WO2016031135A1 - 内燃機関の燃料噴射制御装置 - Google Patents

内燃機関の燃料噴射制御装置 Download PDF

Info

Publication number
WO2016031135A1
WO2016031135A1 PCT/JP2015/003761 JP2015003761W WO2016031135A1 WO 2016031135 A1 WO2016031135 A1 WO 2016031135A1 JP 2015003761 W JP2015003761 W JP 2015003761W WO 2016031135 A1 WO2016031135 A1 WO 2016031135A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
fuel
injection
target
fuel injection
Prior art date
Application number
PCT/JP2015/003761
Other languages
English (en)
French (fr)
Inventor
優一 竹村
和田 実
福田 圭佑
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016031135A1 publication Critical patent/WO2016031135A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/04Gas-air mixing apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present disclosure relates to a fuel injection control device for an internal combustion engine.
  • a fuel supply system for supplying gas fuel to an injection valve is provided in the middle of a fuel tank that connects the gas tank and the injection valve, and is supplied from the gas tank.
  • the structure provided is known (refer patent document 1).
  • the pressure of the gas fuel supplied to the injection valve exceeds a predetermined control target value and becomes high before the fuel injection starts.
  • the valve opening drive of the injection valve may be hindered.
  • This disclosure is intended to provide a fuel injection control device that can properly start fuel injection.
  • a fuel injection control device includes: a fuel injection unit that injects gas fuel supplied through a fuel passage from a fuel tank that stores gas fuel in a high-pressure state; and a gas that is supplied to the fuel injection unit
  • the present invention is applied to an internal combustion engine including a pressure adjusting unit that adjusts the pressure of fuel and a pressure detecting unit that detects a gas supply pressure.
  • the fuel injection control device further includes: a first target fuel pressure setting unit that sets a first target fuel pressure that is a target value of the gas supply pressure; and a detected value of the gas supply pressure by the pressure detection unit.
  • a pressure control unit that controls the pressure adjustment of the gas fuel by the pressure adjusting unit so as to obtain a fuel pressure, and an injection request determination that determines whether or not an injection request for starting fuel injection from a pause state of fuel injection has occurred And the pressure adjustment control by the pressure adjustment unit so that the gas supply pressure is lower than the first target fuel pressure prior to the first fuel injection when it is determined that the injection request has occurred.
  • a pressure adjustment control unit to be implemented.
  • the control amount of the gas fuel pressure adjustment by the pressure adjustment unit is corrected so that the gas supply pressure is lower than the first target fuel pressure before the first fuel injection. I tried to do it.
  • the pressure of the gas fuel can be prevented from increasing beyond the first target fuel pressure, and in turn, the occurrence of inconvenience associated with the occurrence of overshoot can be suppressed. it can.
  • FIG. 1 is a configuration diagram showing an outline of an engine fuel injection system.
  • FIG. 2A is a diagram illustrating a schematic configuration of a first injection valve.
  • FIG. 2B is a diagram showing a schematic configuration of the first injection valve.
  • FIG. 3 is a diagram illustrating a schematic configuration of a regulator.
  • FIG. 4 is a diagram showing a configuration of a power supply system for each electric load.
  • FIG. 5 is a flowchart showing a procedure of engine injection start processing.
  • FIG. 6 is a map showing the relationship between cooling water temperature and target fuel pressure change.
  • FIG. 7 is a diagram illustrating an execution example of engine injection start processing.
  • FIG. 8 is a diagram showing a comparative example of engine injection start processing.
  • the present embodiment is embodied as a fuel injection system applied to an on-vehicle multi-cylinder engine (multi-cylinder internal combustion engine) that uses compressed natural gas (CNG) that is a gas fuel as a fuel for combustion.
  • CNG compressed natural gas
  • the intake system 11 is an inline three-cylinder spark ignition engine, and an intake system 11 and an exhaust system 12 are connected to an intake port and an exhaust port, respectively.
  • the intake system 11 has an intake manifold 13 and an intake pipe 14.
  • the intake manifold 13 has a plurality of (for the number of cylinders of the engine 10) branch pipe portions 13a connected to the intake port of the engine 10, and a collective portion 13b connected to the intake pipe 14 on the upstream side. ing.
  • the intake pipe 14 is provided with a throttle valve 15 as an air amount adjusting unit.
  • the throttle valve 15 is configured as an electronically controlled throttle valve 15 whose opening is adjusted by a throttle actuator 15a such as a DC motor, and the opening (throttle position) of the throttle valve 15 is the throttle position built in the throttle actuator 15a. It is detected by the sensor 15b.
  • the exhaust system 12 has an exhaust manifold 16 and an exhaust pipe 17.
  • the exhaust manifold 16 has a plurality of (for the number of cylinders of the engine 10) branch pipe portions 16a connected to the exhaust port of the engine 10 and a collecting portion 16b connected to the exhaust pipe 17 on the downstream side. ing.
  • the exhaust pipe 17 is provided with an exhaust sensor 18 for detecting exhaust components and a catalyst 19 for purifying exhaust. Specifically, an air-fuel ratio sensor that detects the air-fuel ratio from the oxygen concentration in the exhaust is provided as the exhaust sensor 18.
  • a spark plug 20 is provided in each cylinder of the engine 10.
  • a high voltage is applied to the ignition plug 20 at a desired ignition timing through an ignition device 20a including an ignition coil. By applying this high voltage, a spark discharge is generated between the opposing electrodes of each spark plug 20, and the fuel introduced into the cylinder (combustion chamber) is ignited and used for combustion.
  • this system has an injection valve 21 that injects gas fuel (CNG fuel) as a fuel injection unit that injects and supplies fuel to the engine 10.
  • the injection valve 21 injects fuel into the branch pipe portion 13a of the intake manifold 13 in the intake system 11, and gas fuel is supplied to the intake port of each cylinder by the injection of the injection valve 21.
  • the injection valve 21 is an open / close type control valve in which a valve body is lifted from a closed position to an open position by electrically driving an electromagnetic drive unit. An on / off type open valve input from the control unit 80 is used. Each valve is driven to open by a valve drive signal. The injection valve 21 opens when energized and closes when energized. An amount of gas fuel corresponding to the energization time is injected from the injection valve 21.
  • an injection pipe 23 is connected to the tip of the injection valve 21, and the gas fuel injected from the injection valve 21 is injected to the branch pipe portion 13 a of the intake manifold 13 through the injection pipe 23.
  • FIG. 2A shows a non-injection state
  • FIG. 2B shows an injection state
  • the injection valve 21 has a so-called self-seal (self-sealing) structure in which the closing sealability is enhanced by the pressure of the gas fuel supplied to itself.
  • a valve body 32 is slidably accommodated in the cylindrical body 31, and the valve body 32 is biased in the valve closing direction by a spring 33 in the body 31.
  • the injection portion 34 provided at the tip of the injection valve is closed by the tip of the valve body 32.
  • a first fuel chamber 35 is provided on the rear end side (upstream side) of the valve body 32
  • a second fuel chamber 36 is provided on the front end side (downstream side) of the valve body 32.
  • the valve body 32 is provided with a small-diameter portion 32a on the tip side of the sliding portion, and a second fuel chamber 36 is provided around the small-diameter portion 32a.
  • the first fuel chamber 35 and the second fuel chamber 36 are in communication with each other via a fuel passage 37 provided in the valve body 32.
  • the inlet side of the fuel passage 37 communicates with the first fuel chamber 35, and the outlet side thereof It leads to the second fuel chamber 36.
  • the valve body 32 is displaced to the valve opening position in response to energization to the electromagnetic drive unit 38 composed of a solenoid or the like.
  • gas fuel is supplied from the regulator 43 described later to the first fuel chamber 35, and the gas fuel is also introduced into the second fuel chamber 36 through the fuel passage 37.
  • the valve body 32 is displaced to the valve opening position against the biasing force of the spring 33 as the electromagnetic drive unit 38 is energized, the injection unit 34 is opened and gas fuel is injected.
  • the valve body 32 is provided with a small-diameter portion 32 a on the distal end side thereof, so that the pressure receiving area on the first fuel chamber 35 side and the pressure receiving area on the second fuel chamber 36 side in the valve-closed state are Is “pressure receiving area on the first fuel chamber 35 side> pressure receiving area on the second fuel chamber 36 side” (see FIG. 2A). Therefore, in the valve closing state shown in FIG. 2A, the pressure (corresponding to the injection pressure) of the gas fuel supplied from the regulator 43 side acts more greatly in the direction in which the valve body 32 is closed (valve closing direction). It is supposed to be. 2B, since the injection pressure also acts on the end surface (the lower end surface in the figure) of the small diameter portion 32a, the fuel pressure in the valve closing direction and the fuel pressure in the valve opening direction acting on the valve body 32. Is almost the same.
  • a gas tank 42 is connected to the injection valve 21 via a gas pipe 41, and the pressure of the gas fuel supplied to the injection valve 21 is reduced in the middle of the gas pipe 41.
  • a regulator 43 having a pressure adjustment function is provided.
  • the regulator 43 (a pressure adjusting valve 60, which will be described in detail later) is configured to apply a high pressure state (for example, a maximum of 20 MPa) of gas fuel stored in the gas tank 42 to a predetermined set pressure (for example, 0.
  • the gas fuel after the pressure reduction adjustment is supplied to the injection valve 21 through the gas pipe 41.
  • the upstream side of the regulator 43 is a high-pressure pipe portion 41a that forms a high-pressure side passage, and the downstream side is a low-pressure pipe portion 41b that forms a low-pressure side passage.
  • a gas fuel passage formed by the gas pipe 41 and the like further includes a tank main stop valve 44 (tank outlet valve) disposed in the vicinity of the fuel outlet of the gas tank 42 and a downstream side of the tank main stop valve 44. And a shutoff valve 45 disposed in the vicinity of the fuel inlet of the regulator 43.
  • the valves 44, 45 allow and shut off the flow of gas fuel in the gas pipe 41. Yes.
  • Both the tank main stop valve 44 and the shut-off valve 45 are electromagnetic on-off valves, and are normally closed so that the flow of gas fuel is cut off when not energized and the flow of gas fuel is allowed when energized.
  • the high pressure pipe portion 41a is provided with a pressure sensor 46 for detecting the fuel pressure and a temperature sensor 47 for detecting the fuel temperature.
  • the low-pressure pipe portion 41b is provided with a pressure sensor 48 for detecting the fuel pressure and a temperature sensor 49 for detecting the fuel temperature.
  • the shut-off valve 45 and the pressure sensor 46 can be provided integrally with the regulator 43.
  • a configuration in which the shut-off valve 45 and the pressure sensor 46 are provided integrally with the regulator 43 is adopted. (Details will be described later in FIG. 3).
  • the regulator 43 constitutes an electromagnetically driven pressure adjusting device that adjusts the fuel pressure in the low-pressure pipe portion 41 b with respect to the set pressure determined by the control portion 80.
  • the regulator 43 has a high-pressure passage 51 connected to the high-pressure piping portion 41a (that is, the gas tank 42 side) and a low-pressure passage 52 connected to the low-pressure piping portion 41b (that is, the injection valve 21 side).
  • the high pressure passage 51 is provided with a shutoff valve 45 and a pressure sensor 46.
  • the pressure sensor 46 detects the pressure of the gas fuel upstream of the shutoff valve 45.
  • Reference numeral 53 is a filter for removing foreign matter.
  • the configuration of the shutoff valve 45 is substantially the same as the configuration of the injection valve 21 and has a self-sealing structure. The configuration will be briefly described.
  • the shut-off valve 45 has a valve body 55 biased in the valve closing direction by a spring 54, and the valve body 55 is closed against the biasing force of the spring 54 by energizing the electromagnetic drive unit 56. The valve is displaced from the position to the valve opening position.
  • a first fuel chamber 57 is provided on the rear end side (upstream side) of the valve body 55, and a second fuel chamber 58 is provided on the distal end side (downstream side where the small diameter portion is provided) of the valve body 55. Yes.
  • Both the fuel chambers 57 and 58 are communicated with each other through a fuel passage 59 provided in the valve body 55.
  • high-pressure gas fuel is supplied to both the fuel chambers 57 and 58 from the gas tank 42, and in the closed state of the shutoff valve 45, a closing force is applied to the valve body 55 by the fuel pressure on the gas tank 42 side. .
  • the valve element 55 is displaced to the valve open position against the biasing force of the spring 54 with the energization of the electromagnetic drive unit 56 (as shown), high-pressure gas fuel flows downstream.
  • a pressure regulating valve 60 is provided on the downstream side of the shutoff valve 45.
  • a valve body chamber 61 is provided in the high pressure passage 51, and a valve body 62 is slidably accommodated in the valve body chamber 61.
  • the valve body 62 is an opening and closing member that opens and closes a valve seat 63 that is an inlet portion of the low-pressure passage 52, and is biased by a spring 66 in the valve closing direction.
  • the valve body 62 is displaced in the valve opening direction in response to energization to the electromagnetic drive unit 64 composed of a solenoid or the like. That is, when the electromagnetic drive unit 64 is energized, the valve element 62 is displaced in the valve opening direction against the urging force of the spring 66, so that the valve seat unit 63 is opened and the high pressure passage 51 and the low pressure passage 52 communicate with each other. Is done. On the other hand, when the energization of the electromagnetic drive unit 64 is interrupted, the valve body 62 is closed by the urging force of the spring 66, so that the valve seat 63 is closed and the high pressure passage 51 and the low pressure passage 52 are closed. Communication is interrupted. At this time, the opening area of the valve seat 63 is changed according to the open position (valve lift amount) of the valve body 62, and the amount of fuel flowing from the high pressure passage 51 into the low pressure passage 52 is adjusted.
  • the electromagnetic drive unit 64 composed of a solenoid or the like. That is, when the electromagnetic drive unit
  • a relief valve 69 that vents gas when the fuel pressure in the low pressure passage 52 becomes abnormally high is provided in the branch portion 52a branched from the low pressure passage 52.
  • the pressure adjusting part is constituted by the pressure adjusting valve 60 composed of components such as the valve body 62 and the electromagnetic driving part 64.
  • the shutoff valve 45, the pressure sensor 46, and the pressure adjustment valve 60 are integrally provided in the regulator 43, but this may be changed, for example, the shutoff valve 45 and the pressure sensor 46 are connected to the regulator. It is also possible to provide it in the high-pressure piping part 41 a as a separate body from 43.
  • the control unit 80 includes a CPU 81, a ROM 82, a RAM 83, a backup RAM 84, an interface 85, and a bidirectional bus 86.
  • the CPU 81, ROM 82, RAM 83, backup RAM 84, and interface 85 are connected to each other by a bidirectional bus 86.
  • the CPU 81 executes a routine (program) for controlling the operation of each unit in the system.
  • the ROM 82 stores in advance various data such as a routine executed by the CPU 81, maps (including tables, relational expressions, etc. in addition to maps) and parameters referred to when the routine is executed.
  • the RAM 83 temporarily stores data as necessary when the CPU 81 executes a routine.
  • the backup RAM 84 appropriately stores data under the control of the CPU 81 in a state where the power is turned on, and retains the stored data even after the power is shut off.
  • the interface 85 includes the above-described throttle position sensor 15b, exhaust sensor 18, pressure sensors 46 and 48, temperature sensors 47 and 49, and other sensors (cooling water temperature sensor 25, crank angle sensor, air flow meter) provided in the present system. , Vehicle speed sensors, etc.), and outputs (detection signals) from these sensors to the CPU 81.
  • the interface 85 is electrically connected to driving units such as the throttle actuator 15a, the ignition device 20a, each injection valve 21, the tank main stop valve 44, the shut-off valve 45, and the like to drive these driving units.
  • the drive signal sent from the CPU 81 is output toward the drive unit. That is, the control unit 80 acquires an operation state based on the output signals of the above-described sensors, and performs the above-described drive unit control based on the operation state.
  • FIG. Show various electric loads such as the tank main stop valve 44, the shut-off valve 45, and the pressure regulating valve 60 described above are operated by receiving power supplied from the vehicle battery, and the configuration of the power supply system is shown in FIG. Show.
  • various electric loads such as an ignition device 20 a as an electric load, each injection valve 21, a tank main stop valve 44, a shutoff valve 45, a starter 91, and a pressure adjustment valve 60 are supplied via a power supply line 92.
  • the starter 91 is a starting device for applying initial rotation when the engine 10 is started.
  • a control signal is input from the control unit 80 to the ignition device 20a, the tank main stop valve 44, the shut-off valve 45, and the pressure adjustment valve 60.
  • the ignition device 20a receives the control signal from the control unit 80.
  • a high voltage is output to cause an ignition spark in the spark plug 20.
  • the tank main stop valve 44, the shut-off valve 45, and the pressure adjustment valve 60 are switched from the closed state to the open state in accordance with a control signal from the control unit 80.
  • the control unit 80 also includes information indicating that there is an injection request for the engine 10, information indicating that starter driving (cranking) is being performed at the time of engine start by driving the starter 91, and starter 91. Information indicating the elapsed time from the start of driving (starting cranking) and information indicating completion of starting of the engine 10 are input as starting information.
  • the injection request is output when the engine 10 is started or when returning from the fuel cut state. Further, the temperature detected by the cooling water temperature sensor 25 that detects the cooling water temperature of the engine 10 is input to the control unit 80 as the engine temperature.
  • control unit 80 performs feedback control based on the deviation between the detected value of the gas supply pressure and the target value as the injection pressure control of the injection valve 21. Specifically, a first value that is a target value of the gas supply pressure that is calculated based on the detected fuel pressure that is the detected value of the gas supply pressure by the pressure sensor 48 and the engine operating state (for example, engine speed and engine load). Using the target fuel pressure, a feedback control amount is calculated based on a deviation between the detected fuel pressure and the target value and a feedback gain so that the detected fuel pressure becomes the first target fuel pressure. Based on this, the pressure control valve 60 is controlled (the electromagnetic drive unit 64 is energized).
  • the difference (deviation) between the detected fuel pressure and the first target fuel pressure may be increased. . Therefore, the feedback control amount increases and the energization amount of the electromagnetic drive unit 64 of the regulator 43 increases. As a result, the valve body 62 is greatly lifted in the valve opening direction, so that the gas supply pressure supplied to the injection valve 21 increases rapidly, and the gas supply pressure in the low pressure passage 52 greatly exceeds the first target fuel pressure. There is a high possibility of shooting.
  • the gas supply pressure becomes excessively large. Therefore, in the injection valve 21, the pressing force by which the valve body 32 is pressed against the injection unit 34 by the gas fuel increases. When the pressing force is larger than the electromagnetic force of the electromagnetic drive unit 38, the valve body 32 of the injection valve 21 may not be opened.
  • the injection valve 21 has a self-seal (self-sealing) structure in which the closing sealing performance is enhanced by the pressure of the gas fuel supplied to the injection valve 21 as in the present embodiment, it is caused by the occurrence of overshoot. Therefore, there is a concern that the opening of the injection unit 34 is likely to be difficult. In addition, when the injection request is when the engine 10 is started, there is a concern that the power of the fuel injection system is insufficient.
  • the control unit 80 when a gas fuel injection request is generated, before performing control based on a predetermined first target fuel pressure, the second target fuel pressure lower than the first target fuel pressure. Set. Thereby, it is possible to suppress an excessive increase in the gas supply pressure as the feedback control amount increases.
  • the gas fuel injection request (injection request signal) is output when an injection request is generated from the injection stop state of the engine 10. For example, it is output when the engine 10 is started or when returning from the fuel cut state.
  • the control based on the second target fuel pressure is performed when the engine temperature is a low temperature lower than a predetermined value.
  • control based on the second target fuel pressure is performed when the engine temperature is low, for example, lower than a predetermined value (for example, lower than 0 ° C.).
  • a predetermined value for example, lower than 0 ° C.
  • the control based on the second target fuel pressure is not performed. In this case, when there is a possibility of overshoot, the occurrence can be appropriately suppressed.
  • the second target fuel pressure is set according to the engine temperature. That is, the gas fuel is more likely to overshoot as the engine temperature is lower. Therefore, the second target fuel pressure is set to a smaller value as the engine temperature is lower.
  • FIG. 5 shows a flowchart of a target fuel pressure setting process performed by the control unit 80. This process is repeatedly performed by the CPU 81 of the control unit 80 at a predetermined cycle.
  • the first target fuel pressure is calculated (S12). That is, the gas pressure is calculated using a map of various parameters and gas pressures by sensors.
  • S13 it is determined whether or not the detected fuel pressure is lower than the first target fuel pressure (S14). This process is performed by comparing the detected fuel pressure detected by the pressure sensor 48 with the first target fuel pressure.
  • a second target fuel pressure is calculated (S16).
  • the second target fuel pressure is set according to the engine temperature.
  • the second target fuel pressure is set to be lower as the engine temperature is lower.
  • the second target fuel pressure is gradually increased with the passage of time. As a result, the output of the regulator 43 is gradually increased.
  • a feedback control amount is calculated based on the second target fuel pressure (S17). If a negative determination is made in S13 to S15, a feedback control amount is calculated based on the first target fuel pressure in S17. Based on the feedback control amount, the energization amount of the electromagnetic drive unit 64 of the regulator 43 is determined.
  • FIG. 7 is an execution example of the above process
  • FIG. 8 is a comparative example when the above process is not performed.
  • the engine temperature is determined to be lower than a predetermined value. It is assumed that feedback control based on the second target fuel pressure is performed for a predetermined time after the injection request is generated.
  • the detected fuel pressure gradually increases as the second target fuel pressure gradually increases after time t1.
  • the control based on the second target fuel pressure is terminated, and the control is switched to the control based on the first target fuel pressure.
  • the first target fuel pressure is set as the target fuel pressure. Then, feedback control is performed so that the detected fuel pressure becomes the first target fuel pressure. In this case, an increase in the feedback control amount causes an overshoot in which the gas supply pressure exceeds the first target fuel pressure. Then, when energization of the injection valve 21 is started at time t12 in a state where overshoot has occurred, the valve body 32 that closes the injection unit 34 is pressed by the pressure of the gas fuel, so that the injection unit 34 is opened. It can happen that it doesn't speak. In this case, when energization of the injection valve 21 is started at time t12, the gas supply pressure gradually decreases, but a predetermined time ⁇ T is required until the gas supply pressure reaches the first target fuel pressure. It will be necessary.
  • the gas supply pressure which is the pressure of the gas fuel
  • the gas supply pressure is controlled so that the detected value of the gas supply pressure is lower than the first target fuel pressure prior to the first fuel injection. In this case, before the start of the first fuel injection, it is possible to suppress the gas supply pressure from increasing beyond the first target fuel pressure, and thus it is possible to suppress the occurrence of inconvenience associated with the occurrence of overshoot. .
  • the second target fuel pressure lower than the first target fuel pressure is set, and the pressure adjustment based on the second target fuel pressure is performed before the first fuel injection is started. In this case, it is possible to suppress the gas supply pressure from increasing beyond the first target fuel pressure.
  • the pressure adjustment using the first target fuel pressure can be switched, so that after the fuel injection starts, based on the operating state of the engine 10,
  • the gas supply pressure can be adjusted appropriately.
  • the gas supply pressure can be gradually increased by gradually increasing the second target fuel pressure with the passage of time, so that the occurrence of overshoot can be suppressed.
  • the gas fuel pressure is adjusted so that the gas supply pressure is lower than the first target fuel pressure. In this case, prior to the first fuel injection, it is possible to suppress the gas supply pressure from becoming high, and as a result, it is possible to suppress the occurrence of inconvenience associated with the occurrence of overshoot.
  • the pressure adjustment control is performed according to the engine temperature. In this case, the effect of suppressing overshoot can be enhanced according to the engine temperature.
  • the occurrence of overshoot can be suppressed by controlling the pressure adjustment for a predetermined time after the injection request is generated.
  • the control based on the first target fuel pressure is performed. May be performed. That is, the overshoot is caused due to the static friction force generated when the valve body 62 of the pressure regulating valve 60 is lifted when the pressure regulating valve 60 is started. That is, when the detected fuel pressure has already started to rise, the possibility of overshoot is low. Therefore, when an increase in the detected fuel pressure is detected, the first target fuel pressure is switched. In this case, the control based on the first target fuel pressure set based on the operating state can be performed early.
  • the overshoot can occur when the difference between the detected fuel pressure initially calculated at the start of the engine 10 and the target fuel pressure is large. Therefore, if the initial feedback control amount at the start of the engine 10 is small, the possibility of overshooting is reduced. Therefore, in the process of FIG. 5, the second target fuel pressure calculated in S16 may be a value lower than the first target fuel pressure, or may be a fixed value.
  • the feedback control amount may be set so that the difference between the detected fuel pressure and the first target fuel pressure becomes small. Good. That is, in S16, the feedback gain may be set to be smaller than that during normal control. Thereby, prior to the first fuel injection, the gas supply pressure can be made lower than the first target fuel pressure. Even in this case, by continuing the state where the feedback gain is smaller than that during normal control for a predetermined period, the effect of suppressing the occurrence of overshoot when an injection request is generated from the injection stop state of the engine 10 is enhanced. Can do.
  • the feedback gain may be set according to the engine temperature. That is, the feedback gain may be decreased as the engine temperature is lower.
  • the second target fuel pressure is increased until it is determined that the second target fuel pressure matches the first target fuel pressure at time t2. Then, when the first target fuel pressure matches the second target fuel pressure, pressure adjustment based on the first target fuel pressure may be performed instead of the second target fuel pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 燃料噴射制御装置は、ガス燃料を高圧状態で蓄える燃料タンク(42)から燃料通路(41)を通じて供給されるガス燃料を噴射する第1噴射弁(21)と、第1噴射弁(21)に供給されるガス燃料の圧力を調整するレギュレータ(43)と、を備えるエンジン(10)に適用される。燃料噴射制御装置の制御部(80)は、ガス供給圧の目標値である第1目標燃料圧を設定するとともに、圧力センサ(48)によるガス供給圧の検出値が第1目標燃料圧となるように、レギュレータ(43)によるガス燃料の圧力調整を制御するものであって、燃料噴射の休止状態から燃料噴射を開始させる噴射要求が発生した場合に、初回の燃料噴射に先立ち、ガス供給圧が第1目標燃料圧よりも低圧となるようにレギュレータ(43)による圧力調整を制御する。

Description

内燃機関の燃料噴射制御装置 関連出願の相互参照
 本出願は、2014年8月29日に出願された日本出願番号2014-175386号に基づくもので、ここにその記載内容を援用する。
 本開示は、内燃機関の燃料噴射制御装置に関するものである。
 圧縮天然ガス(CNG)等のガス燃料を燃焼させるようにした内燃機関が実用化されている。こうした内燃機関において、ガス燃料を噴射弁に対して供給させる燃料供給系の構成として、ガス燃料を高圧状態で貯蔵するガスタンクと、ガスタンク及び噴射弁を繋ぐ燃料配管の途中に設けられ、ガスタンクから供給されるガス燃料の圧力を減圧調整する圧力調整弁と、圧力調整弁よりも上流側(すなわちガスタンク側)に設けられ、圧力調整弁に対するガス燃料の流通を遮断する電磁駆動式の遮断弁とを備える構成が知られている(特許文献1参照)。
 例えば内燃機関の始動時など、燃料噴射が休止状態から開始された際において、その燃料噴射の開始前に、噴射弁に供給されるガス燃料の圧力が所定の制御目標値を超えて高圧となると、噴射弁の開弁駆動に支障が生じる懸念がある。
特開平11-54290号公報
 本開示は、燃料噴射を適正に開始できる燃料噴射制御装置を提供することを目的とする。
 本開示の一態様によれば、燃料噴射制御装置は、ガス燃料を高圧状態で蓄える燃料タンクから燃料通路を通じて供給されるガス燃料を噴射する燃料噴射部と、前記燃料噴射部に供給されるガス燃料の圧力を調整する圧力調整部と、ガス供給圧を検出する圧力検出部と、を備える内燃機関に適用される。さらに、燃料噴射制御装置は、前記ガス供給圧の目標値である第1目標燃料圧を設定する第1目標燃料圧設定部と、前記圧力検出部によるガス供給圧の検出値が前記第1目標燃料圧となるように、前記圧力調整部によるガス燃料の圧力調整を制御する圧力制御部と、燃料噴射の休止状態から燃料噴射を開始させる噴射要求が発生したか否かを判定する噴射要求判定部と、前記噴射要求が発生したと判定された際、初回の燃料噴射に先立ち、前記ガス供給圧が前記第1目標燃料圧よりも低圧となるように前記圧力調整部による圧力調整の制御を実施する圧力調整制御部と、を備える。
 上記構成によれば、始動要求が発生した際、初回の燃料噴射に先立ち、ガス供給圧が第1目標燃料圧よりも低圧となるように圧力調整部によるガス燃料の圧力調整の制御量を補正するようにした。この場合、初回の燃料噴射の開始前において、ガス燃料の圧力が第1目標燃料圧を超えて増加することを抑えることができ、ひいては、オーバーシュートが生じることに伴う不都合の発生を抑えることができる。
図1は、エンジンの燃料噴射システムの概略を示す構成図。 図2Aは、第1噴射弁の概略構成を示す図。 図2Bは、第1噴射弁の概略構成を示す図。 図3は、レギュレータの概略構成を示す図。 図4は、各電気負荷に対する電力供給系の構成を示す図。 図5は、エンジン噴射開始処理の手順を示すフローチャート。 図6は、冷却水温と目標燃料圧変化との関係を示すマップ。 図7は、エンジン噴射開始処理の実行例を示す図。 図8は、エンジン噴射開始処理の比較例を示す図。
 以下、本開示の一実施形態を図面を参照しつつ説明する。本実施形態は、ガス燃料である圧縮天然ガス(CNG)を燃焼用の燃料として使用する車載多気筒エンジン(多気筒内燃機関)に適用される燃料噴射システムとして具体化するものとしている。本システムの全体概略図を図1に示す。
 図1に示すエンジン10は直列3気筒の火花点火式エンジンよりなり、その吸気ポート及び排気ポートには吸気系統11、排気系統12がそれぞれ接続されている。吸気系統11は、吸気マニホールド13と吸気管14とを有している。吸気マニホールド13は、エンジン10の吸気ポートに接続される複数(エンジン10の気筒数分)の分岐管部13aと、その上流側であって吸気管14に接続される集合部13bとを有している。吸気管14には空気量調整部としてのスロットル弁15が設けられている。スロットル弁15は、DCモータ等のスロットルアクチュエータ15aにより開度調節される電子制御式のスロットル弁15として構成され、スロットル弁15の開度(スロットル位置)は、スロットルアクチュエータ15aに内蔵されたスロットル位置センサ15bにより検出されるようになっている。
 排気系統12は、排気マニホールド16と排気管17とを有している。排気マニホールド16は、エンジン10の排気ポートに接続される複数(エンジン10の気筒数分)の分岐管部16aと、その下流側であって排気管17に接続される集合部16bとを有している。排気管17には、排気の成分を検出する排気センサ18と、排気を浄化する触媒19とが設けられている。排気センサ18として具体的には、排気中の酸素濃度から空燃比を検出する空燃比センサが設けられている。
 エンジン10の各気筒には点火プラグ20が設けられている。点火プラグ20には、点火コイル等よりなる点火装置20aを通じて、所望とする点火時期に高電圧が印加される。この高電圧の印加により、各点火プラグ20の対向電極間に火花放電が発生し、気筒内(燃焼室内)に導入した燃料が着火され燃焼に供される。
 また、本システムは、エンジン10に対して燃料を噴射供給する燃料噴射部として、ガス燃料(CNG燃料)を噴射する噴射弁21を有している。噴射弁21は、吸気系統11において吸気マニホールド13の分岐管部13aにそれぞれ燃料を噴射するものであり、噴射弁21の噴射によりガス燃料が各気筒の吸気ポートに供給される。
 噴射弁21は、電磁駆動部が電気的に駆動されることで弁体が閉位置から開位置にリフトされる開閉タイプの制御弁であり、制御部80から入力されるオン/オフ式の開弁駆動信号によりそれぞれ開弁駆動される。噴射弁21は、通電により開弁し、通電遮断により閉弁する。そして、通電時間に応じた量のガス燃料が噴射弁21から噴射される。本実施形態では、噴射弁21の先端部に噴射管23が接続されており、噴射弁21から噴出されたガス燃料は噴射管23を介して吸気マニホールド13の分岐管部13aに噴射される。
 ここで、噴射弁21の構成を図2A、図2Bを参照して説明する。図2Aは非噴射状態を示し、図2Bは噴射状態を示している。噴射弁21は、自身に供給されるガス燃料の圧力により閉鎖シール性が高められる、いわゆるセルフシール(自密閉)構造を有している。
 筒状のボディ31には弁体32が摺動可能に収容されており、そのボディ31内において弁体32がばね33により閉弁方向に付勢されている。図2Aでは、弁体32の先端部によって、噴射弁先端に設けられた噴射部34が閉鎖されている。また、ボディ31内には、弁体32の後端側(上流側)に第1燃料室35が設けられるとともに、弁体32の先端側(下流側)に第2燃料室36が設けられている。弁体32には、摺動部分よりも先端側に小径部32aが設けられており、その小径部32aの周りに第2燃料室36が設けられている。第1燃料室35と第2燃料室36とは、弁体32に設けられた燃料通路37を介して連通されており、燃料通路37の入口側は第1燃料室35に通じ、出口側は第2燃料室36に通じている。弁体32は、ソレノイド等からなる電磁駆動部38への通電に応じて開弁位置に変位する。
 上記構成の噴射弁21では、第1燃料室35に対して後述のレギュレータ43からガス燃料が供給され、そのガス燃料が燃料通路37を介して第2燃料室36にも導入される。そして、図2Bに示すように、電磁駆動部38への通電に伴いばね33の付勢力に抗して弁体32が開弁位置に変位すると、噴射部34が開放され、ガス燃料が噴射される。
 噴射弁21において、弁体32にはその先端側に小径部32aが設けられていることから、閉弁状態での第1燃料室35側の受圧面積と第2燃料室36側の受圧面積とは、「第1燃料室35側の受圧面積>第2燃料室36側の受圧面積」となっている(図2A参照)。そのため、図2Aに示す閉弁状態では、レギュレータ43側から供給されるガス燃料の圧力(噴射圧に相当)が、弁体32を閉弁する方向(閉弁方向)に対してはより大きく作用するようになっている。なお、図2Bに示す開弁状態では、小径部32aの端面(図の下端面)にも噴射圧が作用するため、弁体32に作用する閉弁方向の燃料圧力と開弁方向の燃料圧力とは略同じになっている。
 次に、図1の説明に戻り、噴射弁21に対してガス燃料を供給するガス燃料供給部40の構成を説明する。
 ガス燃料供給部40において、噴射弁21にはガス配管41を介してガスタンク42が接続されており、そのガス配管41の途中には、噴射弁21に供給されるガス燃料の圧力を減圧調整する圧力調整機能を有するレギュレータ43が設けられている。レギュレータ43(より詳しくは後述する圧力調整弁60)は、ガスタンク42内に貯蔵された高圧状態(例えば最大20MPa)のガス燃料を、噴射弁21の噴射圧である所定の設定圧(例えば0.2~1.0MPa)に減圧調整するものであり、減圧調整後のガス燃料がガス配管41を通って噴射弁21に供給されるようになっている。なお、ガス配管41において、レギュレータ43よりも上流側が高圧側通路を形成する高圧配管部41a、下流側が低圧側通路を形成する低圧配管部41bとなっている。
 また、ガス配管41等により形成されるガス燃料通路には更に、ガスタンク42の燃料出口の付近に配置されたタンク主止弁44(タンク出口弁)と、そのタンク主止弁44よりも下流側であってレギュレータ43の燃料入口の付近に配置された遮断弁45とが設けられており、これら各弁44,45によって、ガス配管41におけるガス燃料の流通が許容及び遮断されるようになっている。タンク主止弁44及び遮断弁45はいずれも電磁式の開閉弁であり、非通電時においてガス燃料の流通が遮断され、通電時においてガス燃料の流通が許容される常閉式となっている。
 ガス配管41において、高圧配管部41aには燃料圧力を検出する圧力センサ46と、燃料温度を検出する温度センサ47とが設けられている。低圧配管部41bには燃料圧力を検出する圧力センサ48と、燃料温度を検出する温度センサ49とが設けられている。
 なお、遮断弁45と圧力センサ46とはレギュレータ43に一体に設けることが可能であり、本実施形態では、レギュレータ43に一体に遮断弁45と圧力センサ46とを設ける構成を採用することとしている(詳細は図3で後述する)。
 ここで、レギュレータ43の具体的構成を図3に基づいて説明する。レギュレータ43は、制御部80によって定められた設定圧に対して低圧配管部41b内の燃料圧力を調整する電磁駆動式の圧力調整装置を構成するものである。
 図3において、レギュレータ43は、高圧配管部41a(すなわちガスタンク42側)に接続される高圧通路51と、低圧配管部41b(すなわち噴射弁21側)に接続される低圧通路52とを有しており、高圧通路51には遮断弁45と圧力センサ46とが設けられている。圧力センサ46は、遮断弁45よりも上流側でガス燃料の圧力を検出する。符号53は、異物除去用のフィルタである。
 遮断弁45の構成は噴射弁21の構成と概ね同じであり、セルフシール(自密閉)構造を有している。その構成を簡単に説明する。遮断弁45は、ばね54により閉弁方向に付勢された弁体55を有しており、電磁駆動部56が通電されることによりばね54の付勢力に抗して弁体55が閉弁位置から開弁位置に変位するようになっている。弁体55の後端側(上流側)には第1燃料室57が設けられるとともに、弁体55の先端側(小径部が設けられた下流側)には第2燃料室58が設けられている。これら両燃料室57,58は、弁体55に設けられた燃料通路59を介して連通されている。この場合、両燃料室57,58にはガスタンク42から高圧のガス燃料が供給され、遮断弁45の閉鎖状態下ではガスタンク42側の燃料圧力により弁体55に閉鎖方向の力が付与されている。そして、電磁駆動部56への通電に伴いばね54の付勢力に抗して弁体55が開弁位置に変位すると(図示の状態)、高圧のガス燃料が下流側に流通する。
 レギュレータ43において、遮断弁45の下流側には圧力調整弁60が設けられている。圧力調整弁60の構成として、高圧通路51には弁体室61が設けられており、その弁体室61には弁体62が摺動可能に収容されている。弁体62は低圧通路52の入口部分である弁座部63を開閉する開閉部材であり、ばね66によって閉弁方向に付勢されている。
 弁体62は、ソレノイド等からなる電磁駆動部64への通電に応じて開弁方向に変位する。すなわち電磁駆動部64への通電に伴いばね66の付勢力に抗して弁体62が開弁方向に変位することで、弁座部63が開かれて高圧通路51と低圧通路52とが連通される。一方、電磁駆動部64への通電が遮断されることで、ばね66の付勢力によって弁体62が閉位置となることで、弁座部63が閉じられて高圧通路51と低圧通路52との連通が遮断される。このとき、弁体62の開位置(弁体リフト量)に応じて弁座部63における開口面積が変更され、ひいては高圧通路51から低圧通路52に流入する燃料量が調整される。
 低圧通路52から分岐した分岐部52aには、低圧通路52内の燃料圧力が異常高圧になった場合にガス抜きをするリリーフ弁69が設けられている。
 本実施形態では、レギュレータ43において、弁体62や電磁駆動部64といった構成部品からなる圧力調整弁60により圧力調整部が構成されている。なお、図3の構成では、レギュレータ43において遮断弁45と圧力センサ46と圧力調整弁60とを一体に設けたが、これを変更してもよく、例えば遮断弁45と圧力センサ46とをレギュレータ43とは別体として高圧配管部41aに設けることも可能である。
 制御部80は、CPU81と、ROM82と、RAM83と、バックアップRAM84と、インターフェース85と、双方向バス86とを備えている。CPU81、ROM82、RAM83、バックアップRAM84、及びインターフェース85は、双方向バス86によって互いに接続されている。
 CPU81は、本システムにおける各部の動作を制御するためのルーチン(プログラム)を実行する。ROM82には、CPU81が実行するルーチン、及びこのルーチン実行の際に参照されるマップ類(マップの他、テーブルや関係式等を含む)、パラメータ等の各種データが予め格納されている。RAM83は、CPU81がルーチンを実行する際に、必要に応じてデータを一時的に格納する。バックアップRAM84は、電源が投入された状態でCPU81の制御下でデータを適宜格納するとともに、この格納されたデータを電源遮断後も保持する。
 インターフェース85は、上述したスロットル位置センサ15b、排気センサ18、圧力センサ46,48、温度センサ47,49、を含む、本システムに設けられたセンサ類(冷却水温センサ25、クランク角センサ、エアフロメータ、車速センサ等)と電気的に接続されており、これらのセンサからの出力(検出信号)をCPU81に伝達する。
 また、インターフェース85は、スロットルアクチュエータ15a、点火装置20a、各噴射弁21、タンク主止弁44、遮断弁45等の駆動部と電気的に接続されていて、これらの駆動部を駆動させるためにCPU81から送出された駆動信号を当該駆動部に向けて出力する。すなわち、制御部80は、上述のセンサ類の出力信号等に基づいて運転状態を取得し、この運転状態に基づいて上述の駆動部の制御を実施する。
 上述したタンク主止弁44や遮断弁45、圧力調整弁60などの各種の電気負荷が車載バッテリからの電力供給を受けて作動する構成となっており、その電力供給系の構成を図4に示す。図4では、電気負荷としての点火装置20aや各噴射弁21、タンク主止弁44、遮断弁45、スタータ91、および圧力調整弁60などの各種の電気負荷が電力供給線92を介して電源部としてのバッテリ93に接続されており、これら各電気負荷はバッテリ93からの電力供給により駆動される。スタータ91は、エンジン10の始動時において初期回転を付与するための始動装置である。
 点火装置20aやタンク主止弁44、遮断弁45、圧力調整弁60には、制御部80から制御信号が入力されるようになっており、点火装置20aは、制御部80からの制御信号に応じて高電圧を出力し点火プラグ20に点火火花を生じさせる。また、タンク主止弁44、遮断弁45及び圧力調整弁60は、制御部80からの制御信号に応じて閉弁状態から開弁状態に切り替えられる。
 また、制御部80には、エンジン10の噴射要求があることを示す情報や、スタータ91の駆動によるエンジン始動時において、スタータ駆動(クランキング)が実施されていることを示す情報や、スタータ91の駆動開始(クランキング開始)からの経過時間を示す情報、エンジン10の始動完了を示す情報が始動情報として入力されるようになっている。なお噴射要求は、エンジン10の始動時や、燃料カット状態からの復帰時に出力される。また制御部80には、エンジン10の冷却水温を検出する冷却水温センサ25による検出温度がエンジン温度として入力される。
 更に、制御部80は、噴射弁21の噴射圧制御として、ガス供給圧の検出値と目標値との偏差に基づくフィードバック制御を実施する。具体的には、圧力センサ48によるガス供給圧の検出値である検出燃料圧と、エンジン運転状態(例えばエンジン回転速度及びエンジン負荷)に基づいて算出されたガス供給圧の目標値である第1目標燃料圧とを用いて、検出燃料圧が第1目標燃料圧となるように、検出燃料圧と目標値との偏差及びフィードバックゲインに基づいて、フィードバック制御量を算出し、このフィードバック制御量に基づいて圧力調整弁60の制御(電磁駆動部64の通電)を行っている。
 しかし、エンジン始動時や燃料カット復帰時のように噴射休止状態からエンジン10の噴射要求がある場合には、検出燃料圧と第1目標燃料圧との差(偏差)が大きくなることが考えられる。そのため、フィードバック制御量が大きくなり、レギュレータ43の電磁駆動部64の通電量が増大する。これにより、弁体62が開弁方向に大きくリフトされることで、噴射弁21に供給されるガス供給圧が急増し、低圧通路52内のガス供給圧が第1目標燃料圧を大きく超えるオーバーシュートが生じる可能性が高くなる。
 オーバーシュートが発生すると、ガス供給圧が過剰に大きくなるため、噴射弁21において、ガス燃料によって弁体32が噴射部34に押し付けられる押圧力が大きくなる。そして、押圧力が電磁駆動部38の電磁力より大きい場合には、噴射弁21の弁体32が開かなくなる可能性がある。
 本実施形態のように、噴射弁21が自身に供給されるガス燃料の圧力により閉鎖シール性が高められるセルフシール(自密閉)構造を有している場合には、オーバーシュートの発生に起因して、噴射部34の開弁が困難となりやすくなることが懸念される。また、噴射要求がエンジン10の始動時の場合には、燃料噴射システムの電力が不足することも懸念される。
 そこで、本実施形態の制御部80は、ガス燃料の噴射要求が生じた際、所定の第1目標燃料圧に基づく制御を行う前に、第1目標燃料圧よりも低圧の第2目標燃料圧を設定する。これにより、フィードバック制御量の増大に伴ってガス供給圧が過剰に大きくなることが抑えられるようにする。なお、ガス燃料の噴射要求(噴射要求信号)は、エンジン10の噴射休止状態から噴射要求が発生した際に出力される。例えば、エンジン10始動時や、燃料カット状態からの復帰時などに出力される。
 また本実施形態では、冷却水温センサ25によるエンジン温度の検出結果に基づいて、エンジン温度が所定値未満の低温である場合に、第2目標燃料圧に基づく制御を実施する。
 すなわち、レギュレータ43の弁体62が開弁方向に変位する際には、その移動に抗して静摩擦力が生じるが、静摩擦力が大きいと、弁体62が開弁方向に変位するために必要となる制御量(エネルギー)が増加するため、弁体62の開弁に伴って、オーバーシュートが生じる可能性が高くなる。このような静摩擦力の影響は、エンジン温度が低くなるほど大きくなる傾向がある。
 そこで、エンジン温度が所定値未満(例えば0℃未満)に低温である場合に、第2目標燃料圧に基づく制御を実施する。一方、本実施形態では、エンジン10の温度が所定値以上(例えば50℃以上)に高い場合には第2目標燃料圧に基づく制御を実施しないこととした。この場合、オーバーシュートが生じる可能性がある場合に、その発生を適切に抑えることができる。
 また、本実施形態では、第2目標燃料圧をエンジン温度に応じて設定する。すなわち、ガス燃料はエンジン温度が低温である程、オーバーシュートが生じやすくなる。そこで、エンジン温度が低温である程、第2目標燃料圧が小さい値に設定されるようにする。
 図5に、制御部80が実施する目標燃料圧の設定処理のフローチャートを示す。本処理は、制御部80のCPU81が所定周期で繰り返し実施する。
 図5において、エンジン10の噴射要求があった後か否かを判定する(S11)。例えば、図示を略すIG-SWがオンに切り替えられることで、エンジン噴射要求が生じるものとしている。噴射要求がなければ本処理を終了する。噴射要求があった後で、第1目標燃料圧を算出する(S12)。すなわち、センサ類による各種パラメータとガス圧とのマップを用いて、ガス圧を算出する。
 次に、燃料噴射の開始前であるか否かを判定する(S13)。この処理では、噴射弁21に対する開弁駆動信号が出力される前である場合に燃料噴射の開始前であると判定し、初回の開弁駆動信号が出力された後である場合に燃料噴射の開始後であると判定する。
 S13で肯定判定した場合には、検出燃料圧が第1目標燃料圧よりも低圧であるか否かを判定する(S14)。この処理は、圧力センサ48で検出される検出燃料圧と第1目標燃料圧とを比較することにより行う。
 S14で肯定判定した場合には、冷却水温センサ25で検出したエンジン温度が所定値(例えば0℃)未満であるか否かを判定する(S15)。S15で肯定判定した場合には、第2目標燃料圧を算出する(S16)。この際、図6に示されるように、エンジン温度に応じて、第2目標燃料圧を設定する。図6では、エンジン温度が低くなるほど、第2目標燃料圧が低くなるように設定されている。一般的に、エンジン温度が低温である程、レギュレータ43の制御性が悪化するため、オーバーシュートが生じやすくなる。そこで、エンジン温度に応じて第2目標燃料圧を設定することで、エンジン温度に応じてオーバーシュートを抑制する効果を高めることができる。また本実施形態では、第2目標燃料圧が時間の経過に伴い次第に増加するようになっている。これによりレギュレータ43の出力を次第に増加させる。
 その後、第2目標燃料圧に基づいてフィードバック制御量を算出する(S17)。なお、S13~S15で否定判定した場合には、S17で、第1目標燃料圧に基づいてフィードバック制御量を算出する。そして、フィードバック制御量に基づき、レギュレータ43の電磁駆動部64の通電量を決定する。
 次に上記処理の実行例を説明する。図7は、上記処理の実行例であり、図8は、上記処理を実施しない場合の比較例である。なおここでは、エンジン温度が所定未満と判定されたとしている。また、噴射要求が発生してから、所定時間、第2目標燃料圧に基づくフィードバック制御が実施されるとする。
 図7において、時刻t1でIGスイッチがオンとされることによって、エンジン10の噴射要求が生じる。この場合、噴射開始前に検出燃料圧が第1目標燃料圧よりも低圧であるため、第2目標燃料圧が設定される。そして、検出燃料圧が設定された第2目標燃料圧となるようにフィードバック制御がされる。この場合、検出燃料圧と第1目標燃料圧とに差がある場合においても、フィードバック制御量の増大が抑えられることで、ガス供給圧が第1目標燃料圧を超えるオーバーシュートが発生することが抑えられる。
 なお、時刻t1以降、第2目標燃料圧が次第に増加されることに伴い、検出燃料圧が次第に増加する。そして時刻t2で検出燃料圧が第1目標燃料圧に達すると、第2目標燃料圧に基づく制御が終了され、第1目標燃料圧に基づく制御に切り替えられる。
 時刻t3で噴射弁21の通電が開始されると、エンジン10にガス燃料が供給されるようになる。この際、ガス供給圧は第1目標燃料圧を超えて過剰に大きくなっていないので、噴射弁21からの燃料噴射が円滑に開始される。そして、時刻t4までクランキングが実施された後、時刻t4で、ガス燃料の燃焼が開始される。そして、ガス燃料の燃焼に伴って、エンジン回転速度が上昇する。
 一方、図8の場合には、時刻t11でIGスイッチがオンとされ、エンジン10の噴射要求が生じると、目標燃料圧として第1目標燃料圧が設定される。そして、検出燃料圧が第1目標燃料圧となるようにフィードバック制御がされる。この場合、フィードバック制御量が大きくなることによって、ガス供給圧が第1目標燃料圧を超えるオーバーシュートが生じている。そして、オーバーシュートが生じた状態で、時刻t12で噴射弁21の通電が開始されると、噴射部34を塞ぐ弁体32がガス燃料の圧力で押し付けられているために、噴射部34が開弁しないことが生じうる。なおこの場合には、時刻t12で噴射弁21の通電が開始されると、ガス供給圧が徐々に減少しているが、ガス供給圧が第1目標燃料圧となるまでに所定の時間ΔTを要することとなる。
 上記構成によれば以下の効果を奏する。
 例えば、エンジン10の始動後に噴射要求が発生した際、設定された第1目標燃料圧と検出燃料圧との差が大きいと、制御部80によるフィードバック制御量が大きくなり、噴射弁21に供給されるガス燃料の圧力であるガス供給圧が第1目標燃料圧を超えて高圧になることが生じうる。初回の燃料噴射の前に、ガス供給圧が高圧になると、燃料噴射を適切に開始できない等の不都合が生じる懸念がある。そこで、始動要求が発生した際、初回の燃料噴射に先立ち、ガス供給圧の検出値が第1目標燃料圧よりも低圧となるように、ガス供給圧の制御が実施されるようにした。この場合、初回の燃料噴射の開始前において、ガス供給圧が第1目標燃料圧を超えて増加することを抑えることができ、ひいては、オーバーシュートが生じることに伴う不都合の発生を抑えることができる。
 第1目標燃料圧よりも低圧の第2目標燃料圧が設定されるようにするとともに、初回の燃料噴射の開始前に、第2目標燃料圧に基づく圧力調整が実施されるようにした。この場合、ガス供給圧が第1目標燃料圧を超えて増加することを抑えることができる。
 燃料噴射の開始後は、第2目標燃料圧に代えて、第1目標燃料圧を用いた圧力調整に切り替えられるようにすることで、燃料噴射開始後において、エンジン10の運転状態に基づいて、ガス供給圧を適切に調整できる。
 第2目標燃料圧を時間の経過に伴い次第に増加させることで、ガス供給圧を徐々に増加させることができ、ひいては、オーバーシュートの発生を抑えることができる。
 ガス供給圧が第1目標燃料圧よりも低圧となるようにガス燃料の圧力調整が実施されるようにした。この場合、初回の燃料噴射に先立って、ガス供給圧が高圧になることを抑えることができ、ひいては、オーバーシュートの発生に伴う不都合の発生を抑えることができる。
 エンジン温度が低い場合には、レギュレータ43の動作時に静摩擦力の影響が大きくなり、オーバーシュートが発生する可能性が高くなる。そこで、エンジン温度に応じて、圧量調整の制御が実施されるようにした。この場合、エンジン温度に応じて、オーバーシュートを抑える効果を高めることができる。
 エンジン温度が低温である程、摩擦(静摩擦)の影響でレギュレータ43の制御性が悪化するため、オーバーシュートが生じやすくなる。一方、エンジン温度が所定以上に高ければ、オーバーシュートは生じにくくなる。そこで、燃料噴射の開始前において、エンジン温度が所定未満に低い場合に、圧力調整が実施されることとした。この場合、オーバーシュートの発生を抑えつつ、より好適に検出燃料圧を第1目標圧力に近づけることができる。
 噴射要求が発生してから、所定時間、圧力調整の制御を実施することで、オーバーシュートの発生を抑えることができる。
 本開示は、上記実施形態の記載内容に限定されず、次のように実施されてもよい。なお以下の説明において上記と同じ構成には同じ図番号を付し、詳述は省略する。
 上記の図5の処理において、第2目標燃料圧に基づく圧力調整が実施されている際、ガス供給圧に所定以上の上昇変化が生じたと判定された場合に、第1目標燃料圧に基づく制御が行われるようにしてもよい。すなわち、オーバーシュートは、圧力調整弁60の始動時において、圧力調整弁60の弁体62がリフトする際に生じる静摩擦力に起因して生じる。すなわち、既に検出燃料圧の上昇が開始している場合には、オーバーシュートが生じる可能性は低くなっている。そこで検出燃料圧の上昇が検出された場合に、第1目標燃料圧に切り替えられるようにした。この場合、運転状態に基づき設定した第1目標燃料圧に基づく制御を早期に実施することができる。
 オーバーシュートは、エンジン10の始動時において最初に算出された検出燃料圧と目標燃料圧との差が大きい場合に生じうる。その為、エンジン10の始動時における最初のフィードバック制御量が小さければ、オーバーシュートが生じる可能性が低くなる。そこで、図5の処理において、S16で算出される第2目標燃料圧は、第1目標燃料圧よりも低い値であればよく、固定値としてもよい。
 上記の図5の処理において、S16で第2目標燃料圧を算出することに代えて、検出燃料圧と第1目標燃料圧との差が小さくなるようにフィードバック制御量を設定するようにしてもよい。すなわち、S16において、フィードバックゲインが通常制御時よりも小さくなるように設定してもよい。これにより、初回の燃料噴射に先立ち、ガス供給圧を第1目標燃料圧よりも低圧にすることができる。なおこの場合にも、フィードバックゲインを通常制御時よりも小さくした状態を、所定期間継続することで、エンジン10の噴射休止状態から噴射要求が発生した際におけるオーバーシュートの発生を抑える効果を高めることができる。
 フィードバックゲインを通常制御時よりも小さくすることでオーバーシュートの発生を抑制する場合、エンジン温度に応じて、フィードバックゲインが設定されるようにしてもよい。すなわち、エンジン温度が低温である程、フィードバックゲインが小さくなるようにしてもよい。
 上記の図5の処理において、噴射弁21による所定回数(例えば1回又は複数回)の燃料噴射が行われた時点で、第2目標燃料圧力による制御を中止して、第1目標燃料圧に基づく制御が開始されるようにしてもよい。
 図7において、時刻t2で第2目標燃料圧が第1目標燃料圧に一致したと判定されるまで、第2目標燃料圧を増加させる。そして第1目標燃料圧と第2目標燃料圧とが一致した際に、第2目標燃料圧に代えて、第1目標燃料圧に基づく圧力調整が実施されるようにしてもよい。

 

Claims (11)

  1.  ガス燃料を高圧状態で蓄える燃料タンク(42)から燃料通路(41)を通じて供給されるガス燃料を噴射する燃料噴射部(21)と、前記燃料噴射部に供給されるガス燃料の圧力を調整する圧力調整部(43)と、ガス供給圧を検出する圧力検出部(46,48)と、を備える内燃機関(10)に適用され、
     前記ガス供給圧の目標値である第1目標燃料圧を設定する第1目標燃料圧設定部と、
     前記圧力検出部によるガス供給圧の検出値が前記第1目標燃料圧となるように、前記圧力調整部によるガス燃料の圧力調整を制御する圧力制御部と、
     燃料噴射の休止状態から燃料噴射を開始させる噴射要求が発生したか否かを判定する噴射要求判定部と、
     前記噴射要求が発生したと判定された際、初回の燃料噴射に先立ち、前記ガス供給圧が前記第1目標燃料圧よりも低圧となるように前記圧力調整部による圧力調整の制御を実施する圧力調整制御部と、
     を備える燃料噴射制御装置。
  2.  前記圧力調整制御部は、前記第1目標燃料圧よりも低圧の第2目標燃料圧を設定するものであって、
     前記圧力制御部は、初回の燃料噴射に先立ち、前記ガス供給圧が前記第2目標燃料圧となるように前記圧力調整部による圧力調整を制御する請求項1に記載の燃料噴射制御装置。
  3.  前記圧力制御部は、前記第2目標燃料圧に基づく圧力調整の実施後、前記第1目標燃料圧に基づく圧力制御に切り替える請求項2に記載の燃料噴射制御装置。
  4.  前記圧力調整制御部は、前記第2目標燃料圧を時間の経過に伴い次第に増加させ、
     前記圧力制御部は、前記圧力検出部によるガス供給圧の検出値及び前記第2目標燃料圧のいずれかが前記第1目標燃料圧に達した際に、前記第2目標燃料圧に基づく制御を終了し、第1目標燃料圧に基づく圧力調整を実施する請求項2又は3に記載の燃料噴射制御装置。
  5.  前記内燃機関の温度を検出する温度検出部(25)を備え、
     前記圧力調整制御部は、前記内燃機関の温度の検出結果に基づいて、前記第2目標燃料圧を決定する請求項4に記載の燃料噴射制御装置。
  6.  前記圧力制御部は、所定のフィードバックゲインを用いてフィードバック制御量を設定するものであって、
     前記圧力調整制御部は、初回の燃料噴射に先立って、前記ガス供給圧が前記第1目標燃料圧よりも低圧となるように前記フィードバックゲインを設定する請求項1乃至5のいずれか1項に記載の燃料噴射制御装置。
  7.  前記圧力検出部によりガス供給圧の増加が検出された際に、前記圧力調整制御部による圧力調整の補正を終了する請求項1乃至6のいずれか1項に記載の燃料噴射制御装置。
  8.  前記圧力調整制御部は、前記燃料噴射の開始後は、補正を終了する請求項1乃至7のいずれか1項に記載の燃料噴射制御装置。
  9.  前記内燃機関の温度を検出する温度検出部(25)を備え、
     前記圧力調整制御部は、前記温度検出部で検出された前記内燃機関の温度に応じて、前記圧力調整の制御を実施する請求項1乃至8のいずれか1項に記載の燃料噴射制御装置。
  10.  前記圧力調整制御部は、前記噴射要求が発生したと判定された際、前記内燃機関の温度が所定値未満の場合に、前記ガス燃料の圧力調整の制御を実施する請求項9に記載の燃料噴射制御装置。
  11.  前記圧力調整制御部は、前記噴射要求が発生してから、所定時間、圧力調整の制御を実施する請求項1乃至10のいずれか1項に記載の燃料噴射制御装置。
PCT/JP2015/003761 2014-08-29 2015-07-28 内燃機関の燃料噴射制御装置 WO2016031135A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014175386A JP2016050503A (ja) 2014-08-29 2014-08-29 内燃機関の燃料噴射制御装置
JP2014-175386 2014-08-29

Publications (1)

Publication Number Publication Date
WO2016031135A1 true WO2016031135A1 (ja) 2016-03-03

Family

ID=55399056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003761 WO2016031135A1 (ja) 2014-08-29 2015-07-28 内燃機関の燃料噴射制御装置

Country Status (2)

Country Link
JP (1) JP2016050503A (ja)
WO (1) WO2016031135A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197857A (ja) * 1993-12-29 1995-08-01 Mazda Motor Corp 気体燃料エンジンの燃料供給装置
JP2007205314A (ja) * 2006-02-06 2007-08-16 Nikki Co Ltd ガスエンジンの燃料供給制御装置
JP2013133792A (ja) * 2011-12-27 2013-07-08 Denso Corp 内燃機関の制御装置
JP2013213439A (ja) * 2012-04-02 2013-10-17 Denso Corp 燃料噴射制御装置
JP2014114792A (ja) * 2012-12-12 2014-06-26 Denso Corp 内燃機関の燃料噴射制御装置及び車両の燃料噴射システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197857A (ja) * 1993-12-29 1995-08-01 Mazda Motor Corp 気体燃料エンジンの燃料供給装置
JP2007205314A (ja) * 2006-02-06 2007-08-16 Nikki Co Ltd ガスエンジンの燃料供給制御装置
JP2013133792A (ja) * 2011-12-27 2013-07-08 Denso Corp 内燃機関の制御装置
JP2013213439A (ja) * 2012-04-02 2013-10-17 Denso Corp 燃料噴射制御装置
JP2014114792A (ja) * 2012-12-12 2014-06-26 Denso Corp 内燃機関の燃料噴射制御装置及び車両の燃料噴射システム

Also Published As

Publication number Publication date
JP2016050503A (ja) 2016-04-11

Similar Documents

Publication Publication Date Title
WO2014091691A1 (ja) 内燃機関の燃料噴射制御装置
JP5212546B2 (ja) 燃料供給装置
US20160290248A1 (en) Fuel supply system for internal combustion engine and control method therefor
JP4392319B2 (ja) Lpi車両の燃料ポンプノイズ低減装置及び方法
JP5862552B2 (ja) 内燃機関の燃料噴射制御装置
WO2014091679A1 (ja) 内燃機関の燃料噴射制御装置
JP5856384B2 (ja) 燃料供給システム及び燃料噴射制御装置
WO2014091680A1 (ja) 内燃機関の燃料噴射制御装置及び車両の燃料噴射システム
JP2015137579A (ja) 内燃機関の制御装置
JP2015090076A (ja) 燃料供給システムの異常診断装置
WO2016031135A1 (ja) 内燃機関の燃料噴射制御装置
JP2016056699A (ja) 内燃機関の燃料噴射システム
WO2014091722A1 (ja) 内燃機関の燃料噴射制御装置
WO2013150739A1 (ja) エンジン制御装置
WO2014091723A1 (ja) 内燃機関の燃料噴射制御装置
JP6532741B2 (ja) 電磁弁の駆動制御装置
JP2016070245A (ja) 内燃機関の燃料噴射制御装置
WO2016132708A1 (ja) 燃料噴射制御装置
JP2013160138A (ja) 燃料供給制御装置
JP2015224583A (ja) 内燃機関の制御装置
JP4388514B2 (ja) 燃料供給装置
JP2015090075A (ja) 燃料供給システムの異常診断装置
WO2015157858A1 (en) Fuel system for an internal combustion engine
WO2016006169A1 (ja) 内燃機関の燃料噴射制御装置
JP2016061163A (ja) 内燃機関の燃料噴射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835424

Country of ref document: EP

Kind code of ref document: A1