WO2016031413A1 - スクリューロータ - Google Patents

スクリューロータ Download PDF

Info

Publication number
WO2016031413A1
WO2016031413A1 PCT/JP2015/070232 JP2015070232W WO2016031413A1 WO 2016031413 A1 WO2016031413 A1 WO 2016031413A1 JP 2015070232 W JP2015070232 W JP 2015070232W WO 2016031413 A1 WO2016031413 A1 WO 2016031413A1
Authority
WO
WIPO (PCT)
Prior art keywords
tooth
male
rotor
female
point
Prior art date
Application number
PCT/JP2015/070232
Other languages
English (en)
French (fr)
Inventor
正純 林
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to EP15837048.6A priority Critical patent/EP3187734A1/en
Priority to JP2016545044A priority patent/JP6273661B2/ja
Publication of WO2016031413A1 publication Critical patent/WO2016031413A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/082Details specially related to intermeshing engagement type pumps
    • F04C18/084Toothed wheels

Definitions

  • the present invention relates to a screw rotor used in a screw compressor.
  • the screw compressor has two screw rotors provided with spiral grooves on the outer periphery and a casing containing them.
  • the two rotors rotate synchronously while meshing with each other.
  • a screw compressor is a device that narrows a space between a casing and a rotor by rotating the rotor, and compresses the casing and the fluid confined between them.
  • Patent Documents 1 to 5 disclose the tooth profile of such a screw rotor.
  • 1A to 1C are explanatory views of a conventional screw rotor. 1A, 1B, and 1C sequentially show the process of fluid compression. 1A, 1B, and 1C, each of the two rotors has a plurality of tooth crests or tooth spaces. Each rotor has a twisted shape with a twist angle aligned around the rotation axis.
  • male rotor 1 two rotors having a plurality of tooth teeth 1a
  • one having a plurality of tooth grooves 2a is referred to as “female rotor 2”.
  • FIG. 1A, FIG. 1B, and FIG. 1C the confinement space 4 of the fluid by the tooth crest 1a of the male rotor 1, the tooth gap 2a of the female rotor 2, and the casing 3 is shown by a shaded portion.
  • the confined space 4 has a cross-sectional shape that changes in the order of FIGS. 1A, 1B, and 1C.
  • the confinement space 4 is restricted in the axial direction where the cross-sectional area formed between the male rotor 1 and the female rotor 2 is minimized.
  • the confinement space 4 moves in the axial direction by the rotation of the male rotor 1 and the female rotor 2. As a result, the confined space 4 is gradually narrowed to compress the fluid.
  • the leak position of the compressed fluid is the tooth tip seal surface a between the male rotor 1 and the female rotor 2 and the casing 3, the tooth tip seal surface a and the rotor seal line b in FIG. 1B, and the rotor seal in FIG. 1C. Line b.
  • FIG. 2B is an explanatory diagram of a leakage path.
  • the tooth tip (male reverse side tooth tip point B ⁇ b> 1 described later) of the male rotor 1 is separated from the casing 3.
  • the tooth tip arc C2 (female advance side tooth tip arc 24b described later) of the female rotor 2 comes into contact with the reverse tooth surface of the male rotor 1, it is between the male rotor 1, the female rotor 2, and the casing 3.
  • a gap hereinafter referred to as “blow hole” appears. Since the compressed fluid leaks 5 due to the blow holes, the efficiency of the compressor is lowered.
  • an object of the present invention is to reduce the gap (blow hole) between the male rotor and the female rotor and the casing, thereby reducing the leakage amount of the compressed fluid and increasing the compressor efficiency. Is to provide.
  • each of the male rotor and the female rotor includes a plurality of tooth crests or tooth grooves, and the male rotor and the female rotor mesh with each other in an operation space formed by the casing,
  • a screw rotor capable of rotating about the rotation axis of (A) In a cross section perpendicular to the rotation axis, The male rotor has a male pitch circle and a male tooth tip circle, The female rotor has a female pitch circle in contact with the male pitch circle at a pitch point P, and a female tooth bottom circle in contact with the male tooth tip circle, (B) Male rotor teeth A male forward side tooth tip point A1 and a male backward side tooth tip point B1 located on the male tooth tip circle; A male forward root point C1 'and a male reverse side root point D1' located on the male pitch circle; Between the male advance side tooth tip A1 and the male advance side root point C1 ′, when the male rotor tooth ridge and the female rotor
  • This configuration can suppress deterioration of the compressor efficiency as much as possible by minimizing the blow hole area.
  • the screw rotor at the specific rotational phase of the rotor, the intersection of the male reverse side tooth tip point B1, the female forward side tooth tip point D2 ', the relative surface of the casing with the male rotor, and the relative surface of the female rotor. Overlay 3 points of Q.
  • the male backward tooth surface is an outer cycloid curve created by the female forward tooth tip point D2 '
  • the female forward tooth surface is an outer cycloid curve created by the male backward tooth tip point B1.
  • FIG. 3A, 3B, and 5 are explanatory views of the screw rotor according to the present invention, showing a cross section perpendicular to the rotation axis of the screw rotor.
  • FIG. 3A and FIG. 3B are explanatory diagrams of an ideal tooth profile
  • FIG. 5 is an explanatory diagram of a practical tooth profile.
  • the screw compressor according to the present invention has a male rotor 10 configured to be able to rotate around a parallel axis in a working space formed by the casing 3 (preferably airtight) and a female rotor 20 meshing therewith. .
  • Each of the two rotors (male rotor 10 and female rotor 20) has a plurality of tooth crests or tooth grooves, and has a shape twisted at a twist angle that is aligned around the rotation axis.
  • the rotation centers that is, the rotation axes
  • this invention is not limited to this, You may be perpendicular
  • FIG. 3A, FIG. 3B, and FIG. 5 show the male rotor tooth crest 10a and the female rotor tooth groove 20a by one tooth each.
  • the male rotor 10 rotates counterclockwise and the female rotor 20 rotates clockwise.
  • the tooth tip point of the male rotor 10 male forward side tooth tip point A1 overlaps with the tooth root point of the female rotor 20 (female backward side tooth root point A2).
  • the rotation angle of both rotors at this time is set to the reference position, that is, the rotation angle is 0 degree.
  • the front side (upper side in the drawing) of the male rotor tooth crest 10a in the rotation direction is referred to as “advance side”.
  • the tooth surface (upper side in the figure) of the female rotor tooth groove 20a facing the forward side of the male rotor tooth crest 10a is referred to as “reverse side”.
  • the opposite side (lower side in the drawing) of the male rotor tooth crest 10a, that is, the rear side in the rotation direction of the male rotor tooth crest 10a is referred to as the “reverse side”.
  • the tooth surface of the female rotor tooth groove 20a opposite to the reverse side of the female rotor tooth groove 20a (the lower side in the figure), that is, the reverse side of the male rotor tooth crest 10a is referred to as the “advance side”.
  • the forward tooth surface is referred to as “forward tooth surface”
  • the reverse tooth surface is referred to as “reverse tooth surface”.
  • the male rotor 10 has a male pitch circle 11 and a male tooth tip circle 12.
  • the female rotor 20 has a female pitch circle 21 that contacts the male pitch circle 11 at the pitch point P, and a female tooth bottom circle 22 that contacts the male tooth tip circle 12.
  • the female backward side root point A2 and the female forward side root point B2 are located on the female root circle 22.
  • the pitch point P is a line segment connecting the rotation center of the male rotor 10 and the rotation center of the female rotor 20 with the number of teeth of the male rotor 10 (3 in the example of FIGS. 1A to 1C) and the number of teeth of the female rotor 20 (FIG. 1A).
  • FIG. 1A In the example of FIG.
  • the male pitch circle 11 is a virtual circle that passes through the pitch point P with the rotation center of the male rotor 10 as the center.
  • the female pitch circle 21 is a virtual circle that passes through the pitch point P with the rotation center of the female rotor 20 as the center.
  • the inner surface of the casing 3 (see FIGS. 1A to 1C) is a circle close to the male tooth tip circle 12 at a portion facing the male rotor 10, and similarly, a portion facing the female rotor 20 is formed at the female tooth tip circle 23. It is a close circle.
  • the male pitch circle 11 and the female pitch circle 21 rotate in synchronization with each other. This synchronization is due to contact between the tooth surface of the male rotor tooth crest 10a and the tooth surface of the female rotor tooth groove 20a. In some cases, a separate gear for synchronization is provided.
  • the male rotor tooth crest 10a has a male advance side tip point A1 and a male reverse side tip point B1 located on the male tip circle 12.
  • the male outer peripheral surface (A1-B1) from the male forward side tooth tip point A1 to the male backward side tooth tip point B1 is an arc on the male tooth tip circle 12, and is formed with the inner surface of the casing 3 surrounding the male rotor 10
  • the tooth tip seal surface a is formed between them.
  • the tooth crest of the female rotor 20 has a female forward side tooth tip point D2 ′ or G2 and a female backward side tooth tip point C2 ′ or F2 located on the female tooth tip circle 23.
  • the female tooth outer peripheral surface (D2 ′ / F2-C2 ′ / G2) from the female forward side tooth tip point D2 ′ or G2 to the female backward side tooth tip point C2 ′ or F2 is an arc on the female tooth tip circle 23.
  • the tooth tip seal surface a is formed between the inner surface of the casing 3 surrounding the female rotor 20.
  • the female rotor tooth groove 20a is the reverse tooth of the male rotor tooth crest 10a at the female advance side tooth tip point D2 ′ or the female advance side tooth tip arc 24b.
  • a rotor-to-rotor seal line b is formed between the surfaces.
  • the female rotor tooth groove 20a is located between the forward tooth surface of the male rotor tooth crest 10a at the female reverse side tooth tip point C2 ′ or the female reverse side tooth tip arc 24a.
  • the inter-rotor seal line b is formed.
  • the female rotor tooth groove 20a forms a rotor-to-rotor seal line b with the reverse tooth surface of the male rotor tooth crest 10a at the female advance side tooth tip point D2 ′ or the female advance side tooth tip arc 24b.
  • the male rotor tooth crest 10a further has a male forward side root point C1 ', a male backward side root point D1', and a male forward intermediate point E1.
  • the male forward side root point C ⁇ b> 1 ′ and the male backward side root point D ⁇ b> 1 ′ are located on the male pitch circle 11.
  • the male advancing intermediate point E1 is between the male advancing tooth tip A1 and the male advancing tooth root point C1 ′, and when the male rotor tooth crest 10a and the female rotor tooth groove 20a are directly opposed, Located at the intersection of 21.
  • the female rotor tooth groove 20a further has a female reverse side tooth tip point C2 'and a female forward side tooth tip point D2' located on the female pitch circle 21.
  • the male forward tooth surface (E1-C1 ′) from the male forward intermediate point E1 to the male forward root point C1 ′ is a first outer cycloid curve created by the female backward side tooth tip point C2 ′.
  • the “outer cycloid curve” is a point on the coordinate system (in this example, the female reverse side tooth tip C2 ′ when the male rotor 10 and the female rotor 20 are rotated in synchronization with each other). ) Means a curve on the coordinate system fixed to the other rotating rotor (curve (E1-C1 ′) in this example).
  • the female reverse side tooth tip C2 ′ and the male forward tooth surface (E1-C1 ′) of the tooth crest 10a of the male rotor 10 rotate while contacting each other, and this portion is sealed between the rotors.
  • the gap between the rotors as indicated by line b can be kept small.
  • the male reverse side tooth tip point B1 As shown in FIG. 3B, in a specific rotational phase of the rotor, the male reverse side tooth tip point B1, the female forward side tooth tip point D2 ′, the relative surface of the casing 3 to the male rotor 10, and the female rotor 20 Three points with the intersection point Q of the relative surface are overlapped.
  • a male reverse tooth surface (B1-D1 ′) from the male reverse side tooth tip point B1 to the male reverse side tooth root point D1 ′ is created by the female forward side tooth tip point D2 ′. Let it be 2 outer cycloid curves.
  • the female forward tooth tip D2 'and the reverse tooth surface (B1-D1') of the male rotor tooth crest 10a rotate while being in contact with each other.
  • the gap between the rotors can be kept small.
  • a female advancing tooth surface (B2-D2 ′) from the female advancing root point B2 to the female advancing tooth tip D2 ′ is a third outer cycloid curve created by the male advancing tooth tip B1.
  • the male reverse side tooth tip point B1 and the female forward tooth surface (B2-D2 ') of the female rotor tooth groove 20a rotate while being in contact with each other, and this portion is connected to the inter-rotor seal line b.
  • the gap between the rotors can be kept small.
  • the ratio L1: L2 between the distance L1 from B2 to B1 and the distance L2 from B1 to D2 ′ is 2: 8 to 7 in the female advance tooth surface (B2-D2 ′). : It is set within the range of 3.
  • the male reverse side tooth tip point B1 is in contact with the female advance tooth surface in the range from B2 to D2 ′ on the female advance tooth surface (B2-D2 ′).
  • the distance r 1 is the same as the radius r 1 of the male advance side root arc 14a and the radius r 1 of the male reverse side root arc 14b, and the radius difference ⁇ r 1 of the male bottom circle 13 is the same.
  • the radius difference ⁇ r 1 of the male tooth tip circle 12 is the same.
  • the distance, the respective radii, and the respective radial differences given the symbol r 1 are, for example, greater than 0% of the distance between the rotation axis of the male rotor 10 and the rotation axis of the female rotor 20, and the rotation axis of the male rotor 10. And 20% or less of the distance between the rotation axis of the female rotor 20.
  • the distance r 2 is the same as the radius r 2 of the female reverse side tooth tip arc 24 a and the radius r 2 of the female forward side tooth tip arc 24 b, and the radius difference of the female tooth bottom circle 22 is the same.
  • ⁇ r 2 and the radius difference ⁇ r 2 of the female tip circle 23 are the same.
  • the distance, the radius, and the radius difference marked with the symbol r 2 are, for example, greater than 0% of the distance between the rotation axis of the male rotor 10 and the rotation axis of the female rotor 20, and the rotation axis of the male rotor 10. And 20% or less of the distance between the rotation axis of the female rotor 20.
  • the male rotor tooth crest 10a is created by the above procedure (the above change) based on the tooth profile of FIG. 3A and FIG. 3B.
  • the radius of the male tooth bottom circle 13 is smaller than that of the male pitch circle 11 by a radius difference ⁇ r 1 .
  • a point on the male pitch circle 11 of the forward tooth surface and the backward tooth surface and the male bottom circle 13 are connected by a male forward side root arc 14a and a male backward side root arc 14b.
  • the female rotor tooth groove 20a is created by the above procedure (the above change) based on the tooth profile shown in FIGS. 3A and 3B.
  • the radius of the female tooth tip circle 23 is larger than that of the female pitch circle 21 by a radius difference ⁇ r 2 . Further, a point on the female pitch circle 21 of the forward tooth surface and the reverse tooth surface and the female tooth tip circle 23 are connected by a female backward tooth tip arc 24a and a female forward tooth tip arc 24b.
  • the contact surface pressure of the seal portion is reduced by changing the contact of the female rotor tooth tip with the male rotor 10 from the edge to the one with the circular arc surface, thereby reducing the wear of the seal wire between the rotors.
  • the ratio La: Lb between the distance La from B2 to B1 and the distance Lb from B1 to G2 is 1: 9 to 6: 4 in the female advance tooth surface (B2-G2). It is set within the range.
  • the male reverse side tooth tip point B1 is in contact with the female advance tooth surface in the range from B2 to G2 on the female advance tooth surface (B2-G2).
  • the radius difference ⁇ r 1 of the male root circle 13 of the male rotor 10 and the radius r 1 of the male advance side root arc 14 a and the male reverse side root arc 14 b are preferably other radius differences.
  • [Delta] r 2 and the radius r 2 i.e., the radius r 2 of the difference between the radii [Delta] r 2 and female reverse side tooth top arc 24a and female forward side tooth top arc 24b of Mesuha tip circle 23) is set larger than the.
  • the tooth surface of the male rotor tooth crest 10a and the female rotor tooth are set.
  • the male rotor tooth crest 10a is offset to the side that reduces the male rotor tooth crest 10a or the side that expands the female rotor tooth crevice 20a by a width that is necessary and sufficient to avoid interference with the tooth surfaces of the groove 20a. It is (displaced).
  • This configuration can suppress interference against fluctuations in the distance between the axes of the two rotors.
  • FIG. 4 is an explanatory diagram of a method for reducing the confinement space.
  • the male rotor tooth crest 10 a and the female rotor tooth groove 20 a face each other, the reverse tooth surface of the male rotor 10 and the forward tooth surface of the female rotor 20
  • the phase of the backward tooth surface with respect to the forward tooth surface is set so that the confinement space generated at the bottom is minimized. Thereby, the deterioration of the compressor efficiency can be reduced by minimizing the leak passage area of the fluid in the part.
  • FIG. 4 shows the case where the male rotor tooth ridge 10a and the female rotor tooth groove 20a face each other.
  • the space between the two seal lines b shown in FIG. 1C corresponds to between E1 and d2 in FIG.
  • the forward tooth surface of the male rotor 10 and the backward tooth surface of the female rotor 20 overlap in the range of A1-E1, and ideally there is no gap.
  • B1 ′ indicates the male reverse side tooth tip point when the male reverse side tooth tip point is set at a phase (position) relatively close to the male forward side tooth tip point A1.
  • FIG. 4 shows the case where the male rotor tooth ridge 10a and the female rotor tooth groove 20a face each other.
  • the space between the two seal lines b shown in FIG. 1C corresponds to between E1 and d2 in FIG.
  • B1 ′ indicates the male reverse side tooth tip point when the male reverse side tooth tip point is set at a phase (position) relatively close to the male forward side tooth tip point A1.
  • d1 ′ and d2 ′ respectively indicate a male reverse side tooth root point and a female forward side tooth tip point when the male reverse side tooth tip point B1 ′ is set.
  • symbol 26 shows the confinement space at the time of setting male reverse side tooth-end point B1 '.
  • A1 indicates a male forward-side tooth tip point that is common when the male backward-side tooth tip point is B1 ′ and when the male backward-side tooth tip point is B1.
  • A2 shows the female reverse side root point which is in the same phase in both cases.
  • the tip circle and reverse tooth surface (A 1 -d 1 ′) of the male rotor 10 and the teeth of the female rotor 20 in the confined space 26 between the reverse tooth surface of the male rotor 10 and the forward tooth surface of the female rotor 20, the tip circle and reverse tooth surface (A 1 -d 1 ′) of the male rotor 10 and the teeth of the female rotor 20.
  • the bottom circle and the forward tooth surface (A2-d2 ′) indicate relative positions when the male forward side tooth tip point A1 and the male backward side tooth tip point B1 ′ are in a relatively close phase.
  • the relative positions of the tooth tip circle and the reverse tooth surface (A1-d1) and the root circle and the forward tooth surface (A2-d2) of the tooth gap 20a also change.
  • the confinement space 25 formed along A1-B1-d2 has a smaller area than the confinement space 26 formed along A1-B1′-d2 ′. That is, the confinement space generated between the reverse tooth surface of the male rotor 10 and the reverse tooth surface of the female rotor 20 is changed by changing the phase of the reverse tooth surface with respect to the forward tooth surface, and the phase is optimally set. Thus, the area of the confinement space 25 can be minimized.
  • the phase of the backward tooth surface with respect to the forward tooth surface is set so that the confined space 25 surrounded by the curves (A1-d1) and (A2-d2) is minimized.
  • the screw rotor according to the above-described embodiment may be described as the following configurations 1 to 4.
  • a screw including a male rotor and a female rotor each having a plurality of tooth crests or tooth grooves, and the male rotor and the female rotor mesh with each other within a working space formed by a casing and can rotate around respective rotation axes.
  • a rotor In a cross section perpendicular to the rotation axis, The male rotor has a male pitch circle and a male tooth tip circle, The female rotor has a female pitch circle in contact with the male pitch circle at a pitch point P, and a female tooth bottom circle in contact with the male tooth tip circle, (B) Male rotor teeth A male forward side tooth tip point A1 and a male backward side tooth tip point B1 located on the male tooth tip circle; A male forward root point C1 'and a male reverse side root point D1' located on the male pitch circle; Between the male advance side tooth tip A1 and the male advance side root point C1 ′, when the male rotor tooth ridge and the female rotor tooth groove face each other, the advance tooth surface of the male rotor tooth ridge and the female A male forward intermediate point E1 located at the intersection of the pitch circles, (C) The female rotor tooth groove is A female reverse side root point A2 and a female forward side root point B2 located on the female
  • FIG. 2A is an explanatory view of a leakage path different from FIG. 2B.
  • FIG. 1C in the rotational phase where the male forward tooth tip A1 and the female backward tooth root A2 overlap (that is, when the male rotor tooth crest and the female rotor tooth groove face each other).
  • a gap to the adjacent space where the volume is increased remains between the male rotor 1 and the female rotor 2.
  • This gap causes the leakage of the compressed fluid, which reduces the efficiency of the compressor.
  • a screw rotor that can reduce the gap when the male rotor tooth ridge and the female rotor tooth groove face each other, thereby reducing the amount of compressed fluid leakage and increasing the compressor efficiency is realized. Therefore, the following configuration 2 is preferably adopted.
  • the male rotor to the advancing tooth surface and reverse tooth surface of the tooth peaks offset inwardly a distance r 1, the radius difference from the male pitch circle of Oha bottom circle [Delta] r 1 set as small, the Oha tip circle was set as small as the radius difference [Delta] r 1, and a male forward side root arc having a radius r 1 centered on the male forward side root point C1 ', the male reverse side root point D1
  • the forward tooth surface and the backward tooth surface are connected to the male root circle by the male backward tooth root arc of radius r 1 centered on '
  • the forward tooth surface and the reverse tooth surface of the female rotor tooth groove are offset outwardly by the distance r 2 , the female tooth bottom circle is set larger by the radius difference ⁇ r 2, and the female tooth tip circle is made larger than the female pitch circle.
  • the radius difference ⁇ r 2 is set larger, and the female reverse side tooth tip arc of the radius r 2 centered on the female reverse side tooth tip point C 2 ′ and the female forward side tooth tip point D 2 ′ are set as the center.
  • the female forward side tooth top arc having a radius r 2 for connecting the forward tooth surface and the reverse tooth surface and the Mesuha tip circle.
  • the tooth tip of the female rotor tooth groove that contacts the male rotor tooth crest changes from an edge to an arc, so wear of the seal wire between the rotors can be reduced.
  • the radius difference ⁇ r 1 of the male root circle of the male rotor and the radius r 1 of the male advance side root arc and the male reverse side root arc are other radius differences ⁇ r 2. and is larger than the radius r 2, the only necessary and sufficient width to tooth surfaces of the male rotor Hayama or the female rotor tooth groove avoids interference, the side to reduce the male rotor Hayama or The female rotor tooth gap is offset to the side that expands.
  • This configuration can suppress interference against fluctuations in the distance between the axes of the two rotors.

Abstract

 ロータの特定の回転位相において、雄後進側歯先点(B1)と雌前進側歯先点(D2')とケーシング(3)の雄ロータ(10)との相対面と雌ロータ(20)との相対面の交点(Q)の3点を重ね、そこから回転位相を進めるに従い、雄後進歯面を雌前進側歯先点(D2')により創成される外サイクロイド曲線とし、雌前進歯面を雄後進側歯先点(B1)により創成される外サイクロイド曲線とする。

Description

スクリューロータ
 本発明は、スクリュコンプレッサに用いられるスクリューロータに関するものである。
スクリュコンプレッサは外周に螺旋溝が設けられた2本のスクリューロータとそれらを内包するケーシングとを有する。2本のロータは互いに噛合いながら同期して回転する。
スクリュコンプレッサは、ロータを回転させることによりケーシングとロータ間の空間を狭め、ケーシングとそれらの間に閉じ込められた流体を圧縮する装置である。
 かかるスクリューロータの歯形形状は、例えば特許文献1~5に開示されている。
特開2007-146659号公報 特開2009-243325号公報 特開2001-227485号公報 特開2000-154792号公報 特開平9-100788号公報
 図1A~図1Cは、従来のスクリューロータの説明図である。図1A、図1Bおよび図1Cは流体圧縮の過程を順に示している。
 図1A、図1Bおよび図1Cにおいて、2本のロータにはそれぞれ複数の歯山或いは歯溝がある。各ロータは、回転軸まわりに各々整合のとれたねじれ角でねじれた形状をしている。
 以下、本発明において、2本のロータのうち複数の歯山1aを有するものを「雄ロータ1」と呼び、複数の歯溝2aを有するものを「雌ロータ2」と呼ぶ。
 図1A、図1Bおよび図1Cにおいて、雄ロータ1の歯山1aと雌ロータ2の歯溝2aとケーシング3による流体の閉じ込め空間4を斜線部で示す。この閉じ込め空間4は、図1A、図1Bおよび図1Cの順に断面形状が変化する。最終的には、閉じ込め空間4は、雄ロータ1と雌ロータ2の間にできる断面積が最小となるところで軸方向に絞られる。
 閉じ込め空間4は、雄ロータ1と雌ロータ2の回転により軸方向に移動する。結果として閉じ込め空間4が徐々に狭められることにより、流体を圧縮する。
 圧縮流体の漏れ位置は、図1Aでは雄ロータ1及び雌ロータ2とケーシング3の間の歯先シール面a、図1Bでは歯先シール面aとロータ間シール線b、図1Cではロータ間シール線bである。
 図2Bは、漏れ経路の説明図である。
 図2Bに示すように、雄ロータ1の歯先(後述する雄後進側歯先点B1)がケーシング3から離れる。その後、雌ロータ2の歯先円弧C2(後述する雌前進側歯先円弧24b)が雄ロータ1の後進歯面に接するまでの回転位相において、雄ロータ1と雌ロータ2とケーシング3の間に間隙(以降、「ブロー孔」という)が出現する。このブロー孔により圧縮流体の漏れ5が発生するため圧縮機の効率が低下する。
 本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、雄ロータ及び雌ロータとケーシングとの間隙(ブロー孔)を小さくすることができ、これにより圧縮流体の漏れ量を減少させ、圧縮機効率を高めることができるスクリューロータを提供することにある。
 上記の目的を達成するために、それぞれ複数の歯山或いは歯溝がある雄ロータと雌ロータを含み、ケーシングにより形成された作動空間内で前記雄ロータと前記雌ロータとが、互いに噛み合い、それぞれの回転軸まわりに回転し得るスクリューロータであって、
 (A)前記回転軸に垂直な断面において、
 前記雄ロータは、雄ピッチ円と雄歯先円とを有し、
 前記雌ロータは、前記雄ピッチ円とピッチ点Pで接する雌ピッチ円と、前記雄歯先円と接する雌歯底円とを有し、
 (B)雄ロータ歯山は、
 前記雄歯先円上に位置する雄前進側歯先点A1と雄後進側歯先点B1と、
 前記雄ピッチ円上に位置する雄前進側歯根点C1’と雄後進側歯根点D1’と、
 前記雄前進側歯先点A1と前記雄前進側歯根点C1’の間にあり、前記雄ロータ歯山と雌ロータ歯溝が正対したときに前記雄ロータ歯山の前進歯面と前記雌ピッチ円の交点に位置する雄前進中間点E1と、を有し、
 (C)前記雌ロータ歯溝は、
 前記雌歯底円上に位置する雌後進側歯根点A2と雌前進側歯根点B2と、
 前記雌ピッチ円上に位置する雌後進側歯先点C2’と雌前進側歯先点D2’と、を有し、
 (D)前記雄ロータ歯山と前記雌ロータ歯溝が正対したとき、前記雄前進側歯先点A1から前記雄前進中間点E1までと、前記雌後進側歯根点A2から前記雌後進側歯先点C2’までは、前記ピッチ点Pを中心とする同一の円弧として重なり、
 前記雄ロータの前記雄前進中間点E1から前記雄前進側歯根点C1’までは、前記雌ロータの前記雌後進側歯先点C2’により創成される第1の外サイクロイド曲線であり、
 (E)前記スクリューロータの特定の回転位相において、前記雄後進側歯先点B1と、前記雌前進側歯先点D2’と、前記ケーシングの前記雄ロータとの相対面と前記雌ロータとの相対面の交点Qの3点を重ね、そこから回転位相を進めるに従い、前記雄後進側歯先点B1から雄後進側歯根点D1’までを前記雌前進側歯先点D2’により創成される第2の外サイクロイド曲線とし、前記雌前進側歯根点B2から前記雌前進側歯先点D2’までを前記雄後進側歯先点B1により創成される第3の外サイクロイド曲線とするスクリューロータが提供される。
 この構成により、ブロー孔面積を最小限に抑制することで、圧縮機効率の劣化を極力抑制することができる。
 上記のスクリューロータによれば、ロータの特定の回転位相において、雄後進側歯先点B1と雌前進側歯先点D2’とケーシングの雄ロータとの相対面と雌ロータとの相対面の交点Qの3点を重ねる。この位相から回転を進めるに従い、雄後進歯面を雌前進側歯先点D2’により創成される外サイクロイド曲線とし、雌前進歯面を雄後進側歯先点B1により創成される外サイクロイド曲線とすることで、理想的にはブロー孔を塞ぐことにより、当該部の流体の漏れによる圧縮機効率の劣化を僅少することができる。
 
従来のスクリューロータの説明図である。 従来のスクリューロータの別の説明図である。 従来のスクリューロータの別の説明図である。 第1の漏れ経路の説明図である。 第2の漏れ経路の説明図である。 本発明による理想的な歯形の説明図である。 本発明による理想的な歯形の別の説明図である。 本発明による閉じ込め空間の低減方法の説明図である。 本発明による実用的な歯形の説明図である。
 以下、本発明の好ましい実施形態を添付図面に基づいて詳細に説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
 図3A、図3Bおよび図5は、本発明によるスクリューロータの説明図であり、スクリューロータの回転軸に垂直な断面を示している。このうち、図3Aと図3Bは理想的な歯形の説明図、図5は実用的な歯形の説明図である。
 本発明によるスクリュー圧縮機は、ケーシング3により(好ましくは気密に)形成された作動空間内で平行軸の周囲を回転し得るように構成された雄ロータ10とこれと噛み合う雌ロータ20とを有する。
 2本のロータ(雄ロータ10と雌ロータ20)にはそれぞれ複数の歯山或いは歯溝があり、回転軸まわりに各々整合のとれたねじれ角でねじれた形状をしている。
 以下、説明の都合上、雄ロータ10と雌ロータ20の回転中心(すなわち、回転軸)が互いに平行であって、水平になっているとする。なお本発明はこれに限定されず、垂直でも斜めであってもよい。
 図3A、図3Bおよび図5には、雄ロータ歯山10aと雌ロータ歯溝20aをそれぞれ1歯分だけ示す。この例では雄ロータ10は反時計回り、雌ロータ20は時計回りに回転する。雄ロータ歯山10aと雌ロータ歯溝20aが正対するとき、雄ロータ10の歯先点(雄前進側歯先点A1)が雌ロータ20の歯根点(雌後進側歯根点A2)と重なっている。このときの両ロータの回転角度を基準位置すなわち回転角度0度とする。
 以下、本発明において、雄ロータ歯山10aの回転方向前側(図で上側)を「前進側」と呼ぶ。本発明において、雄ロータ歯山10aの前進側と対向する雌ロータ歯溝20aの歯面(図で上側)を「後進側」と呼ぶ。本発明において、雄ロータ歯山10aの前進側の反対側(図で下側)、すなわち、雄ロータ歯山10aの回転方向後側を、「後進側」と呼ぶ。本発明において、雌ロータ歯溝20aの後進側の反対側(図で下側)、すなわち、雄ロータ歯山10aの後進側と対向する雌ロータ歯溝20aの歯面を「前進側」と呼ぶ。
 また、前進側歯面を「前進歯面」、後進側歯面を「後進歯面」と呼ぶ。
 図3A、図3Bおよび図5において、雄ロータ10は、雄ピッチ円11と雄歯先円12とを有する。また、雌ロータ20は、雄ピッチ円11とピッチ点Pで接する雌ピッチ円21と、雄歯先円12と接する雌歯底円22とを有する。
 雌後進側歯根点A2と雌前進側歯根点B2は、雌歯底円22上に位置する。
 ピッチ点Pは、雄ロータ10の回転中心と雌ロータ20の回転中心を結ぶ線分を雄ロータ10の歯数(図1A~図1Cの例では3)と雌ロータ20の歯数(図1A~図1Cの例では6)の比で内分した点である。
 雄ピッチ円11は、雄ロータ10の回転中心を中心としピッチ点Pを通る仮想上の円である。また、雌ピッチ円21は、雌ロータ20の回転中心を中心としピッチ点Pを通る仮想上の円である。
 ケーシング3(図1A~図1C参照)の内面は、雄ロータ10と相対する部分は雄歯先円12に近接する円であり、同様に雌ロータ20と相対する部分は雌歯先円23に近接する円である。
 雄ロータ10と雌ロータ20は、雄ピッチ円11と雌ピッチ円21が互いに同期して回転する。この同期は、雄ロータ歯山10aの歯面と雌ロータ歯溝20aの歯面との接触による。なお、別途同期用の歯車を設ける場合もある。
図1A、図3A、図3Bおよび図5において、雄ロータ歯山10aは、雄歯先円12上に位置する雄前進側歯先点A1と雄後進側歯先点B1とを有する。雄前進側歯先点A1から雄後進側歯先点B1までの雄歯外周面(A1-B1)は、雄歯先円12上の円弧であり、雄ロータ10を囲むケーシング3の内面との間に歯先シール面aを形成する。
 雌ロータ20の歯山は、雌歯先円23上に位置する雌前進側歯先点D2’或いはG2と雌後進側歯先点C2’或いはF2とを有する。雌前進側歯先点D2’或いはG2から雌後進側歯先点C2’或いはF2までの雌歯外周面(D2’/F2-C2’/G2)は、雌歯先円23上の円弧であり、雌ロータ20を囲むケーシング3の内面との間に歯先シール面aを形成する。
 図1B、図3A、図3Bおよび図5において、前記に加え、雌ロータ歯溝20aは、雌前進側歯先点D2’或いは雌前進側歯先円弧24bにおいて、雄ロータ歯山10aの後進歯面との間にロータ間シール線bを形成する。
図1C、図3A、図3Bおよび図5において、雌ロータ歯溝20aは、雌後進側歯先点C2’或いは雌後進側歯先円弧24aにおいて、雄ロータ歯山10aの前進歯面との間にロータ間シール線bを形成する。加えて、雌ロータ歯溝20aは、雌前進側歯先点D2’或いは雌前進側歯先円弧24bにおいて、雄ロータ歯山10aの後進歯面との間にロータ間シール線bを形成する。
 以上の説明は、図3A、図3Bおよび図5において、同一である。
 以下、図3Aと図3Bの理想的な歯形を最初に説明する。
 雄ロータ歯山10aは、さらに、雄前進側歯根点C1’と雄後進側歯根点D1’と雄前進中間点E1とを有する。雄前進側歯根点C1’と雄後進側歯根点D1’は、雄ピッチ円11上に位置する。雄前進中間点E1は、雄前進側歯先点A1と雄前進側歯根点C1’の間にあり、雄ロータ歯山10aと雌ロータ歯溝20aが正対する時に雄前進歯面と雌ピッチ円21の交点に位置する。
 雌ロータ歯溝20aは、さらに、雌ピッチ円21上に位置する雌後進側歯先点C2’と雌前進側歯先点D2’とを有する。
 雄ロータ歯山10aと雌ロータ歯溝20aが正対したとき、雄前進側歯先点A1から雄前進中間点E1までと、雌後進側歯根点A2から雌後進側歯先点C2’までは、ピッチ点Pを中心とする同一の円弧として重なる。この円弧の半径は、ピッチ点Pから雄前進側歯先点A1(又は雌後進側歯根点A2)までの長さである。
 従って、図3Aに示す雄ロータ歯山10aと雌ロータ歯溝20aが正対したときには、雄前進歯面(A1-E1)と雌後進歯面(A2-C2’)は重なっており、雄ロータ10の歯山10aの前進面と雌ロータ20の歯溝20aの後進面の間のロータ間隙間はなくなる。
 図3Aにおいて、雄前進中間点E1から雄前進側歯根点C1’までの雄前進歯面(E1-C1’)は、雌後進側歯先点C2’により創成される第1の外サイクロイド曲線とする。すなわち、雌後進側歯先点C2’が雄前進側歯根点C1’に一致している回転位相から雌後進側歯先点C2’が雄前進中間点E1に一致する回転位相までの回転位相区間において後進側歯先点C2’により創成される第1の外サイクロイド曲線が、雄前進側歯根点C1’から雄前進中間点E1までの雄前進歯面(E1-C1’)となる。
 「外サイクロイド曲線」とは、雄ロータ10と雌ロータ20が同期して回転するときに、一方の回転するロータに固定された座標系上の点(この例では雌後進側歯先点C2’)が描く他方の回転するロータに固定された座標系上の曲線(この例では曲線(E1-C1’))を意味する。
 従って当該回転位相の範囲では常に、雌後進側歯先点C2’と雄ロータ10の歯山10aの雄前進歯面(E1-C1’)は接しながら回転することとなり、当該部をロータ間シール線b(図1A~図1C参照)とするロータ間隙間を僅少に維持することができる。
 図3Bに示すように、ロータの特定の回転位相において、雄後進側歯先点B1と、雌前進側歯先点D2’と、ケーシング3の雄ロータ10との相対面と雌ロータ20との相対面の交点Qとの3点を重ねる。この位相から回転を進めるに従い、雄後進側歯先点B1から雄後進側歯根点D1’までの雄後進歯面(B1-D1’)を、雌前進側歯先点D2’により創成される第2の外サイクロイド曲線とする。
 従って当該回転位相の範囲では常に、雌前進側歯先点D2’と雄ロータ歯山10aの後進歯面(B1-D1’)は接しながら回転することとなり、当該部をロータ間シール線bとするロータ間隙間を僅少に維持することができる。
 同様に、雌前進側歯根点B2から雌前進側歯先点D2’までの雌前進歯面(B2-D2’)を、雄後進側歯先点B1により創成される第3の外サイクロイド曲線とする。
 従って当該回転位相の範囲では常に、雄後進側歯先点B1と雌ロータ歯溝20aの雌前進歯面(B2-D2’)は接しながら回転することになり、当該部をロータ間シール線bとするロータ間隙間を僅少に維持することができる。なお、好ましくは、図3Aで、雌前進歯面(B2-D2’)において、B2からB1までの距離L1とB1からD2’までの距離L2との比L1:L2は、2:8~7:3の範囲内に設定されている。雄後進側歯先点B1は、雌前進歯面(B2-D2’)上の、B2からD2’までの範囲において、雌前進歯面と接触する。
 上述した理想的な歯形のスクリューロータでは、ロータの特定の回転位相において、雄後進側歯先点B1と雌前進側歯先点D2’とケーシング3の雄ロータ10との相対面と雌ロータ20との相対面の交点Qの3点が重なる(この位相を、3点の重なり位相という)。そのため、理想的な歯形のスクリューロータでは、上記3点の重なり位相の直前までの回転位相においては雄ロータ10の歯先と雌ロータ20の歯先がケーシング3との間にシールを形成する。理想的な歯形のスクリューロータでは、上記3点の重なり位相の直後からの回転位相においては、雄後進側歯先点B1と雌ロータ歯溝20aの前進歯面との間に、及び、雌前進側歯先点D2’と雄ロータ歯山10aの後進歯面との間に、連続してシールを形成する。これにより、理想的にはブロー孔を塞ぐことになり流体の漏れによる圧縮機効率の劣化を僅少することができる。
 また、理想的な歯形のスクリューロータでは、好ましくは、図3Aにおいて、雄ロータ歯山10aと雌ロータ歯溝20aが正対したときに、雄ロータ10の後進歯面(B1-D1’)と、雌ロータ20の前進歯面(B2-D2’)との間に発生する閉じ込め空間が最小となるように、前進歯面(B2-D2’)に対する後進歯面(B1-D1’)の位相が設定されている。
 次に、図5の実用的な歯形を説明する。
 雄ロータ10の歯山10aにおいては、図3Aと図3Bに示した理想的な歯形をベースとして、次の(1)~(4)の変更がなされる。
(1)前進歯面及び後進歯面を内側に距離rだけオフセットする。
(2)雄歯底円13を雄ピッチ円11より半径差Δrだけ小さく設定する。(3)雄歯先円12を半径差Δrだけ小さくする。
(4)雄前進側歯根点C1’を中心とする半径rの雄前進側歯根円弧14aと、雄後進側歯根点D1’を中心とする半径rの雄後進側歯根円弧14bとにより、前進歯面及び後進歯面を雄歯底円13と接続する。
 なお、好ましくは、上記距離rは、雄前進側歯根円弧14aの上記半径rと、雄後進側歯根円弧14bの上記半径rと同じあり、雄歯底円13の上記半径差Δrと雄歯先円12の上記半径差Δrとも同じである。記号rを付した上記距離、上記各半径、及び上記各半径差は、例えば、雄ロータ10の回転軸と雌ロータ20の回転軸との距離の0%より大きく、雄ロータ10の回転軸と雌ロータ20の回転軸との距離の20%以下の値である。
 また、雌ロータ20の歯溝20aにおいては、図3Aと図3Bに示した理想的な歯形をベースとして、次の(5)~(8)の変更がなされる。
(5)前進歯面及び後進歯面を外側に距離rだけオフセットする。
(6)雌歯底円22を半径差Δrだけ大きく設定する。
(7)雌歯先円23を雌ピッチ円21より半径差Δrだけ大きく設定する。
(8)雌後進側歯先点C2’を中心とする半径rの雌後進側歯先円弧24aと、雌前進側歯先点D2’を中心とする半径rの雌前進側歯先円弧24bとにより前進歯面及び後進歯面を雌歯先円23と接続する。
 なお、好ましくは、上記距離rは、雌後進側歯先円弧24aの上記半径rと、雌前進側歯先円弧24bの上記半径rと同じあり、雌歯底円22の上記半径差Δrと雌歯先円23の上記半径差Δrとも同じである。記号rを付した上記距離、上記各半径、及び上記各半径差は、例えば、雄ロータ10の回転軸と雌ロータ20の回転軸との距離の0%より大きく、雄ロータ10の回転軸と雌ロータ20の回転軸との距離の20%以下の値である。
図5において、雄ロータ歯山10aは、図3Aと図3Bの歯形を元に上記の手続き(上記の変更)により作成されている。ここで、雄歯底円13は、雄ピッチ円11より半径差Δrだけ半径が小さくなっている。また、前進歯面及び後進歯面の雄ピッチ円11上の点と雄歯底円13との間は雄前進側歯根円弧14aと雄後進側歯根円弧14bとにより接続されている。
 同様に雌ロータ歯溝20aは、図3Aと図3Bとの歯形を元に上記の手続き(上記の変更)により作成されている。ここで、雌歯先円23は、雌ピッチ円21より半径差Δrだけ半径が大きくなっている。また、前進歯面及び後進歯面の雌ピッチ円21上の点と雌歯先円23との間は雌後進側歯先円弧24aと雌前進側歯先円弧24bとにより接続されている。
 この構成により、雌ロータ歯先における雄ロータ10との接触を、エッジから円弧面によるものに変更することでシール部の接触面圧が軽減されるので、ロータ間シール線の磨耗を低減することができる。なお、好ましくは、図5で、雌前進歯面(B2-G2)において、B2からB1までの距離LaとB1からG2までの距離Lbとの比La:Lbは、1:9~6:4の範囲内に設定されている。雄後進側歯先点B1は、雌前進歯面(B2-G2)上の、B2からG2までの範囲において、雌前進歯面と接触する。
 前述のスクリューロータの特徴に加え、雄ロータ10の雄歯底円13の半径差Δr及び雄前進側歯根円弧14aと雄後進側歯根円弧14bの半径rは、好ましくは、他の半径差Δr及び半径r(すなわち、雌歯先円23の上記半径差Δrと雌後進側歯先円弧24aと雌前進側歯先円弧24bの上記半径r)より大きく設定されている。すなわち、雄ロータ10の雄歯底円13の半径差Δr及び雄前進側歯根円弧14aと雄後進側歯根円弧14bの半径rの設定により、雄ロータ歯山10aの歯面と雌ロータ歯溝20aの歯面とが互いに干渉することを回避する為に必要十分な幅だけ、雄ロータ歯山10aが、雄ロータ歯山10aを縮小する側或いは雌ロータ歯溝20aを拡大する側にオフセットされている(ずれている)。
 この構成により、2本のロータの軸間距離の変動に対し干渉を抑制することができる。
 図4は、閉じ込め空間の低減方法の説明図である。
 前述のスクリューロータの特徴に加え、図4において、雄ロータ歯山10aと雌ロータ歯溝20aが正対したときに、雄ロータ10の後進歯面と、雌ロータ20の前進歯面との間に発生する閉じ込め空間が最小となるように、前進歯面に対する後進歯面の位相が設定されている。これにより、当該部の流体の漏れ流路面積を極小とすることにより、圧縮機効率の劣化を低減することができる
 図4は雄ロータ歯山10aと雌ロータ歯溝20aが正対したときを表している。
 図1Cに示す2ヶ所のシール線bの間は、図4におけるE1~d2の間に相当する。このとき、雄ロータ10の前進歯面と雌ロータ20の後進歯面はA1-E1の範囲で重なり、理想的には隙間がない。
 図4において、B1’は、雄前進側歯先点A1に比較的近い位相(位置)に雄後進側歯先点を設定した場合の当該雄後進側歯先点を示す。図4において、d1’とd2’は、それぞれ、雄後進側歯先点B1’を設定した場合における雄後進側歯根点と雌前進側歯先点を示す。また、図4において、符号26は、雄後進側歯先点B1’ を設定した場合における閉じ込め空間を示す。図4において、A1は、雄後進側歯先点をB1’にした場合と、雄後進側歯先点をB1にした場合に共通する雄前進側歯先点を示す。図4において、A2は、これらの両方の場合において同じ位相にある雌後進側歯根点を示す。
 図4において、雄ロータ10の後進歯面と雌ロータ20の前進歯面の間の閉じ込め空間26において、雄ロータ10の歯先円及び後進歯面(A1-d1’)と雌ロータ20の歯底円及び前進歯面(A2-d2’)は、雄前進側歯先点A1と雄後進側歯先点B1’が比較的近い位相にある場合の相対位置を示す。この状態から前進歯面と後進歯面の位相差が大きくなる方向に(雄前進側歯先点A1と雄後進側歯先点B1’の位相を互いに遠く)形状を変化させると、雄ロータ10の歯先円及び後進歯面(A1-d1)と歯溝20aの歯底円及び前進歯面(A2-d2)に示す如くそれらの相対位置も変化する。
 この例において、A1-B1’-d2’に沿って出来る閉じ込め空間26より、A1-B1-d2に沿って出来る閉じ込め空間25の方が面積はより小さい。即ち、雄ロータ10の後進歯面と雌ロータ20の後進歯面との間に発生する閉じ込め空間は、前進歯面に対する後進歯面の位相を変化させることにより変化し、最適に位相を設定することで閉じ込め空間25の面積を極小とすることが出来る。
 このように、曲線(A1-d1)と曲線(A2-d2)で囲まれる閉じ込め空間25が極小となるように、前進歯面に対する後進歯面の位相が設定されている。
 この構成により、雄ロータ歯山10aと雌ロータ歯溝20aが正対した位相における雄ロータ10と雌ロータ20の間隙を最小限に抑制することで圧縮機効率の劣化を低減することができる。
 上述の実施形態によるスクリューロータは、以下の構成1~4のように記載されてよい。
(構成1)
 それぞれ複数の歯山或いは歯溝がある雄ロータと雌ロータを含み、ケーシングにより形成された作動空間内で前記雄ロータと前記雌ロータとが、互いに噛み合い、それぞれの回転軸まわりに回転し得るスクリューロータであって、
 (A)前記回転軸に垂直な断面において、
 前記雄ロータは、雄ピッチ円と雄歯先円とを有し、
 前記雌ロータは、前記雄ピッチ円とピッチ点Pで接する雌ピッチ円と、前記雄歯先円と接する雌歯底円とを有し、
 (B)雄ロータ歯山は、
 前記雄歯先円上に位置する雄前進側歯先点A1と雄後進側歯先点B1と、
 前記雄ピッチ円上に位置する雄前進側歯根点C1’と雄後進側歯根点D1’と、
 前記雄前進側歯先点A1と前記雄前進側歯根点C1’の間にあり、前記雄ロータ歯山と雌ロータ歯溝が正対したときに前記雄ロータ歯山の前進歯面と前記雌ピッチ円の交点に位置する雄前進中間点E1と、を有し、
 (C)前記雌ロータ歯溝は、
 前記雌歯底円上に位置する雌後進側歯根点A2と雌前進側歯根点B2と、
 前記雌ピッチ円上に位置する雌後進側歯先点C2’と雌前進側歯先点D2’と、を有し、
 (D)前記雄ロータ歯山と前記雌ロータ歯溝が正対したとき、前記雄前進側歯先点A1から前記雄前進中間点E1までと、前記雌後進側歯根点A2から前記雌後進側歯先点C2’までは、前記ピッチ点Pを中心とする同一の円弧として重なり、
 前記雄ロータの前記雄前進中間点E1から前記雄前進側歯根点C1’までは、前記雌ロータの前記雌後進側歯先点C2’により創成される第1の外サイクロイド曲線であり、
 (E)前記スクリューロータの特定の回転位相において、前記雄後進側歯先点B1と、前記雌前進側歯先点D2’と、前記ケーシングの前記雄ロータとの相対面と前記雌ロータとの相対面の交点Qの3点を重ね、そこから回転位相を進めるに従い、前記雄後進側歯先点B1から雄後進側歯根点D1’までを前記雌前進側歯先点D2’により創成される第2の外サイクロイド曲線とし、前記雌前進側歯根点B2から前記雌前進側歯先点D2’までを前記雄後進側歯先点B1により創成される第3の外サイクロイド曲線とする。
 図2Aは、図2Bとは別の漏れ経路の説明図である。この図に示すように、図1Cのように、雄前進側歯先点A1と雌後進側歯根点A2が重なる回転位相(すなわち、雄ロータ歯山と雌ロータ歯溝が正対したとき)において、雄ロータ1と雌ロータ2の間には、体積が拡大する隣の空間への間隙が残る。この間隙により圧縮流体の漏れが発生するため圧縮機の効率が低下する。
 これに対し、雄ロータ歯山と雌ロータ歯溝が正対したときの隙間を小さくすることができ、これにより圧縮流体の漏れ量を減少させ、圧縮機効率を高めることができるスクリューロータを実現するために、好ましくは次の構成2が採用される。
(構成2)
 上記構成1において、前記雄ロータ歯山と前記雌ロータ歯溝が正対したときに、前記雄ロータの後進歯面と、前記雌ロータの前進歯面との間に発生する閉じ込め空間が最小となるように、前記前進歯面に対する前記後進歯面の位相が設定されている。
 この構成により、雄ロータ歯山と雌ロータ歯溝が正対した位相における雄ロータと雌ロータの間隙を最小限に抑制することで圧縮機効率の劣化を低減することができる。
(構成3)
 好ましくは、上記構成1又は上記構成2において、前記雄ロータ歯山の前記前進歯面及び後進歯面を内側に距離rだけオフセットし、雄歯底円を前記雄ピッチ円より半径差Δrだけ小さく設定し、前記雄歯先円を前記半径差Δrだけ小さく設定し、前記雄前進側歯根点C1’を中心とする半径rの雄前進側歯根円弧と、雄後進側歯根点D1’を中心とする前記半径rの雄後進側歯根円弧とにより、前記前進歯面及び前記後進歯面を前記雄歯底円と接続し、
 前記雌ロータ歯溝の前進歯面及び後進歯面を外側に前記距離rだけオフセットし、前記雌歯底円を前記半径差Δrだけ大きく設定し、雌歯先円を前記雌ピッチ円より前記半径差Δrだけ大きく設定し、前記雌後進側歯先点C2’を中心とする前記半径rの雌後進側歯先円弧と、前記雌前進側歯先点D2’を中心とする前記半径rの雌前進側歯先円弧とにより前記前進歯面及び前記後進歯面を前記雌歯先円と接続する。
 この構成により、雄ロータ歯山に接する雌ロータ歯溝の歯先がエッジから円弧になるので、ロータ間シール線の磨耗を低減することができる。
(構成4)
 好ましくは、上記構成3において、前記雄ロータの前記雄歯底円の前記半径差Δr及び前記雄前進側歯根円弧と前記雄後進側歯根円弧の前記半径rは、他の半径差Δr及び半径rより大きく設定されていて、前記雄ロータ歯山或いは前記雌ロータ歯溝の歯面が干渉することを回避する為に必要十分な幅だけ、前記雄ロータ歯山を縮小する側或いは前記雌ロータ歯溝を拡大する側にオフセットされている。
 この構成により、2本のロータの軸間距離の変動に対し干渉を抑制することができる。
 なお、本発明は上述した実施形態に限定されず、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。
a ケーシングとロータ歯先の間のシール面
b ロータ間シール線
A1 雄前進側歯先点
A2 雌後進側歯根点
B1 雄後進側歯先点
B2 雌前進側歯根点
C1’ 雄前進側歯根点
C2’ 雌後進側歯先点
D1’ 雄後進側歯根点
D2’ 雌前進側歯先点
E1 雄前進中間点
F1 雄前進側歯根点
F2 雌後進側歯先点
G1 雄後進側歯根点
G2 雌前進側歯先点
P ピッチ点
Q ケーシングの雄ロータとの相対面と雌ロータとの相対面の交点
Δr,Δr 半径差
,r 半径
1 雄ロータ
1a 歯山
2 雌ロータ
2a 歯溝
3 ケーシング
4 閉じ込め空間
5 漏れ
10 雄ロータ
10a 歯山
11 雄ピッチ円
12 雄歯先円
13 雄歯底円
14a 雄前進側歯根円弧
14b 雄後進側歯根円弧
20 雌ロータ
20a 歯溝
21 雌ピッチ円
22 雌歯底円
23 雌歯先円
24a 雌後進側歯先円弧
24b 雌前進側歯先円弧
25,26 閉じ込め空間
 

Claims (6)

  1.  それぞれ複数の歯山或いは歯溝がある雄ロータと雌ロータを含み、ケーシングにより形成された作動空間内で前記雄ロータと前記雌ロータとが、互いに噛み合い、それぞれの回転軸まわりに回転し得るスクリューロータであって、
     (A)前記回転軸に垂直な断面において、
     前記雄ロータは、雄ピッチ円と雄歯先円とを有し、
     前記雌ロータは、前記雄ピッチ円とピッチ点Pで接する雌ピッチ円と、前記雄歯先円と接する雌歯底円とを有し、
     (B)雄ロータ歯山は、
     前記雄歯先円上に位置する雄前進側歯先点A1と雄後進側歯先点B1と、
     前記雄ピッチ円上に位置する雄前進側歯根点C1’と雄後進側歯根点D1’と、
     前記雄前進側歯先点A1と前記雄前進側歯根点C1’の間にあり、前記雄ロータ歯山と雌ロータ歯溝が正対したときに前記雄ロータ歯山の前進歯面と前記雌ピッチ円の交点に位置する雄前進中間点E1と、を有し、
     (C)前記雌ロータ歯溝は、
     前記雌歯底円上に位置する雌後進側歯根点A2と雌前進側歯根点B2と、
     前記雌ピッチ円上に位置する雌後進側歯先点C2’と雌前進側歯先点D2’と、を有し、
     (D)前記雄ロータ歯山と前記雌ロータ歯溝が正対したとき、前記雄前進側歯先点A1から前記雄前進中間点E1までと、前記雌後進側歯根点A2から前記雌後進側歯先点C2’までは、前記ピッチ点Pを中心とする同一の円弧として重なり、
     前記雄ロータの前記雄前進中間点E1から前記雄前進側歯根点C1’までは、前記雌ロータの前記雌後進側歯先点C2’により創成される第1の外サイクロイド曲線であり、
     (E)前記スクリューロータの特定の回転位相において、前記雄後進側歯先点B1と、前記雌前進側歯先点D2’と、前記ケーシングの前記雄ロータとの相対面と前記雌ロータとの相対面の交点Qの3点を重ね、そこから回転位相を進めるに従い、前記雄後進側歯先点B1から雄後進側歯根点D1’までを前記雌前進側歯先点D2’により創成される第2の外サイクロイド曲線とし、前記雌前進側歯根点B2から前記雌前進側歯先点D2’までを前記雄後進側歯先点B1により創成される第3の外サイクロイド曲線とするスクリューロータ。
  2.  前記雄ロータ歯山と前記雌ロータ歯溝が正対したときに、前記雄ロータの後進歯面と、前記雌ロータの前進歯面との間に発生する閉じ込め空間が最小となるように、前記前進歯面に対する前記後進歯面の位相が設定されている、請求項1に記載のスクリューロータ。
  3.  前記雄ロータ歯山の前記前進歯面及び後進歯面を内側に距離rだけオフセットし、雄歯底円を前記雄ピッチ円より半径差Δrだけ小さく設定し、前記雄歯先円を前記半径差Δrだけ小さく設定し、前記雄前進側歯根点C1’を中心とする半径rの雄前進側歯根円弧と、雄後進側歯根点D1’を中心とする前記半径rの雄後進側歯根円弧とにより、前記前進歯面及び前記後進歯面を前記雄歯底円と接続し、
     前記雌ロータ歯溝の前進歯面及び後進歯面を外側に前記距離rだけオフセットし、前記雌歯底円を前記半径差Δrだけ大きく設定し、雌歯先円を前記雌ピッチ円より前記半径差Δrだけ大きく設定し、前記雌後進側歯先点C2’を中心とする前記半径rの雌後進側歯先円弧と、前記雌前進側歯先点D2’を中心とする前記半径rの雌前進側歯先円弧とにより前記前進歯面及び前記後進歯面を前記雌歯先円と接続する、請求項1又は2に記載のスクリューロータ。
  4.  前記雄ロータの前記雄歯底円の前記半径差Δr及び前記雄前進側歯根円弧と前記雄後進側歯根円弧の前記半径rは、他の半径差Δr及び半径rより大きく設定されていて、前記雄ロータ歯山或いは前記雌ロータ歯溝の歯面が干渉することを回避する為に必要十分な幅だけ、前記雄ロータ歯山を縮小する側或いは前記雌ロータ歯溝を拡大する側にオフセットされている、請求項3に記載のスクリューロータ。
  5.  ケーシングと、
     前記ケーシングに収容され、複数の歯山を含む雄ロータと、
     前記ケーシングに収容され、複数の歯山及び複数の歯溝を含む雌ロータと、
    を有するスクリュコンプレッサであって、
     前記雄ロータと前記雌ロータが第1の回転位相にある場合、前記雄ロータが含む一の歯山の歯先点、前記雌ロータが含む一の歯山の歯先点、前記ケーシングと前記雄ロータとの相対面、及び前記ケーシングと前記雌ロータとの相対面とが重なり、
     前記第1の回転位相の直前までの回転位相である第2の回転位相においては前記雄ロータの前記歯先点と前記ケーシングとの間及び前記雌ロータの前記歯先点と前記ケーシングとの間にシールが形成され、
     前記第1の回転位相の直後からの回転位相である第3の回転位相においては前記雄ロータの前記歯先点と前記雌ロータの前記歯溝との間及び前記雌ロータの前記歯先点と前記雄ロータの前記歯先を含む歯面との間にシールが形成される、スクリュコンプレッサ。
  6.  前記雄ロータの一の歯山と、前記雌ロータの一の歯溝が正対するときに前記雄ロータの前記歯面と前記雌ロータの前記歯溝との間の閉じ込め空間が最少となる、請求項5に記載のスクリュコンプレッサ。
     
     
PCT/JP2015/070232 2014-08-28 2015-07-15 スクリューロータ WO2016031413A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15837048.6A EP3187734A1 (en) 2014-08-28 2015-07-15 Screw rotor
JP2016545044A JP6273661B2 (ja) 2014-08-28 2015-07-15 スクリューロータ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014173541 2014-08-28
JP2014-173541 2014-08-28

Publications (1)

Publication Number Publication Date
WO2016031413A1 true WO2016031413A1 (ja) 2016-03-03

Family

ID=55399314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070232 WO2016031413A1 (ja) 2014-08-28 2015-07-15 スクリューロータ

Country Status (3)

Country Link
EP (1) EP3187734A1 (ja)
JP (1) JP6273661B2 (ja)
WO (1) WO2016031413A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108194363A (zh) * 2018-02-07 2018-06-22 珠海格力电器股份有限公司 螺杆压缩机转子及具有其的压缩机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2486770A (en) * 1946-08-21 1949-11-01 Joseph E Whitfield Arc generated thread form for helical rotary members
JPS4935906A (ja) * 1972-08-09 1974-04-03
JPS4938205A (ja) * 1972-08-17 1974-04-09
JPS5117011A (en) * 1974-06-24 1976-02-10 Atlas Copco Ab Nejikaitenshikikaino 1 tsuinokyodosurukaitenshi
JPS60153486A (ja) * 1984-01-16 1985-08-12 インガ−ソル・ランド・カンパニ− ヘリカルロータ型回転容積式機械のロータ
JPS60178989A (ja) * 1984-02-21 1985-09-12 Hokuetsu Kogyo Co Ltd スクリユ・ロ−タ
US20030170135A1 (en) * 2002-01-25 2003-09-11 Kim Jeong Suk Rotor profile for screw compressors
JP2012207660A (ja) * 2011-03-11 2012-10-25 Toyota Industries Corp スクリュポンプ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2486770A (en) * 1946-08-21 1949-11-01 Joseph E Whitfield Arc generated thread form for helical rotary members
JPS4935906A (ja) * 1972-08-09 1974-04-03
JPS4938205A (ja) * 1972-08-17 1974-04-09
JPS5117011A (en) * 1974-06-24 1976-02-10 Atlas Copco Ab Nejikaitenshikikaino 1 tsuinokyodosurukaitenshi
JPS60153486A (ja) * 1984-01-16 1985-08-12 インガ−ソル・ランド・カンパニ− ヘリカルロータ型回転容積式機械のロータ
JPS60178989A (ja) * 1984-02-21 1985-09-12 Hokuetsu Kogyo Co Ltd スクリユ・ロ−タ
US20030170135A1 (en) * 2002-01-25 2003-09-11 Kim Jeong Suk Rotor profile for screw compressors
JP2012207660A (ja) * 2011-03-11 2012-10-25 Toyota Industries Corp スクリュポンプ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108194363A (zh) * 2018-02-07 2018-06-22 珠海格力电器股份有限公司 螺杆压缩机转子及具有其的压缩机

Also Published As

Publication number Publication date
JP6273661B2 (ja) 2018-02-07
JPWO2016031413A1 (ja) 2017-04-27
EP3187734A1 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
KR101029624B1 (ko) 내접 기어식 펌프 및 그 펌프의 내측 회전자
US4412796A (en) Helical screw rotor profiles
CN110067833B (zh) 一种双圆弧有隙啮合少齿差行星传动装置
JPS6354912B2 (ja)
US20120230858A1 (en) Screw pump
JP2004286219A (ja) 軸駆動装置及び同装置に使用される歯車プロフィール計算方法
US11009025B2 (en) Oil-cooled screw compressor
JP6273661B2 (ja) スクリューロータ
EP2852763B1 (en) Reduced noise screw machines
WO2018038183A1 (ja) スクロール流体機械およびスクロール部材の加工方法
US9316102B2 (en) Rotors formed using involute curves
JP2005163566A (ja) ねじローター歯形の改良
CN210218105U (zh) 一种偏心渐开线罗茨转子
JP2924997B2 (ja) スクリュー機械
JPH06123294A (ja) スクリューロータ
JP6109516B2 (ja) スクリュー型流体機械
JP2008138601A (ja) 内接歯車式ポンプ
JP4796036B2 (ja) トロコイド型ポンプの製造法及びそのトロコイド型ポンプ
JP6336533B2 (ja) スクロール流体機械
CN206111552U (zh) 具有密封肋的螺旋转子
WO2018034274A1 (ja) スクロール流体機械
JP2019094872A (ja) 内接歯車式ポンプとそのポンプのアウターロータの歯形創成方法
JPH01208587A (ja) スクリユーロータ
TW201433701A (zh) 相嚙合之一母螺旋轉子與一公螺旋轉子的創成方法
SK9402Y1 (sk) Rotor dúchadla Rootsovho typu alebo čerpadla s cykloidným profilom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545044

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015837048

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015837048

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE