WO2016029875A1 - 一种工件的协同加工方法、系统及协同控制方法、装置 - Google Patents

一种工件的协同加工方法、系统及协同控制方法、装置 Download PDF

Info

Publication number
WO2016029875A1
WO2016029875A1 PCT/CN2015/088375 CN2015088375W WO2016029875A1 WO 2016029875 A1 WO2016029875 A1 WO 2016029875A1 CN 2015088375 W CN2015088375 W CN 2015088375W WO 2016029875 A1 WO2016029875 A1 WO 2016029875A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate system
mechanical unit
workpiece
interpolation point
coordinates
Prior art date
Application number
PCT/CN2015/088375
Other languages
English (en)
French (fr)
Inventor
叶根
Original Assignee
北京配天技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京配天技术有限公司 filed Critical 北京配天技术有限公司
Publication of WO2016029875A1 publication Critical patent/WO2016029875A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
    • G05B19/4103Digital interpolation

Definitions

  • the invention relates to the industrial field, in particular to a method and system for collaborative processing of workpieces and a cooperative control method and device for multiple mechanical units.
  • one robot grabs a workpiece moving along with the conveyor belt; and an arc welding robot moves against a displacement machine.
  • the workpiece is subjected to arc welding, and a spot welding robot performs spot welding on a workpiece that is grabbed by another robot and moves therewith.
  • the common features are: one mechanical unit carries the workpiece to perform a basic motion, and the other mechanical unit superimposes a motion on the basis of the motion of the workpiece.
  • the mechanical unit A carries the workpiece C and takes a circular path 1
  • the mechanical unit B also takes a circular path 2 with respect to the workpiece C.
  • the motion trajectory of the mechanical unit B at this time is a complex trajectory 3 of the circular trajectory 1 and then the circular trajectory 2 is superimposed.
  • the above mechanical unit B generally adopts a control method of synthesizing the movement trajectory of the mechanical unit B relative to the world coordinate system according to the motion trajectory of the mechanical unit A and the motion trajectory of the workpiece coordinate system corresponding to the workpiece C of the mechanical unit B. Further, the motion trajectory of the mechanical unit B relative to the world coordinate system is interpolated to obtain the world coordinates of the interpolation point of the mechanical unit B in the world coordinate system, and the control angle of the mechanical unit B is obtained according to the world coordinates.
  • the inventor of the present application found in the long-term research and development that since the mechanical unit A takes a moving trajectory, the mechanical unit B also moves a moving trajectory with respect to A, and the mechanical unit B moves a complex moving trajectory of unknown geometry with respect to the world coordinate system, so
  • the trajectory of the synthetic mechanical unit B relative to the world coordinate system is difficult and practical, and the trajectory of the mechanical unit B relative to the world coordinate system is complicated.
  • Interpolation to obtain the position of the mechanical unit B at each interpolation time so as to ensure the movement trajectory of the mechanical unit B in the workpiece coordinate system moving with the mechanical unit A, the interpolation difficulty will be correspondingly large, that is, it is difficult to realize the mechanical unit.
  • A, B synchronous control movement.
  • the technical problem to be solved by the present invention is to provide a method, a system and a cooperative control method and device for collaborative processing of workpieces, which can easily realize synchronous control of a plurality of mechanical units to improve processing efficiency and has high practicability.
  • a first aspect of the present invention provides a method for cooperative processing of a workpiece, comprising: interpolating a motion trajectory of the first mechanical unit in an objective coordinate system to obtain a first interpolation point corresponding to the interpolation time And obtaining coordinates of the first interpolation point in the objective coordinate system, wherein the objective coordinate system is a world coordinate system or a coordinate system that is stationary with respect to the world coordinate system; according to the coordinates of the first interpolation point in the objective coordinate system a control angle of the first mechanical unit; obtaining a first workpiece coordinate system according to a control angle of the first mechanical unit, wherein the first workpiece coordinate system uses the first workpiece as a reference object, and the first workpiece is fixed on the first mechanical unit; a motion trajectory of the at least one second mechanical unit in the first workpiece coordinate system, wherein the second mechanical unit moves relative to the first workpiece; interpolating the motion trajectory of the second mechanical unit in the first workpiece coordinate system to obtain interpolation a second interpol
  • a second aspect of the present invention provides a cooperative control method for a multi-mechanical unit, comprising: interpolating a motion trajectory of a first mechanical unit in an objective coordinate system to obtain a first insertion corresponding to an interpolation time Complement the point, and then obtain the coordinates of the first interpolation point in the objective coordinate system, wherein the objective coordinate system is a world coordinate system or a coordinate system that is stationary relative to the world coordinate system; according to the first interpolation point in the objective coordinate system Obtaining a control angle of the first mechanical unit; obtaining a first workpiece coordinate system according to a control angle of the first mechanical unit, wherein the first workpiece coordinate system uses the first workpiece as a reference object, and the first workpiece is fixed on the first mechanical unit Obtaining a motion trajectory of the at least one second mechanical unit in the first workpiece coordinate system, wherein the second mechanical unit moves relative to the first workpiece; and interpolating the motion trajectory of the second mechanical unit in the first workpiece coordinate system to obtain
  • the objective coordinate system is a
  • a third aspect of the present invention provides a collaborative machining system for a workpiece, comprising: a first mechanical unit, at least a second mechanical unit, and a cooperative control device for multiple mechanical units, wherein coordinated control of the multiple mechanical units
  • the device comprises: a motion track interpolation module, configured to interpolate a motion track of the first mechanical unit in the objective coordinate system to obtain a first interpolation point corresponding to the interpolation time, thereby obtaining the first interpolation point in the objective coordinate
  • the coordinate in the system wherein the objective coordinate system is a world coordinate system or a coordinate system that is stationary with respect to the world coordinate system; and a control angle acquisition module is configured to obtain the first mechanical unit according to the coordinates of the first interpolation point in the objective coordinate system.
  • a workpiece coordinate system acquiring module configured to obtain a first workpiece coordinate system according to a control angle of the first mechanical unit, wherein the first workpiece coordinate system uses the first workpiece as a reference object, and the first workpiece is fixed to the first machine
  • a moving track acquiring module configured to acquire a motion track of the at least one second mechanical unit in the first workpiece coordinate system, The second mechanical unit moves relative to the first workpiece
  • the motion trajectory interpolation module is further configured to interpolate the motion trajectory of the second mechanical unit in the first workpiece coordinate system to obtain a second interpolation point corresponding to the interpolation time, And obtaining a workpiece coordinate of the second interpolation point in the first workpiece coordinate system
  • the control angle acquisition module is further configured to obtain a control angle of the second mechanical unit according to the workpiece coordinate of the second interpolation point;
  • the first mechanical unit and the second mechanical unit are cooperatively controlled to process the first workpiece according to the control angle of the first mechanical unit and the control angle of the second mechanical unit
  • a fourth aspect of the present invention provides a cooperative control apparatus for a multi-mechanical unit, comprising: a motion trajectory interpolation module for interpolating a motion trajectory of the first mechanical unit in an objective coordinate system Obtaining a first interpolation point corresponding to the interpolation time, and further obtaining coordinates of the first interpolation point in the objective coordinate system, wherein the objective coordinate system is a world coordinate system or a coordinate system that is stationary with respect to the world coordinate system; a module, configured to obtain a control angle of the first mechanical unit according to coordinates of the first interpolation point in the objective coordinate system; and a workpiece coordinate system acquisition module, configured to obtain the first workpiece coordinate system according to the control angle of the first mechanical unit, wherein The first workpiece coordinate system uses the first workpiece as a reference object, the first workpiece is fixed on the first mechanical unit, and the motion track acquisition module is configured to acquire a motion track of the at least one second mechanical unit in the first workpiece coordinate system.
  • the motion trajectory interpolation module is further configured to transport the second mechanical unit in the first workpiece coordinate system The trajectory is interpolated to obtain a second interpolation point corresponding to the interpolation time, thereby obtaining the workpiece coordinate of the second interpolation point in the first workpiece coordinate system;
  • the control angle acquisition module is further used for the workpiece according to the second interpolation point The coordinate obtains the control angle of the second mechanical unit;
  • the cooperative machining control module is configured to control the first mechanical unit and the second mechanical unit to cooperate according to the control angle of the first mechanical unit and the control angle of the second mechanical unit at the interpolation time A workpiece is processed.
  • a fifth aspect of the present invention provides a cooperative control device for a multi-mechanical unit, including an input device, an output device, a memory, and a processor, wherein the processor is configured to perform the following steps:
  • the motion trajectory in the objective coordinate system is interpolated to obtain the first interpolation point corresponding to the interpolation time, and then the coordinates of the first interpolation point in the objective coordinate system are obtained, wherein the objective coordinate system is a world coordinate system or relative to a coordinate system of the world coordinate system; obtaining a control angle of the first mechanical unit according to coordinates of the first interpolation point in the objective coordinate system; obtaining a first workpiece coordinate system according to a control angle of the first mechanical unit, wherein the first workpiece The first workpiece is fixed on the first mechanical unit; the first workpiece is fixed on the first mechanical unit; the movement track of the at least one second mechanical unit in the first workpiece coordinate system is acquired, wherein the second mechanical unit moves relative to the first workpiece; Interpolating a motion
  • the invention obtains the control angle of the first mechanical unit by interpolating the motion trajectory of the first mechanical unit in the objective coordinate system, and then according to the first mechanical
  • the control angle of the unit obtains a motion coordinate of the first workpiece coordinate system and the second mechanical unit in the first workpiece coordinate system, and further interpolates the motion trajectory of the second mechanical unit in the first workpiece coordinate system, thereby obtaining the second
  • the control angle of the mechanical unit finally controls the first mechanical unit and the second mechanical unit to cooperatively process the first workpiece according to the control angles of the first mechanical unit and the second mechanical unit.
  • the present embodiment does not need to synthesize the motion trajectory of the second mechanical unit with respect to the world coordinate system, but directly interpolates the motion trajectory of the second mechanical unit located in the first workpiece coordinate system, the present invention accordingly obtains the control angle of the second mechanical unit.
  • the complexity is low, and it can be conveniently applied to actual machining, that is, the utility is high; in addition, since the motion trajectory of the second mechanical unit in the first workpiece coordinate system is simpler than the synthesized motion trajectory, the corresponding interpolation difficulty is Smaller, the position of the interpolation point of the first mechanical unit and the second mechanical unit at the same interpolation time can be easily obtained, so that the synchronous control movement of the first mechanical unit and the second mechanical unit can be relatively easily realized to improve the processing. effectiveness.
  • FIG. 1 is a schematic view of a trajectory of processing a workpiece by two mechanical units in the prior art
  • FIG. 2 is a schematic flow chart of a first embodiment of a method for co-processing a workpiece of the present invention
  • FIG. 3 is a schematic flow chart of obtaining a control angle of a second mechanical unit according to workpiece coordinates of a second interpolation point in the first embodiment of the cooperative processing method of the workpiece of the present invention
  • FIG. 4 is a schematic flow chart of a second embodiment of a method for co-processing a workpiece of the present invention.
  • FIG. 6 is a schematic flow chart of an embodiment of a cooperative control method for a multi-mechanical unit according to the present invention.
  • FIG. 7 is a schematic block diagram showing the structure of an embodiment of a collaborative processing system for a workpiece of the present invention.
  • FIG. 8 is a schematic structural view of an embodiment of a cooperative control device for a multi-mechanical unit according to the present invention.
  • a first embodiment of a collaborative processing method for a workpiece of the present invention includes:
  • Step S11 Interpolating the motion trajectory of the first mechanical unit in the objective coordinate system to obtain a first interpolation point corresponding to the interpolation time, thereby obtaining coordinates of the first interpolation point in the objective coordinate system.
  • the motion track of the first mechanical unit in the objective coordinate system is interpolated to obtain a first interpolation point corresponding to the interpolation time t, thereby obtaining coordinates of the first interpolation point in the objective coordinate system.
  • Interpolation is a process of obtaining an interpolation point located in the middle of a known point according to an interpolation algorithm according to some points on the motion trajectory.
  • the interpolation point corresponding to the interpolation time t is the tool center point of the mechanical unit at the interpolation time t. (Tool Center Point, TCP)
  • the position point to which the motion is moved; for example, the start point and the end point of the known motion trajectory, and the interpolation point between the start point and the end point is obtained by interpolation.
  • the mechanical unit is a mechanical component that the controller can control, such as an industrial robot, a positioner, a conveyor belt, and the like.
  • the objective coordinate system may be a world coordinate system, and in other embodiments, the objective coordinate system may also be a coordinate system that is stationary with respect to the world coordinate system.
  • the world coordinate system specifies a coordinate system for the user to be fixed to the earth. The coordinate system does not change during the operation of the mechanical unit.
  • the coordinate system that is stationary relative to the world coordinate system can be specifically a workpiece coordinate system that is stationary relative to the world coordinate system.
  • the workpiece coordinate system is a coordinate system fixed on the workpiece, and the workpiece is used as a reference object. When the workpiece position changes, the workpiece The coordinate system also changes accordingly.
  • Step S12 Obtain a control angle of the first mechanical unit according to coordinates of the first interpolation point in the objective coordinate system.
  • the objective coordinate system may be a world coordinate system
  • the coordinates of the first interpolation point in the objective coordinates may be world coordinates
  • the process of obtaining the control angle of the first mechanical unit in this step is specifically :
  • the first basic coordinate system takes the first mechanical unit as a reference object, and the basic coordinate system is a coordinate system located at the base of the mechanical unit, and the basic coordinate system does not change during the operation of the mechanical unit, and each mechanical unit corresponds to a basic Coordinate System.
  • the control angle of the first mechanical unit is further obtained according to the inverse of the basic coordinates of the first interpolation point.
  • Step S13 Obtain a first workpiece coordinate system according to a control angle of the first mechanical unit.
  • the first workpiece coordinate system is obtained by using the kinematics according to the control angle of the first mechanical unit, wherein the first workpiece coordinate system uses the first workpiece as a reference, and the first workpiece is fixed on the first mechanical unit.
  • the first mechanical unit carries the first workpiece for movement, and the first workpiece coordinate system changes relative to the world coordinate system during the movement.
  • Step S14 Acquire a motion trajectory of the at least one second mechanical unit in the first workpiece coordinate system.
  • Step S15 interpolating the motion track of the second mechanical unit in the first workpiece coordinate system to obtain a second interpolation point corresponding to the interpolation time, thereby obtaining the workpiece of the second interpolation point in the first workpiece coordinate system. coordinate.
  • the second interpolation point corresponding to the same interpolation time t and the workpiece coordinate of the second interpolation point in the first workpiece coordinate system are obtained by interpolating the motion trajectory of the second mechanical unit.
  • the motion trajectory of the first mechanical unit and the motion trajectory of the second mechanical unit are interpolated in the same interpolation cycle, so that the first interpolation point and the second interpolation point corresponding to the same interpolation time are respectively obtained.
  • Step S16 Obtain a control angle of the second mechanical unit according to the workpiece coordinates of the second interpolation point.
  • the step of obtaining the control angle of the second mechanical unit according to the workpiece coordinate of the second interpolation point specifically includes the following sub-steps:
  • Sub-step S161 Transform the workpiece coordinates of the second interpolation point into the world coordinate system.
  • Sub-step S162 Transforming the world coordinates of the second interpolation point into the second base coordinate system of the second mechanical unit.
  • Sub-step S163 Obtain a control angle of the second mechanical unit according to the base coordinates of the second interpolation point.
  • control angle of the second mechanical unit is obtained according to the inverse of the basic coordinates of the second interpolation point.
  • Step S17 Control the first mechanical unit and the second mechanical unit to cooperatively process the first workpiece according to the control angle of the first mechanical unit and the control angle of the second mechanical unit at the interpolation time.
  • the two mechanical units cooperate to process the first workpiece fixed on the first mechanical unit, that is, control the synchronous movement of the first mechanical unit and the second mechanical unit to process the first workpiece.
  • the first mechanical unit may be any one of a mechanical unit such as an industrial robot, a positioner or a conveyor belt, and the second mechanical unit may be an industrial robot.
  • the industrial robot is specifically a 6-axis industrial robot, in other In the embodiment, the industrial robot can also be a series or parallel industrial robot with other axes, and is not limited herein.
  • the control angles of the first mechanical unit and the second mechanical unit specifically include control angles of all axes (joints) of the mechanical unit, for example, when the first mechanical unit is a 6-axis industrial robot, the corresponding control angle includes control of 6 axes. angle.
  • the first embodiment of the cooperative processing method for the workpiece of the present invention is exemplified below: it is assumed that there are two mechanical units, wherein the first mechanical unit A is a positioner, and the second mechanical unit B is an arc welding robot, the flange surface of the A Fixing a workpiece C, the workpiece C is the first workpiece, A carrying the workpiece C moves with reference to the world coordinate system WobjA, the workpiece coordinate system corresponding to the workpiece C is WobjC, WobjC is the first workpiece coordinate system, and A is in the world coordinate system WobjA.
  • the motion trajectory is TrajA
  • B is referenced to the first workpiece coordinate system WobjC
  • the motion trajectory of B in the first workpiece coordinate system WobjC is TrajB.
  • the motion track TrajA of A is interpolated to obtain the first interpolation point At corresponding to the current interpolation time t, and then the coordinate Wa of the first interpolation point At in the world coordinate system is obtained, and then obtained according to the coordinate Wa of At.
  • the current interpolation time t is the control angle Da of the first mechanical unit A; then the first workpiece coordinate system WobjC is obtained inversely according to the control angle Da of A, and the motion trajectory TrajB of the second mechanical unit B in the WobjC is further acquired; The motion trajectory TrajB is interpolated to obtain the second interpolation point Bt corresponding to the current interpolation time t, thereby obtaining the workpiece coordinate Wb of the Bt in the first workpiece coordinate system WobjC; and further obtaining the control angle Db of the B according to the workpiece coordinate Wb. Finally, at the current interpolation time t, A and B cooperate to process the workpiece C according to the control angles Db of the control angles A and B of A.
  • the positioner is controlled to carry the workpiece C for movement, and the arc welding robot is controlled to perform arc welding on the workpiece C, and the displacement action of the positioner and the arc welding action of the arc welding robot are simultaneously performed.
  • the first embodiment of the cooperative processing method of the workpiece of the present invention interpolates the motion trajectory of the first mechanical unit in the objective coordinate system, thereby obtaining the control angle of the first mechanical unit, and then according to the control angle of the first mechanical unit.
  • Obtaining a motion coordinate of the first workpiece coordinate system and the second mechanical unit in the first workpiece coordinate system further interpolating the motion trajectory of the second mechanical unit in the first workpiece coordinate system, thereby obtaining control of the second mechanical unit Angle, finally controlling the first mechanical unit and the second mechanical unit to cooperatively process the first workpiece according to the control angles of the first mechanical unit and the second mechanical unit.
  • the present embodiment does not need to synthesize the motion trajectory of the second mechanical unit with respect to the world coordinate system, but directly interpolates the motion trajectory of the second mechanical unit located in the first workpiece coordinate system, the present invention accordingly obtains the control angle of the second mechanical unit.
  • the complexity is low, and it can be conveniently applied to actual machining, that is, the utility is high; in addition, since the motion trajectory of the second mechanical unit in the first workpiece coordinate system is simpler than the synthesized motion trajectory, the corresponding interpolation difficulty is Smaller, the position of the interpolation point of the first mechanical unit and the second mechanical unit at the same interpolation time can be easily obtained, so that the synchronous control movement of the first mechanical unit and the second mechanical unit can be relatively easily realized to improve the processing. effectiveness.
  • a second embodiment of the method for co-processing workpieces of the present invention includes:
  • Step S21 Interpolating the motion trajectory of the first mechanical unit in the objective coordinate system to obtain a first interpolation point corresponding to the interpolation time, thereby obtaining coordinates of the first interpolation point in the objective coordinate system.
  • the objective coordinate system is a coordinate system that is stationary with respect to the world coordinate system.
  • the coordinate system that is stationary with respect to the world coordinate system is specifically a workpiece coordinate system that is stationary with respect to the world coordinate system.
  • Step S22 Obtain a control angle of the first mechanical unit according to coordinates of the first interpolation point in the objective coordinate system.
  • the coordinate of the first interpolation point in the objective coordinate is specifically the workpiece coordinate
  • the process of obtaining the control angle of the first mechanical unit in this step is specifically:
  • the workpiece coordinates of the first interpolation point in the objective coordinate system are transformed into the world coordinate system according to the coordinate transformation relationship between the workpiece coordinate system and the world coordinate system to obtain the world coordinates corresponding to the workpiece coordinates of the first interpolation point.
  • the first basic coordinate system uses the first mechanical unit as a reference.
  • the control angle of the first mechanical unit is further obtained according to the inverse of the basic coordinates of the first interpolation point.
  • Step S23 Obtain a first workpiece coordinate system according to a control angle of the first mechanical unit.
  • Step S24 Acquire a motion trajectory of the at least one second mechanical unit in the first workpiece coordinate system.
  • Step S25 interpolating the motion trajectory of the second mechanical unit in the first workpiece coordinate system to obtain a second interpolation point corresponding to the interpolation time, thereby obtaining the workpiece of the second interpolation point in the first workpiece coordinate system. coordinate.
  • Step S26 Obtain a control angle of the second mechanical unit according to the workpiece coordinates of the second interpolation point.
  • Step S27 Obtain a second workpiece coordinate system according to a control angle of the second mechanical unit.
  • the second workpiece coordinate system is obtained by using the kinematics according to the control angle of the second mechanical unit, wherein the second workpiece coordinate system is referenced by the second workpiece and the second workpiece is fixed to the second mechanical unit.
  • Step S28 Acquire a motion trajectory of the at least one third mechanical unit in the second workpiece coordinate system.
  • Step S29 interpolating the motion track of the third mechanical unit in the second workpiece coordinate system to obtain a third interpolation point corresponding to the interpolation time, thereby obtaining the workpiece of the third interpolation point in the second workpiece coordinate system. coordinate.
  • Step S210 Obtain a control angle of the third mechanical unit according to the workpiece coordinate of the third interpolation point.
  • Step S211 Control the first mechanical unit, the second mechanical unit, and the third mechanical unit to cooperate with each other according to the control angle of the first mechanical unit, the control angle of the second mechanical unit, and the control angle of the third mechanical unit at the interpolation time.
  • the workpiece and the second workpiece are processed.
  • the first mechanical unit and the second mechanical unit cooperate to process the first workpiece according to the control angle of the first mechanical unit and the control angle of the second mechanical unit at the interpolation time, according to the second mechanical unit.
  • the control angle, the control angle of the third mechanical unit controls the second mechanical unit and the third mechanical unit to cooperate to process the second workpiece.
  • the third mechanical unit is specifically any one of a mechanical unit such as an industrial robot, a positioner or a conveyor belt; the control angle of the mechanical unit includes a control angle of all the axes of the mechanical unit.
  • Cooperative processing method of workpiece of the present invention Second embodiment
  • the motion dependency tree corresponding to each mechanical unit is shown in FIG. 5.
  • the first mechanical unit located in the first layer of the relationship tree is moved with reference to an objective coordinate system, and is located in the relationship tree.
  • At least one second mechanical unit of the second layer moves with reference to the first workpiece coordinate system carried by the first mechanical unit
  • at least one third mechanical unit located at the third layer of the relationship tree refers to the second workpiece coordinate system carried by the second mechanical unit motion.
  • the relationship tree may further include at least a fourth mechanical unit or the like, and the fourth mechanical unit moves with reference to the workpiece coordinate system carried by the third mechanical unit. There is a linkage relationship between the mechanical units located on the same tree.
  • the motion trajectory When the motion trajectory is interpolated, the breadth-first traversal is performed on the relationship tree. In the same interpolation period, the mechanical units are arranged in the order from the upper layer to the lower layer. The motion trajectory is interpolated to obtain the respective interpolation points corresponding to the same interpolation time.
  • an embodiment of a cooperative control method for a multi-mechanical unit according to the present invention includes:
  • Step S31 Interpolating the motion trajectory of the first mechanical unit in the objective coordinate system to obtain a first interpolation point corresponding to the interpolation time, thereby obtaining coordinates of the first interpolation point in the objective coordinate system.
  • the objective coordinate system is a world coordinate system or a coordinate system that is stationary relative to the world coordinate system.
  • Step S32 Obtain a control angle of the first mechanical unit according to coordinates of the first interpolation point in the objective coordinate system.
  • Step S33 Obtain a first workpiece coordinate system according to a control angle of the first mechanical unit.
  • the first workpiece coordinate system uses the first workpiece as a reference, and the first workpiece is fixed on the first mechanical unit.
  • Step S34 Acquire a motion trajectory of the at least one second mechanical unit in the first workpiece coordinate system.
  • Step S35 interpolating the motion trajectory of the second mechanical unit in the first workpiece coordinate system to obtain a second interpolation point corresponding to the interpolation time, thereby obtaining the workpiece of the second interpolation point in the first workpiece coordinate system. coordinate.
  • Step S36 Obtain a control angle of the second mechanical unit according to the workpiece coordinates of the second interpolation point.
  • an embodiment of a collaborative processing system for a workpiece of the present invention includes:
  • the multi-mechanical unit cooperative control device 43 specifically includes a motion track interpolation module, a control angle acquisition module, a workpiece coordinate system acquisition module, a motion track acquisition module, and a cooperative processing control module. The specific functions of each module are as follows:
  • the motion path interpolation module is configured to interpolate the motion track of the first mechanical unit in the objective coordinate system to obtain a first interpolation point corresponding to the interpolation time, thereby obtaining the first interpolation point in the objective coordinate system.
  • Coordinates where the objective coordinate system is a world coordinate system or a coordinate system that is stationary relative to the world coordinate system.
  • a control angle obtaining module configured to obtain a control angle of the first mechanical unit according to coordinates of the first interpolation point obtained by the motion path interpolation module in the objective coordinate system.
  • a workpiece coordinate system acquiring module configured to obtain a first workpiece coordinate system according to a control angle of the first mechanical unit obtained by the control angle acquiring module, wherein the first workpiece coordinate system uses the first workpiece as a reference object, and the first workpiece is fixed to the first workpiece On the first mechanical unit.
  • the motion trajectory acquisition module is configured to acquire a motion trajectory of the at least one second mechanical unit in the first workpiece coordinate system obtained by the workpiece coordinate system acquisition module, wherein the second mechanical unit moves relative to the first workpiece.
  • the motion path interpolation module is further configured to interpolate the motion track of the second mechanical unit in the first workpiece coordinate system to obtain a second interpolation point corresponding to the interpolation time, thereby obtaining the second interpolation point in the first workpiece.
  • the coordinates of the workpiece in the coordinate system are further configured to interpolate the motion track of the second mechanical unit in the first workpiece coordinate system to obtain a second interpolation point corresponding to the interpolation time, thereby obtaining the second interpolation point in the first workpiece.
  • the control angle acquisition module is further configured to obtain a control angle of the second mechanical unit according to the workpiece coordinate of the second interpolation point.
  • a cooperative machining control module configured to control the first mechanical unit and the second mechanical unit to cooperatively perform the first workpiece according to the control angle of the first mechanical unit obtained by the control angle acquisition module and the control angle of the second mechanical unit at the interpolation time machining.
  • the collaborative processing system of the workpiece of the embodiment includes a motion trajectory interpolation module, a control angle acquisition module, a workpiece coordinate system acquisition module, a motion trajectory acquisition module, and a cooperative processing control module.
  • the motion path interpolation module is configured to interpolate the motion track of the first mechanical unit in the objective coordinate system to obtain the first interpolation point corresponding to the interpolation time, thereby obtaining the coordinates of the first interpolation point in the objective coordinate system.
  • the control angle acquisition module is configured to obtain a control angle of the first mechanical unit according to coordinates of the first interpolation point in the objective coordinate system. Specifically, the workpiece coordinate of the first interpolation point in the objective coordinate system is transformed into the world coordinate system according to the coordinate transformation relationship between the workpiece coordinate system and the world coordinate system, to obtain the workpiece coordinate corresponding to the first interpolation point. World coordinates. Then, the control angle acquisition module is further configured to transform the world coordinates of the first interpolation point in the objective coordinate system into the first basic coordinate system of the first mechanical unit according to the coordinate transformation relationship between the world coordinate system and the basic coordinate system. To obtain the base coordinates corresponding to the world coordinates of the first interpolation point. The first basic coordinate system uses the first mechanical unit as a reference. After obtaining the basic coordinates of the first interpolation point in the first basic coordinate system, the control angle acquisition module further obtains the control angle of the first mechanical unit according to the inverse of the basic coordinates of the first interpolation point.
  • the workpiece coordinate system acquisition module is configured to obtain a first workpiece coordinate system according to a control angle of the first mechanical unit.
  • the motion trajectory acquisition module is configured to acquire a motion trajectory of the at least one second mechanical unit in the first workpiece coordinate system.
  • the motion track of the second mechanical unit in the first workpiece coordinate system is interpolated to obtain a second interpolation point corresponding to the interpolation time, thereby obtaining the workpiece coordinate of the second interpolation point in the first workpiece coordinate system.
  • the motion path interpolation module interpolation module is further configured to obtain a second workpiece coordinate system according to a control angle of the second mechanical unit.
  • the motion trajectory acquisition module is further configured to acquire a motion trajectory of the at least one third mechanical unit in the second workpiece coordinate system. Wherein the third mechanical unit moves relative to the second workpiece.
  • the motion path interpolation module interpolates the motion track of the third mechanical unit in the second workpiece coordinate system to obtain a third interpolation point corresponding to the interpolation time, thereby obtaining the third interpolation point in the second workpiece coordinate system.
  • Workpiece coordinates
  • the control angle acquisition module obtains the control angle of the third mechanical unit according to the workpiece coordinates of the third interpolation point.
  • the cooperative machining control module controls the first mechanical unit, the second mechanical unit, and the third mechanical unit to cooperate with each other according to a control angle of the first mechanical unit, a control angle of the second mechanical unit, and a control angle of the third mechanical unit at the interpolation time.
  • a workpiece and a second workpiece are processed. That is, while the first mechanical unit and the second mechanical unit cooperate to process the first workpiece according to the control angle of the first mechanical unit and the control angle of the second mechanical unit at the interpolation time, according to the control angle of the second mechanical unit
  • the control angle of the third mechanical unit controls the second mechanical unit and the third mechanical unit to cooperate to process the second workpiece.
  • the third mechanical unit is specifically any one of a mechanical unit such as an industrial robot, a positioner or a conveyor belt; the control angle of the mechanical unit includes a control angle of all the axes of the mechanical unit.
  • the present embodiment provides a multi-mechanical unit cooperative control system, including a motion track interpolation module, a control angle acquisition module, a workpiece coordinate system acquisition module, a motion track acquisition module, and a coordinated processing control module.
  • the motion path interpolation module is configured to interpolate the motion track of the first mechanical unit in the objective coordinate system to obtain the first interpolation point corresponding to the interpolation time, thereby obtaining the coordinates of the first interpolation point in the objective coordinate system.
  • the objective coordinate system is a world coordinate system or a coordinate system that is stationary relative to the world coordinate system.
  • the control angle acquisition module is configured to obtain a control angle of the first mechanical unit according to coordinates of the first interpolation point in the objective coordinate system.
  • the workpiece coordinate system acquisition module is configured to obtain a first workpiece coordinate system according to a control angle of the first mechanical unit.
  • the first workpiece coordinate system uses the first workpiece as a reference, and the first workpiece is fixed on the first mechanical unit.
  • the motion trajectory acquisition module is configured to acquire a motion trajectory of the at least one second mechanical unit in the first workpiece coordinate system. Wherein the second mechanical unit moves relative to the first workpiece.
  • the motion path interpolation module is configured to interpolate the motion track of the second mechanical unit in the first workpiece coordinate system to obtain a second interpolation point corresponding to the interpolation time, thereby obtaining the second interpolation point at the first workpiece coordinate The coordinates of the workpiece in the system.
  • the control angle acquisition module is further configured to obtain a control angle of the second mechanical unit according to the workpiece coordinate of the second interpolation point.
  • an embodiment of a collaborative processing apparatus for a workpiece of the present invention includes an input device 801, an output device 802, a memory 803, and a processor 804 (the processor may include one or more, one of which is exemplified in FIG. 8).
  • the input device 801, the output device 802, the memory 803, and the processor 804 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • the processor 804 performs the following steps:
  • S81 interpolating a motion trajectory of the first mechanical unit in the objective coordinate system to obtain a first interpolation point corresponding to the interpolation time, and further obtaining coordinates of the first interpolation point in the objective coordinate system,
  • the objective coordinate system is a world coordinate system or a coordinate system that is stationary relative to the world coordinate system;
  • S84 Acquire a motion track of the at least one second mechanical unit in the first workpiece coordinate system, wherein the second mechanical unit moves relative to the first workpiece;

Abstract

一种工件的协同加工方法,包括:对第一机械单元(A)在客观坐标系中的运动轨迹进行插补以获得第一插补点(S11),从而获得第一机械单元的控制角度(S12)以及第一工件坐标系(S13);对第二机械单元(B)在第一工件坐标系中的运动轨迹(S14)进行插补以获得插补时刻对应的第二插补点,进而获得第二插补点在第一工件坐标系中的工件坐标(S15);根据第二插补点的工件坐标获得第二机械单元的控制角度(S16);在插补时刻根据第一机械单元的控制角度以及第二机械单元的控制角度控制第一机械单元、第二机械单元协同对第一工件进行加工(S17)。还公开一种工件的协同加工系统、多机械单元的协同控制方法及其装置。本方法能够较易地实现多个机械单元的同步控制以提高加工效率,且实用性较高。

Description

一种工件的协同加工方法、系统及协同控制方法、装置
【技术领域】
本发明涉及工业领域,特别是涉及一种工件的协同加工方法、系统及多机械单元的协同控制方法、装置。
【背景技术】
在工业机器人等机械单元的控制中,常常需要多个机械单元协同配合完成一个作业任务,例如:一个机器人抓取一个随着传送带运动的工件;一个弧焊机器人对一个随着变位机运动的工件进行弧焊作业,一个点焊机器人对被另一个机器人抓取并随之运动的工件进行点焊作业等等。在上述多个机械单元的应用场景中,其具有的共同特点为:一个机械单元携带工件做一个基本运动,另外一个机械单元则在工件运动的基础上再叠加一个运动。例如图1,机械单元A携带工件C走一条圆弧轨迹1,而机械单元B则相对于工件C也走一条圆弧轨迹2,当机械单元A、B同时运动时,相对于世界坐标系而言,机械单元B此时的运动轨迹为圆弧轨迹1再叠加圆弧轨迹2的复杂轨迹3。
现有技术中对于上述机械单元B通常采用如下的控制方法:根据机械单元A的运动轨迹以及机械单元B相对工件C对应的工件坐标系的运动轨迹而合成机械单元B相对世界坐标系的运动轨迹,进一步对机械单元B相对世界坐标系的运动轨迹进行插补,以得到机械单元B的插补点在世界坐标系中的世界坐标,进而根据世界坐标得到机械单元B的控制角度。
本申请发明人在长期研发中发现,由于机械单元A走一条运动轨迹,机械单元B也相对A走一条运动轨迹,机械单元B相对世界坐标系将走一条未知几何形状的复杂运动轨迹,因此现有技术中合成机械单元B相对世界坐标系的运动轨迹难度较大,实用性较低;此外由于机械单元B相对世界坐标系的运动轨迹较复杂,如果相对世界坐标系对该合成的运动轨迹进行插补而得到机械单元B在每一个插补时刻的位置,从而保证机械单元B在随机械单元A运动的工件坐标系中的运动轨迹,则插补难度会相应较大,即难以实现机械单元A、B的同步控制运动。
【发明内容】
本发明主要解决的技术问题是提供一种工件的协同加工方法、系统及协同控制方法、装置,能够较易地实现多个机械单元的同步控制以提高加工效率,且实用性较高。
为解决上述技术问题,本发明第一方面提供一种工件的协同加工方法,包括:对第一机械单元在客观坐标系中的运动轨迹进行插补以获得插补时刻对应的第一插补点,进而获得第一插补点在客观坐标系中的坐标,其中,客观坐标系为世界坐标系或相对于世界坐标系静止的坐标系;根据第一插补点在客观坐标系中的坐标获得第一机械单元的控制角度;根据第一机械单元的控制角度获得第一工件坐标系,其中,第一工件坐标系以第一工件为参照物,第一工件固定于第一机械单元上;获取至少一第二机械单元在第一工件坐标系中的运动轨迹,其中第二机械单元相对第一工件运动;对第二机械单元在第一工件坐标系中的运动轨迹进行插补以获得插补时刻对应的第二插补点,进而获得第二插补点在第一工件坐标系中的工件坐标;根据第二插补点的工件坐标获得第二机械单元的控制角度;在插补时刻根据第一机械单元的控制角度以及第二机械单元的控制角度控制第一机械单元、第二机械单元协同对第一工件进行加工。
为解决上述技术问题,本发明第二方面提供一种多机械单元的协同控制方法,包括:对第一机械单元在客观坐标系中的运动轨迹进行插补以获得插补时刻对应的第一插补点,进而获得第一插补点在客观坐标系中的坐标,其中,客观坐标系为世界坐标系或相对于世界坐标系静止的坐标系;根据第一插补点在客观坐标系中的坐标获得第一机械单元的控制角度;根据第一机械单元的控制角度获得第一工件坐标系,其中,第一工件坐标系以第一工件为参照物,第一工件固定于第一机械单元上;获取至少一第二机械单元在第一工件坐标系中的运动轨迹,其中第二机械单元相对第一工件运动;对第二机械单元在第一工件坐标系中的运动轨迹进行插补以获得插补时刻对应的第二插补点,进而获得第二插补点在第一工件坐标系中的工件坐标;根据第二插补点的工件坐标获得第二机械单元的控制角度。
为解决上述技术问题,本发明第三方面提供一种工件的协同加工加工系统,包括:第一机械单元、至少一第二机械单元以及多机械单元的协同控制装置,其中多机械单元的协同控制装置包括:运动轨迹插补模块,用于对第一机械单元在客观坐标系中的运动轨迹进行插补以获得插补时刻对应的第一插补点,进而获得第一插补点在客观坐标系中的坐标,其中,客观坐标系为世界坐标系或相对于世界坐标系静止的坐标系;控制角度获取模块,用于根据第一插补点在客观坐标系中的坐标获得第一机械单元的控制角度;工件坐标系获取模块,用于根据第一机械单元的控制角度获得第一工件坐标系,其中,第一工件坐标系以第一工件为参照物,第一工件固定于第一机械单元上;运动轨迹获取模块,用于获取至少一第二机械单元在第一工件坐标系中的运动轨迹,其中第二机械单元相对第一工件运动;运动轨迹插补模块还用于对第二机械单元在第一工件坐标系中的运动轨迹进行插补以获得插补时刻对应的第二插补点,进而获得第二插补点在第一工件坐标系中的工件坐标;控制角度获取模块还用于根据第二插补点的工件坐标获得第二机械单元的控制角度;协同加工加工控制模块,用于在插补时刻根据第一机械单元的控制角度以及第二机械单元的控制角度控制第一机械单元、第二机械单元协同对第一工件进行加工加工。
为解决上述技术问题,本发明第四方面:提供一种多机械单元的协同控制装置,包括:运动轨迹插补模块,用于对第一机械单元在客观坐标系中的运动轨迹进行插补以获得插补时刻对应的第一插补点,进而获得第一插补点在客观坐标系中的坐标,其中,客观坐标系为世界坐标系或相对于世界坐标系静止的坐标系;控制角度获取模块,用于根据第一插补点在客观坐标系中的坐标获得第一机械单元的控制角度;工件坐标系获取模块,用于根据第一机械单元的控制角度获得第一工件坐标系,其中,第一工件坐标系以第一工件为参照物,第一工件固定于第一机械单元上;运动轨迹获取模块,用于获取至少一第二机械单元在第一工件坐标系中的运动轨迹,其中第二机械单元相对第一工件运动;运动轨迹插补模块还用于对第二机械单元在第一工件坐标系中的运动轨迹进行插补以获得插补时刻对应的第二插补点,进而获得第二插补点在第一工件坐标系中的工件坐标;控制角度获取模块还用于根据第二插补点的工件坐标获得第二机械单元的控制角度;协同加工控制模块,用于在插补时刻根据第一机械单元的控制角度以及第二机械单元的控制角度控制第一机械单元、第二机械单元协同对第一工件进行加工。
为解决上述技术问题,本发明第五方面:提供一种多机械单元的协同控制设备,包括输入装置、输出装置、存储器及处理器,其中,处理器用于执行如下步骤:对第一机械单元在客观坐标系中的运动轨迹进行插补以获得插补时刻对应的第一插补点,进而获得第一插补点在客观坐标系中的坐标,其中,客观坐标系为世界坐标系或相对于世界坐标系静止的坐标系;根据第一插补点在客观坐标系中的坐标获得第一机械单元的控制角度;根据第一机械单元的控制角度获得第一工件坐标系,其中,第一工件坐标系以第一工件为参照物,第一工件固定于第一机械单元上;获取至少一第二机械单元在第一工件坐标系中的运动轨迹,其中第二机械单元相对第一工件运动;对第二机械单元在第一工件坐标系中的运动轨迹进行插补以获得插补时刻对应的第二插补点,进而获得第二插补点在第一工件坐标系中的工件坐标;根据第二插补点的工件坐标获得第二机械单元的控制角度。
本发明的有益效果是:区别于现有技术的情况,本发明通过对第一机械单元在客观坐标系中的运动轨迹进行插补,从而获得第一机械单元的控制角度,然后根据第一机械单元的控制角度获得第一工件坐标系以及第二机械单元在第一工件坐标系中的运动轨迹,进一步对第二机械单元在第一工件坐标系中的运动轨迹进行插补,从而获得第二机械单元的控制角度,最后根据第一机械单元、第二机械单元的控制角度控制第一机械单元、第二机械单元协同对第一工件进行加工。由于本实施方式无需相对世界坐标系合成第二机械单元的运动轨迹而是直接对第二机械单元位于第一工件坐标系的运动轨迹进行插补,本发明相应获得第二机械单元的控制角度的复杂度较低,能够方便应用于实际加工中即实用性较高;此外,由于对第二机械单元位于第一工件坐标系中的运动轨迹相比合成的运动轨迹较简单,对应的插补难度较小,能够较易地获得第一机械单元、第二机械单元在同一插补时刻的插补点位置,因此能够比较容易地实现第一机械单元、第二机械单元的同步控制运动从而提高加工效率。
【附图说明】
图1是现有技术中两个机械单元对工件进行加工的轨迹示意图;
图2是本发明工件的协同加工方法第一实施方式的流程示意图;
图3是本发明工件的协同加工方法第一实施方式中根据第二插补点的工件坐标获得第二机械单元的控制角度的流程示意图;
图4是本发明工件的协同加工方法第二实施方式的流程示意图;
图5是本发明工件的协同加工方法第二实施方式中各个机械单元对应的运动依赖关系图;
图6是本发明多机械单元的协同控制方法一实施方式的流程示意图;
图7是本发明工件的协同加工系统一实施方式的结构示意框图;
图8是本发明多机械单元的协同控制设备一实施方式的结构示意图。
【具体实施方式】
请参阅图2,本发明工件的协同加工方法第一实施方式包括:
步骤S11:对第一机械单元在客观坐标系中的运动轨迹进行插补以获得插补时刻对应的第一插补点,进而获得第一插补点在客观坐标系中的坐标。
对第一机械单元在客观坐标系中的运动轨迹进行插补以获得插补时刻t对应的第一插补点,进而获得第一插补点在客观坐标系中的坐标。插补为根据运动轨迹上某些点,按照插补算法获得位于已知点中间的插补点的过程,插补时刻t对应的插补点即为在插补时刻t机械单元的工具中心点(Tool Center Point,TCP)所运动到的位置点;例如已知运动轨迹的起点与终点,通过插补而获得起点与终点中间的插补点。机械单元为控制器能够控制的一个机械部件,例如为工业机器人、变位机、传送带等。
本实施方式中上述客观坐标系可以为世界坐标系,在其他实施方式中客观坐标系也可为相对于世界坐标系静止的坐标系。世界坐标系为用户指定与大地固连的一个坐标系,在机械单元操作过程中该坐标系不发生变化。相对于世界坐标系静止的坐标系可以具体为一相对世界坐标系静止的工件坐标系,工件坐标系为固定在工件上的坐标系,其以工件为参照物,当工件位置发生变化时,工件坐标系也相应变化。
步骤S12:根据第一插补点在客观坐标系中的坐标获得第一机械单元的控制角度。
举例来说,本实施方式中客观坐标系可以为世界坐标系,对应地第一插补点在客观坐标中的坐标具体可以为世界坐标,本步骤获得第一机械单元的控制角度的过程具体为:
根据世界坐标系与基础坐标系之间的坐标变换关系将第一插补点在客观坐标系中的世界坐标变换到第一机械单元的第一基础坐标系中,以获得第一插补点的世界坐标对应的基础坐标。其中,第一基础坐标系以第一机械单元为参照物,基础坐标系为位于机械单元基座的坐标系,在机械单元的操作过程中基础坐标系不发生变化,每个机械单元对应一基础坐标系。
在获得第一插补点在第一基础坐标系中的基础坐标后,进一步根据第一插补点的基础坐标逆解获得第一机械单元的控制角度。
步骤S13:根据第一机械单元的控制角度获得第一工件坐标系。
根据第一机械单元的控制角度利用正运动学获得第一工件坐标系,其中,第一工件坐标系以第一工件为参照物,第一工件固定于第一机械单元上。在工件的加工过程中,第一机械单元携带第一工件进行运动,第一工件坐标系在运动过程中相对世界坐标系为变化的。
步骤S14:获取至少一第二机械单元在第一工件坐标系中的运动轨迹。
根据工件加工的起点位置、终点位置等工件加工要求获取至少一第二机械单元在第一工件坐标系中的运动轨迹,第二机械单元相对第一工件运动以对第一工件进行相应的加工加工。
步骤S15:对第二机械单元在第一工件坐标系中的运动轨迹进行插补以获得插补时刻对应的第二插补点,进而获得第二插补点在第一工件坐标系中的工件坐标。
本步骤通过对第二机械单元的运动轨迹进行插补而获得同一插补时刻t对应的第二插补点以及该第二插补点在第一工件坐标系中的工件坐标。本发明为在同一插补周期内对第一机械单元的运动轨迹、第二机械单元的运动轨迹进行插补,从而分别获得同一插补时刻对应的第一插补点以及第二插补点。
步骤S16:根据第二插补点的工件坐标获得第二机械单元的控制角度。
请参阅图3,本步骤根据第二插补点的工件坐标获得第二机械单元的控制角度具体包括以下子步骤:
子步骤S161:将第二插补点的工件坐标变换到世界坐标系中。
根据工件坐标系与世界坐标系之间的坐标变换关系将第二插补点在第一工件坐标系中的工件坐标变换到世界坐标系中,以获得第二插补点的工件坐标对应的世界坐标。
子步骤S162:将第二插补点的世界坐标变换到第二机械单元的第二基础坐标系中。
进一步根据世界坐标系与基础坐标系之间的坐标变换关系将第二插补点的世界坐标变换到第二机械单元的第二基础坐标系中,以获得第二插补点的世界坐标对应的基础坐标,其中第二基础坐标以第二机械单元为参照物。
子步骤S163:根据第二插补点的基础坐标获得第二机械单元的控制角度。
最后根据第二插补点的基础坐标逆解获得第二机械单元的控制角度。
步骤S17:在插补时刻根据第一机械单元的控制角度、第二机械单元的控制角度控制第一机械单元、第二机械单元协同对第一工件进行加工。
在获得第一机械单元、至少一第二机械单元的控制角度后,在插补时刻t根据第一机械单元的控制角度、至少一第二机械单元的控制角度控制第一机械单元、至少一第二机械单元协同对固定于第一机械单元上的第一工件进行加工,即控制第一机械单元、第二机械单元同步运动以对第一工件进行加工。其中,第一机械单元具体可以为工业机器人、变位机或者传送带等机械单元中的任意一种,第二机械单元可以为工业机器人,本实施方式中工业机器人具体为6轴工业机器人,在其他实施方式中工业机器人也可为其他轴数的串联或并联工业机器人,此处不作过多限制。第一机械单元、第二机械单元的控制角度具体包括该机械单元所有轴(关节)的控制角度,例如当第一机械单元为6轴工业机器人时,其对应的控制角度包括6个轴的控制角度。
下面对本发明工件的协同加工方法第一实施方式进行举例说明:假设有两个机械单元,其中第一机械单元A为变位机,第二机械单元B为弧焊机器人,A的法兰面上固定一工件C,工件C即为第一工件,A携带工件C参考世界坐标系WobjA运动,工件C对应的工件坐标系为WobjC,WobjC即为第一工件坐标系,A在世界坐标系WobjA中的运动轨迹为TrajA,B参考第一工件坐标系WobjC运动,B在第一工件坐标系WobjC中的运动轨迹为TrajB。
首先对A的运动轨迹TrajA进行插补以获得当前插补时刻t对应的第一插补点At,进而获得第一插补点At在世界坐标系中的坐标Wa,进而根据At的坐标Wa获得当前插补时刻t第一机械单元A的控制角度Da;然后根据A的控制角度Da逆解得到第一工件坐标系WobjC,进一步获取第二机械单元B在WobjC中的运动轨迹TrajB;接着对B的运动轨迹TrajB进行插补以获得当前插补时刻t对应的第二插补点Bt,进而获得Bt在第一工件坐标系WobjC中的工件坐标Wb;进一步根据工件坐标Wb获得B的控制角度Db;最后在当前插补时刻t根据A的控制角度Da、B的控制角度Db控制A、B协同对工件C进行加工。即在t时刻控制变位机携带工件C进行运动的同时,控制弧焊机器人对工件C进行弧焊加工,变位机的变位动作和弧焊机器人的弧焊动作同时进行。
可以理解,本发明工件的协同加工方法第一实施方式对第一机械单元在客观坐标系中的运动轨迹进行插补,从而获得第一机械单元的控制角度,然后根据第一机械单元的控制角度获得第一工件坐标系以及第二机械单元在第一工件坐标系中的运动轨迹,进一步对第二机械单元在第一工件坐标系中的运动轨迹进行插补,从而获得第二机械单元的控制角度,最后根据第一机械单元、第二机械单元的控制角度控制第一机械单元、第二机械单元协同对第一工件进行加工。由于本实施方式无需相对世界坐标系合成第二机械单元的运动轨迹而是直接对第二机械单元位于第一工件坐标系的运动轨迹进行插补,本发明相应获得第二机械单元的控制角度的复杂度较低,能够方便应用于实际加工中即实用性较高;此外,由于对第二机械单元位于第一工件坐标系中的运动轨迹相比合成的运动轨迹较简单,对应的插补难度较小,能够较易地获得第一机械单元、第二机械单元在同一插补时刻的插补点位置,因此能够比较容易地实现第一机械单元、第二机械单元的同步控制运动从而提高加工效率。
请参阅图4,本发明工件的协同加工方法第二实施方式包括:
步骤S21:对第一机械单元在客观坐标系中的运动轨迹进行插补以获得插补时刻对应的第一插补点,进而获得第一插补点在客观坐标系中的坐标。
本实施方式中客观坐标系为相对于世界坐标系静止的坐标系,进一步地,相对于世界坐标系静止的坐标系具体为一相对世界坐标系静止的工件坐标系。
步骤S22:根据第一插补点在客观坐标系中的坐标获得第一机械单元的控制角度。
本实施方式中第一插补点在客观坐标中的坐标具体为工件坐标,本步骤获得第一机械单元的控制角度的过程具体为:
根据工件坐标系与世界坐标系之间的坐标变换关系将第一插补点在客观坐标系中的工件坐标变换到世界坐标系中,以获得第一插补点的工件坐标对应的世界坐标。
根据世界坐标系与基础坐标系之间的坐标变换关系将第一插补点在客观坐标系中的世界坐标变换到第一机械单元的第一基础坐标系中,以获得第一插补点的世界坐标对应的基础坐标。其中,第一基础坐标系以第一机械单元为参照物。
在获得第一插补点在第一基础坐标系中的基础坐标后,进一步根据第一插补点的基础坐标逆解获得第一机械单元的控制角度。
步骤S23:根据第一机械单元的控制角度获得第一工件坐标系。
步骤S24:获取至少一第二机械单元在第一工件坐标系中的运动轨迹。
步骤S25:对第二机械单元在第一工件坐标系中的运动轨迹进行插补以获得插补时刻对应的第二插补点,进而获得第二插补点在第一工件坐标系中的工件坐标。
步骤S26:根据第二插补点的工件坐标获得第二机械单元的控制角度。
步骤S27:根据第二机械单元的控制角度获得第二工件坐标系。
根据第二机械单元的控制角度利用正运动学获得第二工件坐标系,其中第二工件坐标系以第二工件为参照物,第二工件固定于第二机械单元上。
步骤S28:获取至少一第三机械单元在第二工件坐标系中的运动轨迹。
其中,第三机械单元相对第二工件运动。
步骤S29:对第三机械单元在第二工件坐标系中的运动轨迹进行插补以获得插补时刻对应的第三插补点,进而获得第三插补点在第二工件坐标系中的工件坐标。
步骤S210:根据第三插补点的工件坐标获得第三机械单元的控制角度。
步骤S211:在插补时刻根据第一机械单元的控制角度、第二机械单元的控制角度以及第三机械单元的控制角度控制第一机械单元、第二机械单元以及第三机械单元协同对第一工件、第二工件进行加工。
本步骤即为在插补时刻根据第一机械单元的控制角度、第二机械单元的控制角度控制第一机械单元、第二机械单元协同对第一工件进行加工的同时,根据第二机械单元的控制角度、第三机械单元的控制角度控制第二机械单元、第三机械单元协同对第二工件进行加工。其中,第三机械单元具体为工业机器人、变位机或者传送带等机械单元中的任意一种;机械单元的控制角度包括机械单元所有轴的控制角度。
本发明工件的协同加工方法第二实施方式各个机械单元对应的运动依赖关系树如图5所示,位于该关系树的第一层的第一机械单元参考一客观坐标系运动,位于该关系树第二层的至少一第二机械单元参考第一机械单元携带的第一工件坐标系运动,位于该关系树第三层的至少一第三机械单元参考第二机械单元携带的第二工件坐标系运动。此外在其他实施方式中,该关系树还可包括至少一第四机械单元等,同理该第四机械单元参考第三机械单元携带的工件坐标系运动。位于同一颗树上的机械单元之间有联动关系,在对运动轨迹进行插补时对该关系树进行一次广度优先遍历,在同一插补周期内按照由上层到下层的顺序对各个机械单元的运动轨迹进行插补从而获得同一插补时刻对应的各个插补点。
可以理解,本发明工件的协同加工方法第二实施方式与上一实施方式的区别在于,在获得第二机械单元的控制角度后,进一步根据第二机械单元的控制角度获得第二工件坐标系以及在第二工件坐标系中的运动轨迹,进一步对至少一第三机械单元在第二工件坐标系的运动轨迹进行插补以获得插补时刻对应的第三插补点,然后根据第三插补点的工件坐标获得第三机械单元的控制角度,最后根据控制角度控制第一机械单元、第二机械单元以及第三机械单元协同对第一工件、第二工件进行加工,本实施方式相比上一实施方式能够实现更多层次数量的机械单元的协同加工,且同样能够较易地实现多个机械单元的同步控制以提高加工效率、实用性较高。
请参阅图6,本发明多机械单元的协同控制方法一实施方式包括:
步骤S31:对第一机械单元在客观坐标系中的运动轨迹进行插补以获得插补时刻对应的第一插补点,进而获得第一插补点在客观坐标系中的坐标。
其中,客观坐标系为世界坐标系或相对于世界坐标系静止的坐标系。
步骤S32:根据第一插补点在客观坐标系中的坐标获得第一机械单元的控制角度。
步骤S33:根据第一机械单元的控制角度获得第一工件坐标系。
其中,第一工件坐标系以第一工件为参照物,第一工件固定于第一机械单元上。
步骤S34:获取至少一第二机械单元在第一工件坐标系中的运动轨迹。
其中,第二机械单元相对第一工件运动。
步骤S35:对第二机械单元在第一工件坐标系中的运动轨迹进行插补以获得插补时刻对应的第二插补点,进而获得第二插补点在第一工件坐标系中的工件坐标。
步骤S36:根据第二插补点的工件坐标获得第二机械单元的控制角度。
请参阅图7,本发明工件的协同加工系统一实施方式包括:
第一机械单元41、至少一第二机械单元42以及多机械单元的协同控制装置43。多机械单元的协同控制装置43具体包括运动轨迹插补模块、控制角度获取模块、工件坐标系获取模块、运动轨迹获取模块以及协同加工控制模块,各模块具体功能如下所述:
运动轨迹插补模块,用于对第一机械单元在客观坐标系中的运动轨迹进行插补以获得插补时刻对应的第一插补点,进而获得第一插补点在客观坐标系中的坐标,其中,客观坐标系为世界坐标系或相对于世界坐标系静止的坐标系。
控制角度获取模块,用于根据运动轨迹插补模块所获得的第一插补点在客观坐标系中的坐标获得第一机械单元的控制角度。
工件坐标系获取模块,用于根据控制角度获取模块所获得的第一机械单元的控制角度获得第一工件坐标系,其中,第一工件坐标系以第一工件为参照物,第一工件固定于第一机械单元上。
运动轨迹获取模块,用于获取至少一第二机械单元在工件坐标系获取模块所获得的第一工件坐标系中的运动轨迹,其中第二机械单元相对第一工件运动。
运动轨迹插补模块还用于对第二机械单元在第一工件坐标系中的运动轨迹进行插补以获得插补时刻对应的第二插补点,进而获得第二插补点在第一工件坐标系中的工件坐标。
控制角度获取模块还用于根据第二插补点的工件坐标获得第二机械单元的控制角度。
协同加工控制模块,用于在插补时刻根据控制角度获取模块所获得的第一机械单元的控制角度以及第二机械单元的控制角度控制第一机械单元、第二机械单元协同对第一工件进行加工。
在另一个实施方式中,本实施方式的工件的协同加工系统包括运动轨迹插补模块、控制角度获取模块、工件坐标系获取模块、运动轨迹获取模块以及协同加工控制模块,
运动轨迹插补模块用于对第一机械单元在客观坐标系中的运动轨迹进行插补以获得插补时刻对应的第一插补点,进而获得第一插补点在客观坐标系中的坐标。
控制角度获取模块用于根据第一插补点在客观坐标系中的坐标获得第一机械单元的控制角度。具体地,根据工件坐标系与世界坐标系之间的坐标变换关系将第一插补点在客观坐标系中的工件坐标变换到世界坐标系中,以获得第一插补点的工件坐标对应的世界坐标。然后,控制角度获取模块还用于根据世界坐标系与基础坐标系之间的坐标变换关系将第一插补点在客观坐标系中的世界坐标变换到第一机械单元的第一基础坐标系中,以获得第一插补点的世界坐标对应的基础坐标。其中,第一基础坐标系以第一机械单元为参照物。控制角度获取模块在获得第一插补点在第一基础坐标系中的基础坐标后,进一步根据第一插补点的基础坐标逆解获得第一机械单元的控制角度。
工件坐标系获取模块用于根据第一机械单元的控制角度获得第一工件坐标系。
运动轨迹获取模块用于获取至少一第二机械单元在第一工件坐标系中的运动轨迹。
对第二机械单元在第一工件坐标系中的运动轨迹进行插补以获得插补时刻对应的第二插补点,进而获得第二插补点在第一工件坐标系中的工件坐标。
运动轨迹插补模块插补模块还用于根据第二机械单元的控制角度获得第二工件坐标系。
运动轨迹获取模块还用于获取至少一第三机械单元在第二工件坐标系中的运动轨迹。其中,第三机械单元相对第二工件运动。
运动轨迹插补模块对第三机械单元在第二工件坐标系中的运动轨迹进行插补以获得插补时刻对应的第三插补点,进而获得第三插补点在第二工件坐标系中的工件坐标。
控制角度获取模块根据第三插补点的工件坐标获得第三机械单元的控制角度。
协同加工控制模块在插补时刻根据第一机械单元的控制角度、第二机械单元的控制角度以及第三机械单元的控制角度控制第一机械单元、第二机械单元以及第三机械单元协同对第一工件、第二工件进行加工。即为在插补时刻根据第一机械单元的控制角度、第二机械单元的控制角度控制第一机械单元、第二机械单元协同对第一工件进行加工的同时,根据第二机械单元的控制角度、第三机械单元的控制角度控制第二机械单元、第三机械单元协同对第二工件进行加工。其中,第三机械单元具体为工业机器人、变位机或者传送带等机械单元中的任意一种;机械单元的控制角度包括机械单元所有轴的控制角度。
在另一个实施方式中,本实施方式提供一种多机械单元协同控制系统,包括运动轨迹插补模块、控制角度获取模块、工件坐标系获取模块、运动轨迹获取模块以及协同加工控制模块,
运动轨迹插补模块用于对第一机械单元在客观坐标系中的运动轨迹进行插补以获得插补时刻对应的第一插补点,进而获得第一插补点在客观坐标系中的坐标。其中,客观坐标系为世界坐标系或相对于世界坐标系静止的坐标系。
控制角度获取模块用于根据第一插补点在客观坐标系中的坐标获得第一机械单元的控制角度。
工件坐标系获取模块用于根据第一机械单元的控制角度获得第一工件坐标系。其中,第一工件坐标系以第一工件为参照物,第一工件固定于第一机械单元上。
运动轨迹获取模块用于获取至少一第二机械单元在第一工件坐标系中的运动轨迹。其中,第二机械单元相对第一工件运动。
运动轨迹插补模块用于对第二机械单元在第一工件坐标系中的运动轨迹进行插补以获得插补时刻对应的第二插补点,进而获得第二插补点在第一工件坐标系中的工件坐标。
控制角度获取模块还用于根据第二插补点的工件坐标获得第二机械单元的控制角度。
请参阅图8,本发明工件的协同加工设备一实施方式包括:输入装置801、输出装置802、存储器803和处理器804(处理器可包括一个或多个,图8中以一个为例)。在本发明的一些实施例中,输入装置801、输出装置802、存储器803和处理器804可通过总线或其它方式连接,其中,图8中以通过总线连接为例。
其中处理器804执行如下步骤:
S81:对第一机械单元在客观坐标系中的运动轨迹进行插补以获得插补时刻对应的第一插补点,进而获得所述第一插补点在所述客观坐标系中的坐标,其中,所述客观坐标系为世界坐标系或相对于世界坐标系静止的坐标系;
S82:根据所述第一插补点在所述客观坐标系中的坐标获得所述第一机械单元的控制角度;
S83:根据所述第一机械单元的控制角度获得第一工件坐标系,其中,所述第一工件坐标系以所述第一工件为参照物,所述第一工件固定于所述第一机械单元上;
S84:获取至少一第二机械单元在所述第一工件坐标系中的运动轨迹,其中所述第二机械单元相对所述第一工件运动;
S85:对所述第二机械单元在所述第一工件坐标系中的运动轨迹进行插补以获得所述插补时刻对应的第二插补点,进而获得所述第二插补点在所述第一工件坐标系中的工件坐标;
S86:根据所述第二插补点的工件坐标获得所述第二机械单元的控制角度。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述工件的协同加工的系统,装置和设备实施方式的具体工作过程和技术方法达到的有益效果与工件的协同加工的方法类似,可以参考前述方法实施例中的对应过程和技术效果,在此不再赘述。
加工以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (14)

  1. 一种工件的协同加工方法,其中,包括:
    对第一机械单元在客观坐标系中的运动轨迹进行插补以获得插补时刻对应的第一插补点,进而获得所述第一插补点在所述客观坐标系中的坐标,其中,所述客观坐标系为世界坐标系或相对于世界坐标系静止的坐标系;
    根据所述第一插补点在所述客观坐标系中的坐标获得所述第一机械单元的控制角度;
    根据所述第一机械单元的控制角度获得第一工件坐标系,其中,所述第一工件坐标系以所述第一工件为参照物,所述第一工件固定于所述第一机械单元上;
    获取至少一第二机械单元在所述第一工件坐标系中的运动轨迹,其中所述第二机械单元相对所述第一工件运动;
    对所述第二机械单元在所述第一工件坐标系中的运动轨迹进行插补以获得所述插补时刻对应的第二插补点,进而获得所述第二插补点在所述第一工件坐标系中的工件坐标;
    根据所述第二插补点的工件坐标获得所述第二机械单元的控制角度;
    在所述插补时刻根据所述第一机械单元的控制角度以及所述第二机械单元的控制角度控制所述第一机械单元、所述第二机械单元协同对所述第一工件进行加工。
  2. 根据权利要求1所述的方法,其中:在所述根据所述第二插补点的工件坐标获得所述第二机械单元的控制角度的步骤之后还包括:
    根据所述第二机械单元的控制角度获得第二工件坐标系,其中所述第二工件坐标系以所述第二工件为参照物,所述第二工件固定于所述第二机械单元上;
    获取至少一第三机械单元在所述第二工件坐标系中的运动轨迹,其中所述第三机械单元相对所述第二工件运动;
    对所述第三机械单元在第二工件坐标系中的运动轨迹进行插补以获得所述插补时刻对应的第三插补点,进而获得所述第三插补点在所述第二工件坐标系中的工件坐标;
    根据所述第三插补点的工件坐标获得所述第三机械单元的控制角度;
    在所述插补时刻根据所述第一机械单元的控制角度、第二机械单元的控制角度以及第三机械单元的控制角度控制第一机械单元、第二机械单元以及第三机械单元协同对第一工件、第二工件进行加工。
  3. 根据权利要求1所述的方法,其中,所述根据所述第二插补点的工件坐标获得所述第二机械单元的控制角度的步骤具体包括:
    将所述第二插补点的工件坐标变换到世界坐标系中,以获得所述第二插补点的工件坐标对应的世界坐标;
    进一步将所述第二插补点的世界坐标变换到所述第二机械单元的第二基础坐标系中,以获得所述第二插补点的世界坐标对应的基础坐标,其中所述第二基础坐标以所述第二机械单元为参照物;
    根据所述第二插补点的基础坐标获得所述第二机械单元的控制角度。
  4. 根据权利要求1所述的方法,其中: 所述客观坐标系为世界坐标系,所述第一插补点在所述客观坐标系中的坐标为世界坐标;
    所述根据所述第一插补点在所述客观坐标系中的坐标获得所述第一机械单元的控制角度的步骤具体包括:
    将所述第一插补点在所述客观坐标系中的世界坐标变换到所述第一机械单元的第一基础坐标系中,以获得所述第一插补点的世界坐标对应的基础坐标,其中所述第一基础坐标系以所述第一机械单元为参照物;
    根据所述第一插补点的基础坐标获得所述第一机械单元的控制角度。
  5. 根据权利要求1所述的方法,其中:所述客观坐标系为相对于世界坐标系静止的工件坐标系,所述第一插补点在所述客观坐标系中的坐标为工件坐标;
    所述根据所述第一插补点在所述客观坐标系中的坐标获得所述第一机械单元的控制角度的步骤具体包括:
    将所述第一插补点在所述客观坐标系中的工件坐标变换到世界坐标系中,以获得所述第一插补点的工件坐标对应的世界坐标;
    将所述第一插补点的世界坐标变换到所述第一机械单元的第一基础坐标系中,以获得所述第一插补点的世界坐标对应的基础坐标,其中所述第一基础坐标系以所述第一机械单元为参照物;
    根据所述第一插补点的基础坐标获得所述第一机械单元的控制角度。
  6. 根据权利要求1所述的方法,其中,所述第一机械单元为工业机器人、传送带或者变位机中的任意一种,所述第二机械单元为工业机器人。
  7. 根据权利要求1所述的方法,其中,所述控制角度包括机械单元所有轴的控制角度。
  8. 根据权利要求1所述的方法,其中,根据所述第一插补点在所述客观坐标系中的坐标获得所述第一机械单元的控制角度的步骤具体为:
    根据世界坐标系与基础坐标系之间的坐标变换关系将第一插补点在客观坐标系中的世界坐标变换到第一机械单元的第一基础坐标系中,以获得第一插补点的世界坐标对应的基础坐标;
    其中,所述第一基础坐标系以第一机械单元基座为参照物。
  9. 根据权利要求1所述的方法,其中,根据第一机械单元的控制角度获得第一工件坐标系的步骤具体为:
    根据第一机械单元的控制角度利用正运动学获得第一工件坐标系;
    其中,所述第一工件坐标系以所述第一工件为参照物,所述第一工件固定于所述第一机械单元上。
  10. 根据权利要求1所述的方法,其中,对第一机械单元的运动轨迹进行插补的时刻与对第二机械单元的运动轨迹进行插补的时刻为同一时刻。
  11. 一种多机械单元的协同控制方法,其中,包括:
    对第一机械单元在客观坐标系中的运动轨迹进行插补以获得插补时刻对应的第一插补点,进而获得所述第一插补点在所述客观坐标系中的坐标,其中,所述客观坐标系为世界坐标系或相对于世界坐标系静止的坐标系;
    根据所述第一插补点在所述客观坐标系中的坐标获得所述第一机械单元的控制角度;
    根据所述第一机械单元的控制角度获得第一工件坐标系,其中,所述第一工件坐标系以所述第一工件为参照物,所述第一工件固定于所述第一机械单元上;
    获取至少一第二机械单元在所述第一工件坐标系中的运动轨迹,其中所述第二机械单元相对所述第一工件运动;
    对所述第二机械单元在所述第一工件坐标系中的运动轨迹进行插补以获得所述插补时刻对应的第二插补点,进而获得所述第二插补点在所述第一工件坐标系中的工件坐标;
    根据所述第二插补点的工件坐标获得所述第二机械单元的控制角度。
  12. 一种工件的协同加工系统,其中,包括:
    第一机械单元、至少一第二机械单元以及多机械单元的协同控制装置,其中所述多机械单元的协同控制装置包括:
    运动轨迹插补模块,用于对第一机械单元在客观坐标系中的运动轨迹进行插补以获得插补时刻对应的第一插补点,进而获得所述第一插补点在所述客观坐标系中的坐标,其中,所述客观坐标系为世界坐标系或相对于世界坐标系静止的坐标系;
    控制角度获取模块,用于根据所述第一插补点在所述客观坐标系中的坐标获得所述第一机械单元的控制角度;
    工件坐标系获取模块,用于根据所述第一机械单元的控制角度获得第一工件坐标系,其中,所述第一工件坐标系以所述第一工件为参照物,所述第一工件固定于所述第一机械单元上;
    运动轨迹获取模块,用于获取至少一第二机械单元在所述第一工件坐标系中的运动轨迹,其中所述第二机械单元相对所述第一工件运动;
    所述运动轨迹插补模块还用于对所述第二机械单元在所述第一工件坐标系中的运动轨迹进行插补以获得所述插补时刻对应的第二插补点,进而获得所述第二插补点在所述第一工件坐标系中的工件坐标;
    所述控制角度获取模块还用于根据所述第二插补点的工件坐标获得所述第二机械单元的控制角度;
    协同加工控制模块,用于在所述插补时刻根据所述第一机械单元的控制角度以及所述第二机械单元的控制角度控制所述第一机械单元、所述第二机械单元协同对所述第一工件进行加工。
  13. 一种多机械单元的协同控制装置,其中,包括:
    运动轨迹插补模块,用于对第一机械单元在客观坐标系中的运动轨迹进行插补以获得插补时刻对应的第一插补点,进而获得所述第一插补点在所述客观坐标系中的坐标,其中,所述客观坐标系为世界坐标系或相对于世界坐标系静止的坐标系;
    控制角度获取模块,用于根据所述第一插补点在所述客观坐标系中的坐标获得所述第一机械单元的控制角度;
    工件坐标系获取模块,用于根据所述第一机械单元的控制角度获得第一工件坐标系,其中,所述第一工件坐标系以所述第一工件为参照物,所述第一工件固定于所述第一机械单元上;
    运动轨迹获取模块,用于获取至少一第二机械单元在所述第一工件坐标系中的运动轨迹,其中所述第二机械单元相对所述第一工件运动;
    所述运动轨迹插补模块还用于对所述第二机械单元在所述第一工件坐标系中的运动轨迹进行插补以获得所述插补时刻对应的第二插补点,进而获得所述第二插补点在所述第一工件坐标系中的工件坐标;
    所述控制角度获取模块还用于根据所述第二插补点的工件坐标获得所述第二机械单元的控制角度;
    协同加工控制模块,用于在所述插补时刻根据所述第一机械单元的控制角度以及所述第二机械单元的控制角度控制所述第一机械单元、所述第二机械单元协同对所述第一工件进行加工。
  14. 一种多机械单元的协同控制设备,包括输入装置、输出装置、存储器及处理器,其中,所述处理器用于执行如下步骤:
    对第一机械单元在客观坐标系中的运动轨迹进行插补以获得插补时刻对应的第一插补点,进而获得所述第一插补点在所述客观坐标系中的坐标,其中,所述客观坐标系为世界坐标系或相对于世界坐标系静止的坐标系;
    根据所述第一插补点在所述客观坐标系中的坐标获得所述第一机械单元的控制角度;
    根据所述第一机械单元的控制角度获得第一工件坐标系,其中,所述第一工件坐标系以所述第一工件为参照物,所述第一工件固定于所述第一机械单元上;
    获取至少一第二机械单元在所述第一工件坐标系中的运动轨迹,其中所述第二机械单元相对所述第一工件运动;
    对所述第二机械单元在所述第一工件坐标系中的运动轨迹进行插补以获得所述插补时刻对应的第二插补点,进而获得所述第二插补点在所述第一工件坐标系中的工件坐标;
    根据所述第二插补点的工件坐标获得所述第二机械单元的控制角度。
PCT/CN2015/088375 2014-08-29 2015-08-28 一种工件的协同加工方法、系统及协同控制方法、装置 WO2016029875A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410438785.0 2014-08-29
CN201410438785.0A CN104238460A (zh) 2014-08-29 2014-08-29 一种工件的协同加工方法、系统及协同控制方法、装置

Publications (1)

Publication Number Publication Date
WO2016029875A1 true WO2016029875A1 (zh) 2016-03-03

Family

ID=52226771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088375 WO2016029875A1 (zh) 2014-08-29 2015-08-28 一种工件的协同加工方法、系统及协同控制方法、装置

Country Status (2)

Country Link
CN (1) CN104238460A (zh)
WO (1) WO2016029875A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111496798A (zh) * 2020-05-18 2020-08-07 北京配天技术有限公司 机器人传送带跟踪方法、设备及存储装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104238460A (zh) * 2014-08-29 2014-12-24 北京配天技术有限公司 一种工件的协同加工方法、系统及协同控制方法、装置
CN104932451A (zh) * 2015-04-17 2015-09-23 王玉娇 一种多设备协同控制方法及装置
CN105252110B (zh) * 2015-11-16 2017-10-10 中国船舶重工集团公司第七一六研究所 机器人在船用t型材摆动弧焊的运动控制方法
WO2020010626A1 (zh) * 2018-07-13 2020-01-16 深圳配天智能技术研究院有限公司 机器人的运动控制方法、机器人及机器人运动控制系统
CN113119105A (zh) * 2019-12-31 2021-07-16 北京配天技术有限公司 机器人多机联动控制方法、多机联动控制设备和控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102301292A (zh) * 2009-02-17 2011-12-28 三菱电机株式会社 数控装置、数控装置的控制方法、以及系统程序
CN102402199A (zh) * 2010-08-20 2012-04-04 发那科株式会社 控制刀具前端点位置的多轴加工机用数值控制装置
CN102656529A (zh) * 2009-11-26 2012-09-05 三菱电机株式会社 数控装置
CN103562808A (zh) * 2012-05-28 2014-02-05 三菱电机株式会社 数控装置
CN104238460A (zh) * 2014-08-29 2014-12-24 北京配天技术有限公司 一种工件的协同加工方法、系统及协同控制方法、装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3453861B2 (ja) * 1994-08-12 2003-10-06 松下電工株式会社 画像処理による変位検出方法
US6822412B1 (en) * 2003-06-11 2004-11-23 Zhongxue Gan Method for calibrating and programming of a robot application
JP2006099474A (ja) * 2004-09-29 2006-04-13 Fanuc Ltd ロボットの軌跡制御方法
CN102962549B (zh) * 2012-11-26 2014-04-02 清华大学 一种沿立面内任意曲线轨迹焊接的机器人控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102301292A (zh) * 2009-02-17 2011-12-28 三菱电机株式会社 数控装置、数控装置的控制方法、以及系统程序
CN102656529A (zh) * 2009-11-26 2012-09-05 三菱电机株式会社 数控装置
CN102402199A (zh) * 2010-08-20 2012-04-04 发那科株式会社 控制刀具前端点位置的多轴加工机用数值控制装置
CN103562808A (zh) * 2012-05-28 2014-02-05 三菱电机株式会社 数控装置
CN104238460A (zh) * 2014-08-29 2014-12-24 北京配天技术有限公司 一种工件的协同加工方法、系统及协同控制方法、装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111496798A (zh) * 2020-05-18 2020-08-07 北京配天技术有限公司 机器人传送带跟踪方法、设备及存储装置
CN111496798B (zh) * 2020-05-18 2022-06-14 北京配天技术有限公司 机器人传送带跟踪方法、设备及存储装置

Also Published As

Publication number Publication date
CN104238460A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
WO2016029875A1 (zh) 一种工件的协同加工方法、系统及协同控制方法、装置
KR102018242B1 (ko) 머니퓰레이터 시스템
CA1324199C (en) Controlling apparatus of manipulator
WO2018131778A1 (ko) S-커브를 이용한 모션 프로파일 생성 방법 및 컴퓨팅 장치
WO2019116891A1 (ja) ロボットシステム及びロボット制御方法
CN110497378A (zh) 一种用于零件加工的自动上下料机器人
WO2018068551A1 (zh) 一种乒乓球机器人及其控制方法
CN108044629A (zh) 一种瓷砖桁架机械手及其行走方式
EP1589387A2 (en) Method and device for synchronously controlling multiple printing presses or multiple units in printing press
Pellicciari et al. A minimal touch approach for optimizing energy efficiency in pick-and-place manipulators
CN109877827B (zh) 一种连杆机械手的非定点物料视觉识别与抓取装置及方法
CN108582119A (zh) 一种带电作业机器人力反馈主从控制方法及系统
WO2018233088A1 (zh) 一种双六轴机器人协同运动控制模型及算法
WO2016008215A1 (zh) 工业机器人的5轴6轴混合控制方法及其系统
WO2018174428A1 (ko) 직렬 탄성 액추에이터 장치, 직렬 탄성 액추에이터 제어 방법 및 그를 이용한 시스템
WO2013165100A1 (en) Double wound rotor type motor with constant alternating current or direct current power supply input and control method thereof
WO2020242163A1 (ko) 계통 전압 위상 검출 장치
CN116494250B (zh) 基于速度补偿的机械臂控制方法、控制器、介质及系统
CN116423496A (zh) 一种刚柔双臂协作机器人
WO2020082432A1 (zh) 物体的贴附控制方法、贴附机及存储介质
Tran et al. Synchronous PID controller for a 4-DOF parallel manipulator in practice
WO2020105838A1 (ko) 인버터 제어장치
US11173612B2 (en) Robot system, robot controller, robot control method, and robot program
WO2020138587A1 (ko) 다축기계의 최대직각프리즘 작업공간 산출방법
WO2022119222A1 (ko) 다수 공작물 좌표계 간의 모션 제어 방법, 장치 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS (EPO FORM 1205A DATED 16-06-2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15835662

Country of ref document: EP

Kind code of ref document: A1