WO2016031896A1 - 重水素低減水の製造方法、重水と軽水の分離方法、および重水素濃縮水の製造方法 - Google Patents

重水素低減水の製造方法、重水と軽水の分離方法、および重水素濃縮水の製造方法 Download PDF

Info

Publication number
WO2016031896A1
WO2016031896A1 PCT/JP2015/074154 JP2015074154W WO2016031896A1 WO 2016031896 A1 WO2016031896 A1 WO 2016031896A1 JP 2015074154 W JP2015074154 W JP 2015074154W WO 2016031896 A1 WO2016031896 A1 WO 2016031896A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
heavy
adsorbent
semi
heavy water
Prior art date
Application number
PCT/JP2015/074154
Other languages
English (en)
French (fr)
Inventor
金子 克美
高城 壽雄
村田 克之
Original Assignee
国立大学法人信州大学
株式会社寿通商
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人信州大学, 株式会社寿通商 filed Critical 国立大学法人信州大学
Priority to EP15835066.0A priority Critical patent/EP3187461B1/en
Priority to CN201580044099.8A priority patent/CN107074539B/zh
Priority to JP2016545601A priority patent/JP6572223B2/ja
Priority to AU2015309833A priority patent/AU2015309833B2/en
Priority to EP18197505.3A priority patent/EP3441361A1/en
Priority to US15/505,287 priority patent/US10343906B2/en
Priority to CA2959084A priority patent/CA2959084A1/en
Publication of WO2016031896A1 publication Critical patent/WO2016031896A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B5/00Water
    • C01B5/02Heavy water; Preparation by chemical reaction of hydrogen isotopes or their compounds, e.g. 4ND3 + 7O2 ---> 4NO2 + 6D2O, 2D2 + O2 ---> 2D2O
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D59/00Separation of different isotopes of the same chemical element
    • B01D59/22Separation by extracting
    • B01D59/26Separation by extracting by sorption, i.e. absorption, adsorption, persorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B5/00Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water

Definitions

  • the present invention relates to a method for producing deuterium-reduced water in which the amount of heavy water or semi-heavy water is reduced from general water.
  • the present invention also relates to a method for separating heavy water and semi-heavy water from light water, and a method for producing deuterium-enriched water containing a large amount of heavy water and semi-heavy water.
  • H 2 O light water
  • D 2 O heavy water
  • DHO distaloheavy water
  • the concentration of heavy water and semi-heavy water contained in water in nature varies depending on the location where it is collected, but it is about 150 ppm on flat ground, most of which is semi-heavy water.
  • the amount of heavy water and semi-heavy water contained in the human body is as small as 95 ppm of body weight for an adult with a body weight of 60 kg, for example.
  • Patent Document 1 As a general method for producing deuterium-reduced water from water, a conventional technique uses a slight difference in physical properties between hydrogen and deuterium to repeat distillation (Patent Document 1) or a water electrolysis method. The deuterium reduction water was manufactured by the method (patent document 2) by this.
  • This invention is made
  • a first invention is a method for producing deuterium-reduced water by removing heavy water and semi-heavy water from water, wherein the heavy water and half-heavy water adsorbs the adsorbent on the adsorbent to light water. It is characterized by having an adsorption process for supplying heavy water and semi-heavy water by supplying at a pressure that is difficult to adsorb, and recovering water vapor that is not adsorbed on the adsorbent.
  • the above method can also be used when water containing a large amount of heavy water or semi-heavy water is recovered and used.
  • a second invention is a method for producing deuterium-reduced water by removing heavy water and semi-heavy water from water, wherein light water is desorbed from the atmospheric pressure around a predetermined adsorbent adsorbed with water vapor, and heavy water and semi-heavy water. It has the desorption process which hold
  • the above method can also be used when water containing a large amount of heavy water or semi-heavy water is recovered and used.
  • a third invention is a method for producing deuterium-reduced water by removing heavy water and semi-heavy water from water, the step of supplying water vapor to a predetermined adsorbent and adsorbing it, and surroundings of the adsorbent And a desorption step of recovering the water vapor desorbed from the adsorbent at least once.
  • the above method can also be used when water containing a large amount of heavy water or semi-heavy water is recovered and used.
  • a fourth invention is a method for producing deuterium-reduced water by removing heavy water and semi-heavy water from water, wherein the atmospheric pressure around a predetermined first adsorbent adsorbed with water vapor in the first adsorption tank is reduced to light water. Is retained in a range in which heavy water and semi-heavy water are not easily desorbed, and the water vapor desorbed from the first adsorbent is recovered, and the first adsorbing tank is used with respect to a predetermined second adsorbent in the second adsorbing tank.
  • the first step of supplying and adsorbing the water vapor recovered in step 1 and the atmospheric pressure around the second adsorbent adsorbing the water vapor in the second adsorption tank are within the range where light water is desorbed and heavy water and semi-heavy water are not easily desorbed.
  • the above method can also be used when water containing a large amount of heavy water or semi-heavy water is recovered and used.
  • the fifth invention is characterized in that the adsorbent is formed from a material classified as IV type or V type in the IUPAC classification of the water vapor adsorption isotherm.
  • a sixth invention is a method for separating water into light water, heavy water, and semi-heavy water, and with respect to a predetermined adsorbent, water vapor adsorbs the heavy water and semi-heavy water to the adsorbent and hardly adsorbs light water. It is characterized by adsorbing heavy water and semi-heavy water by supplying with pressure.
  • the seventh invention is a method for separating water into light water, heavy water and semi-heavy water, wherein light water is desorbed from the atmospheric pressure around a predetermined adsorbent adsorbing water vapor, and heavy water and semi-heavy water are not easily desorbed.
  • the water vapor is desorbed from the adsorbent while maintaining the range.
  • the eighth invention is a method for producing deuterium-enriched water by removing light water from water, and with respect to a predetermined adsorbent, heavy water and semi-heavy water are adsorbed on the adsorbent and light water is difficult to adsorb. It is characterized by having an adsorption step of adsorbing heavy water and semi-heavy water by supplying with pressure and collecting the water adsorbed on the adsorbent.
  • a ninth invention is a method for producing deuterium-enriched water by removing light water from water, wherein light water is desorbed from the atmospheric pressure around a predetermined adsorbent adsorbing water vapor, and heavy water and semi-heavy water are desorbed.
  • the water remaining in the adsorbent is recovered after the desorption step of keeping the water in a difficult range and desorbing water vapor from the adsorbent.
  • water is supplied to the predetermined adsorbent at a pressure at which the heavy water and semi-heavy water are adsorbed on the adsorbent and light water is difficult to adsorb, thereby adsorbing the heavy water and semi-heavy water, and the adsorbent
  • adsorbent By having an adsorption process for recovering water vapor that is not adsorbed on the deuterium, deuterium-reduced water can be easily produced at low cost with a simpler apparatus than in the past. Further, since the water remaining in the adsorbent contains a large amount of heavy water or semi-heavy water, it can be used.
  • the atmospheric pressure around a predetermined adsorbent adsorbing water vapor is maintained within a range where light water is desorbed and heavy water and semi-heavy water are not easily desorbed, and the water vapor desorbed from the adsorbent is recovered.
  • the step of supplying water vapor to a predetermined adsorbent and adsorbing it, and maintaining the atmospheric pressure around the adsorbent within a range in which light water is desorbed and heavy water and semi-heavy water are not easily desorbed By having at least one desorption step to recover water vapor desorbed from the adsorbent, heavy water and semi-heavy water are efficiently adsorbed to the adsorbent, and deuterium-reduced water is easily produced at low cost. can do. Further, since the water remaining in the adsorbent contains a large amount of heavy water or semi-heavy water, it can be used.
  • the first adsorbent and the second adsorbent are extremely efficient by performing the desorption step in one of the first adsorber and the second adsorber and simultaneously adsorbing the water vapor in the other.
  • deuterium-reduced water can be easily produced at low cost by adsorbing heavy water and semi-heavy water.
  • the water remaining in the first adsorbent and the second adsorbent contains a large amount of heavy water or semi-heavy water, it can be used.
  • the adsorbent is formed from a material classified as IV type or V type in the IUPAC classification of the water vapor adsorption isotherm, thereby easily separating heavy water and semi-heavy water, Deuterium-reduced water can be produced.
  • the sixth invention for a predetermined adsorbent, water vapor is supplied at a pressure at which the heavy water and semi-heavy water are adsorbed on the adsorbent and light water is difficult to adsorb, thereby adsorbing heavy water and semi-heavy water. Compared to the above, it is possible to easily separate heavy water and semi-heavy water from light water with a simple device at low cost.
  • the atmospheric pressure around the predetermined adsorbent adsorbing water vapor is maintained within a range where light water is desorbed and heavy water and semi-heavy water are not easily desorbed, and water vapor is desorbed from the adsorbent.
  • water vapor is supplied at a pressure at which heavy water and semi-heavy water are adsorbed on the adsorbent and light water is difficult to adsorb, thereby adsorbing heavy water and semi-heavy water,
  • a deuterium concentrated water can be easily manufactured at low cost with a simpler apparatus compared with the past.
  • the atmospheric pressure around a predetermined adsorbent adsorbing water vapor is maintained within a range in which light water is desorbed and heavy water and semi-heavy water are not easily desorbed, and desorption is performed to desorb water vapor from the adsorbent.
  • the present invention utilizes the fact that heavy water or semi-heavy water is more easily adsorbed to a predetermined adsorbent than light water and is less likely to desorb.
  • the adsorbent it is preferable to use a material classified as IV type or V type in the classification of the IUPAC adsorption isotherm with respect to water vapor. This is because the amount of adsorption of the IV type or V type material changes greatly with a small change in pressure.
  • examples of such materials include carbon-based adsorbents such as activated carbon, activated carbon fibers, and carbon nanotubes, and inorganic porous materials such as silica gel and zeolite.
  • materials of AlPO-type zeolite such as AQSOA (registered trademark) and ALPO-5 are excellent in adsorption performance, and activated carbon is low in cost. Below, it demonstrates based on the example which uses activated carbon as an adsorbent.
  • FIG. 1 is a graph showing water vapor adsorption isotherms at 25 ° C. divided into heavy water, semi-heavy water, and light water when the adsorbent is activated carbon (Adol Co., Ltd. activated carbon fiber “A-20”). .
  • the amount of adsorption on activated carbon greatly changes with a small pressure change in any of heavy water, semi-heavy water, and light water.
  • heavy water, semi-heavy water, and light water all show hysteresis during adsorption to activated carbon and during desorption.
  • activated carbon is prepared, and water vapor is supplied at a pressure at which heavy water or semi-heavy water is adsorbed and light water is hardly adsorbed.
  • the separation device used in the first embodiment includes a vaporizer 1 that supplies water as steam.
  • a pipe extending from the vaporizer 1 is connected to the adsorption tank 2.
  • an adsorbent made of activated carbon is arranged inside the adsorption tank 2.
  • a liquefaction device 3 for returning water vapor to water is provided on the downstream side of the adsorption tank 2.
  • a shutoff valve 4 is provided in the middle of the pipe connecting the adsorption tank 2 and the liquefying device 3.
  • a pipe connecting the adsorption tank 2 and the liquefying device 3 branches in the middle, and water vapor can be exhausted via the shut-off valve 5.
  • the separation apparatus provided with the some adsorption tank 7 and 8 can also be used.
  • a first adsorption tank 7 is provided downstream of the vaporizer 6 and a second adsorption tank 8 is provided downstream of the first adsorption tank 7.
  • a shutoff valve 10 is provided in the middle of the pipe connecting the first adsorption tank 7 and the second adsorption tank 8. Further, the pipe connecting the first adsorption tank 7 and the second adsorption tank 8 branches in the middle, and water vapor can be exhausted via the shutoff valve 11.
  • a shutoff valve 12 is provided in the middle of the pipe connecting the second adsorption tank 8 and the liquefying device 9. Further, the pipe connecting the second adsorption tank 8 and the liquefying device 9 branches in the middle, and the water vapor can be exhausted via the shutoff valve 13.
  • deuterium-reduced water in which the concentration of deuterium is further reduced can be obtained by sequentially returning the water vapor remaining without being adsorbed to the water by the liquefaction device 9 and collecting it while continuing to supply the water vapor.
  • the shutoff valves 10 and 12 are closed and the shutoff valves 11 and 13 are opened. Desorb from the two adsorbents and exhaust.
  • ⁇ Second embodiment> activated carbon in which water vapor is sufficiently adsorbed is prepared, and the ambient atmospheric pressure is maintained at a pressure at which light water is easily desorbed and heavy water and semi-heavy water are not easily desorbed.
  • the separation device described in FIG. 2 is used as in the first embodiment.
  • water is vaporized by the vaporizer 1 and supplied to the adsorption tank 2, for example, at 25 ° C., the atmospheric pressure is set to 20 Torr or more, water vapor is sufficiently adsorbed on the adsorbent, and then reduced to 13 Torr. A large amount of light water is released.
  • the shut-off valve 4 is opened, and the desorbed water vapor is returned to the water by the liquefaction device 3 and recovered, whereby deuterium-reduced water having a reduced deuterium concentration can be obtained.
  • the adsorption isotherms of heavy water, semi-heavy water, and light water in FIG. 1 have a steep slope at the time of desorption than the slope at the time of adsorption, and the amount of adsorption changes more greatly with a small pressure change. It can be expected to reduce the concentration of deuterium more than in the first embodiment. Moreover, the adsorption / desorption rate of light water is faster than that of heavy water and semi-heavy water. Therefore, in the second embodiment, after the pressure is reduced to 13 Torr, if the desorbed water vapor is recovered before the desorption of heavy water, semi-heavy water, and light water is in a balanced (saturated) state and becomes stable, the deuterium is further reduced. A deuterium-reduced water having a low concentration can be obtained.
  • the third embodiment is characterized by repeating the desorption step of the second embodiment.
  • the separation device of the third embodiment includes a vaporizer 14 that supplies water as steam.
  • a pipe extending from the vaporizer 14 is connected to the adsorption tank 15.
  • a shutoff valve 22 is provided in the middle of this pipe.
  • an adsorbent made of activated carbon is arranged inside the adsorption tank 15 inside the adsorption tank 15 inside the adsorption tank 15, an adsorbent made of activated carbon is arranged inside the adsorption tank 15 inside the adsorption tank 15 inside the adsorption tank 15, an adsorbent made of activated carbon is arranged inside the adsorption tank 15 inside the adsorption tank 15, an adsorbent made of activated carbon is arranged inside the adsorption tank 15, an adsorbent made of activated carbon is arranged inside the adsorption tank 15, an adsorbent made of activated carbon is arranged inside the adsorption tank 15, an adsorbent made of activated carbon is arranged inside the adsorption tank 15, an adsorbent made of activated carbon is arranged inside the adsorption tank 15, an adsorbent made of activated carbon is arranged inside the adsorption tank 15, an adsorbent made of activated carbon is arranged inside the
  • shut-off valves 23 and 24 are respectively provided in the pipes extending downstream from the adsorption tank 15 and the first gas tank 16, and are joined to one downstream and connected to the second gas tank 18. ing.
  • the second gas tank 18 is provided with an analyzer 19 for analyzing the ratio of heavy water, semi-heavy water and light water in the water vapor.
  • an analyzer 19 for analyzing the ratio of heavy water, semi-heavy water and light water in the water vapor.
  • a liquefaction device 20 for returning water vapor to water is provided on the downstream side of the second gas tank 18.
  • a pipe connecting the second gas tank 18 and the liquefying device 20 branches in the middle, and water vapor can be exhausted via the shutoff valve 25 and the pump 21.
  • water vapor is supplied from the vaporizer 14 to the adsorption tank 15 at 25 ° C. and 20 Torr or more, and the water vapor is saturated and adsorbed on the adsorbent.
  • the water vapor in the adsorption tank 15 is supplied to the first gas tank 16 by the pump 17, and the adsorption tank 15 is depressurized to 13 to 14 Torr to perform the desorption process of the second embodiment.
  • the water vapor in the first gas tank 16 is returned to the adsorption tank 15 by the pump 17 and pressurized to 20 Torr or more and saturated adsorbed on the adsorbent.
  • the saturation adsorption and desorption steps are alternately repeated, and then the shut-off valves 23 and 24 are opened, and water vapor is supplied to the second gas tank 18 and analyzed by the analyzer 19.
  • the analyzer 19 measures the concentration of heavy water and semi-heavy water in the water vapor. If the concentration is higher than the desired concentration, the water vapor is returned to the adsorption tank 15 and the desorption step is repeated again. If it can be confirmed that the concentration of heavy water and semi-heavy water is lower than the desired concentration, deuterium-reduced water can be obtained by supplying the liquefying device and liquefying the water vapor.
  • shut-off valves 23, 24 and 25 are opened, and the heavy water and semi-heavy water are desorbed from the adsorbent by the pump 21 and exhausted.
  • the concentration of heavy water and half-heavy water increases in the water vapor adsorbed on the adsorbent, and the concentration of heavy water and half-heavy water decreases in the recovered water vapor. Therefore, deuterium-reduced water having a lower deuterium concentration can be obtained.
  • a separation device having two adsorption tanks 27 and 28 each containing an adsorbent is used.
  • This separator has a vaporizer 26 that supplies water as steam.
  • the pipe extending from the vaporizer 26 is branched into two on the way and connected to the first adsorption tank 27 and the second adsorption tank 28, respectively.
  • shut-off valves 34 and 35 are provided, respectively.
  • a first adsorbent made of activated carbon is arranged inside the first adsorption tank 27, and a second adsorbent made of activated carbon is also arranged inside the second adsorption tank 28.
  • the first adsorption tank 27 and the second adsorption tank 28 are connected by a predetermined pipe, and a pump 29 is disposed in the pipe. With this pump 29, water vapor can be transferred between the first adsorption tank 27 and the second adsorption tank 28.
  • shut-off valves 36 and 37 are respectively provided on the pipes extending downstream from the first adsorption tank 27 and the second adsorption tank 28, respectively, and are merged into one downstream and connected to the gas tank 30. ing.
  • the gas tank 30 is provided with an analyzer 31 for analyzing the ratio of heavy water, semi-heavy water and light water in the water vapor.
  • an analyzer 31 for analyzing the ratio of heavy water, semi-heavy water and light water in the water vapor.
  • a liquefaction device 32 that returns water vapor to water is provided on the downstream side of the gas tank 30, a liquefaction device 32 that returns water vapor to water is provided.
  • the pipe connecting the gas tank 30 and the liquefying device 32 can be separated on the way, and the water vapor can be exhausted via the shut-off valve 38 and the pump 33.
  • the shut-off valve 34 is opened, water vapor is supplied from the vaporizer 26 to the first adsorption tank 27 at 25 ° C. and 20 Torr or more, and water vapor is supplied to the first adsorbent. Is saturated and adsorbed.
  • the water vapor in the first adsorption tank 27 is supplied to the second adsorption tank 28 by the pump 29, and the first adsorption tank 27 is decompressed to 13 to 14 Torr, and the desorption process of the second embodiment is performed.
  • the water vapor in the second adsorption tank 28 is pressurized to 20 Torr or more to perform saturated adsorption (first step).
  • the water vapor in the second adsorption tank 28 is supplied to the first adsorption tank 27 by the pump 29, the pressure of the second adsorption tank 28 is reduced to 13 to 14 Torr, and the desorption process of the second embodiment is performed.
  • the water vapor in the first adsorption tank 27 is pressurized to 20 Torr or more to perform saturated adsorption (second process).
  • the shut-off valves 36 and 37 are opened and the recovered water vapor is led to the gas tank 30.
  • the analyzer 31 measures the concentration of heavy water and semi-heavy water in the water vapor. If the concentration is higher than the desired concentration, the water vapor is returned to the first adsorption tank 27 and the second adsorption tank 28, and again in the first step and the second step. Repeat the process. If it can be confirmed that the concentration of heavy water and semi-heavy water is not more than the desired concentration, deuterium-reduced water can be obtained by supplying water vapor to the liquefying device 32 and liquefying the water vapor.
  • shut-off valves 36, 37 and 38 are opened, and the water vapor adsorbed on the first adsorbent and the second adsorbent is desorbed by the pump 33 and exhausted.
  • the desorption process can be performed on the one hand and at the same time the saturated adsorption can be performed on the other.
  • Heavy water and semi-heavy water in water vapor can be reduced, and deuterium-reduced water can be easily produced.
  • the analyzer 31 provided in the gas tank 30 measures the concentration of heavy water and semi-heavy water in the water vapor. If the concentration is higher than the desired concentration, the water vapor is supplied to the first adsorption tank 27 and the second adsorption tank 28.
  • the deuterium-reduced water can be produced by liquefying water vapor that is sufficiently reduced in heavy water and semi-heavy water.
  • the water containing a large amount of heavy water and semi-heavy water remaining in the adsorbent is discarded, but this is recovered and used for heavy water or semi-heavy water. It can also be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Drying Of Gases (AREA)

Abstract

重水素低減水を容易かつ低コストで製造する。 水から重水および半重水を除去し、重水素低減水を製造する方法であって、所定の吸着材に対し、水蒸気を上記重水および半重水が上記吸着材に吸着し軽水が吸着しにくい圧力で供給して重水および半重水を吸着させ、上記吸着材に吸着しない水蒸気を回収する吸着工程を有する。また、水蒸気を吸着させた所定の吸着材の周囲の気圧を軽水が脱離し重水および半重水が脱離しにくい範囲に保持し、上記吸着材から脱離した水蒸気を回収する脱離工程を有する。

Description

重水素低減水の製造方法、重水と軽水の分離方法、および重水素濃縮水の製造方法
 本発明は、一般的な水から重水または半重水の量を低減させた重水素低減水を製造する方法に関する。
 また、本発明は、軽水から重水および半重水を分離する方法、および重水や半重水を多く含む重水素濃縮水を製造する方法に関する。
 一般的な水には、HO(軽水)と、水素原子の同位体である重水素原子を含んだ水分子である、DO(重水)やDHO(半重水)とが混在している。自然界にある水に含まれる重水および半重水の濃度は、採取される場所によって差があるが、平地では約150ppm程度であり、そのほとんどは半重水である。
 人体に含まれる重水および半重水の量は、例えば体重60kgの成人であれば体重の95ppmと微量である。
 しかし、重水や半重水は、物質の溶解度、電気伝導度、電離度などの物性や反応速度が軽水とは異なるため、大量に摂取すると生体内反応に失調をきたし、また、純粋な重水中では生物は死滅する。そのため、飲用水等の重水素濃度が低いほど人体の健康にとって望ましいと言われ、検証が進められている。
 重水や半重水をほとんど含まない重水素低減水は、日本では厚生労働省からは認可されていないものの、ハンガリーでは動物用の抗がん剤として認可されており、ガン患者等が飲用することも多い。
 一般的な水から重水素低減水を製造する方法として、従来の技術では、水素と重水素とのごくわずかな物理的性質の差を利用し、蒸留を繰り返す方法(特許文献1)や水電解法による方法(特許文献2)で重水素低減水を製造していた。
 しかし、重水素低減水を製造する従来の方法では、大型の設備や複雑な作業の繰り返しが必要であり、その製造コストは高かった。そのため、ガン患者や、各種効能を期待して飲用を望む者にとって、大きな経済負担となっていた。
特表2008-512338号公報 特開2012-158499号公報
 本発明は上記問題点を解決するためになされたものであり、重水素低減水を容易かつ低コストで製造することを課題とする。
 また、本発明は、重水や半重水を多く含む重水素濃縮水を容易かつ低コストで製造することを課題とする。
 本発明において、上記課題が解決される手段は以下の通りである。
 第1の発明は、水から重水および半重水を除去し、重水素低減水を製造する方法であって、所定の吸着材に対し、水蒸気を上記重水および半重水が上記吸着材に吸着し軽水が吸着しにくい圧力で供給して重水および半重水を吸着させ、上記吸着材に吸着しない水蒸気を回収する吸着工程を有することを特徴とする。
 なお、重水または半重水を多く含有する水を回収し利用する場合にも、上記方法を用いることができる。
 第2の発明は、水から重水および半重水を除去し、重水素低減水を製造する方法であって、水蒸気を吸着させた所定の吸着材の周囲の気圧を軽水が脱離し重水および半重水が脱離しにくい範囲に保持し、上記吸着材から脱離した水蒸気を回収する脱離工程を有することを特徴とする。
 なお、重水または半重水を多く含有する水を回収し利用する場合にも、上記方法を用いることができる。
 第3の発明は、水から重水および半重水を除去し、重水素低減水を製造する方法であって、所定の吸着材に対し、水蒸気を供給して吸着させる工程と、上記吸着材の周囲の気圧を軽水が脱離し重水および半重水が脱離しにくい範囲に保持し、上記吸着材から脱離した水蒸気を回収する脱離工程とを少なくとも1回ずつ有することを特徴とする。
 なお、重水または半重水を多く含有する水を回収し利用する場合にも、上記方法を用いることができる。
 第4の発明は、水から重水および半重水を除去し、重水素低減水を製造する方法であって、第一吸着槽において水蒸気を吸着させた所定の第一吸着材の周囲の気圧を軽水が脱離し重水および半重水が脱離しにくい範囲に保持し、上記第一吸着材から脱離した水蒸気を回収するとともに、第二吸着槽において所定の第二吸着材に対し、上記第一吸着槽で回収した水蒸気を供給して吸着させる第一工程と、上記第二吸着槽において上記水蒸気を吸着させた第二吸着材の周囲の気圧を軽水が脱離し重水および半重水が脱離しにくい範囲に保持し、上記第二吸着材から脱離した水蒸気を回収するとともに、上記第一吸着槽において上記第一吸着材に対し、上記第二吸着槽で回収した水蒸気を供給して吸着させる第二工程とを少なくとも1回ずつ有することを特徴とする。
 なお、重水または半重水を多く含有する水を回収し利用する場合にも、上記方法を用いることができる。
 第5の発明は、上記吸着材が、水蒸気吸着等温線のIUPACの分類においてIV型またはV型に分類される材料から形成されることを特徴とする。
 第6の発明は、水を、軽水と重水および半重水とに分離する方法であって、所定の吸着材に対し、水蒸気を上記重水および半重水が上記吸着材に吸着し軽水が吸着しにくい圧力で供給して重水および半重水を吸着させることを特徴とする。
 第7の発明は、水を、軽水と重水および半重水とに分離する方法であって、水蒸気を吸着させた所定の吸着材の周囲の気圧を軽水が脱離し重水および半重水が脱離しにくい範囲に保持し、上記吸着材から水蒸気を脱離させることを特徴とする。
 第8の発明は、水から軽水を除去し、重水素濃縮水を製造する方法であって、所定の吸着材に対し、水蒸気を重水および半重水が上記吸着材に吸着し軽水が吸着しにくい圧力で供給して重水および半重水を吸着させ、上記吸着材に吸着した水を回収する吸着工程を有することを特徴とする。
 第9の発明は、水から軽水を除去し、重水素濃縮水を製造する方法であって、水蒸気を吸着させた所定の吸着材の周囲の気圧を軽水が脱離し重水および半重水が脱離しにくい範囲に保持し、上記吸着材から水蒸気を脱離させる脱離工程の後、上記吸着材に残存する水を回収することを特徴とする。
 第1の発明によれば、所定の吸着材に対し、水蒸気を上記重水および半重水が上記吸着材に吸着し軽水が吸着しにくい圧力で供給して重水および半重水を吸着させ、上記吸着材に吸着しない水蒸気を回収する吸着工程を有することにより、従来に比べて簡素な装置で、低コストかつ容易に重水素低減水を製造することができる。
 また、吸着材に残留した水には、重水や半重水が濃縮されて多量に含まれているため、これを利用することもできる。
 第2の発明によれば、水蒸気を吸着させた所定の吸着材の周囲の気圧を軽水が脱離し重水および半重水が脱離しにくい範囲に保持し、上記吸着材から脱離した水蒸気を回収する脱離工程を有することにより、従来に比べて簡素な装置で、低コストかつ容易に重水素低減水を製造することができる。
 また、吸着材に残留した水には、重水や半重水が濃縮されて多量に含まれているため、これを利用することもできる。
 第3の発明によれば、所定の吸着材に対し、水蒸気を供給して吸着させる工程と、上記吸着材の周囲の気圧を軽水が脱離し重水および半重水が脱離しにくい範囲に保持し、上記吸着材から脱離した水蒸気を回収する脱離工程とを少なくとも1回ずつ有することにより、吸着材に効率的に重水および半重水を吸着させて、低コストかつ容易に重水素低減水を製造することができる。
 また、吸着材に残留した水には、重水や半重水が濃縮されて多量に含まれているため、これを利用することもできる。
 第4の発明によれば、第一吸着槽と第二吸着槽との一方で脱離工程を行うと同時に他方で水蒸気の吸着を行うことにより、第一吸着材および第二吸着材にきわめて効率的に重水および半重水を吸着させて、低コストかつ容易に重水素低減水を製造することができる。
 また、第一吸着材および第二吸着材に残留した水には、重水や半重水が濃縮されて多量に含まれているため、これを利用することもできる。
 第5の発明によれば、上記吸着材が、水蒸気吸着等温線のIUPACの分類においてIV型またはV型に分類される材料から形成されることにより、容易に重水および半重水を分離して、重水素低減水を製造することができる。
 第6の発明によれば、所定の吸着材に対し、水蒸気を上記重水および半重水が上記吸着材に吸着し軽水が吸着しにくい圧力で供給して重水および半重水を吸着させることにより、従来に比べて簡素な装置で、低コストかつ容易に軽水から重水および半重水を分離することができる。
 第7の発明によれば、水蒸気を吸着させた所定の吸着材の周囲の気圧を軽水が脱離し重水および半重水が脱離しにくい範囲に保持し、上記吸着材から水蒸気を脱離させることにより、従来に比べて簡素な装置で、低コストかつ容易に軽水から重水および半重水を分離することができる。
 第8の発明によれば、所定の吸着材に対し、水蒸気を重水および半重水が上記吸着材に吸着し軽水が吸着しにくい圧力で供給して重水および半重水を吸着させ、上記吸着材に吸着した水を回収する吸着工程を有することにより、従来に比べて簡素な装置で、低コストかつ容易に重水素濃縮水を製造することができる。
 第9の発明によれば、水蒸気を吸着させた所定の吸着材の周囲の気圧を軽水が脱離し重水および半重水が脱離しにくい範囲に保持し、上記吸着材から水蒸気を脱離させる脱離工程の後、上記吸着材に残存する水を回収することにより、従来に比べて簡素な装置で、低コストかつ容易に重水素濃縮水を製造することができる。
重水、半重水、軽水の活性炭に対する25℃での水蒸気吸着等温線である。 本発明の第一実施形態および第二実施形態にかかる分離装置を示す図である。 同第一実施形態の他の分離装置を示す図である。 同第三実施形態の分離装置を示す図である。 同第四実施形態の分離装置を示す図である。
 以下、本発明の実施形態に係る重水素低減水の製造方法について説明する。
 本発明は、所定の吸着材に対して重水や半重水が軽水よりも吸着しやすく、脱離しにくいことを利用したものである。
 吸着材には、水蒸気に対し、IUPACの吸着等温線の分類においてIV型またはV型に分類される材料を用いることが好ましい。IV型またはV型の材料は、小さな圧力変化で吸着量が大きく変化するためである。
 このような材料としては、活性炭、活性炭素繊維、カーボンナノチューブなどの炭素系の吸着材や、シリカゲル、ゼオライトなどの無機多孔体などが例示できる。
 この中では、AQSOA(登録商標)やALPO-5などのAlPO系ゼオライトの材料が吸着性能に優れ、活性炭が低コストである。
 以下では、吸着材として活性炭を使用した例に基づいて説明する。
 図1は、吸着材を活性炭(株式会社アドール製活性炭素繊維「A-20」)とした場合の25℃での水蒸気吸着等温線を、重水、半重水、軽水に分けて示したグラフである。
 図1に示すように、重水、半重水、軽水のいずれも、小さな圧力変化で活性炭への吸着量が大きく変化する。また、重水、半重水、軽水のいずれも活性炭への吸着時と脱離時とでヒステリシスを示す。
 水蒸気圧を低圧から上昇させて水蒸気を活性炭に吸着させると、14~17Torrで多量の重水が活性炭に吸着し、15~18Torrで多量の半重水が活性炭に吸着し、16~19Torrで多量の軽水が活性炭に吸着する。
 また、活性炭に水蒸気を十分に吸着させた後、水蒸気圧を高圧から低下させて水蒸気を活性炭から脱離させると、14~13Torrで多量の軽水が活性炭から脱離し、13~12Torrで多量の半重水が活性炭から脱離し、12~11Torrで多量の重水が活性炭から脱離する。
 <第一実施形態>
 第一実施形態では、活性炭を用意し、重水や半重水が吸着して軽水が吸着しにくい圧力で水蒸気を供給することを特徴とする。
 第一実施形態に用いる分離装置は、水を水蒸気にして供給する気化装置1を有する。
 この気化装置1から延びる配管は、吸着槽2に接続されている。
 吸着槽2の内部には活性炭からなる吸着材が配置されている。
 吸着槽2の下流側には、水蒸気を水に戻す液化装置3が設けられている。
 吸着槽2と液化装置3とを接続する配管の途中には遮断弁4が設けられている。
 吸着槽2と液化装置3とを接続する配管は途中で分岐し、遮断弁5を経由して水蒸気を排気することができる。
 図2の分離装置では、まず、気化装置1で水を気化させ、25℃、16Torrで水蒸気を吸着槽2に流すと、吸着材に対して重水は軽水の約5倍吸着する。そのため、水蒸気を供給し続けながら遮断弁4を開け、吸着せずに残った水蒸気を順次液化装置3で水に戻して回収することにより、重水素の濃度を低下させた重水素低減水を得ることができる。
 吸着材への重水および半重水の吸着量が多くなったら、遮断弁4を閉じるとともに遮断弁5を開け、重水および半重水を吸着材から脱離させて排気する。
 また、図3に示すように、複数の吸着槽7,8を設けた分離装置を用いることもできる。
 この分離装置では、気化装置6の下流に第一吸着槽7を設けるとともに、第一吸着槽7の下流に第二吸着槽8を設けている。
 第一吸着槽7と第二吸着槽8とを接続する配管の途中には遮断弁10が設けられている。
 また、第一吸着槽7と第二吸着槽8とを接続する配管は途中で分岐し、遮断弁11を経由して水蒸気を排気することができる。
 第二吸着槽8と液化装置9とを接続する配管の途中には遮断弁12が設けられている。
 また、第二吸着槽8と液化装置9とを接続する配管は途中で分岐し、遮断弁13を経由して水蒸気を排気することができる。
 図3の分離装置では、まず、気化装置6で水を気化させ、25℃、16Torrで水蒸気を第一吸着槽7に流すと、第一吸着材に対して重水は軽水の約5倍吸着する。
 遮断弁10,12は予め開けておき、水蒸気が順次第一吸着槽7から第二吸着槽8に流れると、第二吸着材に対しても重水は軽水の約5倍吸着する。
 そのため、水蒸気を供給し続けながら吸着せずに残った水蒸気を順次液化装置9で水に戻して回収することにより、重水素の濃度をさらに低下させた重水素低減水を得ることができる。
 第一吸着材および第二吸着材への重水および半重水の吸着量が多くなったら、遮断弁10,12を閉じるとともに遮断弁11,13を開け、重水および半重水を第一吸着材および第二吸着材から脱離させて排気する。
 <第二実施形態>
 第二実施形態では、水蒸気を十分に吸着させた活性炭を用意し、周囲の気圧を、軽水が脱離して重水および半重水が脱離しにくい圧力に保持することを特徴とする。
 第二実施形態では、第一実施形態と同じく図2に記載した分離装置を用いる。
 第二実施形態では、まず、気化装置1で水を気化させて吸着槽2へ供給し、たとえば25℃で気圧を20Torr以上にして水蒸気を十分に吸着材に吸着させた後、13Torrまで低下させると、多量の軽水が脱離する。次いで、遮断弁4を開け、この脱離した水蒸気を液化装置3で水に戻して回収することにより、重水素の濃度を低下させた重水素低減水を得ることができる。
 図1の重水、半重水、軽水の吸着等温線は、脱離時の傾きが吸着時の傾きよりも急であり、小さな圧力変化で吸着量がより大きく変化するため、第二実施形態では、第一実施形態以上に重水素の濃度を低下させることが期待できる。
 また、軽水の吸着・脱離速度は、重水および半重水よりも速い。したがって、第二実施形態において、13Torrに圧力を低下させた後、重水、半重水、軽水の脱離が均衡(飽和)状態になり安定する前に脱離した水蒸気を回収すると、一層重水素の濃度の低い重水素低減水を得ることができる。
 <第三実施形態>
 第三実施形態は、第二実施形態の脱離工程を繰り返すことを特徴とする。
 第三実施形態の分離装置は、水を水蒸気にして供給する気化装置14を有する。
 この気化装置14から延びる配管は、吸着槽15に接続されている。
 この配管の途中には、遮断弁22が設けられている。
 吸着槽15の内部には活性炭からなる吸着材が配置されている。
 吸着槽15は所定の配管によって第一ガス槽16と接続され、この配管中にはポンプ17が配置されている。ポンプ17により、吸着槽15と第一ガス槽16との間で水蒸気を行き来させることができる。
 また、吸着槽15と第一ガス槽16とからそれぞれ下流側へ延びる配管には、それぞれ遮断弁23,24が設けられ、その下流で1本に合流して第二ガス槽18へと接続されている。
 第二ガス槽18には、水蒸気中の重水、半重水、軽水の比率を分析する分析器19が併設されている。
 第二ガス槽18の下流側には、水蒸気を水に戻す液化装置20が設けられている。
 第二ガス槽18と液化装置20とを接続する配管は途中で分岐し、遮断弁25とポンプ21とを経由して水蒸気を排気することができる。
 第三実施形態では、まず、気化装置14から吸着槽15に水蒸気を25℃、20Torr以上で供給して、吸着材に水蒸気を飽和吸着させる。
 次いで、吸着槽15内の水蒸気をポンプ17によって第一ガス槽16に供給し、吸着槽15を13~14Torrまで減圧して、第二実施形態の脱離工程を行う。
 その後、第一ガス槽16内の水蒸気をポンプ17によって吸着槽15へ戻し、20Torr以上に加圧して吸着材に飽和吸着させる。
 以下、飽和吸着と脱離工程とを交互に繰り返した後、遮断弁23,24を開き、水蒸気を第二ガス槽18に供給して分析器19で分析する。
 分析器19で水蒸気中の重水および半重水の濃度を測定して、所望の濃度より高い場合には、水蒸気を吸着槽15に戻し、再び脱離工程を繰り返す。
 重水および半重水の濃度が所望の濃度以下であることが確認できたら、液化装置に供給し、水蒸気を液化することより、重水素低減水を得ることができる。
 その後、遮断弁23,24,25を開け、ポンプ21によって重水および半重水を吸着材から脱離させて排気する。
 このように第二実施形態の脱離工程を複数回繰り返すことにより、吸着材に吸着した水蒸気では重水および半重水の濃度が上昇し、回収される水蒸気では重水および半重水の濃度が低下していくため、より重水素の濃度の低い重水素低減水を得ることができる。
 <第四実施形態>
 第四実施形態では、それぞれが吸着材を内蔵する2つの吸着槽27,28を有する分離装置を用いる。
 この分離装置は、水を水蒸気にして供給する気化装置26を有する。
 この気化装置26から延びる配管は、途中で2本に分岐して、それぞれ第一吸着槽27と第二吸着槽28とに接続されている。
 配管の分岐点から第一吸着槽27または第二吸着槽28までの間には、それぞれ遮断弁34,35が設けられている。
 第一吸着槽27の内部には活性炭からなる第一吸着材が配置され、第二吸着槽28の内部にも活性炭からなる第二吸着材が配置されている。
 第一吸着槽27と第二吸着槽28とは所定の配管で接続され、この配管中にはポンプ29が配置されている。このポンプ29により、第一吸着槽27と第二吸着槽28との間で水蒸気を行き来させることができる。
 また、第一吸着槽27と第二吸着槽28とからそれぞれ下流側へ延びる配管には、それぞれ遮断弁36,37が設けられ、その下流で1本に合流してガス槽30へと接続されている。
 ガス槽30には水蒸気中の重水、半重水、軽水の比率を分析する分析器31が併設されている。
 ガス槽30の下流側には、水蒸気を水に戻す液化装置32が設けられている。
 ガス槽30と液化装置32とを接続する配管は途中で分離し、遮断弁38とポンプ33とを経由して水蒸気を排気することができる。
 この分離装置で重水素低減水を製造するには、まず、遮断弁34を開け、気化装置26から第一吸着槽27に水蒸気を25℃、20Torr以上で供給して、第一吸着材に水蒸気を飽和吸着させる。
 次いで、第一吸着槽27内の水蒸気をポンプ29によって第二吸着槽28へ供給し、第一吸着槽27を13~14Torrまで減圧して、第二実施形態の脱離工程を行う。これと同時に、第二吸着槽28の水蒸気を20Torr以上に加圧して、飽和吸着を行う(第一工程)。
 次いで、第二吸着槽28内の水蒸気をポンプ29によって第一吸着槽27へ供給し、第二吸着槽28を13~14Torrまで減圧して、第二実施形態の脱離工程を行う。これと同時に、第一吸着槽27の水蒸気を20Torr以上に加圧して、飽和吸着を行う(第二工程)。
 第一工程と第二工程とを交互に複数回繰り返した後、遮断弁36,37を解放して回収した水蒸気をガス槽30に導出する。
 分析器31で水蒸気中の重水および半重水の濃度を測定して、所望の濃度より高い場合には、水蒸気を第一吸着槽27および第二吸着槽28に戻し、再び第一工程と第二工程とを繰り返す。
 重水および半重水の濃度が所望の濃度以下であることが確認できたら、水蒸気を液化装置32に供給し、水蒸気を液化することより、重水素低減水を得ることができる。
 その後、遮断弁36,37,38を開放し、ポンプ33によって第一吸着材および第二吸着材に吸着した水蒸気を脱離させて排気する。
 第四実施形態では、第一吸着槽27と第二吸着槽28との間で水蒸気を行き来させることにより、一方で脱離工程を行うと同時に他方で飽和吸着を行うことができ、効率的に水蒸気中の重水および半重水を低減させ、容易に重水素低減水を製造することができる。
 また、ガス槽30に併設された分析器31で水蒸気中の重水および半重水の濃度を測定して、所望の濃度より高い場合には、水蒸気を第一吸着槽27および第二吸着槽28に戻すことが可能であり、重水および半重水を十分に低減させた水蒸気を液化した重水素低減水を製造することができる。
 なお、第一実施形態から第四実施形態では、吸着材に残留した重水や半重水を多量に含む水を廃棄しているが、これを回収して、重水や半重水が必要とされる用途に用いることもできる。
 1,6,14,26 気化装置
 2,7,8,15,27,28 吸着槽
 3,9,20,32 液化装置
 17,21,29,33 ポンプ
 16,18,30 ガス槽
 19,31 分析器
 4,5,10,11,12,13,22,23,24,25,34,35,36,37,38 遮断弁

Claims (9)

  1.  水から重水および半重水を除去し、重水素低減水を製造する方法であって、
     所定の吸着材に対し、水蒸気を上記重水および半重水が上記吸着材に吸着し軽水が吸着しにくい圧力で供給して重水および半重水を吸着させ、上記吸着材に吸着しない水蒸気を回収する吸着工程を有することを特徴とする重水素低減水の製造方法。
  2.  水から重水および半重水を除去し、重水素低減水を製造する方法であって、
     水蒸気を吸着させた所定の吸着材の周囲の気圧を軽水が脱離し重水および半重水が脱離しにくい範囲に保持し、上記吸着材から脱離した水蒸気を回収する脱離工程を有することを特徴とする重水素低減水の製造方法。
  3.  水から重水および半重水を除去し、重水素低減水を製造する方法であって、
     所定の吸着材に対し、水蒸気を供給して吸着させる工程と、
     上記吸着材の周囲の気圧を軽水が脱離し重水および半重水が脱離しにくい範囲に保持し、上記吸着材から脱離した水蒸気を回収する脱離工程とを少なくとも1回ずつ有することを特徴とする重水素低減水の製造方法。
  4.  水から重水および半重水を除去し、重水素低減水を製造する方法であって、
     第一吸着槽において水蒸気を吸着させた所定の第一吸着材の周囲の気圧を軽水が脱離し重水および半重水が脱離しにくい範囲に保持し、上記第一吸着材から脱離した水蒸気を回収するとともに、第二吸着槽において所定の第二吸着材に対し、上記第一吸着槽で回収した水蒸気を供給して吸着させる第一工程と、
     上記第二吸着槽において上記水蒸気を吸着させた第二吸着材の周囲の気圧を軽水が脱離し重水および半重水が脱離しにくい範囲に保持し、上記第二吸着材から脱離した水蒸気を回収するとともに、上記第一吸着槽において上記第一吸着材に対し、上記第二吸着槽で回収した水蒸気を供給して吸着させる第二工程とを少なくとも1回ずつ有することを特徴とする重水素低減水の製造方法。
  5.  上記吸着材が、水蒸気吸着等温線のIUPACの分類においてIV型またはV型に分類される材料から形成されることを特徴とする請求項1から4のいずれかに記載の重水素低減水の製造方法。
  6.  水を、軽水と重水および半重水とに分離する方法であって、
     所定の吸着材に対し、水蒸気を上記重水および半重水が上記吸着材に吸着し軽水が吸着しにくい圧力で供給して重水および半重水を吸着させることを特徴とする重水と軽水の分離方法。
  7.  水を、軽水と重水および半重水とに分離する方法であって、
     水蒸気を吸着させた所定の吸着材の周囲の気圧を軽水が脱離し重水および半重水が脱離しにくい範囲に保持し、上記吸着材から水蒸気を脱離させることを特徴とする重水と軽水の分離方法。
  8.  水から軽水を除去し、重水素濃縮水を製造する方法であって、
     所定の吸着材に対し、水蒸気を重水および半重水が上記吸着材に吸着し軽水が吸着しにくい圧力で供給して重水および半重水を吸着させ、上記吸着材に吸着した水を回収する吸着工程を有することを特徴とする重水素濃縮水の製造方法。
  9.  水から軽水を除去し、重水素濃縮水を製造する方法であって、
     水蒸気を吸着させた所定の吸着材の周囲の気圧を軽水が脱離し重水および半重水が脱離しにくい範囲に保持し、上記吸着材から水蒸気を脱離させる脱離工程の後、上記吸着材に残存する水を回収することを特徴とする重水素濃縮水の製造方法。
PCT/JP2015/074154 2014-08-29 2015-08-27 重水素低減水の製造方法、重水と軽水の分離方法、および重水素濃縮水の製造方法 WO2016031896A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP15835066.0A EP3187461B1 (en) 2014-08-29 2015-08-27 Method for producing deuterium-depleted water
CN201580044099.8A CN107074539B (zh) 2014-08-29 2015-08-27 低氘水的制造方法、重水和轻水的分离方法及富氘水的制造方法
JP2016545601A JP6572223B2 (ja) 2014-08-29 2015-08-27 重水素低減水の製造方法、重水と軽水の分離方法、および重水素濃縮水の製造方法
AU2015309833A AU2015309833B2 (en) 2014-08-29 2015-08-27 Method for producing deuterium-depleted water, method for separating heavy water and light water, and method for producing deuterium-enriched water
EP18197505.3A EP3441361A1 (en) 2014-08-29 2015-08-27 Method for separating heavy water and light water
US15/505,287 US10343906B2 (en) 2014-08-29 2015-08-27 Method for producing deuterium-depleted water, method for separating heavy water and light water, and method for producing deuterium-enriched water
CA2959084A CA2959084A1 (en) 2014-08-29 2015-08-27 Method for producing deuterium-depleted water, method for separating heavy water and light water, and method for producing deuterium-enriched water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014175354 2014-08-29
JP2014-175354 2014-08-29

Publications (1)

Publication Number Publication Date
WO2016031896A1 true WO2016031896A1 (ja) 2016-03-03

Family

ID=55399781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074154 WO2016031896A1 (ja) 2014-08-29 2015-08-27 重水素低減水の製造方法、重水と軽水の分離方法、および重水素濃縮水の製造方法

Country Status (8)

Country Link
US (1) US10343906B2 (ja)
EP (2) EP3441361A1 (ja)
JP (1) JP6572223B2 (ja)
CN (1) CN107074539B (ja)
AU (1) AU2015309833B2 (ja)
CA (1) CA2959084A1 (ja)
TW (2) TWI653086B (ja)
WO (1) WO2016031896A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017209227A1 (ja) * 2016-06-02 2017-12-07 国立大学法人信州大学 重水素低減水の製造方法、および重水素濃縮水の製造方法
WO2018221531A1 (ja) * 2017-05-29 2018-12-06 学校法人近畿大学 Hto含有水溶液中のhto濃度を低減する方法及び装置
WO2020040218A1 (ja) 2018-08-23 2020-02-27 国立大学法人信州大学 グラフェンオキサイド吸着材及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109694122A (zh) * 2019-02-28 2019-04-30 王丽琴 一种重水过滤与净化的装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334098A (en) * 1976-09-10 1978-03-30 Toshiba Corp Separation method of hydrogen isotope
JPH0531331A (ja) * 1991-07-26 1993-02-09 Mitsubishi Heavy Ind Ltd 水素同位体の分離方法
JPH10128072A (ja) * 1996-10-29 1998-05-19 Mitsubishi Heavy Ind Ltd トリチウム水、重水のゼオライトを用いた分離方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3399967A (en) * 1963-12-13 1968-09-03 British American Oil Company L Method for production of deuterated methanes and heavy water
US3700417A (en) * 1968-11-04 1972-10-24 Universal Oil Prod Co Dual temperature fixed carbon bed heavy water concentration process
FR2044673A1 (ja) * 1969-05-22 1971-02-26 Commissariat Energie Atomique
US4178350A (en) * 1973-08-27 1979-12-11 Engelhard Minerals & Chemicals Corp. Removal of tritium and tritium-containing compounds from a gaseous stream
US5441715A (en) * 1991-03-26 1995-08-15 Matsushita Electric Industrial Co., Ltd. Method for the separation of hydrogen isotopes using a hydrogen absorbing alloy
JPH05131331A (ja) 1991-11-07 1993-05-28 Hitachi Ltd 摺動案内装置およびそれを用いたテーブル装置
US8090071B2 (en) * 2001-08-08 2012-01-03 James Robert DeLuze Apparatus for hot fusion of fusion-reactive gases
DE102004044592A1 (de) 2004-09-13 2006-03-30 Basf Ag Verfahren zur Trennung von Chlorwasserstoff und Phosgen
CN1834002A (zh) * 2005-03-15 2006-09-20 大连世纪欣科高新技术开发有限公司 以重水为原料制取超高纯氘气的生产方法
KR100736020B1 (ko) * 2006-06-08 2007-07-06 한국원자력연구원 순도가 향상된 저등급 중수증기의 회수방법
US8597471B2 (en) * 2010-08-19 2013-12-03 Industrial Idea Partners, Inc. Heat driven concentrator with alternate condensers
JP2012158499A (ja) 2011-02-01 2012-08-23 Fc Kaihatsu Kk 重水素低減水製造方法および装置
CN103803494A (zh) * 2012-11-15 2014-05-21 魏捷 利用太阳能生产重水的方法及装置
CA2953905C (en) * 2014-07-01 2021-12-28 Global Clean Technology Inc. Method for separating tritiated water from light water
TWI682902B (zh) * 2015-03-31 2020-01-21 國立大學法人信州大學 氘耗乏水之製造方法、重水與輕水之分離方法及氘濃縮水之製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334098A (en) * 1976-09-10 1978-03-30 Toshiba Corp Separation method of hydrogen isotope
JPH0531331A (ja) * 1991-07-26 1993-02-09 Mitsubishi Heavy Ind Ltd 水素同位体の分離方法
JPH10128072A (ja) * 1996-10-29 1998-05-19 Mitsubishi Heavy Ind Ltd トリチウム水、重水のゼオライトを用いた分離方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3187461A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017209227A1 (ja) * 2016-06-02 2017-12-07 国立大学法人信州大学 重水素低減水の製造方法、および重水素濃縮水の製造方法
CN109195687A (zh) * 2016-06-02 2019-01-11 国立大学法人信州大学 氘减少水的制造方法以及氘浓缩水的制造方法
JPWO2017209227A1 (ja) * 2016-06-02 2019-05-30 国立大学法人信州大学 重水素低減水の製造方法、および重水素濃縮水の製造方法
AU2017275301B2 (en) * 2016-06-02 2020-07-02 Kotobuki Holdings Co., Ltd. Method for producing deuterium-depleted water and method for producing deuterium-enriched water
US11213790B2 (en) 2016-06-02 2022-01-04 Shinshu University Method for producing deuterium-depleted water and method for producing deuterium-enriched water
WO2018221531A1 (ja) * 2017-05-29 2018-12-06 学校法人近畿大学 Hto含有水溶液中のhto濃度を低減する方法及び装置
JPWO2018221531A1 (ja) * 2017-05-29 2020-04-16 学校法人近畿大学 Hto含有水溶液中のhto濃度を低減する方法及び装置
US11446608B2 (en) 2017-05-29 2022-09-20 Kinki University Method for reducing HTO concentration in aqueous solution
WO2020040218A1 (ja) 2018-08-23 2020-02-27 国立大学法人信州大学 グラフェンオキサイド吸着材及びその製造方法

Also Published As

Publication number Publication date
TW201900261A (zh) 2019-01-01
US10343906B2 (en) 2019-07-09
AU2015309833B2 (en) 2018-12-20
EP3187461A1 (en) 2017-07-05
JP6572223B2 (ja) 2019-09-04
US20170253482A1 (en) 2017-09-07
TW201615558A (zh) 2016-05-01
TWI653086B (zh) 2019-03-11
TWI664149B (zh) 2019-07-01
EP3441361A1 (en) 2019-02-13
JPWO2016031896A1 (ja) 2017-06-29
CN107074539B (zh) 2019-10-25
EP3187461A4 (en) 2018-04-04
AU2015309833A1 (en) 2017-03-16
CN107074539A (zh) 2017-08-18
EP3187461B1 (en) 2020-02-19
CA2959084A1 (en) 2016-03-03

Similar Documents

Publication Publication Date Title
Guo et al. Scalable solvent-free preparation of [Ni3 (HCOO) 6] frameworks for highly efficient separation of CH4 from N2
JP6572223B2 (ja) 重水素低減水の製造方法、重水と軽水の分離方法、および重水素濃縮水の製造方法
JP5319140B2 (ja) 高炉ガスの分離方法、および高炉ガスの分離システム
EP2085355A1 (en) Method and apparatus for separating hydrogen gas
JP6659668B2 (ja) 重水素低減水の製造方法、重水と軽水の分離方法、および重水素濃縮水の製造方法
CN103068778B (zh) 用于从流化催化裂化废气中回收乙烯的装置和方法
Das et al. Purification of helium from natural gas by pressure swing adsorption
CN110198775A (zh) 气体分离回收方法及设备
JP6055920B2 (ja) 水素回収方法
US10730005B2 (en) Porous materials for natural gas liquids separations
JP6093519B2 (ja) 窒素含有炭化水素ガスからの窒素分離方法および装置
JPH0230607A (ja) 高純度窒素の製造方法
CN101486444A (zh) 一种锗烷提纯的方法
CN103638782A (zh) 一种二氧化碳气体吸收捕集介质及其使用方法
Ali et al. Isotherms and Kinetics Study for Adsorption of Nitrogen from Air using Zeolite Li-LSX to Produce Medical Oxygen
CA3078066C (en) Porous materials for natural gas liquids separations
Ali et al. Adsorption of Nitrogen from Air to Produce Oxygen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835066

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2015835066

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015835066

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15505287

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016545601

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2959084

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015309833

Country of ref document: AU

Date of ref document: 20150827

Kind code of ref document: A