WO2016031824A1 - 人工腹膜組織及びその製造方法 - Google Patents

人工腹膜組織及びその製造方法 Download PDF

Info

Publication number
WO2016031824A1
WO2016031824A1 PCT/JP2015/073888 JP2015073888W WO2016031824A1 WO 2016031824 A1 WO2016031824 A1 WO 2016031824A1 JP 2015073888 W JP2015073888 W JP 2015073888W WO 2016031824 A1 WO2016031824 A1 WO 2016031824A1
Authority
WO
WIPO (PCT)
Prior art keywords
tissue
cells
cell
artificial peritoneal
artificial
Prior art date
Application number
PCT/JP2015/073888
Other languages
English (en)
French (fr)
Inventor
浩 下田
義哉 浅野
明石 満
典弥 松▲崎▼
Original Assignee
国立大学法人弘前大学
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人弘前大学, 国立大学法人大阪大学 filed Critical 国立大学法人弘前大学
Priority to US15/507,083 priority Critical patent/US10837002B2/en
Priority to EP15835587.5A priority patent/EP3187580B1/en
Priority to JP2016545550A priority patent/JP6296262B2/ja
Publication of WO2016031824A1 publication Critical patent/WO2016031824A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0697Artificial constructs associating cells of different lineages, e.g. tissue equivalents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/11Coculture with; Conditioned medium produced by blood or immune system cells
    • C12N2502/1192Lymphatic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • C12N2502/1323Adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/28Vascular endothelial cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/52Fibronectin; Laminin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/90Substrates of biological origin, e.g. extracellular matrix, decellularised tissue

Definitions

  • the present disclosure relates to an artificial peritoneal tissue and a method for manufacturing the same.
  • the peritoneum is a continuous biological membrane that covers a part of the pelvic organ from the abdominal wall and all the abdominal organs, and is formed of a single mesothelial cell layer and a connective tissue containing the vascular network, lymphatic network, etc.
  • the peritoneum has long been known to be closely involved in cancer metastasis. Many cancers of pelvic organs such as the gastrointestinal tract and ovaries are known to release into the abdominal cavity, adhere to and infiltrate the peritoneum (peritoneal dissemination), and cause further metastasis via blood vessels and lymphatic vessels. ing.
  • peritoneal dialysis using the peritoneum is performed as one of the dialysis treatments. It has been reported that long-term peritoneal dialysis causes deterioration of peritoneal function and hardening / thickening of the peritoneum, and ultimately causes encapsulated peritoneal sclerosis (EPS).
  • EPS encapsulated peritoneal sclerosis
  • the inventors of the present invention have made extensive studies and are covering the surface of a cell tissue containing fibroblasts, an extracellular matrix, and at least one of vascular endothelial cells and lymphatic endothelial cells forming a lumen, and the surface of the cell tissues.
  • An artificial peritoneal tissue with a skin cell layer was successfully completed.
  • an artificial peritoneal tissue capable of reproducing an environment closer to that of a human living body and a method for producing the same are provided.
  • FIG. 1 is an example of an image of the artificial peritoneal tissue of Example 1.
  • FIG. 1A is an optical microscope image
  • FIGS. 1B to 1F are transmission electron microscope images.
  • FIG. 2 is an example of an image of the artificial peritoneal tissue of Example 2.
  • FIG. 2A is an optical microscope image
  • FIGS. 2B to 2D are transmission electron microscope images.
  • the present disclosure provides a cellular tissue comprising fibroblasts, an extracellular matrix, and at least one of vascular endothelial cells and lymphatic endothelial cells forming a lumen, and a mesothelium covering the surface of the cellular tissue
  • the present invention relates to an artificial peritoneal tissue including a cell layer.
  • the present disclosure provides a cellular tissue comprising fibroblasts, an extracellular matrix, and at least one of vascular endothelial cells and lymphatic endothelial cells forming a lumen, and a mesothelium covering the surface of the cellular tissue
  • a method for producing an artificial peritoneal tissue comprising a cell layer, comprising culturing at least one of vascular endothelial cells and lymphatic endothelial cells, fibroblasts, and an extracellular matrix to form the cellular tissue, and the cells
  • the present invention relates to a method for producing an artificial peritoneal tissue including disposing mesothelial cells on a tissue.
  • the “artificial peritoneal tissue” refers to a cell population that can function as a tissue called peritoneum, and can be a functional or structural model of the peritoneum.
  • the artificial peritoneal tissue in the present disclosure may include, for example, a model imitating the structure of a peritoneum in a living body, a model that can reproduce the function of a peritoneum in a living body, a model for reproducing, or the like.
  • the present disclosure provides a cellular tissue comprising fibroblasts, an extracellular matrix, and at least one of vascular endothelial cells and lymphatic endothelial cells forming a lumen, and a mesothelium covering the surface of the cellular tissue
  • the present invention relates to an artificial peritoneal tissue having a cell layer (hereinafter also referred to as “artificial peritoneal tissue of the present disclosure”).
  • the artificial peritoneal tissue of the present disclosure has a cell tissue and a mesothelial cell.
  • the mesothelial cell layer forms a covered structure, and the mesothelial cell layer is composed of at least one of a fibroblast, a capillary-like structure, and a lymphatic-like structure. It has a structure connected to tissue through an extracellular matrix. That is, in one embodiment, the artificial peritoneal tissue of the present disclosure includes an extracellular matrix between fibroblasts and mesothelial cells.
  • the structure, preferably the function, of the peritoneal tissue closer to the peritoneal tissue of a living body can be reproduced.
  • the cellular tissue is an aggregate of cells including fibroblasts, extracellular matrix, and / or vascular endothelial cells and lymphatic endothelial cells, wherein the vascular endothelial cells and lymphatic endothelial cells A lumen containing at least one of the cells.
  • the cell tissue has a structure in which a cell layer composed of fibroblasts and stroma sandwiches a vascular network composed of at least one of vascular endothelial cells and lymphatic endothelial cells in a sandwich shape.
  • lumen refers to a hollow tubular structure formed by cells containing at least one of vascular endothelial cells and lymphatic endothelial cells.
  • the cells constituting the lumen wall include either vascular endothelial cells or lymphatic endothelial cells. In one embodiment, it is preferable that the cells constituting the wall surface of the lumen are substantially formed by either vascular endothelial cells or lymphatic endothelial cells.
  • the structure of the lumen include a capillary vessel-like structure and a lymph vessel-like structure.
  • the lumens form a vascular network within the cellular tissue.
  • the lumen may be a structure formed in a mesh network, such as a capillary network or a lymphatic network.
  • the lumen formed by the vascular endothelial cells is formed to have a structure closer to the capillaries of the living body. From this point, in one embodiment, it is preferable that adjacent vascular endothelial cells form an intercellular adhesion.
  • the inner wall of the lumen is formed so as to have a structure closer to the capillaries of the living body. In this respect, in another embodiment, the inner wall of the lumen is preferably a structure rich in vesicle-like structures.
  • the diameter of the lumen formed by the vascular endothelial cells is, for example, 5 ⁇ m to 28 ⁇ m, but is not limited thereto.
  • the medium components reach cells inside the cell tissue more easily and the tissue structure can be easily maintained.
  • the diameter of the lumen can be measured by a conventionally known method such as immunostained images of vascular endothelial cells.
  • the lumen formed by the lymphatic endothelial cells is formed so as to have a structure closer to the capillary lymphatic vessel of the living body. From this point, in one embodiment, it is preferable to include a portion where adjacent lymphatic endothelial cells form intercellular adhesion and a portion where adjacent lymphatic endothelial cells are separated from each other.
  • fibroblasts in a cellular tissue are arranged via an extracellular matrix to form a three-dimensional structure.
  • the concentration of fibroblasts contained in the cell tissue is, for example, 4 ⁇ 10 8 cells / cm 3 to 1.2 ⁇ 10 9 cells / cm 3 because it optimizes the microenvironment for tube formation. Yes, preferably 1.0 ⁇ 10 9 cells / cm 3 to 1.2 ⁇ 10 9 cells / cm 3 .
  • the above-described fibroblasts, endothelial cells and lymphatic endothelial cells may be cells derived from humans or cells derived from animals other than humans. In other embodiments, these cells may be cells derived from mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, or the like. In another embodiment, the cell may be a cultured cell. Examples of cultured cells include, but are not limited to, primary cultured cells, subcultured cells, and cell line cells.
  • the cell tissue may include cells other than those described above.
  • cells other than those described above include, but are not limited to, pericytes and smooth muscle cells. These cells may be human-derived cells or non-human animal-derived cells.
  • the cells may be cells derived from mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, or the like.
  • the cell may be a cultured cell. Examples of cultured cells include, but are not limited to, primary cultured cells, subcultured cells, and cell line cells.
  • the extracellular matrix may include a substance that can play the above role in in vitro cell culture, an artificially synthesized substance, or a part thereof.
  • Specific examples of the extracellular matrix include fibronectin, gelatin, collagen, collagen peptide, laminin and polylysine.
  • the extracellular matrix is not limited to these examples, and examples thereof include those disclosed in JP2007-228921A (Patent No. 4919464) and JP2012-115254A.
  • the extracellular matrix contained in the cellular tissue may be one type or two or more types.
  • the combination of the extracellular matrix contained in the cell tissue includes a combination of the first substance and the second substance that interacts with the first substance.
  • the combination of the first substance and the second substance has a combination of a polymer having an RGD sequence and a polymer that interacts with a polymer having an RGD sequence, or a polymer having a positive charge and a negative charge. Examples include a combination of polymers.
  • the combination of the first substance and the second substance include fibronectin and gelatin (or collagen peptide), fibronectin and ⁇ -polylysine, fibronectin and hyaluronic acid, fibronectin and dextran sulfate, fibronectin and heparin, laminin and gelatin, etc. Is mentioned.
  • the mesothelial cell layer is formed so as to cover the cell tissue surface.
  • the mesothelial cell layer is located on the top surface of the cellular tissue.
  • the mesothelial cells are cells that form the outermost layer (capped cells).
  • the mesothelial cell layer is formed of substantially one layer of mesothelial cells.
  • the density of mesothelial cells in the mesothelial cell layer is 5.2 ⁇ 10 2 cells / mm 2 to 2.5 ⁇ 10 3 cells / mm 2 .
  • 5.2 ⁇ 10 2 cells / mm 2 to 1.3 ⁇ 10 3 cells / mm 2 are preferable.
  • adjacent mesothelial cells preferably form an intercellular adhesion.
  • the mesothelial cell layer has one or more microvilli on its surface.
  • the mesothelial cells described above may be human-derived cells or cells derived from animals other than humans.
  • the mesothelial cells may be cells derived from mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, or the like.
  • the mesothelial cell may be a cultured cell. Examples of cultured cells include, but are not limited to, primary cultured cells, subcultured cells, and cell line cells.
  • the artificial peritoneal tissue of the present disclosure can be used for drug evaluation such as a medicinal effect test, a pharmacological test, and a safety test on the peritoneum of a test substance.
  • the artificial peritoneal tissue of the present disclosure can be used for applications for screening candidate substances as active ingredients.
  • the artificial peritoneal tissue of the present disclosure can be used for basic research and evaluation of peritoneum in a living body.
  • the artificial peritoneal tissue of the present disclosure can be used as an experimental tool for studying and evaluating functions inherent in the peritoneum, such as absorption and transport of body fluids and immune cells.
  • the artificial peritoneal tissue of the present disclosure can be used for applications for evaluating the behavior of cancer cells in the peritoneal tissue.
  • the artificial peritoneal tissue of the present disclosure can be used for screening candidate substances that are active ingredients of drugs used for the treatment of peritoneum such as anticancer agents.
  • the artificial peritoneal tissue of the present disclosure can be used as an experimental tool to reproduce cancer invasion, cancer metastasis associated with peritoneal dissemination, or to elucidate the mechanism.
  • the artificial peritoneal tissue of the present disclosure is used as an experimental tool to elucidate the mechanism of peritoneal function deterioration associated with peritoneal dialysis, peritoneal sclerosis or thickening, encapsulating peritoneal sclerosis (EPS). Can be used.
  • the artificial peritoneum of the present disclosure can be used as a graft for transplantation medicine.
  • the present disclosure provides a cellular tissue comprising fibroblasts, an extracellular matrix, and at least one of vascular endothelial cells and lymphatic endothelial cells forming a lumen, and a mesothelium covering the surface of the cellular tissue
  • the present invention relates to a method for producing an artificial peritoneal tissue including a cell layer (hereinafter also referred to as “the method for producing an artificial peritoneal tissue of the present disclosure”).
  • the method for producing an artificial peritoneal tissue of the present disclosure includes forming the cellular tissue by culturing at least one of a vascular endothelial cell and a lymphatic endothelial cell, a fibroblast, and an extracellular matrix, and on the cellular tissue. Including placing mesothelial cells.
  • a lumen blood vessel-like structure in which adjacent vascular endothelial cells form an intercellular adhesion and a vesicle-like structure is formed on the inner wall.
  • a lumen (lymphatic tube-like structure) having a portion where adjacent lymphatic endothelial cells form intercellular adhesion and a separated portion. ) Can be produced. Therefore, according to the method for manufacturing an artificial peritoneal tissue of the present disclosure, in one embodiment, an artificial peritoneal tissue capable of reproducing an environment closer to that of a human living body can be manufactured.
  • an artificial peritoneal tissue with high tissue reproducibility can be manufactured.
  • the artificial peritoneal tissue of the present disclosure can be produced.
  • Formation of cellular tissue includes culturing at least one of vascular endothelial cells and lymphatic endothelial cells, fibroblasts, and extracellular matrix.
  • the formation of cellular tissue can be performed by sandwiching one cell layer containing vascular endothelial cells and / or lymphatic endothelial cells between cell layers of fibroblasts and culturing in that state. (Sandwich type).
  • the cell tissue can be formed by placing and culturing a mixture of fibroblasts and at least one of vascular endothelial cells and lymphatic endothelial cells on a substrate ( Mixture type).
  • the formation of cellular tissue may be performed by combining a sandwich type and a mixture type.
  • the culture of at least one of vascular endothelial cells and lymphatic endothelial cells, fibroblasts, and extracellular matrix is performed by arranging these cells coated with a coating containing the extracellular matrix in a three-dimensional arrangement. Can be done. Alternatively, such culturing may be performed by alternately laminating (LbL) these cells (one layer) and the extracellular matrix.
  • LbL laminating
  • the formation of cellular tissue may be a combination of cells coated with a coating comprising an extracellular matrix and cells not coated.
  • formation of a cellular tissue using coated cells can be produced based on the methods disclosed in Examples and Japanese Patent Application Laid-Open No. 2012-115254.
  • the formation of a cell tissue by LbL can be prepared based on the method disclosed in JP 2007-228921 A (Patent No. 4919464).
  • the fibroblasts are stacked such that the cell layer of fibroblasts is preferably 4 layers or more, more preferably 5 layers, 6 layers, 7 layers, 8 layers, 9 layers or 10 layers or more. Be placed.
  • the fibroblast placement (seeding) density optimizes the microenvironment for lumen formation and monolayer mesothelial cell layer formation, 4 ⁇ 10 8 cells / cm 3. -1.2 ⁇ 10 9 cells / cm 3 are preferable, and 1 ⁇ 10 9 cells / cm 3 to 1.2 ⁇ 10 9 cells / cm 3 are more preferable.
  • the formation of a mesothelial cell layer includes placing and culturing mesothelial cells on a cellular tissue.
  • mesothelial cells are placed over the cell tissue surface.
  • the mesothelial cells are arranged such that substantially one layer of mesothelial cells is formed.
  • the density of mesothelial cells is 5.2 ⁇ 10 2 cells / mm 2 to 2.5 ⁇ 10 3 cells / mm 2 . In other embodiments, such density is between 5.2 ⁇ 10 2 cells / mm 2 and 1.3 ⁇ 10 3 cells / mm 2 in terms of optimal conditions for forming a uniform mesothelial cell layer. Preferably there is.
  • the mesothelial cells are preferably seeded without covering the surface with an extracellular matrix from the viewpoint of forming a uniform mesothelial cell layer.
  • the mesothelial cell is a cellular tissue because the mesothelial cell forms an integral structure with the cellular tissue via the extracellular matrix, and an artificial peritoneal tissue closer to the living peritoneal tissue is obtained. It is preferable to seed on the cell tissue 6 to 24 hours after the cell seeding (for example, seeding of fibroblasts located in the uppermost layer of the cell tissue).
  • the culture is preferably performed for 5 days or more after mesothelial cell seeding from the viewpoint that an adhesion structure is formed between adjacent mesothelial cells and an artificial peritoneal tissue closer to the peritoneal tissue of a living body is obtained.
  • the present disclosure relates to an artificial peritoneal tissue comprising co-culturing the artificial peritoneal tissue of the present disclosure and cancer cells, and observing the behavior of cancer cells in the co-cultured artificial peritoneal tissue.
  • the present invention relates to a method for evaluating behavior of cancer cells (hereinafter, also referred to as “evaluation method of the present disclosure”).
  • Evaluation of cancer cell behavior includes evaluating or observing the ability of cancer cells to proliferate, infiltrate, metastasize and influence other cells in artificial peritoneal tissue, and the state of their suppression, It is not limited to these.
  • the evaluation method in the present disclosure also includes observing culture conditions in reproduction of cancer growth, invasion and / or metastasis using the artificial peritoneal tissue of the present disclosure and / or the presence or absence of variation in reproduction due to external changes. May be included.
  • co-culture of artificial peritoneal tissue and cancer cells can be performed by placing cancer cells in the artificial peritoneal tissue and culturing them.
  • the above-mentioned medium can be used.
  • the culture temperature is as described above.
  • the evaluation method of the present disclosure may include bringing a test substance into contact with an artificial peritoneal tissue co-cultured with cancer cells.
  • the artificial peritoneal tissue of the present disclosure may be able to reproduce cancer growth, invasion and / or metastasis by co-culturing with cancer cells. Therefore, in one embodiment, the present disclosure relates to a cancer infiltration model in a peritoneal tissue including the artificial peritoneal tissue of the present disclosure and a cancer cell.
  • the present disclosure includes co-culturing the artificial peritoneal tissue of the present disclosure and a cancer cell, contacting the artificial peritoneal tissue in contact with the cancer cell and a test substance, and contacting the cancer cell.
  • the present invention relates to a screening method for a candidate substance as an active ingredient of an anticancer agent (hereinafter, also referred to as “screening method of the present disclosure”), which comprises evaluating the action of the test substance on the artificial peritoneal tissue.
  • screening method of the present disclosure in one embodiment, since the artificial peritoneal tissue of the present disclosure is used, the test substance can be evaluated in an environment close to a living body as compared with the conventional method. Can be played.
  • the action of the test substance includes an action of suppressing at least one selected from the group consisting of metastasis, invasion, and proliferation of the test substance to cancer cells.
  • the present disclosure provides a kit for screening a candidate substance that is an active ingredient of an anticancer agent, including the artificial peritoneal tissue of the present disclosure and cancer cells (hereinafter, “the screening kit of the present disclosure”). Also called). According to the screening kit of the present disclosure, in one embodiment, the screening method of the present disclosure can be performed.
  • the screening kit of the present disclosure may further include a product including at least one of a reagent, a material, a tool, and a device used for a predetermined test, and an instruction (instruction manual). Good.
  • coated fibroblasts are prepared.
  • coated fibroblasts can be formed by alternately stacking fibronectin and gelatin.
  • the coated fibroblasts are seeded on a substrate such as a cell culture insert and cultured.
  • the seeding of the coated fibroblasts is performed so that the coated fibroblasts are laminated in 4 layers or more, preferably 5 layers, 6 layers, 7 layers, 8 layers, 9 layers or 10 layers or more.
  • the density of fibroblasts at seeding is 1 ⁇ 10 2 to 1 ⁇ 10 9 cells / cm 3 , 1 ⁇ 10 4 to 1 ⁇ 10 8 cells / cm 3, or 1 ⁇ 10 5 to 1 ⁇ 10 7 cells / cm 3 .
  • the culture is performed by adding a medium.
  • the medium include, but are not limited to, Eagle's MEM medium, Dulbecco's Modified Eagle medium (DMEM), Modified Eagle medium (MEM), Medium Essential medium, RDMI, and GlutaMax medium.
  • DMEM Dulbecco's Modified Eagle medium
  • MEM Modified Eagle medium
  • MEM Medium Essential medium
  • RDMI RMI
  • GlutaMax medium GlutaMax medium.
  • a person skilled in the art can appropriately select a medium according to the type of cells to be cultured.
  • a medium supplemented with serum is used as the medium.
  • the culture temperature is 37 ° C., for example.
  • the culture time is, for example, 6 to 24 hours.
  • a person skilled in the art can appropriately set the culture temperature and the culture time according to the type of cells to be cultured.
  • vascular endothelial cells are seeded on the formed fibroblast laminate and cultured.
  • Vascular endothelial cells are arranged so that one layer of vascular endothelial cells is formed.
  • those coated with an extracellular matrix may be used, or those not coated may be used.
  • the culture conditions are as described above.
  • coated fibroblasts are seeded on the vascular endothelial cells and cultured.
  • the seeding and culture of the coated fibroblasts are performed in the same manner as described above.
  • mesothelial cells are seeded on the cell tissue and cultured.
  • mesothelial cells cells that are not coated with the extracellular matrix are used from the viewpoint of efficiently forming one mesothelial cell layer.
  • the seeding density of mesothelial cells is as described above.
  • the culture medium and culture temperature are as described above for the cell tissue.
  • the culture time varies depending on the culture temperature, but is, for example, 5 days or longer. In one embodiment, the culture time is preferably 5-14 days.
  • vascular endothelial cell layer one layer
  • fibroblast cell layers four or more layers
  • the cell tissue may be formed by mixing, seeding and culturing vascular endothelial cells and coated fibroblasts.
  • a cell tissue may be produced using pericytes, smooth muscle cells, and mesenchymal stem cells instead of or in combination with fibroblasts.
  • cell tissue may be produced using lymphatic endothelial cells instead of or in combination with vascular endothelial cells.
  • An artificial comprising a fibroblast, an extracellular matrix, a cell tissue containing at least one of a vascular endothelial cell and a lymphatic endothelial cell forming a lumen, and a mesothelial cell layer covering the surface of the cell tissue Peritoneal tissue.
  • the mesothelial cell layer forms a covered structure, and the mesothelial cell binds to a tissue composed of at least one of a fibroblast and a capillary-like structure and a lymphatic-like structure via an extracellular matrix.
  • [5] The artificial peritoneal tissue according to any one of [1] to [4], wherein the extracellular matrix includes at least fibronectin and gelatin.
  • the extracellular matrix includes a first substance and a second substance
  • a combination of the first substance and the second substance is selected from the group consisting of: Artificial peritoneal tissue according to crab: (A) fibronectin and gelatin; (B) fibronectin and ⁇ -polylysine; (C) fibronectin and hyaluronic acid; (D) fibronectin and dextran sulfate; (E) fibronectin and heparin; and (f) laminin and gelatin.
  • the artificial peritoneal tissue according to [6] wherein the combination of the first substance and the second substance is fibronectin and gelatin.
  • An artificial peritoneum comprising a fibroblast, an extracellular matrix, a cell tissue containing at least one of vascular endothelial cells and lymphatic endothelial cells forming a lumen, and a mesothelial cell layer covering the surface of the cell tissue
  • a method for producing a tissue comprising culturing at least one of a vascular endothelial cell and a lymphatic endothelial cell, a fibroblast, and an extracellular matrix to form the cellular tissue, and a mesothelial cell on the cellular tissue.
  • a method for producing an artificial peritoneal tissue comprising arranging.
  • the method for producing an artificial peritoneal tissue according to [8], wherein the formation of the cellular tissue includes arranging fibroblasts coated with an extracellular matrix.
  • 50 mM Tris-HCl 50 mM Tris adjusted to pH 7.4 with HCl (manufactured by Nacalai Tesque) sterilized by wet heat in an autoclave (121 ° C., 20 minutes)
  • BFN Fibronectin from plasma plasma (Sigma- (Aldrich) FN solution: 0.04 mg BFN / 1 ml 50 mM Tris-HCl (pH 7.4)
  • G solution 0.04 mg Gelatin / 1 ml 50 mM Tris-HCl (pH 7.4)
  • Coated cells were prepared based on the description in JP2012-115254A.
  • NHDF normal human skin fibroblasts
  • FN extracellular matrix components used fibronectin
  • G gelatin
  • the cells were immersed in the FN solution and the G solution alternately for a total of 9 times to prepare a coated NHDF having a (FN / G) 4 FN film formed on the surface (the thickness of the coating: about 10 nm).
  • the FN solution was immersed 5 times and the G solution was immersed 4 times.
  • the thickness of the film was measured by the method described in the examples of JP2012-115254A.
  • ⁇ Human umbilical vein intravascular cells (HUVEC)> A coated HUVEC with a (FN / G) 4 FN film was prepared in the same manner as above except that HUVEC was used instead of NHDF (thickness of the coating: about 10 nm).
  • ⁇ Human skin lymphatic endothelial cells (HDLEC)> A coated HDLEC with a (FN / G) 4 FN film formed in the same manner as above except that HDLEC was used instead of NHDF (thickness of the coating: about 10 nm).
  • Example 1 [Production of artificial peritoneal tissue with vascular network structure]
  • an insert equipped with a perforated polyester membrane (pore diameter: 0.4 ⁇ m) and a 24-well multiplate were prepared.
  • the coated NHDF was seeded at 4 ⁇ 10 5 cells / well and cultured for 6 hours to prepare an NHDF layer (four layers).
  • the coated HUVEC was seeded on the NHDF layer at 1 ⁇ 10 5 cells / well and cultured for 6 hours (HUVEC layer: 1 layer).
  • the coated NHDF was seeded at 4 ⁇ 10 5 cells / well on the HUVEC layer and cultured for 6 hours to prepare an NHDF layer (four layers) on the HUVEC layer.
  • 5 ⁇ 10 4 cells / well (1.3 ⁇ 10 3 cells / mm 2 ) of human omentum-derived mesothelial cells were seeded and cultured for 5 days to produce artificial peritoneal tissue.
  • the obtained artificial peritoneal tissue is shown in FIG.
  • the medium used was DMEM containing 10% FBS, and the culture was performed at 5% CO 2 and 37 ° C.
  • the obtained artificial peritoneal tissue had a thickness of 45 ⁇ m.
  • the thickness of the cell tissue was 42 ⁇ m
  • the diameter of the capillary-like structure was 18 ⁇ m
  • the thickness of the mesothelial cell layer was 3 ⁇ m.
  • FIG. 1A is an optical microscope image
  • FIGS. 1B to F are transmission electron microscope images.
  • 1A to F BV represents a capillary-like structure
  • MC represents a mesothelial cell
  • Fb represents a fibroblast
  • ECM represents an extracellular matrix.
  • the arrows in FIG. 1A indicate the sheet structure of mesothelial cells. As shown in FIGS.
  • the obtained artificial peritoneal tissue has a lumen formed by vascular endothelial cells and a connective tissue layer containing fibroblasts and an extracellular matrix, and the surface of the connective tissue layer is It was confirmed that the structure was covered with a single layer of mesothelial cells, indicating a structure similar to the peritoneum of a living body. As shown by the arrow in FIG. 1C, an adhesion structure could be confirmed between adjacent mesothelial cells. Moreover, as shown in FIG. 1D, microvilli were confirmed on the surface of the mesothelial cell layer. As shown in FIG.
  • FIG. 1F is an enlarged view of a part of a vascular endothelial cell forming a lumen. As shown in FIG. 1F, it was confirmed that the inner wall of the lumen was rich in vesicle-like structures (arrowheads in the figure) distributed in a large amount in the capillary wall of the living body.
  • Example 2 [Production of artificial peritoneal tissue with lymphatic network structure] An artificial peritoneal tissue was prepared in the same manner as in Example 1 except that the coated HDLEC was used instead of the coated HUVEC. The obtained artificial peritoneal tissue is shown in FIG. The resulting artificial peritoneal tissue had a thickness of 44 ⁇ m. The thickness of the cell tissue was 41 ⁇ m, the diameter of the lymphatic tube-like structure was 13 ⁇ m, and the thickness of the mesothelial cell layer was 3 ⁇ m.
  • FIG. 2A is an optical microscope image, and B to D are transmission electron microscope images. 2A to 2D, L represents a lymphatic structure, Fb represents a fibroblast, and ECM represents an extracellular matrix.
  • the arrows in FIG. 2A indicate the sheet structure of mesothelial cells.
  • the obtained artificial peritoneal tissue has a lumen formed by lymphatic endothelial cells and a connective tissue layer containing fibroblasts and an extracellular matrix.
  • the surface of the connective tissue layer is one layer. It was confirmed that the structure was covered with mesothelial cells.
  • the lumen formed by lymphatic endothelial cells has a portion where lymphatic endothelial cells adhere (arrows in FIG. 2B) and a portion where lymphatic endothelial cells dissociate (FIG. 2B). 2D arrow) was confirmed, and it was confirmed that the structure was close to the capillaries of the living body.
  • artificial peritoneal tissue with vascular network structure and artificial peritoneal tissue with lymphatic network structure can be prepared using mesothelial cell lines that can be subcultured for a long time instead of human omental mesothelial cells We were able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本開示は、線維芽細胞、細胞外マトリックス、並びに管腔を形成する血管内皮細胞及びリンパ管内皮細胞の少なくとも一方を含む細胞組織と、前記細胞組織の表面を覆う中皮細胞層とを備える、人工腹膜組織、ならびにその製造方法に関する。

Description

人工腹膜組織及びその製造方法
 本開示は、人工腹膜組織及びその製造方法に関する。
 近年、遺伝子工学、分子生物学、細胞工学の医療への応用を目的として組織工学による人工臓器・移植材料等のバイオマテリアルの開発が求められており、in vitroでの組織構造形成を主眼とした研究が行われている(例えば、特許文献1及び2等)。三次元組織の構築には、材料となる培養細胞、人工材料又は細胞外マトリックス(ECM)等の足場、組織化を促す刺激が必要である。これまでに様々な組織モデルが報告されている。
 腹膜は、腹壁並びにすべての腹腔内臓器から骨盤内臓器の一部を被う連続した生体膜であり、単層の中皮細胞層と血管網やリンパ管網等を含有する結合組織で形成される。腹膜は、癌の転移に密接に関与することが古くから知られている。消化管や卵巣などの骨盤内臓器の多くの癌は、腹腔内に遊離し、腹膜に接着して浸潤し(腹膜播種)、さらには血管やリンパ管を介したさらなる転移を引き起こすことが知られている。また、透析療法の一つとして腹膜を用いた腹膜透析が行われている。腹膜透析を長期間継続すると、腹膜の機能の劣化や腹膜の硬化・肥厚化がおこり、最終的には被嚢性腹膜硬化症(EPS)等を引き起こすことが報告されている。
特開2007-228921号公報 特開2012-115254号公報
 以上の点から、腹膜播種や被嚢性腹膜硬化症等が生じるメカニズムの解明、及びその予防・治療方法の研究が行われている。この研究にはマウス等の実験動物が用いられているのが現状である。しかしながら、ヒトへの臨床応用等を考慮すると、ヒトの生体により近い腹膜組織を用いた研究が必要とされている。そのため、ヒトの生体の腹膜組織により近い環境を再現可能な人工腹膜組織の開発が求められている。
 本発明者らは、鋭意研究を重ね、線維芽細胞、細胞外マトリックス、並びに管腔を形成する血管内皮細胞及びリンパ管内皮細胞の少なくとも一方を含む細胞組織と、前記細胞組織の表面を覆う中皮細胞層とを備える人工腹膜組織を完成することに成功した。
 本開示によれば、ヒトの生体の腹膜組織により近い環境を再現可能な人工腹膜組織及びそれを製造する方法が提供される。
図1は、実施例1の人工腹膜組織の画像の一例であって、図1Aは光学顕微鏡画像であり、図1B~Fは透過型電子顕微鏡画像である。 図2は、実施例2の人工腹膜組織の画像の一例であって、図2Aは光学顕微鏡画像であり、図2B~Dは透過型電子顕微鏡画像である。
 一つの実施態様において、本開示は、線維芽細胞、細胞外マトリックス、並びに管腔を形成する血管内皮細胞及びリンパ管内皮細胞の少なくとも一方を含む細胞組織と、前記細胞組織の表面を覆う中皮細胞層とを備える人工腹膜組織に関する。
 他の実施態様において、本開示は、線維芽細胞、細胞外マトリックス、並びに管腔を形成する血管内皮細胞及びリンパ管内皮細胞の少なくとも一方を含む細胞組織と、前記細胞組織の表面を覆う中皮細胞層とを備える人工腹膜組織の製造方法であって、血管内皮細胞及びリンパ管内皮細胞の少なくとも一方と線維芽細胞と細胞外マトリックスとを培養して前記細胞組織を形成すること、及び前記細胞組織上に中皮細胞を配置することを含む人工腹膜組織の製造方法に関する。
 本開示において「人工腹膜組織」とは、腹膜という組織として機能しうる細胞集団であって、腹膜の機能的又は構造的なモデルとなりうるものをいう。本開示における人工腹膜組織は、例えば、生体における腹膜の構造を模したもの、生体における腹膜の機能を再現可能なモデル又は再現するためのモデル等を含みうる。
 [人工腹膜組織]
 一つの実施態様において、本開示は、線維芽細胞、細胞外マトリックス、並びに管腔を形成する血管内皮細胞及びリンパ管内皮細胞の少なくとも一方を含む細胞組織と、前記細胞組織の表面を覆う中皮細胞層とを備える人工腹膜組織(以下、「本開示の人工腹膜組織」ともいう)に関する。
 本開示の人工腹膜組織は、細胞組織と中皮細胞とを有する。一つの実施形態において、本開示の人工腹膜組織は、中皮細胞層が被蓋構造を形成するとともに、中皮細胞層が線維芽細胞と毛細血管様構造及びリンパ管様構造の少なくとも一方からなる組織に細胞外マトリックスを介して結合した構造を有している。すなわち、一つの実施形態において、本開示の人工腹膜組織は、線維芽細胞と中皮細胞との間に細胞外マトリックスを含む。本開示の人工腹膜組織によれば、生体の腹膜組織により近い腹膜組織の構造、好ましくは機能を再現できる。
 <細胞組織>
 一つの実施形態において、細胞組織は、線維芽細胞と、細胞外マトリックスと、血管内皮細胞及びリンパ管内皮細胞の少なくとも一方とを含む細胞の集合体であって、血管内皮細胞及びリンパ管内皮細胞の少なくとも一方の細胞を含む管腔を有している。他の実施形態において、細胞組織は、線維芽細胞と間質からなる細胞層が血管内皮細胞及びリンパ管内皮細胞の少なくとも一方による脈管ネットワークをサンドイッチ状に挟んだ構造を成す。
 本開示において「管腔」とは、血管内皮細胞及びリンパ管内皮細胞の少なくとも一方を含む細胞によって形成された中空の管状構造をいう。管腔の壁面を構成する細胞は、血管内皮細胞及びリンパ管内皮細胞のいずれかを含む。一つの実施形態において、管腔の壁面を構成する細胞は、実質的に血管内皮細胞及びリンパ管内皮細胞のいずれかによって形成されていることが好ましい。管腔の構造には、例えば、毛血管様構造及びリンパ管様構造が挙げられる。一つの実施形態において、管腔は、細胞組織内において脈管ネットワークを形成する。他の実施形態において、管腔は、毛細血管網又はリンパ管網のように網目状のネットワークに形成された構造であってもよい。
 血管内皮細胞が形成する管腔は、生体の毛細血管により近い構造となるように形成される。この点から、一つの実施形態において、隣接する血管内皮細胞同士が細胞間接着を形成していることが好ましい。また、管腔の内壁は、生体の毛細血管により近い構造となるように形成される。この点から、他の実施形態において、管腔の内壁は小胞様構造に富む構造であることが好ましい。
 血管内皮細胞が形成する管腔の径は、例えば、5μm~28μmであるが、これらに限定されない。本開示の人工腹膜組織によれば、一つの実施形態において、細胞組織内部の細胞への培地成分がより到達しやすくなり、組織構造が維持されやすくなりうるという効果を好ましくは奏する。また、本開示の人工腹膜組織を用いた腹膜の研究及び評価において、癌細胞等の血管様構造への侵襲過程や血管様構造内での動態を可視化しやすくなりうるという効果を奏しうる。管腔の径は、血管内皮細胞の免疫染色像などの従来公知の方法により測定できる。
 リンパ管内皮細胞が形成する管腔は、生体の毛細リンパ管により近い構造となるように形成される。この点から、一つの実施形態において、隣接するリンパ管内皮細胞同士が細胞間接着を形成している部分と、隣接するリンパ管内皮細胞同士が離間した部分とを含むことが好ましい。
 一つの実施形態において、細胞組織における線維芽細胞は、細胞外マトリックスを介して配置され三次元構造を形成している。
 細胞組織に含まれる線維芽細胞の濃度は、管腔形成のための微小環境を最適化するという理由から、例えば、4×108細胞/cm3~1.2×109細胞/cm3であり、好ましくは、1.0×109細胞/cm3~1.2×109細胞/cm3である。
 一つの実施形態において、上述した線維芽細胞、内皮細胞及びリンパ管内皮細胞は、ヒト由来の細胞であってもよいし、ヒト以外の動物由来の細胞であってもよい。他の実施形態において、これらの細胞は、間葉系幹細胞、胚性幹細胞あるいは人工多能性幹細胞等に由来する細胞であってもよい。別の実施形態において、細胞は培養細胞であってもよい。培養細胞には、例えば、初代培養細胞、継代培養細胞、及び細胞株細胞等が挙げられるが、これらに限定されない。
 一つの実施形態において、細胞組織は、上記以外の細胞を含んでいてもよい。上記以外の細胞には、例えば、周皮細胞、及び平滑筋細胞が挙げられるが、これらに限定されない。これらの細胞は、ヒト由来の細胞であってもよいし、ヒト以外の動物由来の細胞であってもよい。他の実施形態において、細胞は、間葉系幹細胞、胚性幹細胞あるいは人工多能性幹細胞等に由来する細胞であってもよい。別の実施形態において、細胞は培養細胞であってもよい。培養細胞には、例えば、初代培養細胞、継代培養細胞、及び細胞株細胞等が挙げられるが、これらに限定されない。
 一つの実施形態において、細胞外マトリックスは、in vitro細胞培養において上記の役割を果たしうる物質や、人工的に合成された物質やその一部を含んでもよい。細胞外マトリックスの具体例には、フィブロネクチン、ゼラチン、コラーゲン、コラーゲンペプチド、ラミニン及びポリリジン等が挙げられる。細胞外マトリックスは、これらの例に限定されるものではなく、特開2007-228921号公報(特許第4919464号)及び特開2012-115254号公報に開示のものが挙げられる。
 細胞組織に含まれる細胞外マトリックスは、一種類であってもよいし、二種類以上であってもよい。一つの実施形態において、細胞組織に含まれる細胞外マトリックスの組み合わせには、第1物質及び第1物質と相互作用する第2物質の組み合わせが挙げられる。第1物質と第2物質との組み合わせには、RGD配列を有する高分子及びRGD配列を有する高分子と相互作用する高分子の組み合わせ、又は、正の電荷を有する高分子及び負の電荷を有する高分子の組み合わせが挙げられる。第1物質と第2物質との組み合わせの具体例には、フィブロネクチンとゼラチン(またはコラーゲンペプチド)、フィブロネクチンとε-ポリリジン、フィブロネクチンとヒアルロン酸、フィブロネクチンとデキストラン硫酸、フィブロネクチンとヘパリン、及びラミニンとゼラチン等が挙げられる。
 <中皮細胞層>
 中皮細胞層は、細胞組織表面を覆うように形成されている。一つの実施形態において、中皮細胞層は、細胞組織の上面に位置している。他の実施形態において、中皮細胞は、最表層を形成する細胞(被蓋細胞)となる。別の実施形態において、中皮細胞層は、実質的に一層の中皮細胞の層で形成されている。
 一つの実施形態において、中皮細胞層における中皮細胞の密度は、5.2×102細胞/mm2~2.5×103細胞/mm2である。他の実施形態において、一層の中皮細胞層を形成する最適条件の点から、5.2×102細胞/mm2~1.3×103細胞/mm2が好ましい。
 一つの実施形態において、隣接する中皮細胞同士は、細胞間接着を形成していることが好ましい。他の実施形態において、中皮細胞層は、その表面に1又は複数の微絨毛を有する。これにより、生体の腹膜組織により近い腹膜組織の構造、好ましくは機能を再現できる。
 一つの実施形態において、上述した中皮細胞は、ヒト由来の細胞であってもよいし、ヒト以外の動物由来の細胞であってもよい。他の実施形態において、中皮細胞は、間葉系幹細胞、胚性幹細胞あるいは人工多能性幹細胞等に由来する細胞であってもよい。別の実施形態において、中皮細胞は培養細胞であってもよい。培養細胞には、例えば、初代培養細胞、継代培養細胞、及び細胞株細胞等が挙げられるが、これらに限定されない。
 一つの実施形態において、本開示の人工腹膜組織は、被検物質の腹膜に対する薬効試験、薬理試験及び安全性試験等といった薬剤評価に用いることができる。他の実施形態において、本開示の人工腹膜組織は、有効成分となる候補物質のスクリーニングを行うための用途に用いることができる。
 別の実施形態において、本開示の人工腹膜組織は、生体における腹膜の基礎研究及び評価を行うための用途として用いることができる。さらに別の実施形態において、本開示の人工腹膜組織は、体液及び免疫細胞等の吸収及び輸送等といった腹膜が本来有する機能の研究及び評価を行うための実験ツールとして用いることができる。
 別の実施形態において、本開示の人工腹膜組織は、腹膜組織における癌細胞の挙動を評価するための用途に用いることができる。さらに別の実施形態において、本開示の人工腹膜組織は、抗癌剤等の腹膜の治療に用いる薬剤の有効成分となる候補物質のスクリーニングを行うための用途に用いることができる。さらに別の実施形態において、本開示の人工腹膜組織は、腹膜播種に伴う癌の浸潤、癌の転移を再現し、又はそのメカニズムを解明するための実験ツールとして用いることができる。
 別の実施形態において、本開示の人工腹膜組織は、腹膜透析に伴う腹膜の機能の劣化、腹膜の硬化又は肥厚化、被嚢性腹膜硬化症(EPS)のメカニズムを解明するための実験ツールとして用いることができる。
 別の実施形態において、本開示の人工腹膜は、移植医療のための移植片として使用できる。
 [人工腹膜組織の製造方法]
 他の実施態様において、本開示は、線維芽細胞、細胞外マトリックス、並びに管腔を形成する血管内皮細胞及びリンパ管内皮細胞の少なくとも一方を含む細胞組織と、前記細胞組織の表面を覆う中皮細胞層とを備える人工腹膜組織の製造方法(以下、「本開示の人工腹膜組織の製造方法」ともいう)に関する。本開示の人工腹膜組織の製造方法は、血管内皮細胞及びリンパ管内皮細胞の少なくとも一方と線維芽細胞と細胞外マトリックスとを培養することによって前記細胞組織を形成すること、及び前記細胞組織上に中皮細胞を配置することを含む。
 本開示の人工腹膜組織の製造方法によれば、一つの実施形態において、隣接する血管内皮細胞同士が細胞間接着を形成し、また内壁に小胞様構造が形成された管腔(血管様構造)を備える人工腹膜組織が製造できる。本開示の人工腹膜組織の製造方法によれば、他の実施形態において、隣接するリンパ管内皮細胞同士が細胞間接着を形成している部分と離間した部分とを有する管腔(リンパ管様構造)を備える人工腹膜組織が製造できる。したがって、本開示の人工腹膜組織の製造方法によれば、一つの実施形態において、ヒトの生体の腹膜組織により近い環境を再現可能な人工腹膜組織を製造することができる。本開示の人工腹膜組織の製造方法によれば、他の実施形態において、組織再現性の高い人工腹膜組織を製造することができる。本開示の人工腹膜組織の製造方法は、一つの実施形態において、本開示の人工腹膜組織を製造することができる。
 <細胞組織の形成>
 細胞組織の形成は、血管内皮細胞及びリンパ管内皮細胞の少なくとも一方と線維芽細胞と細胞外マトリックスとを培養することを含む。一つの実施形態において、細胞組織の形成は、血管内皮細胞及び/又はリンパ管内皮細胞を含む1層の細胞層を線維芽細胞の細胞層で挟み、その状態で培養することにより行うことができる(サンドイッチ型)。また、他の実施形態において、細胞組織の形成は、線維芽細胞と、血管内皮細胞及びリンパ管内皮細胞の少なくとも一方との混合物を基材上に配置して培養することにより行うことができる(ミクスチャー型)。別の実施形態において、細胞組織の形成は、サンドイッチ型とミクスチャー型を組み合わせて行ってもよい。
 一つの実施形態において、血管内皮細胞及びリンパ管内皮細胞の少なくとも一方と線維芽細胞と細胞外マトリックスの培養は、細胞外マトリックスを含む被膜で被覆したこれらの細胞を三次元に配置して培養することにより行うことができる。あるいは、かかる培養は、これらの細胞(1層)と細胞外マトリックスとを交互に積層(LbL)して培養することにより行ってもよい。一つの実施形態において、細胞組織の形成は、細胞外マトリックスを含む被膜で被覆された細胞と被覆されていない細胞とを併用してもよい。一つの実施形態において、被覆細胞を用いた細胞組織の形成は、実施例、及び特開2012-115254号等に開示された方法等に基づき作製できる。他の実施形態において、LbLによる細胞組織の形成は、特開2007-228921号公報(特許第4919464号)に開示された方法等に基づき作製できる。
 一つの実施形態において、線維芽細胞は、線維芽細胞の細胞層が好ましくは4層以上、より好ましくは5層、6層、7層、8層、9層又は10層以上積層されるように配置される。
 一つの実施形態において、線維芽細胞の配置(播種)密度は、管腔形成及び単層の中皮細胞層形成のための微小環境を最適化するという理由から、4×108細胞/cm3~1.2×109細胞/cm3が好ましく、1×109細胞/cm3~1.2×109細胞/cm3がより好ましい。
 <中皮細胞層の形成>
 一つの実施形態において、中皮細胞層の形成は、細胞組織上に中皮細胞を配置して培養することを含む。他の実施形態において、中皮細胞は、細胞組織表面を覆うように配置される。また、別の実施形態において、中皮細胞は、中皮細胞の層が実質的に一層形成されるように配置される。
 一つの実施形態において、中皮細胞の配置(播種)密度は、5.2×102細胞/mm2~2.5×103細胞/mm2である。他の実施形態において、一様な一層の中皮細胞層を形成する最適条件の点から、かかる密度は、5.2×102細胞/mm2~1.3×103細胞/mm2であることが好ましい。
 一つの実施形態において、中皮細胞は、一様な一層の中皮細胞層を形成する点から、細胞外マトリックスで表面を被覆することなく播種することが好ましい。他の実施形態において、中皮細胞は、中皮細胞が細胞外マトリックスを介した細胞組織との一体構造が形成され、生体の腹膜組織により近い人工腹膜組織が得られる点から、細胞組織のための細胞の播種(例えば、細胞組織の最上層に位置する線維芽細胞の播種)から6~24時間後に細胞組織上に播種することが好ましい。一つの実施形態において、培養は、隣接する中皮細胞間に接着構造が形成され、生体の腹膜組織により近い人工腹膜組織が得られる点から、中皮細胞播種後5日間以上行うことが好ましい。
 [人工腹膜組織における癌細胞の挙動の評価方法]
 別の実施態様において、本開示は、本開示の人工腹膜組織と癌細胞とを共培養すること、及び共培養させた人工腹膜組織における癌細胞の挙動を観察することを含む、人工腹膜組織における癌細胞の挙動を評価する方法(以下、「本開示の評価方法」ともいう)に関する。
 癌細胞の挙動の評価には、人工腹膜組織における癌細胞の増殖能、浸潤能、転移能、及び他の細胞への影響、並びにこれらの抑制の様子を評価又は観察することが挙げられるが、これらに限定されない。本開示における評価方法はまた、本開示の人工腹膜組織を用いた癌の増殖、浸潤及び/又は転移の再現における培養条件及び/又は外的の変化における再現の変動の有無等を観察することを含みうる。
 一つの実施形態において、人工腹膜組織と癌細胞との共培養は、人工腹膜組織に癌細胞を配置して培養することにより行うことができる。培地は上述のものが使用できる。培養温度は上述のとおりである。
 一つの実施形態において、本開示の評価方法は、癌細胞と共培養した人工腹膜組織に被験物質を接触させることを含んでいてもよい。
 一つの実施形態において、本開示の人工腹膜組織は、癌細胞と共培養することにより、癌の増殖、浸潤及び/又は転移の再現が可能になりうる。したがって、本開示は、一つの実施形態において、本開示の人工腹膜組織と癌細胞とを含む腹膜組織における癌浸潤モデルに関する。
 [スクリーニング方法]
 別の実施態様において、本開示は、本開示の人工腹膜組織と癌細胞とを共培養させること、癌細胞と接触させた人工腹膜組織と被験物質とを接触させること、及び前記癌細胞と接触させた人工腹膜組織に対する前記被験物質の作用を評価することを含む、抗癌剤の有効成分となる候補物質のスクリーニング方法(以下、「本開示のスクリーニング方法」ともいう)に関する。本開示のスクリーニング方法によれば、一つの実施形態において、本開示の人工腹膜組織を使用するため、従来の方法と比較して生体に近い環境で被検物質の評価を行うことができるという効果を奏しうる。
 被験物質の作用には、被験物質の癌細胞に対する転移、浸潤、及び増殖からなる群から選択される少なくとも一つを抑制する作用が挙げられる。
 [スクリーニング用キット]
 別の実施態様において、本開示は、本開示の人工腹膜組織と、癌細胞とを含む、抗癌剤の有効成分となる候補物質のスクリーニングを行うためのキット(以下、「本開示のスクリーニング用キット」ともいう)に関する。本開示のスクリーニング用キットによれば、一つの実施形態において、本開示のスクリーニング方法を行うことができる。
 一つの実施形態において、本開示のスクリーニング用キットは、所定の検査に用いる試薬、材料、用具、及び装置、並びに、説明書(取扱説明書)の少なくとも1つを含む製品をさらに含んでいてもよい。
 以下に、本開示を好適な実施形態を示しながら詳細に説明する。但し、本開示は、以下の実施形態に限定されるものではないことはいうまでもない。
 まず、線維芽細胞の被覆細胞(以下、「被覆線維芽細胞」ともいう)を準備する。一つの実施形態において、被覆線維芽細胞は、フィブロネクチン及びゼラチンを交互に積層することにより形成できる。
 被覆線維芽細胞をセルカルチャーインサート等の基材上に播種して培養する。被覆線維芽細胞の播種は、被覆線維芽細胞が4層以上、好ましくは5層、6層、7層、8層、9層又は10層以上積層されるように行う。一つの実施形態において、播種時の線維芽細胞の密度は、1×102~1×109細胞/cm3、1×104~1×108細胞/cm3又は1×105~1×107細胞/cm3である。
 一つの実施形態において、培養は、培地を添加して行う。培地には、Eagle’s MEM培地、Dulbecco’s Modified Eagle培地(DMEM)、Modified Eagle培地(MEM)、Minimum Essential培地、RDMI、及びGlutaMax培地等が挙げられるが、これらに限定されない。当業者であれば、培養する細胞の種類に応じて、適宜培地を選択できる。一つの実施形態において、培地は、血清を添加した培地を用いる。培養温度は、例えば、37℃である。培養時間は、例えば、6~24時間である。当業者であれば、培養する細胞の種類に応じて、培養温度および培養時間を適宜設定できる。
 次に、形成された線維芽細胞の積層体の上に血管内皮細胞を播種して培養する。血管内皮細胞は、血管内皮細胞の層が1層形成されるように配置する。血管内皮細胞は、細胞外マトリックスで被覆したものを使用してもよいし、被覆されていないものを使用してもよい。培養条件は上述のとおりである。
 ついで、血管内皮細胞の上に被覆線維芽細胞を播種して培養する。被覆線維芽細胞の播種及び培養は上記と同様に行う。
 そして、細胞組織上に中皮細胞を播種して培養する。中皮細胞は、1層の中皮細胞層を効率よく形成する点から、細胞外マトリックスで被覆されていない細胞を用いる。中皮細胞の播種密度は上述のとおりである。培地及び培養温度は、細胞組織は上述のとおりである。培養時間は、培養温度よっても異なるが、例えば5日以上である。一つの実施形態において、培養時間は、好ましくは5~14日である。これにより、内部に毛細血管様構造が形成された細胞組織と中皮細胞層とを有する人工腹膜組織が形成できる。
 本実施形態では血管内皮細胞の層(1層)を線維芽細胞の細胞層(4層以上)でサンドイッチして製造する形態を例にとり説明したが、本開示はこれに限定されるものではなく、血管内皮細胞と被覆線維芽細胞とを混合して播種し培養することによって細胞組織を形成してもよい。
 本実施形態では線維芽細胞と血管内皮細胞とを用いて細胞組織を製造する方法を例にとり説明したが、本開示はこれに限定されるものではない。一つの実施形態において、線維芽細胞に替えて又は併せて周皮細胞、平滑筋細胞、及び間葉系幹細胞を用いて細胞組織を製造してもよい。他の実施形態において、血管内皮細胞に替えて又は併せてリンパ管内皮細胞を用いて細胞組織を製造してもよい。
 本開示は以下の実施形態に関しうる。
[1] 線維芽細胞、細胞外マトリックス、並びに管腔を形成する血管内皮細胞及びリンパ管内皮細胞の少なくとも一方を含む細胞組織と、前記細胞組織の表面を覆う中皮細胞層とを備える、人工腹膜組織。
[2] 前記管腔が、毛細血管様構造及びリンパ管様構造の少なくとも一方である、[1]記載の人工腹膜組織。
[3] 前記中皮細胞層が被蓋構造を形成し、前記中皮細胞が線維芽細胞と毛細血管様構造及びリンパ管様構造の少なくとも一方からなる組織に細胞外マトリックスを介して結合した、[1]記載の人工腹膜組織。
[4] 前記中皮細胞層の表面に微絨毛を有する、[1]から[3]のいずれかに記載の人工腹膜組織。
[5] 前記細胞外マトリックスが、フィブロネクチン及びゼラチンを少なくとも含む、[1]から[4]のいずれかに記載の人工腹膜組織。
[6] 前記細胞外マトリックスが、第1物質及び第2物質を含み、前記第1物質と前記第2物質との組み合わせが以下からなる群から選択される、[1]から[4]のいずれかに記載の人工腹膜組織:
 (a)フィブロネクチン及びゼラチン;
 (b)フィブロネクチン及びε-ポリリジン;
 (c)フィブロネクチン及びヒアルロン酸;
 (d)フィブロネクチン及びデキストラン硫酸;
 (e)フィブロネクチン及びヘパリン;ならびに
 (f)ラミニン及びゼラチン。
[7] 前記第1物質と前記第2物質との組み合わせがフィブロネクチン及びゼラチンである、[6]記載の人工腹膜組織。
[8] 線維芽細胞、細胞外マトリックス、並びに管腔を形成する血管内皮細胞及びリンパ管内皮細胞の少なくとも一方を含む細胞組織と、前記細胞組織の表面を覆う中皮細胞層とを備える人工腹膜組織の製造方法であって、血管内皮細胞及びリンパ管内皮細胞の少なくとも一方と線維芽細胞と細胞外マトリックスとを培養して前記細胞組織を形成すること、及び前記細胞組織上に中皮細胞を配置することを含む、人工腹膜組織の製造方法。
[9] 細胞組織の形成が、細胞外マトリックスで被覆された線維芽細胞を配置することを含む、[8]記載の人工腹膜組織の製造方法。
[10] 前記中皮細胞を、5.2×102細胞/mm2~1.3×103細胞/mm2の密度で配置する、[8]又は[9]に記載の人工腹膜組織の製造方法。
[11] 前記細胞外マトリックスが、フィブロネクチン及びゼラチンを少なくとも含む、[8]から[10]のいずれかに記載の人工腹膜組織の製造方法。
[12] 前記細胞外マトリックスが、第1物質及び第2物質を含み、前記第1物質と前記第2物質との組み合わせが以下からなる群から選択される、[8]から[10]のいずれかに記載の人工腹膜組織の製造方法:
 (a)フィブロネクチン及びゼラチン;
 (b)フィブロネクチン及びε-ポリリジン;
 (c)フィブロネクチン及びヒアルロン酸;
 (d)フィブロネクチン及びデキストラン硫酸;
 (e)フィブロネクチン及びヘパリン;ならびに
 (f)ラミニン及びゼラチン。
[13] 前記第1物質と前記第2物質との組み合わせがフィブロネクチン及びゼラチンである、[12]記載の人工腹膜組織の製造方法。
[14] [1]から[7]のいずれかに記載の人工腹膜組織を製造する、[8]から[13]のいずれかに記載の人工腹膜組織の製造方法。
 以下、実施例を用いて本開示をさらに説明する。ただし、本開示は以下の実施例に限定して解釈されない。
 なお、本明細書において、以下の略語を使用する。
 50mM Tris-HCl(pH7.4):HCl(Nacalai Tesque社製)でpH7.4に調整した50mM Trisを、オートクレーブ(121℃、20分)で湿熱滅菌したもの
 BFN:Fibronectin from bovine plasma(Sigma-Aldrich社製)
 FN液:0.04mg BFN/1ml 50mM Tris-HCl(pH7.4) G液:0.04mg Gelatin/1ml 50mM Tris-HCl(pH7.4)
 [被覆細胞の作製]
 特開2012-115254号公報の記載に基づき被覆細胞を調製した。
<正常ヒト皮膚線維芽細胞(NHDF)>
 細胞はNHDF、細胞外マトリックス成分はフィブロネクチン(FN)及びゼラチン(G)を使用した。細胞をFN液及びG液に交互に計9回浸漬させることによって、表面に(FN/G)4FN膜が形成された被覆NHDFを作製した(被膜の厚み:約10nm)。FN液の浸漬は5回、G液の浸漬は4回行った。なお、被膜の厚みは特開2012-115254号公報の実施例に記載の方法により測定した。
<ヒト臍帯静脈血管内細胞(HUVEC)>
 NHDFに替えてHUVECを使用した以外は、上記と同様にして(FN/G)4FN膜が形成された被覆HUVECを作製した(被膜の厚み:約10nm)。
<ヒト皮膚リンパ管内皮細胞(HDLEC)>
 NHDFに替えてHDLECを使用した以外は、上記と同様にして(FN/G)4FN膜が形成された被覆HDLECを作製した(被膜の厚み:約10nm)。
 (実施例1)
 [血管網構造を有する人工腹膜組織の作製]
 培養器として、有孔ポリエステルメンブラン(孔径:0.4μm)を備えるインサート及び24ウェルマルチプレートを準備した。インサート底面にBFNをコーティングした後、被覆NHDFを4×105細胞/well播種し、6時間培養し、NHDF層(4層)を作製した。NHDF層上に被覆HUVECを1×105細胞/well播種し、6時間培養した(HUVEC層:1層)。HUVEC層上に被覆NHDFを4×105細胞/well播種し、6時間培養し、HUVEC層上にNHDF層(4層)を作製した。HUVEC層上に作製したNHDF層の上に、ヒト大網由来中皮細胞を5×104細胞/well(1.3×103細胞/mm2)播種し、5日間培養して人工腹膜組織を得た。得られた人工腹膜組織を図1に示す。なお、培地は10%FBS含有DMEMを使用し、培養は5%CO2、37℃で行った。得られた人工腹膜組織は厚みが45μmであった。また、細胞組織の厚みは42μm、毛細血管様構造の径は18μm、中皮細胞層の厚みは3μmであった。これらの厚みは免疫染色像により測定した。
 図1Aは光学顕微鏡画像であり、図1B~Fは透過型電子顕微鏡画像である。図1A~Fにおいて、BVは毛細血管様構造、MCは中皮細胞、Fbは線維芽細胞、及びECMは細胞外マトリックスをそれぞれ示す。図1Aの矢印は、中皮細胞によるシート構造を示す。図1A~Fに示すように、得られた人工腹膜組織は、血管内皮細胞により形成された管腔と線維芽細胞及び細胞外マトリックスを含む結合組織層とを有し、結合組織層の表面が一層の中皮細胞で覆われた構造であることが確認でき、生体の腹膜と類似する構造を示していた。図1Cの矢印で示すように、隣接する中皮細胞間に接着構造が確認できた。また、図1Dに示すように、中皮細胞層の表面には微絨毛が確認できた。図1Eに示すように、管腔を形成する血管内皮細胞は、重なり合うように細胞同士が接着し、その部分で細胞間接着(図中矢印)が行われていることが示唆された。図1Fは管腔を形成する血管内皮細胞の一部の拡大図である。図1Fに示すように、管腔の内壁は、生体の毛細血管壁に多く分布する小胞様構造(図中矢頭)に富むことが確認できた。
 (実施例2)
 [リンパ管網構造を有する人工腹膜組織の作製]
 被覆HUVECに替えて被覆HDLECを用いた以外は実施例1と同様にして人工腹膜組織を作製した。得られた人工腹膜組織を図2に示す。得られた人工腹膜組織は厚みが44μmであった。また、細胞組織の厚みは41μm、リンパ管様構造の径は13μm、中皮細胞層の厚みは3μmであった。図2Aは光学顕微鏡像、B~Dは透過型電子顕微鏡画像である。図2A~Dにおいて、Lはリンパ管様構造、Fbは線維芽細胞、及びECMは細胞外マトリックスをそれぞれ示す。図2Aの矢印は、中皮細胞によるシート構造を示す。得られた人工腹膜組織は、リンパ管内皮細胞により形成された管腔と線維芽細胞及び細胞外マトリックスを含む結合組織層とを有し、図2Aに示すように、結合組織層の表面が一層の中皮細胞で覆われた構造であることが確認できた。図2B~Dに示すように、リンパ管内皮細胞により形成された管腔は、リンパ管内皮細胞同士が接着する部分(図2Bの矢印)と、リンパ管内皮細胞が解離している部分(図2Dの矢印)とが確認され、生体の毛細リンパ管に近い構造であることが確認できた。
 同様の方法で、ヒト大網由来中皮細胞の代わりに長期継代培養可能な中皮細胞株を用いても、血管網構造を有する人工腹膜組織およびリンパ管網構造を有する人工腹膜組織を作製することができた。

Claims (10)

  1.  線維芽細胞、細胞外マトリックス、並びに管腔を形成する血管内皮細胞及びリンパ管内皮細胞の少なくとも一方を含む細胞組織と、前記細胞組織の表面を覆う中皮細胞層とを備える、人工腹膜組織。
  2.  前記管腔が、毛細血管様構造及びリンパ管様構造の少なくとも一方である、請求項1記載の人工腹膜組織。
  3.  前記中皮細胞層が被蓋構造を形成し、前記中皮細胞は前記線維芽細胞と前記毛細血管様構造及び前記リンパ管様構造の少なくとも一方からなる組織に細胞外マトリックスを介して結合した、請求項2記載の人工腹膜組織。
  4.  前記中皮細胞層の表面に微絨毛を有する、請求項1から3のいずれかに記載の人工腹膜組織。
  5.  前記細胞外マトリックスが、フィブロネクチン及びゼラチンを少なくとも含む、請求項1から4のいずれかに記載の人工腹膜組織。
  6.  線維芽細胞、細胞外マトリックス、並びに管腔を形成する血管内皮細胞及びリンパ管内皮細胞の少なくとも一方を含む細胞組織と、前記細胞組織の表面を覆う中皮細胞層とを備える人工腹膜組織の製造方法であって、血管内皮細胞及びリンパ管内皮細胞の少なくとも一方と線維芽細胞と細胞外マトリックスとを培養して前記細胞組織を形成すること、及び前記細胞組織上に中皮細胞を配置することを含む、人工腹膜組織の製造方法。
  7.  細胞組織の形成が、細胞外マトリックスで被覆された線維芽細胞を配置することを含む、請求項6記載の人工腹膜組織の製造方法。
  8.  前記中皮細胞が、5.2×102細胞/mm2~1.3×103細胞/mm2の密度で配置される、請求項6又は7に記載の人工腹膜組織の製造方法。
  9.  前記細胞外マトリックスが、フィブロネクチン及びゼラチンを少なくとも含む、請求項6から8のいずれかに記載の人工腹膜組織の製造方法。
  10.  請求項1から5のいずれかに記載の人工腹膜組織を製造する、請求項6から9のいずれかに記載の人工腹膜組織の製造方法。
PCT/JP2015/073888 2014-08-28 2015-08-25 人工腹膜組織及びその製造方法 WO2016031824A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/507,083 US10837002B2 (en) 2014-08-28 2015-08-25 Artificial peritoneal tissue and method for producing same
EP15835587.5A EP3187580B1 (en) 2014-08-28 2015-08-25 Artificial peritoneal tissue and method for producing same
JP2016545550A JP6296262B2 (ja) 2014-08-28 2015-08-25 人工腹膜組織及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-173502 2014-08-28
JP2014173502 2014-08-28

Publications (1)

Publication Number Publication Date
WO2016031824A1 true WO2016031824A1 (ja) 2016-03-03

Family

ID=55399710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073888 WO2016031824A1 (ja) 2014-08-28 2015-08-25 人工腹膜組織及びその製造方法

Country Status (4)

Country Link
US (1) US10837002B2 (ja)
EP (1) EP3187580B1 (ja)
JP (1) JP6296262B2 (ja)
WO (1) WO2016031824A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111051495A (zh) * 2017-08-21 2020-04-21 凸版印刷株式会社 原代培养方法
WO2022181776A1 (ja) * 2021-02-25 2022-09-01 学校法人関西医科大学 多能性幹細胞から腹膜中皮細胞を分化誘導する方法
WO2024085257A1 (ja) * 2022-10-20 2024-04-25 学校法人慈恵大学 三次元組織培養物およびその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005000608A (ja) * 2003-06-11 2005-01-06 Mitsuo Okano 高生着性培養細胞シート、製造方法及びその利用方法
JP2007077026A (ja) * 2005-09-09 2007-03-29 Terumo Corp 腹膜劣化抑制剤および腹膜透析液
JP2007228921A (ja) * 2006-03-02 2007-09-13 Osaka Univ 三次元組織の製造方法およびそれに用いる細胞外マトリックスの製造方法。
JP2012115254A (ja) * 2010-11-11 2012-06-21 Osaka Univ 細胞の三次元構造体、及び、これを製造する方法
WO2014115776A1 (ja) * 2013-01-22 2014-07-31 国立大学法人東京大学 癒着防止材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005000608A (ja) * 2003-06-11 2005-01-06 Mitsuo Okano 高生着性培養細胞シート、製造方法及びその利用方法
JP2007077026A (ja) * 2005-09-09 2007-03-29 Terumo Corp 腹膜劣化抑制剤および腹膜透析液
JP2007228921A (ja) * 2006-03-02 2007-09-13 Osaka Univ 三次元組織の製造方法およびそれに用いる細胞外マトリックスの製造方法。
JP2012115254A (ja) * 2010-11-11 2012-06-21 Osaka Univ 細胞の三次元構造体、及び、これを製造する方法
WO2014115776A1 (ja) * 2013-01-22 2014-07-31 国立大学法人東京大学 癒着防止材

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
ASANO, Y. ET AL.: "Ultrastructure of blood and lymphatic vascular networks in three- dimensional cultured tissues fabricated by extracellular matrix nanofilm-based cell accumulation technique", MICROSCOPY, vol. 3, no. 3, 6 June 2014 (2014-06-06), pages 219 - 226, XP009500469 *
IWANICKI, M.P. ET AL.: "Ovarian Cancer Spheroids Use Myosin-Generated Force to Clear the Mesothelium", CANCER DISCOVERY, vol. 1, no. 2, 2011, pages 144 - 157, XP055410967 *
KAWANISHI, K. ET AL.: "Therapeutic Applications of Mesothelial Cell Sheets", THERAPEUTIC APHERESIS AND DIALYSIS, vol. 19, no. 1, 4 September 2014 (2014-09-04), pages 1 - 7, XP055410974 *
KUGA, H. ET AL.: "Construction of a Transplantable Tissue-Engineered Artificial Peritoneum", EUR. SURG. RES., vol. 36, 2004, pages 323 - 330, XP055410962 *
NISHIGUCHI, A. ET AL.: "Effects of angiogenic factors and 3D-microenvironments on vascularization within sandwich cultures", BIOMATERIALS, vol. 35, 18 March 2014 (2014-03-18), pages 4739 - 4748, XP028832855, DOI: doi:10.1016/j.biomaterials.2014.01.079 *
PAOLO, N.D. ET AL.: "ATLAS OF PERITONEAL HISTOLOGY in Normal Conditions and During Peritoneal Dialysis", PERITONEAL DIALYSIS INTERNATIONAL, vol. 20, no. Suppl.3, 2000, pages S5 - S96, XP009500464 *
SCHILTE, M.N. ET AL.: "FACTORS CONTRIBUTING TO PERITONEAL TISSUE REMODELING IN PERITONEAL DIALYSIS", PERITONEAL DIALYSIS INTERNATIONAL, vol. 29, 2009, pages 605 - 617, XP009500468 *
See also references of EP3187580A4 *
YOSHIYA ASANO ET AL.: "Saibo Shusekiho ni yoru Sanjigen Jinko Fukumaku Model no Kaihatsu", HIROSAKI MEDICAL JOURNAL, vol. 66, no. 1, 6 April 2015 (2015-04-06), pages 94, XP009500478, ISSN: 0439-1721 *
YOSHIYA ASANO ET AL.: "Three-dimensionally Fabricated Artificial Peritoneum Equipped with Blood and Lymphatic Capillary Networks", KAGAKU KOGYO, vol. 66, no. 11, 1 November 2015 (2015-11-01), pages 824 - 830, XP009500474, ISSN: 0451-2014 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111051495A (zh) * 2017-08-21 2020-04-21 凸版印刷株式会社 原代培养方法
WO2022181776A1 (ja) * 2021-02-25 2022-09-01 学校法人関西医科大学 多能性幹細胞から腹膜中皮細胞を分化誘導する方法
WO2024085257A1 (ja) * 2022-10-20 2024-04-25 学校法人慈恵大学 三次元組織培養物およびその製造方法

Also Published As

Publication number Publication date
EP3187580A1 (en) 2017-07-05
JP6296262B2 (ja) 2018-03-28
US20170283778A1 (en) 2017-10-05
EP3187580B1 (en) 2022-01-12
EP3187580A4 (en) 2018-02-21
US10837002B2 (en) 2020-11-17
JPWO2016031824A1 (ja) 2017-06-08

Similar Documents

Publication Publication Date Title
Zhang et al. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis
Gao et al. Construction of a novel in vitro atherosclerotic model from geometry‐tunable artery equivalents engineered via in‐bath coaxial cell printing
Asakawa et al. Pre-vascularization of in vitro three-dimensional tissues created by cell sheet engineering
Agarwal et al. Liver tissue engineering: challenges and opportunities
Takahashi et al. The use of anisotropic cell sheets to control orientation during the self-organization of 3D muscle tissue
Elloumi‐Hannachi et al. Cell sheet engineering: a unique nanotechnology for scaffold‐free tissue reconstruction with clinical applications in regenerative medicine
Muraoka et al. Control of the formation of vascular networks in 3D tissue engineered constructs
Vrana et al. Engineering functional epithelium for regenerative medicine and in vitro organ models: a review
Doryab et al. Evolution of bioengineered lung models: recent advances and challenges in tissue mimicry for studying the role of mechanical forces in cell biology
Ryu et al. Nanothin coculture membranes with tunable pore architecture and thermoresponsive functionality for transfer-printable stem cell-derived cardiac sheets
Matsusaki Development of three-dimensional tissue models based on hierarchical cell manipulation using nanofilms
Williams et al. Engineering anisotropic 3D tubular tissues with flexible thermoresponsive nanofabricated substrates
JP6296262B2 (ja) 人工腹膜組織及びその製造方法
NL2011895C2 (en) Fluidic device and perfusion system for in vitro tissue reconstruction.
Sekiya et al. Three-dimensional cell-dense constructs containing endothelial cell-networks are an effective tool for in vivo and in vitro vascular biology research
Sarigil et al. Scaffold‐free biofabrication of adipocyte structures with magnetic levitation
JP2017074050A (ja) 肝組織細胞機能の長期維持方法
Vardar et al. Tubular compressed collagen scaffolds for ureteral tissue engineering in a flow bioreactor system
Liew et al. In vitro pre-vascularization strategies for tissue engineered constructs–Bioprinting and others
Yokoyama et al. Human induced pluripotent stem cell-derived three-dimensional cardiomyocyte tissues ameliorate the rat ischemic myocardium by remodeling the extracellular matrix and cardiac protein phenotype
Bang et al. 3D microphysiological system‐inspired scalable vascularized tissue constructs for regenerative medicine
US10799615B2 (en) Artificial tissue and method for producing same
JPWO2019189786A1 (ja) 細胞培養用シート並びに三次元組織体及びその製造方法
US20200190456A1 (en) Native Extracellular Matrix-Derived Membrane Inserts for Organs-On-Chips, Multilayer Microfluidics Microdevices, Bioreactors, Tissue Culture Inserts, and Two-dimensional and Three-dimensional Cell Culture Systems
WO2005047496A1 (ja) 細胞培養法、細胞の三次元培養法、三次元組織、人工臓器、及び組織移植方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835587

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016545550

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15507083

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015835587

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015835587

Country of ref document: EP