WO2016030246A1 - Vorrichtung und verfahren zur temperaturkompensierten interferometrischen abstandsmessung beim laserbearbeiten von werkstücken - Google Patents

Vorrichtung und verfahren zur temperaturkompensierten interferometrischen abstandsmessung beim laserbearbeiten von werkstücken Download PDF

Info

Publication number
WO2016030246A1
WO2016030246A1 PCT/EP2015/069028 EP2015069028W WO2016030246A1 WO 2016030246 A1 WO2016030246 A1 WO 2016030246A1 EP 2015069028 W EP2015069028 W EP 2015069028W WO 2016030246 A1 WO2016030246 A1 WO 2016030246A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
fiber
workpiece
arm
interferometer
Prior art date
Application number
PCT/EP2015/069028
Other languages
English (en)
French (fr)
Inventor
Friedhelm Dorsch
Thomas Harrer
Patrick Haug
Dieter Pfitzner
Steffen Kessler
Original Assignee
Trumpf Laser- Und Systemtechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trumpf Laser- Und Systemtechnik Gmbh filed Critical Trumpf Laser- Und Systemtechnik Gmbh
Priority to CN201580045781.9A priority Critical patent/CN106796097B/zh
Publication of WO2016030246A1 publication Critical patent/WO2016030246A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0011Arrangements for eliminating or compensation of measuring errors due to temperature or weight
    • G01B5/0014Arrangements for eliminating or compensation of measuring errors due to temperature or weight due to temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02017Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations
    • G01B9/02019Interferometers characterised by the beam path configuration with multiple interactions between the target object and light beams, e.g. beam reflections occurring from different locations contacting different points on same face of object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02049Interferometers characterised by particular mechanical design details
    • G01B9/0205Interferometers characterised by particular mechanical design details of probe head

Definitions

  • the present invention relates to a device for measuring the distance between see a reflective workpiece surface of a workpiece and a reflective reference surface in the laser machining of the workpiece, comprising an interferometer with a beam splitter, the interferometer light on a measuring arm as measuring beam and a reference arm as a reference beam, and with a detector, the measuring beam reflected at the workpiece surface and at the Reflected reference surface detected reference beam, wherein the measuring arm and the reference arm within the coherence length of the interferometer light are the same length.
  • Interferometers are used for distance measurement in laser processing processes.
  • the measuring beam is spatially superimposed before the focusing, for example via a beam splitter in the laser processing head of the processing beam and focused by the processing optics on the measuring point.
  • the other interferometer arm (reference arm) is placed in the measuring device (with beam source, beam splitter, detector and evaluation unit).
  • both interferometer arms have approximately equal optical path lengths. Decisive for an interferometric distance measurement is the knowledge of the change of the optical paths.
  • the optical path in the measuring arm can be changed not only by the distance to be measured, but also by (unintentional) changes in the beam path of the interferometer arms.
  • a heating of the measuring fiber end above the detected weld results in a temperature difference with respect to the reference fiber and thus a temperature-related change in the interference signal, which leads to measurement errors in the distance measurement.
  • relative measurements are often required to determine the distance between two points (or areas) of the workpiece, such as the weld or capillary depth of a hole relative to the component surface.
  • the measuring arm has a measuring fiber and the reference arm, a reference fiber and that the measuring fiber and the reference fiber over its entire length or a partial length, in particular at different lengths of fibers along the entire length of the shorter fiber, parallel next to each other and in thermal contact with each other, that the measuring arm has a first surface area as the reflecting workpiece surface and the reference arm has a second surface area of the workpiece as the reflecting reference surface, and a deflection optics is arranged between the workpiece and the workpiece-side end of the measuring fiber and / or the reference fiber, which common to the measuring beam and / or the reference beam or moved separately over the measuring and / or reference surface.
  • measuring and reference fibers are thermally coupled to one another so that there are no appreciable temperature differences, but temperature fluctuations in the transmission path are system-compensated.
  • the measuring and reference beams are guided close to each other via the respective fibers, but separately, so that the beam paths are slightly offset from one another.
  • the interference signal of the two beams depends only on the relative distance between the workpiece surface and the reference surface, since optical Wegnschwankungen compensate in Meß- and reference arms because of the parallel design as far as possible.
  • the reference beam can be directed to the component surface (reference surface) and the measuring beam to a measuring point or a measuring surface.
  • the deflection optics makes it possible to move the measurement and / or reference beam together or separately over the measurement or reference surface, so as to implement a 1- or 2-dimensional measurement. As a result, the topography of the workpiece surface can be detected or a spatial averaging can be performed.
  • the measuring fiber and the reference fiber are two separate fibers, which bear against one another over their entire length or a partial length, in particular with fibers of different lengths over the entire length of the shorter fiber.
  • the two fibers can be guided in thermal contact, for example, in a common optical cable or protective tube.
  • the measuring fiber and the reference fiber are formed by the core and the réellecladding a Doppelcladmaschine.
  • the measuring arm has, as a reflecting workpiece surface, the one surface area and the reference arm as the reflective reference area the other surface area of the workpiece so that distances measured by the interferometer are measured relative to the workpiece surface and are independent of optical path length variations along the measuring and reference fibers.
  • an imaging optics can advantageously be arranged between the workpiece and the workpiece-side end of the measuring fiber and / or the reference fiber, which images the measuring and / or reference beam with a specific illumination pattern (eg a point, a line or a circle) on the workpiece surface.
  • the measuring fiber and the reference fiber are spaced from each other at their workpiece ends by a maximum of several millimeters, so that the measuring and reference beams are directed to different surface areas of the workpiece.
  • the reference beam can hit the component surface and the measuring beam can hit the surface to be measured. Because of the spaced fiber ends, the two fibers abut each other only over a partial length.
  • the measuring device is arranged in a machining head of a laser processing machine in order to measure the distance of the machining head to the workpiece.
  • the measuring beam and possibly also the reference beam can be spatially superimposed on the processing beam via a beam splitter of the processing head and focused on the measuring point by the processing optics.
  • the invention also relates to a method for measuring the distance between a reflective workpiece surface of a workpiece and a reflective reference surface by means of a fiber-guided interferometer during the laser machining of the workpiece, wherein a measuring beam and a reference beam of the interferometer are guided in a measuring fiber and in a reference fiber, wherein the measuring fiber and the reference fiber over its entire length or a partial length, in particular at different lengths of fibers along the entire length of the shorter fiber, parallel next to each other and are in thermal contact with each other and wherein the measuring beam and / or the reference beam together or in each case separately the measuring and / or reference surface are deflected.
  • the invention also relates to a method for measuring the distance between two surface regions of a workpiece by means of an interferometer during laser processing of the workpiece, wherein a measuring beam and a reference beam of the interferometer are reflected at the two surface regions and wherein the measuring beam and / or the reference beam be deflected together or separately over the measuring and / or reference surface.
  • Interferometer light is preferably divided geometrically into the measuring beam and into the reference beam at a stage of the workpiece present between the two surface regions.
  • FIG. 1 shows a measuring device according to the invention with thermally coupled measuring and reference fibers for a distance measurement of the workpiece
  • a further inventive measuring device with thermally coupled measuring and reference fibers for a distance measurement between two surface regions of the workpiece; measuring devices according to the invention for a distance measurement between two surface regions of the workpiece with measuring and reference beams, which are guided in free-jet propagation (FIG. 3a) and in a common transport fiber (FIG. 3b); and measuring devices according to the invention for a distance measurement between two surface regions of the workpiece with a transport fiber, which is arranged upstream of a beam splitter (FIG. 4a) or downstream (FIG. 4b).
  • identical reference numerals are used for identical or functionally identical components.
  • the processing head 1 of a laser processing machine (not shown) shown in Fig. 1 is for processing a workpiece 2 by means of a processing laser beam (not shown) and has a measuring device 3 for measuring the distance A between a reflective workpiece surface 2a of the workpiece 2 and the processing head 1, more precisely, a reference surface 4 of the machining head 1, on.
  • the measuring device 3 comprises an interferometer 5 with a beam splitter 6 which divides interferometer light 7 of an interferometer light source 8 onto a measuring arm 9 as a measuring beam 10 and onto a reference arm 11 as a reference beam 12, and a detector 13 which measures the measuring beam reflected at the workpiece surface 2 a 10 and reflected on the reference surface 4 reference beam 12 detected.
  • the measuring arm 9 has a measuring fiber 14 and the reference arm 1 1, a reference fiber 15, both of equal length and extend parallel to each other over their entire length and are in thermal contact with each other.
  • the reference surface 4 is formed by the mirrored fiber end of the reference fiber 15 facing the workpiece 2. Alternatively, the reference surface may also be formed by a separate mirror in the reference arm 11.
  • the measuring and reference fibers 14, 15 may also be different lengths, in which case the two fibers 14, 5 on the entire length of the shorter fiber, but only on a partial length of the longer fiber parallel to each other run and in thermal contact with each other.
  • the measuring beam 10 is guided over the measuring fiber 14, reflected on the workpiece surface 2a and the reflected measuring beam 10 is coupled again into the measuring fiber 14 and deflected via the beam splitter 6 to the detector 13.
  • the reference beam 12 is guided via the reference fiber 15, reflected at the reference surface 4 of the reference fiber 15, and the reflected reference beam 12 is deflected via the beam splitter 6 to the detector 13.
  • the recombined reflected measuring and reference beams 14, 15 are detected by the detector 13, and based on the interference, the distance A between the workpiece surface 2a and reference surface 4 are determined. Because of the thermal coupling of the two fibers 14, 15 there are no significant temperature differences and thus no temperature-related measurement errors in the absolute distance measurement.
  • the two fibers 14, 15 may be performed, for example, as separate fibers in a common optical fiber cable or protective tube in thermal contact.
  • the measuring fiber 14 may also be formed by the core and the reference fiber 15 by the inner cladding of a double clad fiber.
  • the measuring arm 9 has a first surface region 2 a as reflective workpiece surface and the reference arm 11 as a reflective reference surface a second surface region 2 b of the workpiece 2.
  • the measuring and reference beams 10, 12 are guided close to each other via the respective fibers 14, 15 but separately to the workpiece 2, so that the beam paths are slightly offset from one another.
  • the reference beam 12 can be directed to the first surface area 2a (e.g., the workpiece surface as a reference surface) and the measuring beam 10 to a measuring point 2b.
  • the recombined reflected measuring and reference beams 14, 15 are detected by the detector 13, and based on their interference, the distance A between the two workpiece surface 2a, 2b can be determined. Because of the thermal coupling of the two fibers 14, 15, there are no appreciable temperature differences and no temperature-related measurement errors in the relative distance measurement.
  • a deflection optics or imaging optics 16 is arranged between the workpiece 2 and the workpiece-side ends of the measuring and reference fibers 14, 15.
  • the deflection optics 16 By means of the deflection optics 16, the measuring and / or the reference beam 10, 12 can be moved jointly or separately over the two surface regions 2a, 2b in order to carry out a 1- or 2-dimensional measurement. As a result, for example, the topography of the workpiece surface can be detected or a spatial averaging can be performed.
  • the imaging optics 16 the measuring and / or the reference beam 10, 12 can be shaped to produce a specific illumination pattern (eg a point, a line or a circle) on the surface regions 2a, 2b.
  • a reference surface for a distance measurement to the workpiece can, as indicated by dashed lines in FIG. 2, be formed by a mirror 4 which can be pivoted into the reference arm 11.
  • the measuring range of the interferometer 5 is determined by the spectral width of the interferometer light source 8 and the optical path length difference between the measuring and reference arm 9, 11.
  • the mirror 4 of the reference arm 11 can be displaced along the optical axis, thus adapting the path length of the reference arm 11.
  • the measuring and reference fibers 14, 15 may be spaced from each other at their workpiece ends by a maximum of several millimeters so that the measuring and reference beams 0, 12 strike correspondingly spaced surface portions 2a, 2b of the workpiece 2 ,
  • the beam splitting does not necessarily have to take place through an optical element of the measuring device 3, but can result from different locations of the reflection on the workpiece 2.
  • the interferometer light 7 incident on a beam splitter 17 in free-jet propagation is geometrically divided into the measuring beam 10 and the reference beam 12 only at a stage 18 of the workpiece 2 present between the two surface areas 2a, 2b.
  • the interferometer light 7 is reflected at the one surface area 2a as the measuring beam 10 and at the other surface area 2b as the reference beam 12. If, for example, during laser deep welding, the light spot of the interferometer light 7 on the workpiece surface is larger than the diameter of the workpiece
  • Measuring and reference beams 10, 12 results.
  • the recombined reflected measuring and reference beams 10, 12 are deflected via the beam splitter 17 to the detector 13. Based on the interference detected there, the distance A between the two workpiece surfaces 2a, 2b can be determined.
  • the interferometer light 7 is guided to the workpiece 2 via a transport fiber 19, and the measuring and reference beams 10, 12 reflected at the two surface areas 2 a, 2 b are transmitted via the Transport fiber 19 back to the beam splitter 17 out.
  • the interferometer light 7 is split into the measuring and reference beams 10, 12 at a separate beam splitter 6, which is arranged behind a transmission fiber 19 in FIG. 4a and in FIG. 4b is.
  • the beam splitter 5 also serves to direct the measuring and reference beams 10, 12 to different surface regions 2a, 2b of the workpiece 2.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Bei einer Vorrichtung (3) zur Messung des Abstands (A) zwischen einer reflektierenden Werkstückoberfläche (2a) eines Werkstücks (2) und einer reflektierenden Referenzfläche (2b) bei der Laserbearbeitung des Werkstücks (2) weist ein Interferometer (5) einen Strahlteiler (6), der Interferometerlicht (7) auf einen Messarm (9) als Messstrahl (10) und auf einen Referenzarm (11) als Referenzstrahl (12) aufteilt, und einen Detektor (13) auf, der den an der Werkstückoberfläche (2a) reflektierten Messstrahl (10) und den an der Referenzfläche (2b) reflektierten Referenzstrahl (12) detektiert, wobei der Messarm (9) und der Referenzarm (11) innerhalb der Kohärenzlänge des Interferometerlichts (7) gleich lang sind. Erfindungsgemäß ist vorgesehen, dass der Messarm (9) eine Messfaser (14) und der Referenzarm (11) eine Referenzfaser (15) aufweisen und die Messfaser (14) und die Referenzfaser (15) auf ihrer gesamten Länge oder einer Teillänge, insbesondere bei unterschiedlich langen Fasern (14, 15) auf der gesamten Länge der kürzeren Faser, parallel nebeneinander verlaufen und in thermischem Kontakt miteinander stehen, dass der Messarm (9) als reflektierende Werkstückoberfläche einen ersten Oberflächenbereich (2a) und der Referenzarm (11) als reflektierende Referenzfläche einen zweiten Oberflächenbereich (2b) des Werkstücks (2) aufweisen und dass zwischen dem Werkstück (2) und dem werkstückseitigen Ende der Messfaser (14) und/oder der Referenzfaser (15) eine Ablenkoptik (16) angeordnet ist, die den Messstrahl (10) und/oder den Referenzstrahl (15) gemeinsam oder jeweils getrennt über die Mess- und/oder Referenzfläche (2a, 2b) bewegt.

Description

Vorrichtung und Verfahren zur temperaturkompensierten interferometrischen Ab- standsmessunq beim Laserbearbeiten von Werkstücken
Die vorliegende Erfindung betrifft eine Vorrichtung zur Messung des Abstands zwi- sehen einer reflektierenden Werkstückoberfläche eines Werkstücks und einer reflektierenden Referenzfläche bei der Laserbearbeitung des Werkstücks, aufweisend ein Interferometer mit einem Strahlteiler, der Interferometerlicht auf einen Messarm als Messstrahl und auf einen Referenzarm als Referenzstrahl aufteilt, und mit einem Detektor, der den an der Werkstückoberfläche reflektierten Messstrahl und den an der Referenzfläche reflektierten Referenzstrahl detektiert, wobei der Messarm und der Referenzarm innerhalb der Kohärenzlänge des Interferometerlichts gleich lang sind.
Interferometer werden zur Abstandsmessung bei Laserbearbeitungsprozessen ge- nutzt. Hierzu wird die Strahlung eines der beiden Interferometerarme (= Messarm) nahezu koaxial zum Bearbeitungslaser auf das Werkstück gerichtet, welches als In- terferometerspiegel dient. Vorzugsweise wird der Messstrahl vor der Fokussierung z.B. über einen Strahlteiler im Laserbearbeitungskopf dem Bearbeitungsstrahl räumlich überlagert und von der Bearbeitungsoptik auf die Messstelle fokussiert. Der an- dere Interferometerarm (Referenzarm) ist im Messgerät (mit Strahlquelle, Strahlteiler, Detektor und Auswerteeinheit) platziert. Typischerweise haben beide Interferometerarme annähernd gleiche optische Weglängen. Entscheidend für eine interferometri- sche Abstandsmessung ist die Kenntnis der Änderung der optischen Wege. In der Realität kann der optische Weg im Messarm nicht nur durch den zu messenden Ab- stand verändern werden, sondern auch durch (unbeabsichtigte) Änderungen im Strahlengang der Interferometerarme. Zum Beispiel kommt es bei fasergeführten Interferometern durch eine Aufheizung des Messfaserendes über der erfassten Schweißstelle zu einem Temperaturunterschied zur Referenzfaser und somit zu einer temperaturbedingten Änderung des Interferenzsignals, die zu Messfehlern bei der Abstandsmessung führt. Weiterhin sind oft Relativmessungen erforderlich, um den Abstand zwischen zwei Punkten (oder Flächen) des Werkstücks, wie z.B. die Einschweiß- oder Kapillartiefe eines Loches relativ zur Bauteiloberfläche, zu bestimmen. Es ist demgegenüber die Aufgabe der Erfindung, bei einer Messvorrichtung der eingangs genannten Art temperaturbedingte Messfehler auszuschließen und die Topographie der Werkstückoberfläche zu erfassen oder eine räumliche Mittelung durchzuführen. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass der Messarm eine Messfaser und der Referenzarm eine Referenzfaser aufweisen und dass die Messfaser und die Referenzfaser auf ihrer gesamten Länge oder einer Teillänge, insbesondere bei unterschiedlich langen Fasern auf der gesamten Länge der kürzeren Faser, parallel nebeneinander verlaufen und in thermischem Kontakt miteinander stehen, dass der Messarm als reflektierende Werkstückoberfläche einen ersten Oberflächenbereich und der Referenzarm als reflektierende Referenzfläche einen zweiten Oberflächenbereich des Werkstücks aufweisen und dass zwischen dem Werkstück und dem werkstückseitigen Ende der Messfaser und/oder der Referenzfaser eine Ablenkoptik angeordnet ist, die den Messstrahl und/oder den Referenzstrahl gemeinsam oder jeweils getrennt über die Mess- und/oder Referenzfläche bewegt.
Erfindungsgemäß sind Mess- und Referenzfaser miteinander thermisch gekoppelt, so dass es zu keinen nennenswerten Temperaturunterschieden kommt, sondern Temperaturschwankungen im Übertragungsweg systembedingt kompensiert werden. Mess- und Referenzstrahl werden über die jeweiligen Fasern dicht nebeneinander, aber getrennt geführt, so dass die Strahlengänge leicht versetzt zu einander sind. Als Folge ist das Interferenzsignal der beiden Strahlen nur abhängig vom relativen Abstand zwischen der Werkstückoberfläche und der Referenzfläche, da sich optische Weglängenschwankungen in Mess- und Referenzarmen wegen der parallelen Ausführung weitestgehend kompensieren. Dadurch können der Referenzstrahl auf die Bauteiloberfläche (Referenzfläche) und der Messstrahl auf einen Messpunkt oder eine Messfläche gelenkt werden. Die Ablenkoptik ermöglicht es, den Mess- und/oder Referenzstrahl gemeinsam oder getrennt über die Mess- bzw. Referenzfläche zu bewegen, um so eine 1- oder 2-dimensionale Messung umzusetzen. Dadurch kann die Topographie der Werkstückoberfläche erfasst oder eine räumliche Mittelung durchgeführt werden.
In einer vorteilhaften Ausführungsform sind die Messfaser und die Referenzfaser zwei separate Fasern, die auf ihrer gesamten Länge oder einer Teillänge, insbesondere bei unterschiedlich langen Fasern auf der gesamten Länge der kürzeren Faser, aneinander anliegen. Die beiden Fasern können beispielsweise in einem gemeinsamen Lichtleitkabel oder Schutzschlauch in thermischem Kontakt geführt sein. In einer anderen vorteilhaften Ausführungsform sind die Messfaser und die Referenzfaser durch den Kern und das Innencladding einer Doppelcladfaser gebildet.
Für eine Messung des Abstands zwischen zwei Oberflächenbereichen weist der Messarm als reflektierende Werkstückoberfläche den einen Oberflächenbereich und der Referenzarm als reflektierende Referenzfläche den anderen Oberflächenbereich des Werkstücks auf, so dass vom Interferometer gemessene Abstände relativ zur Werkstückoberfläche gemessen werden und unabhängig von optischen Weglängenschwankungen entlang des Mess- und Referenzfaser sind. Weiterhin kann vorteilhaft zwischen dem Werkstück und dem werkstückseitigen Ende der Messfaser und/oder der Referenzfaser eine Abbildungsoptik angeordnet sein, die den Mess- und/oder Referenzstrahl mit einem bestimmten Beleuchtungsmuster (z.B. ein Punkt, eine Linie oder ein Kreis) auf der Werkstückoberfläche abbildet. Vorteilhaft sind die Messfaser und die Referenzfaser an ihren werkstückseitigen Enden voneinander um maximal einige Millimeter beabstandet, so dass die Mess- und Referenzstrahlen auf unterschiedliche Oberflächenbereiche des Werkstücks gerichtet werden. Der Referenzstrahl kann auf die Bauteiloberfläche und der Messstrahl auf die zu messende Fläche treffen. Wegen der beabstandeten Faserenden liegen die beiden Fasern nur auf einer Teillänge aneinander an.
Besonders bevorzugt ist die Messvorrichtung in einem Bearbeitungskopf einer Laserbearbeitungsmaschine angeordnet, um den Abstand des Bearbeitungskopfes zum Werkstück zu messen. Der Messstrahl und ggf. auch der Referenzstrahl können über einen Strahlteiler des Bearbeitungskopfes dem Bearbeitungsstrahl räumlich überlagert und von der Bearbeitungsoptik auf die Messstelle fokussiert werden.
Die Erfindung betrifft auch ein Verfahren zum Messen des Abstands zwischen einer reflektierenden Werkstückoberfläche eines Werkstücks und einer reflektierenden Re- ferenzfläche mittels eines fasergeführten Interferometers bei der Laserbearbeitung des Werkstücks, wobei ein Messstrahl und ein Referenzstrahl des Interferometers in einer Messfaser und in einer Referenzfaser geführt werden, wobei die Messfaser und die Referenzfaser auf ihrer gesamten Länge oder einer Teillänge, insbesondere bei unterschiedlich langen Fasern auf der gesamten Länge der kürzeren Faser, parallel nebeneinander verlaufen und in thermischem Kontakt miteinander stehen und wobei der Messstrahl und/oder der Referenzstrahl gemeinsam oder jeweils getrennt über die Mess- und/oder Referenzfläche abgelenkt werden. Die Erfindung betrifft schließlich auch ein Verfahren zum Messen des Abstands zwischen zwei Oberflächenbereichen eines Werkstücks mittels eines Interferometers bei der Laserbearbeitung des Werkstücks, wobei ein Messstrahl und ein Referenzstrahl des Interferometers an den beiden Oberflächenbereichen reflektiert werden und wo- bei der Messstrahl und/oder der Referenzstrahl gemeinsam oder jeweils getrennt über die Mess- und/oder Referenzfläche abgelenkt werden. Bevorzugt wird Interfe- rometerlicht an einer zwischen den beiden Oberflächenbereichen vorhandenen Stufe des Werkstücks geometrisch in den Messstrahl und in den Referenzstrahl geteilt. Weitere Vorteile der Erfindung ergeben sich aus den Ansprüchen, der Beschreibung und der Zeichnung. Ebenso können die vorstehend genannten und die noch weiter aufgeführten Merkmale je für sich oder zu mehreren in beliebigen Kombinationen Verwendung finden. Die gezeigten und beschriebenen Ausführungsformen sind nicht als abschließende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter für die Schilderung der Erfindung.
Es zeigen: eine erfindungsgemäße Messvorrichtung mit thermisch gekoppelten Mess- und Referenzfasern für eine Abstandsmessung des Werkstücks;
eine weitere erfindungsgemäße Messvorrichtung mit thermisch gekoppelten Mess- und Referenzfasern für eine Abstandsmessung zwischen zwei Oberflächenbereichen des Werkstücks; erfindungsgemäße Messvorrichtungen für eine Abstandsmessung zwischen zwei Oberflächenbereichen des Werkstücks mit Mess- und Referenzstrahlen, die in Freistrahlpropagation (Fig. 3a) und in einer gemeinsamen Transportfaser (Fig. 3b) geführt sind; und erfindungsgemäße Messvorrichtungen für eine Abstandsmessung zwischen zwei Oberflächenbereichen des Werkstücks mit einer Transportaser, die einem Strahlteiler vorgeordnet (Fig. 4a) oder nachgeordnet (Fig. 4b) ist. In der folgenden Figurenbeschreibung werden für gleiche bzw. funktionsgleiche Bauteile identische Bezugszeichen verwendet.
Der in Fig. 1 gezeigte Bearbeitungskopf 1 einer Laserbearbeitungsmaschine (nicht gezeigt) dient zum Bearbeiten eines Werkstücks 2 mittels eines Bearbeitungslaserstrahls (nicht gezeigt) und weist eine Messvorrichtung 3 zur Messung des Abstands A zwischen einer reflektierenden Werkstückoberfläche 2a des Werkstücks 2 und dem Bearbeitungskopf 1 , genauer gesagt einer Referenzfläche 4 des Bearbeitungskopf 1 , auf.
Die Messvorrichtung 3 umfasst ein Interferometer 5 mit einem Strahlteiler 6, der In- terferometerlicht 7 einer Interferometerlichtquelle 8 auf einen Messarm 9 als Messstrahl 10 und auf einen Referenzarm 11 als Referenzstrahl 12 aufteilt, und einen Detektor 13, der den an der Werkstückoberfläche 2a reflektierten Messstrahl 10 und den an der Referenzfläche 4 reflektierten Referenzstrahl 12 detektiert. Der Messarm 9 weist eine Messfaser 14 und der Referenzarm 1 1 eine Referenzfaser 15 auf, die beide gleich lang sind und auf ihrer gesamten Länge parallel nebeneinander verlaufen und in thermischem Kontakt miteinander stehen. Die Referenzfläche 4 ist durch das dem Werkstück 2 zugewandte verspiegelte Faserende der Referenzfaser 15 ge- bildet. Alternativ kann die Referenzfläche auch durch einen separaten Spiegel im Referenzarm 1 1 gebildet sein. Anders als in Fig. 1 gezeigt, können die Mess- und Referenzfasern 14, 15 auch unterschiedlich lang sein, wobei in diesem Fall die beiden Fasern 14, 5 auf der gesamten Länge der kürzeren Faser, aber nur auf einer Teillänge der längeren Faser parallel nebeneinander verlaufen und in thermischem Kontakt miteinander stehen.
Im Messarm 9 wird der Messstrahl 10 über die Messfaser 14 geführt, an der Werkstückoberfläche 2a reflektiert und der reflektierte Messstrahl 10 erneut in die Messfaser 14 eingekoppelt und über den Strahlteiler 6 zum Detektor 13 abgelenkt. Im Refe- renzarm 1 1 wird der Referenzstrahl 12 über die Referenzfaser 15 geführt, an der Referenzfläche 4 der Referenzfaser 15 reflektiert und der reflektierte Referenzstrahl 12 über den Strahlteiler 6 zum Detektor 13 abgelenkt. Die wieder zusammengeführten reflektierten Mess- und Referenzstrahlen 14, 15 werden vom Detektor 13 detektiert, und anhand der Interferenz kann der Abstand A zwischen Werkstückoberfläche 2a und Referenzfläche 4 bestimmt werden. Wegen der thermischen Kopplung der beiden Fasern 14, 15 kommt es zu keinen nennenswerten Temperaturunterschieden und somit zu keinen temperaturbedingten Messfehlern bei der absoluten Abstandsmessung.
Die beiden Fasern 14, 15 können beispielsweise als separate Fasern in einem gemeinsamen Lichtleitkabel oder Schutzschlauch in thermischem Kontakt geführt sein. Alternativ kann die Messfaser 14 auch durch den Kern und die Referenzfaser 15 durch das Innencladding einer Doppelcladfaser gebildet sein.
Im Unterschied zur Fig. 1 weisen bei der in Fig. 2 gezeigten Messvorrichtung 3 der Messarm 9 als reflektierende Werkstückoberfläche einen ersten Oberflächenbereich 2a und der Referenzarm 11 als reflektierende Referenzfläche einen zweiten Oberflächenbereich 2b des Werkstücks 2 auf. Die Mess- und Referenzstrahlen 10, 12 wer- den über die jeweiligen Fasern 14, 15 dicht nebeneinander, aber getrennt zum Werkstück 2 geführt, so dass die Strahlengänge leicht versetzt zu einander sind. Dadurch kann der Referenzstrahl 12 auf den ersten Oberflächenbereich 2a (z.B. die Werkstückoberfläche als Referenzfläche) und der Messstrahl 10 auf einen Messpunkt bzw. Messfläche 2b gelenkt werden. Die wieder zusammengeführten reflektierten Mess- und Referenzstrahlen 14, 15 werden vom Detektor 13 detektiert, und anhand ihrer Interferenz kann der Abstand A zwischen den beiden Werkstückoberfläche 2a, 2b bestimmt werden. Wegen der thermischen Kopplung der beiden Fasern 14, 15 kommt es zu keinen nennenswerten Temperaturunterschieden und zu keinen temperaturbedingten Messfehlern bei der relativen Abstandsmessung.
Zwischen dem Werkstück 2 und den werkstückseitigen Enden der Mess- und Referenzfasern 14, 15 ist eine Ablenkoptik oder eine Abbildungsoptik 16 angeordnet. Mittels der Ablenkoptik 16 können der Mess- und/oder der Referenzstrahl 10, 12 gemeinsam oder getrennt über die beiden Oberflächenbereiche 2a, 2b bewegt werden, um eine 1- oder 2-dimensionale Messung vorzunehmen. Dadurch kann z.B. die Topographie der Werkstückoberfläche erfasst oder eine räumliche Mittelung durchgeführt werden. Mittels der Abbildungsoptik 16 können der Mess- und/oder der Referenzstrahl 10, 12 geformt werden, um ein bestimmtes Beleuchtungsmuster (z.B. ein Punkt, eine Linie oder ein Kreis) auf den Oberflächenbereichen 2a, 2b zu erzeugen. Eine Referenzfläche für eine Abstandsmessung zum Werkstück kann, wie in Fig. 2 gestrichelt angedeutet, durch einen in den Referenzarm 11 einschwenkbaren Spiegel 4 gebildet sein. So kann zwischen den beiden Betriebsarten - temperaturkompen- sierte Abstandsmessung zum Werkstück und temperaturkompensierte Abstandsmessung zwischen zwei Oberflächenbereichen - umgeschaltet werden. Der Messbereich des Interferometers 5 wird durch die spektrale Breite der Interferometerlicht- quelle 8 und der optischen Weglängendifferenz zwischen Mess- und Referenzarm 9, 11 bestimmt. Um den Messbereich anpassen zu können, kann der Spiegel 4 des Re- ferenzarmes 11 entlang der optischen Achse verschoben und so die Weglänge des Referenzarms 11 angepasst werden.
Anders als in Fig. 2 gezeigt, können die Mess- und Referenzfasern 14, 15 an ihren werkstückseitigen Enden voneinander um maximal einige Millimeter beabstandet sein, so dass die Mess- und Referenzstrahlen 0, 12 auf entsprechend beabstandete Oberflächenbereiche 2a, 2b des Werkstücks 2 treffen.
Die Strahlaufteilung muss nicht zwingend durch ein optisches Element der Messvorrichtung 3 erfolgen, sondern kann sich durch unterschiedliche Orte der Reflexion auf dem Werkstück 2 ergeben. Bei der in Fig. 3a gezeigten Messvorrichtung 3 wird das über einen Strahlteiler 17 in Freistrahlpropagation einfallende Interferometerlicht 7 erst an einer zwischen den beiden Oberflächenbereichen 2a, 2b vorhandenen Stufe 18 des Werkstücks 2 geometrisch in den Messstrahl 10 und in den Referenzstrahl 12 geteilt, d.h. das Interferometerlicht 7 wird an dem einen Oberflächenbereich 2a als Messstrahl 10 und an dem anderen Oberflächenbereich 2b als Referenzstrahl 12 reflektiert. Wenn beispielsweise beim Lasertiefschweißen der Lichtfleck des Interfe- rometerlichts 7 auf der Werkstückoberfläche größer als der Durchmesser der
Schweißkapillare ist, wird ein Teil des Interferometerlichts 7 von der Werkstückoberfläche in der Umgebung der Schweißkapillare und ein Teil in der Schweißkapillare reflektiert, wodurch sich eine "natürliche" Aufteilung des Interferometerlichts 7 in
Mess- und Referenzstrahlen 10, 12 ergibt. Die wieder zusammengeführten reflektierten Mess- und Referenzstrahlen 10, 12 werden über den Strahlteiler 17 zum Detektor 13 abgelenkt. Anhand der dort detektierten Interferenz kann der Abstand A zwischen den beiden Werkstückoberflächen 2a, 2b bestimmt werden. Im Unterscheid zur Fig. 3a wird bei der in Fig. 3b gezeigten Messvorrichtung 3 das Interferometerlicht 7 über eine Transportfaser 19 zum Werkstück 2 geführt, und die an den beiden Oberflächenbereichen 2a, 2b reflektierten Mess- und Referenzstrah- len 10, 12 werden über die Transportfaser 19 zurück zum Strahlteiler 17 geführt.
Bei der in Fig. 4a, 4b gezeigten Messvorrichtung 3 erfolgt die Aufteilung von Interferometerlicht 7 in die Mess- und Referenzstrahlen 10, 12 an einem separaten Strahlteiler 6, der in Fig. 4a vor und in Fig. 4b hinter einer Übertragungsfaser 19 angeord- net ist. In Fig. 4b dient der Strahlteiler 5 auch dazu, die Mess- und Referenzstrahlen 10, 12 auf unterschiedliche Oberflächenbereiche 2a, 2b des Werkstückes 2 zu richten.

Claims

Patentansprüche
1. Vorrichtung (3) zur Messung des Abstands (A) zwischen einer reflektierenden Werkstückoberfläche (2a) eines Werkstücks (2) und einer reflektierenden Referenzfläche (2b) bei der Laserbearbeitung des Werkstücks (2), aufweisend ein Interferometer (5) mit einem Strahlteiler (6; 18), der Interferometerlicht (7) auf einen Messarm (9) als Messstrahl (10) und auf einen Referenzarm (11) als Referenzstrahl (12) aufteilt, und mit einem Detektor (13), der den an der Werkstückoberfläche (2a) reflektierten Messstrahl (10) und den an der Referenzfläche (2b) reflektierten Referenzstrahl (12) detektiert, wobei der Messarm (9) und der Referenzarm (11) innerhalb der Kohärenzlänge des Interferometer- lichts (7) gleich lang sind,
dadurch gekennzeichnet,
dass der Messarm (9) eine Messfaser (14) und der Referenzarm (11) eine Referenzfaser (15) aufweisen,
dass die Messfaser (14) und die Referenzfaser (15) auf ihrer gesamten Länge oder einer Teillänge, insbesondere bei unterschiedlich langen Fasern (14, 15) auf der gesamten Länge der kürzeren Faser, parallel nebeneinander verlaufen und in thermischem Kontakt miteinander stehen,
dass der Messarm (9) als reflektierende Werkstückoberfläche einen ersten Oberflächenbereich (2a) und der Referenzarm (11) als reflektierende Referenzfläche einen zweiten Oberflächenbereich (2b) des Werkstücks (2) aufweisen und
dass zwischen dem Werkstück (2) und dem werkstückseitigen Ende der Messfaser (14) und/oder der Referenzfaser (15) eine Ablenkoptik (16) angeordnet ist, die den Messstrahl (10) und/oder den Referenzstrahl (15) gemeinsam oder jeweils getrennt über die Mess- und/oder Referenzfläche (2a, 2b) bewegt.
2. Messvorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die Messfaser (14) und die Referenzfaser (15) zwei separate Fasern sind, die auf ihrer gesamten Länge oder einer Teillänge, insbesondere bei unterschiedlich langen Fasern (14, 15) auf der gesamten Länge der kürzeren Faser, aneinander anliegen.
3. Messvorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die Messfaser (14) und die Referenzfaser (15) durch den Kern und das Innencladding einer Doppelcladfaser gebildet sind.
4. Messvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Messfaser (14) und die Referenzfaser (15) an ihren werkstückseitigen Enden voneinander beabstandet sind.
5. Messvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Messvorrichtung (3) in einem Bearbeitungskopf (1) einer Laserbearbeitungsmaschine angeordnet ist.
6. Verfahren zum Messen des Abstands (A) zwischen einer reflektierenden
Werkstückoberfläche (2a) eines Werkstücks (2) und einer reflektierenden Referenzfläche (2b) mittels eines fasergeführten Interferometers (5) bei der Laserbearbeitung des Werkstücks (2), wobei ein Messstrahl (10) und ein Referenzstrahl (12) des Interferometers (5) in einer Messfaser (14) und in einer Referenzfaser (15) geführt werden, wobei die Messfaser (14) und die Referenzfaser (15) auf ihrer gesamten Länge oder einer Teillänge, insbesondere bei unterschiedlich langen Fasern (14, 15) auf der gesamten Länge der kürzeren Faser, parallel nebeneinander verlaufen und in thermischem Kontakt miteinander stehen und wobei der Messstrahl (10) und/oder der Referenzstrahl (15) gemeinsam oder jeweils getrennt über die Mess- und/oder Referenzfläche (2a, 2b) abgelenkt werden.
7. Verfahren zum Messen des Abstands (A) zwischen zwei Oberflächenbereichen (2a, 2b) eines Werkstücks (2) mittels eines Interferometers (5) bei der Laserbearbeitung des Werkstücks (2), wobei ein Messstrahl (10) und ein Re- ferenzstrahl (12) des Interferometers (5) an den beiden Oberflächenbereichen (2a, 2b) reflektiert werden und wobei der Messstrahl (10) und/oder der Referenzstrahl (15) gemeinsam oder jeweils getrennt über die Mess- und/oder Referenzfläche (2a, 2b) abgelenkt werden.
8. Messverfahren nach Anspruch 7, dadurch gekennzeichnet, dass Interferome- terlicht (8) an einer zwischen den beiden Oberflächenbereichen (2a, 2b) vorhandenen Stufe (18) des Werkstücks (2) geometrisch in den Messstrahl (10) und in den Referenzstrahl (12) geteilt wird.
PCT/EP2015/069028 2014-08-25 2015-08-19 Vorrichtung und verfahren zur temperaturkompensierten interferometrischen abstandsmessung beim laserbearbeiten von werkstücken WO2016030246A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580045781.9A CN106796097B (zh) 2014-08-25 2015-08-19 用于在激光加工工件时进行受温度补偿的干涉仪式间距测量的装置和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014216829.5 2014-08-25
DE102014216829.5A DE102014216829B4 (de) 2014-08-25 2014-08-25 Vorrichtung und Verfahren zur temperaturkompensierten interferometrischen Abstandsmessung beim Laserbearbeiten von Werkstücken

Publications (1)

Publication Number Publication Date
WO2016030246A1 true WO2016030246A1 (de) 2016-03-03

Family

ID=53836614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/069028 WO2016030246A1 (de) 2014-08-25 2015-08-19 Vorrichtung und verfahren zur temperaturkompensierten interferometrischen abstandsmessung beim laserbearbeiten von werkstücken

Country Status (3)

Country Link
CN (1) CN106796097B (de)
DE (1) DE102014216829B4 (de)
WO (1) WO2016030246A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017001353B4 (de) 2017-02-13 2022-12-15 Lessmüller Lasertechnik GmbH Vorrichtung und Verfahren zum Überwachen eines Bearbeitungsprozesses zur Materialbearbeitung mittels eines optischen Messstrahls unter Anwendung eines Temperaturausgleichs
DE102019002942B4 (de) * 2019-04-24 2023-08-03 Lessmüller Lasertechnik GmbH Messvorrichtung und Verfahren zur Durchführung optischer Kohärenztomographie mit einem Kohärenztomographen
JP2021067497A (ja) * 2019-10-18 2021-04-30 三菱重工業株式会社 光ファイバー検出装置、及び光ファイバー検出装置を用いた機械ひずみの検出方法
WO2022117207A1 (de) 2020-12-04 2022-06-09 Lessmueller Lasertechnik Gmbh Verfahren, vorrichtung und bearbeitungssystem zum überwachen eines bearbeitungsprozesses eines werkstücks mittels eines hochenergetischen bearbeitungsstrahls

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1744119A1 (de) * 2005-07-15 2007-01-17 Proximion Fiber Systems AB Optische Kohärenztomographie mit einer Wobbelsignalquelle
FR2950425A1 (fr) * 2009-09-23 2011-03-25 Sabban Youssef Cohen Nanotopographie 3d sans contact, insensible aux vibrations
EP2384692A1 (de) * 2010-05-07 2011-11-09 Rowiak GmbH Anordnung und Verfahren zur Interferometrie
DE102010016862A1 (de) * 2010-05-10 2011-11-10 Precitec Optronik Gmbh Materialbearbeitungsvorrichtung mit in-situ Messen des Bearbeitungsabstands
WO2014016201A1 (de) * 2012-07-24 2014-01-30 Hexagon Technology Center Gmbh Interferometrische entfernungsmessanordnung und ebensolches verfahren

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4380394A (en) * 1981-05-26 1983-04-19 Gould Inc. Fiber optic interferometer
JPH0875433A (ja) * 1994-09-05 1996-03-22 Tokyo Seimitsu Co Ltd 表面形状測定装置
JP4414235B2 (ja) * 2002-03-14 2010-02-10 テイラー・ホブソン・リミテッド 表面プロファイリング装置及び表面プロファイルデータ作成方法
US7023563B2 (en) * 2003-02-14 2006-04-04 Chian Chiu Li Interferometric optical imaging and storage devices
US6943881B2 (en) * 2003-06-04 2005-09-13 Tomophase Corporation Measurements of optical inhomogeneity and other properties in substances using propagation modes of light
US7187816B2 (en) * 2004-12-13 2007-03-06 Purdue Research Foundation In-fiber whitelight interferometry using long-period fiber grating
US7518731B2 (en) * 2005-02-01 2009-04-14 Chian Chiu Li Interferometric MOEMS sensor
CN100350220C (zh) * 2005-11-25 2007-11-21 浙江大学 基于长周期光纤光栅对传感器的双参量测量方法
WO2010044322A1 (ja) * 2008-10-17 2010-04-22 コニカミノルタオプト株式会社 光断層測定装置
EP2236978B8 (de) * 2009-04-01 2013-12-04 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Optische Messvorrichtung und Verfahren zur Bestimmung der Form eines Objekts und eine Maschine zum Formen des Objekts
CN102645178B (zh) * 2011-02-18 2015-01-21 上海微电子装备有限公司 基于双频干涉的面型测量装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1744119A1 (de) * 2005-07-15 2007-01-17 Proximion Fiber Systems AB Optische Kohärenztomographie mit einer Wobbelsignalquelle
FR2950425A1 (fr) * 2009-09-23 2011-03-25 Sabban Youssef Cohen Nanotopographie 3d sans contact, insensible aux vibrations
EP2384692A1 (de) * 2010-05-07 2011-11-09 Rowiak GmbH Anordnung und Verfahren zur Interferometrie
DE102010016862A1 (de) * 2010-05-10 2011-11-10 Precitec Optronik Gmbh Materialbearbeitungsvorrichtung mit in-situ Messen des Bearbeitungsabstands
WO2014016201A1 (de) * 2012-07-24 2014-01-30 Hexagon Technology Center Gmbh Interferometrische entfernungsmessanordnung und ebensolches verfahren

Also Published As

Publication number Publication date
DE102014216829A1 (de) 2016-02-25
CN106796097A (zh) 2017-05-31
DE102014216829B4 (de) 2021-08-05
CN106796097B (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
DE102015001421B4 (de) Vorrichtung und Verfahren zur Strahldiagnose an Laserbearbeitungs-Optiken (PRl-2015-001)
DE102014007887B4 (de) Laserbearbeitungsvorrichtung mit einer Messvorrichtung zum Erfassen von Oberflächendaten und/oder Grenzflächen eines durch eine Laserbearbeitungsvorrichtung zu bearbeitenden Werkstücks
EP1977850B1 (de) Bearbeitungseinrichtung zur die Bearbeitung von Werkstücken
DE19819762A1 (de) Interferometrische Meßeinrichtung
DE102018105877B3 (de) Vorrichtung für die Bestimmung einer Ausrichtung einer optischen Vorrichtung eines Kohärenztomographen, Kohärenztomograph und Laserbearbeitungssystem
WO2016030246A1 (de) Vorrichtung und verfahren zur temperaturkompensierten interferometrischen abstandsmessung beim laserbearbeiten von werkstücken
WO2020143861A1 (de) Verfahren und vorrichtung zur kontrollierten laserbearbeitung eines werkstücks mittels konfokaler abstandsmessung
DE102017211735B4 (de) Laserbearbeitungsvorrichtung und Laserbearbeitungssystem
EP3641980B1 (de) Verfahren zur abstandsmessung für ein laserbearbeitungssystem und laserbearbeitungssystem
DE102011078089A1 (de) Verfahren und Anordnung zur Abstandsmessung bei einer Laserbearbeitungsanlage
DE102018218334A1 (de) Laserschweißvorrichtung und Laserschweißverfahren
EP3837084B1 (de) Laserbearbeitungssystem und verfahren für die bearbeitung eines werkstücks mit einem laserstrahl
DE102019120398B3 (de) Laserbearbeitungssystem und Verfahren für eine zentrische Ausrichtung eines Laserstrahls in einem Bearbeitungskopf eines Laserbearbeitungssystems
DE19520305C2 (de) Verfahren und Meßvorrichtung zur interferometrischen Abstandsmessung
DE102019002942B4 (de) Messvorrichtung und Verfahren zur Durchführung optischer Kohärenztomographie mit einem Kohärenztomographen
DE4229313A1 (de) Verfahren und Vorrichtung zur hochgenauen Abstandsmessung von Oberflächen
EP3374732B1 (de) Verfahren und vorrichtung zur bestimmung der räumlichen position eines gegenstandes mittels interferometrischer längenmessung
DE102009042702A1 (de) Verfahren und Vorrichtung zur Bestimmung von Orientierung und Position eines Punktes einer Mehrachskinematik
DE102020104386A1 (de) Vorrichtung und Verfahren zum Messen der Topografie einer Seitenfläche einer Vertiefung
EP3742956B1 (de) Verfahren zur erzeugung eines zweidimensionalen interferogramms mit einem freistrahl-interferometer des michelson-typs
DE10005171A1 (de) System zum Prüfen von Krümmungsradien von optischen Prüflingen
WO2008138688A1 (de) Interferometrische messeinrichtung
DE102013219436B4 (de) Vorrichtung und Verfahren zur optischen Analyse eines reflektierenden Prüflings
DE10126480A1 (de) Verfahren zur Messung der Winkellage und der Defokussierung eines optischen Referenzelements
DE4432313C2 (de) Vorrichtung zur Untersuchung von Oberflächentopographien mittels Streifen-Triangulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15750443

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15750443

Country of ref document: EP

Kind code of ref document: A1