WO2016038823A1 - Thin film transistor and thin film transistor manufacturing method - Google Patents

Thin film transistor and thin film transistor manufacturing method Download PDF

Info

Publication number
WO2016038823A1
WO2016038823A1 PCT/JP2015/004291 JP2015004291W WO2016038823A1 WO 2016038823 A1 WO2016038823 A1 WO 2016038823A1 JP 2015004291 W JP2015004291 W JP 2015004291W WO 2016038823 A1 WO2016038823 A1 WO 2016038823A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
oxide semiconductor
semiconductor layer
channel region
film transistor
Prior art date
Application number
PCT/JP2015/004291
Other languages
French (fr)
Japanese (ja)
Inventor
光正 松本
Original Assignee
株式会社Joled
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Joled filed Critical 株式会社Joled
Publication of WO2016038823A1 publication Critical patent/WO2016038823A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to a thin film transistor (TFT: Thin Film Transistor) and a method for manufacturing the thin film transistor, and more particularly to an oxide semiconductor thin film transistor having an oxide semiconductor layer as a channel layer and a method for manufacturing the same.
  • TFT Thin Film Transistor
  • TFTs are used as switching elements or drive elements in active matrix display devices such as liquid crystal display devices or organic EL (Electro Luminescence) display devices.
  • active matrix display devices such as liquid crystal display devices or organic EL (Electro Luminescence) display devices.
  • Patent Document 1 discloses an oxide semiconductor TFT whose channel layer is an oxide semiconductor layer. Oxide semiconductor TFTs have already been put into practical use and are used in mobile small display devices and large display devices.
  • the oxide semiconductor TFT has a problem that the threshold voltage (Vth) shifts as the channel length becomes shorter.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a thin film transistor capable of suppressing fluctuations in threshold voltage and a method for manufacturing the same.
  • a thin film transistor includes a substrate, an oxide semiconductor layer that is located above the substrate and includes a channel region, a source region, and a drain region, and the oxide semiconductor layer
  • the channel region is a region facing the gate electrode across the gate insulating layer, the drain region is located on the other end side of the channel region, and the resistance value is the channel
  • the source region is located on one end side of the channel region, and the resistance value is lower than the resistance value of the channel region.
  • a region in the oxide semiconductor layer, the thickness of the boundary portion between at least said drain region and said channel region is equal to or smaller than the thickness of the channel region.
  • a thin film transistor that can suppress fluctuations in threshold voltage can be realized.
  • FIG. 1 is a cross-sectional view illustrating a configuration of a thin film transistor according to an embodiment.
  • FIG. 2 is a diagram for explaining the short channel effect in the oxide semiconductor TFT.
  • FIG. 3 is a diagram illustrating a relationship between a step in the oxide semiconductor layer of the thin film transistor according to the embodiment and Vth variation.
  • FIG. 4A is a cross-sectional view of a substrate preparation step in the method of manufacturing a thin film transistor according to the embodiment.
  • FIG. 4B is a cross-sectional view of the undercoat layer forming step in the method for manufacturing the thin film transistor according to the embodiment.
  • FIG. 4C is a cross-sectional view of the oxide semiconductor layer forming step in the method for manufacturing the thin film transistor according to the embodiment.
  • FIG. 4D is a cross-sectional view of the step of forming the gate insulating layer and the gate electrode in the method for manufacturing the thin film transistor according to the embodiment.
  • FIG. 4E is a cross-sectional view of the oxide semiconductor layer etching step in the method for manufacturing the thin film transistor according to the embodiment.
  • FIG. 4F is a cross-sectional view of an acceptor element adsorption step in the method of manufacturing a thin film transistor according to the embodiment.
  • FIG. 4G is a cross-sectional view of an acceptor element diffusion step in the method for manufacturing a thin film transistor according to the embodiment.
  • FIG. 4H is a cross-sectional view of the step of forming the source region and the drain region of the oxide semiconductor layer in the method for manufacturing the thin film transistor according to the embodiment.
  • FIG. 4I is a cross-sectional view of the insulating layer forming step in the method for manufacturing the thin film transistor according to the embodiment.
  • FIG. 4J is a cross-sectional view of the source electrode and drain electrode formation step in the method of manufacturing a thin film transistor according to the embodiment.
  • FIG. 5 is a partially cutaway perspective view of the organic EL display device according to the embodiment.
  • FIG. 6 is an electric circuit diagram of a pixel circuit in the organic EL display device shown in FIG.
  • FIG. 7 is a cross-sectional view illustrating a configuration of a thin film transistor according to the first modification.
  • FIG. 8 is a cross-sectional view illustrating a configuration of a thin film transistor according to the second modification.
  • FIG. 9 is a cross-sectional view illustrating a configuration of a thin film transistor according to Modification 3.
  • FIG. 10A is a cross-sectional view illustrating a configuration of a thin film transistor according to Modification 4.
  • FIG. 10B is a cross-sectional view illustrating another configuration of the thin film transistor according to Modification 4.
  • a thin film transistor includes a substrate, an oxide semiconductor layer located above the substrate and having a channel region, a source region, and a drain region, and a gate insulating layer located above the oxide semiconductor layer
  • a gate electrode located above the gate insulating layer, a source electrode electrically connected to the source region, and a drain electrode electrically connected to the drain region, and the channel region Is a region facing the gate electrode across the gate insulating layer, the drain region is located on the other end side of the channel region, and the resistance value is lower than the resistance value of the channel region
  • the source region is located on one end side of the channel region and has a resistance value lower than the resistance value of the channel region; In the body layer, the thickness of the boundary portion between at least said drain region and said channel region is thinner than the thickness of the channel region.
  • the thickness of the boundary portion between the drain region (low resistance region) and the channel region is thinner than the thickness of the channel region.
  • a thickness of a boundary portion between the source region and the channel region may be smaller than a thickness of the channel region.
  • the thickness of the boundary portion between the drain region and the channel region and the thickness of the boundary portion between the source region and the channel region can be simultaneously reduced.
  • the oxide semiconductor layer has a convex cross-sectional shape, and an upper surface of the portion having the channel region includes the portion having the drain region and the source region. It is good to be located above the upper surface of the part.
  • the thickness of the portion having the drain region and the portion having the source region in the oxide semiconductor layer is set to a constant thickness, and the thickness of the portion having the channel region in the oxide semiconductor layer is Can also be thinned. Accordingly, for example, by etching the oxide semiconductor layer using the gate electrode as a mask, the film thickness of the portion corresponding to the drain region and the portion corresponding to the source region can be simultaneously processed and reduced.
  • the oxide semiconductor layer includes, in the channel region, a first region that is a region on the source region side and the drain region side, and the channel more than the first region. And a second region which is a region closer to the center of the region, and the carrier density of the first region is preferably lower than the carrier density of the second region.
  • the carrier density in the drain end direction in the channel region of the oxide semiconductor layer can be reduced.
  • the drain voltage can be made insensitive, so that fluctuations in the threshold voltage due to the shortening of the channel can be further suppressed.
  • the first region may include an element that functions as an acceptor.
  • the carrier density in the oxide semiconductor layer can be stably reduced.
  • the first region preferably includes at least one of copper, silicon, and fluorine as the acceptor.
  • the consistency with the large-scale mass production equipment becomes high, so that the manufacturing cost can be suppressed.
  • the contact point between the upper end portion of the source region or the drain region and the lower end portion of the side surface of the channel region is more than a position that is 1/2 the thickness of the channel region. It may be located on the lower side.
  • the threshold voltage fluctuation due to the shortening of the channel can be reduced. It can suppress more effectively.
  • the difference between the contact between the upper end of the source region or the drain region and the lower end of the side surface of the channel region and the upper surface of the channel region is at least 15 nm or more. It is good to be.
  • the metal element included in the oxide semiconductor layer may include at least one of indium, gallium, and zinc.
  • a method for manufacturing a thin film transistor includes a step of preparing a substrate, a step of forming an oxide semiconductor layer having a channel region above the substrate, and a region above the oxide semiconductor layer.
  • a source electrode and a drain electrode electrically connected to the drain region wherein the channel region is a region facing the gate electrode with the gate insulating layer interposed therebetween, and the source region is
  • the drain region is located on one end side of the channel region and has a resistance value lower than the resistance value of the channel region.
  • the region is located on the other end side of the region and has a resistance value lower than the resistance value of the channel region, and at least the boundary portion between the drain region and the channel region has a thickness greater than the thickness of the channel region.
  • a step of processing the oxide semiconductor layer so as to be thin.
  • the thickness of the boundary portion between the drain region and the channel region which is a low resistance region, is thinner than the thickness of the channel region. Accordingly, since a physical distance between the drain region and the channel region can be increased, a thin film transistor that can suppress a variation in threshold voltage due to a short channel can be manufactured.
  • a method for manufacturing a thin film transistor includes a step of preparing a substrate, a step of forming an oxide semiconductor layer over the substrate, and a gate insulating film over the oxide semiconductor layer.
  • the gate electrode can be used as a mask and the oxide semiconductor layer can be thinned by etching the source region and the drain region, the thin film transistor can be manufactured without increasing the number of manufacturing steps.
  • the carrier density of the first region, which is the region on the source region side and the drain region side, in the channel region is higher than that in the first region. It is preferable to include a step of diffusing an element acting as an acceptor into the channel region so as to be lower than the carrier density of the second region which is a region closer to the center of the channel region.
  • the carrier density in the channel path direction is reduced with respect to the oxide semiconductor layer so that the carrier density in the drain end direction is low. Distribution can be given.
  • a carrier density of a first region that is a region on the source region side and the drain region side is higher than that in the first region. It is preferable to include a step of diffusing an element acting as an acceptor into the channel region so as to be lower than the carrier density of the second region, which is a region closer to the center of the channel region.
  • the acceptor element can be easily introduced into the oxide semiconductor layer from the side surface portion of the channel region, the carrier density at the drain end in the channel region can be easily reduced.
  • FIG. 1 is a cross-sectional view illustrating a configuration of a thin film transistor according to an embodiment.
  • a thin film transistor 1 is a top-gate oxide semiconductor TFT having an oxide semiconductor layer as a channel layer.
  • the thin film transistor 1 includes a substrate 10, an undercoat layer 20, an oxide semiconductor layer 30 serving as a channel layer, a gate insulating layer 40, a gate electrode 50, an interlayer insulating layer 60, a source electrode 70S, and a drain electrode 70D. Is provided.
  • the substrate 10 is a glass substrate made of a glass material such as quartz glass, non-alkali glass, or high heat resistant glass.
  • the substrate 10 is not limited to a glass substrate but may be a resin substrate or the like.
  • substrate 10 may be a flexible substrate comprised not with a rigid board
  • the undercoat layer 20 is an example of an inorganic layer disposed on the substrate 10.
  • the undercoat layer 20 is formed on the upper surface of the substrate 10.
  • the undercoat layer 20 is formed on the surface of the substrate 10 (the side on which the oxide semiconductor layer is formed).
  • the undercoat layer 20 is a single-layer insulating layer or a laminated insulating layer using an oxide insulating layer or a nitride insulating layer.
  • the undercoat layer 20 includes a single layer film such as silicon nitride (SiNx), silicon oxide (SiO y ), silicon oxynitride (SiO y N x ), or aluminum oxide (AlO x ), or a laminate thereof.
  • a membrane can be used.
  • the undercoat layer 20 is a laminated film configured by laminating a plurality of insulating films. The film thickness of the undercoat layer 20 is preferably set to 100 nm to 500 nm.
  • the oxide semiconductor layer 30 is used as a channel layer. That is, the oxide semiconductor layer 30 is a semiconductor layer including a channel region which is a region facing the gate electrode 50 with the gate insulating layer 40 interposed therebetween. In addition to the channel region, the oxide semiconductor layer 30 further includes a source region and a drain region.
  • the oxide semiconductor layer 30 includes a first oxide semiconductor layer 31 including a channel region, a second oxide semiconductor layer 32 including a drain region, and a third oxide semiconductor layer 33 including a source region. It is configured.
  • the channel region (front channel region) is formed at least in the upper layer portion of the first oxide semiconductor layer 31 on the gate electrode 50 side, but is also formed in the lower layer portion of the first oxide semiconductor layer 31 on the substrate 10 side. In some cases.
  • the drain region in the second oxide semiconductor layer 32 and the source region in the third oxide semiconductor layer 33 are low resistance regions (offset regions) having a lower resistance value than the first oxide semiconductor layer 31 (channel region). .
  • the drain region and the source region can be formed by reducing the resistance of the oxide semiconductor film by performing plasma irradiation with argon (Ar), hydrogen (H), or the like, or causing oxygen vacancies by heating.
  • the second oxide semiconductor layer 32 is a portion located on one side of the first oxide semiconductor layer 31 in the oxide semiconductor layer 30. Therefore, the drain region in the second oxide semiconductor layer 32 is located on one end side of the first oxide semiconductor layer 31 (channel region).
  • the third oxide semiconductor layer 33 is a portion located on the other side of the first oxide semiconductor layer 31 in the oxide semiconductor layer 30. Therefore, the source region in the third oxide semiconductor layer 33 is located on the other end side of the first oxide semiconductor layer 31 (channel region).
  • the oxide semiconductor layer 30 As a material of the oxide semiconductor layer 30, for example, a transparent amorphous oxide semiconductor (TAOS: Transparent Amorphous Oxide Semiconductor) is used.
  • TAOS Transparent Amorphous Oxide Semiconductor
  • the metal element included in the oxide semiconductor layer 30 contains at least indium (In), and preferably contains at least one or both of gallium (Ga) and zinc (Zn).
  • the oxide semiconductor layer 30 in this embodiment includes InGaZnOx (IGZO) which is an oxide containing indium (In), gallium (Ga), and zinc (Zn). That is, the first oxide semiconductor layer 31, the second oxide semiconductor layer 32, and the third oxide semiconductor layer 33 are made of the same material, and are made of IGZO in this embodiment.
  • IGZO InGaZnOx
  • the first oxide semiconductor layer 31 in this embodiment includes a channel region (front channel region) in the second oxide semiconductor layer 32 side (drain region side) and the third oxide semiconductor layer 33 side (source region). Side region) and a second region 31b that is closer to the center of the channel region than the first region 31a. That is, the central region of the channel region is the second region 31b, and the regions on both sides of the second region 31b (central portion) in the channel region are the first region 31a.
  • the first region 31a contains an element that has an effect of reducing the carrier density, that is, an element that acts as an acceptor in the channel region. Thereby, the carrier density of the first region 31a is lower than the carrier density of the second region 31b. That is, in the channel region of the first oxide semiconductor layer 31, the carrier density is lower at both sides (drain end and source end) than at the center, and the carrier density at the drain end and source end is lower. It has a carrier density distribution in the channel path direction.
  • the element that acts as an acceptor examples include copper, silicon (silicon), and fluorine. That is, the first region 31a contains at least one of copper, silicon (silicon), and fluorine.
  • the first region 31a having a carrier density lower than that of the second region 31b can be lowered by diffusing and introducing fluorine, silicon, or copper into the portion of the oxide semiconductor layer 30 that becomes the first region 31a.
  • fluorine is introduced into the first region 31a.
  • the oxide semiconductor layer 30 is formed so as to be located above the substrate 10.
  • the oxide semiconductor layer 30 in the present embodiment is formed in a predetermined shape on the undercoat layer 20.
  • the thickness of the boundary between the drain region and the channel region is smaller than the thickness of the channel region. In the present embodiment, the thickness of the boundary portion between the source region and the channel region is further thinner than the thickness of the channel region.
  • the oxide semiconductor layer 30 is formed so that the cross-sectional shape is convex and the upper surface of the channel region is located above the upper surfaces of the drain region and the source region. More specifically, the thickness of each of the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 is smaller than the thickness of the first oxide semiconductor layer 31, and the first oxide semiconductor layer The upper surface of 31 is located above the upper surfaces of the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33. That is, a step is formed between the first oxide semiconductor layer 31, the second oxide semiconductor layer 32, and the third oxide semiconductor layer 33.
  • the side surface of the upper layer portion of the first oxide semiconductor layer 31 is exposed and is in contact with the interlayer insulating layer 60. Specifically, the first region 31 a of the first oxide semiconductor layer 31 is in contact with the interlayer insulating layer 60.
  • the gate insulating layer 40 (insulating layer) is formed at a position facing the undercoat layer 20 with the oxide semiconductor layer 30 interposed therebetween. Specifically, the gate insulating layer 40 is located above the oxide semiconductor layer 30, and is formed on the oxide semiconductor layer 30, for example.
  • the gate insulating layer 40 is formed on the first oxide semiconductor layer 31 in the oxide semiconductor layer 30. Specifically, the side surface of the gate insulating layer 40 is flush with the side surface of the first oxide semiconductor layer 31, and when viewed from above, the contour line of the gate insulating layer 40 and the contour line of the first oxide semiconductor layer 31 are Are consistent. Note that although the gate insulating layer 40 is formed only over the oxide semiconductor layer 30 in this embodiment, the present invention is not limited thereto.
  • the gate insulating layer 40 is a single-layer insulating layer or a stacked insulating layer using an oxide insulating layer or a nitride insulating layer.
  • a single layer film such as silicon oxide, silicon nitride, silicon oxynitride, tantalum oxide, or aluminum oxide, or a laminated film of these can be used.
  • the gate insulating layer 40 is, for example, a stacked film of a silicon oxide film and a silicon nitride film.
  • the film thickness of the gate insulating layer 40 can be designed in consideration of the breakdown voltage of the TFT, and is preferably 50 nm to 500 nm, for example.
  • the gate electrode 50 is formed at a position facing the oxide semiconductor layer 30 with the gate insulating layer 40 interposed therebetween. Specifically, the gate electrode 50 is located above the gate insulating layer 40, and is patterned in a predetermined shape on the gate insulating layer 40, for example. In the present embodiment, the length of the gate electrode 50 in the channel direction (gate length) and the length of the gate insulating layer 40 in the channel direction are the same. Specifically, the side surface of the gate electrode 50 is flush with the side surface of the gate insulating layer 40, and the outline of the gate electrode 50 and the outline of the gate insulating layer 40 coincide with each other when viewed from above.
  • the gate electrode 50 is an electrode having a single layer structure or a multilayer structure such as a conductive material such as a metal or an alloy thereof.
  • a conductive material such as a metal or an alloy thereof.
  • Mo molybdenum
  • Al aluminum
  • Cu copper
  • W tungsten
  • Ti titanium
  • Cr chromium
  • MoW molybdenum tungsten
  • the film thickness of the gate electrode 50 is preferably set to 50 nm to 300 nm.
  • the interlayer insulating layer 60 is formed so as to cover the gate electrode 50 and the oxide semiconductor layer 30. Specifically, the interlayer insulating layer 60 is formed so as to cover the gate electrode 50 and the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 that are exposed from the gate electrode 50 in the oxide semiconductor layer 30.
  • the interlayer insulating layer 60 may be formed of a material mainly composed of an organic substance, or may be formed of an inorganic substance such as silicon oxide, silicon nitride, silicon oxynitride, or aluminum oxide.
  • the interlayer insulating layer 60 may be a single layer film or a laminated film.
  • a plurality of openings are formed in the interlayer insulating layer 60 so as to penetrate a part of the interlayer insulating layer 60.
  • the second oxide semiconductor layer 32 and the drain electrode 70D are connected, and the third oxide semiconductor layer 33 and the source electrode 70S are connected.
  • the source electrode 70S and the drain electrode 70D are formed on the interlayer insulating layer 60 in a predetermined shape.
  • Each of the source electrode 70 ⁇ / b> S and the drain electrode 70 ⁇ / b> D is electrically connected to the oxide semiconductor layer 30.
  • the drain electrode 70D is electrically and physically connected to the drain region of the second oxide semiconductor layer 32 through an opening formed in the interlayer insulating layer 60.
  • the source electrode 70 ⁇ / b> S is electrically and physically connected to the source region of the third oxide semiconductor layer 33 through an opening formed in the interlayer insulating layer 60.
  • the source electrode 70S and the drain electrode 70D are electrodes having a single layer structure or a multilayer structure such as a conductive material or an alloy thereof.
  • Examples of the material of the source electrode 70S and the drain electrode 70D include molybdenum (Mo), aluminum (Al), copper (Cu), tungsten (W), titanium (Ti), chromium (Cr), and molybdenum tungsten alloy (MoW).
  • Mo molybdenum
  • Al aluminum
  • Cu copper
  • W tungsten
  • Ti titanium
  • Cr chromium
  • MoW molybdenum tungsten alloy
  • CuMn copper manganese alloy
  • the film thickness of the source electrode 70S and the drain electrode 70D is preferably set to, for example, 50 nm to 300 nm.
  • a silicon semiconductor TFT using a silicon semiconductor as a channel layer is mainly used in a display device.
  • a display device using an oxide semiconductor TFT using an oxide semiconductor such as IGZO as a channel layer has been put into practical use.
  • the channel length is required to be 10 ⁇ m or less.
  • the threshold voltage (Vth) fluctuated. Specifically, it has been found that in the oxide semiconductor TFT, the threshold voltage (Vth) shifts negatively as the channel length becomes shorter.
  • FIG. 2 is a diagram for explaining the short channel effect in the oxide semiconductor TFT.
  • acceptor ions that reduce the surface potential exist in the depletion layer of the oxide semiconductor layer 300.
  • acceptor ions are present evenly near the source region, near the channel region, and near the drain region when the drain voltage (Vd) is about 0 V, but as the drain voltage (Vd) increases, As shown in the enclosed region A, there are many in the vicinity of the drain region.
  • the acceptor ion has a function of lowering the threshold voltage (Vth). Moreover, when the channel length is shortened, the drain voltage (Vd) substantially increases. As a result, it is considered that the threshold voltage (Vth) shifts negatively as the channel length becomes shorter.
  • the short channel effect in the case of MOSFET, the short channel effect is suppressed by thinning the gate insulating layer.
  • the short channel effect in the case of an oxide semiconductor TFT, it is considered that the short channel effect can be suppressed by reducing the thickness of the gate insulating layer.
  • an oxide semiconductor TFT in which the gate insulating layer was actually thinned was prototyped, it was found that the short channel effect could be suppressed.
  • the inventor of the present application diligently studied a method capable of suppressing the short channel effect in the oxide semiconductor TFT by a method different from the method of thinning the gate insulating layer. As a result, the inventor of the present application has found that by changing the carrier density in the channel direction and canceling the depletion layer, the threshold voltage fluctuation (short channel effect) caused by the shortening of the channel can be suppressed.
  • the short channel effect can be suppressed by making the thickness of at least the boundary between the drain region and the channel region thinner than the thickness of the channel region in the oxide semiconductor layer that becomes the channel layer of the oxide semiconductor TFT. It was.
  • the thickness of the second oxide semiconductor layer 32 having the drain region is set to the thickness of the first oxide semiconductor layer 31 having the channel region. It is thinner.
  • the drain region can be separated from the channel region.
  • the cross-sectional shape of the oxide semiconductor layer 30 is convex, the drain region can be separated from the channel region by the length of the side wall of the first oxide semiconductor layer 31.
  • the strength of the drain electric field due to the application of the drain voltage (Vd) can be reduced.
  • the short channel effect can be suppressed without reducing the ON current. That is, a negative shift of the threshold voltage (Vth) due to the shortening of the channel can be suppressed while maintaining a high ON current.
  • the channel region in the first oxide semiconductor layer 31 of the oxide semiconductor layer 30 includes the first region 31a having a low carrier density.
  • the carrier density distribution can be provided in the channel path direction so that the carrier density in the drain end direction is lowered. Therefore, since it can be insensitive to the drain voltage, the short channel effect can be further suppressed.
  • FIG. 3 is a diagram illustrating a relationship between a step in the oxide semiconductor layer of the thin film transistor according to the embodiment and Vth variation. Note that FIG. 3 shows Vth variation of the thin film transistor when the thickness of the first oxide semiconductor layer 31 is 30 nm, 60 nm, and 80 nm.
  • the step of the oxide semiconductor layer 30, that is, the step between the first oxide semiconductor layer 31, the second oxide semiconductor layer 32, and the third oxide semiconductor layer 33 is increased.
  • Vth variation can be reduced. That is, the difference between the upper surface of the first oxide semiconductor layer 31 and the upper surface of the second oxide semiconductor layer 32 or the third oxide semiconductor layer 33 (the second oxide semiconductor layer 32 or the third oxide in the oxide semiconductor layer 30).
  • the Vth variation can be reduced.
  • Vth variation can be greatly reduced by setting this step to 15 nm or more. That is, the top end of each of the second oxide semiconductor layer 32 (drain region) and the third oxide semiconductor layer 33 (source region) and the bottom end of the side surface of the first oxide semiconductor layer 31 (channel region).
  • the difference (step) between the contact and the upper surface of the first oxide semiconductor layer 31 (channel region) is at least 15 nm or more, Vth variation can be greatly reduced. As a result, it is possible to effectively suppress the fluctuation of the threshold voltage due to the shortening of the channel.
  • the thickness of each of the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 is 1 ⁇ 2 of the thickness of the first oxide semiconductor layer 31.
  • the thickness of each of the second oxide semiconductor layer 32 (drain region) and the third oxide semiconductor layer 33 (source region) is set to be 1/2 or more of the thickness of the first oxide semiconductor layer 31, thereby reducing the thickness. Variation in threshold voltage due to channelization can be effectively suppressed.
  • the level difference between the first oxide semiconductor layer 31, the second oxide semiconductor layer 32, and the third oxide semiconductor layer 33 that is, the digging amount of the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 is increased. If it is too much, the process time for forming this step becomes long, or the conductive oxide residue generated when the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 are shaved causes an interlayer at the wiring intersection. A short circuit may occur. Accordingly, it is preferable that the step between the first oxide semiconductor layer 31, the second oxide semiconductor layer 32, and the third oxide semiconductor layer 33 is not too large.
  • FIGS. 4A to 4J are cross-sectional views of each step in the method of manufacturing the thin film transistor according to the embodiment.
  • a substrate 10 is prepared.
  • a glass substrate is prepared as the substrate 10.
  • an undercoat layer 20 is formed on the substrate 10.
  • the undercoat layer 20 composed of a silicon nitride film, a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, or the like is formed on the substrate 10 by plasma CVD (Chemical Vapor Deposition) or the like.
  • the oxide semiconductor layer 30 ⁇ / b> X is formed over the substrate 10.
  • the oxide semiconductor layer 30X having a predetermined shape is formed over the undercoat layer 20.
  • a transparent amorphous oxide semiconductor of InGaZnO x can be used as a material of the oxide semiconductor layer 30X.
  • an oxide semiconductor film made of InGaZnO x by vapor deposition such as sputtering and laser deposition.
  • a target material containing In, Ga and Zn for example, a polycrystalline sintered body having a composition of InGaO 3 (ZnO) 4
  • argon (Ar) gas flows as an inert gas into the vacuum chamber.
  • a gas containing oxygen (O 2 ) is introduced as a reactive gas, and a voltage having a predetermined power density is applied to the target material.
  • the oxide semiconductor layer 30X processed into a predetermined shape can be formed as illustrated in FIG. 4C.
  • the etching solution for example, a chemical solution in which phosphoric acid (H 3 PO 4 ), nitric acid (HNO 3 ), acetic acid (CH 3 COOH), and water are mixed can be used.
  • the gate insulating layer 40 is formed above the oxide semiconductor layer 30X, and the gate electrode 50 is formed above the gate insulating layer 40. Specifically, the gate insulating layer 40 and the gate electrode 50 are formed over a predetermined region of the oxide semiconductor layer 30X.
  • a gate insulating film is formed so as to cover the oxide semiconductor layer 30X.
  • the gate insulating film is, for example, a silicon nitride film, a silicon oxide film, a silicon oxynitride film, a tantalum oxide film, a single layer film of an aluminum oxide film, or a laminated film in which these films are stacked.
  • a silicon oxide film is formed by plasma CVD as the gate insulating film.
  • a gate metal film is formed on the gate insulating film.
  • a metal film made of molybdenum tungsten (MoW) is formed by sputtering as the gate metal film.
  • a gate electrode 50 having a predetermined shape is formed on the gate insulating film above the oxide semiconductor layer 30X.
  • the wet etching of the gate metal film made of MoW can be performed using, for example, a chemical solution in which phosphoric acid (HPO 4 ), nitric acid (HNO 3 ), acetic acid (CH 3 COOH), and water are mixed in a predetermined composition.
  • the gate insulating layer 40 having a predetermined shape is formed by patterning the gate insulating film.
  • the gate insulating layer 40 having the same shape as the gate electrode 50 can be formed between the oxide semiconductor layer 30X and the gate electrode 50 by patterning the gate insulating film using the gate electrode 50 as a mask.
  • the gate insulating film and the gate metal film are formed over the entire surface, the gate metal film is patterned, and then the gate insulating film is patterned, whereby the gate insulating layer 40 and the gate electrode having a predetermined shape are formed.
  • the laminated structure with 50 was formed, it is not restricted to this.
  • the gate insulating film is once patterned to form a gate insulating layer 40 having a predetermined shape, and then a gate metal film is formed and the gate metal film is patterned to form a predetermined shape.
  • the gate electrode 50 may be formed.
  • the oxide semiconductor layer 30X is processed so that at least the boundary portion between the drain region and the channel region is thinner than the thickness of the channel region.
  • part of the oxide semiconductor layer 30X is thinned by etching part of the oxide semiconductor layer 30X using the gate electrode 50 as a mask. That is, by etching a portion of the oxide semiconductor layer 30X that is exposed from the gate electrode 50, the thickness of the exposed portion is reduced.
  • the oxide semiconductor layer 30X is processed into a convex shape by etching portions other than the portions covered with the gate electrode 50 and the gate insulating layer 40 of the oxide semiconductor layer 30X.
  • the etching may be either a wet process (wet etching) or a dry process (dry etching).
  • a wet process for example, a chemical solution in which phosphoric acid (H 3 PO 4 ), nitric acid (HNO 3 ), acetic acid (CH 3 COOH), and water are mixed can be used as the etching solution.
  • boron tetrachloride (BCl 3 ) can be used as an etching gas.
  • the etching process of the oxide semiconductor layer 30X and the etching process of the gate insulating film may be performed in the same process.
  • the carrier density in the first region adjacent to the source region and the drain region is lower than the carrier density in the second region closer to the center of the channel region than the first region.
  • an element acting as an acceptor (acceptor element) is diffused into the channel region.
  • the step of diffusing the acceptor element includes a step of attaching the acceptor element to at least a side surface portion of the channel region in the oxide semiconductor layer, and a step of heating thereafter.
  • an acceptor element is attached to at least a side surface portion of the oxide semiconductor layer 30X which becomes a channel region.
  • the acceptor element is attached to the entire surface of the substrate 10 so that the acceptor element is adsorbed to the exposed portion of the oxide semiconductor layer 30X, and the acceptor element-containing layer (acceptor element-containing layer) 80 is formed.
  • acceptor element for example, fluorine (F), silicon (Si), copper (Cu), or the like can be used.
  • a process for attaching the acceptor element for example, a process for forming a thin film such as CVD or sputtering, a thermal process using an interfacial reaction obtained by raising the substrate temperature, or the like can be used.
  • fluorine is used as an acceptor element, and the fluorine is attached to the oxide semiconductor layer 30X by heat.
  • thermal acceptor is applied to diffuse the acceptor element into the portion that becomes the channel region of the oxide semiconductor layer 30X.
  • the acceptor element contained in the acceptor element-containing layer 80 is diffused and introduced into the oxide semiconductor layer 30X by thermal annealing.
  • the annealing temperature is preferably 300 ° C. or higher, for example.
  • the first oxide semiconductor layer 31 having the first region 31a having a carrier density lower than that of the second region 31b on both sides of the second region 31b can be formed by performing the thermal annealing in this way.
  • the carrier density distribution can be provided in the channel path direction in the convex portion of the oxide semiconductor layer 30 (the first oxide semiconductor layer 31).
  • the annealing temperature is set to 350 ° C.
  • the acceptor element fluorine
  • a step for removing the acceptor element-containing layer 80 is added as necessary. May be.
  • a source region and a drain region are formed in the oxide semiconductor layer 30X.
  • a process of selectively reducing the resistance value of a predetermined region of the oxide semiconductor layer 30X that is not covered with the gate electrode 50 and the gate insulating layer 40 (resistance reduction process).
  • the convex oxide semiconductor layer 30X is formed into a first oxide semiconductor layer 31 including a channel region, a second oxide semiconductor layer 32 including a source region, and a third oxide semiconductor layer 33 including a drain region. Separate functions. Accordingly, the oxide semiconductor layer 30 including the first oxide semiconductor layer 31, the second oxide semiconductor layer 32, and the third oxide semiconductor layer 33 can be formed.
  • plasma irradiation is performed on the oxide semiconductor layer 30X in which the gate electrode 50 is partially formed.
  • the oxide semiconductor layer 30X is irradiated with plasma using the gate electrode 50 as a mask. Accordingly, plasma is irradiated to a portion of the oxide semiconductor layer 30X exposed from the gate electrode 50, and a portion of the oxide semiconductor layer 30X that is not exposed from the gate electrode 50 is not irradiated with plasma. Only the portion of 30X irradiated with plasma (the portion exposed from the gate electrode 50) is selectively reduced in resistance.
  • the portion of the oxide semiconductor layer 30X that is covered with the gate electrode 50 and is not irradiated with plasma becomes the first oxide semiconductor layer 31 without being reduced in resistance.
  • the first oxide semiconductor layer 31 thus formed has a channel region including the first region 31a and the second region 31b having different carrier densities, and has a shape having a carrier density distribution in the carrier path direction. .
  • portions of the oxide semiconductor layer 30X that are not covered with the gate electrode 50 and are irradiated with plasma are reduced in resistance to become a drain region and a source region.
  • the second oxide semiconductor layer 32 having a drain region and the third oxide semiconductor layer 33 having a source region can be formed.
  • Ar plasma irradiation or hydrogen plasma irradiation can be used, for example.
  • the resistance value of the oxide semiconductor stacked film can be sufficiently reduced.
  • the resistance of the oxide semiconductor layer 30X may be decreased by causing oxygen deficiency by heating.
  • an interlayer insulating layer 60 is formed so as to cover the exposed portion of the oxide semiconductor layer 30 (the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33) and the gate electrode 50.
  • the interlayer insulating layer 60 may be an organic material as a main component or an inorganic material such as a silicon oxide film.
  • a silicon oxide film can be formed as the interlayer insulating layer 60 by plasma CVD.
  • an opening is formed in the interlayer insulating layer 60 so that a part of each of the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 is exposed. Specifically, a part of the interlayer insulating layer 60 is removed by etching using a photolithography method and an etching method, so that the third oxide is formed on the drain region (connection portion with the drain electrode 70D) of the second oxide semiconductor layer 32. An opening is formed on the source region (connection portion with the source electrode 70S) of the physical semiconductor layer 33.
  • the opening can be formed in the silicon oxide film by a dry etching method using a reactive ion etching (RIE) method.
  • RIE reactive ion etching
  • carbon tetrafluoride (CF 4 ) and oxygen gas (O 2 ) can be used as the etching gas.
  • the drain electrode 70D is electrically and physically connected to the second oxide semiconductor layer 32 (drain region) through the opening formed in the interlayer insulating layer 60, and the first The source electrode 70S is electrically and physically connected to the three oxide semiconductor layer 33 (source region).
  • a metal film (source / drain metal film) is formed on the interlayer insulating layer 60 by sputtering so as to fill the opening formed in the interlayer insulating layer 60
  • a photolithography method and a wet etching method are performed.
  • a source electrode 70S and a drain electrode 70D having a predetermined shape are formed.
  • heat treatment annealing
  • oxygen vacancies in the oxide semiconductor layer 30 can be repaired, and the characteristics of the oxide semiconductor layer 30 can be stabilized.
  • FIG. 5 is a partially cutaway perspective view of the organic EL display device according to the embodiment.
  • FIG. 6 is an electric circuit diagram of a pixel circuit in the organic EL display device shown in FIG. Note that the pixel circuit is not limited to the configuration shown in FIG.
  • the above-described thin film transistor 1 can be used as a switching transistor SwTr and a drive transistor DrTr of an active matrix substrate in an organic EL display device.
  • the organic EL display device 100 includes a TFT substrate (TFT array substrate) 110 on which a plurality of thin film transistors are arranged, an anode 131 as a lower electrode (reflection electrode), and an EL layer (light emitting layer) 132. And a laminated structure with an organic EL element (light emitting part) 130 composed of a cathode 133 which is an upper electrode (transparent electrode).
  • the thin film transistor 1 described above is used for the TFT substrate 110 in the present embodiment.
  • a plurality of pixels 120 are arranged in a matrix on the TFT substrate 110, and each pixel 120 is provided with a pixel circuit.
  • the organic EL element 130 is formed corresponding to each of the plurality of pixels 120, and the light emission of each organic EL element 130 is controlled by a pixel circuit provided in each pixel 120.
  • the organic EL element 130 is formed on an interlayer insulating layer (planarization film) formed so as to cover a plurality of thin film transistors.
  • the organic EL element 130 has a configuration in which an EL layer 132 is disposed between the anode 131 and the cathode 133.
  • a hole transport layer is further laminated between the anode 131 and the EL layer 132, and an electron transport layer is further laminated between the EL layer 132 and the cathode 133.
  • another functional layer may be provided between the anode 131 and the cathode 133.
  • the functional layer formed between the anode 131 and the cathode 133 including the EL layer 132 is an organic layer made of an organic material.
  • Each pixel 120 is driven and controlled by each pixel circuit.
  • the TFT substrate 110 includes a plurality of gate wirings (scanning lines) 140 arranged along the row direction of the pixels 120 and a plurality of gate wirings 140 arranged along the column direction of the pixels 120 so as to intersect the gate wiring 140.
  • Source wiring (signal wiring) 150 and a plurality of power supply wirings (not shown in FIG. 5) arranged in parallel with the source wiring 150 are formed.
  • Each pixel 120 is partitioned by, for example, an orthogonal gate wiring 140 and a source wiring 150.
  • the gate wiring 140 is connected to the gate electrode of the switching transistor included in each pixel circuit for each row.
  • the source wiring 150 is connected to the source electrode of the switching transistor for each column.
  • the power supply wiring is connected to the drain electrode of the drive transistor included in each pixel circuit for each column.
  • the pixel circuit includes a switching transistor SwTr, a drive transistor DrTr, and a capacitor C that stores data to be displayed on the corresponding pixel 120.
  • the switching transistor SwTr is a TFT for selecting the pixel 120
  • the drive transistor DrTr is a TFT for driving the organic EL element 130.
  • the switching transistor SwTr includes a gate electrode G1 connected to the gate wiring 140, a source electrode S1 connected to the source wiring 150, a drain electrode D1 connected to the capacitor C and the gate electrode G2 of the second thin film transistor DrTr, and an oxidation A physical semiconductor layer (not shown).
  • the switching transistor SwTr when a predetermined voltage is applied to the connected gate wiring 140 and source wiring 150, the voltage applied to the source wiring 150 is stored in the capacitor C as a data voltage.
  • the drive transistor DrTr is connected to the drain electrode D1 of the switching transistor SwTr and the gate electrode G2 connected to the capacitor C, the drain electrode D2 connected to the power supply wiring 160 and the capacitor C, and the anode 131 of the organic EL element 130.
  • a source electrode S2 and an oxide semiconductor layer are provided.
  • the drive transistor DrTr supplies a current corresponding to the data voltage held by the capacitor C from the power supply wiring 160 to the anode 131 of the organic EL element 130 through the source electrode S2. Thereby, in the organic EL element 130, a drive current flows from the anode 131 to the cathode 133, and the EL layer 132 emits light.
  • the organic EL display device 100 having the above configuration employs an active matrix system in which display control is performed for each pixel 120 located at the intersection of the gate wiring 140 and the source wiring 150. Thereby, the corresponding organic EL element 130 selectively emits light by the switching transistor SwTr and the drive transistor DrTr in each pixel 120, and a desired image is displayed.
  • the thin film transistor 1 in which the short channel effect is suppressed is used as the switching transistor SwTr and the drive transistor DrTr. Therefore, an organic EL display device with excellent reliability can be realized.
  • the thin film transistor 1 is used as the drive transistor DrTr for driving the organic EL element 130, a high-definition organic EL display device with excellent display performance can be realized.
  • FIG. 7 is a cross-sectional view illustrating a configuration of a thin film transistor according to the first modification.
  • the entire second oxide semiconductor layer 32 is a drain region and the entire third oxide semiconductor layer 33 is a source region.
  • the entire second oxide semiconductor layer 32 is a drain region and the entire third oxide semiconductor layer 33 is a source region.
  • the upper layer portion of the second oxide semiconductor layer 32 is a drain region and only the upper layer portion of the third oxide semiconductor layer 33 is a source region.
  • the distance between the drain region and the channel region can be increased, so that the strength of the drain electric field can be reduced.
  • the short channel effect can be suppressed without reducing the ON current.
  • FIG. 8 is a cross-sectional view illustrating a configuration of a thin film transistor according to the second modification.
  • the acceptor element is introduced from the side wall portion of the first oxide semiconductor layer 31 to form the first region 31 a having a low carrier density in the first oxide semiconductor layer 31.
  • the first region 31 a is not necessarily formed in the first oxide semiconductor layer 31. That is, the channel density region of the first oxide semiconductor layer 31 may not have a carrier density distribution.
  • the distance between the drain region and the channel region can be increased, so that the strength of the drain electric field can be reduced.
  • the short channel effect can be suppressed without reducing the ON current.
  • the short channel effect can be effectively suppressed by providing the carrier density distribution in the channel region of the first oxide semiconductor layer 31 as in the thin film transistor 1 shown in FIG.
  • FIG. 9 is a cross-sectional view illustrating a configuration of a thin film transistor according to Modification 3.
  • the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 are formed by thinning both sides of the oxide semiconductor layer 30X using the gate electrode 50 as a mask. Therefore, the entire second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 are thinner than the first oxide semiconductor layer 31. That is, the film thickness of each of the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 is constant and thinner than the film thickness of the first oxide semiconductor layer 31.
  • the thin film transistor 1C in the present modification only a part of the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 is thinned.
  • the thickness of the boundary portion between the second oxide semiconductor layer 32 (drain region) and the third oxide semiconductor layer 33 (source region) and the first oxide semiconductor layer 31 (channel region) is the first oxide semiconductor layer.
  • Part of the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 is thinned so as to be thinner than the thickness of 31 (channel region).
  • the distance between the drain region and the channel region can be increased, so that the strength of the drain electric field can be reduced.
  • the short channel effect can be suppressed without reducing the ON current.
  • the first region 31a (low carrier density region) is not formed in the first oxide semiconductor layer 31, but the first oxide semiconductor layer 31 is the same as the thin film transistor 1 in the above embodiment. Alternatively, the first region 31a may be formed.
  • FIG. 10A is a cross-sectional view illustrating a configuration of a thin film transistor according to Modification 4.
  • the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 are formed by thinning both sides of the oxide semiconductor layer 30X using the gate electrode 50 as a mask. Therefore, both the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 are made thinner than the first oxide semiconductor layer 31.
  • the second oxide semiconductor layer 32 having the drain region is thinned, but the third oxide semiconductor layer 33 having the source region is not thinned.
  • the distance between the drain region and the channel region can be increased, so that the strength of the drain electric field can be reduced.
  • the short channel effect can be suppressed without reducing the ON current.
  • the first region 31a (low carrier density region) is formed in the first oxide semiconductor layer 31, but the first oxide semiconductor layer 31 includes the first region as illustrated in FIG. 10B.
  • the region 31a may not be formed.
  • the thin film transistor and the manufacturing method thereof have been described based on the embodiment and the modification.
  • the present invention is not limited to the above embodiment and the modification.
  • a transparent amorphous oxide semiconductor of InGaZnO x (IGZO) is used as the oxide semiconductor used for the oxide semiconductor layer, but the present invention is not limited thereto, and a polycrystalline oxide such as InGaO is used.
  • An oxide semiconductor containing In such as a semiconductor can be used.
  • a transparent amorphous oxide semiconductor such as InWO or InWZnO may be used.
  • the undercoat layer 20 is formed on the surface of the substrate 10, but the undercoat layer 20 may not be formed.
  • the organic EL display device has been described as a display device using a thin film transistor, but the present invention is not limited to this.
  • the thin film transistor in the above embodiment and modifications can also be applied to other display devices such as a liquid crystal display device.
  • the organic EL display device (organic EL panel) can be used as a flat panel display.
  • the organic EL display device can be used as a display panel of any electronic device such as a television set, a personal computer, or a mobile phone.
  • the thin film transistor according to the present invention can be widely used in various electric devices having a thin film transistor such as a display device (display panel) such as an organic EL display device, a television set, a personal computer, and a mobile phone using the display device. it can.
  • a display device display panel
  • organic EL display device such as an organic EL display device
  • a television set such as a television set, a personal computer, and a mobile phone using the display device. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

A thin film transistor (1) has: a substrate (10); an oxide semiconductor layer (30), which is positioned above the substrate (10), and which has a channel region, a source region, and a drain region; a gate insulating layer (40) positioned above the oxide semiconductor layer (30); a gate electrode (50) positioned above the gate insulating layer (40); a source electrode (70S) electrically connected to the source region; and a drain electrode (70D) electrically connected to the drain region. The channel region is a region facing the gate electrode (50) by having the gate insulating layer (40) therebetween, the drain region is a region, which is positioned on the one end side of the channel region, and which has a resistance value that is lower than that of the channel region, and the source region is a region, which is positioned on the other end side of the channel region, and which has a resistance value that is lower than that of the channel region. In the oxide semiconductor layer (30), the thickness of at least a boundary portion between the drain region and the channel region is less than the thickness of the channel region.

Description

薄膜トランジスタ及び薄膜トランジスタの製造方法THIN FILM TRANSISTOR AND METHOD FOR PRODUCING THIN FILM TRANSISTOR
 本発明は、薄膜トランジスタ(TFT:Thin Film Transistor)及び薄膜トランジスタの製造方法に関し、より詳しくは、酸化物半導体層をチャネル層とする酸化物半導体薄膜トランジスタ及びその製造方法に関する。 The present invention relates to a thin film transistor (TFT: Thin Film Transistor) and a method for manufacturing the thin film transistor, and more particularly to an oxide semiconductor thin film transistor having an oxide semiconductor layer as a channel layer and a method for manufacturing the same.
 TFTは、液晶表示装置又は有機EL(Electro Luminescence)表示装置等のアクティブマトリクス方式の表示装置において、スイッチング素子又は駆動素子として用いられている。 TFTs are used as switching elements or drive elements in active matrix display devices such as liquid crystal display devices or organic EL (Electro Luminescence) display devices.
 近年、次世代のTFTとして、InGaZnO(IGZO)等の酸化物半導体をチャネル層に用いた酸化物半導体TFTの開発が盛んに行われている。例えば、特許文献1には、チャネル層が酸化物半導体層である酸化物半導体TFTが開示されている。酸化物半導体TFTは、既に実用化されており、モバイル用小型表示装置や大型表示装置に用いられている。 In recent years, oxide semiconductor TFTs using an oxide semiconductor such as InGaZnO x (IGZO) as a channel layer have been actively developed as next-generation TFTs. For example, Patent Document 1 discloses an oxide semiconductor TFT whose channel layer is an oxide semiconductor layer. Oxide semiconductor TFTs have already been put into practical use and are used in mobile small display devices and large display devices.
特開2010-161227号公報JP 2010-161227 A
 酸化物半導体TFTでは、チャネル長が短くなるにつれて閾値電圧(Vth)がシフトするという課題がある。 The oxide semiconductor TFT has a problem that the threshold voltage (Vth) shifts as the channel length becomes shorter.
 本発明は、このような課題を解決するためになされたものであり、閾値電圧の変動を抑制できる薄膜トランジスタ及びその製造方法を提供することを目的とする。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a thin film transistor capable of suppressing fluctuations in threshold voltage and a method for manufacturing the same.
 上記目的を達成するために、本発明の一態様に係る薄膜トランジスタは、基板と、前記基板の上方に位置し、チャネル領域、ソース領域及びドレイン領域を有する酸化物半導体層と、前記酸化物半導体層の上方に位置するゲート絶縁層と、前記ゲート絶縁層の上方に位置するゲート電極と、前記ソース領域と電気的に接続されたソース電極と、前記ドレイン領域と電気的に接続されたドレイン電極と、を有し、前記チャネル領域は、前記ゲート絶縁層を挟んで前記ゲート電極と対向する領域であり、前記ドレイン領域は、前記チャネル領域の他方端側に位置し、かつ、抵抗値が前記チャネル領域の抵抗値よりも低い領域であり、前記ソース領域は、前記チャネル領域の一方端側に位置し、かつ、抵抗値が前記チャネル領域の抵抗値よりも低い領域であり、前記酸化物半導体層において、少なくとも前記ドレイン領域と前記チャネル領域との境界部分の厚みが前記チャネル領域の厚みよりも薄いことを特徴とする。 In order to achieve the above object, a thin film transistor according to one embodiment of the present invention includes a substrate, an oxide semiconductor layer that is located above the substrate and includes a channel region, a source region, and a drain region, and the oxide semiconductor layer A gate insulating layer located above the gate insulating layer; a gate electrode located above the gate insulating layer; a source electrode electrically connected to the source region; and a drain electrode electrically connected to the drain region; The channel region is a region facing the gate electrode across the gate insulating layer, the drain region is located on the other end side of the channel region, and the resistance value is the channel The source region is located on one end side of the channel region, and the resistance value is lower than the resistance value of the channel region. A region in the oxide semiconductor layer, the thickness of the boundary portion between at least said drain region and said channel region is equal to or smaller than the thickness of the channel region.
 閾値電圧の変動を抑制することができる薄膜トランジスタを実現できる。 A thin film transistor that can suppress fluctuations in threshold voltage can be realized.
図1は、実施の形態に係る薄膜トランジスタの構成を示す断面図である。FIG. 1 is a cross-sectional view illustrating a configuration of a thin film transistor according to an embodiment. 図2は、酸化物半導体TFTにおける短チャネル効果を説明するための図である。FIG. 2 is a diagram for explaining the short channel effect in the oxide semiconductor TFT. 図3は、実施の形態に係る薄膜トランジスタの酸化物半導体層における段差とVthばらつきとの関係を示す図である。FIG. 3 is a diagram illustrating a relationship between a step in the oxide semiconductor layer of the thin film transistor according to the embodiment and Vth variation. 図4Aは、実施の形態に係る薄膜トランジスタの製造方法における基板準備工程の断面図である。FIG. 4A is a cross-sectional view of a substrate preparation step in the method of manufacturing a thin film transistor according to the embodiment. 図4Bは、実施の形態に係る薄膜トランジスタの製造方法におけるアンダーコート層形成工程の断面図である。FIG. 4B is a cross-sectional view of the undercoat layer forming step in the method for manufacturing the thin film transistor according to the embodiment. 図4Cは、実施の形態に係る薄膜トランジスタの製造方法における酸化物半導体層形成工程の断面図である。FIG. 4C is a cross-sectional view of the oxide semiconductor layer forming step in the method for manufacturing the thin film transistor according to the embodiment. 図4Dは、実施の形態に係る薄膜トランジスタの製造方法におけるゲート絶縁層及びゲート電極形成工程の断面図である。FIG. 4D is a cross-sectional view of the step of forming the gate insulating layer and the gate electrode in the method for manufacturing the thin film transistor according to the embodiment. 図4Eは、実施の形態に係る薄膜トランジスタの製造方法における酸化物半導体層エッチング工程の断面図である。FIG. 4E is a cross-sectional view of the oxide semiconductor layer etching step in the method for manufacturing the thin film transistor according to the embodiment. 図4Fは、実施の形態に係る薄膜トランジスタの製造方法におけるアクセプタ元素吸着工程の断面図である。FIG. 4F is a cross-sectional view of an acceptor element adsorption step in the method of manufacturing a thin film transistor according to the embodiment. 図4Gは、実施の形態に係る薄膜トランジスタの製造方法におけるアクセプタ元素拡散工程の断面図である。FIG. 4G is a cross-sectional view of an acceptor element diffusion step in the method for manufacturing a thin film transistor according to the embodiment. 図4Hは、実施の形態に係る薄膜トランジスタの製造方法における酸化物半導体層のソース領域及びドレイン領域形成工程の断面図である。FIG. 4H is a cross-sectional view of the step of forming the source region and the drain region of the oxide semiconductor layer in the method for manufacturing the thin film transistor according to the embodiment. 図4Iは、実施の形態に係る薄膜トランジスタの製造方法における絶縁層形成工程の断面図である。FIG. 4I is a cross-sectional view of the insulating layer forming step in the method for manufacturing the thin film transistor according to the embodiment. 図4Jは、実施の形態に係る薄膜トランジスタの製造方法におけるソース電極及びドレイン電極形成工程の断面図である。FIG. 4J is a cross-sectional view of the source electrode and drain electrode formation step in the method of manufacturing a thin film transistor according to the embodiment. 図5は、実施の形態に係る有機EL表示装置の一部切り欠き斜視図である。FIG. 5 is a partially cutaway perspective view of the organic EL display device according to the embodiment. 図6は、図5に示す有機EL表示装置における画素回路の電気回路図である。FIG. 6 is an electric circuit diagram of a pixel circuit in the organic EL display device shown in FIG. 図7は、変形例1に係る薄膜トランジスタの構成を示す断面図である。FIG. 7 is a cross-sectional view illustrating a configuration of a thin film transistor according to the first modification. 図8は、変形例2に係る薄膜トランジスタの構成を示す断面図である。FIG. 8 is a cross-sectional view illustrating a configuration of a thin film transistor according to the second modification. 図9は、変形例3に係る薄膜トランジスタの構成を示す断面図である。FIG. 9 is a cross-sectional view illustrating a configuration of a thin film transistor according to Modification 3. 図10Aは、変形例4に係る薄膜トランジスタの構成を示す断面図である。FIG. 10A is a cross-sectional view illustrating a configuration of a thin film transistor according to Modification 4. 図10Bは、変形例4に係る薄膜トランジスタの他の構成を示す断面図である。FIG. 10B is a cross-sectional view illustrating another configuration of the thin film transistor according to Modification 4.
 本発明の一態様に係る薄膜トランジスタは、基板と、前記基板の上方に位置し、チャネル領域、ソース領域及びドレイン領域を有する酸化物半導体層と、前記酸化物半導体層の上方に位置するゲート絶縁層と、前記ゲート絶縁層の上方に位置するゲート電極と、前記ソース領域と電気的に接続されたソース電極と、前記ドレイン領域と電気的に接続されたドレイン電極と、を有し、前記チャネル領域は、前記ゲート絶縁層を挟んで前記ゲート電極と対向する領域であり、前記ドレイン領域は、前記チャネル領域の他方端側に位置し、かつ、抵抗値が前記チャネル領域の抵抗値よりも低い領域であり、前記ソース領域は、前記チャネル領域の一方端側に位置し、かつ、抵抗値が前記チャネル領域の抵抗値よりも低い領域であり、前記酸化物半導体層において、少なくとも前記ドレイン領域と前記チャネル領域との境界部分の厚みが前記チャネル領域の厚みよりも薄い。 A thin film transistor according to one embodiment of the present invention includes a substrate, an oxide semiconductor layer located above the substrate and having a channel region, a source region, and a drain region, and a gate insulating layer located above the oxide semiconductor layer A gate electrode located above the gate insulating layer, a source electrode electrically connected to the source region, and a drain electrode electrically connected to the drain region, and the channel region Is a region facing the gate electrode across the gate insulating layer, the drain region is located on the other end side of the channel region, and the resistance value is lower than the resistance value of the channel region The source region is located on one end side of the channel region and has a resistance value lower than the resistance value of the channel region; In the body layer, the thickness of the boundary portion between at least said drain region and said channel region is thinner than the thickness of the channel region.
 本態様によれば、酸化物半導体層において、ドレイン領域(低抵抗領域)とチャネル領域との境界部分の厚みがチャネル領域の厚みよりも薄くなっている。これにより、ドレイン領域とチャネル領域との物理的距離を稼ぐことができるため、ドレイン電界を鈍化させることができる。したがって、短チャネル化することで生じる閾値電圧の変動を抑制することができる。 According to this aspect, in the oxide semiconductor layer, the thickness of the boundary portion between the drain region (low resistance region) and the channel region is thinner than the thickness of the channel region. Thereby, since the physical distance between the drain region and the channel region can be increased, the drain electric field can be blunted. Therefore, it is possible to suppress fluctuations in the threshold voltage caused by shortening the channel.
 また、本発明の一態様に係る薄膜トランジスタにおいて、前記酸化物半導体層において、さらに、前記ソース領域と前記チャネル領域との境界部分の厚みが前記チャネル領域の厚みよりも薄いとよい。 In the thin film transistor according to one embodiment of the present invention, in the oxide semiconductor layer, a thickness of a boundary portion between the source region and the channel region may be smaller than a thickness of the channel region.
 本態様によれば、ドレイン領域とチャネル領域との境界部分の厚みとソース領域とチャネル領域との境界部分の厚みとを同時に薄くすることができる。 According to this aspect, the thickness of the boundary portion between the drain region and the channel region and the thickness of the boundary portion between the source region and the channel region can be simultaneously reduced.
 また、本発明の一態様に係る薄膜トランジスタにおいて、前記酸化物半導体層は、断面形状が凸形状であり、かつ、前記チャネル領域を有する部分の上面が前記ドレイン領域を有する部分及び前記ソース領域を有する部分の上面よりも上方に位置するとよい。 In the thin film transistor according to one embodiment of the present invention, the oxide semiconductor layer has a convex cross-sectional shape, and an upper surface of the portion having the channel region includes the portion having the drain region and the source region. It is good to be located above the upper surface of the part.
 本態様によれば、酸化物半導体層におけるドレイン領域を有する部分とソース領域を有する部分との膜厚を、一定の膜厚とし、かつ、酸化物半導体層におけるチャネル領域を有する部分の膜厚よりも薄くすることができる。これにより、例えば、ゲート電極をマスクにして酸化物半導体層をエッチングすることによってドレイン領域に対応する部分とソース領域に対応する部分との膜厚を同時に加工して薄くすることができる。 According to this embodiment, the thickness of the portion having the drain region and the portion having the source region in the oxide semiconductor layer is set to a constant thickness, and the thickness of the portion having the channel region in the oxide semiconductor layer is Can also be thinned. Accordingly, for example, by etching the oxide semiconductor layer using the gate electrode as a mask, the film thickness of the portion corresponding to the drain region and the portion corresponding to the source region can be simultaneously processed and reduced.
 また、本発明の一態様に係る薄膜トランジスタにおいて、前記酸化物半導体層は、前記チャネル領域において、前記ソース領域側及び前記ドレイン領域側の領域である第1領域と、前記第1領域よりも前記チャネル領域の中央部に近い側の領域である第2領域とを含み、前記第1領域のキャリア密度は、第2領域のキャリア密度より低いとよい。 In the thin film transistor according to one embodiment of the present invention, the oxide semiconductor layer includes, in the channel region, a first region that is a region on the source region side and the drain region side, and the channel more than the first region. And a second region which is a region closer to the center of the region, and the carrier density of the first region is preferably lower than the carrier density of the second region.
 本態様によれば、酸化物半導体層のチャネル領域におけるドレイン端方向のキャリア密度を低下させることができる。これにより、ドレイン電圧に対して鈍感にすることができるので、短チャネル化による閾値電圧の変動を一層抑制することができる。 According to this aspect, the carrier density in the drain end direction in the channel region of the oxide semiconductor layer can be reduced. As a result, the drain voltage can be made insensitive, so that fluctuations in the threshold voltage due to the shortening of the channel can be further suppressed.
 また、本発明の一態様に係る薄膜トランジスタにおいて、前記第1領域にはアクセプタとして作用する元素が含まれているとよい。 In the thin film transistor according to one embodiment of the present invention, the first region may include an element that functions as an acceptor.
 本態様によれば、酸化物半導体層におけるキャリア密度を安定的に低下させることができる。 According to this aspect, the carrier density in the oxide semiconductor layer can be stably reduced.
 また、本発明の一態様に係る薄膜トランジスタにおいて、前記第1領域には、前記アクセプタとして、銅、シリコン及びフッ素の少なくとも1つが含まれているとよい。 In the thin film transistor according to one embodiment of the present invention, the first region preferably includes at least one of copper, silicon, and fluorine as the acceptor.
 本態様によれば、大型量産設備との整合性が高くなるので、製造コストを抑えることができる。 According to this aspect, the consistency with the large-scale mass production equipment becomes high, so that the manufacturing cost can be suppressed.
 また、本発明の一態様に係る薄膜トランジスタにおいて、前記ソース領域又は前記ドレイン領域の上面の端部と前記チャネル領域の側面の下端との接点は、前記チャネル領域の厚みの1/2の位置よりも下方側に位置するとよい。 In the thin film transistor according to one embodiment of the present invention, the contact point between the upper end portion of the source region or the drain region and the lower end portion of the side surface of the channel region is more than a position that is 1/2 the thickness of the channel region. It may be located on the lower side.
 本態様によれば、ドレイン領域で形成される電界分布とチャネル領域(フロントチャネル領域)に発生するキャリアパスとの間に十分な距離をとることができるので、短チャネル化による閾値電圧の変動をより効果的に抑制することができる。 According to this aspect, since a sufficient distance can be taken between the electric field distribution formed in the drain region and the carrier path generated in the channel region (front channel region), the threshold voltage fluctuation due to the shortening of the channel can be reduced. It can suppress more effectively.
 また、本発明の一態様に係る薄膜トランジスタにおいて、前記ソース領域又は前記ドレイン領域の上面の端部と前記チャネル領域の側面の下端との接点と、前記チャネル領域の上面との差は、少なくとも15nm以上であるとよい。 In the thin film transistor according to one embodiment of the present invention, the difference between the contact between the upper end of the source region or the drain region and the lower end of the side surface of the channel region and the upper surface of the channel region is at least 15 nm or more. It is good to be.
 本態様によれば、短チャネル化による閾値電圧の変動を効果的に抑制することができる。 According to this aspect, it is possible to effectively suppress the fluctuation of the threshold voltage due to the shortening of the channel.
 また、本発明の一態様に係る薄膜トランジスタにおいて、前記酸化物半導体層を構成する金属元素には、インジウム、ガリウム及び亜鉛の少なくとも1つが含まれているとよい。 In the thin film transistor according to one embodiment of the present invention, the metal element included in the oxide semiconductor layer may include at least one of indium, gallium, and zinc.
 本態様によれば、大型量産設備とのターゲット整合性が高くなるので、製造コストを抑えることができる。 According to this aspect, since the target consistency with the large-scale mass production facility is increased, the manufacturing cost can be suppressed.
 また、本発明の一態様に係る薄膜トランジスタの製造方法は、基板を準備する工程と、前記基板の上方に、チャネル領域を有する酸化物半導体層を形成する工程と、前記酸化物半導体層の上方にゲート絶縁層を形成する工程と、前記ゲート絶縁層の上方にゲート電極を形成する工程と、前記酸化物半導体層にソース領域及びドレイン領域を形成する工程と、前記ソース領域と電気的に接続されたソース電極及び前記ドレイン領域と電気的に接続されたドレイン電極を形成する工程とを含み、前記チャネル領域は、前記ゲート絶縁層を挟んで前記ゲート電極と対向する領域であり、前記ソース領域は、前記チャネル領域の一方端側に位置し、かつ、抵抗値が前記チャネル領域の抵抗値よりも低い領域であり、前記ドレイン領域は、前記チャネル領域の他方端側に位置し、かつ、抵抗値が前記チャネル領域の抵抗値よりも低い領域であり、さらに、少なくとも前記ドレイン領域と前記チャネル領域との境界部分の厚みが前記チャネル領域の厚みよりも薄くなるように前記酸化物半導体層を加工する工程を含む。 In addition, a method for manufacturing a thin film transistor according to one embodiment of the present invention includes a step of preparing a substrate, a step of forming an oxide semiconductor layer having a channel region above the substrate, and a region above the oxide semiconductor layer. A step of forming a gate insulating layer; a step of forming a gate electrode above the gate insulating layer; a step of forming a source region and a drain region in the oxide semiconductor layer; and electrically connected to the source region. Forming a source electrode and a drain electrode electrically connected to the drain region, wherein the channel region is a region facing the gate electrode with the gate insulating layer interposed therebetween, and the source region is The drain region is located on one end side of the channel region and has a resistance value lower than the resistance value of the channel region. The region is located on the other end side of the region and has a resistance value lower than the resistance value of the channel region, and at least the boundary portion between the drain region and the channel region has a thickness greater than the thickness of the channel region. A step of processing the oxide semiconductor layer so as to be thin.
 本態様によれば、低抵抗領域であるドレイン領域とチャネル領域との境界部分の厚みがチャネル領域の厚みよりも薄い酸化物半導体層を形成することができる。これにより、ドレイン領域とチャネル領域との物理的距離を稼ぐことができるため、短チャネル化による閾値電圧の変動を抑制できる薄膜トランジスタを製造することができる。 According to this aspect, it is possible to form an oxide semiconductor layer in which the thickness of the boundary portion between the drain region and the channel region, which is a low resistance region, is thinner than the thickness of the channel region. Accordingly, since a physical distance between the drain region and the channel region can be increased, a thin film transistor that can suppress a variation in threshold voltage due to a short channel can be manufactured.
 また、本発明の他の一態様に係る薄膜トランジスタの製造方法は、基板を準備する工程と、前記基板の上方に酸化物半導体層を形成する工程と、前記酸化物半導体層の上方にゲート絶縁膜を成膜する工程と、前記ゲート絶縁膜の上方に所定形状のゲート電極を形成する工程と、前記ゲート電極をマスクとして前記ゲート絶縁膜をエッチングして所定形状のゲート絶縁層を形成する工程と、前記ゲート電極をマスクとして前記酸化物半導体層の一部をエッチングすることにより前記酸化物半導体層の一部を薄膜化する工程と、前記酸化物半導体層の前記一部にソース領域及びドレイン領域を形成する工程と、前記ソース領域と電気的に接続されたソース電極及び前記ドレイン領域と電気的に接続されたドレイン電極を形成する工程とを含む。 In addition, a method for manufacturing a thin film transistor according to another embodiment of the present invention includes a step of preparing a substrate, a step of forming an oxide semiconductor layer over the substrate, and a gate insulating film over the oxide semiconductor layer. Forming a gate electrode having a predetermined shape above the gate insulating film, and forming a gate insulating layer having a predetermined shape by etching the gate insulating film using the gate electrode as a mask, Etching the part of the oxide semiconductor layer using the gate electrode as a mask to thin the part of the oxide semiconductor layer; and the source region and the drain region in the part of the oxide semiconductor layer And forming a source electrode electrically connected to the source region and a drain electrode electrically connected to the drain region.
 本態様によれば、ゲート電極をマスクとして酸化物半導体層におけるソース領域となる部分とドレイン領域となる部分をエッチングして薄膜化できるので、製造工程を増やすことなく薄膜トランジスタを製造することができる。 According to this aspect, since the gate electrode can be used as a mask and the oxide semiconductor layer can be thinned by etching the source region and the drain region, the thin film transistor can be manufactured without increasing the number of manufacturing steps.
 また、本発明の他の一態様に係る薄膜トランジスタの製造方法において、さらに、前記チャネル領域において、前記ソース領域側及び前記ドレイン領域側の領域である第1領域のキャリア密度が前記第1領域よりも前記チャネル領域の中央部に近い側の領域である第2領域のキャリア密度よりも低くなるように、アクセプタとして作用する元素を当該チャネル領域に拡散させる工程を含むとよい。 In the method for manufacturing a thin film transistor according to another aspect of the present invention, the carrier density of the first region, which is the region on the source region side and the drain region side, in the channel region is higher than that in the first region. It is preferable to include a step of diffusing an element acting as an acceptor into the channel region so as to be lower than the carrier density of the second region which is a region closer to the center of the channel region.
 本態様によれば、酸化物半導体層のチャネル領域にアクセプタとして作用する元素を拡散させることによって、酸化物半導体層に対して、ドレイン端方向のキャリア密度が低くなるようにチャネルパス方向にキャリア密度の分布を持たせることができる。 According to this embodiment, by diffusing an element that acts as an acceptor into the channel region of the oxide semiconductor layer, the carrier density in the channel path direction is reduced with respect to the oxide semiconductor layer so that the carrier density in the drain end direction is low. Distribution can be given.
 また、本発明の他の一態様に係る薄膜トランジスタにおいて、さらに、前記チャネル領域において、前記ソース領域側及び前記ドレイン領域側の領域である第1領域のキャリア密度が前記第1領域よりも前記チャネル領域の中央部に近い側の領域である第2領域のキャリア密度よりも低くなるように、アクセプタとして作用する元素を当該チャネル領域に拡散させる工程を含むとよい。 In the thin film transistor according to another embodiment of the present invention, in the channel region, a carrier density of a first region that is a region on the source region side and the drain region side is higher than that in the first region. It is preferable to include a step of diffusing an element acting as an acceptor into the channel region so as to be lower than the carrier density of the second region, which is a region closer to the center of the channel region.
 本態様によれば、チャネル領域の側面部から酸化物半導体層内にアクセプタ元素を容易に導入することができるので、チャネル領域におけるドレイン端のキャリア密度を容易に低下させることができる。 According to this aspect, since the acceptor element can be easily introduced into the oxide semiconductor layer from the side surface portion of the channel region, the carrier density at the drain end in the channel region can be easily reduced.
 (実施の形態)
 以下、本発明の一実施の形態について、図面を用いて説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、工程(ステップ)、工程の順序等は、一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
(Embodiment)
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Note that each of the embodiments described below shows a preferred specific example of the present invention. Therefore, numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps (steps), order of steps, and the like shown in the following embodiments are merely examples and are intended to limit the present invention. is not. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims showing the highest concept of the present invention are described as optional constituent elements.
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected to the substantially same structure, The overlapping description is abbreviate | omitted or simplified.
 [薄膜トランジスタの構成]
 まず、実施の形態に係る薄膜トランジスタ1について、図1を用いて説明する。図1は、実施の形態に係る薄膜トランジスタの構成を示す断面図である。
[Configuration of thin film transistor]
First, a thin film transistor 1 according to an embodiment will be described with reference to FIG. FIG. 1 is a cross-sectional view illustrating a configuration of a thin film transistor according to an embodiment.
 図1に示すように、本実施の形態に係る薄膜トランジスタ1は、酸化物半導体層をチャネル層とするトップゲート型の酸化物半導体TFTである。 As shown in FIG. 1, a thin film transistor 1 according to this embodiment is a top-gate oxide semiconductor TFT having an oxide semiconductor layer as a channel layer.
 薄膜トランジスタ1は、基板10と、アンダーコート層20と、チャネル層となる酸化物半導体層30と、ゲート絶縁層40と、ゲート電極50と、層間絶縁層60と、ソース電極70S及びドレイン電極70Dとを備える。 The thin film transistor 1 includes a substrate 10, an undercoat layer 20, an oxide semiconductor layer 30 serving as a channel layer, a gate insulating layer 40, a gate electrode 50, an interlayer insulating layer 60, a source electrode 70S, and a drain electrode 70D. Is provided.
 以下、本実施の形態に係る薄膜トランジスタ1の各構成要素について詳細に説明する。 Hereinafter, each component of the thin film transistor 1 according to the present embodiment will be described in detail.
 基板10は、例えば、石英ガラス、無アルカリガラス又は高耐熱性ガラス等のガラス材料で構成されるガラス基板である。なお、基板10は、ガラス基板に限らず、樹脂基板等であってもよい。また、基板10は、リジッド基板ではなく、ポリイミドやポリエチレンテレフタレート、ポリエチレンナフタレート等のフィルム材料の単層又は積層で構成されるフレキシブル基板であってもよい。 The substrate 10 is a glass substrate made of a glass material such as quartz glass, non-alkali glass, or high heat resistant glass. The substrate 10 is not limited to a glass substrate but may be a resin substrate or the like. Moreover, the board | substrate 10 may be a flexible substrate comprised not with a rigid board | substrate but with the single layer or lamination | stacking of film materials, such as a polyimide, a polyethylene terephthalate, and a polyethylene naphthalate.
 アンダーコート層20は、基板10に配置された無機層の一例である。アンダーコート層20は、基板10の上面に形成されている。本実施の形態において、アンダーコート層20は、基板10の表面(酸化物半導体層が形成される側)に形成されている。アンダーコート層20を形成することによって、基板10(ガラス基板)中に含まれるナトリウム及びリン等の不純物又は大気中から透過される水分等が、酸化物半導体層30に進入することを抑制できる。 The undercoat layer 20 is an example of an inorganic layer disposed on the substrate 10. The undercoat layer 20 is formed on the upper surface of the substrate 10. In the present embodiment, the undercoat layer 20 is formed on the surface of the substrate 10 (the side on which the oxide semiconductor layer is formed). By forming the undercoat layer 20, impurities such as sodium and phosphorus contained in the substrate 10 (glass substrate) or moisture transmitted from the atmosphere can be prevented from entering the oxide semiconductor layer 30.
 アンダーコート層20は、酸化物絶縁層又は窒化物絶縁層を用いた単層絶縁層又は積層絶縁層である。一例として、アンダーコート層20としては、窒化シリコン(SiNx)、酸化シリコン(SiO)、酸窒化シリコン(SiO)又は酸化アルミニウム(AlO)等の単層膜、あるいは、これらの積層膜を用いることができる。本実施の形態において、アンダーコート層20は、複数の絶縁膜を積層することによって構成された積層膜である。なお、アンダーコート層20の膜厚は、100nm~500nmに設定することが好ましい。 The undercoat layer 20 is a single-layer insulating layer or a laminated insulating layer using an oxide insulating layer or a nitride insulating layer. As an example, the undercoat layer 20 includes a single layer film such as silicon nitride (SiNx), silicon oxide (SiO y ), silicon oxynitride (SiO y N x ), or aluminum oxide (AlO x ), or a laminate thereof. A membrane can be used. In the present embodiment, the undercoat layer 20 is a laminated film configured by laminating a plurality of insulating films. The film thickness of the undercoat layer 20 is preferably set to 100 nm to 500 nm.
 酸化物半導体層30は、チャネル層として用いられる。つまり、酸化物半導体層30は、ゲート絶縁層40を挟んでゲート電極50と対向する領域であるチャネル領域を含む半導体層である。酸化物半導体層30は、チャネル領域に加えて、さらに、ソース領域及びドレイン領域を有する。 The oxide semiconductor layer 30 is used as a channel layer. That is, the oxide semiconductor layer 30 is a semiconductor layer including a channel region which is a region facing the gate electrode 50 with the gate insulating layer 40 interposed therebetween. In addition to the channel region, the oxide semiconductor layer 30 further includes a source region and a drain region.
 具体的に、酸化物半導体層30は、チャネル領域を含む第1酸化物半導体層31と、ドレイン領域を含む第2酸化物半導体層32と、ソース領域を含む第3酸化物半導体層33とによって構成されている。 Specifically, the oxide semiconductor layer 30 includes a first oxide semiconductor layer 31 including a channel region, a second oxide semiconductor layer 32 including a drain region, and a third oxide semiconductor layer 33 including a source region. It is configured.
 チャネル領域(フロントチャネル領域)は、第1酸化物半導体層31における少なくともゲート電極50側の上層部分に形成されるが、第1酸化物半導体層31における基板10側の下層部分にまで形成される場合もある。 The channel region (front channel region) is formed at least in the upper layer portion of the first oxide semiconductor layer 31 on the gate electrode 50 side, but is also formed in the lower layer portion of the first oxide semiconductor layer 31 on the substrate 10 side. In some cases.
 第2酸化物半導体層32におけるドレイン領域及び第3酸化物半導体層33におけるソース領域は、第1酸化物半導体層31(チャネル領域)よりも抵抗値の低い低抵抗化領域(オフセット領域)である。ドレイン領域及びソース領域は、アルゴン(Ar)や水素(H)等のプラズマ照射を行ったり、加熱によって酸素欠損を引き起こしたりして酸化物半導体膜を低抵抗化することで形成することができる。 The drain region in the second oxide semiconductor layer 32 and the source region in the third oxide semiconductor layer 33 are low resistance regions (offset regions) having a lower resistance value than the first oxide semiconductor layer 31 (channel region). . The drain region and the source region can be formed by reducing the resistance of the oxide semiconductor film by performing plasma irradiation with argon (Ar), hydrogen (H), or the like, or causing oxygen vacancies by heating.
 第2酸化物半導体層32は、酸化物半導体層30において、第1酸化物半導体層31の一方のサイドに位置する部分である。したがって、第2酸化物半導体層32におけるドレイン領域は、第1酸化物半導体層31(チャネル領域)の一方端側に位置する。 The second oxide semiconductor layer 32 is a portion located on one side of the first oxide semiconductor layer 31 in the oxide semiconductor layer 30. Therefore, the drain region in the second oxide semiconductor layer 32 is located on one end side of the first oxide semiconductor layer 31 (channel region).
 一方、第3酸化物半導体層33は、酸化物半導体層30において、第1酸化物半導体層31の他方のサイドに位置する部分である。したがって、第3酸化物半導体層33におけるソース領域は、第1酸化物半導体層31(チャネル領域)の他方端側に位置する。 On the other hand, the third oxide semiconductor layer 33 is a portion located on the other side of the first oxide semiconductor layer 31 in the oxide semiconductor layer 30. Therefore, the source region in the third oxide semiconductor layer 33 is located on the other end side of the first oxide semiconductor layer 31 (channel region).
 酸化物半導体層30の材料には、例えば、透明アモルファス酸化物半導体(TAOS:Transparent Amorphous Oxide Semiconductor)が用いられる。酸化物半導体層30を構成する金属元素には、少なくともインジウム(In)が含まれており、さらに、ガリウム(Ga)及び亜鉛(Zn)の少なくとも一方又は両方が含まれているとよい。 As a material of the oxide semiconductor layer 30, for example, a transparent amorphous oxide semiconductor (TAOS: Transparent Amorphous Oxide Semiconductor) is used. The metal element included in the oxide semiconductor layer 30 contains at least indium (In), and preferably contains at least one or both of gallium (Ga) and zinc (Zn).
 本実施の形態における酸化物半導体層30は、インジウム(In)、ガリウム(Ga)及び亜鉛(Zn)を含む酸化物であるInGaZnOx(IGZO)によって構成されている。つまり、第1酸化物半導体層31、第2酸化物半導体層32及び第3酸化物半導体層33は、同じ材料によって構成されており、本実施の形態では、IGZOによって構成されている。 The oxide semiconductor layer 30 in this embodiment includes InGaZnOx (IGZO) which is an oxide containing indium (In), gallium (Ga), and zinc (Zn). That is, the first oxide semiconductor layer 31, the second oxide semiconductor layer 32, and the third oxide semiconductor layer 33 are made of the same material, and are made of IGZO in this embodiment.
 また、本実施の形態における第1酸化物半導体層31は、チャネル領域(フロントチャネル領域)において、第2酸化物半導体層32側(ドレイン領域側)及び第3酸化物半導体層33側(ソース領域側)の領域である第1領域31aと、第1領域31aよりもチャネル領域の中央部に近い側の領域である第2領域31bとを含む。つまり、チャネル領域の中央部の領域が第2領域31bであり、チャネル領域における第2領域31b(中央部)の両側の領域が第1領域31aである。 Further, the first oxide semiconductor layer 31 in this embodiment includes a channel region (front channel region) in the second oxide semiconductor layer 32 side (drain region side) and the third oxide semiconductor layer 33 side (source region). Side region) and a second region 31b that is closer to the center of the channel region than the first region 31a. That is, the central region of the channel region is the second region 31b, and the regions on both sides of the second region 31b (central portion) in the channel region are the first region 31a.
 第1領域31aには、キャリア密度を低下させる作用を有する元素、つまりチャネル領域でアクセプタとして作用する元素が含まれている。これにより、第1領域31aのキャリア密度は、第2領域31bのキャリア密度より低くなっている。つまり、第1酸化物半導体層31のチャネル領域は、両側の部分(ドレイン端及びソース端)が中央部よりもキャリア密度が低くなっており、ドレイン端及びソース端のキャリア密度が低くなるようにチャネルパス方向にキャリア密度分布を有する。 The first region 31a contains an element that has an effect of reducing the carrier density, that is, an element that acts as an acceptor in the channel region. Thereby, the carrier density of the first region 31a is lower than the carrier density of the second region 31b. That is, in the channel region of the first oxide semiconductor layer 31, the carrier density is lower at both sides (drain end and source end) than at the center, and the carrier density at the drain end and source end is lower. It has a carrier density distribution in the channel path direction.
 アクセプタとして作用する元素としては、銅、シリコン(珪素)及びフッ素が挙げられる。すなわち、第1領域31aには、銅、シリコン(珪素)及びフッ素の少なくとも1つが含まれている。 Examples of the element that acts as an acceptor include copper, silicon (silicon), and fluorine. That is, the first region 31a contains at least one of copper, silicon (silicon), and fluorine.
 例えば、酸化物半導体層30における第1領域31aとなる部分に、フッ素やシリコン、銅を拡散導入させることによって、第2領域31bよりもキャリア密度の低い第1領域31aを低くすることができる。本実施の形態において、第1領域31aにはフッ素が導入されている。 For example, the first region 31a having a carrier density lower than that of the second region 31b can be lowered by diffusing and introducing fluorine, silicon, or copper into the portion of the oxide semiconductor layer 30 that becomes the first region 31a. In the present embodiment, fluorine is introduced into the first region 31a.
 酸化物半導体層30は、基板10の上方に位置するように形成されている。本実施の形態における酸化物半導体層30は、アンダーコート層20の上に所定形状で形成されている。 The oxide semiconductor layer 30 is formed so as to be located above the substrate 10. The oxide semiconductor layer 30 in the present embodiment is formed in a predetermined shape on the undercoat layer 20.
 酸化物半導体層30において、少なくともドレイン領域とチャネル領域との境界部分の厚みがチャネル領域の厚みよりも薄くなっている。本実施の形態では、さらに、ソース領域とチャネル領域との境界部分の厚みがチャネル領域の厚みよりも薄くなっている。 In the oxide semiconductor layer 30, at least the thickness of the boundary between the drain region and the channel region is smaller than the thickness of the channel region. In the present embodiment, the thickness of the boundary portion between the source region and the channel region is further thinner than the thickness of the channel region.
 具体的には、酸化物半導体層30は、断面形状が凸形状であり、チャネル領域の上面がドレイン領域及びソース領域の上面よりも上方に位置するように形成されている。より具体的には、第2酸化物半導体層32及び第3酸化物半導体層33の各々の膜厚が第1酸化物半導体層31の膜厚よりも薄くなっており、第1酸化物半導体層31の上面は第2酸化物半導体層32及び第3酸化物半導体層33の各々の上面よりも上方に位置している。つまり、第1酸化物半導体層31と第2酸化物半導体層32及び第3酸化物半導体層33との間には段差が形成されている。 Specifically, the oxide semiconductor layer 30 is formed so that the cross-sectional shape is convex and the upper surface of the channel region is located above the upper surfaces of the drain region and the source region. More specifically, the thickness of each of the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 is smaller than the thickness of the first oxide semiconductor layer 31, and the first oxide semiconductor layer The upper surface of 31 is located above the upper surfaces of the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33. That is, a step is formed between the first oxide semiconductor layer 31, the second oxide semiconductor layer 32, and the third oxide semiconductor layer 33.
 したがって、第1酸化物半導体層31の上層部の側面は、露出しており、層間絶縁層60に接している。具体的には、第1酸化物半導体層31の第1領域31aが層間絶縁層60に接している。 Therefore, the side surface of the upper layer portion of the first oxide semiconductor layer 31 is exposed and is in contact with the interlayer insulating layer 60. Specifically, the first region 31 a of the first oxide semiconductor layer 31 is in contact with the interlayer insulating layer 60.
 ゲート絶縁層40(絶縁層)は、酸化物半導体層30を間に介してアンダーコート層20と対向する位置に形成されている。具体的には、ゲート絶縁層40は、酸化物半導体層30の上方に位置しており、例えば、酸化物半導体層30の上に形成されている。 The gate insulating layer 40 (insulating layer) is formed at a position facing the undercoat layer 20 with the oxide semiconductor layer 30 interposed therebetween. Specifically, the gate insulating layer 40 is located above the oxide semiconductor layer 30, and is formed on the oxide semiconductor layer 30, for example.
 本実施の形態において、ゲート絶縁層40は、酸化物半導体層30における第1酸化物半導体層31の上に形成されている。具体的には、ゲート絶縁層40の側面は第1酸化物半導体層31の側面と面一であり、上面視において、ゲート絶縁層40の輪郭線と第1酸化物半導体層31の輪郭線とは一致している。なお、本実施の形態において、ゲート絶縁層40は、酸化物半導体層30上のみに形成されているが、これに限らない。 In the present embodiment, the gate insulating layer 40 is formed on the first oxide semiconductor layer 31 in the oxide semiconductor layer 30. Specifically, the side surface of the gate insulating layer 40 is flush with the side surface of the first oxide semiconductor layer 31, and when viewed from above, the contour line of the gate insulating layer 40 and the contour line of the first oxide semiconductor layer 31 are Are consistent. Note that although the gate insulating layer 40 is formed only over the oxide semiconductor layer 30 in this embodiment, the present invention is not limited thereto.
 ゲート絶縁層40は、酸化物絶縁層又は窒化物絶縁層を用いた単層絶縁層又は積層絶縁層である。ゲート絶縁層40としては、酸化シリコン、窒化シリコン、酸窒化シリコン、酸化タンタル又は酸化アルミニウム等の単層膜、あるいは、これらの積層膜等を用いることができる。本実施の形態において、ゲート絶縁層40は、例えば、シリコン酸化膜とシリコン窒化膜との積層膜である。ゲート絶縁層40の膜厚は、TFTの耐圧等を考慮して設計することができ、例えば、50nm~500nmとすることが望ましい。 The gate insulating layer 40 is a single-layer insulating layer or a stacked insulating layer using an oxide insulating layer or a nitride insulating layer. As the gate insulating layer 40, a single layer film such as silicon oxide, silicon nitride, silicon oxynitride, tantalum oxide, or aluminum oxide, or a laminated film of these can be used. In the present embodiment, the gate insulating layer 40 is, for example, a stacked film of a silicon oxide film and a silicon nitride film. The film thickness of the gate insulating layer 40 can be designed in consideration of the breakdown voltage of the TFT, and is preferably 50 nm to 500 nm, for example.
 ゲート電極50は、ゲート絶縁層40を間に介して酸化物半導体層30と対向する位置に形成されている。具体的には、ゲート電極50は、ゲート絶縁層40の上方に位置し、例えば、ゲート絶縁層40の上に所定形状でパターン形成される。本実施の形態において、ゲート電極50のチャネル方向長さ(ゲート長)とゲート絶縁層40のチャネル方向長さとは同じである。具体的には、ゲート電極50の側面はゲート絶縁層40の側面と面一であり、上面視において、ゲート電極50の輪郭線とゲート絶縁層40の輪郭線とは一致している。 The gate electrode 50 is formed at a position facing the oxide semiconductor layer 30 with the gate insulating layer 40 interposed therebetween. Specifically, the gate electrode 50 is located above the gate insulating layer 40, and is patterned in a predetermined shape on the gate insulating layer 40, for example. In the present embodiment, the length of the gate electrode 50 in the channel direction (gate length) and the length of the gate insulating layer 40 in the channel direction are the same. Specifically, the side surface of the gate electrode 50 is flush with the side surface of the gate insulating layer 40, and the outline of the gate electrode 50 and the outline of the gate insulating layer 40 coincide with each other when viewed from above.
 ゲート電極50は、金属等の導電性材料又はその合金等の単層構造又は多層構造の電極であり、例えば、モリブデン(Mo)、アルミニウム(Al)、銅(Cu)、タングステン(W)、チタン(Ti)、クロム(Cr)又はモリブデンタングステン(MoW)等で構成することができる。ゲート電極50の膜厚は、50nm~300nmに設定することが好ましい。 The gate electrode 50 is an electrode having a single layer structure or a multilayer structure such as a conductive material such as a metal or an alloy thereof. For example, molybdenum (Mo), aluminum (Al), copper (Cu), tungsten (W), titanium (Ti), chromium (Cr), molybdenum tungsten (MoW), or the like. The film thickness of the gate electrode 50 is preferably set to 50 nm to 300 nm.
 層間絶縁層60は、ゲート電極50及び酸化物半導体層30を覆うように形成される。具体的に、層間絶縁層60は、ゲート電極50と、酸化物半導体層30のうちゲート電極50から露出する第2酸化物半導体層32及び第3酸化物半導体層33とを覆うように形成される。 The interlayer insulating layer 60 is formed so as to cover the gate electrode 50 and the oxide semiconductor layer 30. Specifically, the interlayer insulating layer 60 is formed so as to cover the gate electrode 50 and the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 that are exposed from the gate electrode 50 in the oxide semiconductor layer 30. The
 層間絶縁層60は、有機物を主成分とする材料によって形成されていてもよいし、酸化シリコン、窒化シリコン、酸窒化シリコン又は酸化アルミニウム等のような無機物によって形成されていてもよい。また、層間絶縁層60は、単層膜であってもよいし、積層膜であってもよい。 The interlayer insulating layer 60 may be formed of a material mainly composed of an organic substance, or may be formed of an inorganic substance such as silicon oxide, silicon nitride, silicon oxynitride, or aluminum oxide. The interlayer insulating layer 60 may be a single layer film or a laminated film.
 また、層間絶縁層60には、当該層間絶縁層60の一部を貫通するように複数の開口部(コンタクトホール)が形成されている。この層間絶縁層60の開口部を介して、第2酸化物半導体層32とドレイン電極70Dとが接続されるとともに、第3酸化物半導体層33とソース電極70Sとが接続されている。 Further, a plurality of openings (contact holes) are formed in the interlayer insulating layer 60 so as to penetrate a part of the interlayer insulating layer 60. Through the opening of the interlayer insulating layer 60, the second oxide semiconductor layer 32 and the drain electrode 70D are connected, and the third oxide semiconductor layer 33 and the source electrode 70S are connected.
 ソース電極70S及びドレイン電極70Dは、層間絶縁層60上に所定形状で形成されている。ソース電極70S及びドレイン電極70Dの各々は、酸化物半導体層30と電気的に接続されている。 The source electrode 70S and the drain electrode 70D are formed on the interlayer insulating layer 60 in a predetermined shape. Each of the source electrode 70 </ b> S and the drain electrode 70 </ b> D is electrically connected to the oxide semiconductor layer 30.
 本実施の形態において、ドレイン電極70Dは、層間絶縁層60に形成された開口部を介して第2酸化物半導体層32のドレイン領域と電気的及び物理的に接続されている。一方、ソース電極70Sは、層間絶縁層60に形成された開口部を介して第3酸化物半導体層33のソース領域と電気的及び物理的に接続されている。 In the present embodiment, the drain electrode 70D is electrically and physically connected to the drain region of the second oxide semiconductor layer 32 through an opening formed in the interlayer insulating layer 60. On the other hand, the source electrode 70 </ b> S is electrically and physically connected to the source region of the third oxide semiconductor layer 33 through an opening formed in the interlayer insulating layer 60.
 ソース電極70S及びドレイン電極70Dは、導電性材料又はその合金等の単層構造又は多層構造の電極である。ソース電極70S及びドレイン電極70Dの材料としては、例えば、モリブデン(Mo)、アルミニウム(Al)、銅(Cu)、タングステン(W)、チタン(Ti)、クロム(Cr)、モリブデンタングステン合金(MoW)又は銅マンガン合金(CuMn)等を用いることができる。ソース電極70S及びドレイン電極70Dの膜厚は、例えば50nm~300nmに設定することが好ましい。 The source electrode 70S and the drain electrode 70D are electrodes having a single layer structure or a multilayer structure such as a conductive material or an alloy thereof. Examples of the material of the source electrode 70S and the drain electrode 70D include molybdenum (Mo), aluminum (Al), copper (Cu), tungsten (W), titanium (Ti), chromium (Cr), and molybdenum tungsten alloy (MoW). Alternatively, a copper manganese alloy (CuMn) or the like can be used. The film thickness of the source electrode 70S and the drain electrode 70D is preferably set to, for example, 50 nm to 300 nm.
 [薄膜トランジスタの作用効果]
 次に、本実施の形態に係る薄膜トランジスタ1の作用効果について、本発明の一態様に至った経緯も含めて説明する。
[Operational effect of thin film transistor]
Next, functions and effects of the thin film transistor 1 according to this embodiment will be described including the background to the arrival of one embodiment of the present invention.
 従来、表示装置には、シリコン半導体をチャネル層に用いたシリコン半導体TFTが主に用いられている。近年、IGZO等の酸化物半導体をチャネル層に用いた酸化物半導体TFTを用いた表示装置が実用化されている。 Conventionally, a silicon semiconductor TFT using a silicon semiconductor as a channel layer is mainly used in a display device. In recent years, a display device using an oxide semiconductor TFT using an oxide semiconductor such as IGZO as a channel layer has been put into practical use.
 近年の表示装置の高精細化に伴って、シリコン半導体TFTと同様に酸化物半導体TFTにおいてもチャネル長を短くすること(短チャネル化)が要求されている。例えば、チャネル長を10μm以下にすることが要求されている。 With the recent high definition of display devices, it is required to shorten the channel length (short channel) in oxide semiconductor TFTs as well as silicon semiconductor TFTs. For example, the channel length is required to be 10 μm or less.
 しかしながら、酸化物半導体TFTにおいてチャネル長を短くすると電気特性の劣化(短チャネル効果)が生じる。実際にチャネル長が数μmオーダーの酸化物半導体TFTを試作してみると、閾値電圧(Vth)が変動することが分かった。具体的には、酸化物半導体TFTでは、チャネル長が短くなるにつれて閾値電圧(Vth)が負シフトする現象が発生することが分かった。 However, when the channel length is shortened in the oxide semiconductor TFT, electrical characteristics are deteriorated (short channel effect). When an oxide semiconductor TFT having a channel length of the order of several μm was actually manufactured, it was found that the threshold voltage (Vth) fluctuated. Specifically, it has been found that in the oxide semiconductor TFT, the threshold voltage (Vth) shifts negatively as the channel length becomes shorter.
 この現象は、シリコン基板上に形成されるシリコン電界効果トランジスタ(MOSFET)と同様に、短チャネル化することでソース・ドレイン領域の空乏層の効果が無視できなくなるためであると考えられる。図2を用いて、この現象を説明する。図2は、酸化物半導体TFTにおける短チャネル効果を説明するための図である。 This phenomenon is considered to be because the effect of the depletion layer in the source / drain region cannot be ignored by shortening the channel as in the case of the silicon field effect transistor (MOSFET) formed on the silicon substrate. This phenomenon will be described with reference to FIG. FIG. 2 is a diagram for explaining the short channel effect in the oxide semiconductor TFT.
 図2に示すように、酸化物半導体層300の空乏層には表面ポテンシャルを低下させるアクセプタイオンが存在する。アクセプタイオンは、例えば、ドレイン電圧(Vd)が0V程度では、ソース領域付近、チャネル領域付近及びドレイン領域付近において均等に存在するが、ドレイン電圧(Vd)が増大するにしたがって、同図の破線で囲まれる領域Aに示すように、ドレイン領域付近に多く存在するようになる。 As shown in FIG. 2, acceptor ions that reduce the surface potential exist in the depletion layer of the oxide semiconductor layer 300. For example, acceptor ions are present evenly near the source region, near the channel region, and near the drain region when the drain voltage (Vd) is about 0 V, but as the drain voltage (Vd) increases, As shown in the enclosed region A, there are many in the vicinity of the drain region.
 アクセプタイオンは、閾値電圧(Vth)を低下させる働きがある。また、チャネル長が短くなると、ドレイン電圧(Vd)が実質的に増大することになる。この結果、チャネル長が短くなるにつれて閾値電圧(Vth)が負シフトする現象が発生すると考えられる。 The acceptor ion has a function of lowering the threshold voltage (Vth). Moreover, when the channel length is shortened, the drain voltage (Vd) substantially increases. As a result, it is considered that the threshold voltage (Vth) shifts negatively as the channel length becomes shorter.
 短チャネル効果に対しては、MOSFETの場合、ゲート絶縁層を薄膜化することによって短チャネル効果を抑制することが行われている。酸化物半導体TFTの場合についても同様に、ゲート絶縁層を薄膜化することによって短チャネル効果を抑制できると考えられる。実際にゲート絶縁層を薄膜化した酸化物半導体TFTを試作してみたところ、短チャネル効果を抑制できることが分かった。 For the short channel effect, in the case of MOSFET, the short channel effect is suppressed by thinning the gate insulating layer. Similarly, in the case of an oxide semiconductor TFT, it is considered that the short channel effect can be suppressed by reducing the thickness of the gate insulating layer. When an oxide semiconductor TFT in which the gate insulating layer was actually thinned was prototyped, it was found that the short channel effect could be suppressed.
 しかしながら、酸化物半導体TFTにおいてゲート絶縁層を薄膜化すると、ゲート絶縁層を通過するトンネル電流の発生が問題となる。加えて、酸化物半導体は、その特性上、高温プロセス(例えば500℃以上)が適用されると酸素欠損を引き起こして半導体として作用しなくなるため、低温プロセスで絶縁層を形成する必要がある。このような結果、ゲート絶縁層を薄膜化すると、十分に良好な絶縁耐性が得られないといった課題が生じる。 However, when the gate insulating layer is thinned in the oxide semiconductor TFT, generation of a tunnel current passing through the gate insulating layer becomes a problem. In addition, when an oxide semiconductor is applied with a high-temperature process (for example, 500 ° C. or higher) due to its characteristics, oxygen deficiency is caused and the oxide semiconductor does not function as a semiconductor. As a result, when the gate insulating layer is thinned, there arises a problem that sufficiently good insulation resistance cannot be obtained.
 そこで、本願発明者は、ゲート絶縁層を薄膜化する手法とは別の方法によって、酸化物半導体TFTにおける短チャネル効果を抑制できる手法を鋭意検討した。その結果、本願発明者は、チャネル方向のキャリア密度を変化させて空乏層をキャンセルさせることによって、短チャネル化によって生じる閾値電圧の変動(短チャネル効果)を抑制できることを見出した。 Therefore, the inventor of the present application diligently studied a method capable of suppressing the short channel effect in the oxide semiconductor TFT by a method different from the method of thinning the gate insulating layer. As a result, the inventor of the present application has found that by changing the carrier density in the channel direction and canceling the depletion layer, the threshold voltage fluctuation (short channel effect) caused by the shortening of the channel can be suppressed.
 具体的には、酸化物半導体TFTのチャネル層となる酸化物半導体層において少なくともドレイン領域とチャネル領域との境界部分の厚みをチャネル領域の厚みよりも薄くすることで短チャネル効果を抑制できることを見出した。 Specifically, it has been found that the short channel effect can be suppressed by making the thickness of at least the boundary between the drain region and the channel region thinner than the thickness of the channel region in the oxide semiconductor layer that becomes the channel layer of the oxide semiconductor TFT. It was.
 本実施の形態では、図1に示すように、酸化物半導体層30において、ドレイン領域を有する第2酸化物半導体層32の膜厚を、チャネル領域を有する第1酸化物半導体層31の膜厚よりも薄くしている。 In this embodiment, as illustrated in FIG. 1, in the oxide semiconductor layer 30, the thickness of the second oxide semiconductor layer 32 having the drain region is set to the thickness of the first oxide semiconductor layer 31 having the channel region. It is thinner.
 これにより、ドレイン領域とチャネル領域との距離を大きくすることができるので、ドレイン領域をチャネル領域から離すことができる。本実施の形態では、酸化物半導体層30の断面形状を凸形状にしているので、第1酸化物半導体層31の側壁の長さの分だけドレイン領域をチャネル領域から離すことができている。 Thereby, since the distance between the drain region and the channel region can be increased, the drain region can be separated from the channel region. In this embodiment, since the cross-sectional shape of the oxide semiconductor layer 30 is convex, the drain region can be separated from the channel region by the length of the side wall of the first oxide semiconductor layer 31.
 このように、ドレイン領域をチャネル領域から離すことによって、ドレイン電圧(Vd)の印加によるドレイン電界の強度を鈍化させることができる。これにより、ON電流を低下させることなく、短チャネル効果を抑制することができる。つまり、高ON電流を維持しつつ、短チャネル化による閾値電圧(Vth)の負シフトを抑制することができる。 Thus, by separating the drain region from the channel region, the strength of the drain electric field due to the application of the drain voltage (Vd) can be reduced. Thereby, the short channel effect can be suppressed without reducing the ON current. That is, a negative shift of the threshold voltage (Vth) due to the shortening of the channel can be suppressed while maintaining a high ON current.
 また、本実施の形態における薄膜トランジスタ1では、酸化物半導体層30の第1酸化物半導体層31におけるチャネル領域に、キャリア密度の低い第1領域31aが含まれている。 Further, in the thin film transistor 1 in this embodiment, the channel region in the first oxide semiconductor layer 31 of the oxide semiconductor layer 30 includes the first region 31a having a low carrier density.
 これにより、酸化物半導体層30(第1酸化物半導体層31)のキャリア領域において、ドレイン端方向のキャリア密度が低くなるようにチャネルパス方向にキャリア密度の分布を持たせることができる。したがって、ドレイン電圧に対して鈍感にすることができるので、短チャネル効果を一層抑制することができる。 Thereby, in the carrier region of the oxide semiconductor layer 30 (first oxide semiconductor layer 31), the carrier density distribution can be provided in the channel path direction so that the carrier density in the drain end direction is lowered. Therefore, since it can be insensitive to the drain voltage, the short channel effect can be further suppressed.
 ここで、酸化物半導体層30における段差(第1酸化物半導体層31に対して第2酸化物半導体層32及び第3酸化物半導体層33が低くなった部分)とVthばらつき(閾値電圧の変動)との関係について、図3を用いて説明する。図3は、実施の形態に係る薄膜トランジスタの酸化物半導体層における段差とVthばらつきとの関係を示す図である。なお、図3では、第1酸化物半導体層31の厚みが30nm、60nm、80nmの場合における薄膜トランジスタのVthばらつきを示している。 Here, a step in the oxide semiconductor layer 30 (a portion where the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 are lower than the first oxide semiconductor layer 31) and Vth variation (threshold voltage fluctuation). ) Will be described with reference to FIG. FIG. 3 is a diagram illustrating a relationship between a step in the oxide semiconductor layer of the thin film transistor according to the embodiment and Vth variation. Note that FIG. 3 shows Vth variation of the thin film transistor when the thickness of the first oxide semiconductor layer 31 is 30 nm, 60 nm, and 80 nm.
 図3に示すように、酸化物半導体層30の段差、つまり、第1酸化物半導体層31と第2酸化物半導体層32及び第3酸化物半導体層33との間の段差を大きくすることで、Vthばらつきを小さくすることができる。つまり、第1酸化物半導体層31の上面と第2酸化物半導体層32又は第3酸化物半導体層33の上面との差(酸化物半導体層30における第2酸化物半導体層32又は第3酸化物半導体層33の掘れ量)を大きくすることで、Vthばらつきを小さくすることができる。 As shown in FIG. 3, the step of the oxide semiconductor layer 30, that is, the step between the first oxide semiconductor layer 31, the second oxide semiconductor layer 32, and the third oxide semiconductor layer 33 is increased. , Vth variation can be reduced. That is, the difference between the upper surface of the first oxide semiconductor layer 31 and the upper surface of the second oxide semiconductor layer 32 or the third oxide semiconductor layer 33 (the second oxide semiconductor layer 32 or the third oxide in the oxide semiconductor layer 30). By increasing the digging amount of the physical semiconductor layer 33, the Vth variation can be reduced.
 特に、この段差を15nm以上にすることで、Vthばらつきを大きく軽減できることが分かる。すなわち、第2酸化物半導体層32(ドレイン領域)及び第3酸化物半導体層33(ソース領域)の各々の上面の端部と第1酸化物半導体層31(チャネル領域)の側面の下端との接点と、第1酸化物半導体層31(チャネル領域)の上面との差(段差)を、少なくとも15nm以上にすることで、Vthばらつきを大きく軽減できる。この結果、短チャネル化による閾値電圧の変動を効果的に抑制することができる。 In particular, it can be seen that Vth variation can be greatly reduced by setting this step to 15 nm or more. That is, the top end of each of the second oxide semiconductor layer 32 (drain region) and the third oxide semiconductor layer 33 (source region) and the bottom end of the side surface of the first oxide semiconductor layer 31 (channel region). When the difference (step) between the contact and the upper surface of the first oxide semiconductor layer 31 (channel region) is at least 15 nm or more, Vth variation can be greatly reduced. As a result, it is possible to effectively suppress the fluctuation of the threshold voltage due to the shortening of the channel.
 また、図3の3つの破線円のデータで示されるように、第2酸化物半導体層32及び第3酸化物半導体層33の各々の厚みを第1酸化物半導体層31の厚みの1/2以上にすることで、Vthばらつきの軽減効果が飽和することが分かる。つまり、第2酸化物半導体層32(ドレイン領域)及び第3酸化物半導体層33(ソース領域)の各々の上面の端部と第1酸化物半導体層31(チャネル領域)の側面の下端との接点が、第1酸化物半導体層31(チャネル領域)の厚みの1/2の位置よりも下方側に位置するように構成することで、Vthばらつきの軽減効果が飽和する。したがって、第2酸化物半導体層32(ドレイン領域)及び第3酸化物半導体層33(ソース領域)の各々の厚みを第1酸化物半導体層31の厚みの1/2以上にすることで、短チャネル化による閾値電圧の変動を効果的に抑制することができる。 Further, as shown by the data of the three broken circles in FIG. 3, the thickness of each of the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 is ½ of the thickness of the first oxide semiconductor layer 31. By doing so, it can be seen that the effect of reducing Vth variation is saturated. That is, the upper end of each of the second oxide semiconductor layer 32 (drain region) and the third oxide semiconductor layer 33 (source region) and the lower end of the side surface of the first oxide semiconductor layer 31 (channel region). By configuring the contact so that it is located below the half of the thickness of the first oxide semiconductor layer 31 (channel region), the effect of reducing Vth variation is saturated. Therefore, the thickness of each of the second oxide semiconductor layer 32 (drain region) and the third oxide semiconductor layer 33 (source region) is set to be 1/2 or more of the thickness of the first oxide semiconductor layer 31, thereby reducing the thickness. Variation in threshold voltage due to channelization can be effectively suppressed.
 なお、第1酸化物半導体層31と第2酸化物半導体層32及び第3酸化物半導体層33との段差、つまり第2酸化物半導体層32及び第3酸化物半導体層33の掘れ量を大きくしすぎると、この段差を形成するためのプロセス時間が長くなってしまったり、第2酸化物半導体層32及び第3酸化物半導体層33を削ったときに生じる導電性残渣によって配線交差部に層間ショートが発生したりする。したがって、第1酸化物半導体層31と第2酸化物半導体層32及び第3酸化物半導体層33との段差は大きくしすぎない方がよい。 Note that the level difference between the first oxide semiconductor layer 31, the second oxide semiconductor layer 32, and the third oxide semiconductor layer 33, that is, the digging amount of the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 is increased. If it is too much, the process time for forming this step becomes long, or the conductive oxide residue generated when the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 are shaved causes an interlayer at the wiring intersection. A short circuit may occur. Accordingly, it is preferable that the step between the first oxide semiconductor layer 31, the second oxide semiconductor layer 32, and the third oxide semiconductor layer 33 is not too large.
 [薄膜トランジスタの製造方法]
 次に、本実施の形態に係る薄膜トランジスタ1の製造方法について、図4A~図4Jを用いて説明する。図4A~図4Jは、実施の形態に係る薄膜トランジスタの製造方法における各工程の断面図である。
[Thin Film Transistor Manufacturing Method]
Next, a method for manufacturing the thin film transistor 1 according to the present embodiment will be described with reference to FIGS. 4A to 4J. 4A to 4J are cross-sectional views of each step in the method of manufacturing the thin film transistor according to the embodiment.
 まず、図4Aに示すように、基板10を準備する。基板10として、例えばガラス基板を準備する。 First, as shown in FIG. 4A, a substrate 10 is prepared. For example, a glass substrate is prepared as the substrate 10.
 次に、図4Bに示すように、基板10上にアンダーコート層20を形成する。例えば、プラズマCVD(Chemical Vapor Deposition)等によって、基板10上に、シリコン窒化膜、シリコン酸化膜、シリコン酸窒化膜又は酸化アルミニウム膜等で構成されるアンダーコート層20を形成する。 Next, as shown in FIG. 4B, an undercoat layer 20 is formed on the substrate 10. For example, the undercoat layer 20 composed of a silicon nitride film, a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, or the like is formed on the substrate 10 by plasma CVD (Chemical Vapor Deposition) or the like.
 次に、図4Cに示すように、基板10の上方に酸化物半導体層30Xを形成する。本実施の形態では、アンダーコート層20上に所定形状の酸化物半導体層30Xを形成する。酸化物半導体層30Xの材料としては、InGaZnOの透明アモルファス酸化物半導体を用いることができる。 Next, as illustrated in FIG. 4C, the oxide semiconductor layer 30 </ b> X is formed over the substrate 10. In this embodiment, the oxide semiconductor layer 30X having a predetermined shape is formed over the undercoat layer 20. As a material of the oxide semiconductor layer 30X, a transparent amorphous oxide semiconductor of InGaZnO x can be used.
 この場合、まず、スパッタ法やレーザー蒸着法等の気相成膜法によってInGaZnOからなる酸化物半導体膜(InGaZnO膜)を成膜する。具体的には、In、Ga及びZnを含むターゲット材(例えばInGaO(ZnO)組成を有する多結晶焼結体)を用いて、真空チャンバー内に不活性ガスとしてアルゴン(Ar)ガスを流入するとともに反応性ガスとして酸素(O)を含むガスを流入し、所定のパワー密度の電圧をターゲット材に印加する。 In this case, first, an oxide semiconductor film (InGaZnO x film) made of InGaZnO x by vapor deposition such as sputtering and laser deposition. Specifically, using a target material containing In, Ga and Zn (for example, a polycrystalline sintered body having a composition of InGaO 3 (ZnO) 4 ), argon (Ar) gas flows as an inert gas into the vacuum chamber. At the same time, a gas containing oxygen (O 2 ) is introduced as a reactive gas, and a voltage having a predetermined power density is applied to the target material.
 その後、酸化物半導体膜をフォトリソグラフィ法及びウェットエッチング法を用いてパターニングすることにより、図4Cに示すように、所定形状に加工された酸化物半導体層30Xを形成することができる。なお、エッチング液としては、例えば、リン酸(HPO)、硝酸(HNO)、酢酸(CHCOOH)及び水を混合した薬液を用いることができる。 Then, by patterning the oxide semiconductor film using a photolithography method and a wet etching method, the oxide semiconductor layer 30X processed into a predetermined shape can be formed as illustrated in FIG. 4C. Note that as the etching solution, for example, a chemical solution in which phosphoric acid (H 3 PO 4 ), nitric acid (HNO 3 ), acetic acid (CH 3 COOH), and water are mixed can be used.
 次に、図4Dに示すように、酸化物半導体層30Xの上方にゲート絶縁層40を形成し、ゲート絶縁層40の上方にゲート電極50を形成する。具体的には、酸化物半導体層30Xの所定領域上にゲート絶縁層40及びゲート電極50を形成する。 Next, as illustrated in FIG. 4D, the gate insulating layer 40 is formed above the oxide semiconductor layer 30X, and the gate electrode 50 is formed above the gate insulating layer 40. Specifically, the gate insulating layer 40 and the gate electrode 50 are formed over a predetermined region of the oxide semiconductor layer 30X.
 この場合、まず、酸化物半導体層30Xを覆うようにゲート絶縁膜を形成する。ゲート絶縁膜は、例えば、シリコン窒化膜、シリコン酸化膜、シリコン酸窒化膜、タンタル酸化膜、酸化アルミニウム膜の単層膜又はそれらの膜を積層した積層膜である。本実施の形態では、ゲート絶縁膜としてプラズマCVDによってシリコン酸化膜を成膜した。 In this case, first, a gate insulating film is formed so as to cover the oxide semiconductor layer 30X. The gate insulating film is, for example, a silicon nitride film, a silicon oxide film, a silicon oxynitride film, a tantalum oxide film, a single layer film of an aluminum oxide film, or a laminated film in which these films are stacked. In this embodiment, a silicon oxide film is formed by plasma CVD as the gate insulating film.
 その後、ゲート絶縁膜上にゲート金属膜を成膜する。本実施の形態では、ゲート金属膜としてモリブデンタングステン(MoW)で構成される金属膜をスパッタによって成膜した。 Thereafter, a gate metal film is formed on the gate insulating film. In this embodiment, a metal film made of molybdenum tungsten (MoW) is formed by sputtering as the gate metal film.
 次いで、フォトリソグラフィ法及びウェットエッチング法を用いてゲート金属膜をパターニングすることにより、酸化物半導体層30Xの上方のゲート絶縁膜上に所定形状のゲート電極50を形成する。MoWからなるゲート金属膜のウェットエッチングは、例えば、リン酸(HPO)、硝酸(HNO)、酢酸(CHCOOH)及び水を所定の配合で混合した薬液を用いて行うことができる。 Next, by patterning the gate metal film using a photolithography method and a wet etching method, a gate electrode 50 having a predetermined shape is formed on the gate insulating film above the oxide semiconductor layer 30X. The wet etching of the gate metal film made of MoW can be performed using, for example, a chemical solution in which phosphoric acid (HPO 4 ), nitric acid (HNO 3 ), acetic acid (CH 3 COOH), and water are mixed in a predetermined composition.
 その後、ゲート絶縁膜をパターニングすることにより、所定形状のゲート絶縁層40を形成する。例えば、ゲート電極50をマスクにしてゲート絶縁膜をパターニングすることにより、酸化物半導体層30Xとゲート電極50との間に、ゲート電極50と同形状のゲート絶縁層40を形成することができる。 Thereafter, the gate insulating layer 40 having a predetermined shape is formed by patterning the gate insulating film. For example, the gate insulating layer 40 having the same shape as the gate electrode 50 can be formed between the oxide semiconductor layer 30X and the gate electrode 50 by patterning the gate insulating film using the gate electrode 50 as a mask.
 なお、本実施の形態では、ゲート絶縁膜とゲート金属膜を全面に成膜した後に、ゲート金属膜をパターニングし、その後ゲート絶縁膜をパターニングすることによって、所定形状のゲート絶縁層40とゲート電極50との積層構造を形成したが、これに限らない。例えば、ゲート絶縁膜を成膜した後に一旦当該ゲート絶縁膜をパターニングして所定形状のゲート絶縁層40を形成し、その後ゲート金属膜を成膜して当該ゲート金属膜をパターニングして所定形状のゲート電極50を形成してもよい。 In this embodiment, the gate insulating film and the gate metal film are formed over the entire surface, the gate metal film is patterned, and then the gate insulating film is patterned, whereby the gate insulating layer 40 and the gate electrode having a predetermined shape are formed. Although the laminated structure with 50 was formed, it is not restricted to this. For example, after forming a gate insulating film, the gate insulating film is once patterned to form a gate insulating layer 40 having a predetermined shape, and then a gate metal film is formed and the gate metal film is patterned to form a predetermined shape. The gate electrode 50 may be formed.
 次に、少なくともドレイン領域とチャネル領域との境界部分の厚みがチャネル領域の厚みよりも薄くなるように酸化物半導体層30Xを加工する。本実施の形態では、図4Eに示すように、ゲート電極50をマスクとして酸化物半導体層30Xの一部をエッチングすることによって当該酸化物半導体層30Xの一部を薄膜化する。つまり、酸化物半導体層30Xのうちゲート電極50から露出する部分をエッチングすることによって、当該露出する部分の膜厚を薄くする。 Next, the oxide semiconductor layer 30X is processed so that at least the boundary portion between the drain region and the channel region is thinner than the thickness of the channel region. In this embodiment, as illustrated in FIG. 4E, part of the oxide semiconductor layer 30X is thinned by etching part of the oxide semiconductor layer 30X using the gate electrode 50 as a mask. That is, by etching a portion of the oxide semiconductor layer 30X that is exposed from the gate electrode 50, the thickness of the exposed portion is reduced.
 具体的には、酸化物半導体層30Xのゲート電極50及びゲート絶縁層40で覆われた部分以外の部分をエッチングすることによって酸化物半導体層30Xを凸形状に加工する。 Specifically, the oxide semiconductor layer 30X is processed into a convex shape by etching portions other than the portions covered with the gate electrode 50 and the gate insulating layer 40 of the oxide semiconductor layer 30X.
 この場合、エッチングは、ウェットプロセス(ウェットエッチング)及びドライプロセス(ドライエッチング)のいずれであっても構わない。ウェットプロセスの場合、エッチング液としては、例えば、リン酸(HPO)、硝酸(HNO)、酢酸(CHCOOH)及び水を混合した薬液を用いることができる。また、ドライプロセスの場合、エッチングガスとしては、例えば4塩化ホウ素(BCl)を用いることができる。 In this case, the etching may be either a wet process (wet etching) or a dry process (dry etching). In the case of a wet process, for example, a chemical solution in which phosphoric acid (H 3 PO 4 ), nitric acid (HNO 3 ), acetic acid (CH 3 COOH), and water are mixed can be used as the etching solution. In the case of a dry process, for example, boron tetrachloride (BCl 3 ) can be used as an etching gas.
 なお、酸化物半導体層30Xのエッチング工程と上記のゲート絶縁膜のエッチング工程とは同じ工程で行ってもよい。 Note that the etching process of the oxide semiconductor layer 30X and the etching process of the gate insulating film may be performed in the same process.
 次に、酸化物半導体層30Xのチャネル領域において、ソース領域及びドレイン領域と近接する第1領域のキャリア密度が当該第1領域よりもチャネル領域の中央部に近い第2領域のキャリア密度よりも低くなるように、アクセプタとして作用する元素(アクセプタ元素)を当該チャネル領域に拡散させる。 Next, in the channel region of the oxide semiconductor layer 30X, the carrier density in the first region adjacent to the source region and the drain region is lower than the carrier density in the second region closer to the center of the channel region than the first region. Thus, an element acting as an acceptor (acceptor element) is diffused into the channel region.
 本実施の形態において、アクセプタ元素を拡散させる工程は、当該アクセプタ元素を少なくとも酸化物半導体層におけるチャネル領域の側面部に付着させる工程と、その後、加熱する工程とを含む。 In this embodiment, the step of diffusing the acceptor element includes a step of attaching the acceptor element to at least a side surface portion of the channel region in the oxide semiconductor layer, and a step of heating thereafter.
 具体的には、まず、アクセプタ元素を少なくとも酸化物半導体層30Xにおけるチャネル領域となる部分の側面部に付着させる。例えば、図4Fに示すように、アクセプタ元素が酸化物半導体層30Xの露出部分に吸着するように、アクセプタ元素を基板10の全面に付着させてアクセプタ元素を含む層(アクセプタ元素含有層)80を形成する。 Specifically, first, an acceptor element is attached to at least a side surface portion of the oxide semiconductor layer 30X which becomes a channel region. For example, as shown in FIG. 4F, the acceptor element is attached to the entire surface of the substrate 10 so that the acceptor element is adsorbed to the exposed portion of the oxide semiconductor layer 30X, and the acceptor element-containing layer (acceptor element-containing layer) 80 is formed. Form.
 アクセプタ元素としては、例えば、フッ素(F)、珪素(Si)又は銅(Cu)等を用いることができる。また、アクセプタ元素を付着させるプロセスとしては、例えば、CVDやスパッタ等の薄膜を成膜するプロセス、又は、基板温度を上昇させることで得られる界面反応を用いた熱プロセス等を用いることができる。本実施の形態において、アクセプタ元素としてフッ素を用いて、当該フッ素を熱により酸化物半導体層30Xに付着させた。 As the acceptor element, for example, fluorine (F), silicon (Si), copper (Cu), or the like can be used. As a process for attaching the acceptor element, for example, a process for forming a thin film such as CVD or sputtering, a thermal process using an interfacial reaction obtained by raising the substrate temperature, or the like can be used. In this embodiment, fluorine is used as an acceptor element, and the fluorine is attached to the oxide semiconductor layer 30X by heat.
 続いて、図4Gに示すように、熱アニールを加えることによって、酸化物半導体層30Xのチャネル領域となる部分にアクセプタ元素を拡散させる。具体的には、熱アニールすることによって、アクセプタ元素含有層80に含まれるアクセプタ元素を酸化物半導体層30X内に拡散導入させる。アニール温度は、例えば300℃以上であるとよい。 Subsequently, as shown in FIG. 4G, thermal acceptor is applied to diffuse the acceptor element into the portion that becomes the channel region of the oxide semiconductor layer 30X. Specifically, the acceptor element contained in the acceptor element-containing layer 80 is diffused and introduced into the oxide semiconductor layer 30X by thermal annealing. The annealing temperature is preferably 300 ° C. or higher, for example.
 このように熱アニールすることによって、第2領域31bの両側に当該第2領域31bよりもキャリア密度が低い第1領域31aを有する第1酸化物半導体層31を形成することができる。つまり、酸化物半導体層30の凸部分(第1酸化物半導体層31)において、チャネルパス方向にキャリア密度の分布を持たせることができる。 The first oxide semiconductor layer 31 having the first region 31a having a carrier density lower than that of the second region 31b on both sides of the second region 31b can be formed by performing the thermal annealing in this way. In other words, the carrier density distribution can be provided in the channel path direction in the convex portion of the oxide semiconductor layer 30 (the first oxide semiconductor layer 31).
 なお、本実施の形態では、アニール温度を350℃に設定した。また、350℃の熱アニールによって酸化物半導体層30Xの露出面から数十nmの深さまでアクセプタ元素(フッ素)が拡散することを確認した。 In this embodiment, the annealing temperature is set to 350 ° C. In addition, it was confirmed that the acceptor element (fluorine) was diffused from the exposed surface of the oxide semiconductor layer 30X to a depth of several tens of nm by thermal annealing at 350 ° C.
 また、アクセプタ元素含有層80が、酸化物半導体層30Xやゲート電極50、アンダーコート層20等の表面に残っている場合は、必要に応じて、アクセプタ元素含有層80を除去する工程を追加してもよい。 In addition, when the acceptor element-containing layer 80 remains on the surface of the oxide semiconductor layer 30X, the gate electrode 50, the undercoat layer 20, or the like, a step for removing the acceptor element-containing layer 80 is added as necessary. May be.
 次に、酸化物半導体層30Xにソース領域及びドレイン領域を形成する。本実施の形態では、図4Hに示すように、ゲート電極50及びゲート絶縁層40で被覆されていない酸化物半導体層30Xの所定領域の抵抗値を選択的に低くする処理(低抵抗化処理)を行うことによって、凸形状の酸化物半導体層30Xを、チャネル領域を含む第1酸化物半導体層31とソース領域を含む第2酸化物半導体層32とドレイン領域を含む第3酸化物半導体層33とに機能分離する。これにより、第1酸化物半導体層31と第2酸化物半導体層32と第3酸化物半導体層33とからなる酸化物半導体層30を形成することができる。 Next, a source region and a drain region are formed in the oxide semiconductor layer 30X. In this embodiment, as illustrated in FIG. 4H, a process of selectively reducing the resistance value of a predetermined region of the oxide semiconductor layer 30X that is not covered with the gate electrode 50 and the gate insulating layer 40 (resistance reduction process). By performing the steps, the convex oxide semiconductor layer 30X is formed into a first oxide semiconductor layer 31 including a channel region, a second oxide semiconductor layer 32 including a source region, and a third oxide semiconductor layer 33 including a drain region. Separate functions. Accordingly, the oxide semiconductor layer 30 including the first oxide semiconductor layer 31, the second oxide semiconductor layer 32, and the third oxide semiconductor layer 33 can be formed.
 具体的には、一部にゲート電極50が形成された酸化物半導体層30Xに対してプラズマ照射を行っている。つまり、ゲート電極50をマスクとして酸化物半導体層30Xにプラズマ照射を行っている。これにより、酸化物半導体層30Xのうちゲート電極50から露出する部分にはプラズマが照射され、酸化物半導体層30Xのうちゲート電極50から露出しない部分にはプラズマが照射されないので、酸化物半導体層30Xのうちプラズマが照射された部分(ゲート電極50から露出する部分)のみが選択的に低抵抗化される。 Specifically, plasma irradiation is performed on the oxide semiconductor layer 30X in which the gate electrode 50 is partially formed. In other words, the oxide semiconductor layer 30X is irradiated with plasma using the gate electrode 50 as a mask. Accordingly, plasma is irradiated to a portion of the oxide semiconductor layer 30X exposed from the gate electrode 50, and a portion of the oxide semiconductor layer 30X that is not exposed from the gate electrode 50 is not irradiated with plasma. Only the portion of 30X irradiated with plasma (the portion exposed from the gate electrode 50) is selectively reduced in resistance.
 より具体的には、酸化物半導体層30Xのうちゲート電極50に覆われていてプラズマが照射されない部分(中央部分)は、低抵抗化されず、第1酸化物半導体層31となる。このようにして形成された第1酸化物半導体層31は、キャリア密度の異なる第1領域31a及び第2領域31bからなるチャネル領域を有し、キャリアパス方向へキャリア密度の分布を有する形状となる。 More specifically, the portion of the oxide semiconductor layer 30X that is covered with the gate electrode 50 and is not irradiated with plasma (center portion) becomes the first oxide semiconductor layer 31 without being reduced in resistance. The first oxide semiconductor layer 31 thus formed has a channel region including the first region 31a and the second region 31b having different carrier densities, and has a shape having a carrier density distribution in the carrier path direction. .
 一方、酸化物半導体層30Xのうちゲート電極50に覆われておらずプラズマが照射される部分(両サイド部分)は、低抵抗化されて、ドレイン領域及びソース領域となる。これにより、ドレイン領域を有する第2酸化物半導体層32とソース領域を有する第3酸化物半導体層33とを形成することができる。 On the other hand, portions of the oxide semiconductor layer 30X that are not covered with the gate electrode 50 and are irradiated with plasma (both side portions) are reduced in resistance to become a drain region and a source region. Thus, the second oxide semiconductor layer 32 having a drain region and the third oxide semiconductor layer 33 having a source region can be formed.
 なお、プラズマ照射としては、例えばArプラズマ照射又は水素プラズマ照射を用いることができる。これらのプラズマ照射を用いることで、酸化物半導体積層膜の抵抗値を十分に下げることができる。 In addition, as plasma irradiation, Ar plasma irradiation or hydrogen plasma irradiation can be used, for example. By using these plasma irradiations, the resistance value of the oxide semiconductor stacked film can be sufficiently reduced.
 また、プラズマ照射によって酸化物半導体層30Xを低抵抗化させるのではなく、加熱で酸素欠損を引き起こすことによって酸化物半導体層30Xを低抵抗化させてもよい。 Further, instead of reducing the resistance of the oxide semiconductor layer 30X by plasma irradiation, the resistance of the oxide semiconductor layer 30X may be decreased by causing oxygen deficiency by heating.
 次に、図4Iに示すように、酸化物半導体層30の露出部分(第2酸化物半導体層32及び第3酸化物半導体層33)とゲート電極50とを覆うよう層間絶縁層60を成膜する。層間絶縁層60としては、有機物を主成分したものでもシリコン酸化膜のような無機物でも構わない。例えば、層間絶縁層60としてプラズマCVDによってシリコン酸化膜を成膜することができる。 Next, as illustrated in FIG. 4I, an interlayer insulating layer 60 is formed so as to cover the exposed portion of the oxide semiconductor layer 30 (the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33) and the gate electrode 50. To do. The interlayer insulating layer 60 may be an organic material as a main component or an inorganic material such as a silicon oxide film. For example, a silicon oxide film can be formed as the interlayer insulating layer 60 by plasma CVD.
 その後、第2酸化物半導体層32及び第3酸化物半導体層33の各々の一部を露出させるように、層間絶縁層60に開口部(コンタクトホール)を形成する。具体的には、フォトリソグラフィ法及びエッチング法によって層間絶縁層60の一部をエッチング除去することによって、第2酸化物半導体層32のドレイン領域(ドレイン電極70Dとの接続部分)上及び第3酸化物半導体層33のソース領域(ソース電極70Sとの接続部分)上に開口部を形成する。 Thereafter, an opening (contact hole) is formed in the interlayer insulating layer 60 so that a part of each of the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 is exposed. Specifically, a part of the interlayer insulating layer 60 is removed by etching using a photolithography method and an etching method, so that the third oxide is formed on the drain region (connection portion with the drain electrode 70D) of the second oxide semiconductor layer 32. An opening is formed on the source region (connection portion with the source electrode 70S) of the physical semiconductor layer 33.
 例えば、層間絶縁層60がシリコン酸化膜である場合、反応性イオンエッチング(RIE)法によるドライエッチング法によってシリコン酸化膜に開口部を形成することができる。この場合、エッチングガスとしては、例えば、四フッ化炭素(CF)及び酸素ガス(O)を用いることができる。 For example, when the interlayer insulating layer 60 is a silicon oxide film, the opening can be formed in the silicon oxide film by a dry etching method using a reactive ion etching (RIE) method. In this case, for example, carbon tetrafluoride (CF 4 ) and oxygen gas (O 2 ) can be used as the etching gas.
 次に、図4Jに示すように、層間絶縁層60に形成した開口部を介して、第2酸化物半導体層32(ドレイン領域)にドレイン電極70Dを電気的及び物理的に接続するとともに、第3酸化物半導体層33(ソース領域)にソース電極70Sを電気的及び物理的に接続する。 Next, as shown in FIG. 4J, the drain electrode 70D is electrically and physically connected to the second oxide semiconductor layer 32 (drain region) through the opening formed in the interlayer insulating layer 60, and the first The source electrode 70S is electrically and physically connected to the three oxide semiconductor layer 33 (source region).
 本実施の形態では、層間絶縁層60に形成した開口部を埋めるようにして層間絶縁層60上に金属膜(ソースドレイン金属膜)をスパッタによって成膜した後に、フォトリソグラフィ法及びウェットエッチング法を用いて金属膜をパターニングすることにより、所定形状のソース電極70S及びドレイン電極70Dを形成している。 In this embodiment, after a metal film (source / drain metal film) is formed on the interlayer insulating layer 60 by sputtering so as to fill the opening formed in the interlayer insulating layer 60, a photolithography method and a wet etching method are performed. By using the metal film and patterning, a source electrode 70S and a drain electrode 70D having a predetermined shape are formed.
 なお、その後、図示しないが、例えば300℃の熱処理(アニール処理)を行う。この熱処理によって、酸化物半導体層30の酸素欠損を修復することができ、酸化物半導体層30の特性を安定化させることができる。 In addition, although not illustrated, for example, heat treatment (annealing) at 300 ° C. is performed. By this heat treatment, oxygen vacancies in the oxide semiconductor layer 30 can be repaired, and the characteristics of the oxide semiconductor layer 30 can be stabilized.
 [表示装置]
 次に、上記の実施の形態に係る薄膜トランジスタ1を表示装置に適用した例について、図5及び図6を用いて説明する。なお、本実施の形態では、有機EL表示装置への適用例について説明する。
[Display device]
Next, an example in which the thin film transistor 1 according to the above embodiment is applied to a display device will be described with reference to FIGS. In this embodiment, an application example to an organic EL display device will be described.
 図5は、実施の形態に係る有機EL表示装置の一部切り欠き斜視図である。また、図6は、図5に示す有機EL表示装置における画素回路の電気回路図である。なお、画素回路は、図6に示す構成に限定されるものではない。 FIG. 5 is a partially cutaway perspective view of the organic EL display device according to the embodiment. FIG. 6 is an electric circuit diagram of a pixel circuit in the organic EL display device shown in FIG. Note that the pixel circuit is not limited to the configuration shown in FIG.
 上述の薄膜トランジスタ1は、有機EL表示装置におけるアクティブマトリクス基板のスイッチングトランジスタSwTr及び駆動トランジスタDrTrとして用いることができる。 The above-described thin film transistor 1 can be used as a switching transistor SwTr and a drive transistor DrTr of an active matrix substrate in an organic EL display device.
 図5に示すように、有機EL表示装置100は、複数個の薄膜トランジスタが配置されたTFT基板(TFTアレイ基板)110と、下部電極(反射電極)である陽極131、EL層(発光層)132及び上部電極(透明電極)である陰極133からなる有機EL素子(発光部)130との積層構造により構成される。 As shown in FIG. 5, the organic EL display device 100 includes a TFT substrate (TFT array substrate) 110 on which a plurality of thin film transistors are arranged, an anode 131 as a lower electrode (reflection electrode), and an EL layer (light emitting layer) 132. And a laminated structure with an organic EL element (light emitting part) 130 composed of a cathode 133 which is an upper electrode (transparent electrode).
 本実施の形態におけるTFT基板110には、上記の薄膜トランジスタ1が用いられている。TFT基板110には複数の画素120がマトリクス状に配置されており、各画素120には画素回路が設けられている。 The thin film transistor 1 described above is used for the TFT substrate 110 in the present embodiment. A plurality of pixels 120 are arranged in a matrix on the TFT substrate 110, and each pixel 120 is provided with a pixel circuit.
 有機EL素子130は、複数の画素120の各々に対応して形成されており、各画素120に設けられた画素回路によって各有機EL素子130の発光の制御が行われる。有機EL素子130は、複数の薄膜トランジスタを覆うように形成された層間絶縁層(平坦化膜)の上に形成される。 The organic EL element 130 is formed corresponding to each of the plurality of pixels 120, and the light emission of each organic EL element 130 is controlled by a pixel circuit provided in each pixel 120. The organic EL element 130 is formed on an interlayer insulating layer (planarization film) formed so as to cover a plurality of thin film transistors.
 また、有機EL素子130は、陽極131と陰極133との間にEL層132が配置された構成となっている。陽極131とEL層132との間にはさらに正孔輸送層が積層形成され、EL層132と陰極133との間にはさらに電子輸送層が積層形成されている。なお、陽極131と陰極133との間には、その他の機能層が設けられていてもよい。EL層132をはじめ陽極131と陰極133との間に形成される機能層は、有機材料によって構成された有機層である。 The organic EL element 130 has a configuration in which an EL layer 132 is disposed between the anode 131 and the cathode 133. A hole transport layer is further laminated between the anode 131 and the EL layer 132, and an electron transport layer is further laminated between the EL layer 132 and the cathode 133. Note that another functional layer may be provided between the anode 131 and the cathode 133. The functional layer formed between the anode 131 and the cathode 133 including the EL layer 132 is an organic layer made of an organic material.
 各画素120は、それぞれの画素回路によって駆動制御される。また、TFT基板110には、画素120の行方向に沿って配置される複数のゲート配線(走査線)140と、ゲート配線140と交差するように画素120の列方向に沿って配置される複数のソース配線(信号配線)150と、ソース配線150と平行に配置される複数の電源配線(図5では省略)とが形成されている。各画素120は、例えば直交するゲート配線140とソース配線150とによって区画されている。 Each pixel 120 is driven and controlled by each pixel circuit. The TFT substrate 110 includes a plurality of gate wirings (scanning lines) 140 arranged along the row direction of the pixels 120 and a plurality of gate wirings 140 arranged along the column direction of the pixels 120 so as to intersect the gate wiring 140. Source wiring (signal wiring) 150 and a plurality of power supply wirings (not shown in FIG. 5) arranged in parallel with the source wiring 150 are formed. Each pixel 120 is partitioned by, for example, an orthogonal gate wiring 140 and a source wiring 150.
 ゲート配線140は、各画素回路に含まれるスイッチングトランジスタのゲート電極と行毎に接続されている。ソース配線150は、スイッチングトランジスタのソース電極と列毎に接続されている。電源配線は、各画素回路に含まれる駆動トランジスタのドレイン電極と列毎に接続されている。 The gate wiring 140 is connected to the gate electrode of the switching transistor included in each pixel circuit for each row. The source wiring 150 is connected to the source electrode of the switching transistor for each column. The power supply wiring is connected to the drain electrode of the drive transistor included in each pixel circuit for each column.
 図6に示すように、画素回路は、スイッチングトランジスタSwTrと、駆動トランジスタDrTrと、対応する画素120に表示するためのデータを記憶するキャパシタCとで構成される。本実施の形態において、スイッチングトランジスタSwTrは、画素120を選択するためのTFTであり、駆動トランジスタDrTrは、有機EL素子130を駆動するためのTFTである。 As shown in FIG. 6, the pixel circuit includes a switching transistor SwTr, a drive transistor DrTr, and a capacitor C that stores data to be displayed on the corresponding pixel 120. In the present embodiment, the switching transistor SwTr is a TFT for selecting the pixel 120, and the drive transistor DrTr is a TFT for driving the organic EL element 130.
 スイッチングトランジスタSwTrは、ゲート配線140に接続されるゲート電極G1と、ソース配線150に接続されるソース電極S1と、キャパシタC及び第2薄膜トランジスタDrTrのゲート電極G2に接続されるドレイン電極D1と、酸化物半導体層(図示せず)とを備える。スイッチングトランジスタSwTrは、接続されたゲート配線140及びソース配線150に所定の電圧が印加されると、当該ソース配線150に印加された電圧がデータ電圧としてキャパシタCに保存される。 The switching transistor SwTr includes a gate electrode G1 connected to the gate wiring 140, a source electrode S1 connected to the source wiring 150, a drain electrode D1 connected to the capacitor C and the gate electrode G2 of the second thin film transistor DrTr, and an oxidation A physical semiconductor layer (not shown). In the switching transistor SwTr, when a predetermined voltage is applied to the connected gate wiring 140 and source wiring 150, the voltage applied to the source wiring 150 is stored in the capacitor C as a data voltage.
 駆動トランジスタDrTrは、スイッチングトランジスタSwTrのドレイン電極D1及びキャパシタCに接続されるゲート電極G2と、電源配線160及びキャパシタCに接続されるドレイン電極D2と、有機EL素子130の陽極131に接続されるソース電極S2と、酸化物半導体層(図示せず)とを備える。駆動トランジスタDrTrは、キャパシタCが保持しているデータ電圧に対応する電流を電源配線160からソース電極S2を通じて有機EL素子130の陽極131に供給する。これにより、有機EL素子130では、陽極131から陰極133へと駆動電流が流れてEL層132が発光する。 The drive transistor DrTr is connected to the drain electrode D1 of the switching transistor SwTr and the gate electrode G2 connected to the capacitor C, the drain electrode D2 connected to the power supply wiring 160 and the capacitor C, and the anode 131 of the organic EL element 130. A source electrode S2 and an oxide semiconductor layer (not shown) are provided. The drive transistor DrTr supplies a current corresponding to the data voltage held by the capacitor C from the power supply wiring 160 to the anode 131 of the organic EL element 130 through the source electrode S2. Thereby, in the organic EL element 130, a drive current flows from the anode 131 to the cathode 133, and the EL layer 132 emits light.
 なお、上記構成の有機EL表示装置100では、ゲート配線140とソース配線150との交差点に位置する画素120毎に表示制御を行うアクティブマトリクス方式が採用されている。これにより、各画素120におけるスイッチングトランジスタSwTr及び駆動トランジスタDrTrによって、対応する有機EL素子130が選択的に発光し、所望の画像が表示される。 Note that the organic EL display device 100 having the above configuration employs an active matrix system in which display control is performed for each pixel 120 located at the intersection of the gate wiring 140 and the source wiring 150. Thereby, the corresponding organic EL element 130 selectively emits light by the switching transistor SwTr and the drive transistor DrTr in each pixel 120, and a desired image is displayed.
 以上、本実施の形態における有機EL表示装置100では、スイッチングトランジスタSwTr及び駆動トランジスタDrTrとして短チャネル効果が抑制された薄膜トランジスタ1を用いているので、信頼性に優れた有機EL表示装置を実現できる。特に、薄膜トランジスタ1を、有機EL素子130を駆動する駆動トランジスタDrTrとして用いているので、表示性能に優れた高精細の有機EL表示装置を実現できる。 As described above, in the organic EL display device 100 according to the present embodiment, the thin film transistor 1 in which the short channel effect is suppressed is used as the switching transistor SwTr and the drive transistor DrTr. Therefore, an organic EL display device with excellent reliability can be realized. In particular, since the thin film transistor 1 is used as the drive transistor DrTr for driving the organic EL element 130, a high-definition organic EL display device with excellent display performance can be realized.
 (変形例1)
 次に、変形例1に係る薄膜トランジスタ1Aについて、図7を用いて説明する。図7は、変形例1に係る薄膜トランジスタの構成を示す断面図である。
(Modification 1)
Next, a thin film transistor 1A according to Modification 1 will be described with reference to FIG. FIG. 7 is a cross-sectional view illustrating a configuration of a thin film transistor according to the first modification.
 図1に示す薄膜トランジスタ1では、第2酸化物半導体層32の全体がドレイン領域であるとともに第3酸化物半導体層33の全体がソース領域であったが、図7に示すように、本変形例における薄膜トランジスタ1Aでは、第2酸化物半導体層32の上層部分のみがドレイン領域であるとともに第3酸化物半導体層33の上層部分のみがソース領域である。 In the thin film transistor 1 shown in FIG. 1, the entire second oxide semiconductor layer 32 is a drain region and the entire third oxide semiconductor layer 33 is a source region. However, as shown in FIG. In the thin film transistor 1A, only the upper layer portion of the second oxide semiconductor layer 32 is a drain region and only the upper layer portion of the third oxide semiconductor layer 33 is a source region.
 本変形例における薄膜トランジスタ1Aの構成でも、ドレイン領域とチャネル領域との距離を大きくすることができるので、ドレイン電界の強度を鈍化させることができる。これにより、上記実施の形態における薄膜トランジスタ1と同様に、ON電流を低下させることなく、短チャネル効果を抑制することができる。 Even in the configuration of the thin film transistor 1A in this modification, the distance between the drain region and the channel region can be increased, so that the strength of the drain electric field can be reduced. Thereby, like the thin film transistor 1 in the above embodiment, the short channel effect can be suppressed without reducing the ON current.
 (変形例2)
 次に、変形例2に係る薄膜トランジスタ1Bについて、図8を用いて説明する。図8は、変形例2に係る薄膜トランジスタの構成を示す断面図である。
(Modification 2)
Next, a thin film transistor 1B according to Modification 2 will be described with reference to FIG. FIG. 8 is a cross-sectional view illustrating a configuration of a thin film transistor according to the second modification.
 図1に示す薄膜トランジスタ1では、第1酸化物半導体層31の側壁部からアクセプタ元素を導入して第1酸化物半導体層31にキャリア密度の低い第1領域31aを形成したが、図8に示される薄膜トランジスタ1Bのように、第1酸化物半導体層31に第1領域31aを形成しなくてもよい。つまり、第1酸化物半導体層31のチャネル領域にキャリア密度分布を持たせなくてもよい。 In the thin film transistor 1 illustrated in FIG. 1, the acceptor element is introduced from the side wall portion of the first oxide semiconductor layer 31 to form the first region 31 a having a low carrier density in the first oxide semiconductor layer 31. Like the thin film transistor 1 </ b> B, the first region 31 a is not necessarily formed in the first oxide semiconductor layer 31. That is, the channel density region of the first oxide semiconductor layer 31 may not have a carrier density distribution.
 本変形例における薄膜トランジスタ1Bの構成でも、ドレイン領域とチャネル領域との距離を大きくすることができるので、ドレイン電界の強度を鈍化させることができる。これにより、上記実施の形態における薄膜トランジスタ1と同様に、ON電流を低下させることなく、短チャネル効果を抑制することができる。 Even in the configuration of the thin film transistor 1B in the present modification, the distance between the drain region and the channel region can be increased, so that the strength of the drain electric field can be reduced. Thereby, like the thin film transistor 1 in the above embodiment, the short channel effect can be suppressed without reducing the ON current.
 但し、図1に示す薄膜トランジスタ1のように第1酸化物半導体層31のチャネル領域にキャリア密度分布を持たせた方が、短チャネル効果を効果的に抑制できる。 However, the short channel effect can be effectively suppressed by providing the carrier density distribution in the channel region of the first oxide semiconductor layer 31 as in the thin film transistor 1 shown in FIG.
 (変形例3)
 次に、変形例3に係る薄膜トランジスタ1Cについて、図9を用いて説明する。図9は、変形例3に係る薄膜トランジスタの構成を示す断面図である。
(Modification 3)
Next, a thin film transistor 1C according to Modification 3 will be described with reference to FIG. FIG. 9 is a cross-sectional view illustrating a configuration of a thin film transistor according to Modification 3.
 図1に示す薄膜トランジスタ1では、ゲート電極50をマスクにして酸化物半導体層30Xの両サイド部分を薄膜化することで第2酸化物半導体層32及び第3酸化物半導体層33を形成しているので、第2酸化物半導体層32及び第3酸化物半導体層33の全体が第1酸化物半導体層31よりも薄膜化している。つまり、第2酸化物半導体層32及び第3酸化物半導体層33の各々の膜厚は、一定であって、かつ、第1酸化物半導体層31の膜厚よりも薄くなっている。 In the thin film transistor 1 shown in FIG. 1, the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 are formed by thinning both sides of the oxide semiconductor layer 30X using the gate electrode 50 as a mask. Therefore, the entire second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 are thinner than the first oxide semiconductor layer 31. That is, the film thickness of each of the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 is constant and thinner than the film thickness of the first oxide semiconductor layer 31.
 一方、本変形例における薄膜トランジスタ1Cにおいて、第2酸化物半導体層32及び第3酸化物半導体層33は、一部のみが薄膜化されている。ただし、第2酸化物半導体層32(ドレイン領域)及び第3酸化物半導体層33(ソース領域)と第1酸化物半導体層31(チャネル領域)との境界部分の厚みが第1酸化物半導体層31(チャネル領域)の厚みよりも薄くなるように、第2酸化物半導体層32及び第3酸化物半導体層33の一部が薄膜化されている。 On the other hand, in the thin film transistor 1C in the present modification, only a part of the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 is thinned. However, the thickness of the boundary portion between the second oxide semiconductor layer 32 (drain region) and the third oxide semiconductor layer 33 (source region) and the first oxide semiconductor layer 31 (channel region) is the first oxide semiconductor layer. Part of the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 is thinned so as to be thinner than the thickness of 31 (channel region).
 本変形例における薄膜トランジスタ1Cの構成でも、ドレイン領域とチャネル領域との距離を大きくすることができるので、ドレイン電界の強度を鈍化させることができる。これにより、上記実施の形態における薄膜トランジスタ1と同様に、ON電流を低下させることなく、短チャネル効果を抑制することができる。 Even in the configuration of the thin film transistor 1C in the present modification, the distance between the drain region and the channel region can be increased, so that the strength of the drain electric field can be reduced. Thereby, like the thin film transistor 1 in the above embodiment, the short channel effect can be suppressed without reducing the ON current.
 なお、本変形例では、第1酸化物半導体層31に第1領域31a(低キャリア密度領域)を形成しなかったが、上記実施の形態における薄膜トランジスタ1と同様に、第1酸化物半導体層31に第1領域31aを形成してもよい。 In this modification, the first region 31a (low carrier density region) is not formed in the first oxide semiconductor layer 31, but the first oxide semiconductor layer 31 is the same as the thin film transistor 1 in the above embodiment. Alternatively, the first region 31a may be formed.
 (変形例4)
 次に、変形例4に係る薄膜トランジスタ1Dについて、図10Aを用いて説明する。図10Aは、変形例4に係る薄膜トランジスタの構成を示す断面図である。
(Modification 4)
Next, a thin film transistor 1D according to Modification 4 will be described with reference to FIG. 10A. FIG. 10A is a cross-sectional view illustrating a configuration of a thin film transistor according to Modification 4.
 図1に示す薄膜トランジスタ1では、ゲート電極50をマスクにして酸化物半導体層30Xの両サイド部分を薄膜化することで第2酸化物半導体層32及び第3酸化物半導体層33を形成しているので、第2酸化物半導体層32及び第3酸化物半導体層33の両方を第1酸化物半導体層31よりも薄膜化している。 In the thin film transistor 1 shown in FIG. 1, the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 are formed by thinning both sides of the oxide semiconductor layer 30X using the gate electrode 50 as a mask. Therefore, both the second oxide semiconductor layer 32 and the third oxide semiconductor layer 33 are made thinner than the first oxide semiconductor layer 31.
 一方、本変形例における薄膜トランジスタ1Dでは、ドレイン領域を有する第2酸化物半導体層32は薄膜化されているが、ソース領域を有する第3酸化物半導体層33は薄膜化されていない。 On the other hand, in the thin film transistor 1D in the present modification, the second oxide semiconductor layer 32 having the drain region is thinned, but the third oxide semiconductor layer 33 having the source region is not thinned.
 本変形例における薄膜トランジスタ1Dの構成でも、ドレイン領域とチャネル領域との距離を大きくすることができるので、ドレイン電界の強度を鈍化させることができる。これにより、上記実施の形態における薄膜トランジスタ1と同様に、ON電流を低下させることなく、短チャネル効果を抑制することができる。 Even in the configuration of the thin film transistor 1D in the present modification, the distance between the drain region and the channel region can be increased, so that the strength of the drain electric field can be reduced. Thereby, like the thin film transistor 1 in the above embodiment, the short channel effect can be suppressed without reducing the ON current.
 なお、図10Aに示す薄膜トランジスタ1Dでは、第1酸化物半導体層31に第1領域31a(低キャリア密度領域)を形成したが、図10Bに示すように、第1酸化物半導体層31に第1領域31aを形成しなくてもよい。 In the thin film transistor 1D illustrated in FIG. 10A, the first region 31a (low carrier density region) is formed in the first oxide semiconductor layer 31, but the first oxide semiconductor layer 31 includes the first region as illustrated in FIG. 10B. The region 31a may not be formed.
 (その他の変形例等)
 以上、薄膜トランジスタ及びその製造方法について、実施の形態及び変形例に基づいて説明したが、本発明は、上記実施の形態及び変形例に限定されるものではない。
(Other variations)
As described above, the thin film transistor and the manufacturing method thereof have been described based on the embodiment and the modification. However, the present invention is not limited to the above embodiment and the modification.
 例えば、上記実施の形態及び変形例では、酸化物半導体層に用いる酸化物半導体として、InGaZnO(IGZO)の透明アモルファス酸化物半導体を用いたが、これに限らず、InGaO等の多結晶酸化物半導体等のInを含む酸化物半導体を用いることができる。また、InWOやInWZnO等の透明アモルファス酸化物半導体を用いてもよい。 For example, in the above-described embodiment and modification, a transparent amorphous oxide semiconductor of InGaZnO x (IGZO) is used as the oxide semiconductor used for the oxide semiconductor layer, but the present invention is not limited thereto, and a polycrystalline oxide such as InGaO is used. An oxide semiconductor containing In such as a semiconductor can be used. Further, a transparent amorphous oxide semiconductor such as InWO or InWZnO may be used.
 また、上記実施の形態及び変形例では、基板10の表面にアンダーコート層20を形成したが、アンダーコート層20は形成しなくてもよい。 In the above-described embodiment and modification, the undercoat layer 20 is formed on the surface of the substrate 10, but the undercoat layer 20 may not be formed.
 また、上記実施の形態及び変形例では、薄膜トランジスタを用いた表示装置として有機EL表示装置について説明したが、これに限らない。例えば、上記実施の形態及び変形例における薄膜トランジスタは、液晶表示装置等の他の表示装置にも適用することもできる。 In the embodiment and the modification, the organic EL display device has been described as a display device using a thin film transistor, but the present invention is not limited to this. For example, the thin film transistor in the above embodiment and modifications can also be applied to other display devices such as a liquid crystal display device.
 この場合、有機EL表示装置(有機ELパネル)は、フラットパネルディスプレイとして利用することができる。例えば、有機EL表示装置は、テレビジョンセット、パーソナルコンピュータ又は携帯電話等、あらゆる電子機器の表示パネルとして利用することができる。 In this case, the organic EL display device (organic EL panel) can be used as a flat panel display. For example, the organic EL display device can be used as a display panel of any electronic device such as a television set, a personal computer, or a mobile phone.
 その他、各実施の形態及び変形例に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態及び変形例における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, the form obtained by making various modifications conceived by those skilled in the art with respect to each embodiment and modification, and the components and functions in each embodiment and modification are arbitrarily set within the scope of the present invention. Forms realized by combining them are also included in the present invention.
 本発明に係る薄膜トランジスタは、有機EL表示装置等の表示装置(表示パネル)、表示装置を用いた、テレビジョンセット、パーソナルコンピュータ及び携帯電話等、薄膜トランジスタを有する様々な電気機器に広く利用することができる。 The thin film transistor according to the present invention can be widely used in various electric devices having a thin film transistor such as a display device (display panel) such as an organic EL display device, a television set, a personal computer, and a mobile phone using the display device. it can.
 1、1A、1B、1C、1D 薄膜トランジスタ
 10 基板
 20 アンダーコート層
 30、30X、300 酸化物半導体層
 31 第1酸化物半導体層
 31a 第1領域
 31b 第2領域
 32 第2酸化物半導体層
 33 第3酸化物半導体層
 40 ゲート絶縁層
 50、G1、G2 ゲート電極
 60 層間絶縁層
 70S、S1、S2 ソース電極
 70D、D1、D2 ドレイン電極
 80 アクセプタ元素含有層
 100 有機EL表示装置
 110 TFT基板
 120 画素
 130 有機EL素子
 131 陽極
 132 EL層
 133 陰極
 140 ゲート配線
 150 ソース配線
 160 電源配線
 SwTr スイッチングトランジスタ
 DrTr 駆動トランジスタ
 C キャパシタ
1, 1A, 1B, 1C, 1D Thin film transistor 10 Substrate 20 Undercoat layer 30, 30X, 300 Oxide semiconductor layer 31 First oxide semiconductor layer 31a First region 31b Second region 32 Second oxide semiconductor layer 33 Third Oxide semiconductor layer 40 Gate insulating layer 50, G1, G2 Gate electrode 60 Interlayer insulating layer 70S, S1, S2 Source electrode 70D, D1, D2 Drain electrode 80 Acceptor element-containing layer 100 Organic EL display device 110 TFT substrate 120 Pixel 130 Organic EL element 131 Anode 132 EL layer 133 Cathode 140 Gate wiring 150 Source wiring 160 Power supply wiring SwTr Switching transistor DrTr Drive transistor C Capacitor

Claims (13)

  1.  基板と、
     前記基板の上方に位置し、チャネル領域、ソース領域及びドレイン領域を有する酸化物半導体層と、
     前記酸化物半導体層の上方に位置するゲート絶縁層と、
     前記ゲート絶縁層の上方に位置するゲート電極と、
     前記ソース領域と電気的に接続されたソース電極と、
     前記ドレイン領域と電気的に接続されたドレイン電極と、を有し、
     前記チャネル領域は、前記ゲート絶縁層を挟んで前記ゲート電極と対向する領域であり、
     前記ドレイン領域は、前記チャネル領域の他方端側に位置し、かつ、抵抗値が前記チャネル領域の抵抗値よりも低い領域であり、
     前記ソース領域は、前記チャネル領域の一方端側に位置し、かつ、抵抗値が前記チャネル領域の抵抗値よりも低い領域であり、
     前記酸化物半導体層において、少なくとも前記ドレイン領域と前記チャネル領域との境界部分の厚みが前記チャネル領域の厚みよりも薄い、
     薄膜トランジスタ。
    A substrate,
    An oxide semiconductor layer located above the substrate and having a channel region, a source region and a drain region;
    A gate insulating layer located above the oxide semiconductor layer;
    A gate electrode located above the gate insulating layer;
    A source electrode electrically connected to the source region;
    A drain electrode electrically connected to the drain region,
    The channel region is a region facing the gate electrode with the gate insulating layer interposed therebetween,
    The drain region is a region located on the other end side of the channel region, and a resistance value is lower than a resistance value of the channel region,
    The source region is located on one end side of the channel region and has a resistance value lower than the resistance value of the channel region,
    In the oxide semiconductor layer, at least a thickness of a boundary portion between the drain region and the channel region is thinner than a thickness of the channel region.
    Thin film transistor.
  2.  前記酸化物半導体層において、さらに、前記ソース領域と前記チャネル領域との境界部分の厚みが前記チャネル領域の厚みよりも薄い、
     請求項1に記載の薄膜トランジスタ。
    In the oxide semiconductor layer, the thickness of the boundary portion between the source region and the channel region is thinner than the thickness of the channel region.
    The thin film transistor according to claim 1.
  3.  前記酸化物半導体層は、断面形状が凸形状であり、かつ、前記チャネル領域を有する部分の上面が前記ドレイン領域を有する部分及び前記ソース領域を有する部分の上面よりも上方に位置する、
     請求項2に記載の薄膜トランジスタ。
    The oxide semiconductor layer has a convex cross-sectional shape, and the upper surface of the portion having the channel region is located above the upper surface of the portion having the drain region and the portion having the source region,
    The thin film transistor according to claim 2.
  4.  前記酸化物半導体層は、前記チャネル領域において、前記ソース領域側及び前記ドレイン領域側の領域である第1領域と、前記第1領域よりも前記チャネル領域の中央部に近い側の領域である第2領域とを含み、
     前記第1領域のキャリア密度は、第2領域のキャリア密度より低い、
     請求項2又は3に記載の薄膜トランジスタ。
    The oxide semiconductor layer includes a first region that is a region on the source region side and the drain region side in the channel region, and a region that is closer to the center of the channel region than the first region. Two regions,
    The carrier density of the first region is lower than the carrier density of the second region,
    The thin film transistor according to claim 2 or 3.
  5.  前記第1領域にはアクセプタとして作用する元素が含まれている、
     請求項4に記載の薄膜トランジスタ。
    The first region contains an element that acts as an acceptor,
    The thin film transistor according to claim 4.
  6.  前記第1領域には、前記アクセプタとして、銅、シリコン及びフッ素の少なくとも1つが含まれている、
     請求項5に記載の薄膜トランジスタ。
    The first region contains at least one of copper, silicon, and fluorine as the acceptor,
    The thin film transistor according to claim 5.
  7.  前記ソース領域又は前記ドレイン領域の上面の端部と前記チャネル領域の側面の下端との接点は、前記チャネル領域の厚みの1/2の位置よりも下方側に位置する、
     請求項2~6のいずれか1項に記載の薄膜トランジスタ。
    The contact point between the end of the upper surface of the source region or the drain region and the lower end of the side surface of the channel region is located below the position of ½ of the thickness of the channel region.
    The thin film transistor according to any one of claims 2 to 6.
  8.  前記ソース領域又は前記ドレイン領域の上面の端部と前記チャネル領域の側面の下端との接点と、前記チャネル領域の上面との差は、少なくとも15nm以上である、
     請求項2~7のいずれか1項に記載の薄膜トランジスタ。
    The difference between the contact between the end of the upper surface of the source region or the drain region and the lower end of the side surface of the channel region, and the upper surface of the channel region is at least 15 nm,
    The thin film transistor according to any one of claims 2 to 7.
  9.  前記酸化物半導体層を構成する金属元素には、インジウム、ガリウム及び亜鉛の少なくとも1つが含まれている、
     請求項1~8のいずれか1項に記載の薄膜トランジスタ。
    The metal element constituting the oxide semiconductor layer includes at least one of indium, gallium, and zinc.
    The thin film transistor according to any one of claims 1 to 8.
  10.  基板を準備する工程と、
     前記基板の上方に、チャネル領域を有する酸化物半導体層を形成する工程と、
     前記酸化物半導体層の上方にゲート絶縁層を形成する工程と、
     前記ゲート絶縁層の上方にゲート電極を形成する工程と、
     前記酸化物半導体層にソース領域及びドレイン領域を形成する工程と、
     前記ソース領域と電気的に接続されたソース電極及び前記ドレイン領域と電気的に接続されたドレイン電極を形成する工程とを含み、
     前記チャネル領域は、前記ゲート絶縁層を挟んで前記ゲート電極と対向する領域であり、
     前記ソース領域は、前記チャネル領域の一方端側に位置し、かつ、抵抗値が前記チャネル領域の抵抗値よりも低い領域であり、
     前記ドレイン領域は、前記チャネル領域の他方端側に位置し、かつ、抵抗値が前記チャネル領域の抵抗値よりも低い領域であり、
     さらに、少なくとも前記ドレイン領域と前記チャネル領域との境界部分の厚みが前記チャネル領域の厚みよりも薄くなるように前記酸化物半導体層を加工する工程を含む、
     薄膜トランジスタの製造方法。
    Preparing a substrate;
    Forming an oxide semiconductor layer having a channel region above the substrate;
    Forming a gate insulating layer above the oxide semiconductor layer;
    Forming a gate electrode above the gate insulating layer;
    Forming a source region and a drain region in the oxide semiconductor layer;
    Forming a source electrode electrically connected to the source region and a drain electrode electrically connected to the drain region,
    The channel region is a region facing the gate electrode with the gate insulating layer interposed therebetween,
    The source region is located on one end side of the channel region and has a resistance value lower than the resistance value of the channel region,
    The drain region is a region located on the other end side of the channel region, and a resistance value is lower than a resistance value of the channel region,
    Furthermore, it includes a step of processing the oxide semiconductor layer so that at least a thickness of a boundary portion between the drain region and the channel region is thinner than a thickness of the channel region.
    A method for manufacturing a thin film transistor.
  11.  基板を準備する工程と、
     前記基板の上方に酸化物半導体層を形成する工程と、
     前記酸化物半導体層の上方にゲート絶縁膜を成膜する工程と、
     前記ゲート絶縁膜の上方に所定形状のゲート電極を形成する工程と、
     前記ゲート電極をマスクとして前記ゲート絶縁膜をエッチングして所定形状のゲート絶縁層を形成する工程と、
     前記ゲート電極をマスクとして前記酸化物半導体層の一部をエッチングすることにより前記酸化物半導体層の一部を薄膜化する工程と、
     前記酸化物半導体層の前記一部にソース領域及びドレイン領域を形成する工程と、
     前記ソース領域と電気的に接続されたソース電極及び前記ドレイン領域と電気的に接続されたドレイン電極を形成する工程とを含む、
     薄膜トランジスタの製造方法。
    Preparing a substrate;
    Forming an oxide semiconductor layer above the substrate;
    Forming a gate insulating film above the oxide semiconductor layer;
    Forming a gate electrode having a predetermined shape above the gate insulating film;
    Etching the gate insulating film using the gate electrode as a mask to form a gate insulating layer having a predetermined shape;
    Etching the part of the oxide semiconductor layer using the gate electrode as a mask to thin the part of the oxide semiconductor layer;
    Forming a source region and a drain region in the part of the oxide semiconductor layer;
    Forming a source electrode electrically connected to the source region and a drain electrode electrically connected to the drain region.
    A method for manufacturing a thin film transistor.
  12.  さらに、前記チャネル領域において、前記ソース領域側及び前記ドレイン領域側の領域である第1領域のキャリア密度が前記第1領域よりも前記チャネル領域の中央部に近い側の領域である第2領域のキャリア密度よりも低くなるように、アクセプタとして作用する元素を当該チャネル領域に拡散させる工程を含む、
     請求項11に記載の薄膜トランジスタの製造方法。
    Further, in the channel region, the carrier density of the first region which is the region on the source region side and the drain region side is a region closer to the center of the channel region than the first region. A step of diffusing an element acting as an acceptor into the channel region so as to be lower than the carrier density,
    The manufacturing method of the thin-film transistor of Claim 11.
  13.  前記アクセプタとして作用する元素を拡散させる工程は、
     当該元素を少なくとも前記チャネル領域の側面部に付着させる工程と、その後、加熱する工程とを含む、
     請求項12に記載の薄膜トランジスタの製造方法。
    The step of diffusing the element acting as the acceptor
    Including a step of attaching the element to at least a side surface of the channel region, and a step of heating thereafter.
    The manufacturing method of the thin-film transistor of Claim 12.
PCT/JP2015/004291 2014-09-10 2015-08-26 Thin film transistor and thin film transistor manufacturing method WO2016038823A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-184602 2014-09-10
JP2014184602 2014-09-10

Publications (1)

Publication Number Publication Date
WO2016038823A1 true WO2016038823A1 (en) 2016-03-17

Family

ID=55458597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004291 WO2016038823A1 (en) 2014-09-10 2015-08-26 Thin film transistor and thin film transistor manufacturing method

Country Status (1)

Country Link
WO (1) WO2016038823A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113161423A (en) * 2021-04-26 2021-07-23 合肥维信诺科技有限公司 Thin film transistor, manufacturing method of thin film transistor and display panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093094A (en) * 1996-09-18 1998-04-10 Toshiba Corp Thin-film transistor
JP2008199005A (en) * 2007-02-09 2008-08-28 Samsung Electronics Co Ltd Thin film transistor and manufacturing method of the same
JP2013251536A (en) * 2012-05-02 2013-12-12 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2013251526A (en) * 2012-06-04 2013-12-12 Samsung Display Co Ltd Thin film transistor, thin film transistor display board equipped with the same and manufacturing method of the same
JP2014123670A (en) * 2012-12-21 2014-07-03 Panasonic Corp Thin film transistor and manufacturing method of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093094A (en) * 1996-09-18 1998-04-10 Toshiba Corp Thin-film transistor
JP2008199005A (en) * 2007-02-09 2008-08-28 Samsung Electronics Co Ltd Thin film transistor and manufacturing method of the same
JP2013251536A (en) * 2012-05-02 2013-12-12 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2013251526A (en) * 2012-06-04 2013-12-12 Samsung Display Co Ltd Thin film transistor, thin film transistor display board equipped with the same and manufacturing method of the same
JP2014123670A (en) * 2012-12-21 2014-07-03 Panasonic Corp Thin film transistor and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113161423A (en) * 2021-04-26 2021-07-23 合肥维信诺科技有限公司 Thin film transistor, manufacturing method of thin film transistor and display panel
CN113161423B (en) * 2021-04-26 2022-10-28 合肥维信诺科技有限公司 Thin film transistor, manufacturing method of thin film transistor and display panel

Similar Documents

Publication Publication Date Title
JP6311901B2 (en) Thin film transistor and organic EL display device
US10269832B2 (en) Thin film transistor substrate, method for manufacturing thin film transistor substrate, and display panel
US10644165B2 (en) Thin-film transistor, method of fabricating thin-film transistor, and display device
JP6358596B2 (en) Method for manufacturing thin film transistor substrate
US10276722B2 (en) Thin film transistor
US10535779B2 (en) Thin film transistor and method for manufacturing thin film transistor
US9893193B2 (en) Thin-film transistor including a gate electrode with a side wall insulating layer and display device
JP6331052B2 (en) THIN FILM TRANSISTOR, METHOD FOR PRODUCING THIN FILM TRANSISTOR AND ORGANIC EL DISPLAY DEVICE
JP2015149467A (en) Manufacturing method of thin film transistor substrate
JP6142300B2 (en) Thin film transistor manufacturing method
JP2017191838A (en) Thin film transistor substrate
JP6263721B2 (en) THIN FILM TRANSISTOR, METHOD FOR PRODUCING THIN FILM TRANSISTOR AND ORGANIC EL DISPLAY DEVICE
JP2018050029A (en) Semiconductor device, display device, method of manufacturing semiconductor device, and method of manufacturing display device
WO2016038823A1 (en) Thin film transistor and thin film transistor manufacturing method
JP2018050030A (en) Semiconductor device, display device, method of manufacturing semiconductor device, and method of manufacturing display device
JP6500202B2 (en) Thin film transistor and method of manufacturing thin film transistor
JP7492410B2 (en) Pixel circuit and manufacturing method thereof
JP2017191834A (en) Thin film transistor substrate
KR20130027023A (en) Display device, thin film transistor used in the display device, and method for manufacturing the thin film transistor
JP2016111238A (en) Thin film transistor and manufacturing method of thin film transistor
JP2017191917A (en) Method for manufacturing thin film transistor substrate
JP2015185610A (en) Thin film transistor and thin film transistor manufacturing method
JP2017183437A (en) Thin film transistor, pixel circuit, peripheral circuit, display device, and manufacturing method of thin film transistor
JP2016111151A (en) Method of manufacturing thin-film transistor substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15840227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP