WO2016033727A1 - 一种防治血管疾病的药物及其制备方法 - Google Patents

一种防治血管疾病的药物及其制备方法 Download PDF

Info

Publication number
WO2016033727A1
WO2016033727A1 PCT/CN2014/085684 CN2014085684W WO2016033727A1 WO 2016033727 A1 WO2016033727 A1 WO 2016033727A1 CN 2014085684 W CN2014085684 W CN 2014085684W WO 2016033727 A1 WO2016033727 A1 WO 2016033727A1
Authority
WO
WIPO (PCT)
Prior art keywords
ginsenoside
salvianolic acid
ethanol
extraction
group
Prior art date
Application number
PCT/CN2014/085684
Other languages
English (en)
French (fr)
Inventor
王义明
罗国安
伍军
Original Assignee
广州市香雪制药股份有限公司
广州市香雪新药开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州市香雪制药股份有限公司, 广州市香雪新药开发有限公司 filed Critical 广州市香雪制药股份有限公司
Priority to PCT/CN2014/085684 priority Critical patent/WO2016033727A1/zh
Publication of WO2016033727A1 publication Critical patent/WO2016033727A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/216Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acids having aromatic rings, e.g. benactizyne, clofibrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/25Araliaceae (Ginseng family), e.g. ivy, aralia, schefflera or tetrapanax
    • A61K36/258Panax (ginseng)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/53Lamiaceae or Labiatae (Mint family), e.g. thyme, rosemary or lavender
    • A61K36/537Salvia (sage)

Definitions

  • the invention relates to the field of biomedicine, in particular to a medicament for preventing and treating vascular diseases and a preparation method thereof.
  • Cardiovascular disease is a type of disease that seriously harms human health.
  • WHO World Health Organization
  • WHO World Health Organization
  • their morbidity and mortality are increasing year by year.
  • the disease population tends to be younger.
  • the theory of oxygen free radical damage, myocardial cell apoptosis, endothelial cell damage, and intracellular calcium overload has not been fully elucidated.
  • the therapeutic measures and the therapeutic drugs developed can not achieve the desired therapeutic effect, and some even produce more serious adverse reactions. So far, there is no ideal medicine for the treatment of cardiovascular diseases.
  • Ginseng is the root of Panax Ginseng C.A. Mey, which has the functions of replenishing vital energy, strengthening the veins, replenishing the spleen and tonifying the lungs, nourishing the blood, calming the nerves, nourishing the body and nourishing the body.
  • Ginsenoside is the main active ingredient in ginseng, which has anti-oxidation, anti-aging, memory and immunity. It protects a variety of pharmacological activities such as myocardium and anti-tumor.
  • ginsenosides can be divided into two types, one is oleanane type pentacyclic triterpenoid saponin, the aglycon is oleanolic acid, such as ginsenoside Ro; the other is dammarane type four ring Triterpenoid saponins, according to the hydrolysis of dammarane-type ginseng saponins to form saponins, can be divided into 20 (S)-protosan diols, such as ginsenoside Rb1, Rb2, Rc, Rd, Rg3, etc.; and 20 (S ) - Original ginseng triols such as ginsenoside Re, Rg1 and Rf.
  • Ginseng stems, leaves and flowers also contain ginsenosides, and can also be used as a substitute for ginseng.
  • ginseng roots are processed and processed to produce raw sun ginseng, red ginseng, black ginseng, etc., which can also be used as one of the sources of ginsenoside functional group.
  • Ginsenosides have pharmacological effects such as inhibiting cardiac hypertrophy, controlling arrhythmia, inhibiting apoptosis of myocardial and endothelial cells, and protecting myocardial infarction.
  • Salvia miltiorrhiza is the root and / or rhizome of Salvia miltiorrhiza Bge. It has the effect of promoting blood circulation and removing phlegm.
  • the active ingredients in Salvia miltiorrhiza can be divided into two categories: water-soluble and fat-soluble.
  • the main active ingredients of water-soluble phenolic compounds are danshensu, protocatechuic aldehyde, caffeic acid, rosmarinic acid and methyl ester, and salvianolic acid A. , B, C, etc.
  • the object of the present invention is to provide a medicament for preventing and treating vascular diseases and a preparation method thereof, which can effectively prevent and treat cardiovascular diseases, and can promote differentiation of embryonic stem cells into cardiomyocytes and promote angiogenesis.
  • an active ingredient provided by the present invention is a ginsenoside functional group and a salvianolic acid functional group, and the weight ratio of the ginsenoside functional group and the salvianolic acid functional group is 1: (- 20);
  • the ginsenoside functional component group has a mass percentage of ginsenoside Rg1 of 6.0% to 10.0%, a mass percentage of ginsenoside Re of 5.0 to 6.0%, and a mass percentage of ginsenoside Rb1 of 11%. 13%, the sum of the mass percentages of ginsenoside Rg1, ginsenoside Re, ginsenoside Rb1, ginsenoside Rc, ginsenoside Rb2, ginsenoside Rd is 40-50%;
  • the mass percentage of salvianolic acid B is greater than or equal to 50.0%; the sum of total phenolic acid content of salvia miltiorrhiza is greater than or equal to 55.0%.
  • the salvianolic acid is composed of salvianolic acid B and
  • the medicament may be added to a pharmaceutically acceptable carrier as needed, in the form of a tablet, granule, capsule, pill, suppository, injection, infusion, aerosol or inhalation.
  • the carrier includes conventional diluents, excipients, fillers, binders, wetting agents, disintegrating agents, absorption enhancers, surfactants, adsorption carriers or lubricants, etc. in the pharmaceutical field, and may also be added with a fragrance or Sweeteners, etc.
  • the vascular disease is coronary heart disease, angina pectoris, myocardial ischemia, myocardial hypoxia or myocardial infarction.
  • a method for preparing the above-mentioned medicine for preventing and treating vascular diseases comprising the following steps:
  • the reflux extraction method comprises the following steps: extracting ginseng raw material and adding 90% by volume of ethanol to reflux three times, extracting each time for 1.0-2.5 hours, separately filtering and combining the extracted mixed solution, and then concentrating to alcohol-free under reduced pressure. Flavor, diluted with water and dispersed evenly;
  • the dynamic countercurrent extraction method comprises the following steps: feeding ginseng raw materials into four extraction tanks, adding ethanol with a volume percentage of 90% for three times, each time for 1.5-2.5 hours, and the second extract of the first tank to the prescribed After the time is released, it is added to the second tank for the first extraction, and the second extract of the second tank is added to the ethanol output of 90% by volume, and then added to the third tank for the first extraction, and the circulation is applied in turn. After 4 cans are finished, all the extracts are combined, concentrated under reduced pressure to an alcohol-free taste, diluted with water and dispersed evenly;
  • the crude extract is dynamically adsorbed to the macroporous resin, first eluted with 3-8 times column volume of water, the elution flow rate is 0.5-3bv/h, and discarded.
  • the water eluate is further eluted with 3-8 times column volume of 70% ethanol, the elution flow rate is 0.5-3 bv/h, and 70% ethanol eluate is collected to obtain ginsenoside eluate;
  • step b) concentrating and drying the ginsenoside eluate obtained in step b) to obtain a ginsenoside functional ingredient group powder;
  • the reflux extraction method is: refluxing the raw material of the salvia miltiorrhiza with 50% by volume of ethanol. Three times, each extraction for 3-4 hours, the extracted mixed solution was separately filtered and combined, and then concentrated under reduced pressure to an alcohol-free taste, diluted with water and dispersed uniformly;
  • the dynamic countercurrent extraction method comprises the following steps: feeding Danshen raw materials into four extraction tanks, adding 4 times of ethanol with a volume percentage of 50%, and extracting time for the first time 2 hours, the second time 1.5 hours, the third time 0.5 Hour, the fourth time 0.5 hours, the extraction temperature is 30 ° C, the second extract of the first tank is released after a predetermined time, and is added to the second tank for the first extraction, and the second tank is added with the second extraction liquid. After the ethanol content of 50% is added, the third tank is added for the first extraction, and the cycle is applied until the 4 tanks are finished. All the extracts are combined, concentrated under reduced pressure to an alcohol-free taste, diluted with water and dispersed. Uniform
  • step d taking the crude extract of salvianolic acid obtained in the above step d), dynamically adsorbing each 30 L crude extract on the macroporous resin, first eluting with 3-8 column volumes of water, and the elution flow rate is 0.5-3 bv/h. Discard the water eluent and elute it with 3-8 times column volume of 60-70% ethanol. The elution flow rate is 0.5-3 bv/h, and the ethanol eluent is collected to obtain salvianolic acid pickling. Deliquoring
  • step f) concentrating and drying the salvianolic acid eluate obtained in step e) to obtain a salvianolic acid functional ingredient group powder;
  • the pH of the crude salvianolic acid extract is adjusted to 3.0-3.5 before being dynamically adsorbed to the macroporous resin.
  • the concentration in the step f) is 60 ° C, and the relative density of the salvianolic acid eluate after concentration is 1.05-1.20.
  • the drying is atmospheric drying, reduced pressure drying, microwave reduced pressure drying or spray drying.
  • the macroporous adsorption resin is a composite resin of one or a combination of one of HPD100, HPD300, HPD700, D101, AB-8, X-5.
  • the ginseng raw material is one or more of roots, rhizomes, leaves, stems and flowers of Panax Ginseng CAMey., or a processed product thereof, sun-dried ginseng, red ginseng, black ginseng or
  • the raw material of Salvia miltiorrhiza is the root and/or rhizome of Salvia miltiorrhiza Bge.
  • ginseng and Salvia miltiorrhiza can be processed and processed into ginseng and salvia miltiorrhiza, and can also be fresh medicinal materials of ginseng and salvia miltiorrhiza.
  • the basis of the pharmacodynamic substance is clear: the combination of the functional components of ginseng total saponins and the total phenolic functional group of Salvia miltiorrhiza, the structure is clear, the medicinal ingredients account for 60% to 100% of the total solids, the composition is clear, the quality Controllable, providing a chemical substance basis for the clinical safety and effective application of the medicament of the present invention;
  • the pharmaceutical composition of the present invention has the function of inducing differentiation of embryonic stem cells into cardiomyocytes
  • the pharmaceutical composition of the invention has the functions of promoting endothelial cell proliferation, enhancing migration of human umbilical vein endothelial cells, and promoting endothelial cell tubule formation;
  • the pharmaceutical composition of the invention can protect the myocardial cell oxidative damage model by increasing the mitochondrial membrane potential of the damaged cardiomyocytes, reducing the cell membrane permeability of the damaged cells, and maintaining the nuclear integrity;
  • Figure 1 is a PCA clustering diagram of rat urine sample data at different time points of administration
  • FIG. 2A is a schematic diagram showing the fluorescence expression of the membrane membrane permeability of the oxidatively damaged cardiomyocytes of H 2 O 2 in Example 12 and its active ingredients;
  • Figure 2B is a comparison diagram of the effects of different components on myocardial cell mitochondrial membrane potential
  • Figure 3C is the number of cells of endothelial cells passing through the transwell chamber membrane after 3 hours of treatment with the drug (20 ⁇ g/mL);
  • Figure 3D shows the formation of tubules on the surface of matrigel matrigel after 18 hours of NSLF treatment.
  • Embodiment 1 A ginsenoside functional component having a specific chemical composition, the preparation method comprising the following steps:
  • Step 1 Preparation of ginsenoside crude extract: Take 20kg of dried root of Panax ginseng CAMey, cut into thick slices, and add 90% ethanol (V/V) reflux three times for 2 hours each time. The solvent is used in an amount of 160 L/time, and the extracts are separately filtered, combined, concentrated under reduced pressure to an alcohol-free taste, diluted with water and uniformly dispersed to obtain a 30 L crude ginsenoside extract;
  • Step 2 Preparation of ginsenoside eluate: 30L of the crude ginsenoside extract obtained in the above step 1, dynamically adsorbed on the pretreated AB-8 macroporous resin, first eluted with 150 L of water, and the elution flow rate is 60 L/ h (1000ml / min), discard the water eluate; then elute with 120L 70% ethanol (V / V), elution flow rate of 30L / h (500ml / min), collect 70% ethanol eluate, get Ginsenoside eluate;
  • Step 3 Preparation of ginsenoside functional component group: The ginsenoside eluate obtained in the above step 2 is concentrated under reduced pressure to a relative density of 1.05 to 1.20 (measured at 60 ° C), dried at 60 ° C under reduced pressure, and the dried product is pulverized to obtain the present.
  • the ginseng total saponin functional component group powder of the invention is 690 g; qualitative and quantitative analysis by HPLC or UPLC method, the result shows that the mass percentage of ginsenoside Rg1 contained in the functional component group of the above ginsenoside is 6.9%, and the quality of ginsenoside Re The percentage is 5.4%, the mass percentage of ginsenoside Rb1 is 12.2%; the content percentage of six components including ginsenoside Rg1, ginsenoside Re, ginsenoside Rb1, ginsenoside Rc, ginsenoside Rb2 and ginsenoside Rd The sum is 43.0%;
  • Example 2 A ginsenoside functional ingredient group having a specific chemical composition, the preparation method comprising the following steps:
  • Step 1 Preparation of crude ginsenoside extract: Take 200kg of dried root of Panax ginseng CAMey, cut into thick slices, and carry out dynamic countercurrent extraction of tanks, and divide into 4 cans, 50kg per can. Add 90 times of ethanol (V/V) for 3 times, each time for 2 hours, the second time of the first tank After taking the liquid for a predetermined period of time, it is discharged to the second tank for the first extraction, and the second extract of the second tank is added with fresh 90% ethanol, and then the third tank is added for the first extraction, and the cycle is applied in turn. After 4 cans are finished, all the extracts are combined, concentrated under reduced pressure to an alcohol-free taste, diluted with water and dispersed uniformly to obtain a crude ginsenoside 300 L;
  • Step 2 Preparation of ginsenoside eluate: Take 30L of the crude ginsenoside extract obtained in the above step 1, and dynamically adsorb to the pretreated AB-8 macroporous adsorption resin, first eluting with 90 L of water, and eluting the flow rate. 60L/h (1000ml/h), discard the water eluent; elute with 120L 70% ethanol (V/V), elute at a flow rate of 30L/h (500ml/min), collect 70% ethanol eluent , obtaining a ginsenoside eluate;
  • Step 3 Preparation of ginsenoside functional component group:
  • the ginsenoside eluate obtained in the above step 2 is concentrated under reduced pressure to a phase thick paste, and then dried under reduced pressure at 70 ° C, and dried to pulverize to obtain the ginsenoside function of the present invention.
  • the powder of the component group was 648 g; qualitative and quantitative analysis by HPLC or UPLC method showed that the mass percentage of ginsenoside Rg1 contained in the functional component group of the above ginsenoside was 7.2%, and the mass percentage of ginsenoside Re was 5.1%.
  • the mass percentage of ginsenoside Rb1 is 12.2%; the sum of the mass percentages of the six components including ginsenoside Rg1, ginsenoside Re, ginsenoside Rb1, ginsenoside Rc, ginsenoside Rb2, and ginsenoside Rd is 47.3%;
  • Example 3 A ginsenoside functional ingredient group having a specific chemical composition, the preparation method comprising the following steps:
  • ginsenoside functional component group powder of the present invention is obtained; qualitative and quantitative analysis by HPLC or UPLC method, the result shows that the above ginsenoside functional component
  • the mass percentage of ginsenoside Rg1 contained in the group is 7.9%, the mass percentage of ginsenoside Re is 5.5%, and the mass percentage of ginsenoside Rb1 is 12.1%; containing ginsenoside Rg1, ginsenoside Re, ginseng The sum of the mass percentages of the six components of saponin Rb1, ginsenoside Rc, ginsenoside Rb2 and gins
  • Example 4 A ginsenoside functional ingredient group having a specific chemical composition, which is prepared as follows:
  • Embodiment 5 A group of salvianolic acid functional components having a specific chemical composition, the preparation method comprising the following steps:
  • Step 1 Preparation of crude ginseng phenolic acid extract: Take 15kg of dried root of Salvia miltiorrhiza Bge., cut into thick slices, and add 50% ethanol (V/V) 150L for 4h, then reflux extraction. The extraction time was 1 hour; the extract was filtered, and the residue was continuously added with 150 L of 50% ethanol (V/V) for reflux extraction, and the extraction time was 45 min. The two extracts were combined and concentrated under reduced pressure to an alcohol-free taste to obtain 50 L of crude salvianolic acid extract;
  • Step 2 Preparation of salvianolic acid eluate: The above crude extract of Salvia miltiorrhiza Bunge, adjusted to pH 3.5 with dilute hydrochloric acid, and pre-treated with HPD 100 macroporous adsorption resin, after dynamic adsorption, first eluted with 90 L of water. The elution flow rate was 60 L/h, and the water eluate was discarded. The elution was carried out at 4BV 70% ethanol (V/V). The elution flow rate was 30 L/h, and 70% ethanol eluate was collected to obtain salvianolic acid pickling. Deliquoring
  • Step 3 Preparation of salvianolic acid extract:
  • the salvia phenolic acid eluate is concentrated under reduced pressure to a relative density of 1.05-1.20 (60 ° C), dried at 60 ° C under reduced pressure, and the dried product is pulverized to obtain the present invention.
  • the ginseng phenolic acid functional group powder 610g qualitative or quantitative analysis of the above-mentioned salvia phenolic functional group powder by HPLC or UPLC method, the results show that the above-mentioned salvianolic acid functional group contains the mass percentage of salvianolic acid B
  • the sum of the mass percentages of salvianolic acid B, lithospermic acid and rosmarinic acid was 54.8%, which was 62.0%.
  • Embodiment 6 A salvianolic acid functional component group having a specific chemical composition, the preparation method thereof comprises The following steps:
  • Step 1 Preparation of crude ginseng phenolic acid extract: Take 200kg of dried root of Salvia miltiorrhiza Bge., cut into thick slices, and carry out dynamic countercurrent extraction of tanks, and divide into 4 cans for feeding, 50kg per can. , adding 10 times 50% ethanol (V / V) extraction 4 times, the extraction temperature is 30 ° C, the extraction time is the first 2 hours, the second 1.5 hours, the third 0.5 hours, the fourth 0.5 hours, the first The second extract of one can is released after a predetermined period of time, and the second can is added for the first extraction. The second extract of the second can is added with fresh 50% ethanol and then added to the third can for the first extraction. The mixture was sequentially applied until the fourth tank was finished, and all the extracts were combined, concentrated under reduced pressure to an alcohol-free taste, diluted with water and uniformly dispersed to obtain a crude extract of salvianolic acid 600 L.
  • Step 2 Preparation of salvianolic acid eluate: 45L of crude salvianolic acid extract obtained in the above step 1, adjusted to pH 3.5 with dilute hydrochloric acid, and after dynamic adsorption by pretreatment of HPD100 macroporous adsorption resin, 90L water elution, elution flow rate of 60L / h, discard the water eluate; then elute with 120L 70% ethanol (V / V), elution flow rate of 30L / h, collect 70% ethanol eluate, A salvianolic acid eluate is obtained.
  • Step 3 the salicylic acid eluate obtained in the above step 2 is concentrated under reduced pressure to a relative density of 1.05 to 1.20 (measured at 60 ° C), and then dried under reduced pressure at 70 ° C, and the dried product is pulverized to obtain 780 g of salvianolic acid functional group. powder.
  • Qualitative and quantitative analysis of the above-mentioned salvianolic acid functional group powder by HPLC or UPLC method showed that the salvianolic acid B contained 56.6% by mass of salvianolic acid B. The sum of the mass percentages of lithospermic acid and rosmarinic acid was 63.4%.
  • Example 7 The preparation method of the salvianolic acid functional component group having a specific chemical composition is as follows:
  • the crude salvianolic acid crude extract obtained in the above step 6 was subjected to 45 L, and the pH was adjusted to 3.0 by adding glacial acetic acid. After pretreatment, the HPD300 macroporous resin was subjected to dynamic adsorption, and then eluted with 150 L of water, and the elution flow rate was 60 L.
  • Example 8 Preparation of a composition for treating cardiovascular diseases, the preparation method is as follows:
  • Example 9 Preparation of a composition for treating cardiovascular diseases, the preparation method is as follows:
  • Example 10 Preparation of a tablet for treating cardiovascular diseases, the preparation method is as follows:
  • Example 11 Preparation of a pharmaceutical granule for treating cardiovascular diseases, the preparation method is as follows:
  • ginsenoside functional ingredient group powder prepared in the above Example 1 100 g was mixed with 10 g of the salvianolic acid functional ingredient group powder prepared in the above Example 6, and 360 g of dextrin and 240 g of sucrose powder were added and uniformly mixed to prepare a particle size of 16 mesh.
  • the drug granules provide the granules of the medicament for treating cardiovascular diseases of the present invention.
  • Example 12 preparation of a pharmaceutical injection for treating cardiovascular diseases, the preparation method is as follows:
  • ginsenoside Rb1 2.6g, Rg1 1.36g, Re 1.04g and salvianolic acid B 9.4g add ⁇ -CYD 30g, stir with water for heating to fully dissolve, add water to 1000ml, adjust the pH to neutral, stir Evenly, the filter is divided into neutral glass containers, sterilized by circulating steam at 100 ° C for 30 min, filtered, finely filtered, potted, sterilized, and inspected to obtain an injection solution.
  • Example 13 Preparation of a pharmaceutical injection for treating cardiovascular diseases, which is prepared as follows:
  • the heart After ligation of the left anterior descending coronary artery at the coronary artery between the arterial cone and the left atrial appendage, the heart is placed back into the chest cavity, the chest air is squeezed out, and the thoracic cavity is quickly sutured.
  • the sham operation group was consistent with other groups of surgery except that the anterior descending coronary artery was not ligated. Record the following indicators before and after ligation.
  • the standard of successful modeling the myocardial immediately appeared in the lower part of the ligature line, and the electrocardiogram J point was significantly elevated or depressed, indicating that the model was successful, which caused the acute myocardial ischemia model.
  • a total of 63 rats with anesthesia after surgery were randomly divided into 7 groups, 9 in each group: sham operation group and model group (administer the same amount of normal saline) (administer the same amount of normal saline), positive control group (diltiazem hydrochloride tablets) Group), Samples prepared in Examples 8, 9, 10, and 11.
  • the amount of administration of Examples 8-11 corresponds to 5 g of the drug amount/kg ⁇ w ⁇ d, and the amount of diltiazem hydrochloride tablet: 50 mg/kg ⁇ w ⁇ d.
  • ECG changes heart rate, J-point displacement (mV), and T-wave amplitude (mV) before ligation, 30 min after ligation, and 1 hour of last administration.
  • the chest was opened, and the neutral formalin was perfused and fixed.
  • the intact heart was taken out and transected 40 to 50 pieces along the short axis of the left ventricle. Each piece was 4-5um thick annular myocardium.
  • the tissue was subjected to conventional dehydration, transparency, paraffin embedding, sectioning, HE staining, and myocardial necrosis was observed under light microscope.
  • the Leica image analysis system (10x) was used to detect myocardial infarct size and left ventricular area, and the infarct size (%) was expressed as myocardial infarct size/left ventricular area ⁇ 100%.
  • Serum enzymology determination of creatine kinase (CK) and determination of lactate dehydrogenase (LDH)
  • the model group, the sham operation group, the positive drug group, and the rats of each administration group were collected for 24 hours of urine administration for 1 day, 7 days, 14 days, and 21 days for metabolomics studies.
  • each group of rats was anesthetized, and the electrocardiogram was recorded for 2 minutes with the following indicators. Merged as a normal ECG standard: 1) The J point is shifted downwards or upwards by ⁇ 0.1 mV. 2) If the T wave is high, it is lower than 1/2 of the R wave of the same lead.
  • the drug of the present invention (Examples 8, 9, 10, 11) was examined for rats by calculating the normal recovery rate of the electrocardiogram of each group of experimental animals (the number of animals of each group of normal electrocardiograms / the number of animals of each group ⁇ 100). The effects of electrocardiogram, the experimental results are shown in Table 1.
  • the myocardial infarct size in the blank sham operation group was statistically significantly different (P ⁇ 0.001), indicating successful modeling; the drug of the present invention (Examples 8, 9, 10, 11) and the positive pair The infarct size of the medication group was significantly reduced (P ⁇ 0.05); the results suggest that the drugs of the invention (Examples 8, 9, 10, 11) have an effect of improving myocardial infarction.
  • the LDH and CK values in the model group were significantly increased (P ⁇ 0.01), indicating that myocardial infarction caused by coronary artery ligation can lead to a significant increase in the activity of LDH and CK in the serum of the rats;
  • the CK value was significantly different from the model control group and the normal control group (P ⁇ 0.05), indicating that thoracotomy can significantly increase CK activity, but its elevation is not as good as coronary artery ligation.
  • the LDH and CK values of the drugs of the present invention were significantly decreased (P ⁇ 0.05), indicating that each drug has the effect of lowering the activity of LDH and CK;
  • the LDH values of the diltiazem hydrochloride group were statistically significant (P ⁇ 0.05), and the LDH and CK values of the other groups were not statistically significant (P>0.05).
  • the medicament of the present invention can reduce the LDH and CK activities of the coronary artery ligation rats to a normal level; diltiazem hydrochloride can reduce the CK activity of the coronary artery ligation rats to normal.
  • Figure 1 shows the PCA clustering map of rat urine sample data at different time points.
  • Example 8 PCA clustering of urine samples on days 0, 7, 14, and 21 of rats
  • B Example 9 administration of PCA of urine samples on days 0, 7, 14, and 21 Clustering map
  • C PCA clustering of urine samples on days 0, 7, 14, and 21 of the rats administered in Example 10
  • D and administration of rats in Example 11 on days 0, 7, 14, and 21.
  • the rat coronary artery ligation model was used to observe the effect of the drug of the present invention (Examples 8, 9, 10, 11) on the metabolism of endogenous substances after administration by urine metabolomics.
  • each group was compared with that before modeling (Day 0), and after the modeling (Day 1), the samples were far from the equilibrium state of the normal group metabolism, indicating that after the myocardial ischemia model was established by surgery, Interfering with the metabolism of endogenous substances, the urine metabolic fingerprints have undergone significant changes. From day 1 to day 21, the metabolic trajectories of each group showed a close proximity to the metabolic level before modeling (day 0). The metabolic trajectory returns to the normal metabolic state, indicating that the metabolic disorder is restored.
  • 105 SD rats were randomly divided into 7 groups, 15 in each group: normal group (administer the same amount of normal saline), model group (administer the same amount of normal saline), positive control group (diltiazem hydrochloride), the drug of the invention (implementation Example 8, 9, 10, 11). All the above groups were administered by intragastric administration for 7 days, except for the normal group with the same amount of normal saline. The other groups were injected with isoproterenol (ISO, 10 mg ⁇ kg -1 each time). 1 time, continuous injection 2d).
  • ISO isoproterenol
  • the amount of administration of Examples 8-11 corresponds to 5 g of the drug amount/kg ⁇ w ⁇ d, and the amount of diltiazem hydrochloride tablet: 50 mg/kg ⁇ w ⁇ d.
  • urethane 1.3g ⁇ kg-1
  • supine position was fixed
  • MPA2000 multi-channel biosignal analysis system II lead
  • the other groups were injected with ISO (10 mg ⁇ kg -1 ) in the peritoneal cavity, and recorded at 0.5, 1, 2, 5, 10, 15, and 20 min after ISO injection.
  • ⁇ J electrocardiogram J point change value
  • connection line of the QRS complex starting point Take the connection line of the QRS complex starting point as the diagnostic line, and use the offset degree of J point as the diagnosis basis, and select the millivolt average of the J point change in the heartbeat within 2 seconds, as the index of myocardial ischemia degree, the method is referred to Literature [7].
  • the animals in each group were taken from the inferior vena cava 1 h after ip ISO.
  • the serum was cryopreserved, and some serum was taken later to measure the contents of LDH, CK, SOD, and MDA according to the instructions.
  • the heart was quickly removed, washed with normal saline, and the myocardial tissue was removed, blotted dry with filter paper, and weighed.
  • the myocardial atrial portion of the rat was immediately taken out by the method provided by RNAsimple Total RNA Kit to extract the total amount of tissue cells. RNA, spare.
  • the rest of the ventricle was frozen in the refrigerator (-20 °C) for 30 minutes. After removal, the ventricle was cut into 0.1 cm thick myocardial pieces, placed in nitrotetrazolium blue (NBT) solution, and incubated in a 37 ° C water bath for 15 min.
  • NBT nitrotetrazolium blue
  • the non-blue staining area (infarct area) of the myocardium was cut, and the wet weight was weighed.
  • the ratio of the calculated to total heart weight was the myocardial infarction range (heart weight ⁇ 100% in the infarct area).
  • each dose group administered can counteract the change of the electrocardiogram J point, wherein the drugs of the present invention (Examples 8, 9, 10, 11) are most effective in combining the high and low doses of the groups, and the drug of the present invention ( Examples 8, 9, 10, and 11) also significantly reduced serum LDH, CK, MDA release and significantly increased SOD activity, and significantly reduced the infarct size of the heart.
  • the drugs of the present invention (Examples 8, 9, 10, 11) are most effective in combining the high and low doses of the groups, and the drug of the present invention ( Examples 8, 9, 10, and 11) also significantly reduced serum LDH, CK, MDA release and significantly increased SOD activity, and significantly reduced the infarct size of the heart.
  • P>0.05 there was no significant difference between the groups (P>0.05).
  • the cardiomyocyte H 2 O 2 oxidative damage model was used to investigate the protective effect of the drug of the present invention (Example 12) and its effective components on cardiomyocytes. After the drug was co-cultured with cardiomyocytes for 48 hours, 10% H 2 O was added to the culture medium.
  • cardiomyocytes of the present invention (Examples 12, 13) and their effective components preprotected, mitochondria
  • the membrane potential is higher, the cell membrane permeability is smaller, the nucleus is intact, and the cell viability is higher, indicating that it has the effect of resisting oxidative damage of cardiomyocytes induced by H 2 O 2 (Fig. 2).
  • A is the fluorescence expression of cell membrane permeability of cardiomyocytes oxidatively damaged by H 2 O 2 in Example 12 and its active ingredient. Green fluorescence is shown as cell membrane permeability, and blue fluorescence is shown in the nucleus. B is a comparison of cell membrane permeability of oxidatively damaged cardiomyocytes with Example 12 and its active ingredients
  • Salvianolic acid B and salvianolic acid total phenolic acid can significantly increase the mitochondrial membrane potential of damaged cardiomyocytes (Fig. 2-A, B).
  • Total ginsenosides can significantly reduce the membrane permeability of damaged cells and implement cell nuclear integrity.
  • Example 12 has the best drug activity. It can be seen that the drugs and components of Example 12 have a repairing effect on H 2 O 2 injured rat cardiomyocytes, and the results of the comparison of the three indexes of cell nuclear integrity, cell membrane permeability and mitochondrial membrane potential are shown by the comparison of identity. The drug of Example 12 was the best, with an optimum concentration of 10-4 mol/L. In addition, the study of the myocardial cell H/R model also confirmed that the drug of Example 12 has a protective effect on myocardial cell damage, and the ginsenoside component exerts a pharmacological effect in this aspect.
  • HUVECs Human umbilical vein endothelial cells
  • Fig. 3-A, B that the drug of the present invention (Example 13) promoted the proliferation of HUVECs; the results of cell migration assay showed (Fig. 3-C) that the drug of Example 13 significantly enhanced the migration ability of HUVECs
  • Fig. 3-D The results of HUVECs on the matrigel matrigel surface tube formation test (Fig. 3-D), 20 ⁇ g/mL (Examples 12 and 13) significantly promoted HUVECs tubule formation.
  • Figure 3 shows the effect of proliferation, migration and angiogenesis of HUVECs in vitro.
  • C is the drug (20 ⁇ g/mL) for 3 hours.
  • D is the formation of tubules of HUVECs on the matrigel matrigel surface after 18 hours of NSLF treatment.
  • “*” indicates that the group is P ⁇ 0.05 compared with the Control group.

Abstract

本发明公开了一种防治血管疾病的药物,有效成分为人参皂苷功能成分群和丹参酚酸功能成分群,所述人参皂苷功能成分群和丹参酚酸功能成分群的重量比为1:(0.1-20);所述人参皂苷功能成分群中,人参皂苷Rg1的质量百分含量为6.0%~10.0%,人参皂苷Re的质量百分含量为5.0~6.0%,人参皂苷Rb1的质量百分含量为11%~13%,人参皂苷Rg1、人参皂苷Re、人参皂苷Rb1、人参皂苷Rc、人参皂苷Rb2、人参皂苷Rd的质量百分含量之和为40~50%;所述丹参酚酸功能成分群中,丹参酚酸B的质量百分含量大于或等于50.0%;丹参总酚酸含量之和大于或等于55.0%。

Description

一种防治血管疾病的药物及其制备方法 技术领域
本发明涉及生物医药领域,特别是一种防治血管疾病的药物及其制备方法。
背景技术
近年来,化学药物上市后因出现耐药性和毒副作用而被全球召回的事件不断发生,以先到化合物筛选、结构修饰改造为核心的新药研究开发技术缺陷日益突现,以单靶点直接对抗治疗为代表的新药研发模式受到了严重挑战,复方用药原则的合理性逐渐为国际社会所接受,从经典有效中药复方中发现具有一定功效的“功能成分群”,并按一定配伍配比组合,开发成分清晰、质量可控、机理明确、安全有效的现代中药,为现代复方药物的开发提供了新的思路。
心血管疾病是严重危害人类健康的一类疾病。世界卫生组织(WHO)数据表明,全世界死于心脏病的人占各种原因死亡人数的1/3,随着人口老龄化及人们饮食结构改变等诸多因素,其发病率与死亡率正逐年上升,发病人群也趋向于年轻化,然而由于其发病机理复杂,目前尚未完全阐明,氧自由基损伤、心肌细胞凋亡、内皮细胞损伤、细胞内钙超载等学说。但是根据这些学说而采取得治疗措施和研制的治疗药物均不能获得理想的疗效,有的甚至产生较为严重的不良反应。迄今为止,尚无十分理想的治疗心血管疾病的有效药物,开发治疗心血管疾病的药物已成为提高人类健康水平和生存质量亟待解决的重要课题。在前期研究中,我们在针对心血管疾病,通过经典药理学、代谢组学、基因组学和分子药理学等研究反复筛选验证,得到了由人参提取物和丹参提取物组成的中药有效部位组合,并申请了专利,申请号200810223440.8。但是,上述药物的药效比较有限,成分配比不够科学合理。
人参为五加科人参属植物(Panax Ginseng C.A.Mey)的根,具有大补元气、固脉复脱、补脾益肺、生津养血、安神益智、滋补强身之功效。人参皂苷为人参中主要活性成分,具有抗氧化、延缓衰老、提高记忆力及机体免疫力、 保护心肌和抗肿瘤等多种药理活性。根据苷元不同,人参皂苷可分为两类,一类为齐墩果烷型五环三萜皂苷,苷元为齐墩果酸,如人参皂苷Ro;另一类为达玛烷型四环三萜皂苷,根据达玛烷型人参皂苷水解生成皂苷元不同,又可分为20(S)-原人参二醇类,如人参皂苷Rb1,Rb2,Rc,Rd,Rg3等;和20(S)-原人参三醇类,如人参皂苷Re,Rg1和Rf等。人参的茎、叶和花中也含有人参皂苷类成分,亦可代替人参入药。此外,经人参根经加工、炮制,制备生成生晒参、红参、黑参等亦可作为人参皂苷类功能成分群的来源之一。人参皂苷类成分具有抑制心肌肥大,控制心律失常,抑制心肌和内皮细胞凋亡,保护心肌梗塞等药理作用。
丹参为唇形科植物丹参(Salvia miltiorrhiza Bge.)的根和/或根茎,具有活血化瘀、清心除烦的功效。丹参中有效成分可分为水溶性和脂溶性两大类,其中水溶性酚酸类化合物主要活性成分有丹参素、原儿茶醛、咖啡酸、迷迭香酸及甲酯、丹参酚酸A、B、C等。
发明内容
本发明的目的是提供一种防治血管疾病的药物及其制备方法,该药物能够有效防治心血管疾病,并能促进胚胎干细胞分化为心肌细胞,促进血管新生。
为了实现上述目的,本发明提供的一种有效成分为人参皂苷功能成分群和丹参酚酸功能成分群,所述人参皂苷功能成分群和丹参酚酸功能成分群的重量比为1:(0.1-20);
所述人参皂苷功能成分群中,人参皂苷Rg1的质量百分含量为6.0%~10.0%,人参皂苷Re的质量百分含量为5.0~6.0%,人参皂苷Rb1的质量百分含量为11%~13%,人参皂苷Rg1、人参皂苷Re、人参皂苷Rb1、人参皂苷Rc、人参皂苷Rb2、人参皂苷Rd的质量百分含量之和为40~50%;
所述丹参酚酸功能成分群中,丹参酚酸B的质量百分含量大于或等于50.0%;丹参总酚酸含量之和大于或等于55.0%。
所述丹参总酚酸由丹参酚酸B以及
丹参素、迷迭香酸、紫草酸三种中的一种或几种组成。
所述药物在需要时,可加入药学上可接受的载体,制成片剂、颗粒剂、胶囊剂、滴丸剂、栓剂、注射剂、输液剂、气雾剂或吸入剂。
所述载体包括药学领域常规的稀释剂、赋形剂、填充剂、粘合剂、湿润剂、崩解剂、吸收促进剂、表面活性剂、吸附载体或润滑剂等,还可以加入香味剂或甜味剂等。
所述血管疾病为冠心病、心绞痛、心肌缺血、心肌缺氧或心肌梗塞。
一种制备上述防治血管疾病的药物的方法,包括如下步骤:
(1)人参皂苷功能成分群提取:
a)取人参原料,用回流提取法或动态逆流提取法对其进行提取,得到人参皂苷粗提取液;
所述回流提取法为:将人参原料加体积百分含量为90%的乙醇回流提取三次,每次提取1.0-2.5小时,将提取到的混合溶液分别过滤、合并,然后减压浓缩至无醇味,加水稀释并分散均匀;
所述动态逆流提取法为:将人参原料分4个提取罐投料,加体积百分含量为90%的乙醇提取3次,每次1.5-2.5小时,第1罐的第2次提取液到规定时间后放出,加到第2罐进行第1次提取,第2罐第2次提取液加入体积百分含量为90%的乙醇出料后再加入第3罐进行第1次提取,依次循环套用,直至4罐提完,合并所有提取液,减压浓缩至无醇味,再加水稀释并分散均匀;
b)取上述步骤a)所得的人参皂苷粗提液,将粗提液动态吸附于大孔树脂,先以3~8倍柱体积水洗脱,洗脱流速为0.5~3bv/h,弃去水洗脱液,再以3~8倍柱体积百分含量为70%的乙醇洗脱,洗脱流速为0.5~3bv/h,收集70%乙醇洗脱液,得到人参皂苷洗脱液;
c)将步骤b)中得到的人参皂苷洗脱液浓缩干燥,得到人参皂苷功能成分群粉末;
(2)丹参酚酸功能成分群提取:
d)取丹参原料,用回流提取法或动态逆流提取法对其进行提取,得到丹参酚酸粗提取液;
所述回流提取法为:将丹参原料加体积百分含量为50%的乙醇回流提取 三次,每次提取3-4小时,将提取到的混合溶液分别过滤、合并,然后减压浓缩至无醇味,加水稀释并分散均匀;
所述动态逆流提取法为:将丹参原料分4个提取罐投料,加体积百分含量为50%的乙醇提取4次,提取时间第1次2小时,第2次1.5小时,第3次0.5小时,第4次0.5小时,提取温度为30℃,第1罐的第2次提取液到规定时间后放出,加到第2罐进行第1次提取,第2罐第2次提取液加入体积百分含量为50%的乙醇出料后再加入第3罐进行第1次提取,依次循环套用,直至4罐提完,合并所有提取液,减压浓缩至无醇味,再加水稀释并分散均匀;
e)取上述步骤d)所得的丹参酚酸粗提取液,将每30L粗提液动态吸附于大孔树脂,先以3~8倍柱体积水洗脱,洗脱流速为0.5~3bv/h,弃去水洗脱液,再以3~8倍柱体积百分含量为60-70%的乙醇洗脱,洗脱流速为0.5~3bv/h,收集乙醇洗脱液,得到丹参酚酸洗脱液;
f)将步骤e)中得到的丹参酚酸洗脱液浓缩干燥,得到丹参酚酸功能成分群粉末;
(3)将步骤(1)所得人参皂苷功能成分群粉末和步骤(2)所得丹参酚酸功能成分群粉末按重量比1:(0.1-20)混合,得到药物的有效成分。
所述步骤e)中在动态吸附于大孔树脂之前,先将丹参酚酸粗提取液的pH值调至3.0-3.5。
所述步骤f)中浓缩温度为60℃,浓缩后丹参酚酸洗脱液的相对密度为1.05-1.20。
所述干燥为常压干燥、减压干燥、微波减压干燥或喷雾干燥。
所述大孔吸附树脂为HPD100、HPD300、HPD700、D101、AB-8、X-5中的一种或几种组合的复合树脂。
所述人参原料为五加科植物人参(Panax Ginseng C.A.Mey.)的根、根茎、叶、茎、花的一种或几种,或其炮制品生晒参、红参、黑参一种或几种;所述丹参原料为唇形科植物丹参(Salvia miltiorrhiza Bge.)的根和/或根茎;其中,人参和丹参可以为炮制加工后人参和丹参,也可以为人参和丹参的鲜药材。
本发明提供的,具有如下有益效果:
1、药效物质基础明确:由人参总皂苷功能成分群和丹参总酚酸功能成分群配伍的组合药物,其结构明确可知药效成分占总固体量的60%~100%,成份明确,质量可控,为本发明药物的临床安全有效应用提供了化学物质基础;
2、作用机制清楚:采用经典药理学与网络药理学和系统生物学研究相结合的方式,通过药效学研究证实其具有降低冠状动脉结扎大鼠血清CK、LDH酶活性,减轻心肌损伤程度、修复梗塞区心肌从而缩小心肌梗塞范围,同时促进梗塞边缘心肌小血管生成,增加心肌供血,证实其对心肌梗塞大鼠和心肌缺血大鼠具有明显的治疗作用。通过代谢组学、基因组学和分子生物学研究,阐明了本发明药物治疗心血管疾病的作用机制。
1)本发明药物组合物具有诱导胚胎干细胞定向分化为心肌细胞的作用;
2)本发明药物组合物具有促进内皮细胞增殖、增强人脐静脉内皮细胞的迁移、促进内皮细胞小管生成的作用;
3)本发明药物组合物可通过提高受损心肌细胞线粒体膜电势,降低受损细胞的细胞膜通透性,维护细胞核完整性而对心肌细胞氧化损伤模型达到保护作用;
4)通过代谢组学和基因组学研究证实本发明药物组合物通过调节心肌能量代谢、影响离子结合而达到治疗心血管疾病的作用。
附图说明
图1为大鼠尿样数据在不同时间给药点的PCA聚类图;
图2A为实施例12及其有效成分对H2O2氧化损伤心肌细胞细胞膜通透性的荧光表达示意图;
图2B为不同组分对心肌细胞线粒体膜电势的影响对比图;
图3A是药物作用于内皮细胞24小时后直接细胞计数结果(n=6);
图3B是药物作用于内皮细胞24小时后MTT测定结果(n=6);
图3C是药物(20μg/mL)作用3小时候后,内皮细胞穿过transwell小室膜的细胞数;
图3D为NSLF作用18小时后HUVECs在matrigel基质胶表面的小管形成情况。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。
实施例1、具有特定化学组成的人参皂苷功能成分,其制备方法包括以下步骤:
步骤1、人参皂苷粗提液的制备:取五加科植物人参(Panax ginseng C.A.Mey)的干燥根20kg,切成厚片,加90%乙醇(V/V)回流提取三次,每次2小时,溶剂用量为160L/次,提取液分别滤过,合并,减压浓缩至无醇味,加水稀释并分散均匀,得到30L人参皂苷粗提液;
步骤2、人参皂苷洗脱液的制备:上述步骤1所得的人参皂苷粗提液30L,动态吸附于预处理好的AB-8大孔树脂,先以150L水洗脱,洗脱流速为60L/h(1000ml/min),弃去水洗脱液;再以120L 70%乙醇(V/V)洗脱,洗脱流速为30L/h(500ml/min),收集70%乙醇洗脱液,得到人参皂苷洗脱液;
步骤3、人参皂苷功能成分群的制备:上述步骤2所得的人参皂苷洗脱液减压浓缩至相对密度1.05~1.20(60℃测定),再于60℃减压干燥,干燥物粉碎,得到本发明的人参总皂苷功能成分群粉末690g;采用HPLC或UPLC法进行定性定量分析,结果表明,上述人参皂苷功能成分群中所含人参皂苷Rg1的质量百分含量为6.9%,人参皂苷Re的质量百分含量为5.4%,人参皂苷Rb1的质量百分含量为12.2%;含人参皂苷Rg1、人参皂苷Re、人参皂苷Rb1、人参皂苷Rc、人参皂苷Rb2、人参皂苷Rd六种成分质量百分含量之和为43.0%;
实施例2:具有特定化学组成的人参皂苷功能成分群,其制备方法包括以下步骤:
步骤1、人参皂苷粗提液的制备:取五加科植物人参(Panax ginseng C.A.Mey)的干燥根200kg,切成厚片,进行罐组式动态逆流提取,分4罐投料,每罐50kg,加90%乙醇(V/V)提取3次,每次2小时,第1罐的第2次提 取液到规定时间后放出,加到第2罐进行第1次提取,第2罐第2次提取液加入新鲜90%乙醇出料后再加入第3罐进行第1次提取,依次循环套用,直至4罐提完,合并所有提取液,减压浓缩至无醇味,再加水稀释并分散均匀,得人参皂苷粗提液300L;
步骤2、人参皂苷洗脱液的制备:取上述步骤1所得的人参皂苷粗提液30L,动态吸附于预处理好的AB-8大孔吸附树脂,先以90L水洗脱,洗脱流速为60L/h(1000ml/h),弃去水洗脱液;再以120L 70%乙醇(V/V)洗脱,洗脱流速为30L/h(500ml/min),收集70%乙醇洗脱液,得到人参皂苷洗脱液;
步骤3、人参皂苷功能成分群的制备:上述步骤2所得的人参皂苷洗脱液减压浓缩至相稠膏,再于70℃减压微波干燥,干燥物粉碎,得到本发明的人参总皂苷功能成分群粉末648g;采用HPLC或UPLC法进行定性定量分析,结果表明,上述人参皂苷功能成分群中所含人参皂苷Rg1的质量百分含量为7.2%,人参皂苷Re的质量百分含量为5.1%,人参皂苷Rb1的质量百分含量为12.2%;含人参皂苷Rg1、人参皂苷Re、人参皂苷Rb1、人参皂苷Rc、人参皂苷Rb2、人参皂苷Rd六种成分质量百分含量之和为47.3%;
实施例3:具有特定化学组成的人参皂苷功能成分群,其制备方法包括以下步骤:
取上述实施例2步骤1所得的人参皂苷粗提液30L,动态吸附于预处理好的D101大孔树脂,先以150L水洗脱,洗脱流速为60L/h(1000ml/min),弃去水洗脱液;再以120L 80%乙醇(V/V)洗脱,洗脱流速为30L/h(500ml/min),收集80%乙醇洗脱液,得到人参皂苷洗脱液;人参皂苷洗脱液再经60℃减压浓缩、80℃微波减压干燥、粉碎后,得到本发明的人参皂苷功能成分群粉末620g;采用HPLC或UPLC法进行定性定量分析,结果表明,上述人参皂苷功能成分群中所含人参皂苷Rg1的质量百分含量为7.9%,人参皂苷Re的质量百分含量为5.5%,人参皂苷Rb1的质量百分含量为12.1%;含人参皂苷Rg1、人参皂苷Re、人参皂苷Rb1、人参皂苷Rc、人参皂苷Rb2、人参皂苷Rd六种成分质量百分含量之和为44.6%;
实施例4:具有特定化学组成的人参皂苷功能成分群,其制备方法如下:
取五加科植物人参(Panax ginseng C.A.Mey)的干燥叶8kg,加90%乙醇(V/V)回流提取3次,每次1小时,溶剂用量为64L/次,提取时间为1小时;提取液分别滤过完,合并,减压浓缩至无醇味,加水稀释并分散均匀,动态吸附于处理好的AB-8大孔吸附树脂柱,先以70L水洗脱,洗脱流速为20L/h,弃去水洗脱液;再以70%乙醇(V/V)50L洗脱,洗脱流速为10L/h,收集70%乙醇洗脱液,减压浓缩至稠膏,再于70℃减压干燥,干燥物粉碎,得到508g人参皂苷功能成分群粉末。采用HPLC或UPLC法进行定性定量分析,结果表明,上述人参皂苷功能成分群中所含人参皂苷Rg1的质量百分含量为8.6%,人参皂苷Re的质量百分含量为5.9%,人参皂苷Rb1的质量百分含量为11.8%;含人参皂苷Rg1、人参皂苷Re、人参皂苷Rb1、人参皂苷Rc、人参皂苷Rb2、人参皂苷Rd六种成分质量百分含量之和为45.9%;
实施例5、具有特定化学组成的丹参酚酸功能成分群,其制备方法包括以下步骤:
步骤1、丹参酚酸粗提液的制备:取唇形科植物丹参(Salvia miltiorrhiza Bge.)的干燥根15kg,切成厚片,加入50%乙醇(V/V)150L浸泡4h后进行回流提取,提取时间为1小时;提取液滤过,残渣继续加150L 50%乙醇(V/V)进行回流提取,提取时间为45min。合并两次的提取液,减压浓缩至无醇味,得50L丹参酚酸粗提液;
步骤2、丹参酚酸洗脱液的制备:上述丹参粗提液,加稀盐酸调节pH至3.5,通过预处理好的HPD 100大孔吸附树脂,进行动态吸附后,先以90L水洗脱,洗脱流速为60L/h,弃去水洗脱液;再以4BV 70%乙醇(V/V)洗脱,洗脱流速为30L/h,收集70%乙醇洗脱液,得到丹参酚酸洗脱液;
步骤3、丹参酚酸提取物的制备:上述丹参总酚酸洗脱液减压浓缩至相对密度为1.05-1.20(60℃),再于60℃减压干燥,干燥物粉碎,得到本发明的丹参酚酸功能成分群粉末610g;采用HPLC或UPLC法对上述丹参总酚酸功能成分群粉末进行定性定量分析,结果表明,上述丹参酚酸功能成分群中含有丹参酚酸B的质量百分含量为54.8%,含丹酚酸B、紫草酸、迷迭香酸的质量百分含量之和为62.0%。
实施例6、具有特定化学组成的丹参酚酸功能成分群,其制备方法包括 以下步骤:
步骤1、丹参酚酸粗提液的制备:取唇形科植物丹参(Salvia miltiorrhiza Bge.)的干燥根200kg,切成厚片,进行罐组式动态逆流提取,分4罐投料,每罐50kg,加10倍50%乙醇(V/V)提取4次,提取温度为30℃,提取时间为第1次2小时,第2次1.5小时,第3次0.5小时,第4次0.5小时,第1罐的第2次提取液到规定时间后放出,加入第2罐进行第1次提取,第2罐第2次提取液加入新鲜50%乙醇出料后再加入第3罐进行第1次提取,依次循环套用,直至第4罐提完,合并所有提取液,减压浓缩至无醇味,再加水稀释并分散均匀,得丹参酚酸粗提液600L。
步骤2、丹参酚酸洗脱液的制备:上述步骤1所得丹参酚酸粗提液45L,加稀盐酸调节pH至3.5,通过预处理好的HPD100大孔吸附树脂,进行动态吸附后,先以90L水洗脱,洗脱流速为60L/h,弃去水洗脱液;再以120L 70%乙醇(V/V)洗脱,洗脱流速为30L/h,收集70%乙醇洗脱液,得到丹参酚酸洗脱液。
步骤3、上述步骤2所得丹参酚酸洗脱液减压浓缩至相对密度为1.05~1.20(60℃测定),再于70℃减压微波干燥,干燥物粉碎,得到780g丹参酚酸功能成分群粉末。采用HPLC或UPLC法对上述丹参酚酸功能成分群粉末进行定性定量分析,结果表明,上述丹参酚酸功能成分群中含有丹参酚酸B的质量百分含量为56.6%,含丹酚酸B、紫草酸、迷迭香酸的质量百分含量之和为63.4%。
实施例7、具有特定化学组成的丹参酚酸功能成分群的制备方法如下:
去上述实施例6步骤所得丹参酚酸粗提液45L,加冰乙酸调节pH至3.0,通过预处理好的HPD300大孔树脂,进行动态吸附后,先以150L水洗脱,洗脱流速为60L/h,弃去水洗脱液;再以150L60%乙醇(V/V)洗脱,洗脱流速为30L/h,收集60%乙醇洗脱液,70℃减压浓缩至相对密度为1.05-1.20(60℃测定),再于80℃减压微波干燥,干燥物粉碎,得到760g丹参酚酸功能成分群粉末。采用HPLC或UPLC法对上述丹参酚酸功能成分群粉末进行定性定量分析,结果表明,上述丹参酚酸功能成分群中含有丹参酚酸B的质量百分含量为52.1%,含丹酚酸B、紫草酸、迷迭香酸的质量百分含量之和 为56.7%。
实施例8、治疗心血管疾病的组合物药物的制备,其制备方法如下:
上述实施例1中制备的人参皂苷功能成分群粉末210g与上述实施例4中制备的丹参酚酸功能成分群粉末90g混合,得到本发明的组合物。
实施例9、治疗心血管疾病的组合物药物的制备,其制备方法如下:
上述实施例2中制备的人参皂苷功能成分群粉末200g与上述实施例5中制备的丹参酚酸功能成分群粉末20g混合,得到本发明的组合物。
实施例10、治疗心血管疾病的组合物片剂的制备,其制备方法如下:
上述实施例3中制备的人参皂苷功能成分群粉末1g与上述实施例7中制备的丹参酚酸功能成分群粉末20g混合,加入淀粉20g,乳糖10g,混合均匀,制成粒度为16目的颗粒,经干燥,压片,得到治疗心血管疾病的药物片剂。
实施例11、治疗心血管疾病的药物颗粒剂的制备,其制备方法如下:
上述实施例1中制备的人参皂苷功能成分群粉末100g与上述实施例6中制备的丹参酚酸功能成分群粉末10g混合,加入糊精360g和蔗糖粉240g,混合均匀,制成为粒度为16目的药物颗粒,得到本发明的治疗心血管疾病的药物颗粒剂。
实施例12、治疗心血管疾病的药物注射液的制备,其制备方法如下:
取人参皂苷Rb1 2.6g、Rg1 1.36g、Re 1.04g和丹参酚酸B 9.4g,加入β-CYD 30g,以注射用水加热搅拌以充分溶解,再加水至1000ml,调节pH值至中性,搅匀,过滤分装于中性玻璃容器中,用流通蒸汽100℃30min灭菌,过滤,精滤,灌封,灭菌,检验,得注射液。
实施例13、治疗心血管疾病的药物注射液的制备,其制备方法如下:
取人参皂苷Rb1 3.9g、Rg1 2.10g、Re 1.65g、Rd 1.05g、Rc 2.10g、Rb2 1.70g、Rf 0.50g、Ro0.65g,丹参酚酸B4.7g,丹参素0.90g,加入β-CYD 30g,以注射用水加热搅拌以充分溶解,再加水至1000ml,调节pH值至中性,搅匀,过滤分装于中性玻璃容器中,用流通蒸汽100℃30min灭菌,过滤,精滤,灌封,灭菌,检验,得注射液。
试验例1
冠状动脉结扎(CAL)大鼠急性心肌梗塞药效实验
SD大鼠实验室条件饲养两天后,术前将大鼠放入代谢笼中接取24小时尿样后,用乌拉坦(1.3g·kg-1)腹腔注射(ip)麻醉,仰卧位固定,接MPA2000多道生物信号分析系统(Ⅱ导联),记录5min正常心电图,异常者弃去不用。待稳定后,胸部去毛消毒,沿着锁骨中线纵行切开皮肤约2cm,在第3或4第肋间钝性分离肌层,打开胸腔,剪开心包,轻压右侧胸廓,挤出心脏。在动脉圆锥与左心耳之间冠状动脉处结扎左冠状动脉前降支后,把心脏放回胸腔,挤压排除胸腔空气,迅速缝合胸腔。假手术组除不结扎冠脉前降支外同其它各组手术一致。记录结扎前后以下各项指标。造模成功的标准:结扎线以下部位心肌立即出现黑紫,并且心电图J点明显抬高或压低,表明造模成功,即造成急性心肌缺血模型。
实验分组:
将手术后麻醉苏醒的大鼠63只,随机分为7组,每组9只:假手术组和模型组(给予等量生理盐水)(给予等量生理盐水),阳性对照组(盐酸地尔硫卓片组),实施例8、9、10、11所制备样品。实施例8-11的给药量相当于5g生药量/kg·w·d,盐酸地尔硫卓片给药量:50mg/kg·w·d。
观察指标:
心电图变化:结扎前、结扎后30min和末次给药1小时的的心率、J点位移(mV)及T波幅值(mV)。7组动物于末次给药测完心电图后,开胸腔,中性福尔马林灌流固定后,取出完整心脏,沿左室短轴横切40~50片,每片为4-5um厚环形心肌组织,经常规脱水、透明、石蜡包埋、切片、H-E染色,光镜下观察心肌坏死情况。Leica图像分析系统(10x)检测各层心肌梗死面积和左室面积,梗死面积(%)用心肌梗死面积/左室面积×100%表示。
血清酶学:肌酸激酶(CK)测定、乳酸脱氢酶(LDH)测定
组织病理观察:心肌梗死面积,组织切片光镜照片
模型组、假手术组、阳性药组及各给药组大鼠收集给药1天、7天、14天和21天的24小时尿液,进行代谢组学研究。
1.心电图的影响
在末次给药后1小时,各组大鼠麻醉,记录心电图2分钟,以下述指标 合并作为正常心电标准:1)J点向下或向上偏移<0.1mV。2)T波若高耸,低于同导联R波的1/2。通过计算各组实验动物的心电图恢复正常的恢复率%(各组正常心电图的动物数/各组的动物数×100),考察本发明药物(实施例8、9、10、11)对大鼠心电图的影响,实验结果见表1。
表1对冠脉结扎(CAL)大鼠急性心肌缺血心电图的影响
Figure PCTCN2014085684-appb-000001
*P<0.05**P<0.01 vs model group
2.对冠脉结扎大鼠心脏冠脉心肌梗死面积的影响
心肌梗死面积考查结果见表2。
表2对冠脉结扎引起的急性心肌缺血大鼠心肌梗死面积的影响
Figure PCTCN2014085684-appb-000002
*P<0.05;**P<0.05;***P<0.001 vs model group
与模型组比较,空白假手术组心肌梗死面积在统计学上有极显著差(P<0.001),说明造模成功;本发明药物(实施例8、9、10、11)和阳性对 照药组梗死面积明显减少(P<0.05);研究结果提示本发明药物(实施例8、9、10、11)具有改善心肌梗死作用。
3.对冠脉结扎大鼠血清酶学的影响
统计处理结果见表3:
表3双龙片对冠脉结扎(CAL)大鼠的血清酶学的影响(x±s)
Figure PCTCN2014085684-appb-000003
与模型对照组相比,*P<0.05,**P<0.01;与正常对照组相比,#P<0.05
与正常组相比,模型组LDH、CK值显著升高(P<0.01),说明冠状动脉结扎所致的心肌梗死可导致大鼠血清中的LDH、CK的活性显著升高;假手术组的CK值与模型对照组和正常对照组相比差异均有统计学意义(P<0.05),说明开胸手术能够显著升高CK活性,但其升高程度不如冠脉结扎。与模型对照组相比,本发明药物(实施例8、9、10、11)LDH、CK值显著降低(P<0.05),说明各药物均具有降低LDH及CK活性的作用;与正常对照组相比,除了盐酸地尔硫卓组的LDH值有统计学意义外(P<0.05),其余各组的LDH、CK值均无统计学意义(P>0.05)。以上说明本发明药物(实施例8、9、10、11)能将冠脉结扎大鼠的LDH及CK活性降至正常水平的作用;盐酸地尔硫卓能将冠脉结扎大鼠的CK活性降至正常水平,但尚不能将LDH活性降至正常水平。本发明药物(实施例8、9、10、11)各组及阳性对照药组LDH、CK值组间差异无统计学意义,说明各药物降低冠脉结扎大鼠的LDH及CK活性的疗效相当。
4.对冠脉结扎大鼠模型尿液代谢组学研究
图1为大鼠尿样数据在不同时间给药点的PCA聚类图
A、实施例8给药大鼠在第0、7、14和21天尿样的PCA聚类图;B、实施例9给药大鼠在第0、7、14和21天尿样的PCA聚类图;C、实施例10给药大鼠在第0、7、14和21天尿样的PCA聚类图;D、实施例11给药大鼠在第0、7、14和21天尿样的PCA聚类图;
采用大鼠冠状动脉结扎模型,通过尿液代谢组学观察本发明药物(实施例8、9、10、11)给药后对内源性物质代谢影响的大小。由图1所示,各组与造模前(第0天)相比较,造模后(第1天)样本都远元偏离正常组代谢所在的平衡状态,说明手术造心肌缺血模型后,干扰了内源性物质的代谢,使得尿液代谢指纹图谱发生了显著的改变。从第1天到第21天,各组的代谢轨迹表现出向造模前(0天)的代谢水平靠近。代谢轨迹回到正常代谢状态,说明代谢的紊乱得到恢复。通过对各组中具有明显差异的化合物进行筛选和鉴定,结果在各组中找到了11个潜在生物标志物,它们都集中在与心肌能量代谢相关的代谢途径,如三羧酸循环(柠檬酸和草酰琥珀酸)、戊糖磷酸途径(1-磷酸-葡萄糖酸和6-磷酸-葡萄糖)和氨基酸循环(N-乙酰-D-色氨酸和N-乙酰谷氨酸)。通过代谢组学研究表明,本发明药物(实施例8、9、10、11)干预后,可能通过干预糖代谢中糖酵解和柠檬酸循环的某些过程纠正大鼠异常代谢水平,其通过对机体能量代谢的改变对大鼠心肌缺血起到保护作用。
试验例2
异丙肾上腺素诱导大鼠急性心肌缺血药效实验
SD大鼠105只,随机分为7组,每组15只:正常组(给予等量生理盐水),模型组(给予等量生理盐水),阳性对照组(盐酸地尔硫卓),本发明药物(实施例8、9、10、11)。以上各组均灌胃给药7天,第6~7除正常组以等量生理盐水外,其余各组均腹腔多点注射异丙肾上腺素(ISO,每次10mg·kg-1,每日1次,连续注射2d)。实施例8-11的给药量相当于5g生药量/kg·w·d,盐酸地尔硫卓片给药量:50mg/kg·w·d。最后1次给药1h后,用乌拉坦(1.3g·kg-1)腹腔注射(ip)麻醉,仰卧位固定,接MPA2000多道生物信号分析系统(II导联),记录5min正常心电图,异常者弃去不用。待稳定后,除正常组以等量生理盐水外,其余各组均腹腔多点注射ISO(10mg·kg-1),记录注射ISO后0.5、1、2、5、10、15、20min时的心电图, 观察J点(QRS波群的终点与T波交接处)的变化。以其降低的mV数作为指标,ΔJ(心电图J点变化值)=静脉注射ISO后各时间点心电图J点值(mV)-静脉注射ISO前心电图J点值(mV)。判断大鼠心肌缺血阳性标准(具备以下条件之一者):1.J点向下或向上偏移≥0.1mV。2.T波高耸,超过同导联R波的1/2。3.T波高耸伴J点移位。以QRS复合波起点的连线作等电线,以J点的偏移程度为诊断依据,并选择2秒内心跳计算J点改变的毫伏平均数,作为心肌缺血程度的指标,其方法参照文献[7]。测完心电图以后,各组动物在ip ISO后1h,开腹腔自下腔静脉取血,分离血清冷冻保存,稍后取部分血清按照说明书操作测量其中LDH、CK、SOD、和MDA的含量。取血结束后,迅速取出心脏,以生理盐水清洗干净后,剔除非心肌组织,用滤纸吸干,称重,取大鼠心肌心房部分立即采用RNAsimple Total RNA Kit提供的方法提取组织细胞中的总RNA,备用。其余心室部分在冰箱里(-20℃)冷冻30分钟,取出后将心室切成0.1cm厚的心肌片,置于硝基四氮唑蓝(NBT)溶液中,在37℃水浴中温孵染色15min,将心肌非兰染区(梗塞区)切下,称湿重,计算与总心脏重之比为心肌梗塞范围(梗塞区心脏重×100%)。
1.对急性心肌缺血大鼠心电图的影响
大鼠腹腔注射ISO后,心电图J点均发生明显变化,短暂升高后,随着时间的延长,迅速下降;模型组与给药组比较,对抗ISO诱导的大鼠心电图J点降低作用以本发明药物(实施例8、9、10、11)为最优,结果见表4。
表4对ISO引起的大鼠急性心肌缺血不同时间点心电图△J的影响(x±s,n=9)
Figure PCTCN2014085684-appb-000004
*P<0.05,**P<0.01,***P<0.001与模型组比较
2.对血清酶学的影响
结果见表5。与正常组相比,模型组LDH、CK值显著升高(P<0.01),SOD值显著降低(P<0.05),MDA值极显著升高(P<0.001)。与模型组相比,本发明药物(实施例8、9、10、11)可明显降低LDH、CK、MDA值(P<0.05),明显升高SOD值(P<0.05),其中配伍A-1:B+1低剂量组可明显降低LDH值(P<0.05)。
表5对ISO引起的大鼠急性心肌缺血心肌酶LDH,CK,SOD和MDA的影响
Figure PCTCN2014085684-appb-000005
*P<0.05,**P<0.01,***P<0.001与模型组比较
3.对心脏梗死面积的影响
结果见表5。与正常组相比,模型组的梗死面积极显著升高(P<0.001),说明模型组已造成心肌梗死。与模型组相比,本发明药物(实施例8、9、10、11)各组心肌梗死面积明显减少,差异具有显著性(P<0.05)。各配伍低剂量组具有使心肌梗死面积减少趋势,但与模型组比较无统计学意义(P>0.05)
表5对异丙肾上腺素引起的急性心肌缺血大鼠心肌梗死面积的影响
Figure PCTCN2014085684-appb-000006
Figure PCTCN2014085684-appb-000007
*P<0.05***P<0.001与模型组比较
实验结果表明,模型组大鼠的心电图J点的偏移和心肌酶释放量明显增加,提示缺血的心肌组织与细胞发生了损伤。在实验性心肌缺血过程中,心肌酶的释放量和心电图J点变化程度是诊断急性心肌梗死的重要依据,也是心肌损害程度的重要标志。血清MDA水平明显增加、SOD活力显著降低,提示心肌缺血时自由基反应性增强和抗过氧化酶功能减弱。和模型组相比,给药各剂量组均可对抗心电图J点的变化,其中以本发明药物(实施例8、9、10、11)配伍各组高低剂量效果最为明显,而且本发明药物(实施例8、9、10、11)配伍各组还明显降低血清LDH、CK、MDA释放量以及明显升高SOD活性,明显降低心脏梗死面积。但各组之间无较大差别(P>0.05)。
试验例3
过氧化氢诱导心肌细胞氧化还原损伤细胞模型药效实验
采用心肌细胞H2O2氧化损伤模型考察本发明药物(实施例12)及其有效组分对心肌细胞的保护作用,药物与心肌细胞共培养48h后,向培养基中添加10%H2O2-PBS溶液作用2h,应用高内涵筛选(HCS)系统对心肌细胞健康程度进行分析,结果表明,经本发明药物(实施例12、13)及其有效组分预保护作用的心肌细胞,线粒体膜电势较高,细胞膜通透性较小,细胞核完整,细胞活力程度较高,说明其具有抵御H2O2致心肌细胞氧化损伤的作用(图2)。
图2实施例12及其有效成分对H2O2氧化损伤心肌细胞细胞膜通透性的影响。
A为实施例12及其有效成分对H2O2氧化损伤心肌细胞细胞膜通透性荧光表达。绿色荧光所示为细胞膜通透性,蓝色荧光所示为细胞核。B为实施例12及其有效成分对氧化损伤心肌细胞细胞膜通透性的比较
丹酚酸B和丹参总酚酸能显著提高受损心肌细胞线粒体膜电势(图2-A、B),人参总皂苷能显著降低受损细胞细胞膜通透性,在维护细胞核完整性方面,实施例12药物活性最好。由此可见,实施例12药物及成分对H2O2损伤 大鼠心肌细胞均有修复作用,经同一性比较,综合细胞核完整性,细胞膜通透性及线粒体膜电势三个指标检测结果表明,实施例12药物组效果最好,最佳浓度为10-4mol/L。除此之外,心肌细胞H/R模型的研究中也证实实施例12药物对心肌细胞的损伤具有保护作用,且人参皂苷类成分发挥该方面的药效作用。
试验例4
人脐静脉内皮细胞增殖、迁移及促进内皮细胞小管生成的药效实验
采用人脐静脉内皮细胞(HUVECs)考察NSLF6对内皮细胞增殖、迁移及血管新生等方面的影响。细胞计数及MTT结果表明(图3-A,B),本发明药物(实施例13)可促进HUVECs增殖,;细胞迁移测定结果表明(图3-C)实施例13药物显著增强HUVECs的迁移能力;HUVECs在matrigel基质胶表面小管形成试验结果表明(图3-D),20μg/mL(实施例12、13)明显促进HUVECs小管生成。
图3对体外HUVECs增殖、迁移和血管生成的影响。A是药物作用于内皮细胞24小时后直接细胞计数结果(n=6);B是药物作用于内皮细胞24小时后MTT测定结果(n=6);C是药物(20μg/mL)作用3小时候后,内皮细胞穿过transwell小室膜的细胞数;D为NSLF作用18小时后HUVECs在matrigel基质胶表面的小管形成情况。“*”表示该组与Control组比较P<0.05.
以上对本发明所提供的一种防治血管疾病的药物及其制备方法进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (9)

  1. 一种防治血管疾病的药物,其特征在于,有效成分为人参皂苷功能成分群和丹参酚酸功能成分群,所述人参皂苷功能成分群和丹参酚酸功能成分群的重量比为1:(0.1-20);
    所述人参皂苷功能成分群中,人参皂苷Rg1的质量百分含量为6.0%~10.0%,人参皂苷Re的质量百分含量为5.0~6.0%,人参皂苷Rb1的质量百分含量为11%~13%,人参皂苷Rg1、人参皂苷Re、人参皂苷Rb1、人参皂苷Rc、人参皂苷Rb2、人参皂苷Rd的质量百分含量之和为40~50%;
    所述丹参酚酸功能成分群中,丹参酚酸B的质量百分含量大于或等于50.0%;丹参总酚酸含量之和大于或等于55.0%。
  2. 根据权利要求1所述的防治血管疾病的药物,其特征在于,所述丹参总酚酸由丹参酚酸B以及
    丹参素、迷迭香酸、紫草酸三种中的一种或几种组成。
  3. 根据权利要求1所述的防治血管疾病的药物,其特征在于,所述药物的剂型为片剂、颗粒剂、胶囊剂、滴丸剂、栓剂、注射剂、输液剂、气雾剂或吸入剂。
  4. 根据权利要求1所述的防治血管疾病的药物,其特征在于,所述血管疾病为冠心病、心绞痛、心肌缺血、心肌缺氧或心肌梗塞。
  5. 一种制备权利要求1-4任一所述防治血管疾病的药物的方法,其特征在于,包括如下步骤:
    (1)人参皂苷功能成分群提取:
    a)取人参原料,用回流提取法或动态逆流提取法对其进行提取,得到人参皂苷粗提取液;
    所述回流提取法为:将人参原料加体积百分含量为90%的乙醇回流提取三次,每次提取1.0-2.5小时,将提取到的混合溶液分别过滤、合并,然后减压浓缩至无醇味,加水稀释并分散均匀;人参原料与乙醇水溶液的用量比为1:(5~15)
    所述动态逆流提取法为:将人参原料分4个提取罐投料,加体积百分含量为90%的乙醇提取3次,每次1.5-2.5小时,第1罐的第2次提取液到规定时 间后放出,加到第2罐进行第1次提取,第2罐第2次提取液加入体积百分含量为90%的乙醇出料后再加入第3罐进行第1次提取,依次循环套用,直至4罐提完,合并所有提取液,减压浓缩至无醇味,再加水稀释并分散均匀;人参原料与乙醇水溶液的用量比为1:(5~15)
    b)取上述步骤a)所得的人参皂苷粗提液,将粗提液动态吸附于大孔树脂,先以3~8倍柱体积水洗脱,洗脱流速为0.5~3bv/h,弃去水洗脱液,再以3~8倍柱体积百分含量为70-80%的乙醇洗脱,洗脱流速为0.5~3bv/h,收集70-80%乙醇洗脱液,得到人参皂苷洗脱液;
    c)将步骤b)中得到的人参皂苷洗脱液浓缩干燥,得到人参皂苷功能成分群粉末;
    (2)丹参酚酸功能成分群提取:
    d)取丹参原料,用回流提取法或动态逆流提取法对其进行提取,得到丹参酚酸粗提取液;
    所述回流提取法为:将丹参原料加体积百分含量为50%的乙醇回流提取三次,每次提取3-4小时,将提取到的混合溶液分别过滤、合并,然后减压浓缩至无醇味,加水稀释并分散均匀;丹参原料与乙醇水溶液的用量比为1:(6~15)。
    所述动态逆流提取法为:将丹参原料分4个提取罐投料,加体积百分含量为50%的乙醇提取4次,提取时间第1次2小时,第2次1.5小时,第3次0.5小时,第4次0.5小时,提取温度为30℃,第1罐的第2次提取液到规定时间后放出,加到第2罐进行第1次提取,第2罐第2次提取液加入体积百分含量为50%的乙醇出料后再加入第3罐进行第1次提取,依次循环套用,直至4罐提完,合并所有提取液,减压浓缩至无醇味,再加水稀释并分散均匀;丹参原料与乙醇水溶液的用量比为:1:(6~15)。
    e)取上述步骤d)所得的丹参酚酸粗提取液,将每30L粗提液动态吸附于大孔树脂,先以3~8倍柱体积水洗脱,洗脱流速为0.5~3bv/h,弃去水洗脱液,再以3~8倍柱体积百分含量为60-70%的乙醇洗脱,洗脱流速为0.5~3bv/h,收集乙醇洗脱液,得到丹参酚酸洗脱液;
    f)将步骤e)中得到的丹参酚酸洗脱液浓缩干燥,得到丹参酚酸功能成分群粉末;
    (3)将步骤(1)所得人参皂苷功能成分群粉末和步骤(2)所得丹参酚酸功能成分群粉末按重量比1:(0.1-20)混合,得到药物的有效成分。
  6. 根据权利要求5所述的制备防治血管疾病的药物的方法,其特征在于,步骤e)中在动态吸附于大孔树脂之前,先将丹参酚酸粗提取液的pH值调至3.0-3.5。
  7. 根据权利要求5所述的制备防治血管疾病的药物的方法,其特征在于,所述步骤f)中浓缩温度为60℃,浓缩后丹参酚酸洗脱液的相对密度为1.05-1.20。
  8. 根据权利要求5-7任一所述的制备防治血管疾病的药物的方法,其特征在于,所述干燥为常压干燥、减压干燥、微波减压干燥或喷雾干燥。
  9. 根据权利要求5-7任一所述的制备防治血管疾病的药物的方法,其特征在于,所述大孔吸附树脂为HPD100、HPD300、HPD700、D101、AB-8、X-5中的一种或几种组合的复合树脂。
PCT/CN2014/085684 2014-09-01 2014-09-01 一种防治血管疾病的药物及其制备方法 WO2016033727A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/085684 WO2016033727A1 (zh) 2014-09-01 2014-09-01 一种防治血管疾病的药物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/085684 WO2016033727A1 (zh) 2014-09-01 2014-09-01 一种防治血管疾病的药物及其制备方法

Publications (1)

Publication Number Publication Date
WO2016033727A1 true WO2016033727A1 (zh) 2016-03-10

Family

ID=55438977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085684 WO2016033727A1 (zh) 2014-09-01 2014-09-01 一种防治血管疾病的药物及其制备方法

Country Status (1)

Country Link
WO (1) WO2016033727A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110151737A (zh) * 2019-05-10 2019-08-23 珠海瑞思普利生物制药有限公司 一种丹酚酸a胶囊型吸入粉雾剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1528323A (zh) * 2003-10-03 2004-09-15 李文军 一种治疗心脑血管病的药物组合物
CN101292987A (zh) * 2007-04-29 2008-10-29 北京本草天源药物研究院 药物组合物
CN101683387A (zh) * 2008-09-27 2010-03-31 广州市香雪制药股份有限公司 一种药物及其制备方法与应用
CN102100737A (zh) * 2009-12-17 2011-06-22 北京大学 包含人参总皂苷与丹参总酚酸的药物组合物及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1528323A (zh) * 2003-10-03 2004-09-15 李文军 一种治疗心脑血管病的药物组合物
CN101292987A (zh) * 2007-04-29 2008-10-29 北京本草天源药物研究院 药物组合物
CN101683387A (zh) * 2008-09-27 2010-03-31 广州市香雪制药股份有限公司 一种药物及其制备方法与应用
CN102100737A (zh) * 2009-12-17 2011-06-22 北京大学 包含人参总皂苷与丹参总酚酸的药物组合物及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, KE ET AL.: "Ameliorative effect of Panax ginseng saponins combined with Salvia miltiorrhiza phenolic acids on hemorheological abnormality in rats with acute blood stasis", CHIN J PHARMACOL TOXICOL, vol. 26, no. 5, 31 October 2012 (2012-10-31), pages 642, ISSN: 1000-3002 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110151737A (zh) * 2019-05-10 2019-08-23 珠海瑞思普利生物制药有限公司 一种丹酚酸a胶囊型吸入粉雾剂及其制备方法

Similar Documents

Publication Publication Date Title
Choy et al. Natural products targeting ER stress pathway for the treatment of cardiovascular diseases
Yang et al. The role of traditional Chinese medicine in the regulation of oxidative stress in treating coronary heart disease
Jia et al. Current evaluation of the millennium phytomedicine-ginseng (II): Collected chemical entities, modern pharmacology, and clinical applications emanated from traditional Chinese medicine
Singhuber et al. Aconitum in traditional Chinese medicine—a valuable drug or an unpredictable risk?
US20090317496A1 (en) Method for Preventing and Treating the Disease Caused by Vascular Damage and the Use Thereof
WO2003086438A1 (en) Extract of processed panax genus plant, the preparation method thereof, and compositions containing the same
WO2018133563A1 (zh) 一种人参属植物提取物及其药物组合物和应用
CN103479963A (zh) 一种治疗类风湿关节炎的中药胶囊及其制备方法
CN108578544A (zh) 一种具有降糖作用的中药组合物及其制备方法与应用
KR20160133347A (ko) 자근 추출물을 유효성분으로 함유하는 말초신경병증 예방, 개선 또는 치료용 조성물
CN107496573B (zh) 鱼腥草提取物在制备预防心肌缺血再灌注损伤的药物制剂中的应用
CN102293802B (zh) 一种治疗心血管疾病的药物组合物及其制备方法
CN102526423A (zh) 一种治疗缺血性心脏病的药物组合
CN101584743A (zh) 一种治疗心脑血管疾病的中药复方丹参制剂的制备方法
WO2016033727A1 (zh) 一种防治血管疾病的药物及其制备方法
KR20130074121A (ko) 초음파 처리를 이용한 인삼 프로사포게닌 고농도 함유 삼칠삼 제제 및 이의 제조방법
CN101697989B (zh) 三七及其提取物在制备治疗和/或预防冠状动脉粥样硬化药物的用途
CN101711793B (zh) 一种具有治疗心脑血管疾病的药物组合物及其制备方法
CN107334813A (zh) 一种四方蒿提取物及其制法和用途
CN104740054B (zh) 一种防治心肌缺血的药物组合物及其制备方法和用途
CN1923228B (zh) 三七提取物、丹参提取物和川芎嗪的药物组合物
CN102599501B (zh) 降脂护肝的保健食品红洋胶囊或片剂
KR101381507B1 (ko) 초단파를 이용한 원형 홍삼 및 이의 제조방법
CN101152223A (zh) 杨树叶酚类提取物在治疗心血管疾病中的用途及其提取方法
CN108743654B (zh) 一种用于治疗缺血性心脏病的中药组合物及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901236

Country of ref document: EP

Kind code of ref document: A1