WO2008138688A1 - Interferometrische messeinrichtung - Google Patents

Interferometrische messeinrichtung Download PDF

Info

Publication number
WO2008138688A1
WO2008138688A1 PCT/EP2008/054153 EP2008054153W WO2008138688A1 WO 2008138688 A1 WO2008138688 A1 WO 2008138688A1 EP 2008054153 W EP2008054153 W EP 2008054153W WO 2008138688 A1 WO2008138688 A1 WO 2008138688A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
measuring
face
radiation
optical fiber
Prior art date
Application number
PCT/EP2008/054153
Other languages
English (en)
French (fr)
Inventor
Matthias Fleischer
Pawel Drabarek
Ralf Kochendoerfer
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2008138688A1 publication Critical patent/WO2008138688A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02062Active error reduction, i.e. varying with time
    • G01B9/02064Active error reduction, i.e. varying with time by particular adjustment of coherence gate, i.e. adjusting position of zero path difference in low coherence interferometry
    • G01B9/02065Active error reduction, i.e. varying with time by particular adjustment of coherence gate, i.e. adjusting position of zero path difference in low coherence interferometry using a second interferometer before or after measuring interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • G01B9/02057Passive reduction of errors by using common path configuration, i.e. reference and object path almost entirely overlapping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers

Definitions

  • the invention relates to an interferometric measuring device for measuring the shape, the roughness and / or the distance of a measuring object with a modulation interferometer and a measuring probe, wherein in the modulation interferometer a short-coherent radiation source and a first reflector element and a second reflector element are provided, the radiation impose a path difference on the short-coherent radiation source.
  • the interferometric measuring device comprises a modulation interferometer having a spatially coherent radiation source and a first beam splitter for splitting their radiation into two partial beams, one of which is displaceable relative to the other by means of a delay line in its light phase. Both partial beams can be shifted by means of modulation devices in their light frequency.
  • the partial beams are combined at a beam splitter and coupled into a monomode fiber by means of a lens.
  • the interferometric measuring device further comprises a measuring probe in which the combined partial beams are split into a measuring beam guided by a measuring branch and reflected on the surface and a reference beam guided through a reference branch and reflected therein and in which the reflected measuring beam is superimposed with the reflected reference beam becomes.
  • the radiation is returned by the measuring probe via the monomode fiber and fed via a branch piece to a receiver unit.
  • the receiver unit has a planar receiver, this is only used for the evaluation of radiation of different wavelengths at different locations.
  • the interferometric measuring device can be a measuring object only in individual Measure measuring points. An advantage of the arrangement is that the measuring probe can be made very small and robust.
  • the modulation interferometer and the receiver unit can be stationary, if necessary in climatically protected environment, be arranged.
  • Measuring probes of the type described are used by way of example for the inspection of the surface of cavities such as valve seats.
  • an areal measuring interferometric measuring device In a modulation interferometer, two partial beams of the radiation of a short-coherent radiation source are impressed on a path difference. This path difference is compensated in a measuring probe by different path lengths of the radiation reflected at a measuring object and at a reference object, wherein the two interfering partial beams of the measuring object and the reference object are fed to a planar measuring receiver unit.
  • the measuring probe comprises, in addition to a beam-shaping unit facing the measuring object, the area-measuring receiver unit.
  • the measuring probe is less compact and robust executable than if it only includes the beam forming unit.
  • a coupling through an optical fiber may be provided only between the measuring probe and the modulation interferometer.
  • the object of the invention is achieved in that an image-transmitting optical fiber arrangement is arranged between the modulation interferometer and the measuring probe.
  • a planar image sensor can be arranged in a stationary evaluation unit and need not be arranged in the measuring probe, as is the case in the prior art.
  • the structure of the measuring probe can therefore be made more compact and robust than before.
  • a collimator is provided between the modulation interferometer and a first end face of the image-transmitting optical waveguide arrangement, with the collimator the radiation of the Modulation interferometer on the first end face in the image-transmitting light guide assembly can be coupled, a flat illumination of the first end face can be achieved, which allows a planar measurement of the shape, the roughness and / or the distance of the measurement object.
  • the radiation emerging from the second end face can be imaged onto the test object with the objective, it is possible to achieve any radiation source formed by an end face of a single light guide of the image-transmitting light guide arrangement can be focused on the measurement object.
  • the arrangement ensures that the radiation reflected by the measurement object is imaged onto the second end face.
  • the radiation emanating from the end face of the individual light guide and reflected by the test object can be imaged onto the same individual light guide.
  • the individual radiation sources formed by the end surfaces of the individual light guides are not coherent transversely.
  • a particularly simple and robust embodiment provides that the second end face of the image-transmitting light guide arrangement is designed to be partially reflecting.
  • the radiation reflected by the measurement object and focused by the objective onto the end surface of a single light guide can interfere with the reference wave generated at the second end face if the path difference impressed in the modulation interferometer corresponds to the light path from the second end face to the measurement object and back.
  • the interference product from the radiation reflected by the measurement object and the reference wave propagates via the image-transmitting optical waveguide arrangement back towards the evaluation unit. If an imaging optical element is provided between the first end face of the image-transmitting optical waveguide arrangement and an image recorder, the radiation emerging from the first end face being able to be imaged onto the image recorder with the imaging optical element, the interference product from each individual light guide can be imaged onto the planar image sensor become. As a result, the measurement object can be determined areally with respect to its shape, the roughness and / or its distance.
  • the interference pattern occurring at the second end face of the image-transmitting optical waveguide arrangement can be used Particularly good transmission to the first end face and the measurement accuracy of the interferometric measuring device is particularly high.
  • An embodiment of the interferometric measuring device provides that the image-transmitting optical waveguide arrangement is made flexible at least in sections. It can thereby be achieved that the evaluation unit with the modulation interferometer can remain stationary and the measuring probe can be adapted to the position of the measurement object.
  • Figure 1 is an area-measuring interferometric measuring device
  • the evaluation unit 10 contains a modulation interferometer 20 in which the radiation of a short-coherent radiation source 22 is supplied by means of a beam-shaping lens 23 to a first beam splitter 24, by means of which it is split into two partial beams.
  • a first partial beam is reflected at a first reflector element 25 and combined at the first beam splitter 24 with a second partial beam, which was reflected at a second reflector element 27.
  • the second sub-beam passes through an optical element 26, which may be designed as a phase modulator and / or frequency modulator. In a different embodiment, an optical element 26 may be arranged in each of the two partial beams.
  • the optical path difference between the two partial beams is greater than the coherence length of the radiation of the short-coherent radiation source 22 selected.
  • the combined partial beams are coupled by means of a collimator 21 in an optical fiber 14, which is designed as a monomode optical fiber.
  • the radiation emerging from the optical fiber 14 is transmitted by means of a beam-shaping lens 13 and a second beam splitter 17 of a first end face 31 of an image-transmitting Fiber optic assembly 30 supplied.
  • the radiation exits at a second end face 32 of the image-transmitting optical waveguide arrangement 30 and is focused onto the test object 37 by means of an objective 34 arranged in the measuring probe 35; this is indicated as object beam path 36.
  • the radiation reflected by the measurement object 37 is focused in the reverse direction by means of the objective 34 onto the end face 31 of the image-transmitting optical waveguide arrangement 30 and interferes with radiation reflected at the partially mirrored second end face 32.
  • the image transmitting optical fiber assembly 30 consists of a plurality of individual optical fibers, each of which forms a radiation source, which is imaged by means of the objective 34 on the measurement object.
  • the individual radiation sources are spatially transversally incoherent.
  • the distance between the second end face 32 and the measurement object 37 is selected such that the optical path difference impressed in the modulation interferometer 20 is just compensated and the radiation reflected by the measurement object 37 can be brought into interference with the radiation reflected at the partially mirrored end face 31.
  • the radiation is taken off at the first end face 31 of the image-transmitting optical waveguide arrangement 30 facing the second beam splitter 17 and imaged by means of an imaging lens 15, as indicated in an imaging steel path 16, onto a planar image recorder 11, which is connected to a computing unit 12.
  • the measuring object 37 can be scanned simultaneously at a plurality of points corresponding to the number of optical fibers in the image transmitting optical fiber array 30.
  • each optical waveguide end at the imaging optical waveguide arrangement 30 generates, by the partial mirroring, one in the imaging
  • Optical fiber assembly 30 returning reference wave and acts simultaneously as a point light source, which is imaged by the lens on the measurement object.
  • An advantage of the interferometric measuring device according to the invention is that the measuring probe 35 can be constructed very compact and robust, since both the modulation interferometer 20 and the planar image sensor 11 together with associated optical components of the measuring probe 35 can be arranged separately in the evaluation unit 10 can and are connected to this only via a flexible image transmitting optical fiber assembly 30.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

Die Erfindung betrifft eine Interferometrische Messeinrichtung zur Messung der Form, der Rauheit und/oder des Abstandes eines Messobjekts mit einem Modulationsinterferometer und einer Mess-Sonde, wobei in dem Modulationsinterferometer eine kurzkohärente Strahlungsquelle sowie ein erstes Reflektorelement und ein zweites Reflektorelement vorgesehen sind, die der Strahlung der kurzkohärenten Strahlungsquelle einen Gangunterschied aufprägen. Ist zwischen dem Modulationsinterferometer und der Mess-Sonde eine bildübertragende Lichtleiteranordnung angeordnet, kann durch diese Anordnung ein flächenhafter Bildaufnehmer in einer stationären Auswerteeinheit angeordnet sein und muss nicht in der Mess-Sonde angeordnet sein, wie dies beim Stand der Technik der Fall ist. Der Aufbau der Mess-Sonde kann daher kompakter und robuster als bisher ausgeführt sein.

Description

Beschreibung
Interferometrische Messeinrichtung
Stand der Technik
Die Erfindung betrifft eine Interferometrische Messeinrichtung zur Messung der Form, der Rauheit und/oder des Abstandes eines Messobjekts mit einem Modulationsinterferometer und einer Mess- Sonde, wobei in dem Modulationsinterferometer eine kurzkohärente Strahlungsquelle sowie ein erstes Reflektorelement und ein zweites Reflektorelement vorgesehen sind, die der Strahlung der kurzkohärenten Strahlungsquelle einen Gangunterschied aufprägen.
Eine interferometrische Messeinrichtung der oben genannten Art ist in der DE 198 19 762 Al beschrieben. Die interferometrische Messeinrichtung umfasst ein Modulationsinterferometer, das eine räumlich kohärente Strahlungsquelle und einen ersten Strahlteiler zum Aufteilen von deren Strahlung in zwei Teilstrahlen aufweist, von denen der eine gegenüber dem anderen mittels einer Verzögerungsstrecke in seiner Licht-Phase verschiebbar ist. Beide Teilstrahlen können mittels Modulationsemrichtungen in ihrer Licht-Frequenz verschoben werden. Am Ausgang des Modulationsinter- ferometers werden die Teilstrahlen an einem Strahlteiler zusammengeführt und mittels eines Objektivs in eine Monomodenfaser eingekoppelt. Die interferometrische Messeinrichtung umfasst weiterhin eine Mess-Sonde, in der die vereinigten Teilstrahlen in einen durch einen Messzweig geführten und an der Oberfläche reflektierten Messstrahl sowie einen durch einen Referenzzweig geführten und darin reflektierten Referenzstrahl aufgeteilt werden und in der der reflektierte Messstrahl mit dem reflektierten Referenzstrahl überlagert wird. Von der Mess-Sonde wird die Strahlung über die Monomodenfaser zurückgeführt und über ein Abzweigstück einer Empfänger- einheit zugeführt. Die Empfängereinheit weist zwar einen flächenhaften Empfänger auf, dieser wird jedoch lediglich zur Auswertung von Strahlung unterschiedlicher Wellenlängen an unterschiedlichen Orten verwendet. Die interferometrische Messeinrichtung kann ein Messobjekt lediglich in einzelnen Messpunkten vermessen. Vorteilhaft an der Anordnung ist, dass die Mess-Sonde sehr klein und robust aufgebaut werden kann. Durch die Ankopplung mittels eines Lichtleiters ist sie flexibel einsetzbar, und das Modulationsinterferometer und die Empfängereinheit können stationär, bei Bedarf in klimatisch geschützter Umgebung, angeordnet sein. Mess-Sonden der beschriebenen Art werden beispielhaft für die Inspektion der Oberfläche von Hohlräumen wie Ventilsitzen verwendet.
In der DE 100 47 495 ist eine flächenhaft messende interferometrische Messeinrichtung beschrieben. In einem Modulationsinterferometer wird zwei Teilstrahlen der Strahlung einer kurzkohärenten Strahlungsquelle ein Wegunterschied aufgeprägt. Dieser Wegunterschied wird in einer Mess-Sonde durch unterschiedliche Weglängen der an einem Messobjekt und der an einem Referenzobjekt reflektierten Strahlung kompensiert, wobei die beiden interferierenden Teilstrahlen von Messobjekt und Referenzobjekt einer flächenhaft messenden Empfängereinheit zugeführt werden. Die Mess- Sonde umfasst in dieser Ausführungsform neben einer dem Messobjekt zugewandten Strahlformungseinheit auch die flächenhaft messende Empfängereinheit. Hierdurch ist die Mess- Sonde weniger kompakt und robust ausführbar als wenn sie lediglich die Strahlformungseinheit umfasst. Eine Kopplung durch eine Lichtleitfaser kann lediglich zwischen der Mess-Sonde und dem Modulationsinterferometer vorgesehen sein.
Es ist Aufgabe der Erfindung, eine interferometrische Messeinrichtung zu schaffen, die flächenhaft messen kann und eine flexible Anordnung einer kompakt und robust aufgebauten Mess-Sonde ermöglicht.
Vorteile der Erfindung
Die Aufgabe der Erfindung wird dadurch gelöst, dass zwischen dem Modulationsinterferometer und der Mess-Sonde eine bildübertragende Lichtleiteranordnung angeordnet ist. Durch diese Anordnung kann ein flächenhafter Bildaufnehmer in einer stationären Auswerteeinheit angeordnet sein und muss nicht in der Mess-Sonde angeordnet sein, wie dies beim Stand der Technik der Fall ist. Der Aufbau der Mess-Sonde kann daher kompakter und robuster als bisher ausgeführt sein.
Ist zwischen dem Modulationsinterferometer und einer ersten Stirnfläche der bildübertragenden Lichtleiteranordnung ein Kollimator vorgesehen, wobei mit dem Kollimator die Strahlung des Modulationsinterferometers über die erste Stirnfläche in die bildübertragende Lichtleiteranordnung einkoppelbar ist, kann eine flächige Ausleuchtung der ersten Stirnfläche erreicht werden, die eine flächenhafte Messung der Form, der Rauheit und/oder des Abstandes des Messobjekts ermöglicht.
Ist zwischen einer zweiten Stirnfläche der bildübertragenden Lichtleiteranordnung und dem Messobjekt ein Objektiv vorgesehen, wobei mit dem Objektiv die aus der zweiten Stirnfläche austretende Strahlung auf das Messobjekt abbildbar ist, kann erreicht werden, dass jede durch eine Endfläche eines Einzel-Lichtleiters der bildübertragenden Lichtleiteranordnung gebildete Strahlungsquelle auf das Messobjekt fokussiert werden kann. Gleichzeitig wird durch die Anordnung erreicht, dass die vom Messobjekt reflektierte Strahlung auf die zweite Stirnfläche abgebildet wird. Insbesondere kann die von der Endfläche des Einzel-Lichtleiters ausgehende und vom Messobjekt reflektierte Strahlung auf den selben Einzel-Lichtleiter abgebildet werden. Die von den Endflächen der Einzel-Lichtleiter gebildeten Einzel- Strahlungsquellen sind dabei transversal nicht kohärent.
Eine besonders einfache und robuste Ausführungsform sieht vor, dass die zweite Stirnfläche der bildübertragenden Lichtleiteranordnung teilreflektierend ausgeführt ist. Die vom Messobjekt reflektierte und vom Objektiv auf die Endfläche eines Einzel-Lichtleiters fokussierte Strahlung kann in dieser Anordnung mit der an der zweiten Stirnfläche erzeugten Referenzwelle interferieren, wenn der im Modulationsinterferometer eingeprägte Gangunterschied dem Lichtweg von der zweiten Stirnfläche zum Messobjekt und zurück entspricht.
Das Interferenzprodukt aus der vom Messobjekt reflektierten Strahlung und der Referenzwelle breitet sich über die bildübertragende Lichtleiteranordnung zurück in Richtung Auswerteeinheit aus. Ist zwischen der ersten Stirnfläche der bildübertragenden Lichtleiteranordnung und einem Bildaufnehmer ein abbildendes optisches Element vorgesehen, wobei mit dem abbildenden optischen Element die aus der ersten Stirnfläche austretende Strahlung auf den Bildaufnehmer abbildbar ist, kann das Interferenzprodukt aus einem jeden Einzel-Lichtleiter auf den flächenhaften Bildaufnehmer abgebildet werden. Hierdurch kann das Messobjekt flächenhaft hinsichtlich seiner Form, der Rauheit und/oder seinem Abstand bestimmt werden.
Ist die bildübertragenden Lichtleiteranordnung aus Monomode-Lichtleitfasern aufgebaut, kann das an der zweiten Stirnfläche der bildübertragenden Lichtleiteranordnung auftretende Interferenzbild besonders gut bis zur ersten Stirnfläche übertragen werden und die Messgenauigkeit der interfero- metrischen Messeinrichtung ist besonders hoch.
Eine Ausführungsform der interferometrischen Messeinrichtung sieht vor, dass die bildübertragende Lichtleiteranordnung zumindest abschnittsweise flexibel ausgeführt ist. Hierdurch kann erreicht werden, dass die Auswerteeinheit mit dem Modulationsintererometer stationär bleiben kann und die Mess-Sonde an die Lage des Messobjekts angepasst werden kann.
Zeichnungen
Die Erfindung wird im Folgenden anhand eines in der Figur dargestellten Ausführungsbeispiels näher erläutert. Es zeigt:
Figur 1 eine flächenhaft messende interferometrische Messeinrichtung
Beschreibung des Ausführungsbeispiels
Figur 1 zeigt eine interferometrische Messeinrichtung mit einer Auswerteeinheit 10 und einer Mess- Sonde 35, die einem Messobjekt 37 zugewendet ist. Die Auswerteeinheit 10 enthält ein Modulations- interferometer 20 in dem die Strahlung einer kurzkohärenten Strahlungsquelle 22 mittels einer Strahlformungslinse 23 einem ersten Strahlteiler 24 zugeführt wird, mittels dessen sie in zwei Teilstrahlen aufgeteilt wird. Ein erster Teilstrahl wird an einem ersten Reflektorelement 25 reflektiert und am ersten Strahlteiler 24 mit einem zweiten Teilstrahl vereinigt, der an einem zweiten Reflektorelement 27 reflektiert wurde. Der zweite Teilstrahl durchläuft ein optisches Element 26, das als Phasenmodulator und/oder Frequenzmodulator ausgeführt sein kann. In einer abweichenden Ausführungsform kann in beiden Teilstrahlen jeweils ein optisches Element 26 angeordnet sein. Der optische Wegunterschied zwischen den beiden Teilstrahlen ist dabei größer als die Kohärenzlänge der Strahlung der kurzkohärenten Strahlungsquelle 22 gewählt. Die vereinigten Teilstrahlen werden mittels eines Kollimators 21 in eine Lichtleitfaser 14 eingekoppelt, die als monomode Lichtleitfaser ausgeführt ist. Die aus der Lichtleitfaser 14 austretende Strahlung wird mittels einer Strahlformungslinse 13 und einem zweiten Strahlteiler 17 einer ersten Stirnfläche 31 einer bildübertragenden Lichtleiteranordnung 30 zugeführt. An einer zweiten Stirnfläche 32 der bildübertragenden Lichtleiteranordnung 30 tritt die Strahlung aus und wird mittels eines in der Mess-Sonde 35 angeordneten Objektivs 34 auf das Messobjekt 37 fokussiert; dies ist als Objektstrahlengang 36 angedeutet. Die vom Messobjekt 37 reflektierte Strahlung wird in umgekehrter Richtung mittels des Objektivs 34 auf die Stirnfläche 31 der bildübertragenden Lichtleiteranordnung 30 fokussiert und interferiert mit an der teilverspiegelt ausgeführten zweiten Stirnfläche 32 reflektierten Strahlung. In einer Frontansicht 33 der zweiten Stirnfläche 32 ist sichtbar, dass die bildübertragende Lichtleiteranordnung 30 aus einer Vielzahl einzelner Lichtleiter besteht, die jeder für sich eine Strahlungsquelle bilden, die mittels des Objektivs 34 auf das Messobjekt abgebildet wird. Dabei sind die einzelnen Strahlungsquellen räumlich transversal nicht kohärent. Der Abstand zwischen der zweiten Stirnfläche 32 und dem Messobjekt 37 ist so gewählt, dass der in dem Modulationsinterferometer 20 eingeprägte optische Wegunterschied gerade kompensiert wird und die vom Messobjekt 37 reflektierte Strahlung mit der an der teilverspiegelten Stirnfläche 31 reflektierten Strahlung zur Interferenz gebracht werden kann. Die Strahlung wird an der dem zweiten Strahlteiler 17 zugewandten ersten Stirnfläche 31 der bildübertragenden Lichtleiteranordnung 30 abgenommen und mittels einer Abbildungslinse 15, wie in einem Abbildungs-Stahlengang 16 angedeutet, auf einen flächigen Bildaufnehmer 11 abgebildet, der mit einer Recheneinheit 12 verbunden ist. Mit der Anordnung kann das Messobjekt 37 an einer Vielzahl von Punkten, die der Anzahl der Lichtleiter in der bildübertragenden Lichtleiteranordnung 30 entspricht, gleichzeitig abgetastet werden. Hierbei erzeugt jedes Lichtleiterende an der bildgebenden Lichtleiteranordnung 30 durch die Teilverspiegelung eine in die bildgebende
Lichtleiteranordnung 30 zurücklaufende Referenzwelle und wirkt gleichzeitig als Punktlichtquelle, die durch das Objektiv auf das Messobjekt abgebildet wird.
Vorteilhaft an der erfindungsgemäßen interferometrischen Messeinrichtung ist, dass die Mess-Sonde 35 sehr kompakt und robust aufgebaut sein kann, da sowohl das Modulationsinterferometer 20 als auch der flächige Bildaufnehmer 11 samt zugehörigen optischen Bauelementen von der Mess-Sonde 35 getrennt in der Auswerteeinheit 10 angeordnet sein können und mit dieser lediglich über eine flexible bildübertragende Lichtleiteranordnung 30 verbunden sind.

Claims

Ansprüche
1. Interferometrische Messeinrichtung zur Messung der Form, der Rauheit und/oder des Abstandes eines Messobjekts (37) mit einem Modulationsinterferometer (20) und einer Mess- Sonde (35), wobei in dem Modulationsinterferometer (20) eine kurzkohärente Strahlungs- quelle (22) sowie ein erstes Reflektorelement (25) und eine zweites Reflektorelement (27) vorgesehen sind, die der Strahlung der kurzkohärenten Strahlungsquelle (20) einen Gangunterschied aufprägen, dadurch gekennzeichnet, dass zwischen dem Modulationsinterferometer (20) und der Mess-Sonde (35) eine bildübertragende Lichtleiteranordnung (30) angeordnet ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass zwischen dem Modulationsinterferometer (20) und einer ersten Stirnfläche (31) der bildübertragenden Lichtleiteranordnung (30) ein Kollimator (13) vorgesehen ist, wobei mit dem Kollimator (13) die Strahlung des Modulationsinterferometers (20) über die erste Stirnfläche (31) in die bildübertragende Lichtleiteranordnung (30) einkoppelbar ist.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zwischen einer zweiten Stirnfläche (32) der bildübertragenden Lichtleiteranordnung (30) und dem Messobjekt (37) ein Objektiv (34) vorgesehen ist, wobei mit dem Objektiv (34) die aus der zweiten Stirnfläche (32) austretende Strahlung auf das Messobjekt (37) abbildbar ist.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die zweite Stirnfläche (32) der bildübertragenden Lichtleiteranordnung (30) teilreflektierend ausgeführt ist.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zwischen der ersten Stirnfläche (31) der bildübertragenden Lichtleiteranordnung (30) und einem Bildaufnehmer (11) ein abbildendes optisches Element vorgesehen ist, wobei mit dem abbildenden optischen Element die aus der ersten Stirnfläche (31) austretende Strahlung auf den Bildaufnehmer (11) abbildbar ist.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die bildübertragenden Lichtleiteranordnung (30) aus Monomode-Lichtleitfasern aufgebaut ist.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die bildübertragenden Lichtleiteranordnung (30) zumindest abschnittsweise flexibel ausgeführt ist.
PCT/EP2008/054153 2007-05-11 2008-04-07 Interferometrische messeinrichtung WO2008138688A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007022217.5 2007-05-11
DE200710022217 DE102007022217A1 (de) 2007-05-11 2007-05-11 Interferometrische Messeinrichtung

Publications (1)

Publication Number Publication Date
WO2008138688A1 true WO2008138688A1 (de) 2008-11-20

Family

ID=39588065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/054153 WO2008138688A1 (de) 2007-05-11 2008-04-07 Interferometrische messeinrichtung

Country Status (2)

Country Link
DE (1) DE102007022217A1 (de)
WO (1) WO2008138688A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111947558A (zh) * 2020-07-21 2020-11-17 湖北坚丰科技股份有限公司 一种轴类零件成品质量检测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022102572A1 (de) 2022-02-03 2023-08-03 Carl Zeiss Microscopy Gmbh Abbildungssystem und Verfahren zum Abbilden und Vermessen eines Objektes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4627731A (en) * 1985-09-03 1986-12-09 United Technologies Corporation Common optical path interferometric gauge
US5555087A (en) * 1993-06-15 1996-09-10 Fuji Photo Film Co., Ltd. Method and apparatus for employing a light source and heterodyne interferometer for obtaining information representing the microstructure of a medium at various depths therein
DE19819762A1 (de) * 1998-05-04 1999-11-25 Bosch Gmbh Robert Interferometrische Meßeinrichtung
DE10047495A1 (de) * 1999-10-09 2001-10-25 Bosch Gmbh Robert Interferometrische Messvorrichtung zur Formvermessung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4627731A (en) * 1985-09-03 1986-12-09 United Technologies Corporation Common optical path interferometric gauge
US5555087A (en) * 1993-06-15 1996-09-10 Fuji Photo Film Co., Ltd. Method and apparatus for employing a light source and heterodyne interferometer for obtaining information representing the microstructure of a medium at various depths therein
DE19819762A1 (de) * 1998-05-04 1999-11-25 Bosch Gmbh Robert Interferometrische Meßeinrichtung
DE10047495A1 (de) * 1999-10-09 2001-10-25 Bosch Gmbh Robert Interferometrische Messvorrichtung zur Formvermessung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111947558A (zh) * 2020-07-21 2020-11-17 湖北坚丰科技股份有限公司 一种轴类零件成品质量检测方法

Also Published As

Publication number Publication date
DE102007022217A1 (de) 2008-11-13

Similar Documents

Publication Publication Date Title
EP1082580B1 (de) Modulationsinterferometer und faseroptisch getrennte messsonde mit lichtleitern
EP0126475B1 (de) Verfahren und Vorrichtung zum berührungsfreien Messen der Ist-Position und/oder des Profils rauher Oberflächen
WO2003073041A1 (de) Niederkohärenz-interferometrisches gerät zur lichtoptischen abtastung eines objektes
DE3334460A1 (de) Mehrkoordinaten-messmaschine
DE19601692A1 (de) Strahlzufuhrvorrichtung und zugehöriges Verfahren für die Interferometrie
EP1311801A1 (de) Interferometrische, kurzkohärente formmessvorrichtung für mehrere flächen ( ventilsitz ) durch mehrere referenzebenen
DE102014216829B4 (de) Vorrichtung und Verfahren zur temperaturkompensierten interferometrischen Abstandsmessung beim Laserbearbeiten von Werkstücken
DE3930554A1 (de) Vorrichtung zur absoluten zweidimensionalen positions-messung
WO2007036442A1 (de) Interferometrische messeinrichtung
DE10337896A1 (de) Interferometrische Messvorrichtung zum Erfassen von Geometriedaten von Oberflächen
DE3916276A1 (de) Verfahren und vorrichtung zur interferometrischen detektion von oberflaechenverschiebungen bei festkoerpern
WO2008138688A1 (de) Interferometrische messeinrichtung
DE102019002942B4 (de) Messvorrichtung und Verfahren zur Durchführung optischer Kohärenztomographie mit einem Kohärenztomographen
DE102019122083A1 (de) Optische ausrichtung basierend auf spektral-gesteuerter interferometrie
DE102006001732A1 (de) Interferometrische Messvorrichtung
DE10325601B3 (de) Schaltbares Punktlichtquellen-Array und dessen Verwendung in der Interferometrie
DE19738900B4 (de) Interferometrische Meßvorrichtung zur Formvermessung an rauhen Oberflächen
DE19548158A1 (de) Vorrichtung zur Messung von Oberflächenschwingungen
DE10317826B4 (de) Verfahren und Vorrichtung zur interferometrischen Messung
DE10123844A1 (de) Interferometrische Messvorrichtung
DE3928488A1 (de) Interferometrisches messsystem
EP3742956B1 (de) Verfahren zur erzeugung eines zweidimensionalen interferogramms mit einem freistrahl-interferometer des michelson-typs
DE4432313C2 (de) Vorrichtung zur Untersuchung von Oberflächentopographien mittels Streifen-Triangulation
DE10331966A1 (de) Optische Meßeinrichtung
DE102010062626A1 (de) Tastsystem zur Erfassung der Form, des Durchmessers und/oder der Rauhigkeit einer Oberfläche

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08735887

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 08735887

Country of ref document: EP

Kind code of ref document: A1