確定無線装置の相対位置の確からしさと該確定無線装置との間の装置間距離の確からしさとに基づいて算出し、前記確定無線装置のうち、基準とする無線装置の相対位置の確からしさを0として最初に計算することを特徴とする付記17または付記18に記載の位置推定方法。
(付記20) 前記装置間距離および前記装置間距離の確からしさの更新は、前回使用した前記装置間距離の確からしさに対して前回の距離算出から今回の再測定による距離算出までの経過時間を考慮して更新することを特徴とする付記17乃至19のいずれかの付記に記載の位置推定方法。
(付記21)システム環境により決まる忘却係数を乗算して前記経過時間を変化させることを特徴とする付記20に記載の位置推定方法。
(付記22) 更新した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置の確からしさを更新し、更新した前記装置間距離および該更新した前記各無線装置の相対位置の確からしさに基づいて前記各無線装置の相対位置の移動変化量を算出して前記各無線装置の相対位置を更新することを特徴とする付記17乃至21のいずれかの付記に記載の位置推定方法。
(付記23) 前記各無線装置の相対位置の移動変化量は移動方向と変化量を示す移動ベクトルであって、前記移動方向の変化量に前記相対位置の確からしさで重みづけして該移動ベクトルを算出することを特徴とする付記22に記載の位置推定方法。
(付記24) 前回推定した前記無線装置に対応する位置ベクトルに、前記生成した移動ベクトルを加算して前記無線装置の相対位置の更新を行うことを特徴とする付記23に記載の位置推定方法。
(付記25) コンピュータを、
 位置が未知の各無線装置が所定の周期で出力する、無線信号を送受信して測定した他の無線装置との間の装置間距離と、該装置間距離の測定に用いた前記無線信号の受信品質に基づいて算出した該装置間距離の確からしさとを収集する距離測定データ収集機能手段と、
 前記各無線装置から初回に収集した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置および該相対位置の確からしさを算出する初期位置推定機能手段と、
 前記各無線装置の再測定により収集した前記装置間距離および前記装置間距離の確からしさと、該再測定の前の回の前記各無線装置の相対位置および該相対位置の確からしさの算出で使用した前記装置間距離および前記装置間距離の確からしさとに基づいて、前記装置間距離および前記装置間距離の確からしさを更新する距離データ更新機能手段と、
 前記距離データ更新機能手段が更新した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置および前記相対位置の確からしさを更新し、該更新した前記各無線装置の相対位置を含む位置推定結果を出力するとともに、前記各無線装置の次の回の再測定に基づいて収集した前記装置間距離および前記装置間距離の確からしさに基づく前記装置間距離および前記装置間距離の確からしさの更新を前記距離データ更新機能手段に指示する位置データ更新機能手段と、
して機能させるための位置推定プログラムが記録されたコンピュータ読み取り可能な記録媒体。
(付記26) 前記装置間距離の確からしさは該装置間距離の測定値の標準偏差を表し、最も確からしいときは0となる非負の実数値であって、前記装置間距離の確からしさを、該装置間距離を測定する際に用いた無線信号の受信品質であるSN比および遅延広がりに基づいて算出したものであることを特徴とする付記25に記載の位置推定プログラムが記録されたコンピュータ読み取り可能な記録媒体。
(付記27) 前記各無線装置の相対位置の確からしさは、該相対位置の推定値の標準偏差を表し、最も確からしいときは0となる非負の実数値であって、前記初期位置推定機能手段は、前記相対位置の確からしさが確定している確定無線装置の相対位置の確からしさと該確定無線装置との間の装置間距離の確からしさとに基づいて算出し、前記確定無線装置のうち、基準とする無線装置の相対位置の確からしさを0として最初に計算することを特徴とする付記25または付記26に記載の位置推定プログラムが記録されたコンピュータ読み取り可能な記録媒体。
(付記28) 前記距離データ更新機能手段は、前回使用した前記装置間距離の確からしさに対して前回の距離算出から今回の再測定による距離算出までの経過時間を考慮して、前記装置間距離および前記装置間距離の確からしさを更新することを特徴とする付記25乃至27のいずれかの付記に記載の位置推定プログラムが記録されたコンピュータ読み取り可能な記録媒体。
(付記29)前記距離データ更新機能手段は、システム環境により決まる忘却係数を乗算して前記経過時間を変化させることを特徴とする付記28に記載の位置推定プログラムが記録されたコンピュータ読み取り可能な記録媒体。
(付記30) 前記位置データ更新機能手段は、前記距離データ更新機能手段が更新した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置の確からしさを更新し、更新した前記装置間距離および該更新した前記各無線装置の相対位置の確からしさに基づいて前記各無線装置の相対位置の移動変化量を算出して前記各無線装置の相対位置を更新することを特徴とする付記25乃至29のいずれかの付記に記載の位置推定プログラムが記録されたコンピュータ読み取り可能な記録媒体。
(付記31) 前記各無線装置の相対位置の移動変化量は移動方向と変化量を示す移動ベクトルであって、前記位置データ更新機能手段は、前記移動方向の変化量に前記相対位置の確からしさで重みづけして該移動ベクトルを算出することを特徴とする付記30に記載の位置推定プログラムが記録されたコンピュータ読み取り可能な記録媒体。
(付記32) 前記位置データ更新機能手段は、前回推定した前記無線装置に対応する位置ベクトルに、前記生成した移動ベクトルを加算して前記無線装置の相対位置の更新を行うことを特徴とする付記31に記載の位置推定プログラムが記録されたコンピュータ読み取り可能な記録媒体。
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
 この出願は、2014年9月12日に出願された日本出願特願2014-185980号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1  初期位置推定手段
 2  距離データ更新手段
 3  位置データ更新手段
 11、12、13、…、1n  無線装置
 20、40、50  位置推定装置
 21  距離測定データ収集部
 22  初期位置推定部
 23  距離データ更新部
 24  位置データ更新部
 30  無線装置
 31  CPU
 32  主記憶部
 33  補助記憶部
 34  通信制御部
 35  表示部
 36  入力部
 37  システムバス
 101  距離測定データ収集機能手段
 102  初期位置推定機能手段
 103  距離データ更新機能手段
 104  位置データ更新機能手段
 301  タイミングパルス信号生成回路
 302  データ変調回路
 303  送信RF回路
 304  遅延測定回路
 305  データ復調回路
 306  受信RF回路
 307  制御回路
 311  マッチドフィルタ
 312  相関係数生成回路
 313  電力演算回路
 314  ピーク検出回路
 401  無線装置間距離測定データ収集部
 402  初期無線装置位置推定部
 403  無線装置間距離更新部
 404  移動ベクトル生成部
 405  無線装置位置更新部
 501  無線回路
 502  プロセッサ
 503  命令メモリ
 504  共有メモリ
 505  データメモリ

Claims (10)

  1. 位置が未知の各無線装置が所定の周期で出力する、無線信号を送受信して測定した他の無線装置との間の装置間距離と、該装置間距離の測定に用いた前記無線信号の受信品質に基づいて算出した該装置間距離の確からしさとを収集する距離測定データ収集手段と、
     前記各無線装置から初回に収集した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置および該相対位置の確からしさを算出する初期位置推定手段と、
     前記各無線装置の再測定により収集した前記装置間距離および前記装置間距離の確からしさと、該再測定の前の回の前記各無線装置の相対位置および該相対位置の確からしさの算出で使用した前記装置間距離および前記装置間距離の確からしさとに基づいて、前記装置間距離および前記装置間距離の確からしさを更新する距離データ更新手段と、
     前記距離データ更新手段が更新した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置および前記相対位置の確からしさを更新し、該更新した前記各無線装置の相対位置を含む位置推定結果を出力するとともに、前記各無線装置の次の回の再測定に基づいて収集した前記装置間距離および前記装置間距離の確からしさに基づく前記装置間距離および前記装置間距離の確からしさの更新を前記距離データ更新手段に指示する位置データ更新手段と、を備えることを特徴とする位置推定装置。
  2. 前記装置間距離の確からしさは該装置間距離の測定値の標準偏差を表し、最も確からしいときは0となる非負の実数値であって、前記装置間距離の確からしさを、該装置間距離を測定する際に用いた無線信号の受信品質であるSN比および遅延広がりに基づいて算出したものであることを特徴とする請求項1に記載の位置推定装置。
  3. 前記各無線装置の相対位置の確からしさは、該相対位置の推定値の標準偏差を表し、最も確からしいときは0となる非負の実数値であって、前記初期位置推定手段は、前記相対位置の確からしさが確定している確定無線装置の相対位置の確からしさと該確定無線装置との間の装置間距離の確からしさとに基づいて算出し、前記確定無線装置のうち、基準とする無線装置の相対位置の確からしさを0として最初に計算することを特徴とする請求項1または請求項2に記載の位置推定装置。
  4. 前記距離データ更新手段は、前回使用した前記装置間距離の確からしさに対して前回の距離算出から今回の再測定による距離算出までの経過時間を考慮して、前記装置間距離および前記装置間距離の確からしさを更新することを特徴とする請求項1乃至3のいずれかの請求項に記載の位置推定装置。
  5. 前記位置データ更新手段は、前記距離データ更新手段が更新した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置の確からしさを更新し、更新した前記装置間距離および該更新した前記各無線装置の相対位置の確からしさに基づいて前記各無線装置の相対位置の移動変化量を算出して前記各無線装置の相対位置を更新することを特徴とする請求項1乃至4のいずれかの請求項に記載の位置推定装置。
  6. 前記各無線装置の相対位置の移動変化量は移動方向と変化量を示す移動ベクトルであって、前記位置データ更新手段は、前記移動方向の変化量に前記相対位置の確からしさで重みづけして該移動ベクトルを算出することを特徴とする請求項5に記載の位置推定装置。
  7. 前記位置データ更新手段は、前回推定した前記無線装置に対応する位置ベクトルに、前記生成した移動ベクトルを加算して前記無線装置の相対位置の更新を行うことを特徴とする請求項6に記載の位置推定装置。
  8. 位置が未知の各無線装置が、無線信号を送受信して測定した他の無線装置との間の装置間距離と、該装置間距離の測定に用いた前記無線信号の受信品質に基づいて算出した装置間距離の確からしさとを所定の周期で出力する、複数の無線装置と、
     前記各無線装置が出力する前記装置間距離と前記装置間距離を収集して、前記各無線装置の装置相対位置を算出して装置位置推定結果を出力する位置推定装置と、を含み、
     前記位置推定装置は、
      前記各無線装置の測定により初回に収集した前記装置間距離および前記装置間距離の確からしさに基づいて、前記各無線装置の相対位置および該相対位置の確からしさを算出する初期位置推定手段と、
      前記各無線装置の再測定により収集した前記装置間距離および前記装置間距離の確からしさと、該再測定の前の回の前記各無線装置の相対位置および該相対位置の確からしさの算出で使用した前記装置間距離および前記装置間距離の確からしさとに基づいて、前記装置間距離および前記装置間距離の確からしさを更新する距離データ更新手段と、
      前記距離データ更新手段が更新した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置および前記相対位置の確からしさを更新し、該更新した前記各無線装置の相対位置を含む位置推定結果を出力するとともに、次の回の再測定に基づいて収集した前記装置間距離および前記装置間距離の確からしさに基づく前記装置間距離および前記装置間距離の確からしさの更新を前記距離データ更新手段に指示する位置データ更新手段と、を備えることを特徴とする位置推定システム。
  9. 位置が未知の各無線装置が所定の周期で出力する、無線信号を送受信して測定した他の無線装置との間の装置間距離と、該装置間距離の測定に用いた前記無線信号の受信品質に基づいて算出した該装置間距離の確からしさとを収集し、
     前記各無線装置から初回に収集した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置および該相対位置の確からしさを算出し、
     前記各無線装置の再測定により収集した前記装置間距離および前記装置間距離の確からしさと、該再測定の前の回の前記各無線装置の相対位置および該相対位置の確からしさの算出で使用した前記装置間距離および前記装置間距離の確からしさとに基づいて、前記装置間距離および前記装置間距離の確からしさを更新し、
     更新した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置および前記相対位置の確からしさを更新し、
     該更新した前記各無線装置の相対位置を含む位置推定結果を出力するとともに、前記各無線装置の次の回の再測定に基づいて収集した前記装置間距離および前記装置間距離の確からしさに基づく前記装置間距離および前記装置間距離の確からしさの更新からの処理を繰り返すことを特徴とする位置推定方法。
  10. コンピュータを、
     位置が未知の各無線装置が所定の周期で出力する、無線信号を送受信して測定した他の無線装置との間の装置間距離と、該装置間距離の測定に用いた前記無線信号の受信品質に基づいて算出した該装置間距離の確からしさとを収集する距離測定データ収集機能手段と、
     前記各無線装置から初回に収集した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置および該相対位置の確からしさを算出する初期位置推定機能手段と、
     前記各無線装置の再測定により収集した前記装置間距離および前記装置間距離の確からしさと、該再測定の前の回の前記各無線装置の相対位置および該相対位置の確からしさの算出で使用した前記装置間距離および前記装置間距離の確からしさとに基づいて、前記装置間距離および前記装置間距離の確からしさを更新する距離データ更新機能手段と、
     前記距離データ更新機能手段が更新した前記装置間距離および前記装置間距離の確からしさに基づいて前記各無線装置の相対位置および前記相対位置の確からしさを更新し、該更新した前記各無線装置の相対位置を含む位置推定結果を出力するとともに、前記各無線装置の次の回の再測定に基づいて収集した前記装置間距離および前記装置間距離の確からしさに基づく前記装置間距離および前記装置間距離の確からしさの更新を前記距離データ更新機能手段に指示する位置データ更新機能手段と、
    して機能させるための位置推定プログラムが記録されたコンピュータ読み取り可能な記録媒体。
PCT/JP2015/004546 2014-09-12 2015-09-08 位置推定装置、位置推定システム、方法および記録媒体 WO2016038881A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016547701A JP6607190B2 (ja) 2014-09-12 2015-09-08 位置推定装置、位置推定システム、方法および記録媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014185980 2014-09-12
JP2014-185980 2014-09-12

Publications (1)

Publication Number Publication Date
WO2016038881A1 true WO2016038881A1 (ja) 2016-03-17

Family

ID=55458652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004546 WO2016038881A1 (ja) 2014-09-12 2015-09-08 位置推定装置、位置推定システム、方法および記録媒体

Country Status (2)

Country Link
JP (1) JP6607190B2 (ja)
WO (1) WO2016038881A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125489A1 (ja) * 2015-02-03 2016-08-11 日本電気株式会社 位置推定装置、位置推定システム、位置推定方法および位置推定用記録媒体
US20220179104A1 (en) * 2019-07-08 2022-06-09 Mitsubishi Electric Corporation Position estimation device and position estimation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228735A (ja) * 2001-01-31 2002-08-14 Hitachi Ltd 位置算出方法、位置算出装置及びそのプログラム
JP2006003187A (ja) * 2004-06-17 2006-01-05 Hitachi Ltd 無線ネットワークシステム
JP2010512064A (ja) * 2006-12-01 2010-04-15 トゥルーポジション・インコーポレーテッド ワイヤレス・デバイスの位置検出をし易くするためにセル送信機パラメータを自動的に決定するシステム
JP2013504760A (ja) * 2009-09-10 2013-02-07 クアルコム,インコーポレイテッド 同時無線送信機マッピングおよび移動局測位

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080681A (ja) * 2004-09-07 2006-03-23 Ntt Docomo Inc 位置検出システムおよび位置検出方法
JP4254929B2 (ja) * 2004-10-01 2009-04-15 三菱電機株式会社 位置決定方法およびシステム
JP4878488B2 (ja) * 2006-03-31 2012-02-15 株式会社国際電気通信基礎技術研究所 無線装置およびそれを備えた無線ネットワークシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228735A (ja) * 2001-01-31 2002-08-14 Hitachi Ltd 位置算出方法、位置算出装置及びそのプログラム
JP2006003187A (ja) * 2004-06-17 2006-01-05 Hitachi Ltd 無線ネットワークシステム
JP2010512064A (ja) * 2006-12-01 2010-04-15 トゥルーポジション・インコーポレーテッド ワイヤレス・デバイスの位置検出をし易くするためにセル送信機パラメータを自動的に決定するシステム
JP2013504760A (ja) * 2009-09-10 2013-02-07 クアルコム,インコーポレイテッド 同時無線送信機マッピングおよび移動局測位

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125489A1 (ja) * 2015-02-03 2016-08-11 日本電気株式会社 位置推定装置、位置推定システム、位置推定方法および位置推定用記録媒体
US10359503B2 (en) 2015-02-03 2019-07-23 Nec Corporation Position estimation apparatus, position estimation system, position estimation method and recording medium for position estimation
US20220179104A1 (en) * 2019-07-08 2022-06-09 Mitsubishi Electric Corporation Position estimation device and position estimation method
US11953608B2 (en) * 2019-07-08 2024-04-09 Mitsubishi Electric Corporation Position estimation device and position estimation method

Also Published As

Publication number Publication date
JP6607190B2 (ja) 2019-11-20
JPWO2016038881A1 (ja) 2017-06-29

Similar Documents

Publication Publication Date Title
US8521181B2 (en) Time of arrival based positioning system
EP3173807B1 (en) System and method for robust and accurate rssi based location estimation
US8509819B2 (en) Information processing apparatus and correction method
KR101234177B1 (ko) 사용자 단말의 위치 측정 방법
EP2574954B1 (en) Wi-Fi position fix
US20080198072A1 (en) Systems and methods for positioning using multipath signals
US8489114B2 (en) Time difference of arrival based positioning system
US8824325B2 (en) Positioning technique for wireless communication system
JP2007013500A (ja) 無線端末位置推定システム、無線端末位置推定システムの位置推定方法及びデータ処理装置
US10359503B2 (en) Position estimation apparatus, position estimation system, position estimation method and recording medium for position estimation
US9660740B2 (en) Signal strength distribution establishing method and wireless positioning system
JP2011214920A (ja) 位置推定装置、位置推定方法及びプログラム
WO2013043664A1 (en) Hybrid positioning system based on time difference of arrival (tdoa) and time of arrival (toa)
Baba Calibrating time of flight in two way ranging
JP2012083136A (ja) バイアス誤差推定装置、バイアス誤差推定方法及び位置推定装置
US8571575B2 (en) Recording medium for storing position estimation program, position estimation device, and position estimation method
JP6607190B2 (ja) 位置推定装置、位置推定システム、方法および記録媒体
KR101219913B1 (ko) 이동 노드 위치 추정 방법
JP2018146484A (ja) 情報処理装置、情報処理プログラム、及び情報処理方法
JP2009210408A (ja) 無線システム及びその位置特定方法
JP2008008780A (ja) 位置推定システムおよび位置推定方法
KR100969465B1 (ko) 무선 센서 네트워크에서 이동노드의 위치 측정 방법
JP7315349B2 (ja) 位置推定装置、及び位置推定方法
Gui et al. Performance analysis of indoor localization based on channel state information ranging model
JP7120061B2 (ja) 位置推定方法、位置推定システム、位置推定サーバおよび位置推定プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839162

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547701

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839162

Country of ref document: EP

Kind code of ref document: A1