JP2013213439A - 燃料噴射制御装置 - Google Patents

燃料噴射制御装置 Download PDF

Info

Publication number
JP2013213439A
JP2013213439A JP2012084084A JP2012084084A JP2013213439A JP 2013213439 A JP2013213439 A JP 2013213439A JP 2012084084 A JP2012084084 A JP 2012084084A JP 2012084084 A JP2012084084 A JP 2012084084A JP 2013213439 A JP2013213439 A JP 2013213439A
Authority
JP
Japan
Prior art keywords
fuel
injection
gas
engine
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012084084A
Other languages
English (en)
Inventor
Yuichi Takemura
優一 竹村
Minoru Wada
実 和田
Takashi Mizobuchi
剛史 溝渕
Kazumasa Nonoyama
和賢 野々山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012084084A priority Critical patent/JP2013213439A/ja
Priority to PCT/JP2013/001710 priority patent/WO2013150729A1/ja
Publication of JP2013213439A publication Critical patent/JP2013213439A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0607Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/061Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0613Switch-over from one fuel to another
    • F02D19/0615Switch-over from one fuel to another being initiated by automatic means, e.g. based on engine or vehicle operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0647Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being liquefied petroleum gas [LPG], liquefied natural gas [LNG], compressed natural gas [CNG] or dimethyl ether [DME]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • F02D41/345Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】ガス燃料によるエンジン始動性を向上させる。
【解決手段】エンジン10には、ガスタンク27からガス通路26を通じて供給されるガス燃料をエンジン10に噴射するガス噴射手段としてガス噴射弁14が設けられている。ECU60のマイコン61は、エンジン10の始動開始から始動完了までの所定の始動期間内において、エンジン10の温度である始動時温度を検出する。また、マイコン61は、所定の始動期間内においてガス噴射弁14によるガス燃料の噴射を実施する場合に、始動時温度が低いほど、吸気行程内の遅い時期にガス燃料の噴射を実施する。
【選択図】図1

Description

本発明は、燃料噴射制御装置に関し、詳しくはガス燃料を使用する車載エンジンの燃料供給システムに適用される燃料噴射制御装置に関する。
近年、圧縮天然ガス(CNG)や液化天然ガス等のガス燃料が、ガソリンなどの液体燃料に代わる代替燃料として注目されており、ガス燃料を単独で又はガソリン等の液体燃料と共に使用する車両が実用化されている。例えばCNG燃料を使用する車両では一般に、CNG燃料がガスタンク内に高圧状態で貯蔵されており、ガスタンク内の高圧燃料が、ガス通路を介してエンジンの燃料噴射弁(ガス噴射弁)に供給されるシステムとなっている(例えば、特許文献1参照)。
上記特許文献1には、ガス燃料と液体燃料とを選択的に使用するバイフューエルエンジンの燃料供給システムについて開示されている。この特許文献1に記載のシステムでは、冷間始動時に液体燃料の残存量が所定値未満である場合には、クランキング開始からエンジンの行程判別が完了するまでの期間、ガス通路に設けられた遮断弁を閉じ、通常よりも駆動電流を大きくしてガス噴射弁を駆動する空打ち制御を実施するようにしている。これにより、ガス噴射弁において低温が原因で貼り付きが生じた場合にも、その貼り付きを解消できるようにし、ガス燃料を用いてのエンジン始動を確実に実施できるようにしている。
特開2005−214079号公報
ガス燃料によるエンジン冷間始動時において、始動性が低下する要因としては、ガス噴射弁の貼り付き以外にもあると考えられる。例えば、他の一つの要因として、ガス燃料の着火温度や発熱量などの燃料性状が挙げられる。ガス燃料を用いてのエンジン始動時において、その始動性を良好にするには、ガス燃料の性状をも考慮して燃料噴射を実施することが望ましい。
本発明は上記課題を解決するためになされたものであり、ガス燃料をエンジンに供給可能な燃料供給システムにおいて、ガス燃料によるエンジン始動性を向上させることができる燃料噴射制御装置を提供することを主たる目的とする。
本発明は、上記課題を解決するために、以下の手段を採用した。
本発明は、ガスタンクからガス通路を通じて供給されるガス燃料をエンジンに噴射するガス噴射手段を備える燃料供給システムに適用され、前記エンジンの吸気行程で前記ガス噴射手段によるガス燃料の噴射を実施する燃料噴射制御装置に関する。また、請求項1に記載の発明は、前記エンジンの始動開始から始動完了までの所定の始動期間内において、前記エンジンの温度である始動時温度を検出する温度検出手段と、前記所定の始動期間内において前記ガス噴射手段によるガス燃料の噴射を実施する場合に、前記温度検出手段により検出した始動時温度が低いほど、前記吸気行程内の遅い時期にガス燃料の噴射を実施する噴射制御手段と、を備えることを特徴とする。
ガス燃料では、燃焼下限界が比較的高く自然着火温度が高いことから安全性が高い反面、他の燃料に比べて火がつきにくいといった特性や、エネルギ密度が小さく、1回の燃料噴射あたりに噴射すべき燃料の体積が大きくなりやすいといった特性を有している。これらの特性に鑑みると、ガス燃料を用いてエンジンを始動する場合、低温環境下での始動性が必ずしも良好であるとは言えない。その点、本発明では、エンジン始動期間内において検出されるエンジン温度(始動時温度)が低いほど、吸気行程内の遅い時期にガス燃料を噴射する構成としたため、燃料の噴射終了から点火までの時間を短くすることができる。また、燃料の噴射終了から点火までの時間が短いことにより、ガス噴流による混合気の筒内流動を点火の実施時まで維持させることができる。このような状態で点火を実施することにより、燃焼トルクを増大させることができ、その結果、ガス燃料を用いる場合のエンジン始動性を向上させることができる。
エンジンの燃料供給制御システムの全体概略構成図。 燃料噴射制御を示す機能ブロック図。 エンジン始動時の燃料噴射制御を示すフローチャート。 目標圧設定用マップの一例を示す図。 噴射時期設定用マップの一例を示す図。 エンジン始動時の燃料噴射制御の具体的態様を示すタイムチャート。 暖機後始動時と冷間始動時との噴射時期の違いを示す図。
以下、本発明を具体化した実施形態について図面を参照しつつ説明する。本実施形態は、ガス燃料である圧縮天然ガス(CNG)と、液体燃料であるガソリンとをエンジンの燃料として選択的に切り替えて使用する車載多気筒(例えば4気筒)のエンジン(バイフューエルエンジン)の燃料供給システムに具体化している。当該システムにおいては、電子制御ユニット(以下、ECUという)を中枢としてエンジンの運転状態を制御する。本システムの全体概略図を図1に示す。
図1に示すエンジン10において、吸気通路11には、DCモータ等のスロットルアクチュエータ12によって開度調節される空気量調整手段としてのスロットルバルブ13が設けられている。スロットルバルブ13の開度(スロットル開度)は、スロットルアクチュエータ12に内蔵されたスロットル開度センサ(図示略)により検出される。
エンジン10には、エンジン10の各気筒に燃料を噴射供給する燃料噴射手段として、ガス燃料(CNG燃料)を噴射するガス噴射弁14と、液体燃料(ガソリン燃料)を噴射するガソリン噴射弁15とが設けられている。本実施形態では、吸気ポート噴射式エンジンを採用しており、ガス噴射弁14及びガソリン噴射弁15が、共に吸気ポート近傍に設けられる構成としている。
エンジン10の吸気ポート及び排気ポートには、それぞれ吸気バルブ16及び排気バルブ17が設けられている。吸気バルブ16の開動作により、空気と燃料との混合気が燃焼室21内に導入され、排気バルブ17の開動作により、燃焼後の排ガスが排気通路18に排出される。また、エンジン10のシリンダヘッドには、気筒毎に点火プラグ19が取り付けられている。点火プラグ19には、点火コイル等よりなる点火装置を通じて、所望とする点火時期に高電圧が印加される。この高電圧の印加により、各点火プラグ19の対向電極間に火花放電が発生し、燃焼室21内に導入した混合気が着火され燃焼に供される。
エンジン10の排気通路18には、排気中のCO,HC,NOx等を浄化するための触媒22が設けられており、本実施形態では触媒22として三元触媒が用いられている。触媒22の上流側には、排気を検出対象として混合気の空燃比(酸素濃度)を検出する空燃比センサ(図示略)が設けられている。
次に、エンジン10に燃料を供給する燃料供給系について詳しく説明する。図1において、ガソリン噴射弁15は、ガソリン配管23を介してガソリンタンク24に接続されている。ガソリンタンク24内に貯留されているガソリン燃料は、フィードポンプ25により汲み上げられた後、ガソリン配管23内に形成された燃料通路を通ってガソリン噴射弁15に供給されるとともに、ガソリン噴射弁15からエンジン10の筒内に供給される。
一方、ガス噴射弁14は、ガス配管26を介してガスタンク27に接続されている。ガスタンク27内には、高圧状態(例えば20MPa)のガス燃料が充填されており、この高圧ガスが、ガス配管26内を通ってガス噴射弁14に供給される。また、ガスタンク27からのガス燃料がガス噴射弁14から噴射されることで、エンジン10の気筒内にガス燃料が供給される。
ガス配管26内に形成されたガス通路には、ガス燃料の圧力を減圧調整するレギュレータ(減圧弁)28が設けられている。レギュレータ28は電磁駆動式であり、通電制御により、ガス噴射弁14に供給されるガス燃料の圧力である噴射供給圧を可変制御できるようになっている。本実施形態では、噴射供給圧の目標値である目標供給圧が、エンジン10の運転状態に基づいて、上限値T1と下限値T2との間の調圧範囲(例えば0.3〜1.3MPa)で可変に設定され、その設定された目標供給圧に基づいて、レギュレータ28の通電制御が行われることで噴射供給圧が調整される。
また、ガス配管26には、ガス通路におけるガス燃料の流通を許容又は遮断する遮断弁が設けられている。本実施形態では、ガス通路において複数の遮断弁が設けられている。具体的には、ガス配管26には、ガスタンク27の近傍に配置されたタンク主止弁31と、タンク主止弁31とレギュレータ28との間に配置された第1遮断弁32と、レギュレータ28とガス噴射弁14との間に配置された第2遮断弁33と、が設けられている。これらの遮断弁は電磁駆動式であり、非通電時においてガス通路におけるガス燃料の流通を遮断し、通電時においてガス通路におけるガス燃料の流通を許容する常閉式となっている。
ガス配管26には更に、ガス配管26内のガス燃料の圧力を検出するセンサとして、レギュレータ28の上流側に配置された第1圧力センサ34と、レギュレータ28の下流側に配置された第2圧力センサ35と、が設けられている。本システムでは、第1圧力センサ34の検出値に基づいて、ガスタンク27内のガス燃料の圧力であるタンク元圧が算出され、第2圧力センサ35の検出値に基づいて、噴射供給圧が算出される。また、ガス配管26には、ガス配管26内のガス燃料の温度を検出するセンサとして温度センサ36が設けられている。
本システムには、所定クランク角毎に矩形状のクランク角信号を出力するクランク角センサ37や、所定カム角毎に矩形状のカム角信号を出力するカム角センサ38が設けられている。クランク角センサ37は、クランク軸39と一体に回転するパルサ(回転円板)41と、その外周部近傍に設けられた電磁ピックアップ部42とを備える。パルサ41の外周部には、所定のクランク角間隔(例えば15°CA間隔)に突起43が設けられるとともに、その一部に複数の突起(例えば2歯分の突起)を欠落させた欠歯部44が設けられている。クランク軸39の回転に伴いパルサ41が回転すると、突起43が電磁ピックアップ部42に近づく毎(基本的には15°CA毎)に、電磁ピックアップ部42から検出信号(NE信号)が出力される。
カム角センサ38は、カム軸45と一体に回転するパルサ(回転円板)46と、その外周部近傍に設けられた電磁ピックアップ部47とを備える。パルサ46の外周部には、1箇所に突起48が設けられている。カム軸45の回転に伴いパルサ46が回転すると、突起48が電磁ピックアップ部47に近づく毎(720°CA毎)に、電磁ピックアップ部47から検出信号(G信号)が出力される。
その他、本システムには、エンジン冷却水の温度(冷却水温度)を検出する冷却水温センサ49、エンジン10の吸入空気量を検出する吸気量センサ50、ガソリンタンク24内のガソリン燃料の残存量V2を検出するガソリン残量センサ53などの各種センサや、クランク軸39に初期回転を付与する始動装置としてのスタータ51、エンジン10の始動スイッチとしてのイグニッションスイッチ52等が設けられている。
ECU60は、周知の通りCPU、ROM、RAM等よりなるマイクロコンピュータ(以下、マイコン61という)を主体として構成され、ROMに記憶された各種の制御プログラムを実行することで、その都度のエンジン運転状態に応じてエンジン10の各種制御を実施する。具体的には、マイコン61は、前述した各種センサ等から各々検出信号を入力し、ガス噴射弁14やガソリン噴射弁15、点火装置などに各々指令信号を出力する。
また、マイコン61は、アイドルストップ制御を実施する。アイドルストップ制御は、概略として、エンジン10のアイドル運転時に所定のエンジン停止条件が成立した場合にエンジン10を自動停止させ、その後、所定の再始動条件が成立した場合にエンジン10を再始動させるものであり、同制御により、燃料消費量の低減を図っている。エンジン停止条件としては、例えば車速が所定速度以下まで低下したこと、アクセル操作量がゼロになったこと、ブレーキ操作量が判定値よりも大きくなったこと等が挙げられる。また、再始動条件としては、例えばエンジン停止状態においてアクセル操作が行われたこと、ブレーキ操作が解除されたこと等が挙げられる。
マイコン61は、エンジン運転状態やタンク内の燃料残量等に応じて、エンジン10の燃焼に使用する燃料を選択的に切り替えている。例えばエンジン始動時では、ガソリン燃料を用いた場合には、シリンダ壁面等に付着した燃料が未燃ガスとしてエンジン10から排出されやすいことを考慮し、基本的にはガス燃料を優先的に使用する。また、エンジン始動時において、ガスタンク27内におけるガス燃料の残存量V1が所定値を下回った場合には、エンジン10の始動を確実に行うべく、ガソリン燃料を使用してエンジン10を始動する。なお、本システムにおいて、エンジン10の燃焼に使用すべき燃料をドライバが選択可能なスイッチを設け、該スイッチにより選択された燃料を用いてエンジン10の燃焼を実施する構成としてもよい。
燃料噴射制御について、マイコン61は、随時入力される各種の検出信号等に基づいて、都度の燃料噴射における燃料噴射量及び燃料噴射時期を演算し、それらの演算の結果を用いてガス噴射弁14及びガソリン噴射弁15の駆動を制御する。
図2に、本実施形態における燃料噴射制御を示す機能ブロック図を示す。図2に示すように、マイコン61は、基本噴射量TPを算出する基本噴射量算出部62と、噴射時間TRを算出する噴射時間算出部63と、使用燃料を選択する使用燃料選択部64と、噴射時間TRを使用燃料に応じて補正する燃料補正部65と、を備える。
基本噴射量算出部62は、クランク角センサ37からのNE信号や、吸気量センサ50からの検出信号Q、冷却水温センサ49からの冷却水温TWなどを入力し、その入力した各信号に基づいて基本噴射量TPを算出する。基本噴射量算出部62では、冷却水温と基本噴射量TPとの関係を示す始動時の噴射量設定用マップを予め記憶しており、エンジン始動時では、同マップを用いて、冷却水温センサ49からの冷却水温TWに応じた基本噴射量TPを算出する。また、エンジン運転状態においては、基本噴射量算出部62では、エンジン回転速度と吸入空気量と基本噴射量TPとの関係を示す運転時の噴射量設定用マップを予め記憶しており、同マップを用いて、クランク角センサ37からのNE信号及び吸気量センサ50からの検出信号Qに応じた基本噴射量TPを算出する。これらの噴射量設定用マップでは、ガソリン燃料を基準にして、エンジン運転状態毎の基本噴射量TPが定めてある。
噴射時間算出部63では、基本噴射量算出部62で算出した基本噴射量TPを入力するとともに、冷却水温センサ49からの冷却水温TWやアクセル操作量等の各種補正(例えば、暖機増量補正や出力増量補正など)に関する信号を入力し、それらの各種信号に基づいて基本噴射量TPを補正することにより、噴射時間TRを算出する。なお、ここで算出される噴射時間TRは、ガソリン燃料を使用する場合の値である。噴射時間算出部63では、各種補正ごとの補正係数Kmにおける設定用マップを予め記憶しており、同マップを用いて各種補正についての補正係数Kmを算出する。また、その補正係数Kmを基本噴射量TPに乗算することにより噴射時間TRを算出する。
使用燃料選択部64では、イグニッションスイッチ52からの検出信号や、冷却水温センサ49からの冷却水温TW、第1圧力センサ34及びガソリン残量センサ53からの燃料残存量V1,V2などを入力し、それら各信号に基づいて、エンジン10の燃焼に使用する燃料をガソリン燃料とするか、それともCNG燃料とするかを選択する。そして、その使用燃料に応じた信号S1を燃料補正部65に出力する。
燃料補正部65では、噴射時間算出部63からの噴射時間TRと、使用燃料選択部64からの信号S1とを入力し、それら入力信号を用いて、各燃料噴射弁(ガス噴射弁14及びガソリン噴射弁15)に出力する噴射信号TSを作成する。具体的には、燃料補正部65ではまず、信号S1に基づいて燃料補正係数Kαを算出する。燃料補正係数Kαとして、本実施形態では、CNG燃料ではガソリン燃料に比べてエネルギ密度が小さい点を考慮して予め定めてあり、ガソリン燃料では「1」、CNG燃料では所定の定数(>1)に設定されている。また、燃料補正部65では、その算出した燃料補正係数Kαを噴射時間TRに乗算することにより、噴射量指令値を算出するとともに、燃料の噴射終了時期がエンジン10の吸気行程内になるように、噴射量指令値に応じた噴射信号TSを生成する。そして、燃料補正部65では、その噴射信号TSを、使用燃料選択部64で選択した燃料の噴射弁に対して出力する。
本実施形態では、エンジン10の通常運転時(例えばエンジン10の始動完了後)では、各気筒に対し所定の点火順序で行程に同期した点火を行うとともに、同点火順序に従い、行程に同期した燃料定時噴射(同期噴射)を実施する。例えば4気筒エンジンでは、1気筒あたりの噴射周期を720°CA周期として、各気筒間で異なるタイミングで(180℃A毎に)燃料を噴射する。
行程に同期した燃料噴射を行うには、エンジン10の行程判別を行う必要がある。本実施形態では、エンジン始動時において、クランク角センサ37からのNE信号及びカム角センサ38からのG信号に基づいて、エンジン10の行程判別を実施する(行程判別手段)。具体的には、クランク軸39には、例えば第1気筒の圧縮行程にてNE信号の欠歯が検出されるようにしてパルサ41が取り付けられている。また、カム軸45には、第1気筒の圧縮行程で検出されるNE信号の欠歯位置にてG信号のパルス出力がなされるようにしてパルサ46が取り付けられている。マイコン61は、NE信号の欠歯位置にてG信号のパルス出力が検出された場合に、現時点が第1気筒の圧縮行程である旨を判定することで、各気筒の行程判別を実施している。
ここで、エンジン始動直後に行程判別を実施する場合、始動開始から行程判別が完了するまでの期間では、各気筒がいずれの行程にあるかを特定することができない。そこで、本システムでは、エンジン10の始動開始から始動完了までの期間(エンジン始動期間)において、行程判別が完了する前後で異なる態様で燃料噴射を実施することとしている。ここでは、まず、ガソリン燃料を用いたエンジン始動制御について説明し、その後、CNG燃料を用いたエンジン始動制御について説明する。
(ガソリン燃料による始動)
エンジン10の始動要求があった場合、より具体的には、イグニッションスイッチ52がオンに切り替えられたり、エンジン自動停止後において再始動条件が成立したりした場合、マイコン61は、スタータ51への通電を開始してエンジン10のクランキングを開始する。また、クランキング開始とともに、クランク角センサ37のNE信号及びカム角センサ38のG信号に基づいて、エンジン10の行程判別を実行する。エンジン始動要求があってから、行程判別が完了するまでの期間では、各気筒がいずれの行程にあるかを特定できていない。この場合、ガソリン燃料によるエンジン始動時には、エンジン始動性を確保するべく、噴射量指令値(噴射時間算出部63で算出した燃料量(液体燃料量)に相当)を用いて、クランク角に同期しない燃料噴射制御、より具体的には、複数気筒に対して同時に燃料を噴射する非同期噴射を実施する。そして、行程判別が完了した後では、マイコン61は、非同期噴射から同期噴射に切り替える。
(CNG燃料による始動)
これに対し、CNG燃料によるエンジン始動の場合、エンジン始動要求があってから、行程判別が完了するまでの期間に、噴射量指令値に基づく非同期噴射を実施すると、燃焼気筒でない気筒に対して噴射した気体の燃料(CNG燃料)が吸気管内に滞留し、その滞留したガス燃料によりバックファイヤが生じるおそれがある。また、燃焼気筒でない気筒に対して噴射したCNG燃料が、吸気マニホールドを介して他の気筒に吸引されるとともに、その吸引された燃料が燃焼に供されることで、空燃比の悪化を招くおそれもある。そこで本実施形態では、こうした不都合が生じるのを回避するべく、CNG燃料を使用してエンジン10を始動する場合には、始動開始から(エンジン始動要求があってから)行程判別が完了するまでの期間では燃料噴射を禁止し、行程判別が完了した後に、CNG燃料を用いてのガス噴射弁14による同期噴射を実施することとしている。
また、CNG燃料では、燃焼下限界が比較的高く自然着火温度が高いことから安全性が高い反面、他の燃料に比べて火がつきにくいといった特性や、エネルギ密度が小さく、1回の燃料噴射あたりに噴射すべき燃料の体積が大きくなりやすいといった特性を有している。そのため、CNG燃料では低温環境下での始動性が良好であるとは言い難く、エンジン10の冷間始動時においてトルク不足が生じやすい。かかる場合、エンジン10を確実に始動できないといった不都合が生じやすい。
そこで本実施形態では、CNG燃料を使用してエンジン始動を実施する場合、エンジン始動期間内においてエンジン10の温度(始動時温度)を検出し、その検出した始動時温度に応じて、エンジン始動期間での燃料噴射時期を可変に制御している。より具体的には、マイコン61は、始動時温度が低いほど、吸気行程内の遅い時期にCNG燃料の噴射を実施することとしている。ガス噴射弁14から気体の燃料を噴射した場合、その噴射に伴い生じるガス噴流によって、気筒内において混合気の流動(筒内流動)が生じるが、その際、燃料噴射時期を遅くするほど、燃料の噴射終了から点火までの時間が短くなり、これにより、ガス噴流による筒内流動を点火の実施時まで維持させることができる。また、ガス噴流による混合気の筒内流動が気筒内で発生している状態で点火を実施することにより、燃焼トルクが増大し、その結果、低温始動時におけるエンジン始動性を向上させることができる。
次に、本実施形態におけるエンジン始動時の燃料噴射制御について、図3のフローチャートを用いて説明する。この処理は、ECU60のマイコン61により所定周期毎に実行される。
図3において、ステップS100では、エンジン10の始動要求があったか否かを判定する。ここでは、イグニッションスイッチ52がオフからオンに切り替えられた場合、又はエンジン自動停止後において再始動条件が成立した場合に、その後の所定期間内において肯定判定される。ステップS100がYesの場合、ステップS101へ進み、使用燃料の選択が完了したか否かを判定する。使用燃料を未選択である場合、ステップS102へ進み、エンジン10の始動要求タイミングでのエンジン温度としての始動時温度を検出する(温度検出手段)。本実施形態では、冷却水温センサ49により検出される冷却水温度に基づいて始動時温度を検出するが、エンジン油温やシリンダ温度等に基づいて始動時温度を検出してもよい。
続くステップS103では、今回のエンジン燃焼に使用する使用燃料を選択する。例えば、イグニッションスイッチ52のオン切替があり、かつ第1圧力センサ34により検出されるタンク元圧(燃料残存量V1)が所定値以上である場合には、CNG燃料を使用燃料として選択し、燃料残存量V1が所定値未満である場合には、ガソリン燃料を使用燃料として選択する。また、ステップS104では、スタータ51への通電を開始し、エンジン10のクランキングを開始する。
続くステップS105では、エンジン10の始動完了前か否かを判定し、始動完了前である場合にはステップS106へ進み、行程判別の完了前か否かを判定する。行程判別の完了前である場合にはステップS107へ進み、使用燃料としてCNG燃料が選択されているか否かを判定する。使用燃料がガソリン燃料である場合には、ステップS108へ進み、燃料噴射制御として、ガソリン燃料を用いての非同期噴射制御を実施する。なお、非同期噴射制御については、図示しない別ルーチンにより、噴射量指令値に基づいて実行される。
一方、使用燃料がCNG燃料である場合には、ステップS109へ進み、エンジン10への燃料噴射を禁止する。つまり、使用燃料がCNG燃料である場合、行程判別の完了前では、ガソリン燃料の場合とは異なり、噴射量指令値に基づく非同期噴射を実施しない。
さて、行程判別が完了すると、ステップS106がNoとなり、ステップS109へ進む。ステップS110では使用燃料がCNG燃料か否かを判定し、ガソリン燃料の使用時であれば、ステップS111へ進み、燃料噴射制御として、ガソリン燃料を用いての同期噴射制御を実施する。なお、同期噴射制御については、図示しない別ルーチンにより、噴射量指令値に基づいて実行される。一方、CNG燃料の使用時であれば、ステップS112へ進み、ステップS102で検出したエンジン10の始動時温度に基づいて、目標供給圧を算出する。具体的には、始動時温度と目標供給圧との関係が目標圧設定用マップとして予め記憶してあり、同マップを用いて、今回の始動時温度に対応する目標供給圧を読み出すことにより、今回のエンジン始動時における目標供給圧を算出する。
この目標圧設定用マップでは、始動時温度が低いほど、ガス噴流による筒内流動を強化するために、目標供給圧が高圧側に設定されるようになっている。より詳しくは、本実施形態の目標圧設定用マップによれば、図4に例示するように、始動時温度が第1温度T1よりも高温側では、アイドル運転時の目標供給圧Ptiよりも若干高圧側の所定の低圧値Pt1に目標供給圧が設定される。なお、第1温度T1として本実施形態では、エンジン暖機状態とされるエンジン温度の下限値(例えば70〜80℃)が設定されている。また、第1温度T1と第2温度T2(T2<T1)との間の温度範囲では、始動時温度が低くなるにつれて、所定の低圧値Pt1よりも高圧側になるように目標供給圧が設定され、第2温度T2よりも低温側では、所定の高圧値Pt2に目標供給圧が設定される。なお、所定の高圧値Pt2としては、例えばエンジン始動時に許容される圧力範囲の上限値が設定されている。
また、ステップS113では、ステップS102で検出した始動時温度と、クランク角センサ37により検出されるエンジン回転速度とに基づいて、噴射時期(噴射終了時期)を算出する(噴射制御手段)。本実施形態では、始動時温度と噴射終了時期との関係が噴射時期設定用マップとして予め記憶してあり、同マップを用いて、始動時温度に対応する噴射終了時期を読み出すとともに、その読み出した噴射終了時期を、エンジン回転速度に応じた補正係数Kneを用いて補正することにより、今回のエンジン始動時における噴射終了時期を算出する。
噴射時期設定用マップによれば、図5に例示するように、始動時温度が第3温度T3よりも高温側では、噴射時期が吸気行程前半になるように噴射終了時期が設定され、より具体的には、吸気行程前半のうち、アイドル運転時での噴射終了時期θiよりも遅角側の所定角度θ1(例えば、吸気上死点後50〜80℃A)に噴射終了時期が設定される。なお、第3温度T3について本実施形態では、エンジン暖機状態とされるエンジン温度の下限値(例えば70〜80℃)が設定されている。また、第3温度T3と第4温度T4(T4<T3)との間の温度範囲では、始動時温度が低くなるにつれて、噴射終了時期が所定角度θ1よりも遅角側に設定され(噴射時期が遅角側に設定され)、第4温度T4よりも低温側では、噴射時期が吸気行程後半から終了までの間になるように、例えば吸気下死点(ATDC180℃A)近傍の所定角度θ2(例えば吸気上死点後140〜160℃A)に噴射終了時期が設定される。
また、補正係数Kneについて本実施形態では、エンジン回転速度と補正係数Kneとの関係が予め補正係数設定用マップとして記憶されている。マイコン61は、同マップから、都度のエンジン回転速度に対応する補正係数Kneを読み出して、その読み出した補正係数Kneにより噴射終了時期のマップ値を補正する。補正係数設定用マップによれば、エンジン回転速度が高くなるにつれて、噴射終了時期が進角側に設定されるようになっている。
なお、マイコン61は、ステップS111で算出した目標供給圧に基づいて、図示しない別ルーチンによりレギュレータ28を駆動するとともに、燃料噴射制御として、ステップS113で算出した噴射終了時期と、燃料補正部65で算出した噴射指令値とを用いて、図示しない別ルーチンによりガス噴射弁14を駆動する。そして、エンジン回転速度が所定の始動判定値NE1を超え、エンジン始動が完了したと判定されると、ステップS105がNoとなり、ステップS114へ進み、燃料噴射制御として始動後制御を実施する。この始動後制御では、使用燃料に関わらず、吸気行程前半に噴射終了時期が設定され、吸気行程前半で燃料噴射が実施される。
次に、本実施形態におけるエンジン始動時の燃料噴射制御の具体的態様を、図6を用いて説明する。図6中、実線は、冷間始動時の場合(例えば、始動時温度が第2温度T2及び第4温度T4よりも低温である場合)を示し、一点鎖線は、暖機後始動時の場合(例えば、始動時温度が第1温度T1及び第3温度T3よりも高温である場合)を示している。なお、図6では、CNG燃料を使用してエンジン始動を行う場合を想定している。
タイミングt10で、例えばイグニッションスイッチ52がオンされてスタータ51の駆動が開始された場合、行程判別が完了するまでの期間t10〜t11では、ガス噴射弁14からの燃料の噴射が禁止される。そして、行程判別が完了した場合、暖機後始動時では、図6に一点鎖線で示すように、吸気行程前半であって、アイドル運転時での噴射終了時期θiよりも遅角側の角度(始動時温度>T3の場合であれば所定角度θ1)を噴射終了時期にして、ガス噴射弁14から燃料が噴射される。また、噴射供給圧については、始動時温度>T1であれば、アイドル運転時の目標供給圧Ptiよりも僅かに高圧側の圧力値Pt1にされる。この場合、図7(a)に示すように、吸気行程前半で燃料の噴射が実施される。なお、図7中、「Ex」は排気バルブ17の開弁期間を示し、「In」は吸気バルブ16の開弁期間を示す。
これに対し、冷間始動時では、実線で示すように、吸気行程後半から吸気行程終了までのタイミング(始動時温度<T4の場合であれば所定角度θ2)を噴射終了時期にして、燃料噴射が実施される。この場合、図7(b)に示すように、吸気行程後半で燃料の噴射が実施されるが、その際、暖機後始動時の場合に比べて噴射供給圧が高いことから、ガス噴射弁14による燃料の噴射期間が短くなる。なお、本実施形態では、エンジン回転速度がクランキング回転速度NE0で一定の状態では、噴射終了時期も一定のままで保持される。
その後、タイミングt12でエンジン10の初爆が起こり、エンジン回転速度が上昇すると、その回転上昇に伴い、噴射終了時期が徐々に進角側に変更される。また、タイミングt13で、エンジン回転速度が始動判定値NE1を超え、エンジン10の始動が完了すると、目標供給圧が低圧側に変更されて噴射供給圧が徐々に低くなり、アイドル運転状態では供給圧θtiまで減圧される。
以上詳述した本実施形態によれば、次の優れた効果が得られる。
ガス燃料を用いてエンジン10を始動する場合、エンジン始動期間内において検出されるエンジン温度である始動時温度が低いほど、吸気行程内の遅い時期にガス燃料を噴射する構成とした。この構成によれば、燃料の噴射終了から点火までの時間を短くすることができる。また、燃料の噴射終了から点火までの時間が短いことにより、ガス噴流による混合気の筒内流動を点火の実施時まで維持させることができる。エンジン気筒内の混合気の流動が継続されている状態で点火を実施することにより、燃焼トルクを増大させることができ、その結果、ガス燃料を用いる場合のエンジン始動性を向上させることができる。
また、エンジン10の暖機後始動時には、冷間始動時よりもエンジン10の始動性が良好であり、上記のような燃料噴射時期の遅角化を実施すると、却って燃焼トルクが過大になり、ドライバビリティの低下を招くおそれがある。この点、本実施形態では、始動時温度が高いほど、吸気行程内の早い時期にガス燃料を噴射することから、燃焼トルクが過大になるのを回避することができ、その結果、ドライバビリティ確保を図ることができる。
ガス燃料の使用時において、行程判別が完了した後の同期噴射では、噴射供給圧を、アイドル運転時での噴射供給圧Ptiよりも高圧に設定する構成としたため、ガス噴流による気筒内の混合気の流動を強化させることができ、エンジン始動性の向上を好適に行うことができる。また特に、始動時温度が低いほど、噴射供給圧を高圧側にする構成としたため、冷間始動時にもエンジン始動を確実に実施することができる。
CNG燃料の使用時において、ガソリン燃料での燃料噴射制御をそのまま適用して、行程判別の完了前に非同期噴射を行った場合、燃焼気筒でない気筒に対して噴射したCNG燃料が他の気筒に吸い込まれることで、空燃比の悪化を招くおそれがある。その点、本構成では、CNG燃料を使用してエンジン10を始動する場合、始動開始から行程判別が完了する前までの期間では燃料噴射を禁止する構成とした。この構成によれば、燃料噴射を実施することに伴う空燃比の悪化を抑制することができる。
アイドルストップ制御を実施するエンジンでは、エンジン停止及び再始動が繰り返し行われる。本実施形態では、ガス燃料によるエンジン始動時(再始動時)には、噴射終了時期を、アイドル運転時での噴射終了時期よりも遅角側に設定するとともに、噴射供給圧を、アイドル運転時での噴射供給圧よりも高めにする構成とした。これにより、エンジン再始動時において、筒内のミキシング効果を高めることができ、エンジン再始動性を確保することができる。
(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、例えば次のように実施されてもよい。
・上記実施形態では、エンジン始動期間のうち、エンジン10の始動開始のタイミングで検出したエンジン温度を始動時温度とし、その始動時温度に基づいて、エンジン始動期間内(行程判別の完了後)での燃料の噴射終了時期を可変に設定したが、エンジン温度を検出するタイミングは上記に限定せず、エンジン始動期間内のうち、エンジン始動開始から行程判別の完了時までの期間内(図6の期間t10〜t11内)において検出したエンジン温度を始動時温度とし、その始動時温度に基づいて上記制御を実施してもよい。例えば、エンジン10の行程判別が完了したタイミング(図6のt11)で検出したエンジン温度を始動時温度とし、その始動時温度に基づいて、エンジン始動期間内での燃料の噴射終了時期を可変に設定する。
・エンジン始動開始のタイミングで検出したエンジン温度に応じて、エンジン始動期間内における燃料の噴射終了時期を可変にする構成に代えて、エンジン始動期間内において都度検出したエンジン温度に応じて、エンジン始動期間内における燃料の噴射終了時期を可変にする構成としてもよい。
・上記実施形態では、始動時温度と都度のエンジン回転速度とに基づいて噴射終了時期を可変にしたが、エンジン回転速度を考慮せずに、始動時温度のみに基づいて噴射終了時期を可変にしてもよい。具体的には、図6において、例えば行程判別が完了したタイミングt11から、エンジン回転速度が始動判定値NE1まで上昇するタイミングt13までの期間t11〜t13では、噴射終了時期を、始動時温度に応じた噴射終了時期とし、タイミングt13で、アイドル運転時での噴射終了時期θiへ切り替える構成とする。
・上記実施形態では、CNG燃料でエンジン10を始動する際、図5に示す噴射時期設定用マップを用いて噴射終了時期を設定することにより、始動時温度が低いほど、吸気行程内の遅い時期にガス燃料の噴射を実施する構成とした。これに対し、本実施形態では、上記の噴射時期設定用マップを用いる構成に代えて、始動時温度が判定値Tαよりも高い場合に、吸気行程前半で燃料の噴射を実施し、始動時温度が判定値Tαよりも低い場合に、吸気行程後半から吸気行程終了までの期間内に燃料の噴射を実施することにより、始動時温度が低いほど、吸気行程内の遅い時期にガス燃料の噴射を実施する構成とする。
・上記実施形態では、エンジン始動期間内における噴射供給圧を始動時温度に応じて可変にしたが、噴射供給圧については、始動時温度にかかわらず一定値としてもよい。例えば、エンジン始動期間内では、噴射供給圧を、アイドル運転時での噴射供給圧(目標供給圧Pti)よりも高圧側の所定値で一定にする構成としてもよい。あるいは、アイドル運転時での噴射供給圧で制御する構成としてもよい。
・上記実施形態では、ガス配管26に電磁駆動式のレギュレータ28が配置されており、CNG燃料によりエンジン始動する場合に、始動時温度に応じて噴射終了時期を可変にするとともに、始動時温度に応じて噴射供給圧を可変にする構成について説明したが、ガス配管26に機械駆動式のレギュレータが配置されている燃料供給システムに適用してもよい。この場合、CNG燃料によりエンジン始動する場合には、始動時温度に応じて噴射終了時期を可変にする一方、噴射供給圧については一定値のままにして燃料噴射制御を実施する。
・上記実施形態では、始動時温度が第3温度T3よりも高い温度域では、アイドル運転時での噴射終了時期θiよりも遅角側の所定角度θ1を噴射終了時期としたが、同温度域での噴射終了時期を、アイドル運転時での噴射終了時期θiと同じにしてもよい。
・上記実施形態では、ガス燃料としてCNGを使用し、液体燃料としてガソリンを使用する場合について説明したが、ガス燃料及び液体燃料の種類はこれらに限定しない。例えば、ガス燃料としては、CNGの他、液化石油ガスや水素ガスなどを使用でき、液体燃料としては、ガソリンの他、軽油やアルコールなどを使用することができる。
・上記実施形態では、燃料としてガス燃料と液体燃料とを切り替えて使用するバイフューエル車用のエンジンに適用する場合について説明したが、燃料としてガス燃料を単独で使用するガス専用のエンジンに本発明を適用してもよい。
10…エンジン、14…ガス噴射弁(ガス噴射手段)、15…ガソリン噴射弁(液体噴射手段)、23…ガソリン配管、24…ガソリンタンク、26…ガス配管、27…ガスタンク、28…レギュレータ(圧力調整手段)、37…クランク角センサ、38…カム角センサ、39…クランク軸、49…冷却水温センサ(温度検出手段)、51…スタータ、60…ECU、61…マイコン(噴射制御手段、圧力制御手段、行程判別手段)、62…基本噴射量算出部、63…噴射時間算出部(第1算出手段)、64…使用燃料選択部(燃料選択手段)、65…燃料補正部(第2算出手段)。

Claims (5)

  1. ガスタンク(27)からガス通路(26)を通じて供給されるガス燃料をエンジン(10)に噴射するガス噴射手段(14)を備える燃料供給システムに適用され、前記エンジンの吸気行程で前記ガス噴射手段によるガス燃料の噴射を実施する燃料噴射制御装置であって、
    前記エンジンの始動開始から始動完了までの所定の始動期間内において、前記エンジンの温度である始動時温度を検出する温度検出手段と、
    前記所定の始動期間内において前記ガス噴射手段によるガス燃料の噴射を実施する場合に、前記温度検出手段により検出した始動時温度が低いほど、前記吸気行程内の遅い時期にガス燃料の噴射を実施する噴射制御手段と、
    を備えることを特徴とする燃料噴射制御装置。
  2. 前記ガス通路に設けられ、前記ガス噴射手段に供給するガス燃料の圧力である噴射供給圧を調整する圧力調整手段(28)を備える燃料供給システムに適用され、
    前記ガス噴射手段によるガス燃料の噴射を実施して前記エンジンを始動する場合に、前記所定の始動期間内において、前記噴射供給圧が、前記エンジンのアイドル運転時での噴射供給圧よりも高圧になるように前記圧力調整手段の駆動を制御する圧力制御手段を備える請求項1に記載の燃料噴射制御装置。
  3. 前記圧力制御手段は、前記温度検出手段により検出した始動時温度が低いほど、前記所定の始動期間内における前記噴射供給圧が高圧になるように前記圧力調整手段の駆動を制御する請求項2に記載の燃料噴射制御装置。
  4. 前記所定の始動期間内に前記エンジンの行程判別を実施する行程判別手段を備え、
    前記噴射制御手段は、前記所定の始動期間内のうち、前記行程判別が完了するまでの期間では、前記ガス噴射手段による燃料噴射を禁止し、前記行程判別が完了した後の期間では、前記エンジンのクランク角に同期して燃料噴射を行う同期噴射制御により前記ガス噴射手段によるガス燃料の噴射を実施する請求項1乃至3のいずれか一項に記載の燃料噴射制御装置。
  5. 前記エンジンに燃料を噴射する手段として、前記ガス噴射手段に加えて、液体燃料を噴射する液体噴射手段を備える燃料噴射システムに適用され、
    エンジン運転状態に基づいて、1燃焼サイクル毎の燃料噴射量を、前記液体噴射手段から噴射する液体燃料量として算出する第1算出手段と、
    前記エンジンの燃焼に使用する燃料を選択する燃料選択手段と、
    前記燃料選択手段により選択されている燃料がガス燃料である場合に、前記算出手段により算出した液体燃料量を補正することにより、1燃焼サイクル毎の燃料噴射量を、前記ガス噴射手段から噴射するガス燃料量として算出する第2算出手段と、
    前記燃料選択手段により選択されている燃料が液体燃料である場合に、前記所定の始動期間内のうち、前記行程判別が完了するまでの期間では、前記第1算出手段により算出した液体燃料量に基づいて、前記エンジンのクランク角に同期せずに燃料噴射を行う非同期噴射制御を実施し、前記行程判別が完了した後の期間では、前記第1算出手段により算出した液体燃料量に基づいて前記同期噴射制御を実施する手段と、
    を備え、
    前記噴射制御手段は、前記燃料選択手段により選択されている燃料がガス燃料である場合に、前記所定の始動期間内のうち、前記行程判別が完了するまでの期間では、前記第2算出手段により算出したガス燃料量に基づく燃料噴射を禁止し、前記行程判別が完了した後の期間では、前記第2算出手段により算出したガス燃料量に基づいて前記同期噴射制御を実施する請求項4に記載の燃料噴射制御装置。
JP2012084084A 2012-04-02 2012-04-02 燃料噴射制御装置 Pending JP2013213439A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012084084A JP2013213439A (ja) 2012-04-02 2012-04-02 燃料噴射制御装置
PCT/JP2013/001710 WO2013150729A1 (ja) 2012-04-02 2013-03-14 燃料噴射制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012084084A JP2013213439A (ja) 2012-04-02 2012-04-02 燃料噴射制御装置

Publications (1)

Publication Number Publication Date
JP2013213439A true JP2013213439A (ja) 2013-10-17

Family

ID=49300237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012084084A Pending JP2013213439A (ja) 2012-04-02 2012-04-02 燃料噴射制御装置

Country Status (2)

Country Link
JP (1) JP2013213439A (ja)
WO (1) WO2013150729A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031135A1 (ja) * 2014-08-29 2016-03-03 株式会社デンソー 内燃機関の燃料噴射制御装置
JP2020063716A (ja) * 2018-10-18 2020-04-23 スズキ株式会社 内燃機関の自動停止制御装置
JP2020133599A (ja) * 2019-02-26 2020-08-31 スズキ株式会社 バイフューエル車両
JP2020169603A (ja) * 2019-04-03 2020-10-15 スズキ株式会社 車両

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2570344B (en) 2018-01-23 2022-05-04 Ulemco Ltd Operating a compression ignition engine fuelled with a combination of a hydrocarbon fuel and hydrogen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3379177B2 (ja) * 1993-10-29 2003-02-17 いすゞ自動車株式会社 副室式ガスエンジン
JP2007205278A (ja) * 2006-02-02 2007-08-16 Nikki Co Ltd 燃料供給方法及び燃料供給装置
JP4609563B2 (ja) * 2008-09-17 2011-01-12 トヨタ自動車株式会社 バイフューエル筒内直噴エンジンの気体燃料噴射弁の保護制御方法
US8347862B2 (en) * 2009-12-23 2013-01-08 Ford Global Technologies, Llc System and method for injecting fuel to a gaseous fueled engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031135A1 (ja) * 2014-08-29 2016-03-03 株式会社デンソー 内燃機関の燃料噴射制御装置
JP2020063716A (ja) * 2018-10-18 2020-04-23 スズキ株式会社 内燃機関の自動停止制御装置
JP7206788B2 (ja) 2018-10-18 2023-01-18 スズキ株式会社 内燃機関の自動停止制御装置
JP2020133599A (ja) * 2019-02-26 2020-08-31 スズキ株式会社 バイフューエル車両
JP7188178B2 (ja) 2019-02-26 2022-12-13 スズキ株式会社 バイフューエル車両
JP2020169603A (ja) * 2019-04-03 2020-10-15 スズキ株式会社 車両
JP7226034B2 (ja) 2019-04-03 2023-02-21 スズキ株式会社 車両

Also Published As

Publication number Publication date
WO2013150729A1 (ja) 2013-10-10

Similar Documents

Publication Publication Date Title
JP4148233B2 (ja) エンジンの燃料噴射制御装置
US7287500B2 (en) Start controller for internal combustion engine
RU2609024C2 (ru) Способ работы двигателя (варианты) и система управления двигателем
JP4306620B2 (ja) 内燃機関の始動制御装置及び燃料噴射制御装置
RU2623352C2 (ru) Способ опорожнения бака (варианты)
WO2013153769A1 (ja) エンジン制御装置
WO2013150729A1 (ja) 燃料噴射制御装置
US9863389B2 (en) Control unit for a multi-cylinder internal combustion engine
US11421639B2 (en) Method and system for expansion combustion during an engine start
JP2014234791A (ja) 内燃機関の始動制御装置
WO2014167832A1 (ja) 内燃機関の始動制御装置
WO2013099094A1 (ja) 内燃機関の制御装置
JP4135643B2 (ja) 直噴火花点火式内燃機関の制御装置
JP2008095655A (ja) エンジンの制御装置
JP2004036561A (ja) 筒内噴射型内燃機関の自動停止始動装置
JP5059043B2 (ja) エンジン停止始動制御装置
US20140261300A1 (en) Fuel injection control apparatus for internal combustion engine
JP4770787B2 (ja) 車両用エンジンの制御装置
JP5831168B2 (ja) 圧縮自己着火式エンジンの始動制御装置
JP6841119B2 (ja) エンジンの制御装置
JP2009030482A (ja) 車両用内燃機関の制御装置
JP4661747B2 (ja) エンジンの停止制御装置
JP4325477B2 (ja) エンジンの始動装置
JP6896331B2 (ja) 内燃機関の制御装置
JP2024080312A (ja) 内燃機関の始動制御装置