WO2016036209A1 - L-쓰레오닌 생산능이 향상된 미생물 및 이를 이용한 l-쓰레오닌 생산방법 - Google Patents

L-쓰레오닌 생산능이 향상된 미생물 및 이를 이용한 l-쓰레오닌 생산방법 Download PDF

Info

Publication number
WO2016036209A1
WO2016036209A1 PCT/KR2015/009381 KR2015009381W WO2016036209A1 WO 2016036209 A1 WO2016036209 A1 WO 2016036209A1 KR 2015009381 W KR2015009381 W KR 2015009381W WO 2016036209 A1 WO2016036209 A1 WO 2016036209A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
substituted
rpod
threonine
amino
Prior art date
Application number
PCT/KR2015/009381
Other languages
English (en)
French (fr)
Inventor
이지선
이광호
김효진
이근철
황영빈
Original Assignee
씨제이제일제당 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 주식회사 filed Critical 씨제이제일제당 주식회사
Priority to US15/117,437 priority Critical patent/US10760108B2/en
Priority to EP15837846.3A priority patent/EP3144385B1/en
Priority to CN201580006567.2A priority patent/CN106029879B/zh
Priority to ES15837846T priority patent/ES2820583T3/es
Priority to PL15837846T priority patent/PL3144385T3/pl
Priority to BR112016015218-2A priority patent/BR112016015218B1/pt
Priority claimed from KR1020150125440A external-priority patent/KR101865998B1/ko
Publication of WO2016036209A1 publication Critical patent/WO2016036209A1/ko
Priority to US16/447,814 priority patent/US10968467B2/en
Priority to US16/930,082 priority patent/US11312982B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • C12N9/1247DNA-directed RNA polymerase (2.7.7.6)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07006DNA-directed RNA polymerase (2.7.7.6)

Definitions

  • the present invention relates to a novel variant RNA polymerase sigma factor 70 ( ⁇ 70 ) polypeptide, a polynucleotide encoding the same, a microorganism comprising the polypeptide and a method for producing L-threonine using the microorganism.
  • Useful products such as amino acids can be produced by fermentation using strains developed by artificial variation or genetic recombination. In particular, if the genetic factors found directly or indirectly involved in the upper stage for the development of these strains for mass production, and can be used properly, strains with higher yields can be developed.
  • a representative technique is gTME (global transcription machinery engineering) technology that regulates the expression of all genes in a cell by randomly mutating the recruiting protein of RNA polymerase.
  • RNA polymerase is a macromolecule consisting of five subunits and consists of two alpha ( ⁇ ), beta ( ⁇ ), beta prime ( ⁇ ') and omega ( ⁇ )
  • the enzyme (holoenzyme) is represented by ⁇ 2 ⁇ ' ⁇ .
  • Sigma factor ( ⁇ factor) together with these complete enzymes, is a prokaryotic transcription initiation factor that enables specific binding of RNA polymerase to promoters of genes and is distinguished by molecular weight.
  • ⁇ 70 refers to a sigma factor with a molecular weight of 70 kDa (Gruber TM, Gross CA, Annu Rev Microbiol. 57: 441-66, 2003).
  • Escherichia coli includes housekeeping sigma factor ⁇ 70 (RpoD), nitrogen-restricted sigma factor ⁇ 54 (RpoN), starvation / stationary phase sigma factor ⁇ 38 (RpoS), and heat shock. ) Sigma factor ⁇ 32 (RpoH), flagella sigma factor ⁇ 28 (RpoF), extracellular / extreme heat stress sigma factor ⁇ 24 (RpoE), ferric citrate sigma factor ⁇ 19 (FecI) and the like are known. These different sigma factors are known to be activated under different environmental conditions, and these specialized sigma factors combine with the promoters of native genes that are transcribed under specific circumstances to regulate their transcription.
  • the present inventors have made intensive efforts to develop microorganisms that produce higher concentrations of L-threonine without inhibiting the growth of host cells.
  • a sigma factor 70 polypeptide of a novel variant RNA polymerase to produce L-threonine.
  • the present invention was completed by confirming that a strain having improved ability to produce L-threonine can be developed by introducing into Escherichia.
  • Another object of the present invention is to provide a polynucleotide encoding the polypeptide.
  • Another object of the present invention is to provide a microorganism transformed to include the polypeptide.
  • Another object of the present invention is to obtain a culture by culturing the microorganism; And it provides a method for producing L-threonine comprising the step of recovering L-threonine from the culture or microorganism.
  • the present invention can identify novel variants of the polypeptide of RNA polymerase sigma factor 70 that can upregulate L-threonine production capacity.
  • the microorganism expressing the mutant polypeptide on the basis of the production yield of L-threonine is remarkably excellent, it can be expected to reduce the production cost and the convenience of production in the industrial aspect.
  • the present invention provides a variant polypeptide having novel RNA polymerase sigma factor 70 activity.
  • RNA polymerase sigma factor 70 is a transcription initiation factor that works with RNA polymerase, which corresponds to one of the sigma factors ( ⁇ 70 ) and is also called sigma factor D (RpoD). do. Sigma factors are involved in transcriptional regulation by interacting with upstream DNA (UP element) and various transcriptional regulators upstream of a specific promoter.
  • sigma factor 70 ( ⁇ 70 ) is the main regulator of most of the house keeping genes and key genes of E. coli sigma, and is a sigma factor that dominates during the growth of the exponential phase. (Jishage M, et al, J Bacteriol 178 (18); 5447-51,1996).
  • ⁇ 70 protein may include the amino acid sequence of SEQ ID NO: 8, but is not limited thereto as long as it has the same activity as ⁇ 70 of the present invention.
  • variant polypeptide refers to a part or whole of the amino acid sequence of a wild-type polypeptide.
  • a part of the amino acid sequence of a polypeptide having RNA polymerase sigma factor 70 ( ⁇ 70 ) activity is replaced by a wild type ( It is a polypeptide having an RNA polymerase sigma factor 70 ( ⁇ 70 ) activity having a sequence different from the wild-type amino acid sequence. That is, the present invention provides a sigma factor 70 ( ⁇ 70 ) mutant polypeptide that contributes to the improvement of L-threonine production, rather than the wild type sigma factor 70 ( ⁇ 70 ) polypeptide.
  • the variant polypeptide is a variant polypeptide having RNA polymerase sigma factor 70 activity in which at least one amino acid of the amino acid sequence of SEQ ID NO: 8 is substituted with another amino acid in the polypeptide consisting of SEQ ID NO: 8, wherein the variant position Is the first methionine as the first amino acid from 440 to 450 amino acids therefrom; 459th amino acid; 466th amino acid; Amino acids 470-479; 484 th amino acid; 495-499 amino acids; 509th amino acid; 527th amino acid; 565th to 570th amino acids; 575th to 580th amino acids; 599th amino acid; And 612th amino acid.
  • the variant polypeptide has 45 mutation positions (440 to 450, 459, 466, 470 to 479, 484, 495 to 499, 509, 527, 565 to 570, and 575).
  • 1 to 580, 599, 612) may be a polypeptide substituted at one or more positions with another amino acid.
  • one, two, three, four, five, six, seven, eight, nine, ten or more but RNA polymerase contributes to improved L-threonine production capacity It may be included without limitation as long as it has sigma factor 70 activity.
  • the 440 th to 450 th amino acids 440 th amino acid, 446 th amino acid or 448 th amino acid;
  • the 470 th to 479 th amino acids a 474 th amino acid or a 477 th amino acid; 496 th or 498 th amino acids of the 495 th to 499 th amino acids; 567 th or 569 th amino acids, among the 565 th to 570 th amino acids;
  • the 576 th amino acid or the 579 th amino acid may be substituted with another amino acid, but is not limited thereto.
  • More specific amino acid substitutions include replacement of the 440th amino acid with proline from the starting methionine (T440P); 446th amino acid is substituted with proline (Q446P); 448th amino acid is substituted with serine (R448S); 459th amino acid is substituted with asparagine (T459N); 466th amino acid is substituted with serine (I466S); 474th amino acid is substituted with valine (M474V); 477th amino acid is substituted with glycine (E477G); 484th amino acid is substituted with valine (A484V); 496th amino acid is substituted with asparagine (K496N); 498th amino acid is substituted with arginine (L498R); 509th amino acid is substituted with methionine (T509M); 527th amino acid substituted by proline (T527P); 567th amino acid is substituted with valine (M567V); 569th amino acid is substituted with proline
  • the variant polypeptide may be a polypeptide having an amino acid sequence of any one of the amino acid sequences of SEQ ID NOs: 9 to 37, but is not limited thereto.
  • Variant polypeptides of the present invention in addition to the amino acid sequence set forth in SEQ ID NOs: 9-37, 70% or more, specifically 80% or more, more specifically 90% or more, more specifically 99% or more of the sequence
  • amino acid sequence showing homology any protein that contributes to the improvement of L-threonine production ability as compared to the wild type sigma factor 70 ( ⁇ 70 ) protein can be included without limitation.
  • sequence having such homology is an amino acid sequence having the same or corresponding biological activity as that of the mutant sigma factor 70 ( ⁇ 70 ) protein, even if some sequences have an amino acid sequence deleted, modified, substituted or added, It is obvious that it is included in the scope of the invention.
  • the term “homology” refers to the same degree of base or amino acid residues between sequences in an amino acid or nucleotide sequence of a gene encoding a protein. do. If the homology is sufficiently high, the expression products of the gene of interest may have the same or similar activity.
  • the percent sequence identity can be determined using known sequence comparison programs, and examples include BLAST (NCBI), CLC Main Workbench (CLC bio), MegAlign TM (DNASTAR Inc), and the like.
  • Another aspect of the invention provides a polynucleotide encoding said variant polypeptide.
  • polynucleotide is a polymer of nucleotides in which nucleotide monomers are long chained by covalent bonds, and are DNA or RNA strands of a predetermined length or more, and more specifically, the variant polypeptide Means the polynucleotide fragment to be encoded.
  • the gene encoding the amino acid sequence of the RNA polymerase sigma70 factor is rpoD gene, specifically from the genus Escherichia, more specifically Escherichia coli have.
  • the polynucleotide encoding the wild-type RNA polymerase sigma factor 70 may be represented by SEQ ID NO: 7, but is not limited thereto.
  • the genetic code degeneracy genetic code degeneracy
  • the base sequence encoding the same amino acid sequence and variants thereof are also included in the present invention.
  • nucleotide sequence encoding the same amino acid sequence and variants thereof are also included in the present invention due to the degeneracy of the genetic code.
  • the polypeptide consisting of the amino acid sequence of SEQ ID NO: 8 may include a base sequence encoding the amino acid sequence of the polypeptide substituted with one or more amino acids of the amino acid at the following position and a variant thereof.
  • the mutation position is a starting methionine as the first amino acid from 440 to 450 amino acids therefrom; 459th amino acid; 466th amino acid; Amino acids 470-479; 484 th amino acid; 495-499 amino acids; 509th amino acid; 527th amino acid; 565th to 570th amino acids; 575th to 580th amino acids; 599th amino acid; And 612th amino acid.
  • the mutation position is the 440th amino acid is substituted with proline (T440P); 446th amino acid is substituted with proline (Q446P); 448th amino acid is substituted with serine (R448S); 459th amino acid is substituted with asparagine (T459N); 466th amino acid is substituted with serine (I466S); 474th amino acid is substituted with valine (M474V); 477th amino acid is substituted with glycine (E477G); 484th amino acid is substituted with valine (A484V); 496th amino acid is substituted with asparagine (K496N); 498th amino acid is substituted with arginine (L498R); 509th amino acid is substituted with methionine (T509M); 527th amino acid substituted by proline (T527P); 567th amino acid is substituted with valine (M567V); 569th amino acid is substituted with proline (T569P); 5
  • the base sequence encoding any one amino acid sequence of the amino acid sequence of SEQ ID NO: 9 to 37 and its variants may be included, but is not limited thereto.
  • the invention is a host cell comprising a polynucleotide encoding the variant polypeptide, a microorganism transformed with a vector comprising the polynucleotide encoding the variant polypeptide or the variant polypeptide
  • a host cell comprising a polynucleotide encoding the variant polypeptide, a microorganism transformed with a vector comprising the polynucleotide encoding the variant polypeptide or the variant polypeptide.
  • the introduction may be made by transformation, but is not limited thereto.
  • sigma factor 70 ( ⁇ 70) mutant microorganism containing a polypeptide-type production is enhanced ability of the wild-type sigma factor 70 ( ⁇ 70) as compared to microorganisms containing the polypeptides L- write the growth of the host cell without prejudice Leo Nin Therefore, L-threonine can be obtained in high yield from these microorganisms.
  • the term "vector” refers to any medium for cloning and / or transferring bases to a host cell.
  • the vector may be a replica that other DNA fragments can bind to and result in replication of the bound fragments.
  • "Replication unit” refers to any genetic unit (e.g., plasmid, phage, cosmid, chromosome, virus) that functions as a self-unit of DNA replication in vivo, i.e., is replicable by its own regulation. .
  • the "vector” includes viral and non-viral mediators for introducing bases into host cells in vitro, ex vivo or in vivo, and may also include minispherical DNA.
  • the vector may be a plasmid without a bacterial DNA sequence (Ehrhardt, A. et al. (2003) Hum Gene Ther 10: 215-25; Yet, NS (2002) MoI Ther 5: 731-38; Chen, ZY et al. (2004) Gene Ther 11: 856-64).
  • the vector may include a transposon (Annu Rev Genet. 2003; 37: 3-29.), Or an artificial chromosome.
  • pACYC177, pACYC184, pCL1920, pECCG117, pUC19, pBR322, pDZ, pCC1BAC and pMW118 vectors may be used, but is not limited thereto.
  • the term "transformation" is to introduce a gene into the host cell to be expressed in the host cell, the transformed gene can be expressed in the host cell, in addition to the chromosome insertion or chromosome of the host cell Anything located is included without limitation.
  • the gene may be introduced into a host cell in the form of an expression cassette, which is a polynucleotide construct containing all elements necessary for self-expression.
  • the expression cassette may include a promoter, a transcription termination signal, a ribosomal binding site, and a translation termination signal that are usually operably linked to the gene.
  • the expression cassette may be in the form of an expression vector capable of self replication.
  • the gene may be introduced into the host cell in the form of a polynucleotide structure itself or operably linked to a sequence required for expression in the host cell, but is not limited thereto.
  • the term "host cell” or "microorganism” may include a polynucleotide encoding a variant polypeptide, or may be transformed with a vector comprising a polynucleotide encoding a variant polypeptide to express the variant polypeptide.
  • the host cell or microorganism may be any microorganism capable of producing L-threonine, including a sigma factor 70 ( ⁇ 70 ) mutant polypeptide.
  • Escherichia Escherichia
  • Serratia marcescens Serratia
  • An air Winiah Erwinia
  • Enterobacter bacteria Enterobacter bacteria
  • Salmonella Salmonella
  • Streptomyces Streptomyces
  • Pseudomonas Pseudomonas
  • Microorganism strains such as genus, Brevibacterium genus or Corynebacterium genus may be included, specifically Escherichia genus microorganisms, more specifically may be Escherichia coli
  • the present invention is not limited thereto.
  • the present invention provides a method for producing L-threonine, comprising culturing the described microorganisms in a medium and recovering L-threonine from the cultured microorganism or culture medium. Provide a method.
  • the term "culture” means to grow the microorganisms under appropriately artificially controlled environmental conditions. Cultivation process of the present invention can be made according to the appropriate medium and culture conditions known in the art. Conditions such as specific incubation temperature, incubation time and pH of the medium may be carried out according to the general knowledge of a person skilled in the art or a method known in the art, and can be adjusted accordingly. Specifically, these known culture methods are described in Chmiel; Bioreatechnik 1. Einbigung indie Biovonstechnik (Gustav Fischer Verlag, Stuttgart, 1991), and Storhas; Bioreaktoren und periphere bamboo (Vieweg Verlag, Braunschweig / Wiesbaden, 1994). In addition, the culture method may include a batch culture, a continuous culture (cintinuous culture) and fed-batch culture, specifically, a batch process or injection batch or repeated batch batch (fed batch) or repeated fed batch process), but is not limited thereto.
  • the medium used for culturing should meet the requirements of the particular strain in an appropriate manner, and the carbon sources that can be used in the medium include glucose and carbohydrates such as glucose, saccharose, lactose, fructose, maltose, starch, cellulose, Oils such as soybean oil, sunflower oil, castor oil, coconut oil and the like, fatty acids such as palmitic acid, stearic acid, linoleic acid, alcohols such as glycerol, ethanol, organic acids such as acetic acid, and the like. These materials can be used individually or as a mixture, but are not limited to these.
  • Nitrogen sources that may be used may include peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean wheat and urea or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate, and the like.
  • the nitrogen source may also be used individually or as a mixture, but is not limited thereto.
  • Personnel that may be used may include potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts and the like.
  • the culture medium may contain a metal salt such as magnesium sulfate or iron sulfate required for growth.
  • essential growth substances such as amino acids and vitamins can be used.
  • suitable precursors to the culture medium may be used.
  • the raw materials described above may be added batchwise or continuously in a suitable manner to the culture during the culturing process, but are not limited thereto.
  • compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid and sulfuric acid can be added to the culture in a suitable manner to adjust the pH of the culture.
  • antifoaming agents such as fatty acid polyglycol esters can be used to suppress bubble generation.
  • oxygen or oxygen-containing gas may be injected into the culture, or nitrogen, hydrogen or carbon dioxide gas may be injected without injecting gas to maintain anaerobic and unaerobic conditions.
  • the temperature of the culture is usually 27 ° C to 37 ° C, specifically 30 ° C to 35 ° C. The incubation period can continue until the desired amount of useful material is obtained, specifically 10 to 100 hours.
  • L-threonine may be released into the culture medium or may be contained in microorganisms.
  • PCR polymerase chain reaction
  • PCR for amplification of the rpoD gene was performed using primers of SEQ ID NOs: 1 and 2, with denaturation at 95 ° C. for 30 seconds, annealing at 56 ° C. for 30 seconds and elongation at 72 ° C. for 2 minutes.
  • the cycle consisted of 27 repetitions.
  • rpoD fragment DNA fragment of about 2.0 Kb (hereinafter referred to as “rpoD fragment”) by electrophoresis on a 0.8% agarose gel and eluted.
  • Primer number Base sequence SEQ ID NO: One 5'-TACTCAAGCTTCGGCTTAAGTGCCGAAGAGC-3 ' One 2 5'-AGGGCGAATTCCTGATCCGGCCTACCGATTA-3 ' 2
  • Copycontrol pCC1BAC vector (EPICENTRE (USA)) was obtained by electrophoresis on 0.8% agarose gel by treatment with HindIII , EcoRI , eluting, ligation with the obtained rpoD fragment and pCC1BAC-rpoD plasmid was produced.
  • PCR was performed using the gDNA obtained in Example 1 as a template to obtain approximately 1.5 kb of the DNA fragment including the promoter region of the E. coli W3110 rpoD to the BamHI site within the gene. PCR using the primers of SEQ ID NOS: 1 and 3, repeated 27 cycles consisting of 30 seconds denaturation at 95 °C, 30 seconds annealing at 56 °C and 1 minute 30 seconds elongation at 72 °C as in Example 1 .
  • the PCR product was digested with BamHI and HindIII , and 1.5Kb DNA fragments (hereinafter, referred to as "patial rpoD fragments") were electrophoresed on 0.8% agarose gel and eluted.
  • Copycontrol pCC1BAC vector was treated with HindIII , BamHI , eluted by electrophoresis on a 0.8% agarose gel, and the resulting patial rpoD fragment was ligated to prepare a pCC1BAC-patial rpoD plasmid.
  • Example 1 the gDNA obtained in Example 1 was used as a template using clonetech's diversify PCR random mutagenesis kit (catalog #: 630703), and the mutagenesis reactions 4 (mutagenesis reactions 4) of Table III described in the instructions.
  • PCR was performed under the conditions. Specifically, PCR was performed using the primers of SEQ ID NOs: 2 and 4, and the cycle consisting of 30 seconds of denaturation at 94 ° C. and 30 seconds of elongation at 68 ° C. was repeated 25 times.
  • a randomized rpoD gene pool (mutated art rpoD DNA pool) into which the base substitution was randomly obtained was obtained as a PCR result, and the PCR result was digested with BamHI and EcoRI , and a 0.5Kb DNA fragment (hereinafter, "art rpoD m fragments ”) were obtained by electrophoresis on 0.8% agarose gel and then eluting.
  • Example 4 Construction of a recombinant vector pCC1BAC-rpoD mutant library comprising a mutated rpoD
  • the pCC1BAC-patial rpoD vector prepared in Example 2 was treated with restriction enzymes BamHI and EcoRI , followed by alkaline phosphatase (NEB).
  • Example 3 Thereafter, the art rpoD m fragments obtained in Example 3 were treated with restriction enzymes BamHI and EcoRI , respectively, and ligated with the restriction enzyme-treated pCC1BAC-patial rpoD to transform into TransforMax EPI300 Electrocompetent E.coli (EPICENTRE). Colonies were selected by incubating in LB medium (LB plate) containing 15 ⁇ g / ml chloramphenicol. The selected colonies were collected and plasmid prep was performed to prepare pCC1BAC-rpoD mutant library.
  • LB medium LB plate
  • the pCC1BAC-rpoD mutant library obtained in Example 4 was introduced by transformation into electro-competent cells of a threonine producing strain KCCM10541.
  • E. coli KCCM10541 (Korean Patent No. 10-0576342) used in this example is E. coli in which the galR gene is inactivated from E. coli KFCC10718 (Korean Patent No. 10-0058286), which is a strain for producing L-threonine.
  • the recombinant microbial library prepared in Example 5 was cultured in the threonine titer medium of Table 4 to confirm the improvement of L-threonine productivity.
  • E. coli KCCM10541 / pCC1BAC-rpoD and E. coli KCCM10541 / pCC1BAC-rpoD mutant library incubated overnight in LB solid medium in a 33 °C incubator, each one platinum in 25 mL titer medium of Table 4 , It was incubated for 48 hours in an incubator at 33 °C, 200 rpm. This process was repeated to evaluate the rpoD mutant library, and among them, clones given the improved yield were selected.
  • the parent strain KCCM 10541 and the control (control) strain KCCM 10541 / pCC1BAC-rpoD strain produced about 30.4 g / L of L-threonine when incubated for 48 hours. .
  • KCCM10541 / pCC1BAC-rpoD m19 with the most improved L-threonine production capacity among the transformed Escherichia coli was deposited as KCCM11560P on August 6, 2014 at the Korea Microorganism Conservation Center.
  • Example 6 several of the rpoD mutations in which the effect of improving the threonine production was confirmed, an experiment was conducted to reconfirm the effect thereof based on the wild type strain.
  • the rpoD mutation identified in Example 6 was transformed into wild type strain W3110 in the same manner as in Example 5, which was named W3110 / pCC1BAC-rpoD m .
  • the pACYC184-thrABC vector was introduced into the strain into which the rpoD mutation was introduced to confer threonine production capacity.
  • pACYC184-thrABC was produced in the following manner.
  • the genomic DNA of Escherichia coli KCCM 10541 (Korean Patent No. 10-0576342, Chinese Patent No. 100379851C), which is a strain for producing L-threonine derived from E. coli KFCC 10718 (Korean Patent No. 10-0058286), was used as a template. PCR reaction was carried out using the primers of 6, and the obtained DNA fragments were separated and purified, followed by purification by HindIII enzyme treatment to prepare thrABC DNA fragments (Table 6). The pACYC184 vector was purified and prepared by HindIII enzyme treatment, followed by ligation to prepare pACYC184-thrABC vector. In this way the produced vector introduced into the W3110 / pCC1BAC rpoD-m strain was produced W3110 / pCC1BAC-rpoD m, pACYC184 -thrABC strain.
  • Example 7 The recombinant microorganism prepared in Example 7 was cultured in a Erlenmeyer flask using the threonine titer medium of Table 7 to confirm the improvement of L-threonine productivity.
  • the wild type strains W3110 / pCC1BAC and W3110 / pCC1BAC-rpoD, W3110 / pCC1BAC-rpoD m2 and W3110 / pCC1BAC-rpoD m19 strains did not produce any L-threonine at 48 hours of incubation. However, it was confirmed that the consumption sugar was reduced in the case of variant introduction strain.
  • the W3110 / pACYC184-thrABC and pCC1BAC strains recombined to produce threonine on a wild type basis produced 1.42 g / L of L-threonine, and the W3110 / pACYC184-thrABC and pCC1BAC-rpoD strains were 1.43 g / L. Produced 2.8% yield.
  • a variation combination vector was prepared for several of the most selected variants.
  • rpoD m24 mutations have been introduced all mutations the amino acid sequence of 446th, 448th, 466th, 527th, 567th variation and mutation of 579th, 612th variation of rpoD m3 of rpoD m16.
  • rpoD m25 (SEQ ID NO: 33) was prepared by combining the 496th amino acid sequence of rpoD m15 with the 579th and 612 mutations of rpoD m1 .
  • rpoD m26 (SEQ ID NO: 34), which combines the 440th , 579, and 612th amino acid mutations with the most selected 440th, 579, and 612th amino acid mutations, and rpoD m27 (SEQ ID NO: 34).
  • rpoD m27 (SEQ ID NO: 34).
  • a combination of the low frequency of the selected mutations were also produced to confirm the effect.
  • 484th variation, 509th variation of rpoD m20 of the 477th variation and rpoD m19 of rpoD m17 rpoD m28 (SEQ ID NO: 36) production and, 459th mutation of 599th variation and rpoD m20 of rpoD m18, rpoD m29 (SEQ ID NO: 37) was prepared by combining the 576th mutation of rpoD m21 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 신규한 변이형 RNA 중합효소 시그마인자 70(σ70) 폴리펩티드, 이를 코딩하는 폴리뉴클레오티드, 상기 폴리펩티드를 포함하는 미생물 및 상기 미생물을 이용한 L-쓰레오닌의 생산 방법에 관한 것이다.

Description

L-쓰레오닌 생산능이 향상된 미생물 및 이를 이용한 L-쓰레오닌 생산방법
본 발명은 신규한 변이형 RNA 중합효소 시그마인자 70(σ70) 폴리펩티드, 이를 코딩하는 폴리뉴클레오티드, 상기 폴리펩티드를 포함하는 미생물 및 상기 미생물을 이용한 L-쓰레오닌의 생산 방법에 관한 것이다.
아미노산 등 유용산물은 인공변이법 또는 유전자 재조합 방법으로 개발된 균주를 이용하여 발효법으로 생산될 수 있다. 특히, 이들의 대량생산을 위한 균주의 개발을 위해 상위 단계에서 직간접적으로 관여하는 유전적 요인들을 찾아내어 적절히 이용한다면 보다 높은 생산수율을 가진 균주를 개발할 수 있다. 대표적인 기술로는 RNA 중합효소의 리쿠르팅 단백질(recruiting protein)에 무작위 돌연변이를 일으킴으로써 세포 내 모든 유전자의 발현을 조절하는 gTME(global transcription machinery engineering) 기술이 있다.
RNA 중합효소(RNA polymerase)는 5개의 소단위체(subunit)로 구성된 거대분자로서, 2개의 알파(α), 베타(β), 베타 프라임(β') 및 오메가(ω)로 구성되어 있으며, 완전효소(holoenzyme)는 α2ββ'ω로 표시된다. 이들 완전효소와 함께 시그마인자(Sigma factor, σ factor)는 원핵생물의 전사시작 인자로서, 유전자의 프로모터에 RNA 중합효소의 특이적인 결합을 가능하게 하며, 분자량에 의해 구별된다. 예를 들어 σ70 은 70kDa의 분자량을 갖고 있는 시그마인자를 지칭한다(Gruber TM, Gross CA, Annu Rev Microbiol. 57: 441-66, 2003).
대장균(Escherichia coli)은 housekeeping 시그마인자인 σ70(RpoD)을 비롯하여, 질소제한 시그마인자인 σ54(RpoN), 기아 관련(starvation/stationary phase) 시그마인자인 σ38(RpoS), 열충격(heat shock) 시그마인자인 σ32(RpoH), 편모시그마인자인 σ28(RpoF), 세포질외/폭염스트레스(extracytoplasmic/extreme heat stress) 시그마인자인 σ24(RpoE), 구연산철(ferric citrate) 시그마인자인 σ19(FecI) 등이 있는 것으로 알려져 있다. 각기 다른 이들 시그마인자들은 각기 다른 환경조건 하에서 활성화된다고 알려져 있으며, 이러한 특성화된 시그마인자들은 특정환경 하에서 전사되는 고유 유전자의 프로모터와 결합하여 그 유전자들의 전사를 조절한다.
이러한 시그마인자 70에 무작위로 변이를 주어 목적 물질의 생산성을 높이는 연구들이 보고되었으며(Metabolic Engineering 9. 2007. 258-267), gTME 기술을 이용하여 대장균에서 타이로신의 생산량을 증가시킨 연구도 보고된 바 있다(미국등록특허 제8735132호).
본 발명자들은 숙주 세포의 성장 저해 없이 보다 높은 농도의 L-쓰레오닌을 생산하는 미생물을 개발하고자 예의 노력한 결과, 신규한 변이형 RNA 중합효소의 시그마인자 70 폴리펩티드를 개발하여 L-쓰레오닌 생산능을 갖는 에스케리키아 속에 도입함으로써 L-쓰레오닌의 생산능이 향상된 균주를 개발할 수 있음을 확인하여 본 발명을 완성하였다.
본 발명의 목적은 서열번호 8의 아미노산 서열로 이루어진 RNA 중합효소 시그마인자 70 활성을 가지는 폴리펩티드의 일부 아미노산을 치환한 변이형 폴리펩티드를 제공하는 것이다.
본 발명의 다른 목적은 상기 폴리펩티드를 코딩하는 폴리뉴클레오티드를 제공하는 것이다.
본 발명의 다른 목적은 상기 폴리펩티드를 포함하도록 형질전환된 미생물을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 미생물을 배양하여 배양물을 수득하는 단계; 및 상기 배양물 또는 미생물로부터 L-쓰레오닌을 회수하는 단계를 포함하는 L-쓰레오닌의 생산방법을 제공하는 것이다.
본 발명으로 L-쓰레오닌 생산 능력을 상향 조절할 수 있는 RNA 중합효소 시그마인자 70의 폴리펩티드의 신규 변이체를 확인할 수 있다. 또한 이를 바탕으로 당해 변이형 폴리펩티드를 발현하는 미생물은 L-쓰레오닌의 생산 수율이 현저히 우수하므로, 산업적인 면에서 생산의 편의성과 함께 제조원가 절감 등의 효과를 기대할 수 있다.
상기의 목적을 달성하기 위한 하나의 양태로서, 본 발명은 신규한 RNA 중합효소 시그마인자 70 활성을 갖는 변이형 폴리펩티드를 제공한다.
본 발명에서 용어, "RNA 중합효소 시그마인자 70"은 RNA 중합효소와 함께 작용하는 전사시작인자로서, 시그마인자(sigma factor) 중의 하나에 해당하는 단백질(σ70)이며 시그마인자 D(RpoD)라고도 한다. 시그마인자는 특정 프로모터의 상류에 존재하는 upstream DNA(UP element)와 여러 가지 전사조절인자와 상호작용하여 전사조절에 관여한다. 특히 시그마인자 70(σ70)은 대장균의 시그마인자 중 대부분의 house keeping 유전자들 및 핵심 유전자들을 조절하는 주된 조절자(regulator)로서, 지수기(exponential phase)의 생장기간 동안 지배적으로 작용하는 시그마인자로 알려져 있다(Jishage M, et al, J Bacteriol 178(18);5447-51,1996). 상기 시그마인자 70 단백질에 대한 정보는 NCBI GenBank와 같은 공지의 데이터베이스로부터 얻을 수 있으며, 그 예로 Accession number가 NP_417539인 단백질일 수 있다. 구체적으로, σ70 단백질은 서열번호 8의 아미노산 서열을 포함할 수 있으며, 본 발명의 σ70와 동일한 활성을 갖는 한 이에 한정되지 않는다.
본 발명에서 용어, "변이형 폴리펩티드"는 야생형 폴리펩티드의 아미노산 서열 일부 또는 전체가 치환된 것으로, 본 발명에서는 RNA 중합효소 시그마인자 70(σ70) 활성을 가지는 폴리펩티드의 아미노산 서열 일부가 치환됨으로써 야생형(wild-type)의 아미노산 서열과 일부 다른 서열을 가진 RNA 중합효소 시그마인자 70(σ70) 활성을 가지는 폴리펩티드이다. 즉, 야생형인 시그마인자 70(σ70) 폴리펩티드가 아닌, L-쓰레오닌 생산능 향상에 기여하는 시그마인자 70(σ70) 변이형 폴리펩티드를 제시하는 것이다.
구체적으로, 상기 변이형 폴리펩티드는 서열번호 8의 아미노산 서열로 이루어진 폴리펩티드에서 하기 위치의 아미노산 중 1 이상의 아미노산이 다른 아미노산으로 치환된, RNA 중합효소 시그마인자 70 활성을 가지는 변이형 폴리펩티드로서, 상기 변이 위치는 시작 메치오닌을 1번째 아미노산으로 하여 이로부터 440번째 내지 450번째 아미노산; 459번째 아미노산; 466번째 아미노산; 470번째 내지 479번째 아미노산; 484번째 아미노산; 495번째 내지 499번째 아미노산; 509번째 아미노산; 527번째 아미노산; 565번째 내지 570번째 아미노산; 575번째 내지 580번째 아미노산; 599번째 아미노산; 및 612번째 아미노산일 수 있다. 즉 상기 변이형 폴리펩티드는 상기 45개의 변이 위치(440 내지450번, 459번, 466번, 470 내지 479번, 484번, 495번 내지 499번, 509번, 527번, 565번 내지 570번, 575번 내지 580번, 599번, 612번) 중에서 1 이상의 위치가 다른 아미노산으로 치환된 폴리펩티드일 수 있다. 그 예로, 1개, 2개, 3개, 4개, 5개, 6개, 7개, 8개, 9개, 10개 이상일 수 있으나, L-쓰레오닌 생산능 향상에 기여하는 RNA 중합효소 시그마인자 70 활성을 갖는 한 제한 없이 포함될 수 있다.
보다 구체적으로 상기 440번째 내지 450번째 아미노산 중에서, 440번째 아미노산, 446번째 아미노산 또는 448번째 아미노산; 상기 470번째 내지 479번째 아미노산 중에서, 474번째 아미노산 또는 477번째 아미노산; 상기 495번째 내지 499번째 아미노산 중에서, 496번째 아미노산 또는 498번째 아미노산; 상기 565번째 내지 570번째 아미노산 중에서, 567번째 아미노산 또는 569번째 아미노산; 상기 575번째 내지 580번째 아미노산 중에서, 576번째 아미노산 또는 579번째 아미노산이 다른 아미노산으로 치환될 수 있으나 이에 한정되지 않는다.
보다 구체적인 아미노산 치환은 시작 메치오닌으로부터 440번째 아미노산이 프롤린으로 치환(T440P); 446번째 아미노산이 프롤린으로 치환(Q446P); 448번째 아미노산이 세린으로 치환(R448S); 459번째 아미노산이 아스파라진으로 치환(T459N); 466번째 아미노산이 세린으로 치환(I466S); 474번째 아미노산이 발린으로 치환(M474V); 477번째 아미노산이 글리신으로 치환(E477G); 484번째 아미노산이 발린으로 치환(A484V); 496번째 아미노산이 아스파라진으로 치환(K496N); 498번째 아미노산이 알지닌으로 치환(L498R); 509번째 아미노산이 메티오닌으로 치환(T509M); 527번째 아미노산이 프롤린으로 치환(T527P); 567번째 아미노산이 발린으로 치환(M567V); 569번째 아미노산이 프롤린으로 치환(T569P); 576번째 아미노산이 글리신으로 치환(N576G); 579번째 아미노산 알지닌(Q579R), 류신(Q579L), 쓰레오닌(Q579T), 이소류신(Q579I), 글리신(Q579G), 알라닌(Q579A), 프롤린(Q579P) 또는 세린(Q579S)으로 치환; 599번째 아미노산이 시스테인으로 치환(R599C); 또는 612번째 아미노산이 글리신(D612G), 티로신(D612Y), 쓰레오닌(D612T), 아스파라진(D612N), 페닐알라닌(D612F), 라이신(D612K), 세린(D612S), 알지닌(D612R), 히스티딘(D612H)으로 치환되거나 뉴클레오티드가 종료코돈(stop codon)으로 치환된 것(D612*)으로 이루어진 것일 수 있으나, 이에 한정되지 않는다. 뉴클레오티드가 종료코돈으로 치환될 경우 아미노산이 존재하지 않을 수 있다.
보다 더욱 구체적으로, 상기 변이형 폴리펩티드는 서열번호 9 내지 37의 아미노산 서열 중 어느 하나의 아미노산 서열을 갖는 폴리펩티드일 수 있으나, 이에 한정되지 않는다.
본 발명의 변이형 폴리펩티드는 상기 서열번호 9 내지 37로 기재한 아미노산 서열뿐만 아니라, 상기 서열과 70% 이상, 구체적으로는 80% 이상, 보다 구체적으로는 90% 이상, 더욱 구체적으로는 99% 이상의 상동성을 나타내는 아미노산 서열로서, 야생형 시그마인자 70(σ70) 단백질에 비하여 L-쓰레오닌의 생산능 향상에 기여한 단백질이라면 제한없이 포함할 수 있다. 이러한 상동성을 갖는 서열로서 실질적으로 변이형 시그마인자 70(σ70) 단백질과 동일하거나 상응하는 생물학적 활성을 갖는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 경우도 본 발명의 범위에 포함됨은 자명하다.
본 발명에서 용어, "상동성"은 단백질을 코딩하는 유전자의 아미노산 또는 염기서열에 있어서, 특정 비교 영역에서 양 서열을 최대한 일치되도록 정렬 (align)시킨 후 서열 간의 염기 또는 아미노산 잔기의 동일한 정도를 의미한다. 상동성이 충분히 높은 경우 해당 유전자의 발현 산물은 동일하거나 유사한 활성을 가질 수 있다. 상기 서열 동일성의 퍼센트는 공지의 서열 비교 프로그램을 사용하여 결정될 수 있으며, 일례로 BLAST(NCBI), CLC Main Workbench (CLC bio), MegAlign™ (DNASTAR Inc) 등을 들 수 있다.
본 발명의 다른 하나의 양태는 상기 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드를 제공한다.
본 발명에서 용어, "폴리뉴클레오티드"는 뉴클레오티드 단위체(monomer)가 공유결합에 의해 길게 사슬모양으로 이어진 뉴클레오티드의 중합체(polymer)로 일정한 길이 이상의 DNA 또는 RNA 가닥으로서, 보다 구체적으로는 상기 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드 단편을 의미한다.
본 발명의 일 구체예에서, RNA 중합효소 시그마70 인자(sigma70 factor)의 아미노산 서열을 코딩하는 유전자는 rpoD 유전자이며, 구체적으로 에스케리키아속 유래, 더욱 구체적으로는 대장균(Escherichia coli) 유래일 수 있다. 상기 야생형 RNA 중합효소 시그마인자 70을 코딩하는 폴리뉴클레오티드는 서열번호 7로 표시될 수 있으나, 이에 제한되지 않는다. 또한, 유전 암호의 축퇴성(genetic code degeneracy)에 기인하여 동일 아미노산 서열을 코딩하는 염기서열 및 이의 변이체 또한 본 발명에 포함되는 것은 자명하다.
또한 본 발명의 변이형 폴리뉴클레오티드 역시 유전 암호의 축퇴성(genetic code degeneracy)에 기인하여 동일 아미노산 서열을 코딩하는 염기서열 및 이의 변이체 또한 본 발명에 포함된다. 구체적으로 서열번호 8의 아미노산 서열로 이루어진 폴리펩티드에서 하기 위치의 아미노산 중 1 이상의 아미노산이 다른 아미노산으로 치환된 폴리펩티드의 아미노산 서열을 코딩하는 염기서열 및 이의 변이체가 포함될 수 있다. 여기서, 상기 변이 위치는 시작 메치오닌을 1번째 아미노산으로 하여 이로부터 440번째 내지 450번째 아미노산; 459번째 아미노산; 466번째 아미노산; 470번째 내지 479번째 아미노산; 484번째 아미노산; 495번째 내지 499번째 아미노산; 509번째 아미노산; 527번째 아미노산; 565번째 내지 570번째 아미노산; 575번째 내지 580번째 아미노산; 599번째 아미노산; 및 612번째 아미노산일 수 있다.
더욱 구체적으로, 상기 변이 위치는 440번째 아미노산이 프롤린으로 치환(T440P); 446번째 아미노산이 프롤린으로 치환(Q446P); 448번째 아미노산이 세린으로 치환(R448S); 459번째 아미노산이 아스파라진으로 치환(T459N); 466번째 아미노산이 세린으로 치환(I466S); 474번째 아미노산이 발린으로 치환(M474V); 477번째 아미노산이 글리신으로 치환(E477G); 484번째 아미노산이 발린으로 치환(A484V); 496번째 아미노산이 아스파라진으로 치환(K496N); 498번째 아미노산이 알지닌으로 치환(L498R); 509번째 아미노산이 메티오닌으로 치환(T509M); 527번째 아미노산이 프롤린으로 치환(T527P); 567번째 아미노산이 발린으로 치환(M567V); 569번째 아미노산이 프롤린으로 치환(T569P); 576번째 아미노산이 글리신으로 치환(N576G); 579번째 아미노산 알지닌(Q579R), 류신(Q579L), 쓰레오닌(Q579T), 이소류신(Q579I), 글리신(Q579G), 알라닌(Q579A), 프롤린(Q579P) 또는 세린(Q579S)으로 치환; 599번째 아미노산이 시스테인으로 치환(R599C); 또는 612번째 아미노산이 글리신(D612G), 티로신(D612Y), 쓰레오닌(D612T), 아스파라진(D612N), 페닐알라닌(D612F), 라이신(D612K), 세린(D612S), 알지닌(D612R), 히스티딘(D612H)으로 치환되거나 뉴클레오티드가 종료코돈(stop codon)으로 치환된 것(D612*)일 수 있으며, 이러한 34종의 아미노산 치환 중 1종 이상이 조합된 것인 변이형 폴리펩티드의 아미노산 서열을 코딩하는 염기서열 및 이의 변이체가 포함될 수 있다.
보다 더욱 구체적으로 상기 서열번호 9 내지 37의 아미노산 서열 중 어느 하나의 아미노산 서열을 코딩하는 염기서열 및 이의 변이체가 포함될 수 있으나 이에 제한되지 않는다.
본 발명의 또 하나의 양태로서, 본 발명은 상기 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드를 포함하는 숙주세포, 상기 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드를 포함하는 벡터로 형질전환된 미생물 또는 상기 변 이형 폴리펩티드가 도입된 미생물을 제공한다. 구체적으로 상기 도입은 형질전환에 의해 이루어질 수 있으나, 이에 제한되지 않는다.
구체적으로 시그마인자 70(σ70) 변이형 폴리펩티드를 포함하는 미생물은 야생형 시그마인자 70(σ70) 폴리펩티드를 포함하는 미생물에 비하여 숙주세포의 성장을 저해함이 없이 L-쓰레오닌의 생산능이 향상되므로, 이들 미생물로부터 L-쓰레오닌을 고수율로 수득할 수 있다.
본 발명에서 용어, "벡터"는 숙주 세포로 염기의 클로닝 및/또는 전이를 위한 임의의 매개물을 말한다. 벡터는 다른 DNA 단편이 결합하여 결합된 단편의 복제를 가져올 수 있는 복제단위(replicon)일 수 있다. "복제단위"란 생체 내에서 DNA 복제의 자가 유닛으로서 기능하는, 즉, 스스로의 조절에 의해 복제가능한, 임의의 유전적 단위(예를 들면, 플라스미드, 파지, 코스미드, 염색체, 바이러스)를 말한다. 상기 "벡터"는 시험관 내, 생체 외 또는 생체 내에서 숙주 세포로 염기를 도입하기 위한 바이러스 및 비-바이러스 매개물을 포함하며, 또한 미니구형 DNA를 포함할 수 있다. 예를 들면, 상기 벡터는 박테리아 DNA 서열을 갖지 않는 플라스미드일 수 있다(Ehrhardt, A. et al. (2003) HumGene Ther 10: 215-25; Yet, N. S. (2002) MoI Ther 5: 731-38; Chen, Z. Y. et al. (2004) Gene Ther 11 : 856-64). 또한, 상기 벡터는 트랜스포존(Annu Rev Genet. 2003; 37:3-29.), 또는 인공 염색체를 포함할 수 있다. 구체적으로는 pACYC177, pACYC184, pCL1920, pECCG117, pUC19, pBR322, pDZ, pCC1BAC 및 pMW118 벡터 등을 사용할 수 있으며 이에 제한되지 않는다.
본 발명에서 용어, "형질전환"은 유전자를 숙주세포 내에 도입하여 숙주세포 내에서 발현시킬 수 있도록 하는 것이며, 형질전환된 유전자는 숙주세포 내에서 발현될 수 있으면 숙주세포의 염색체 내 삽입 또는 염색체 외에 위치하고 있는 것이든 제한하지 않고 포함된다.
상기 유전자는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 폴리뉴클레오티드 구조체인 발현 카세트(expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 유전자에 작동 가능하게 연결되어 있는 프로모터, 전사종결신호, 리보좀 결합부위 및 번역종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 유전자는 그 자체 또는 폴리뉴클레오티드 구조체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으나, 이에 제한되지 않는다.
본 발명에서 용어, "숙주세포" 또는 "미생물"은 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드를 포함하거나, 또는 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드를 포함하는 벡터로 형질전환되어 변이형 폴리펩티드를 발현할 수 있는 세포 또는 미생물로서, 본 발명의 목적상 상기 숙주세포 또는 미생물은 시그마인자 70(σ70) 변이형 폴리펩티드를 포함하여 L-쓰레오닌을 생산할 수 있는 미생물이라면 모두 가능하다. 구체적 예로, 에스케리키아(Escherichia) 속, 세라티아(Serratia) 속, 어위니아(Erwinia) 속, 엔테로박테리아(Enterobacteria) 속, 살모넬라 (Salmonella) 속, 스트렙토마이세스(Streptomyces) 속, 슈도모나스(Pseudomonas) 속, 브레비박테리움(Brevibacterium) 속 또는 코리네박테리움(Corynebacterium) 속 등의 미생물 균주가 포함될 수 있으며, 구체적으로 에스케리키아 속 미생물일 수 있고, 보다 구체적인 예로는 대장균(Escherichia coli)일 수 있으나, 이에 한정되지 않는다.
본 발명의 또 하나의 양태로서, 본 발명은 기술된 미생물을 배지에서 배양하는 단계 및 배양된 미생물 또는 배양 배지로부터 L-쓰레오닌을 회수하는 단계를 포함하는, L-쓰레오닌을 생산하는 방법을 제공한다.
본 발명에서 용어, "배양"은 상기 미생물을 적당히 인공적으로 조절한 환경조건에서 생육시키는 것을 의미한다. 본 발명의 배양과정은 당업계에 알려진 적당한 배지와 배양조건에 따라 이루어질 수 있다. 구체적인 배양 온도, 배양 시간 및 배지의 pH 등의 조건은 당업자의 일반적인 지식 또는 종래에 공지된 방법에 따라서 수행될 수 있으며, 이에 따라 적절하게 조절될 수 있다. 구체적으로는 이들 공지된 배양 방법은 문헌[Chmiel; Bioprozesstechnik 1. Einfuhrung indie Bioverfahrenstechnik(Gustav Fischer Verlag, Stuttgart, 1991), 및 Storhas; Bioreaktoren und periphere Einrichtungen(Vieweg Verlag, Braunschweig / Wiesbaden, 1994)]에 상세히 기술되어 있다. 또한, 배양 방법에는 회분식 배양(batch culture), 연속식 배양(cintinuous culture) 및 유가식 배양(fed-batch culture)이 포함될 수 있으며, 구체적으로는 배치 공정 또는 주입 배치 또는 반복 주입 배치 공정(fed batch or repeated fed batch process)에서 연속식으로 배양할 수 있으나, 이에 제한되는 것은 아니다.
배양에 사용되는 배지는 적절한 방식으로 특정 균주의 요건을 충족해야 하며, 상기 배지에서 사용될 수 있는 탄소원으로는 글루코즈, 사카로즈, 락토즈, 프락토즈, 말토즈, 전분, 셀룰로즈와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산 등이 포함될 수 있다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있으며, 이에 한정되지 않는다. 사용될 수 있는 질소원으로는 펩톤, 효모 추출물, 육즙, 맥아 추출물, 옥수수 침지액, 대두밀 및 요소 또는 무기 화합물, 예를 들면 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄 등이 포함될 수 있고, 질소원 또한 개별적으로 또는 혼합물로서 사용할 수 있으며, 이에 한정되지 않는다. 사용될 수 있는 인원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염 등이 포함될 수 있다. 또한, 배양 배지는 성장에 필요한 황산마그네슘 또는 황산철과 같은 금속염을 함유할 수 있다. 마지막으로, 상기 물질에 더하여 아미노산 및 비타민과 같은 필수 성장 물질이 사용될 수 있다. 또한, 배양 배지에 적절한 전구체들이 사용될 수 있다. 상기된 원료들은 배양과정에서 배양물에 적절한 방식에 의해 회분식으로 또는 연속식으로 첨가될 수 있으나 이에 한정되지 않는다.
또한, 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산 및 황산과 같은 화합물을 배양물에 적절한 방식으로 첨가하여, 배양물의 pH를 조정할 수 있다. 배양 중에는 지방산 폴리클리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 또한 배양물의 호기 상태를 유지하기 위하여, 배양물 내로 산소 또는 산소 함유 기체를 주입하거나 혐기 및 미호기 상태를 유지하기 위해 기체의 주입 없이 혹은 질소, 수소 또는 이산화탄소 가스를 주입할 수 있다. 배양물의 온도는 보통 27℃ 내지 37℃, 구체적으로는 30℃ 내지 35℃이다. 배양기간은 원하는 유용 물질의 생산량이 수득될 때까지 계속 될 수 있으며, 구체적으로는 10 내지 100시간일 수 있다. L-쓰레오닌은 배양 배지 중으로 배출되거나, 미생물 중에 포함되어 있을 수 있다.
또한, 상기 미생물 또는 배양 배지로부터 L-쓰레오닌을 회수하는 방법은 당업계에 널리 알려져 있다. 예를 들어, 여과, 음이온 교환 크로마토그래피, 결정화 및 HPLC 등이 사용될 수 있으나, 이들 예에 한정되는 것은 아니다.
이하, 본 발명을 하기 예에서 보다 구체적으로 설명한다. 그러나 이들 예는 본 발명의 이해를 돕기 위한 것일 뿐, 이들에 의해 본 발명이 한정되는 것은 아니다.
실시예 1. 재조합 벡터 pCC1BAC-rpoD의 제작
이하, 본 발명을 하기 예에서 보다 구체적으로 설명한다. 그러나 이들 예는 본 발명의 이해를 돕기 위한 것일 뿐, 이들에 의해 본 발명이 한정되는 것은 아니다.
실시예 1. 재조합 벡터 pCC1BAC-rpoD의 제작
rpoD 유전자(NCBI Gene ID: 947567, 서열번호 7)를 포함하는 DNA 단편 약 2.0kb를 얻기 위해, Qiagen(사)의 Genomic-tip 시스템을 이용하여 대장균(Escherichia coli) 야생주인 W3110의 염색체 DNA(gDNA)를 추출하였고, 상기 gDNA를 주형으로 PCR HL premix kit(BIONEER사 제품, 이하 동일함)를 사용하여 중합효소 연쇄반응(polymerase chain reaction, 이하 "PCR"이라 함)을 수행하였다.
rpoD 유전자를 증폭시키기 위한 PCR은 서열번호 1 및 2의 프라이머를 사용하였고, 95℃에서 30초의 변성(denaturation), 56℃에서 30초의 어닐링(annealing) 및 72℃에서 2분의 신장(elongation)으로 이루어진 사이클을 27회 반복 수행하였다.
상기 PCR 결과물을 HindIII, EcoRI으로 절단하여 약 2.0Kb 크기의 DNA 단편(이하, "rpoD 단편"이라 명명함)을 0.8% 아가로스 겔(agarose gel)에서 전기영동한 후 용리하여 수득하였다.
프라이머 번호 염기 서열 서열번호
1 5'-TACTCAAGCTTCGGCTTAAGTGCCGAAGAGC-3' 1
2 5'-AGGGCGAATTCCTGATCCGGCCTACCGATTA-3' 2
이후, Copycontrol pCC1BAC vector (EPICENTRE(USA))를 HindIII, EcoRI으로 처리하여 0.8% 아가로스 겔에서 전기영동한 후 용리하여 수득하고, 상기에서 수득한 rpoD 단편과 라이게이션(ligation)시켜 pCC1BAC-rpoD 플라스미드를 제작하였다.
실시예 2: 재조합 벡터 pCC1BAC-patial rpoD의 제작
대장균 W3110 rpoD 중 프로모터 부위부터 유전자 내부의 BamHI 사이트까지 포함하는 DNA 단편 약 1.5 kb를 얻기 위해, 실시예 1에서 획득한 gDNA를 주형으로 PCR을 수행하였다. PCR은 서열번호 1 및 3의 프라이머를 사용하였고, 실시예 1에서와 같이 95℃에서 30초의 변성, 56℃에서 30초의 어닐링 및 72℃에서 1분 30초의 신장으로 이루어진 사이클을 27회 반복 수행하였다.
상기 PCR 결과물을 BamHIHindIII로 절단하여 1.5Kb 크기의 DNA 단편(이하, "patial rpoD 단편"이라 명명함)을 0.8% 아가로스 겔에서 전기영동한 후 용리하여 수득하였다.
프라이머번호 염기 서열 서열번호
1 5'-TACTCAAGCTTCGGCTTAAGTGCCGAAGAGC-3' 1
3 5'-GACGGATCCACCAGGTTGCGTA-3' 3
이후, Copycontrol pCC1BAC vector를 HindIII, BamHI으로 처리하여 0.8% 아가로스 겔에서 전기영동으로 용리하여 수득한 후, 상기에서 수득한 patial rpoD 단편을 라이게이션시켜 pCC1BAC-patial rpoD 플라스미드를 제작하였다.
실시예 3: error-prone PCR을 이용한 rpoDm 단편의 제작
W3110의 rpoD 유전자 중 보존영역(conserved region) 2.4, 3 및 4에 무작위 변이를 도입하기 위하여, 유전자 내부에 존재하는 BamHI 부분에서부터 유전자 코딩 말단까지의 부분에 무작위 변이가 도입된 rpoD 단편들의 DNA pool을 얻고자 하였다.
이를 위해, 상기 실시예 1에서 수득한 gDNA를 주형으로 clonetech사의 diversify PCR random mutagenesis kit(catalog #: 630703)를 사용하였으며, 사용 설명서에 기재되어 있는 Table Ⅲ의 돌연변이생성 반응 4(mutagenesis reactions 4)의 조건으로 PCR을 수행하였다. 구체적으로, 서열번호 2 및 4의 프라이머를 사용하여 PCR을 수행하였으며, 94℃에서 30초의 변성, 68℃에서 30초의 신장으로 이루어진 사이클을 25회 반복 수행하였다.
프라이머 번호 염기 서열 서열 번호
2 5'-AGGGCGAATTCCTGATCCGGCCTACCGATTA-3' 2
4 5'-AACCTGGTGGATCCGTCAGGCGATC-3' 4
그 결과, 염기 치환변이가 무작위적으로 도입된 rpoD 유전자 변이체 pool(mutated art rpoD DNA pool)을 PCR 결과물로 얻었고, 상기 PCR 결과물을 BamHIEcoRI으로 절단하여 0.5Kb 크기의 DNA 단편(이하, "art rpoDm 단편"이라 명명함)을 0.8% 아가로스 겔에서 전기영동한 후 용리하여 수득하였다.
실시예 4: 변이된 rpoD를 포함하는 재조합 벡터 pCC1BAC-rpoD mutant library의 제작
상기 실시예 2에서 제작한 pCC1BAC-patial rpoD 벡터를 제한효소 BamHIEcoRI으로 처리한 후, 알칼리성 인산가수분해효소(alkaline phosphatase, NEB)를 처리하였다.
이후, 상기 실시예 3에서 수득한 art rpoDm 단편들을 각각 제한효소 BamHI, EcoRI으로 처리하고 상기의 제한효소 처리된 pCC1BAC-patial rpoD와 라이게이션시켜 TransforMax EPI300 Electrocompetent E.coli (EPICENTRE)에 형질전환(transformation)하여 15 ㎍/ml의 클로람페니콜(chloramphenicol)이 포함된 LB 배지(LB plate)에서 배양하여 콜로니를 선별하였다. 이렇게 선별된 콜로니들을 모아 plasmid prep을 수행하여 pCC1BAC-rpoD mutant library를 제작하였다.
실시예 5: pCC1BAC-rpoD mutant library의 쓰레오닌 생산 균주 도입
실시예 4에서 수득된 pCC1BAC-rpoD mutant library를 쓰레오닌 생산 균주인 KCCM10541의 electro-competent cell에 형질전환(transformation)시켜 도입하였다.
참고적으로, 본 실시예에서 사용된 대장균 KCCM10541(대한민국등록특허 10-0576342)은 L-쓰레오닌 생산용 균주인 대장균 KFCC10718(대한민국등록특허 10-0058286)로부터 galR 유전자가 불활성화된 대장균이다.
실시예 6: 재조합 미생물의 L-쓰레오닌 생산성 비교 및 염기서열 확인
상기 실시예 5에서 제조한 재조합 미생물 library를 하기 표 4의 쓰레오닌 역가 배지에서 배양하여 L-쓰레오닌 생산성 향상을 확인하였다.
조성물 농도 (리터당)
포도당 70 g
KH2PO4 2 g
(NH4)2SO4 25 g
MgSO4·7H2O 1 g
FeSO4·7H2O 5 mg
MnSO4·4H2O 5 mg
DL-메티오닌 0.15g
효모액기스 2 g
탄산칼슘 30 g
pH 6.8
구체적으로, 33℃ 배양기(incubator) 내 LB 고체 배지에서 밤새 배양한 대장균 KCCM10541/pCC1BAC-rpoD 및 대장균 KCCM10541/pCC1BAC-rpoD mutant library를 각각 상기 표 4의 25 mL 역가 배지에 한 백금이씩 접종한 다음, 이를 33℃, 200 rpm의 배양기에서 48시간 동안 배양하였다. 이러한 과정을 반복하여 rpoD mutant library에 대한 평가를 수행하였고, 그 중 수율 향상이 부여된 clone들을 선별하였다.
Strain L-Threonine (g/L) Increase rate of L-threonine Conc. (%) Position of modification SEQ ID NO
KCCM 10541 (parent strain) 30.4 -
KCCM 10541/pCC1BAC-rpoD 30.4 - 8
KCCM 10541/pCC1BAC-rpoDm1 32.8 7.9 579, 612 9
KCCM 10541/pCC1BAC-rpoDm2 33.0 8.6 579, 612 10
KCCM 10541/pCC1BAC-rpoDm3 33.6 10.5 579, 612 11
KCCM 10541/pCC1BAC-rpoDm4 34.0 11.8 579, 612 12
KCCM 10541/pCC1BAC-rpoDm5 33.4 9.9 579, 612 13
KCCM 10541/pCC1BAC-rpoDm6 34.0 11.8 579, 612 14
KCCM 10541/pCC1BAC-rpoDm7 33.5 10.2 579, 612 15
KCCM 10541/pCC1BAC-rpoDm8 32.5 6.9 579, 612 16
KCCM 10541/pCC1BAC-rpoDm9 32.0 5.3 579, 612 17
KCCM 10541/pCC1BAC-rpoDm10 32.0 5.3 579, 612 18
KCCM 10541/pCC1BAC-rpoDm11 32.1 5.6 579, 612 19
KCCM 10541/pCC1BAC-rpoDm12 32.0 5.3 579, 612 20
KCCM 10541/pCC1BAC-rpoDm13 34.0 11.8 579, 612 21
KCCM 10541/pCC1BAC-rpoDm14 34.2 12.6 440 22
KCCM 10541/pCC1BAC-rpoDm15 34.0 11.8 440, 496 23
KCCM 10541/pCC1BAC-rpoDm16 32.4 6.6 446, 448, 466, 527, 567 24
KCCM 10541/pCC1BAC-rpoDm17 32.5 7.1 440, 477, 498 25
KCCM 10541/pCC1BAC-rpoDm18 31.9 4.8 440, 599 26
KCCM 10541/pCC1BAC-rpoDm19 33.8 11.3 440, 484 27
KCCM 10541/pCC1BAC-rpoDm20 34.0 11.9 459, 474, 509 28
KCCM 10541/pCC1BAC-rpoDm21 31.9 4.8 440, 576 29
KCCM 10541/pCC1BAC-rpoDm22 33.9 11.6 440, 569 30
그 결과, 상기 표 5에 기재된 바와 같이 모균주인 KCCM 10541와 대조군(컨트롤) 균주인 KCCM 10541/pCC1BAC-rpoD 균주는 48시간 배양하였을 경우, 약 30.4 g/L 의 L-쓰레오닌을 생산하였다.
반면, pCC1BAC-rpoD mutant library가 도입된 재조합 대장균은 31.9 내지 34.2 g/L의 L-쓰레오닌을 생산함으로써, 모균주에 비해 향상된 L-쓰레오닌 생산능을 나타내었다. 이는 모균주에 비해 L-쓰레오닌 생산능이 4.8 내지 12.6 % 향상된 것이다.
또한 상기 L-쓰레오닌 생산능이 향상된 대장균의 변이형 rpoD 유전자의 변이 위치와 각 변이의 치환된 아미노산을 확인하기 위하여 시퀀싱을 진행하였고, 그 결과도 표 5에 기재하였다.
한편, 상기 형질전환된 대장균 중 L-쓰레오닌 생산능이 가장 많이 향상된 KCCM10541/pCC1BAC-rpoDm19으로 명명된 재조합 대장균을 KCCM11560P로 2014년 8월 6일자로 한국미생물보존센터에 기탁하였다.
실시예 7: 선별 rpoD 변이가 도입된 야생형 균주 및 이에 쓰레오닌 생합성 경로를 강화시킨 균주의 제작
상기 실시예 6에서 쓰레오닌 생산능 향상 효과가 확인된 rpoD 변이 중 몇 개의 변이를 야생형 균주 기반으로 이의 효과를 재확인하는 실험을 진행하였다. 야생형 균주 W3110에 실시예 6에서 확인된 rpoD 변이를 실시예 5와 같은 방법으로 형질전환하였고, 이를 W3110/pCC1BAC-rpoDm으로 명명하였다. 상기 rpoD 변이가 도입된 균주에 pACYC184-thrABC벡터를 도입하여 쓰레오닌 생산능을 부여하였다. pACYC184-thrABC는 다음과 같은 방법으로 제작되었다.
대장균 KFCC 10718(대한민국등록특허 10-0058286)에서 유래된 L-쓰레오닌 생산용 균주인 대장균 KCCM 10541(대한민국등록특허 10-0576342, 중국 등록특허 제100379851C)의 genomic DNA를 주형으로 서열번호 5와 6의 프라이머를 사용하여 PCR 반응을 수행하고, 수득한 DNA 단편을 분리 정제한 후 HindIII 엔자임 처리하여 다시 정제하여 thrABC DNA단편을 준비하였다 (표 6). pACYC184 벡터를 HindIII 엔자임 처리하여 정제하여 준비한 후 ligation하여 pACYC184-thrABC 벡터를 제작하였다. 이렇게 제작된 벡터를 W3110/pCC1BAC-rpoDm 균주에 도입하여 W3110/ pCC1BAC-rpoDm, pACYC184-thrABC균주를 제작하였다.
서열번호 프라이머 서열
5 5'-CGAGAAGCTTAGCTTTTCATTCTGACTGCA-3'
6 5'-CGAGAAGCTTATTGAGATAATGAATAGATT-3'
실시예 8: 야생형 균주, 야생형 균주 기반 rpoD변이 재조합 미생물과 이에 쓰레오닌 생합성 경로를 강화한 균주의 L-쓰레오닌 생산성 비교
상기 실시예 7에서 제조한 재조합 미생물을 표 7의 쓰레오닌 역가 배지를 이용하여 삼각플라스크에서 배양하여 L-쓰레오닌 생산성 향상을 확인하였다.
조성물 농도 (리터당)
포도당 70 g
KH2PO4 2 g
(NH4)2SO4 25 g
MgSO47H2O 1 g
FeSO47H2O 5 mg
MnSO44H2O 5 mg
효모액기스 2 g
탄산칼슘 30 g
pH 6.8
33℃ 배양기(incubator)에서 LB 고체 배지 중에 밤새 배양한 W3110/pCC1BAC-rpoDm, W3110/pACYC184-thrABC, pCC1BAC, W3110/pACYC184-thrABC, pCC1BAC-rpoDm 각각의 균주를 표 7의 25 mL 역가 배지에 한 백금이씩 접종한 다음, 이를 33℃, 200 rpm의 배양기에서 48시간 동안 배양하였으며, 이의 결과를 표 8에 나타내었다. 
균주 OD 소모당 (g/L) L-쓰레오닌(g/L) 수율(%)
W3110/pCC1BAC 15.4 52.2 0 0
W3110/pCC1BAC-rpoD 15.4 52.2 0 0
W3110/pCC1BAC-rpoDm2 15.0 50.6 0 0
W3110/pCC1BAC-rpoDm19 15.5 52.0 0 0
W3110/pACYC184-thrABC, pCC1BAC 13.4 50.1 1.42 2.8
W3110/pACYC184-thrABC, pCC1BAC-rpoD 13.3 50.2 1.43 2.8
W3110/pACYC184-thrABC, pCC1BAC-rpoDm2 12.5 51.2 1.52 3.0
W3110/pACYC184-thrABC, pCC1BAC-rpoDm19 11.2 51.0 1.56 3.1
표 8에서 나타낸 바와 같이, 야생형 균주인 W3110/pCC1BAC 및 W3110/pCC1BAC-rpoD, W3110/pCC1BAC-rpoDm2, W3110/pCC1BAC-rpoDm19 균주는 48시간 배양하였을 경우 L-쓰레오닌을 전혀 생산하지 못했으나 변이체 도입 균주의 경우 소모당이 감소하였음을 확인하였다. 야생형 기반에서 쓰레오닌을 생산할 수 있도록 재조합된 W3110/pACYC184-thrABC, pCC1BAC 균주는 1.42 g/L의 L-쓰레오닌을 생산하였고, W3110/pACYC184-thrABC, pCC1BAC-rpoD 균주는 1.43 g/L를 생산하여 2.8 %의 수율을 나타내었다.
반면, 상기 야생형 기반 재조합 균주에rpoD 변이가 도입된 W3110/pACYC184-thrABC, pCC1BAC-rpoDm2, W3110/pACYC184-thrABC, pCC1BAC-rpoDm19 균주의 경우 48시간 동안 각각 51.2 g/L, 51.0 g/L의 당을 소비하고 1.50 g/L와 1.53 g/L의 쓰레오닌을 생산하여 3.0 %, 3.1 %의 쓰레오닌 수율을 나타내었다. 즉, rpoD 변이가 도입됨으로써 쓰레오닌 수율은 약 7~10% 향상됨을 확임함으로써 본 발명에서 선별된 rpoD 변이가 유효 변이임을 재확인하였다.
실시예 9. 선별 rpoD 변이들의 조합에 의한 L-쓰레오닌 생산능 확인
선별된 변이 중 각각 다른 개체에 포함되어 있는 변이들의 조합에 의한 쓰레오닌 생산능 변화를 확인하기 위하여 가장 많이 선별된 몇 가지 변이들에 대하여 변이 조합 벡터를 제작하였다. 위에서 평가된 rpoDm2 변이와 rpoDm14 변이를 조합하여 아미노산 서열 440번째, 579번째, 612번째 위치의 변이가 조합된 rpoDm23(서열번호 31)변이를 제작하였고, 변이가 가장 많이 도입된 rpoDm16 변이와 rpoDm3 변이들이 조합된 rpoDm24(서열번호 32)를 제작하였다. rpoDm24 변이는 rpoDm16의 변이인 아미노산 서열 446번째, 448번째, 466번째, 527번째, 567번째 변이와 rpoDm3의 변이인 579번째, 612번째 변이가 모두 도입되었다.
또한 3region 변이 중 rpoDm15의 아미노산 서열 496번째 변이와 rpoDm1의 변이인 579번째, 612 변이를 조합하여 rpoDm25(서열번호 33)변이를 제작하였다.
또한 각각 다른 변이들에 존재하는 아미노산 변이들의 조합도 제작하여 그 효과를 확인해 보았다. 예를 들어, 가장 많이 선별된 440번째, 579번째, 612번째 아미노산 변이를 조합하여 440번째, 579번째 변이가 조합된 rpoDm26(서열변호 34), 440번째, 612번째가 조합된 rpoDm27(서열변호35)를 제작하였다.
또한 선별된 변이 중 빈도수가 낮았던 변이들에 대한 조합도 제작하여 효과를 확인해 보았다. 이를테면, rpoDm17의 477번째 변이와 rpoDm19의 484번째 변이, rpoDm20의 509번째 변이를 조합하여 rpoDm28(서열번호36)을 제작하고, rpoDm18의 599번째 변이와 rpoDm20의 459번째 변이, rpoDm21의 576번째 변이를 조합하여 rpoDm29(서열번호37)을 제작하였다.
이렇게 제작된 rpoDm23, rpoDm24, rpoDm25, rpoDm26, rpoDm27, rpoDm28, rpoDm29 변이가 도입된 벡터를 상기 실시예 7에서 제작된 pACYC184-thrABC 벡터와 함께 W3110에 도입하여 표7의 배지를 이용하여 역가 평가를 진행하였다. 결과는 하기 표 9와 같다.
균주 OD 소모당 (g/L) L-쓰레오닌(g/L) 수율(%) 변이위치 서열번호
W3110/pACYC184-thrABC, pCC1BAC 13.2  50.5 1.40 2.8
W3110/pACYC184-thrABC, pCC1BAC-rpoD 13.1  50.8 1.44 2.8
W3110/pACYC184-thrABC, pCC1BAC-rpoDm23 13.6 52.5 1.61 3.1 440, 579, 612 31
W3110/pACYC184-thrABC, pCC1BAC-rpoDm24 12.0 49.5 1.50 3.0 446, 448, 466, 527, 567, 579, 612 32
W3110/pACYC184-thrABC, pCC1BAC-rpoDm25 12.9 52.5 1.52 2.9 496, 579, 612 33
W3110/pACYC184-thrABC, pCC1BAC-rpoDm26 13.3 51.4 1.52 3.0 440, 579 34
W3110/pACYC184-thrABC, pCC1BAC-rpoDm27 13.9 50.5 1.54 3.0 440, 612 35
W3110/pACYC184-thrABC, pCC1BAC-rpoDm28 12.8 48.5 1.39 2.9 477, 484, 509 36
W3110/pACYC184-thrABC, pCC1BAC-rpoDm29 12.6 50.3 1.49 3.0 459, 576, 599 37
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 예들은 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위의 의미 및 범위, 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
Figure PCTKR2015009381-appb-I000001

Claims (11)

  1. 서열번호 8의 아미노산 서열로 이루어진 폴리펩티드에서 하기 위치의 아미노산 중 1 이상의 아미노산이 다른 아미노산으로 치환된, RNA 중합효소 시그마인자 70 활성을 가지는 변이형 폴리펩티드;
    시작 메치오닌을 1번째 아미노산으로 하여 이로부터
    440번째 내지 450번째 아미노산; 459번째 아미노산; 466 번째 아미노산; 470번째 내지 479번째 아미노산; 484번째 아미노산; 495번째 내지 499번째 아미노산; 509번째 아미노산; 527번째 아미노산; 565번째 내지 570번째 아미노산; 575번째 내지 580번째 아미노산; 599번째 아미노산; 및 612번째 아미노산.
  2. 제1항에 있어서, 상기 아미노산 치환은 440번째 아미노산; 446번째 아미노산; 448번째 아미노산; 459번째 아미노산; 466번째 아미노산; 474번째 아미노산; 477번째 아미노산; 484번째 아미노산; 496번째 아미노산; 498번째 아미노산; 509번째 아미노산; 527번째 아미노산; 567번째 아미노산; 569번째 아미노산; 576번째 아미노산; 579번째 아미노산; 599번째 아미노산; 및 612번째 아미노산으로 이루어진 아미노산 중 1종 이상의 아미노산이 다른 아미노산으로 치환된 변이형 폴리펩티드.
  3. 제1항에 있어서, 하기의 아미노산 치환 중 1종 이상이 조합된 것인 변이형 폴리펩티드;
    440번째 아미노산이 프롤린으로 치환; 446번째 아미노산이 프롤린으로 치환; 448번째 아미노산이 세린으로 치환; 459번째 아미노산이 아스파라진으로 치환; 466번째 아미노산이 세린으로 치환; 474번째 아미노산이 발린으로 치환; 477번째 아미노산이 글리신으로 치환; 484번째 아미노산이 발린으로 치환; 496번째 아미노산이 아스파라진으로 치환; 498번째 아미노산이 알지닌으로 치환; 509번째 아미노산이 메티오닌으로 치환; 527번째 아미노산이 프롤린으로 치환; 567번째 아미노산이 발린으로 치환; 569번째 아미노산이 프롤린으로 치환; 576번째 아미노산이 글리신으로 치환; 579번째 아미노산 알지닌, 류신, 쓰레오닌, 이소류신, 글리신, 알라닌, 프롤린 또는 세린으로 치환; 599번째 아미노산이 시스테인으로 치환; 및 612번째 아미노산이 글리신, 티로신, 쓰레오닌, 아스파라진, 페닐알라닌, 라이신, 세린, 알지닌, 히스티딘으로 치환되거나 종료코돈(stop codon)으로 치환.
  4. 제1항에 있어서, 상기 변이형 폴리펩티드는 서열번호 9 내지 37의 아미노산 서열 중 어느 하나의 아미노산 서열을 갖는 것인 변이형 폴리펩티드.
  5. 제1항의 변이형 폴리펩티드를 코딩하는 폴리뉴클레오티드.
  6. 제5항의 폴리뉴클레오티드를 포함하는 숙주 세포.
  7. 서열번호 8의 아미노산 서열로 이루어진 폴리펩티드에서 하기 위치의 아미노산 중 1 이상의 아미노산이 다른 아미노산으로 치환된, RNA 중합효소 시그마인자 70 활성을 가지는 변이형 폴리펩티드가 도입된 L-쓰레오닌 생산능이 향상된 에스케리키아속 미생물;
    시작 메치오닌을 1번째 아미노산으로 하여 이로부터
    440번째 내지 450번째 아미노산; 459번째 아미노산; 466 번째 아미노산; 470번째 내지 479번째 아미노산; 484번째 아미노산; 495번째 내지 499번째 아미노산; 509번째 아미노산; 527번째 아미노산; 565번째 내지 570번째 아미노산; 575번째 내지 580번째 아미노산; 599번째 아미노산; 및 612번째 아미노산.
  8. 제7항에 있어서, 상기 아미노산 치환은 440번째 아미노산; 446번째 아미노산; 448번째 아미노산; 459번째 아미노산; 466번째 아미노산; 474번째 아미노산; 477번째 아미노산; 484번째 아미노산; 496번째 아미노산; 498번째 아미노산; 509번째 아미노산; 527번째 아미노산; 567번째 아미노산; 569번째 아미노산; 576번째 아미노산; 579번째 아미노산; 599번째 아미노산; 및 612번째 아미노산 중 1종 이상의 아미노산이 다른 아미노산으로 치환된 L-쓰레오닌 생산능이 향상된 에스케리키아(Escherichia)속 미생물.
  9. 제7항에 있어서, 하기의 아미노산 치환 중 1종 이상이 조합된 것인 L-쓰레오닌 생산능이 향상된 에스케리키아속 미생물;
    440번째 아미노산이 프롤린으로 치환; 446번째 아미노산이 프롤린으로 치환; 448번째 아미노산이 세린으로 치환; 459번째 아미노산이 아스파라진으로 치환; 466번째 아미노산이 세린으로 치환; 474번째 아미노산이 발린으로 치환; 477번째 아미노산이 글리신으로 치환; 484번째 아미노산이 발린으로 치환; 496번째 아미노산이 아스파라진으로 치환; 498번째 아미노산이 알지닌으로 치환; 509번째 아미노산이 메티오닌으로 치환; 527번째 아미노산이 프롤린으로 치환; 567번째 아미노산이 발린으로 치환; 569번째 아미노산이 프롤린으로 치환; 576번째 아미노산이 글리신으로 치환; 579번째 아미노산 알지닌, 류신, 쓰레오닌, 이소류신, 글리신, 알라닌, 프롤린 또는 세린으로 치환; 599번째 아미노산이 시스테인으로 치환; 및 612번째 아미노산이 글리신, 티로신, 쓰레오닌, 아스파라진, 페닐알라닌, 라이신, 세린, 알지닌, 히스티딘으로 치환되거나 종료코돈(stop codon)으로 치환.
  10. 제7항에 있어서, 상기 미생물은 대장균(Escherichia coli)인 L-쓰레오닌 생산능이 향상된 에스케리키아속 미생물.
  11. 제7항 내지 제10항 중 어느 한 항에 따른 미생물을 배지에서 배양하는 단계; 및 상기 배양된 미생물 또는 배양 배지로부터 L-쓰레오닌을 회수하는 단계를 포함하는, L-쓰레오닌을 생산하는 방법.
PCT/KR2015/009381 2014-09-05 2015-09-04 L-쓰레오닌 생산능이 향상된 미생물 및 이를 이용한 l-쓰레오닌 생산방법 WO2016036209A1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US15/117,437 US10760108B2 (en) 2014-09-05 2015-09-04 Modified RNA polymerase sigma factor 70 polypeptide
EP15837846.3A EP3144385B1 (en) 2014-09-05 2015-09-04 Microorganism with improved l-threonine productivity, and method for producing l-threonine by using same
CN201580006567.2A CN106029879B (zh) 2014-09-05 2015-09-04 具有提高的l-苏氨酸生产能力的微生物以及使用其生产l-苏氨酸的方法
ES15837846T ES2820583T3 (es) 2014-09-05 2015-09-04 Microorganismo con productividad mejorada de l-treonina, y método de producción de L-treonina mediante el uso del mismo
PL15837846T PL3144385T3 (pl) 2014-09-05 2015-09-04 Mikroorganizm o ulepszonej produktywności l-treoniny i sposób produkcji l-treoniny z jego wykorzystaniem
BR112016015218-2A BR112016015218B1 (pt) 2014-09-05 2015-09-04 Microrganismo com capacidade melhorada de produção de l-treonina e método para produzir l-treonina com o uso desse
US16/447,814 US10968467B2 (en) 2014-09-05 2019-06-20 Modified RNA polymerase sigma factor 70 polypeptide
US16/930,082 US11312982B2 (en) 2014-09-05 2020-07-15 Microorganism with improved L-threonine producing capability, and method for producing L-threonine by using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140119138 2014-09-05
KR10-2014-0119138 2014-09-05
KR10-2015-0125440 2015-09-04
KR1020150125440A KR101865998B1 (ko) 2014-09-05 2015-09-04 L-쓰레오닌 생산능이 향상된 미생물 및 이를 이용한 l-쓰레오닌 생산방법

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US15/117,437 A-371-Of-International US10760108B2 (en) 2014-09-05 2015-09-04 Modified RNA polymerase sigma factor 70 polypeptide
US16/447,814 Continuation US10968467B2 (en) 2014-09-05 2019-06-20 Modified RNA polymerase sigma factor 70 polypeptide
US16/930,082 Division US11312982B2 (en) 2014-09-05 2020-07-15 Microorganism with improved L-threonine producing capability, and method for producing L-threonine by using the same

Publications (1)

Publication Number Publication Date
WO2016036209A1 true WO2016036209A1 (ko) 2016-03-10

Family

ID=55440151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009381 WO2016036209A1 (ko) 2014-09-05 2015-09-04 L-쓰레오닌 생산능이 향상된 미생물 및 이를 이용한 l-쓰레오닌 생산방법

Country Status (2)

Country Link
US (1) US11312982B2 (ko)
WO (1) WO2016036209A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182413A1 (ko) 2018-03-23 2019-09-26 씨제이제일제당 (주) L-아미노산을 포함하는 과립 및 이의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100608085B1 (ko) * 2004-02-05 2006-08-02 씨제이 주식회사 tyrR 유전자가 불활성화된 L-쓰레오닌 생성 미생물,그를 제조하는 방법 및 상기 미생물을 이용한L-쓰레오닌의 제조방법
US20110300588A1 (en) * 2010-05-07 2011-12-08 Massachusetts Institute Of Technology Mutations and genetic targets for enhanced l-tyrosine production
KR20140102393A (ko) * 2013-02-13 2014-08-22 씨제이제일제당 (주) L-쓰레오닌 생산능을 가지는 재조합 에스케리키아 속 미생물 및 이를 이용한 l-쓰레오닌의 생산방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10162729A1 (de) 2001-12-20 2003-07-03 Degussa Allele des sigA-Gens aus coryneformen Bakterien
US9267118B2 (en) 2007-08-17 2016-02-23 Massachusetts Institute Of Technology Methods for identifying bacterial strains that produce L-tyrosine
KR100966324B1 (ko) * 2008-01-08 2010-06-28 씨제이제일제당 (주) 향상된 l-쓰레오닌 생산능을 갖는 대장균 및 이를 이용한l-쓰레오닌의 생산 방법
EP2647692A3 (en) * 2008-11-11 2014-01-22 The Procter and Gamble Company Compositions and methods comprising serine protease variants
ES2820583T3 (es) * 2014-09-05 2021-04-21 Cj Cheiljedang Corp Microorganismo con productividad mejorada de l-treonina, y método de producción de L-treonina mediante el uso del mismo
EP3647416A4 (en) * 2017-06-30 2021-03-03 CJ Cheiljedang Corporation NEW O-SUCCINYLHOMOSERIN TRANSFERASE MUTANT AND O-SUCCINYLHOMOSERIN PRODUCTION PROCESS USING THE LATTER

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100608085B1 (ko) * 2004-02-05 2006-08-02 씨제이 주식회사 tyrR 유전자가 불활성화된 L-쓰레오닌 생성 미생물,그를 제조하는 방법 및 상기 미생물을 이용한L-쓰레오닌의 제조방법
US20110300588A1 (en) * 2010-05-07 2011-12-08 Massachusetts Institute Of Technology Mutations and genetic targets for enhanced l-tyrosine production
KR20140102393A (ko) * 2013-02-13 2014-08-22 씨제이제일제당 (주) L-쓰레오닌 생산능을 가지는 재조합 에스케리키아 속 미생물 및 이를 이용한 l-쓰레오닌의 생산방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE NCBI 15 May 2013 (2013-05-15), Database accession no. WP_000437376.1 *
FENTON, MIKE S. ET AL.: "Escherichia coli promoter opening and -10 recognition: mutational analysis of sigma 70", THE EMBO JOURNAL, vol. 19, no. 5, 2000, pages 1130 - 1137, XP055400471 *
LACOUR, STEPHAN ET AL.: "Substitutions in region 2.4 of sigma 70 allow recognition of the sigma S-dependent aidB promoter", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 279, no. 53, 2004, pages 55255 - 55261, XP055400476 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182413A1 (ko) 2018-03-23 2019-09-26 씨제이제일제당 (주) L-아미노산을 포함하는 과립 및 이의 제조방법
US11370746B2 (en) 2018-03-23 2022-06-28 Cj Cheiljedang Corporation Granules comprising L-amino acid and method for preparing the same

Also Published As

Publication number Publication date
US11312982B2 (en) 2022-04-26
US20200340023A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
WO2019160301A1 (ko) 시트레이트 신타아제의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 l-아미노산 생산방법
WO2019027267A2 (ko) Atp 포스포리보실 전이효소 변이체 및 이를 이용한 l-히스티딘 생산방법
WO2009096689A2 (ko) 개량된 프로모터 및 이를 이용한 l-라이신의 생산 방법
KR101865998B1 (ko) L-쓰레오닌 생산능이 향상된 미생물 및 이를 이용한 l-쓰레오닌 생산방법
WO2018124440A2 (ko) 신규한 이소프로필말레이트 신타제 변이체 및 이를 이용한 l-류신의 생산 방법
WO2013095071A2 (ko) L-라이신 생산능을 갖는 미생물을 이용하여 l-라이신을 생산하는 방법
WO2010093182A2 (ko) L-아미노산 생산용 미생물 및 이를 이용하여 l-아미노산을 생산하는 방법
WO2013105802A2 (ko) 자일로즈 이용능이 부여된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신의 생산방법
WO2013103268A2 (ko) L-아미노산을 생산할 수 있는 미생물 및 이를 이용하여 l-아미노산을 생산하는 방법
WO2020111436A1 (ko) Camp 수용 단백질 변이체 및 이를 이용한 l-아미노산 제조방법
WO2014208981A1 (ko) L-라이신 생산능이 향상된 미생물 및 그를 이용하여 l-라이신을 생산하는 방법
WO2019190193A1 (ko) 글라이신 생산능이 증가된 미생물 및 이를 이용한 발효 조성물 생산 방법
WO2016129812A1 (ko) 신규 라이신 디카르복실라제 및 이를 이용하여 카다베린을 생산하는 방법
WO2020111438A1 (ko) Camp 수용 단백질 변이체 및 이를 이용한 l-아미노산 제조방법
WO2019164346A1 (ko) L-트립토판을 생산하는 재조합 코리네형 미생물 및 이를 이용한 l-트립토판을 생산하는 방법
WO2021112469A1 (ko) 신규한 분지쇄 아미노산 아미노트랜스퍼라제 변이체 및 이를 이용한 류신 생산방법
WO2016171392A1 (ko) 글루코네이트 리프레서 변이체, 이를 포함하는 l-라이신을 생산하는 미생물 및 이를 이용한 l-라이신 생산방법
WO2015064917A1 (ko) L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신 생산방법
WO2017034165A1 (ko) L-라이신 생산능을 가지는 코리네박테리움 속 미생물 및 이를 이용한 l-라이신 생산방법
WO2020111437A1 (ko) Camp 수용 단백질 변이체 및 이를 이용한 l-아미노산 제조방법
WO2015178586A1 (ko) 세포내 에너지 수준이 향상된 미생물 및 이를 이용하여 l-아미노산을 생산하는 방법
WO2017034164A1 (ko) L-라이신 생산능을 가지는 코리네박테리움 속 미생물 및 이를 이용한 l-라이신 생산방법
WO2016182321A1 (ko) L-트립토판 생산능을 갖는 에스케리키아속 미생물 및 이를 이용한 l-트립토판의 제조 방법
WO2014126384A1 (ko) L-쓰레오닌 생산능을 가지는 재조합 에스케리키아 속 미생물 및 이를 이용한 l-쓰레오닌의 생산방법
WO2015122569A1 (ko) L-쓰레오닌 생산능을 가지는 재조합 에스케리키아 속 미생물 및 이를 이용한 l-쓰레오닌의 생산방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837846

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201604000

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016015218

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 15117437

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015837846

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015837846

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112016015218

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160628