WO2016031360A1 - 表面プラズモン検出装置および表面プラズモン検出方法 - Google Patents

表面プラズモン検出装置および表面プラズモン検出方法 Download PDF

Info

Publication number
WO2016031360A1
WO2016031360A1 PCT/JP2015/067428 JP2015067428W WO2016031360A1 WO 2016031360 A1 WO2016031360 A1 WO 2016031360A1 JP 2015067428 W JP2015067428 W JP 2015067428W WO 2016031360 A1 WO2016031360 A1 WO 2016031360A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
surface plasmon
light receiving
reflected
amount
Prior art date
Application number
PCT/JP2015/067428
Other languages
English (en)
French (fr)
Inventor
鐘築 律夫
渡邉 由紀夫
政俊 中川
真也 上柿
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016031360A1 publication Critical patent/WO2016031360A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length

Definitions

  • the present invention relates to a surface plasmon detection device and a surface plasmon detection method for detecting a measurement target substance on the surface of a conductive biomaterial using generation of surface plasmons on the surface of the conductive biomaterial.
  • Surface plasmon is a wave of surface charge density on the surface of a conductive material, and a substance detector and a detection method using this phenomenon are known.
  • a surface plasmon detection device using surface plasmons passes a prism, a metal thin film formed directly on one surface of the prism or at a predetermined interval with respect to one surface of the prism, and the light beam through the prism.
  • An optical system that allows the incident angle to be obtained with respect to the interface between the prism and the metal thin film, and light detection that can detect the intensity of the light beam totally reflected at the interface at each incident angle. Means.
  • the surface plasmon on the surface of the metal thin film has an inherent dispersion relationship determined by the dielectric conditions of the metal thin film and the prism and the surface state of the metal thin film.
  • evanescent light that transmits the inside of the metal thin film along the surface of the metal thin film.
  • the wave vector of the evanescent light is equal to the traveling direction component of the evanescent light of the wave vector of the incident light. That is, the wave number of the evanescent light has a different value according to sin ⁇ for each of various incident ⁇ s.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-101609 No. 19768
  • Patent Document 2 JP-A-10-239233
  • Patent Document 3 JP-A 2006-47000
  • a light bundle composed of light components having various incident angles is made incident on the interface between the metal thin film and the dielectric member in a convergent light state or a divergent light state.
  • Each ray component reflected at various reflection angles at the interface is detected by a multi-cell type line sensor or a two-dimensional array sensor extending in a direction in which all of the rays can be received, and the ray component corresponding to the dark line detection position is incident.
  • the angle is specified as the total reflection attenuation angle.
  • a Gaussian distribution according to an incident angle in a plane of incidence of a central ray of the light bundle as a light beam incident on an interface between a metal thin film and a dielectric member Alternatively, one having a beam cross-sectional intensity that monotonously increases or monotonously decreases is used.
  • the reflection attenuation angle is obtained by specifying the incident angle of the ray component subjected to the reflection attenuation.
  • the surface plasmon detection device disclosed in Patent Document 1 is expensive because each light component reflected at the interface at various reflection angles is detected by a multi-cell line sensor or a two-dimensional array sensor. A detector (light receiving unit) is required. In addition, calculation processing using a complicated algorithm is required to detect the dark line position. Furthermore, the detection accuracy of the dark line position is limited by the influence of the unevenness of the interface and the spread width of the dark line (especially when a light source other than a laser is used).
  • a light beam having a Gaussian beam cross-sectional intensity is generated by a laser light source, and once expanded, the light beam is converged toward the interface. Incident on the interface.
  • a light flux including a large number of light rays having various incident angles ⁇ and intensities having a correlation (Gaussian distribution) with the incident angles ⁇ In such a configuration, a light beam having a Gaussian beam intensity distribution emitted from a laser light source needs to be incident on the interface while maintaining the intensity distribution.
  • the shape of the beam intensity distribution is greatly deformed in the process of the optical path of the beam due to the natural diffusion of the beam accompanying the progress of the beam light and the disturbance by the diverging / condensing optical system. Considering these influences, an incident optical system having a very sophisticated and complicated structure is required to enter the interface with the shape of the intensity distribution controlled with high accuracy.
  • an inverse Gaussian filter for converting the Gaussian distribution into a uniform intensity distribution, and a uniform Since a wedge filter for converting a simple intensity distribution into a monotonically increasing or monotonically decreasing intensity distribution is required and it is necessary to provide them before the detection substrate, the structure of the incident optical system is further complicated.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a surface plasmon detection device and a surface plasmon detection method capable of obtaining sufficient detection accuracy with a simple configuration. It is in.
  • a surface plasmon detection device includes a dielectric member having a main surface and a metal thin film formed on the main surface, and an incident angle is generated by a surface plasmon phenomenon at an interface between the dielectric member and the metal thin film.
  • a light receiving unit that receives the reflected light reflected by the surface plasmon element.
  • the light receiving unit includes a light receiving region configured to detect a different light amount according to a difference in light amount distribution caused by the angle dependency of the reflected light.
  • the light projecting section gradually has an incident angle as the incident light with respect to a uniaxial direction in an incident light beam cross section perpendicular to the optical axis of the incident light. It is preferable to project light having a changing angular distribution. Moreover, it is preferable that the said light-receiving part receives the light which has the said light quantity distribution in the direction corresponding to the said 1 axial direction in the reflected light beam cross section perpendicular
  • the light receiving region in the first plane including the light receiving region and on which the reflected light is projected, has a length in a direction perpendicular to the direction corresponding to the one axis direction and a direction corresponding to the one axis direction. It is preferable that it is formed so as to gradually change along a direction parallel to.
  • the reflected light beam cross section has a direction corresponding to the uniaxial direction because the reflected light has the light amount distribution and the amount of light is less than other portions. It is preferable to include a dark line formed so as to extend in the vertical direction. In this case, it is preferable that the outline of the light receiving region has a portion that intersects non-parallel to the dark line projected on the first plane.
  • the length of the light receiving region extending in a direction perpendicular to the direction corresponding to the one axis direction gradually changes at a constant change rate.
  • the light receiving unit may include a shielding member having an opening and a light receiving element that detects the amount of the reflected light transmitted through the opening. .
  • the light receiving region is defined by the opening.
  • the shielding member may be constituted by a single or a plurality of shielding members.
  • the single shielding member preferably has a plurality of openings having different shapes, and the light receiving portion is provided so that one opening defining the light receiving region can be selected from the plurality of openings.
  • the plurality of shielding members preferably have the openings having different shapes, and the light receiving unit is formed of the plurality of shielding members. It is preferable that one of the shielding members is provided so as to be selectable.
  • the surface plasmon detection device it is preferable to detect the measurement object based on the relationship between the received light amount detected by the light receiving unit and the reference amount detected in advance by the light receiving unit. .
  • the surface plasmon element preferably includes a staying layer that causes gas to stay on the surface of the metal thin film.
  • the surface plasmon detection method projects incident light comprising a light beam having a distribution in incident angle onto a surface plasmon element including a dielectric member having a main surface and a metal thin film formed on the main surface.
  • the incident light incident on the surface plasmon element is reflected as reflected light composed of a light flux having an angle dependency on the amount of light due to the surface plasmon phenomenon at the interface between the dielectric member and the metal thin film,
  • a surface plasmon detection method in which the reflected light reflected by the surface plasmon element is received by a light receiving unit, wherein the light receiving unit is configured to respond to a difference in light amount distribution caused by the angle dependency of the reflected light. Those having a light receiving area configured to detect different amounts of light are used.
  • FIG. It is the schematic which shows the structure of the surface plasmon detection apparatus which concerns on Embodiment 1.
  • FIG. It is a schematic sectional drawing which shows the structure of the surface plasmon element of the surface plasmon detection apparatus shown in FIG. It is a figure which shows the relationship between the incident angle contained in the incident light which has incident angle distribution in the surface plasmon detection apparatus shown in FIG. 1, and a reflectance. It is a figure which shows the cross section of the light beam of the reflected light reflected in the interface of the dielectric material member shown in FIG. 1, and a metal thin film. It is a top view which shows an example of the change of the position of a dark line at the time of detecting using the shielding member shown in FIG.
  • FIG. 1 It is a schematic diagram for demonstrating the surface plasmon detection method in a comparative example. It is a top view which shows an example of the dark line at the time of detecting using the shielding member which concerns on the modification 1.
  • FIG. It is a top view which shows an example of the dark line at the time of detecting using the shielding member with which the surface plasmon detection apparatus which concerns on Embodiment 2 is equipped.
  • FIG. 2 It is a figure which shows the other example of the change of the position of a dark line at the time of detecting using the shielding member shown in FIG.
  • FIG. 1 shows an example of the dark line at the time of detecting using the shielding member which concerns on the modification 2. It is a top view which shows an example of the dark line at the time of detecting using the shielding member which concerns on the modification 3. It is a top view which shows an example of the dark line at the time of using the surface plasmon detection apparatus which concerns on Embodiment 3.
  • FIG. It is a top view which shows an example of the dark line at the time of using the surface plasmon detection apparatus which concerns on Embodiment 4, when the 1st opening provided in the shielding member is selected, and the 2nd opening provided in the shielding member It is a top view which shows an example of the dark line at the time of selecting.
  • FIG. It is a figure which shows the relationship between the density
  • FIG. 1 is a schematic diagram showing the configuration of the surface plasmon detection device according to the present embodiment. With reference to FIG. 1, the surface plasmon detection apparatus 1 which concerns on this Embodiment is demonstrated.
  • the surface plasmon detection device 1 includes a light projecting unit 2, a light receiving unit 3, a surface plasmon element 60, and an arithmetic processing unit 90.
  • the light projecting unit 2 projects incident light L1 toward the surface plasmon element 60.
  • the light receiving unit 3 receives the reflected light L ⁇ b> 2 reflected from the surface plasmon element 60.
  • the light projecting unit 2 includes a light source 10, a collimating lens 20, a polarizer 30, a reflecting mirror 40, and a condenser lens 50.
  • a light source 10 for example, a semiconductor laser can be employed.
  • the outgoing light emitted from the light source 10 is converted into a parallel light beam by the collimating lens 20.
  • the polarizer 30 is for extracting p-polarized light that causes surface plasmon from the emitted light emitted from the light source 10.
  • the outgoing light converted into the parallel light flux is converted into p-polarized light by the polarizer 30 and reflected toward the condenser lens 50 by the reflection mirror 40.
  • the outgoing light reflected by the reflection mirror 40 is condensed by the condenser lens 50 and enters the surface plasmon element 60.
  • incident light L ⁇ b> 1 composed of a light beam having a distribution in incident angles enters the surface plasmon element 60.
  • the incident light L1 is incident on an interface between a dielectric member 67 and a metal thin film 64 described later. At this time, the incident light L1 enters the interface with a uniform intensity distribution.
  • the incident light L1 composed of a light flux having a distribution in the incident angle is reflected by the surface plasmon phenomenon at the interface between the dielectric member 67 and the metal thin film 64. As reflective.
  • the light receiving unit 3 includes a collimating lens 70, a shielding member 81, and a light receiving element 82.
  • the reflected light L ⁇ b> 2 reflected by the surface plasmon element 60 is converted into a parallel light beam by the collimating lens 70.
  • the reflected light L ⁇ b> 2 converted into the parallel light flux passes through an opening 83 (see FIG. 5) provided in the shielding member 81 and is received by the light receiving element 82.
  • the opening 83 defines a light receiving region of the light receiving unit 3.
  • a photodiode can be employed.
  • the amount of reflected light L2 received can be detected by the photodiode.
  • the light receiving unit 82 is connected to the arithmetic processing unit 90.
  • the arithmetic processing unit 90 calculates the concentration and the like of a measurement object such as a volatile organic substance based on the amount of the reflected light L2 detected by the light receiving element 82.
  • the arithmetic processing unit 90 includes a processing unit 91, a storage unit 92, a table storage unit 93, and a thermohygrometer 94 which will be described later.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of the surface plasmon element of the surface plasmon detector shown in FIG.
  • the surface plasmon element 60 will be described with reference to FIG.
  • the surface plasmon element 60 includes a prism 61, a transparent substrate 62, a first adhesion layer 63, a metal thin film 64, a second adhesion layer 65, and a staying layer 66.
  • the prism 61 and the transparent substrate 62 constitute a dielectric member 67.
  • the material of the prism 61 is preferably a substance having high light transmittance and a large difference in dielectric constant from vacuum.
  • a translucent resin, glass, or the like can be employed as the prism 61.
  • glass is adopted as the prism 61.
  • the material of the transparent substrate 62 is preferably a material having substantially the same refractive index as that of the prism 61 in order to suppress light loss due to a difference in refractive index.
  • a light-transmitting resin, glass, or the like can be used as the transparent substrate 62. In the present embodiment, glass is used.
  • the transparent substrate 62 is bonded to the prism 61 using an adhesive without a gap.
  • a member having substantially the same refractive index as that of the prism 61 and the transparent substrate 62 as the adhesive.
  • a first adhesion layer 63, a metal thin film 64, a second adhesion layer 65, and a staying layer 66 are laminated in this order on the main surface 62b located on the side opposite to the prism 61 side. After these layers are laminated on the main surface 62b, the main surface 62a of the transparent substrate 62 located on the opposite side of the main surface 62b is bonded to the bottom surface 61a of the prism 61 using the adhesive.
  • the first adhesion layer 63 is formed when the adhesion between the metal thin film 64 and the transparent substrate 62 is poor. For this reason, when the metal thin film 64 can be directly formed on the main surface 62b of the transparent substrate 62 while ensuring adhesion, the first adhesion layer 63 can be omitted.
  • the first adhesion layer 63 a material having good adhesion to the transparent substrate 62 and the metal thin film 64 is used.
  • the metal thin film 64 is made of a noble metal such as gold or silver
  • a material such as titanium, nickel, chromium, or molybdenum can be used for the first adhesion layer 63.
  • titanium is employed.
  • the first adhesion layer 63 is preferably formed as thin as possible within the limit where adhesion can be obtained so as not to inhibit the arrival of the incident light L1 to the metal thin film 64.
  • the thickness of the first adhesion layer is preferably about 1 nm. Even when the first adhesion layer 63 is formed, since the thickness of the first adhesion layer 63 is very thin as described above, the interface between the dielectric member 67 and the thin metal thin film 64 is the prism 61. The main surface 64a of the metal thin film 64 located in the side is pointed out.
  • the metal thin film 64 gold, silver, copper, platinum, aluminum or the like can be employed. In this embodiment, gold is adopted.
  • the thickness of the metal thin film 64 is preferably within a range in which the reflection intensity attenuation effect due to surface plasmon resonance is most obtained, and is preferably 40 to 55 nm, for example.
  • the second adhesion layer 65 is formed when the adhesion between the metal thin film 64 and the staying layer 66 is poor. For this reason, when the staying layer 66 can be directly formed on the main surface 64b of the metal thin film 64 while ensuring adhesion, the second adhesion layer 65 can be omitted.
  • the second adhesion layer 65 a material having good adhesion to the metal thin film 64 and the staying layer 66 is used.
  • the staying layer 66 is made of silicon dioxide, a material such as titanium, nickel, chromium, or molybdenum can be used. In the present embodiment, titanium is employed.
  • the stagnant layer 66 is formed on the metal thin film 64 or the second adhesion layer 65 when the object to be measured is a substance having poor adsorptivity to the metal thin film 64, such as a volatile organic substance (VOC) in a gas. Is done.
  • the retention layer 66 temporarily retains the gas containing the measurement object on the metal thin film 64.
  • the staying layer 66 preferably has a porous shape in which a plurality of through-holes penetrating in the thickness direction are provided. Thereby, the gas can be retained in the through hole.
  • silicon dioxide As the material of the staying layer 66, silicon dioxide can be adopted.
  • silicon dioxide in order to form a silicon dioxide film having a porous shape, first, water and a surfactant are mixed to adjust pH, and then a solution in which TEOS (Tetraethyl orthosilicate) is mixed is prepared.
  • the solution can be formed by applying the solution on the metal thin film 64 or the second adhesion layer 65 using a spin coating method, followed by drying and baking.
  • the staying layer 66 is for increasing the gas detection sensitivity by retaining the gas on the metal thin film 64 for a long time when the detection target is a gas, and is not a configuration essential for the implementation of the present invention.
  • the detection target is a liquid
  • the present invention can be used also for the use which attaches the antibody ingredient in a liquid to metal thin film 64, and detects the antibody reaction.
  • the second adhesion layer 65 has adhesion so that a measurement object such as a volatile organic substance can adhere to the metal thin film 64. It is preferable to form as thin as possible at the limit. Specifically, the thickness of the second adhesion layer 65 is preferably 1 nm.
  • the dielectric member 67 is configured by the prism 61 and the transparent substrate 62
  • the present invention is not limited thereto, and the dielectric member 67 may be configured by the prism 61.
  • the metal thin film may be directly formed on the bottom surface 61a of the prism 61, or the first adhesion layer and the metal thin film may be formed in this order.
  • the staying layer may be directly formed on the metal thin film according to the measurement object, or the second adhesion layer and the staying layer may be formed in this order.
  • FIG. 3 is a diagram showing the relationship between the incident angle and the reflectance included in the incident light having the incident angle distribution in the surface plasmon detector shown in FIG. With reference to FIG. 3, the relationship between the incident angle and the reflectance included in the incident light L1 having the incident angle distribution in the surface plasmon detector 1 will be described.
  • the incident light L1 having a distribution in the incident angle has an angular distribution in which the incident angle gradually changes with respect to one axial direction in the incident light beam cross section perpendicular to the optical axis of the incident light L1.
  • Light is incident on the interface between the metal thin film 64 and the dielectric member 67.
  • the wave number of the surface plasma and the wave number of the evanescent light transmitted along the main surface 64a of the metal thin film 64 through the inside of the metal thin film 64 become equal. Resonance occurs.
  • the reflection intensity (reflectance) of light incident at an incident angle near 38 degrees is attenuated.
  • the uniaxial direction refers to a predetermined one direction on the incident light beam cross section.
  • the resonance angle (incident angle) at which surface plasmon resonance occurs varies depending on the surface state of the metal thin film 64.
  • the reflection intensity of light incident at an incident angle different from the above example is attenuated.
  • the portion where the reflection intensity is attenuated varies depending on the concentration of the volatile organic substance.
  • FIG. 4 is a diagram showing a cross-section of the reflected light beam reflected at the interface between the dielectric member and the metal thin film shown in FIG. 4 shows a cross section of reflected light (reflected light beam cross section) after incident light having an incident angle range of 32 ° to 46 ° (angle distribution) shown in FIG. 3 is reflected at the interface. Yes.
  • the reflected light reflected at the interface between the dielectric member and the metal thin film will be described with reference to FIG.
  • the reflected light L2 has a light quantity distribution by being reflected in a state where the reflection intensity is attenuated in a part of the angle range.
  • the reflected light L2 has a light amount distribution in which the amount of light changes in a direction corresponding to the one axis direction in the cross section of the reflected light beam perpendicular to the optical axis of the reflected light L2.
  • a dark line BL is formed in a portion where the amount of light is smaller than in other portions.
  • the dark line BL is formed to extend in a direction perpendicular to the direction corresponding to the one axis direction (AR1 direction).
  • FIG. 5 is a plan view showing an example of a change in the position of the dark line when detected using the shielding member shown in FIG. With reference to FIG. 5, the surface plasmon detection method using the surface plasmon detection apparatus 1 is demonstrated. In this case, a method for measuring the concentration of volatile organic substances will be described.
  • a shielding member 81 having a circular opening 83 is used as the shielding member.
  • the position of the dark line BL formed by the surface plasmon phenomenon changes not only with the concentration of the measurement object (volatile organic substance) but also with temperature and humidity. For this reason, the light quantity of the reflected light L2 at each temperature and humidity is detected in advance by the light receiving unit 3 in a state where there is no measurement object in the apparatus.
  • Each light amount detected in advance is stored in the storage unit 92 (see FIG. 1) as a reference amount at each temperature and humidity. Further, a conversion table for calculating the gas concentration based on the fluctuation amount from the reference amount is also stored in the table storage unit 93 (see FIG. 1).
  • the temperature / humidity in the apparatus at the time of measurement is measured using a temperature / humidity meter 94 (see FIG. 1) in the absence of a measurement object. Based on the information about the measured temperature and humidity, the processing unit 91 determines a reference amount necessary at the time of measurement from the information stored in the storage unit 92.
  • the position of the dark line (the initial position of the dark line) when the amount of light corresponding to the determined reference amount is detected is indicated by a two-dot chain line.
  • the center line of the dark line coincides with the center line C1 of the opening 83.
  • the light receiving unit 3 detects the amount of the reflected light L2 reflected at the interface in a state where the gas containing the measurement object is in contact with the main surface 64b of the metal thin film 64.
  • the position of the dark line BL varies depending on the surface state of the metal thin film 64 and moves in a direction parallel to the direction facing the one axial direction.
  • the dark line BL moves to a position away from the center line C1 of the opening 83 in the AR1 direction in the drawing.
  • the opening 83 has a direction in which a length d1 in a direction perpendicular to the direction corresponding to the one-axis direction corresponds to the one-axis direction. It is formed so as to gradually change along a direction parallel to. For this reason, when the position of the dark line BL changes, the ratio of the area of the dark line BL occupying the light receiving region changes. Thereby, the light quantity of the reflected light which the light-receiving part 3 detects changes according to the position of the dark line BL.
  • the processing unit 91 calculates the difference (variation amount) between the light amount of the reflected light L2 detected at the time of measurement and the reference amount, and calculates the concentration of the measurement object using the conversion table.
  • the rate of change of the area of the opening is not constant with respect to the moving direction of the dark line BL. That is, the rate of change of the length d1 of the opening perpendicular to the direction corresponding to the one axis direction is not constant.
  • concentration of a measurement object is reliably computable by using the above conversion tables.
  • the initial position of the dark line BL is set so as to be located in a portion away from the center line C1.
  • the rate of change of the length d1 of the opening increases as the distance from the center line C1 increases.
  • the dark line BL is slightly moved compared to the case where the initial position is set near the center line.
  • the amount of change in the area of the dark line BL increases. For this reason, the difference between the detected light amount and the reference amount is increased, and the detection sensitivity can be increased.
  • the surface plasmon detection device 1 by appropriately setting the position of the dark line when detecting the reference amount (initial position of the dark line), it is possible to cope with a case where particularly high sensitivity is required. For this reason, the surface plasmon detection device 1 according to the present embodiment can optimize the sensitivity depending on the use environment.
  • FIG. 6 is a schematic diagram for explaining a surface plasmon detection method in a comparative example. With reference to FIG. 6, the surface plasmon detection method in a comparative example is demonstrated. In the comparative example, a multi-cell line sensor is used as the light receiving unit.
  • the measurement object is within a measurement range R having n ⁇ m pixels (n and m are arbitrary positive integers) g.
  • the initial position of the dark line BL1 in the absence state and the position of the dark line BL2 in the state where the measurement object is present are detected. It detects how many pixels the dark line has moved, and calculates the concentration of the measurement object based on the amount of movement.
  • a calculation process using a complicated algorithm is required. Therefore, the configuration of the detection unit is complicated and the detection unit itself is expensive.
  • the light receiving unit 3 detects different amounts of light according to the difference in the light amount distribution caused by the angle dependency of the reflected light L2.
  • the amount of the reflected light L2 can be obtained with a simple configuration.
  • the case where the shape of the opening 83 is circular has been described as an example.
  • the present invention is not limited to this, and the opening 83 is short in a direction parallel to the direction perpendicular to the direction corresponding to the one axis direction.
  • An elliptical shape or an elliptical shape having an axis or a major axis may be used.
  • FIG. 7 is a plan view illustrating an example of a dark line when detected using the shielding member according to the present modification. With reference to FIG. 7, the shielding member 81A according to the present modification will be described.
  • the opening 83A of the shielding member 81A according to the present modification has a curved shape so that the hypotenuse of the right triangle approaches the other two sides.
  • one side 83b extends in a direction parallel to the direction corresponding to the one axis direction (AR1 direction)
  • the other side 83a extends in a direction orthogonal to a direction corresponding to the one-axis direction.
  • the opening 83A is gradually formed along a direction (AR1 direction in the drawing) in which the length d1 in the vertical direction is parallel to the direction corresponding to the uniaxial direction in the direction corresponding to the uniaxial direction. It is formed so as to change. Even in this case, since the rate of change of the length d1 of the opening is not constant along the AR1 direction, the environment of use can be determined by appropriately setting the position of the dark line (the initial position of the dark line) when detecting the reference amount. The sensitivity can also be optimized.
  • the shielding member 81A according to the present modification is used in the surface plasmon detection device according to the first embodiment, it is substantially the same as the surface plasmon detection device and the surface plasmon detection method according to the first embodiment. An effect is obtained.
  • FIG. 8 is a plan view showing an example of a dark line when detected using a shielding member provided in the surface plasmon detection device according to the present embodiment. With reference to FIG. 8, the surface plasmon detection device according to the present embodiment will be described.
  • the surface plasmon device according to the present embodiment is different from the surface plasmon device according to the first embodiment in the shape of the opening 83B of the shielding member 81B. Other configurations are almost the same.
  • the opening 83B has a right triangle shape.
  • One of the two sides excluding the hypotenuse 83c in the outline of the opening 83B extends in a direction parallel to the direction corresponding to the one axial direction (AR1 direction), and the other side 83a It extends in a direction orthogonal to a direction corresponding to one axial direction.
  • the hypotenuse 83c intersects the dark line projected on the plane including the opening 83C.
  • the length d1 of the opening 83B extending in the direction perpendicular to the direction corresponding to the one axis direction gradually changes along the AR1 direction at a constant change rate. For this reason, if the moving amount of the dark line BL is the same regardless of the initial position of the dark line BL, the amount of change in the area of the dark line BL is constant. Thereby, the amount of change in the amount of reflected light detected by the light receiving unit 3 is also constant.
  • FIG. 9 and FIG. 10 are diagrams showing an example of a change in the position of the dark line and other examples when detected using the shielding member shown in FIG.
  • the amount of change in the area of the dark line BL when the initial position of the dark line is different and the amount of movement of the dark line BL is the same will be described with reference to FIGS.
  • the predetermined region R on the plane including the opening 83B is divided into n ⁇ m unit regions g for easy understanding of the movement amount. Further, the hypotenuse of the opening 83B coincides with the diagonal line of the unit region g through which it passes. Note that the region R in FIG. 9 and the region R in FIG. 10 are in the same range, and the opening 83B in FIG. 9 and the opening 83B in FIG. 10 have the same shape.
  • FIG. 9 shows a case where the initial position of the dark line is P1 and the position of the dark line BL after movement is P2.
  • FIG. 10 shows the case where the initial position of the dark line is P3, the position of the dark line BL after movement is P4, and the initial position of the dark line is P5, and the position of the dark line BL after movement is P6. Yes.
  • the moving amount of the dark line BL is 4 squares in the AR1 direction.
  • the area of the dark line BL after the movement is reduced by an area of 4 unit regions with respect to the area of the dark line at the initial position.
  • the amount of movement of the dark line is the same regardless of the initial position, the amount of change in the area of the dark line BL is also constant.
  • the concentration of the measurement object can be measured from the difference between the reference amount and the detected value as in the first embodiment.
  • FIG. 11 is a plan view showing an example of a dark line when detected using the shielding member according to the present modification. With reference to FIG. 11, the shielding member 81C according to the present modification will be described.
  • the opening 83C of the shielding member 81C according to the present modification has a trapezoidal shape.
  • one set of parallel opposite sides is parallel to the direction corresponding to the one axis direction (AR1 direction) and the vertical direction.
  • another set of opposite sides excluding one set of parallel opposite sides intersects the dark line projected on the plane including the opening 83C.
  • the length d1 of the opening 83C extending in the direction perpendicular to the direction corresponding to the one axis direction (AR1 direction) is constant along the AR1 direction. It gradually changes at the rate of change. As a result, also in this modification, it is possible to obtain substantially the same effect as in the second embodiment.
  • FIG. 12 is a plan view illustrating an example of a dark line when detected using the shielding member according to the present modification. With reference to FIG. 12, shielding member 81D which concerns on this modification is demonstrated.
  • the opening 83D of the shielding member 81D has a triangular shape.
  • One side (bottom side) 83a of the outline of the opening 83D is parallel to a direction (AR1 direction) corresponding to the one-axis direction and a vertical direction.
  • the other two sides 83b and 83c of the outline of the opening 83D are inclined so as to approach each other in the direction of the AR1.
  • the other two sides 83b and 83c of the outline of the opening 83D intersect with the dark line projected on the plane including the opening 83C.
  • One side 83c of the other two sides is connected to one end of the one side 83a, and the other side 83b of the other two sides is connected to the other end of the one side. Yes.
  • the length d1 of the opening 83D extending in the direction perpendicular to the direction corresponding to the one-axis direction (AR1 direction) is constant along the AR1 direction. It gradually changes at the rate of change. As a result, also in this modification, it is possible to obtain substantially the same effect as in the second embodiment.
  • FIG. 13 is a diagram illustrating an example of a dark line when the surface plasmon detection device according to the present embodiment is used. With reference to FIG. 13, the surface plasmon detection device according to the present embodiment will be described.
  • the surface plasmon device according to the present embodiment is different from the surface plasmon device according to the second embodiment in that the shielding member 81 is not used in the light receiving unit 3 and the light receiving element.
  • the difference is that 82 is arranged to rotate in the circumferential direction with respect to the central axis C2. Other configurations are almost the same.
  • the light receiving element 82 has a substantially rectangular light receiving region.
  • the light receiving element 82 is arranged so that the diagonal line D1 of the light receiving area of the light receiving element 82 is parallel to a direction perpendicular to the direction corresponding to the one axis direction (AR1 direction).
  • the length d1 in the direction perpendicular to the direction corresponding to the uniaxial direction gradually changes at a constant change rate along the direction parallel to the direction corresponding to the uniaxial direction. It is formed as follows.
  • the dark line BL when the initial position of the dark line is at a position indicated by a two-dot chain line, and the position of the dark line BL after measuring the concentration of the measurement object is at a position symmetrical to the initial position across the diagonal line D1, the dark line It is possible that the area of the dark line BL does not change before and after the movement of BL.
  • the surface plasmon detection device can be further simplified.
  • FIG. 14 is a plan view showing an example of a dark line when the surface plasmon detection device according to the present embodiment is used, in the case where the first opening provided in the shielding member is selected and provided in the shielding member. It is a top view which shows an example of the dark line at the time of selecting a 2nd opening part.
  • FIG. 14A is a plan view illustrating an example of a dark line when the first opening provided in the shielding member is selected.
  • FIG. 14B is a plan view illustrating an example of a dark line when the second opening provided in the shielding member is selected.
  • the surface plasmon detection device according to the present embodiment is compared with the surface plasmon detection device 1 according to the first embodiment.
  • the shielding member 81E has a plurality of openings 83E1 and 83E2.
  • the plurality of openings 83E1 and 83E2 are arranged, for example, so as to be aligned in a direction perpendicular to the direction corresponding to the one axial direction (AR1 direction).
  • the shielding member 81E is slidably provided.
  • the opening corresponding to the light receiving unit 3 is moved by sliding the shielding member 81E in the DR direction (direction perpendicular to the direction corresponding to the one axis direction) by the opening selection unit.
  • 83E1 and 83E2 can be selectively arranged.
  • the direction in which the openings 83E1 and 83E2 are arranged and the direction in which the shielding member 81E is moved can be set as appropriate. In the present embodiment, it is sufficient that at least one of the plurality of openings is selectable, and the shielding member is manually used by using a slide mechanism or the like without using the opening selection means.
  • the opening may be selected by moving the.
  • Openings 83E1 and 83E2 each have a triangular shape.
  • the sides 83b1 and 83c1 of the contour line of the opening 83E1 and the sides 83b2 and 83c2 of the contour line of the opening 83E2 move toward each other from the bottom side 83a1 and the bottom side 83a2 toward the apex in the AR1 direction. Tilt to approach.
  • the length d11 of the opening 83E1 and the length d12 of the opening 83E2 extending in the direction perpendicular to the direction corresponding to the one axis direction (AR1 direction) are respectively constant change rates along the AR1 direction. Gradually changes.
  • the openings 83E1 and 83E2 have different distances La and Lb from the bases 83a1 and 83a2 that are part of the contour line to the apex.
  • the openings 83E1 and 83E2 have different inclinations of the sides 83b1 and 83c1, and the sides 83b2 and 83c1. For this reason, the rate of change of the length d11 of the opening 83E1 and the length d12 of the opening 83E2 are different.
  • the range in which the dark line shifts (the amount of movement by which the dark line moves in the AR1 direction) varies greatly depending on the use environment. If the shift range of the dark line exceeds the size of the opening (the distance from the base to the apex), the shift amount of the dark line can no longer be measured. For this reason, it is desirable to select the shape of the opening so that the dark line shift range is within the size of the opening. On the other hand, in an environment where the dark line shift range is small, the ratio of the dark line region in the opening changes rapidly according to the dark line shift so that the shift amount can be determined with high accuracy within the dark line shift range. Thus, it is desirable to select the shape of the opening.
  • the single shielding member 81E is slid according to the shift amount of the dark line that differs based on the use environment, and a plurality of openings 83E1 having different shapes as appropriate. , 83E2 can be selectively arranged to improve detection accuracy in each use environment.
  • the concentration of the generated gas is high, and therefore a measurable concentration range is required to be wider than the detection sensitivity (measurement resolution).
  • the opening 83E1 is selected to detect the amount of reflected light.
  • detection sensitivity is required for measurement in an environment where a small amount of gas is generated from wall materials or furniture.
  • the opening 83E2 is selected to detect the amount of reflected light.
  • FIG. 15 is a plan view showing an example of the dark line when the surface plasmon detection device according to the present modification is used, and shows an example of the dark line when the first shielding member is selected and when the second shielding member is selected.
  • FIG. 15A is a plan view illustrating an example of a dark line when the first shielding member is selected.
  • FIG. 15B is a plan view showing an example of a dark line when the second shielding member is selected.
  • the surface plasmon detection device according to the present modification has a plurality of shields having different opening shapes when compared with the surface plasmon detection device according to the fourth embodiment.
  • the difference is that the openings 83F1 and 83F2 corresponding to the light receiving unit 3 can be selectively arranged by exchanging the members 81F1 and 81F2.
  • Other configurations are substantially the same.
  • FIGS. 15A and 15B On the left side in FIGS. 15A and 15B, a plurality of shielding members 81F1 and 81F2 that can be arranged in the light receiving unit 3 are shown. Of these, the shielding members arranged in the light receiving unit 3 are indicated by two-dot chain lines. Show. On the right side in FIG. 15A and FIG. 15B, the shielding member selected and disposed in the light receiving unit 3 is shown.
  • the shielding member selected in advance from the shielding member storage unit that stores the plurality of shielding members 81F1 and 81F2 in the apparatus is provided to the light receiving unit 3 by the shielding member selection unit. Deploy. In the present embodiment, it is sufficient that at least one of the plurality of shielding members is selectable, and the light shielding member is manually selected without using the light shielding member selection unit. Also good.
  • the shielding member 81F1 whose rate of change of the length d11 of the opening 83F1 is not constant along the AR1 direction, and the length of the opening 83F2 at a constant rate of change along the AR1 direction.
  • a shielding member 81F2 whose length d12 gradually changes is used.
  • the opening 83F1 includes a side 83a1, a side 83b1, and a side 83c1.
  • the side 83a1 extends in a direction orthogonal to the direction corresponding to the one axis direction (AR1 direction), and the side 83b1 extends in a direction opposite to the one axis direction.
  • the side 83c1 connects the end of the side 83a1 and the end of the side 83b1 that are located opposite to the connection point of the side 83a1 and the side 83b1.
  • the side 83c1 includes a plurality of side parts 83c11, 83c12, and 83c13 having different degrees of inclination.
  • the rate of change of the length d11 of the opening 83F1 changes stepwise along the AR1 direction.
  • the sensitivity of the shielding member 83F1 changes from the initial position of the dark line.
  • the opening 83F2 has a triangular shape in which the base 83a2 is parallel to the direction corresponding to the one axis direction and the vertical direction. For this reason, the length d12 of the opening 83F2 gradually changes at a constant change rate along the AR1 direction.
  • the change rate of the length d11 of the opening 83F1 is not constant along the AR1 direction, and the length d12 of the opening 83F2 is gradually changed at a constant change rate along the AR1 direction.
  • the shielding member 81F2 that changes to has been described as an example, the present invention is not limited to this.
  • the length d12 of the opening changes at a constant rate of change in the AR1 direction, a plurality of shielding members having different rates of change of the length d12 of the opening may be used.
  • the shape of the opening is By preparing a plurality of different shielding members and selecting them appropriately, the sensitivity can be optimized according to the use environment.
  • FIG. 16 is a diagram illustrating an example of a dark line when the surface plasmon detection device according to the present embodiment is used. With reference to FIG. 16, the surface plasmon detection device according to the present embodiment will be described.
  • the surface plasmon detection device according to the present embodiment is different from the surface plasmon detection device according to the third embodiment in that a shielding member 81 is provided. Other configurations are almost the same.
  • the light receiving area located on the left side of the diagonal line D1 is covered with the shielding member 81 in order to reliably use only the half surface of the light receiving area located on the left or right side of the diagonal line D1.
  • the present embodiment can provide substantially the same effect as that of the third embodiment.
  • FIG. 17 is a diagram showing the relationship between the concentration of the measurement object and the value detected by the detection unit when the concentration of the measurement object is measured in order to verify the effect of the present invention. With reference to FIG. 17, the relationship between the density
  • toluene was used as a measurement object.
  • a value based on the amount of light detected when toluene having each concentration was measured was detected as a detection value.
  • the detection value when measuring toluene having a concentration of 1 ppm is standardized as 1.
  • the greater the amount of dark line movement the smaller the proportion of the dark line that occupies the light receiving area, and the greater the amount of light detected.
  • the same result was obtained, and the detected value increased as the concentration of toluene increased.
  • the surface plasmon detector according to the present embodiment can be used to accurately measure the concentration and the like of the measurement object.
  • SYMBOLS 1 Surface plasmon detection apparatus, 2 projector part, 3 light-receiving part, 10 light source, 20 collimating lens, 30 polarizer, 40 reflection mirror, 50 condensing lens, 60 surface plasmon element, 61 prism, 61a bottom face, 62 transparent substrate, 62a, 62b main surface, 63 first adhesion layer, 64 metal thin film, 64a, 64b main surface, 65 second adhesion layer, 66 retention layer, 67 dielectric member, 70 collimating lens, 81, 81A, 81B, 81C, 81D , 81E, 81F1, 81F2 shielding member, 82 light receiving element, 83, 83A, 83B, 83C, 83D, 83E1, 83E2, 83F1, 83F2 opening.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 表面プラズモン検出装置(1)は、主表面を有する誘電体部材および主表面上に形成された金属薄膜を含み、誘電体部材と金属薄膜との界面における表面プラズモン現象により、入射角度に分布を有する光束から成る入射光(L1)を、光量に角度依存性を有する光束から成る反射光(L2)として反射する表面プラズモン素子(60)と、表面プラズモン素子(60)に向けて入射光(L1)を投光する投光部(2)と、表面プラズモン素子(60)にて反射された反射光(L2)を受光する受光部(3)とを備える。受光部(3)は、反射光(L2)の角度依存性に起因した光量分布の相違に応じて異なる光量が検出されるように構成された受光領域を有している。

Description

表面プラズモン検出装置および表面プラズモン検出方法
 本発明は、導電生物質表面での表面プラズモンの発生を利用して導電生物質表面の測定対象物質を検出する表面プラズモン検出装置および表面プラズモン検出方法に関する。
 表面プラズモンとは導電性物質表面における表面電荷密度の波であり、この現象を利用した物質の検出器および検出方法が知られている。一般的に、表面プラズモンを利用した表面プラズモン検出装置は、プリズムと、プリズムの一面に直接またはプリズムの一面に対して所定の間隔をおいて形成された金属薄膜と、上記光ビームをプリズムに通して該プリズムと金属薄膜との界面に対して種々の入射角が得られるように入射させる光学系と、上記の界面で全反射した光ビームの強度を種々の入射角毎に検出可能な光検出手段とを備えている。
 上記表面プラズモン検出装置において、金属薄膜表面における表面プラズモンは、金属薄膜とプリズムの誘電条件、および金属薄膜の表面状態で決定する固有の分散関係をもつ。
 また、光ビームを金属薄膜に対して全反射角以上の入射角θで入射させると、入射光の一部が金属薄膜の内部を金属薄膜表面に沿って伝達するエバネッセント光と呼ばれる光となる。このエバネッセント光の波数ベクトルは、入射光の波数ベクトルのエバネッセント光の進行方向成分と等しくなる。すなわち、エバネッセント光の波数は、種々の入射各θに対して、sinθに従い異なる値をもつ。
 表面プラズマの波数とエバネッセント光の波数とが等しくなる条件を満たす時、表面プラズモン共鳴と呼ばれる現象が発生し、この条件を満たす入射角に対応する光の全反射光に強度の著しい減少が観測される。
 表面プラズモンは金属薄膜の表面の状態に対して非常に敏感であるため、金属薄膜表面に物質が付着すると全反射光の強度の減少が観測される光の入射角度にずれが生じる。したがって、この全反射光の強度の減少が観測される光の入射角度のずれを観測することにより、金属薄膜に付着した物質を検出することができる。
 このような、全反射光の強度の減少が観測される光の入射角度のずれを観測することにより金属薄膜に付着した物質を検出する表面プラズモン検出装置が開示された文献として、例えば特開平10-19768号公報(特許文献1)、特開平10-239233号公報(特許文献2)および特開2006-47000号公報(特許文献3)が挙げられる。
 特許文献1に開示の表面プラズモン検出装置にあっては、種々の入射角度の光線成分からなる光線束を、金属薄膜と誘電体部材の界面に収束光状態あるいは発散光状態で入射させる。当該界面にて種々の反射角度で反射した各光線成分を、それらすべてを受光できる方向に延びる多セル型のラインセンサーや2次元アレイセンサーによって検出し、暗線の検出位置に対応する光線成分の入射角度を、全反射減衰角として特定する。
 特許文献2に開示の表面プラズモン検出装置にあっては、平行な光線を、入射角度を変化させながら金属薄膜と誘電体部材の界面に順次入射させ、入射角度の変化に従って反射角度が変化する光線を、その反射角度の変化に同期して移動する小さな1セル型の光受光部や、反射角度の変化方向に沿って延びる1セル型または多セル型の光受光部によって検出する。この場合には、暗線が検出された際の入射角度を全反射減衰角として特定する。
 特許文献3に開示の表面プラズモン検出装置にあっては、金属薄膜と誘電体部材の界面に入射する光束線として、該光線束の中心光線の入射平面内において、入射角度に応じてガウシアン分布、あるいは、単調増加または単調減少するビーム断面強度を有するものを用いる。この場合には、反射減衰を受けた光線成分の入射角度を特定して、反射減衰角を求める。
特開平10-19768号公報 特開平10-239233号公報 特開2006-47000号公報
 しかしながら、特許文献1に開示の表面プラズモン検出装置にあっては、当該界面にて種々の反射角度で反射した各光線成分を多セル型のラインセンサーや2次元アレイセンサーによって検出するため、高価な検出器(受光部)が必要となる。また、暗線位置を検出するために複雑なアルゴリズムによる計算処理を要する。さらに、界面の凹凸や、暗線の広がり幅(特にレーザー以外の光源を用いた場合)の影響により、暗線位置の検出精度が制限される。
 特許文献2に開示の表面プラズモン検出装置にあっては、入射角度を変化させながら平行な光線を順次入射させるため、入射角度を変化させる機構が煩雑となるともに、高速処理が困難にある等の問題があった。さらに、機械的な移動機構により入射角度を変化させる場合には、その移動機構の角度設定精度により検出精度が制限される。
 特許文献3に開示の表面プラズモン検出装置にあっては、レーザー光源によりガウシアン状のビーム断面強度を有する光線を発生させ、その光線を一旦拡大した後、上記の界面に向けて収束させつつこれを界面に入射させる。これにより、種々の入射角θと、その入射角θと相関関係(ガウシアン分布)のある強度とを有する多数の光線分を含む光束を発生させることができる。このような形態においては、レーザー光源により発せられたガウシアン状のビーム強度分布をもつ光束を、強度分布を保った状態で界面に入射する必要がある。
 しかしながら、一般的に、ビーム光の進行に伴うビームの自然拡散や、発散・集光の光学系による撹乱によって、ビームの光路の過程においてビーム強度分布の形状は大きく変形する。これらの影響を考慮して、強度分布の形状を高精度に制御した状態で界面に入射するには、非常に高度かつ複雑な構造をもつ入射光学系を必要とする。
 このため、特許文献3に開示の表面プラズモン検出装置の構成を採用する場合には、例えば、光線束を制御するための部材点数が多くなり位置、角度の調整作業が複雑になること、また光学系の部材コストが上昇すること、さらにそれらを収容するための空間を要することが考えられる。
 また、レーザー光源により発せられたガウシアン状のビーム強度分布をもつ光束から単調増加または単調減少する強度分布を得るためには、ガウシアン分布を均一な強度分布に変換するための逆ガウシアンフィルタ、および均一な強度分布を単調増加または単調減少する強度分布に変換するためのウェッジフィルタが必要となり、それらを検出基板より前段に設ける必要があるため、さらに入射光学系の構造が複雑化する。
 本発明は、上記のような問題に鑑みてなされたものであり、本発明の目的は、簡素な構成で十分な検出精度を得ることができる表面プラズモン検出装置および表面プラズモン検出方法を提供することにある。
 本発明に基づく表面プラズモン検出装置は、主表面を有する誘電体部材および上記主表面上に形成された金属薄膜を含み、上記誘電体部材と上記金属薄膜との界面における表面プラズモン現象により、入射角度に分布を有する光束から成る入射光を、光量に角度依存性を有する光束から成る反射光として反射する表面プラズモン素子と、上記表面プラズモン素子に向けて上記入射光を投光する投光部と、上記表面プラズモン素子にて反射された上記反射光を受光する受光部とを備える。上記受光部は、上記反射光の上記角度依存性に起因した光量分布の相違に応じて異なる光量が検出されるように構成された受光領域を有している。
 上記本発明に基づく表面プラズモン検出装置にあっては、上記投光部は、上記入射光として、当該入射光の光軸に垂直な入射光束断面において1軸方向に対して入射角が漸次的に変化する角度分布を有する光を投光することが好ましい。また、上記受光部は、上記反射光として、当該反射光の光軸に垂直な反射光束断面において上記1軸方向に対応する方向に上記光量分布を有する光を受光することが好ましい。この場合には、当該受光領域を含み上記反射光が投影される第1平面において、上記受光領域は、上記1軸方向に対応する方向に垂直方向の長さが上記1軸方向に対応する方向に平行な方向に沿って漸次的に変化するように形成されていることが好ましい。
 上記本発明に基づく表面プラズモン検出装置にあっては、上記反射光束断面は、上記反射光が上記光量分布を有することで他の部分よりも光量が少なくなることによって上記1軸方向に対応する方向と垂直方向に延在するように形成された暗線を含むことが好ましい。この場合には、上記受光領域の輪郭線は、上記第1平面に投影された暗線に対して非平行に交差する部分を有することが好ましい。
 上記本発明に基づく表面プラズモン検出装置にあっては、上記1軸方向に対応する方向と垂直方向に延在する上記受光領域の長さが、一定の変化率で漸次的に変化することが好ましい。
 上記本発明に基づく表面プラズモン検出装置にあっては、上記受光部は、開口部を有する遮蔽部材と、上記開口部を透過した上記反射光の光量を検出する受光素子とを含んでいてもよい。この場合には、上記受光領域が上記開口部によって規定されることが好ましい。
 上記本発明に基づく表面プラズモン検出装置にあっては、上記遮蔽部材は、単数または複数の遮蔽部材によって構成されてもよく、上記遮蔽部材が上記単数の遮蔽部材によって構成される場合には、上記単数の遮蔽部材はそれぞれ形状の異なる複数の開口部を有することが好ましく、上記受光部は、上記複数の開口部の中から上記受光領域を規定する1つの開口部を選択可能に設けられることが好ましい。また、上記遮蔽部材が上記複数の遮蔽部材によって構成される場合には、上記複数の遮蔽部材は、それぞれ形状の異なる上記開口部を有することが好ましく、上記受光部は、上記複数の遮蔽部材のうち1つの遮蔽部材を選択可能に設けられていることが好ましい。
 上記本発明に基づく表面プラズモン検出装置にあっては、上記受光部にて検出した受光量と、上記受光部にて予め検出した基準量との関係に基づき、測定対象物を検出することが好ましい。
 上記本発明に基づく表面プラズモン検出装置にあっては、上記表面プラズモン素子は、上記金属薄膜に表面に気体を滞留させる滞留層を含むことが好ましい。
 本発明に基づく表面プラズモン検出方法は、主表面を有する誘電体部材および上記主表面上に形成された金属薄膜を含む表面プラズモン素子に、入射角度に分布を有する光束から成る入射光を投光部から投光し、上記表面プラズモン素子に入射された上記入射光を、上記誘電体部材と上記金属薄膜との界面における表面プラズモン現象により光量に角度依存性を有する光束から成る反射光として反射し、上記表面プラズモン素子にて反射された上記反射光を受光部にて受光する表面プラズモン検出方法であって、上記受光部として、上記反射光の上記角度依存性に起因した光量分布の相違に応じて異なる光量が検出されるように構成された受光領域を有するものを用いる。
 本発明によれば、簡素な構成で十分な検出精度を得ることができる表面プラズモン検出装置および表面プラズモン検出方法を提供することができる。
実施の形態1に係る表面プラズモン検出装置の構成を示す概略図である。 図1に示す表面プラズモン検出装置の表面プラズモン素子の構成を示す概略断面図である。 図1に示す表面プラズモン検出装置における入射角度分布を有する入射光に含まれる入射角と反射率との関係を示す図である。 図1に示す誘電体部材と金属薄膜との界面において反射された反射光の光束の断面を示す図である。 図1に示す遮蔽部材を用いて検出した場合における暗線の位置の変化の一例を示す平面図である。 比較例における表面プラズモン検出方法を説明するための模式図である。 変形例1に係る遮蔽部材を用いて検出した場合における暗線の一例を示す平面図である。 実施の形態2に係る表面プラズモン検出装置に具備される遮蔽部材を用いて検出した場合の暗線の一例を示す平面図である。 図8に示す遮蔽部材を用いて検出した場合における暗線の位置の変化の一例を示す図である。 図8に示す遮蔽部材を用いて検出した場合における暗線の位置の変化のその他の例を示す図である。 変形例2に係る遮蔽部材を用いて検出した場合における暗線の一例を示す平面図である。 変形例3に係る遮蔽部材を用いて検出した場合における暗線の一例を示す平面図である。 実施の形態3に係る表面プラズモン検出装置を用いた場合における暗線の一例を示す平面図である。 実施の形態4に係る表面プラズモン検出装置を用いた場合における暗線の一例を示す平面図であり、遮蔽部材に設けられた第1開口部を選択した場合および遮蔽部材に設けられた第2開口部を選択した場合における暗線の一例を示す平面図である。 変形例4に係る表面プラズモン検出装置を用いた場合における暗線の一例を示す平面図であり、第1遮蔽部材を選択した場合および第2遮蔽部材を選択した場合における暗線の一例を示す平面図である。 実施の形態5に係る表面プラズモン検出装置を用いた場合における暗線の一例を示す図である。 本発明の効果を検証するために測定対象物の濃度を測定した場合における、測定対象物の濃度と検出部による検出値との関係を示す図である。
 以下、本発明の実施の形態について、図を参照して詳細に説明する。なお、以下に示す実施の形態においては、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さない。
 (実施の形態1)
 図1は、本実施の形態に係る表面プラズモン検出装置の構成を示す概略図である。図1を参照して、本実施の形態に係る表面プラズモン検出装置1について説明する。
 表面プラズモン検出装置1は、投光部2、受光部3、表面プラズモン素子60および演算処理部90を備える。投光部2は、表面プラズモン素子60に向けて入射光L1を投光する。受光部3は、表面プラズモン素子60から反射された反射光L2を受光する。
 投光部2は、光源10、コリメートレンズ20、偏光子30、反射ミラー40および集光レンズ50を含む。光源10としては、たとえば半導体レーザを採用することができる。光源10から出射された出射光は、コリメートレンズ20によって平行光束に変換される。
 偏光子30は、光源10から出射された出射光から表面プラズモンを引き起こすp偏光を抽出するためのものである。平行光束に変換された出射光は、偏光子30によってp偏光にされ、反射ミラー40によって集光レンズ50に向けて反射される。
 反射ミラー40によって反射された出射光は、集光レンズ50によって集光されて表面プラズモン素子60に入射する。これにより、入射角度に分布を有する光束から成る入射光L1が表面プラズモン素子60に入射する。具体的には、入射光L1は、後述する誘電体部材67と金属薄膜64との界面に入射する。この際、入射光L1は、均一の強度分布を持って界面に入射する。
 表面プラズモン素子60は、誘電体部材67と金属薄膜64との界面における表面プラズモン現象により、入射角度に分布を有する光束から成る入射光L1を、光量に角度依存性を有する光束から成る反射光L2として反射する。
 受光部3は、コリメートレンズ70、遮蔽部材81および受光素子82を含む。表面プラズモン素子60によって反射された反射光L2は、コリメートレンズ70によって平行光束に変換される。平行光束に変換された反射光L2は、遮蔽部材81に設けられた開口部83(図5参照)を通過して受光素子82にて受光される。開口部83は、受光部3の受光領域を規定する。受光素子82としては、たとえばフォトダイオードを採用することができる。フォトダイオードにより、受光した反射光L2の光量を検出することができる。受光部82は、演算処理部90に接続されている。
 演算処理部90は、受光素子82が検出した反射光L2の光量に基づいて、揮発性有機物等の測定対象物の濃度等を算出する。演算処理部90は、後述する処理部91、記憶部92、テーブル記憶部93、温湿度計94を含む。
 図2は、図1に示す表面プラズモン検出装置の表面プラズモン素子の構成を示す概略断面図である。図2を参照して、表面プラズモン素子60について説明する。
 表面プラズモン素子60は、プリズム61、透明基板62、第1密着層63、金属薄膜64、第2密着層65および滞留層66を含む。プリズム61および透明基板62によって誘電体部材67が構成される。
 プリズム61の材質は、光透過性が高く、真空との誘電率の違いが大きい物質が好ましい。プリズム61としては、例えば、透光性樹脂、ガラス等を採用することができる。本実施の形態においては、プリズム61としてガラスを採用している。
 透明基板62の材質としては、屈折率の違いによる光損失を抑制するためにプリズム61とほぼ同一の屈折率を持つ材質であることが好ましい。透明基板62としては、プリズム61と同様に、透光性樹脂、ガラス等を採用することができ、本実施の形態においては、ガラスを採用している。
 透明基板62は、接着剤を用いて隙間なくプリズム61に貼り合わされる。屈折率の違いによる光損失を抑制するために、接着剤としては、プリズム61および透明基板62とほぼ同一の屈折率を有する部材を用いることが好ましい。プリズム61側と反対側に位置する主面62b上には、第1密着層63、金属薄膜64、第2密着層65、滞留層66が、この順で積層されている。これらの層が主面62b上に積層された後に、主面62bと反対側に位置する透明基板62の主面62aが、プリズム61の底面61aに上記の接着剤を用いて貼り合わされる。
 第1密着層63は、金属薄膜64と透明基板62との密着性が悪い場合に形成される。このため、透明基板62の主面62b上に密着性を確保した状態で金属薄膜64を直接形成できる場合には、第1密着層63を省略することができる。
 第1密着層63としては、透明基板62と金属薄膜64とに良好な密着性を有する材料が用いられる。たとえば、金属薄膜64が金、銀等の貴金属で構成される場合には、第1密着層63としては、チタン、ニッケル、クロム、モリブデン等の材料を採用することができる。本実施の形態においては、チタンを採用している。
 また、第1密着層63は、金属薄膜64への入射光L1の到達を阻害しないように、密着性が得られる限度において可能な限り薄く形成されることが好ましい。具体的には、第1密着層の厚さは、1nm程度であることが好ましい。なお、第1密着層63が形成される場合であってもこのように第1密着層63の厚さが非常に薄いため、誘電体部材67と薄金属薄膜64との界面とは、プリズム61側に位置する金属薄膜64の主面64aを指す。
 金属薄膜64としては、金、銀、銅、白金、アルミニウムなどを採用することができる。本実施の形態においては、金を採用している。金属薄膜64として金を採用した場合における金属薄膜64の厚さは、表面プラズモン共鳴による反射強度の減衰効果が最も得られる範囲内に収まることが好ましく、たとえば40~55nmであることが好ましい。
 第2密着層65は、金属薄膜64と滞留層66との密着性が悪い場合に形成される。このため、金属薄膜64の主面64b上に密着性を確保した状態で滞留層66を直接形成できる場合には、第2密着層65を省略することができる。
 第2密着層65としては、金属薄膜64と滞留層66とに良好な密着性を有する材料が用いられる。滞留層66が二酸化ケイ素で構成される場合には、チタン、ニッケル、クロム、モリブデン等の材料を採用することができる。本実施の形態においては、チタンを採用している。
 滞留層66は、測定対象物が気体中の揮発性有機物(VOC)のように、金属薄膜64への吸着性が乏しい物質である場合に、金属薄膜64上あるいは第2密着層65上に形成される。滞留層66は、測定対象物を含む気体を一時的に金属薄膜64上に滞留させる。このため、滞留層66は、厚さ方向に貫通する貫通孔が複数設けられたポーラス形状を有することが好ましい。これにより、貫通孔内に上記気体を滞留させることができる。
 滞留層66の材質としては、二酸化ケイ素を採用することができる。この場合には、ポーラス形状を有する二酸化ケイ素膜を形成するために、まず、水と表面活性剤を混合してpHを調整した後にTEOS(Tetraethyl orthosilicate)を混合した溶液を準備する。当該溶液を金属薄膜64上あるいは第2密着層65上にスピンコート法を用いて塗布した後に、乾燥および焼成することにより形成することができる。
 なお、滞留層66は、検出対象が気体である場合に気体を金属薄膜64上に長時間滞留させることにより気体の検出感度を高めるためのものであり、本発明の実施に必須の構成ではない。例えば、検出対象が液体の場合は、滞留層66を省略し、金属薄膜64の表面(たとえば主面64b)に検出対象の液体を直接付着させることにより液体に含まれる成分を検出することが可能である。このような形態であれば、例えば液体中の抗体成分を金属薄膜64に付着させ、その抗体反応を検出する用途にも本発明を利用することができる。
 また、第2密着層65が形成される場合には、揮発性有機物等の測定対象物が金属薄膜64に付着することが可能となるように、第2密着層65は、密着性が得られる限度において可能な限り薄く形成されることが好ましい。具体的には、第2密着層65の厚さは、1nmであることが好ましい。
 なお、本実施の形態においては、誘電体部材67がプリズム61と透明基板62とによって構成される場合を例示して説明したが、これに限定されず、プリズム61によって構成されていてもよい。この場合には、プリズム61の底面61a上に金属薄膜が直接形成されてもよいし、第1密着層および金属薄膜がこの順で形成されてもよい。さらにこの場合には、測定対象物に応じて、金属薄膜上に、滞留層が直接形成されてもよいし、第2密着層および滞留層がこの順で形成されてもよい。
 図3は、図1に示す表面プラズモン検出装置における入射角度分布を有する入射光に含まれる入射角と反射率との関係を示す図である。図3を参照して、表面プラズモン検出装置1における入射角度分布を有する入射光L1に含まれる入射角と反射率との関係について説明する。
 図3に示すように、入射角度に分布を有する入射光L1として、当該入射光L1の光軸に垂直な入射光束断面において1軸方向に対して入射角が漸次的に変化する角度分布を有する光を金属薄膜64と誘電体部材67との界面に入射する。この場合には、入射角が略38度となる部分で、表面プラズマの波数と金属薄膜64の内部を金属薄膜64の主表面64aに沿って伝達するエバネッセント光の波数とが等しくなり、表面プラズモン共鳴が発生する。これにより、38度近傍の入射角で入射された光の反射強度(反射率)が減衰する。ここで、1軸方向とは、上記入射光束断面上における所定の1方向を指す。
 なお、表面プラズモン共鳴が発生する共鳴角度(入射角)は、金属薄膜64の表面状態で変化する。金属薄膜64の主表面64bに測定対象物(揮発性有機物)が付着(接触)した場合には、上述の例とは異なる入射角度で入射された光の反射強度が減衰する。また、揮発性有機物の濃度によっても反射強度が減衰する部分(共鳴角度)が変動する。このように、反射強度の減衰する位置が入射角によって変動することにより、上記界面にて反射された反射光L2は、光量に角度依存性を有することとなる。
 図4は、図1に示す誘電体部材と金属薄膜との界面において反射された反射光の光束の断面を示す図である。なお、図4は、図3に示す入射角が32°から46°までの範囲(角度分布)を有する入射光が界面にて反射された後における反射光の断面(反射光束断面)を示している。図4を参照して、誘電体部材と金属薄膜との界面において反射された反射光について説明する。
 図4に示すように、反射光L2は、一部の角度範囲において反射強度が減衰した状態で反射されることにより、光量分布を有する。具体的には、反射光L2は、当該反射光L2の光軸に垂直な反射光束断面において上記1軸方向に対応する方向に光量が変化する光量分布を有する。当該反射光束断面には、他の部分よりも光量が少なくなる部分に暗線BLが形成される。暗線BLは、上記1軸方向に対応する方向(AR1方向)と垂直方向に延在するように形成される。
 図5は、図1に示す遮蔽部材を用いて検出した場合における暗線の位置の変化の一例を示す平面図である。図5を参照して、表面プラズモン検出装置1を用いた表面プラズモン検出方法について説明する。この場合においては、揮発性有機物の濃度を測定する方法について説明する。
 図5に示すように、遮蔽部材としては、円形形状の開口部83が形成された遮蔽部材81を用いる。表面プラズモン現象によって形成される暗線BLの位置は、測定対象物(揮発性有機物)の濃度だけでなく、温度、湿度により変化する。このため、装置内に測定対象物が無い状態で、各温湿度における反射光L2の光量を予め受光部3にて検出する。予め検出された各光量は、各温湿度における基準量として記憶部92(図1参照)に記憶されている。また、基準量からの変動量に基づいてガス濃度を算出するための換算テーブルもテーブル記憶部93(図1参照)に記憶されている。
 基準量を決定するために、まず、温湿度計94(図1参照)を用いて測定対象物が無い状態で測定時における装置内の温湿度を測定する。測定された温湿度に関する情報に基づき、処理部91は、記憶部92に記憶された情報から測定時に必要な基準量を決定する。
 なお、図中においては、決定された基準量に対応する光量が検出された際の暗線の位置(暗線の初期位置)を二点鎖線にて示している。当該暗線の中心線は、開口部83の中心線C1と一致している。
 続いて、測定対象物を含む気体を金属薄膜64の主表面64bに接触させた状態で上記界面にて反射された反射光L2の光量を受光部3にて検出する。上述のように暗線BLの位置は、金属薄膜64の表面状態によって変動し、上記1軸方向に対向する方向に平行な方向に移動する。本実施の形態においては、暗線BLは、開口部83の中心線C1から図中AR1方向に離れた位置に移動する。
 当該開口部83を含む反射光L2が投影される平面(第1平面)において、開口部83は、上記1軸方向に対応する方向に垂直方向の長さd1が上記1軸方向に対応する方向に平行な方向に沿って漸次的に変化するように形成されている。このため、暗線BLの位置が変化することにより、受光領域内を占める暗線BLの面積の割合が変化する。これにより、受光部3が検出する反射光の光量は、暗線BLの位置に応じて変動することになる。
 処理部91は、測定時に検出された反射光L2の光量と上記基準量との差分(変動量)を算出するとともに、上記換算テーブルを用いて、測定対象物の濃度を算出する。
 本実施の形態においては、暗線BLの移動方向に対して、開口部の面積の変化率が一定でない。すなわち上記1軸方向に対応する方向に垂直方向の開口部の長さd1の変化率が一定でない。これにより、暗線BLの初期位置にずれが生じると、暗線BLの移動量が同じであっても、暗線BLの面積の変化量が異なる。このため、上述のような換算テーブルを用いることにより確実に測定対象物の濃度を算出することができる。
 また、たとえば測定対象物の濃度が低く、暗線BLがわずかにしか動かない場合には、暗線BLの初期位置が中心線C1から離れた部分に位置するように設定することが好ましい。開口部の長さd1の変化率は、中心線C1から離れるほど大きくなる。このため、初期位置が中心線C1から離れた位置に設定されている場合には、初期位置が中心線近傍に設定されている場合と比較して、暗線BLがわずかに移動した場合であっても、暗線BLの面積の変化量が大きくなる。このため、検出される光量と基準量との差分が大きくなり検出感度を高くすることができる。
 このように、本実施の形態においては、基準量を検出する際の暗線の位置(暗線の初期位置)を適宜設定することにより、特に高い感度が必要な場合にも対応することできる。このため、本実施の形態に係る表面プラズモン検出装置1は、使用環境により感度を最適化することもできる。
 図6は、比較例における表面プラズモン検出方法を説明するための模式図である。図6を参照して、比較例における表面プラズモン検出方法について説明する。比較例においては、受光部として多セル型のラインセンサーを用いている。
 図6に示すように、多セル型のラインセンサーを用いる場合には、たとえばn×m個(n、mは任意の正の整数)の画素gを有する測定範囲R内において、測定対象物が無い状態での暗線BL1の初期位置と、測定対象物がある状態での暗線BL2の位置を検出する。暗線が何画素移動したかを検出し、移動量に基づいて測定対象物の濃度を算出する。暗線の位置を検出するには複雑なアルゴリズムによる計算処理が必要となるため、検出部の構成が複雑になるとともに検出部自体が高額となる。
 以上のように、本実施の形態に係る表面プラズモン検出装置1および表面プラズモン検出方法においては、受光部3として、反射光L2の角度依存性に起因した光量分布の相違に応じて異なる光量が検出されるように構成された受光領域を有するものを用いて反射光L2の光量を検出することにより、簡素な構成で十分な検出精度を得ることができる。
 なお、本実施の形態では、開口部83の形状が円形形状である場合を例示して説明したが、これに限定されず、上記1軸方向に対応する方向に垂直方向に平行な方向に短軸または長軸を有する楕円形状、長円形状等であってもよい。
 (変形例1)
 図7は、本変形例に係る遮蔽部材を用いて検出した場合における暗線の一例を示す平面図である。図7を参照して、本変形例に係る遮蔽部材81Aについて説明する。
 図7に示すように、本変形例に係る遮蔽部材81Aの開口部83Aは、直角三角形の斜辺が他の2辺に近づくように湾曲した形状を有する。開口部83Aの輪郭線のうち湾曲する辺83cを除く他の2辺のうち一方の辺83bは、上記1軸方向に対応する方向に平行な方向(AR1方向)に延在し、他方の辺83aは、上記1軸方向に対応する方向に直交する方向に延在する。
 このような遮蔽部材81Aにおいても、開口部83Aは、1軸方向に対応する方向に垂直方向の長さd1が1軸方向に対応する方向に平行な方向(図中AR1方向)に沿って漸次的に変化するように形成されている。この場合においても、開口部の長さd1の変化率は、AR1方向に沿って一定でないため、基準量を検出する際の暗線の位置(暗線の初期位置)を適宜設定することにより、使用環境により感度を最適化することもできる。
 以上のように、本変形例に係る遮蔽部材81Aを実施の形態1に係る表面プラズモン検出装置に用いた場合においても、実施の形態1に係る表面プラズモン検出装置および表面プラズモン検出方法とほぼ同様の効果が得られる。
 (実施の形態2)
 図8は、本実施の形態に係る表面プラズモン検出装置に具備される遮蔽部材を用いて検出した場合の暗線の一例を示す平面図である。図8を参照して、本実施の形態に係る表面プラズモン検出装置について説明する。
 図8に示すように、本実施の形態に係る表面プラズモン装置は、実施の形態1に係る表面プラズモン装置と比較した場合に、遮蔽部材81Bの開口部83Bの形状が相違する。その他の構成については、ほぼ同様である。
 開口部83Bは、直角三角形形状を有する。開口部83Bの輪郭線のうち斜辺83cを除く2辺のうち一方の辺83bは、上記1軸方向に対応する方向に平行な方向(AR1方向)に延在し、他方の辺83aは、上記1軸方向に対応する方向に直交する方向に延在する。開口部83Bの輪郭線のうち斜辺83cは、開口部83Cを含む平面に投影された暗線に対して交差する。
 この場合には、上記1軸方向に対応する方向と垂直方向に延在する開口部83Bの長さd1は、AR1方向に沿って一定の変化率で漸次的に変化する。このため、暗線BLの初期位置がどの位置にあっても暗線BLの移動量が同じであれば、暗線BLの面積の変化量が一定となる。これにより、受光部3が検出する反射光の光量の変化量も一定となる。
 図9および図10は、図8に示す遮蔽部材を用いて検出した場合における暗線の位置の変化の一例およびその他の例を示す図である。図9および図10を参照して、暗線の初期位置が異なる場合であって暗線BLの移動量が同一である場合の暗線BLの面積の変化量について説明する。
 図9および図10にあっては、移動量をわかりやすくするために、開口部83Bを含む平面における所定の領域Rをn×m個の単位領域gに分割して示している。また、開口部83Bの斜辺は、これが通過する当該単位領域gの対角線と一致する。なお、図9における領域Rと図10における領域Rとは同一の範囲であり、図9における開口部83Bと図10における開口部83Bとは同一の形状である。
 図9は、暗線の初期位置がP1であり、移動後の暗線BLの位置がP2である場合を示している。図10は、暗線の初期位置がP3であり、移動後の暗線BLの位置がP4である場合および暗線の初期位置がP5であり、移動後の暗線BLの位置がP6である場合を示している。いずれの場合も暗線BLの移動量はAR1方向に4マス分である。
 この際、いずれの場合も移動後の暗線BLの面積は、初期位置の暗線の面積に対して4単位領域分の面積のみ減少している。このように、本実施の形態においては、初期位置の如何によらず暗線の移動量が同一であれば、暗線BLの面積の変化量も一定となる。
 したがって、開口部83B内に暗線の初期位置が入るように、受光部3に入射する入射角度を調整するだけで、容易に条件出しをすることができる。このため、暗線の初期位置を所定の位置にするようための投光部2および受光部3の微調整を伴う組立作業を必要とせず、また微調のための部材も必要としないため部品点数を減らし、コストを削減することができる。
 なお、本実施の形態においても、実施の形態1と同様に基準量と検出値の差分から測定対象物の濃度を測定することができる。
 以上のように、本実施の形態に係る表面プラズモン検出装置および表面プラズモン検出方法においても、受光部3として、反射光L2の角度依存性に起因した光量分布の相違に応じて異なる光量が検出されるように構成された受光領域を有するものを用いて反射光L2の光量を検出することにより、簡素な構成で十分な検出精度を得ることができる。
 (変形例2)
 図11は、本変形例に係る遮蔽部材を用いて検出した場合における暗線の一例を示す平面図である。図11を参照して、本変形例に係る遮蔽部材81Cについて説明する。
 図11に示すように、本変形例に係る遮蔽部材81Cの開口部83Cは、台形形状を有する。開口部83Cの輪郭線のうち、1組の平行な対辺は、上記1軸方向に対応する方向(AR1方向)と垂直方向に平行である。開口部83Cの輪郭線のうち、1組の平行な対辺を除くもう1組の対辺は、開口部83Cを含む平面に投影された暗線に対して交差する。
 開口部83Cがこのような形状を有する場合であっても、上記1軸方向に対応する方向(AR1方向)と垂直方向に延在する開口部83Cの長さd1は、AR1方向に沿って一定の変化率で漸次的に変化する。この結果、本変形例においても実施の形態2とほぼ同様の効果を得ることができる。
 (変形例3)
 図12は、本変形例に係る遮蔽部材を用いて検出した場合における暗線の一例を示す平面図である。図12を参照して、本変形例に係る遮蔽部材81Dについて説明する。
 図12に示すように、本変形例に係る遮蔽部材81Dの開口部83Dは、三角形状を有する。開口部83Dの輪郭線のうち1つの辺(底辺)83aは、上記1軸方向に対応する方向(AR1方向)と垂直方向に平行である。開口部83Dの輪郭線のうち他の2つの辺83b,83cは、AR1方向に向かうにつれて互いに近づくように傾斜する。また、開口部83Dの輪郭線のうち他の2つの辺83b,83cは、開口部83Cを含む平面に投影された暗線に対して交差する。上記他の2つの辺のうち一方の辺83cは、上記1つの辺83aの一端に接続され、上記他の2つの辺のうち他方の辺83bは、上記1つの辺の他端に接続されている。
 開口部83Dがこのような形状を有する場合であっても、上記1軸方向に対応する方向(AR1方向)と垂直方向に延在する開口部83Dの長さd1は、AR1方向に沿って一定の変化率で漸次的に変化する。この結果、本変形例においても実施の形態2とほぼ同様の効果を得ることができる。
 (実施の形態3)
 図13は、本実施の形態に係る表面プラズモン検出装置を用いた場合における暗線の一例を示す図である。図13を参照して、本実施の形態に係る表面プラズモン検出装置について説明する。
 図13に示すように、本実施の形態に係る表面プラズモン装置は、実施の形態2に係る表面プラズモン装置と比較した場合に、受光部3に遮蔽部材81が用いられていない点および、受光素子82が中心軸C2に対して周方向に回転して配置されている点において相違する。その他の構成については、ほぼ同様である。
 受光素子82は、略矩形形状の受光領域を有する。受光素子82が有する受光領域の対角線D1が、上記1軸方向に対応する方向(AR1方向)に垂直な方向に平行となるように受光素子82が配置されている。
 この場合においても、受光領域は、上記1軸方向に対応する方向に垂直方向の長さd1が上記1軸方向に対応する方向に平行な方向に沿って一定の変化率で漸次的に変化するように形成されている。
 しかしながら、たとえば暗線の初期位置が2点鎖線で示す位置にあり、測定対象物の濃度を測定後の暗線BLの位置が対角線D1を挟んで初期位置と対称となる位置にある場合には、暗線BLの移動前後において暗線BLの面積は変化しないことが起こり得る。
 このため、本実施の形態においては、暗線の初期位置に注意する必要があり、好適には、対角線D1の左右いずれかに位置する受光領域の半面のみを利用することが好ましい。受光領域の半面のみを使用する場合には、暗線BLの初期位置がどの位置にあっても暗線BLの移動量が同じであれば、暗線BLの面積の変化量が一定となる。これにより、受光部3が検出する反射光の光量の変化量も一定となる。この結果、本実施の形態においても、実施の形態2とほぼ同様の効果を得ることができる。
 なお、本実施の形態においては、遮蔽部材が不要となるため、表面プラズモン検出装置をさらに簡素化することができる。
 (実施の形態4)
 図14は、本実施の形態に係る表面プラズモン検出装置を用いた場合における暗線の一例を示す平面図であり、遮蔽部材に設けられた第1開口部を選択した場合および遮蔽部材に設けられた第2開口部を選択した場合における暗線の一例を示す平面図である。図14(A)は、遮蔽部材に設けられた第1開口部を選択した場合における暗線の一例を示す平面図である。図14(B)は、遮蔽部材に設けられた第2開口部を選択した場合における暗線の一例を示す平面図である。図14(A)および図14(B)を参照して、本実施の形態に係る表面プラズモン検出装置について説明する。
 図14(A)および図14(B)に示すように、本実施の形態に係る表面プラズモン検出装置は、実施の形態1に係る表面プラズモン検出装置1と比較した場合に、開口部選択手段(不図示)を備える点および遮蔽部材の構成が相違する。その他の構成については、ほぼ同様である。
 本実施の形態に係る遮蔽部材81Eは、複数の開口部83E1,83E2を有する。複数の開口部83E1,83E2は、たとえば上記1軸方向に対応する方向(AR1方向)と垂直方向に並ぶように配置されている。遮蔽部材81Eはスライド移動可能に設けられている。
 本実施の形態に係る表面プラズモン検出装置は、開口部選択手段によって遮蔽部材81EをDR方向(1軸方向に対応する方向と垂直方向)にスライド移動させることにより、受光部3に対応する開口部83E1,83E2を選択的に配置することができる構成となっている。なお、開口部83E1,83E2の並ぶ方向および遮蔽部材81Eを移動させる方向は適宜設定することができる。また、本実施形態においては、少なくとも複数の開口部のうち1つの開口部を選択可能に構成されていればよく、開口部選択手段によらずに、スライド機構等を用いて手動にて遮蔽部材を移動させることにより開口部を選択する構成であってもよい。
 開口部83E1,83E2は、それぞれ三角形状を有する。開口部83E1の輪郭線のうちの辺83b1および辺83c1、ならびに、開口部83E2の輪郭線のうちの辺83b2および辺83c2は、AR1方向に向かうにつれて、底辺83a1および底辺83a2から頂点に向けて互いに近づくように傾斜する。これにより、上記1軸方向に対応する方向(AR1方向)と垂直方向に延在する、開口部83E1の長さd11および開口部83E2の長さd12は、それぞれAR1方向に沿って一定の変化率で漸次的に変化する。
 ここで、開口部83E1,83E2は、輪郭線の一部であるそれぞれの底辺83a1,83a2から頂点までの距離La,Lbが異なる。これにより、開口部83E1,83E2は、辺83b1および辺83c1、ならびに辺83b2および辺83c1の傾斜の大きさが異なる。このため、開口部83E1の長さd11および開口部83E2の長さd12の変化率が相違する。
 検出対象物を検出する際においては、暗線がシフトする範囲(暗線がAR1方向に移動する移動量)は使用環境によって大きく異なる。暗線のシフト範囲が開口部の大きさ(底辺から頂点までの距離)を超えてしまうと、もはや暗線のシフト量を測定することができなくなる。このため、暗線のシフト範囲が開口部の大きさの範囲内に納まるように開口部の形状を選択することが望ましい。一方、暗線のシフトする範囲が小さい環境においては、暗線のシフトする範囲でシフト量を高い精度で判定できるように、暗線のシフトに応じて開口部に占める暗線の領域の割合が急激に変化するように開口部の形状を選択することが望ましい。
 本実施に係る表面プラズモン検出装置にあっては、使用環境に基づいて相違する暗線のシフト量に応じて、単一の遮蔽部材81Eをスライド移動させて、適宜、形状の異なる複数の開口部83E1,83E2を選択的に配置することにより、それぞれの使用環境における検出精度を向上させることができる。
 たとえば、VOCガスが大量に発生する塗装工程や洗浄工程のような作業現場では、発生するガスの濃度が高いため、検出感度(測定の分解能)よりも測定可能な濃度範囲が広いことが要求される。この場合には、開口部83E1を選択して反射光の光量を検出する。一方、壁材や家具などから少量のガスが発生する環境での測定に対しては、検出感度が求められる。この場合には、開口部83E2を選択して反射光の光量を検出する。
 (変形例4)
 図15は、本変形例に係る表面プラズモン検出装置を用いた場合における暗線の一例を示す平面図であり、第1遮蔽部材を選択した場合および第2遮蔽部材を選択した場合における暗線の一例を示す平面図である。図15(A)は、第1遮蔽部材を選択した場合における暗線の一例を示す平面図である。図15(B)は、第2遮蔽部材を選択した場合における暗線の一例を示す平面図である。図15(A)および図15(B)を参照して、本変形例に係る表面プラズモン検出装置について説明する。
 図15(A)および図15(B)に示すように、本変形例に係る表面プラズモン検出装置は、実施の形態4に係る表面プラズモン検出装置と比較した場合に、開口形状の異なる複数の遮蔽部材81F1,81F2を交換することにより、受光部3に対応する開口部83F1,83F2を選択的に配置することができる構成となっている点において相違する。その他の構成は、ほぼ同様である。
 図15(A)および図15(B)における左側には、受光部3に配置可能な複数の遮蔽部材81F1,81F2を示しており、そのうち受光部3に配置された遮蔽部材を2点鎖線で示している。図15(A)および図15(B)における右側には、選択されて受光部3に配置された遮蔽部材を示している。
 受光部3に遮蔽部材を選択的に配置する場合には、予め装置内に複数の遮蔽部材81F1,81F2を収納する遮蔽部材収納部から選択された遮蔽部材を遮蔽部材選択手段によって受光部3に配置する。なお、本実施形態においては、少なくとも複数の遮蔽部材のうち1つの遮蔽部材を選択可能に構成されていればよく、遮光部材選択手段によらずに、手動によって遮光部材を選択する構成であってもよい。
 本変形例においては、複数の遮蔽部材として、開口部83F1の長さd11の変化率がAR1方向に沿って一定でない遮蔽部材81F1と、AR1方向に沿って一定の変化率で開口部83F2の長さd12が漸次的に変化する遮蔽部材81F2とを用いる。
 具体的には、開口部83F1は、辺83a1、辺83b1、辺83c1を含む。辺83a1は、上記1軸方向に対応する方向(AR1方向)に直交する方向に延在し、辺83b1は、上記1軸方向に対向する方向に延在する。辺83c1は、辺83a1および辺83b1の接続点とは、反対側に位置する辺83a1の端部および辺83b1の端部を結ぶ。辺83c1は、傾斜度合いが異なる複数の辺部83c11、83c12、83c13を含む。これにより、遮蔽部材81F1においては、開口部83F1の長さd11の変化率がAR1方向に沿って段階的に変化する。このため、遮蔽部材83F1は、暗線の初期位置より感度が変化する。
 開口部83F2は、底辺83a2が上記1軸方向に対応する方向と垂直方向に平行となる三角形状を有する。このため、AR1方向に沿って一定の変化率で開口部83F2の長さd12が漸次的に変化する。
 なお、本変形例では、開口部83F1の長さd11の変化率がAR1方向に沿って一定でない遮蔽部材81F1と、AR1方向に沿って一定の変化率で開口部83F2の長さd12が漸次的に変化する遮蔽部材81F2とを用いる場合を例示して、説明したがこれに限定されない。AR1方向に一定の変化率で開口部の長さd12が変化するが、開口部の長さd12の変化率がそれぞれ異なる複数の遮蔽部材を用いてもよい。
 このような構成を有することにより、本変形例に係る表面プラズモン検出装置にあっては、検出対象のガスの濃度や種類により暗線の位置、移動量が変化する場合においても、開口部の形状が異なる遮蔽部材を複数準備して適宜選択することにより、使用環境に応じて感度を最適化することができる。
 (実施の形態5)
 図16は、本実施の形態に係る表面プラズモン検出装置を用いた場合における暗線の一例を示す図である。図16を参照して、本実施の形態に係る表面プラズモン検出装置について説明する。
 図16に示すように、本実施の形態に係る表面プラズモン検出装置は、実施の形態3に係る表面プラズモン検出装置と比較した場合に、遮蔽部材81が設けられている点において相違する。その他の構成については、ほぼ同様である。
 本実施の形態においては、対角線D1の左右いずれかに位置する受光領域の半面のみを確実に利用するために、対角線D1の左側に位置する受光領域を遮蔽部材81にて覆っている。このような構成することにより、本実施の形態においても、実施の形態3とほぼ同様の効果が得られる。
 (検証実験)
 図17は、本発明の効果を検証するために測定対象物の濃度を測定した場合における、測定対象物の濃度と検出部による検出値との関係を示す図である。図17を参照して、測定対象物の濃度と検出部による検出値との関係について説明する。
 本検証実験においては、測定対象物としてトルエンを用いた。実施の形態1に係る表面プラズモン検出装置1を用いて、各濃度を有するトルエンを測定した場合に検出される光量に基づく値を検出値として検出した。なお、図17においては、濃度が1ppmであるトルエンを測定した際の検出値を1として標準化している。
 実施の形態1に係る表面プラズモン検出装置1を用いた場合には、暗線の移動量が大きくなるほど暗線が受光領域内を占める割合が小さくなるため、検出される光量は大きくなる。本検証実験においても、同様の結果が得られ、トルエンの濃度が増加するにつれ検出値が増加した。
 以上の結果により、本実施の形態に係る表面プラズモン検出装置を用いることにより、測定対象物の濃度等を精度よく測定することが実験的にも証明されたと言える。
 以上、本発明の実施の形態について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 1 表面プラズモン検出装置、2 投光部、3 受光部、10 光源、20 コリメートレンズ、30 偏光子、40 反射ミラー、50 集光レンズ、60 表面プラズモン素子、61 プリズム、61a 底面、62 透明基板、62a,62b 主面、63 第1密着層、64 金属薄膜、64a,64b 主面、65 第2密着層、66 滞留層、67 誘電体部材、70 コリメートレンズ、81,81A,81B,81C,81D,81E,81F1,81F2 遮蔽部材、82 受光素子、83,83A,83B,83C,83D,83E1,83E2,83F1,83F2 開口部。

Claims (9)

  1.  主表面を有する誘電体部材および前記主表面上に形成された金属薄膜を含み、前記誘電体部材と前記金属薄膜との界面における表面プラズモン現象により、入射角度に分布を有する光束から成る入射光を、光量に角度依存性を有する光束から成る反射光として反射する表面プラズモン素子と、
     前記表面プラズモン素子に向けて前記入射光を投光する投光部と、
     前記表面プラズモン素子にて反射された前記反射光を受光する受光部とを備え、
     前記受光部は、前記反射光の前記角度依存性に起因した光量分布の相違に応じて異なる光量が検出されるように構成された受光領域を有している、表面プラズモン検出装置。
  2.  前記投光部は、前記入射光として、当該入射光の光軸に垂直な入射光束断面において1軸方向に対して入射角が漸次的に変化する角度分布を有する光を投光し、
     前記受光部は、前記反射光として、当該反射光の光軸に垂直な反射光束断面において前記1軸方向に対応する方向に前記光量分布を有する光を受光し、
     当該受光領域を含み前記反射光が投影される第1平面において、前記受光領域は、前記1軸方向に対応する方向に垂直方向の長さが前記1軸方向に対応する方向に平行な方向に沿って漸次的に変化するように形成されている、請求項1に記載の表面プラズモン検出装置。
  3.  前記反射光束断面は、前記反射光が前記光量分布を有することで他の部分よりも光量が少なくなることによって前記1軸方向に対応する方向と垂直方向に延在するように形成された暗線を含み、
     前記受光領域の輪郭線は、前記第1平面に投影された暗線に対して非平行に交差する部分を有する、請求項2に記載の表面プラズモン検出装置。
  4.  前記1軸方向に対応する方向と垂直方向に延在する前記受光領域の長さが、一定の変化率で漸次的に変化する、請求項2または3に記載の表面プラズモン検出装置。
  5.  前記受光部は、開口部を有する遮蔽部材と、前記開口部を透過した前記反射光の光量を検出する受光素子とを含み、
     前記受光領域が前記開口部によって規定される、請求項1から4のいずれか1項に記載の表面プラズモン検出装置。
  6.  前記遮蔽部材は、単数または複数の遮蔽部材によって構成され、
     前記遮蔽部材が前記単数の遮蔽部材によって構成される場合には、
     前記単数の遮蔽部材はそれぞれ形状の異なる複数の開口部を有し、
     前記受光部は、前記複数の開口部の中から前記受光領域を規定する1つの開口部を選択可能に設けられ、
     前記遮蔽部材が前記複数の遮蔽部材によって構成される場合には、
     前記複数の遮蔽部材は、それぞれ形状の異なる前記開口部を有し、
     前記受光部は、前記複数の遮蔽部材のうち1つの遮蔽部材を選択可能に設けられている、請求項5に記載の表面プラズモン検出装置。
  7.  前記受光部にて検出した受光量と、前記受光部にて予め検出した基準量との関係に基づき、測定対象物を検出する、請求項1から6のいずれか1項に記載の表面プラズモン検出装置。
  8.  前記表面プラズモン素子は、前記金属薄膜に表面に気体を滞留させる滞留層を含む、請求項1から7のいずれか1項に記載の表面プラズモン検出装置。
  9.  主表面を有する誘電体部材および前記主表面上に形成された金属薄膜を含む表面プラズモン素子に、入射角度に分布を有する光束から成る入射光を投光部から投光し、前記表面プラズモン素子に入射された前記入射光を、前記誘電体部材と前記金属薄膜との界面における表面プラズモン現象により光量に角度依存性を有する光束から成る反射光として反射し、前記表面プラズモン素子にて反射された前記反射光を受光部にて受光する表面プラズモン検出方法であって、
     前記受光部として、前記反射光の前記角度依存性に起因した光量分布の相違に応じて異なる光量が検出されるように構成された受光領域を有するものを用いる、表面プラズモン検出方法。
PCT/JP2015/067428 2014-08-28 2015-06-17 表面プラズモン検出装置および表面プラズモン検出方法 WO2016031360A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-173927 2014-08-28
JP2014173927A JP6010077B2 (ja) 2014-08-28 2014-08-28 表面プラズモン検出装置および表面プラズモン検出方法

Publications (1)

Publication Number Publication Date
WO2016031360A1 true WO2016031360A1 (ja) 2016-03-03

Family

ID=55399265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067428 WO2016031360A1 (ja) 2014-08-28 2015-06-17 表面プラズモン検出装置および表面プラズモン検出方法

Country Status (2)

Country Link
JP (1) JP6010077B2 (ja)
WO (1) WO2016031360A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010376A (ja) * 2005-06-28 2007-01-18 Audio Technica Corp レーザ墨出し器用受光器
JP2007212250A (ja) * 2006-02-08 2007-08-23 Ricoh Co Ltd 光学素子および検査装置および検査方法および光スポット位置変位方法
JP2008089495A (ja) * 2006-10-04 2008-04-17 Sharp Corp 分子検出センサ洗浄機能を備えた分子検出装置及び洗浄装置
JP2010256126A (ja) * 2009-04-23 2010-11-11 Tokyo Metropolitan Industrial Technology Research Institute 局在表面プラズモン共鳴測定基板及び局在表面プラズモン共鳴センサ
JP2013195079A (ja) * 2012-03-15 2013-09-30 Omron Corp 反射型光センサ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170430A (ja) * 1996-12-10 1998-06-26 Toto Ltd 表面プラズモン測定方法及び装置
JPH1137934A (ja) * 1997-07-16 1999-02-12 Fuji Photo Film Co Ltd 表面プラズモンセンサーおよび暗線位置検出装置
JP2000081563A (ja) * 1998-09-04 2000-03-21 Olympus Optical Co Ltd 測距装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010376A (ja) * 2005-06-28 2007-01-18 Audio Technica Corp レーザ墨出し器用受光器
JP2007212250A (ja) * 2006-02-08 2007-08-23 Ricoh Co Ltd 光学素子および検査装置および検査方法および光スポット位置変位方法
JP2008089495A (ja) * 2006-10-04 2008-04-17 Sharp Corp 分子検出センサ洗浄機能を備えた分子検出装置及び洗浄装置
JP2010256126A (ja) * 2009-04-23 2010-11-11 Tokyo Metropolitan Industrial Technology Research Institute 局在表面プラズモン共鳴測定基板及び局在表面プラズモン共鳴センサ
JP2013195079A (ja) * 2012-03-15 2013-09-30 Omron Corp 反射型光センサ

Also Published As

Publication number Publication date
JP6010077B2 (ja) 2016-10-19
JP2016048223A (ja) 2016-04-07

Similar Documents

Publication Publication Date Title
CN109073460B (zh) 用于参考切换的光学系统
US4999014A (en) Method and apparatus for measuring thickness of thin films
CN102297721B (zh) 斜入射宽带偏振光谱仪和光学测量系统
US11262293B2 (en) System and method for use in high spatial resolution ellipsometry
CN104919301A (zh) 测量玻璃样品的分布特征的系统和方法
CN103162832A (zh) 包含参考光束的垂直入射宽带偏振光谱仪及光学测量系统
JP2013511041A (ja) 減衰全反射に基づいた光センサシステムおよび感知方法
CN103048047B (zh) 包含相位元件的垂直入射宽带偏振光谱仪和光学测量系统
US6885454B2 (en) Measuring apparatus
JPS63195513A (ja) 光学式非接触位置測定装置
US20060017931A1 (en) Measuring apparatus
JPH03209136A (ja) 光ビームのコリメーション状態および角度を検出するための装置および焦点位置を検出するための方法
JP4823289B2 (ja) 反射式散乱計
CN105723193A (zh) 光传感器装置和光谱仪
EP3355118B1 (fr) Procédé de mesure du désalignement entre une première et une seconde zones de gravure
JP3817630B2 (ja) 2次元角度センサ
US8102540B2 (en) Coriolis flow sensor with optically reflective motion sensor
JP6010077B2 (ja) 表面プラズモン検出装置および表面プラズモン検出方法
JP3883926B2 (ja) 測定装置
FR2703792A1 (fr) Dispositif de contrôle de la position et de l'orientation d'un miroir.
JP3903423B2 (ja) 測定装置
US9823192B1 (en) Auto-calibration surface plasmon resonance biosensor
CN103134591A (zh) 近垂直入射宽带偏振光谱仪和光学测量系统
JP2008275552A (ja) 金属膜の埋設深さ測定方法
JP2016118441A (ja) 表面プラズモン検出装置および表面プラズモン検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836034

Country of ref document: EP

Kind code of ref document: A1