WO2016008215A1 - 工业机器人的5轴6轴混合控制方法及其系统 - Google Patents

工业机器人的5轴6轴混合控制方法及其系统 Download PDF

Info

Publication number
WO2016008215A1
WO2016008215A1 PCT/CN2014/087048 CN2014087048W WO2016008215A1 WO 2016008215 A1 WO2016008215 A1 WO 2016008215A1 CN 2014087048 W CN2014087048 W CN 2014087048W WO 2016008215 A1 WO2016008215 A1 WO 2016008215A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
joint
robot
joint shaft
shaft
Prior art date
Application number
PCT/CN2014/087048
Other languages
English (en)
French (fr)
Inventor
于德海
陈虎
周国锋
李亚鹏
蔡春刚
吴福海
于本宏
李经明
姜珑
刘庭刚
许钢
Original Assignee
大连科德数控有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连科德数控有限公司 filed Critical 大连科德数控有限公司
Priority to ES14897492T priority Critical patent/ES2746259T3/es
Priority to JP2017522703A priority patent/JP2017521275A/ja
Priority to EP14897492.6A priority patent/EP3175958B1/en
Publication of WO2016008215A1 publication Critical patent/WO2016008215A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39198Manipulator used as workpiece handler and for machining operation

Definitions

  • the invention belongs to the technical field of industrial robots, and in particular relates to a 5-axis 6-axis hybrid control method and system thereof for an industrial robot.
  • Industrial robots are multi-joint robots or multi-degree-of-freedom robots for industrial applications. They are machines that perform work automatically. They are machines that rely on their own power and control to achieve various functions. They can accept human command or Operate according to a pre-programmed program; the multi-channel control technology of the numerical control system implements a controller to independently control different parts of a device or a device in a relatively simple manner, and provides a series of means and mechanism guarantees. Controls the logical relationship between motions between objects.
  • the prior art industrial robot usually adopts a 6-joint axis 6 degree of freedom series mechanism, the actuator is installed at the end of the 6th axis, and the control system controls the movement of the 6th axis end effector, since the robot is a series mechanism, The rigidity decreases with the increase of the number of series axes, and the rigidity of the end of the sixth axis is the worst. Therefore, if this industrial robot is applied to the field of material processing, the machining accuracy is very low under the action of cutting force and actuator gravity. The main factors that restrict the application of tandem industrial robots in the field of material processing.
  • the present invention is directed to the above problems, and develops a 5-axis 6-axis hybrid control method and system for an industrial robot.
  • a 5-axis 6-axis hybrid control method for an industrial robot comprising: a first joint shaft, a second joint shaft, a third joint shaft, a fourth joint shaft, a fifth joint shaft, a sixth joint shaft, and a plurality of a plurality of the rod members are connected to each other in series through the first joint shaft, the second joint shaft, the third joint shaft, the fourth joint shaft, the fifth joint shaft, and the sixth joint shaft;
  • the hybrid control method includes the following step:
  • Step 1 an end effector is installed at an end of the fifth joint shaft and the sixth joint shaft; setting a first joint shaft, a second joint shaft, a third joint shaft, a fourth joint shaft, and a fifth joint shaft And a plurality of rods connected in series by the first joint shaft, the second joint shaft, the third joint shaft, the fourth joint shaft, and the fifth joint shaft to form a 5-axis robot, and set the first joint shaft, the first a second joint axis, a third joint axis, a fourth joint axis, a fifth joint axis, a sixth joint axis, and a plurality of the first joint axis, the second joint axis, the third joint axis, the fourth joint axis, a rod connecting the fifth joint shaft and the sixth joint shaft in series constitutes a 6-axis robot;
  • Step 2 respectively configuring a channel of the 5-axis robot and the 6-axis robot, wherein the 5-axis robot corresponds to a first channel, and the 6-axis robot corresponds to a second channel;
  • Step 3 respectively acquiring moving target positions of the joint axes of the 5-axis robot and the 6-axis robot;
  • Step 4 According to the obtained moving target positions of the joint axes of the 5-axis robot and the 6-axis robot, the first channel realizes motion control of each joint axis of the 5-axis robot, and the second channel realizes joints of the 6-axis robot Motion control of the shaft;
  • step 3 specifically includes the following steps:
  • Step 31 Generate a DH parameter table according to the size of each rod of the industrial robot and according to the current motion state of each joint axis, where the DH parameter table includes a rotation angle ⁇ i of the i-th joint axis, and the i-th joint axis and The axial distance a i between adjacent i-1th joint axes, the distance d i of the i-th joint axis and the i-1th joint axis in the axial direction, and the axis of the i-th joint axis adjacent thereto An angle ⁇ i between the axes of the i-1th joint axis, wherein i takes values 1, 2, ..., 6;
  • Step 32 Generate an i-th joint axis transformation matrix according to the DH parameter table.
  • ⁇ i is the rotation angle of the i-th joint axis
  • a i is the axial distance between the i-th joint axis and its adjacent i-1th joint axis
  • d i is the i-th joint axis and the i-1
  • ⁇ i is the angle between the axis of the i-th joint axis and the axis of the i-th joint axis adjacent thereto
  • i is 1, 2, ..., 6;
  • Step 33 Generate a corresponding end effector transformation matrix A t according to the size of the end effector
  • Step 34 The kinematics positive solutions of the 5-axis robot and the 6-axis robot are respectively obtained by the i-th joint axis transformation matrix A i and the end effector transformation matrix A t , and the values of i are 1, 2, ..., 6;
  • the kinematic positive solution P 5 of the 5-axis robot is equal to A 1 ⁇ A 2 ⁇ A 3 ⁇ A 4 ⁇ A 5 ⁇ A t
  • the kinematic positive solution P 6 of the 6-axis robot is equal to A 1 ⁇ A 2 ⁇ A 3 ⁇ A 4 ⁇ A 5 ⁇ A 6 ⁇ A t ;
  • Step 35 According to the kinematics positive solutions of the 5-axis robot and the 6-axis robot respectively, the inverse kinematics equations of the 5-axis robot and the 6-axis robot are obtained, and the inverse kinematics equations of the 5-axis robot and the 6-axis robot are obtained. Inverse inverse kinematics;
  • Step 36 Determine respective unique solutions from the inverse kinematic solutions of the 5-axis robot and the 6-axis robot respectively, wherein the unique solution corresponding to the 5-axis robot is the moving target position of each joint axis of the 5-axis robot, corresponding to 6 axes The only solution of the robot is the moving target position of each joint axis of the 6-axis robot;
  • step 3 the following steps are further included:
  • the encoder is configured to detect a current motion state of each joint axis and transmit through a data bus interface;
  • Each joint axis of the 5-axis robot and each joint axis of the 6-axis robot realize independent movement according to the control of the first channel and the second channel at different time periods;
  • the shortest path method is used to determine the unique solutions from the kinematic inverse solutions of the 5-axis robot and the 6-axis robot.
  • a 5-axis 6-axis hybrid control system for an industrial robot comprising: a first joint shaft, a second joint shaft, a third joint shaft, a fourth joint shaft, a fifth joint shaft, a sixth joint shaft, and a plurality of a rod; a plurality of the rod members are connected to each other in series by a first joint shaft, a second joint shaft, a third joint shaft, a fourth joint shaft, a fifth joint shaft, and a sixth joint shaft; the fifth joint shaft and An end effector is mounted at an end of the sixth joint shaft; the control system includes a first passage and a second passage that communicate with each other;
  • the first channel and the second channel both include:
  • a channel configuration unit configured to respectively configure a channel of the 5-axis robot and the 6-axis robot, wherein the 5-axis robot corresponds to a first channel, the 6-axis robot corresponds to a second channel; and the first joint axis is set, a second joint axis, a third joint axis, a fourth joint axis, a fifth joint axis, and a plurality of passing through the first joint axis, the second joint axis, the third joint axis, the fourth joint axis, and the fifth joint axis
  • the rods connected in series constitute a 5-axis robot, and the first joint shaft, the second joint shaft, the third joint shaft, the fourth joint shaft, the fifth joint shaft, the sixth joint shaft, and a plurality of a rod member in which a joint axis, a second joint shaft, a third joint shaft, a fourth joint shaft, a fifth joint shaft, and a sixth joint shaft are connected in series constitutes a 6-axis robot;
  • a target position acquiring unit configured to respectively acquire moving target positions of the joint axes of the 5-axis robot and the 6-axis robot;
  • a control unit for performing motion control of each joint axis of the 5-axis robot according to the obtained moving target positions of the joint axes of the 5-axis robot and the 6-axis robot, or realizing the joint axes of the 6-axis robot sport control;
  • the target location acquiring unit includes:
  • a DH parameter table generating module configured to generate a DH parameter table according to each component size of the industrial robot and according to a current motion state of each joint axis, where the DH parameter table includes a rotation angle ⁇ i of the i-th joint axis, The axial distance a i between the i joint axis and its adjacent i-1th joint axis, the distance d i of the i-th joint axis and the i-1th joint axis along the axial direction, the i-th joint axis An angle ⁇ i between the axis and the axis of the i-th joint axis adjacent thereto, wherein i takes values 1, 2, ..., 6;
  • An joint axis transformation matrix generating module configured to generate an i-th joint axis transformation matrix according to the DH parameter table
  • ⁇ i is the rotation angle of the i-th joint axis
  • a i is the axial distance between the i-th joint axis and its adjacent i-1th joint axis
  • d i is the i-th joint axis and the i-1
  • ⁇ i is the angle between the axis of the i-th joint axis and the axis of the i-th joint axis adjacent thereto
  • i is 1, 2, ..., 6;
  • An end effector transformation matrix generation module configured to generate a corresponding end effector transformation matrix A t according to the size of the end effector
  • the kinematics positive solution acquisition module is used to obtain the kinematics positive solution of the 5-axis robot and the 6-axis robot through the i-th joint axis transformation matrix A i and the end effector transformation matrix A t respectively, and the value of i is 1, 2, ... 6, wherein the kinematic positive solution P 5 of the 5-axis robot is equal to A 1 ⁇ A 2 ⁇ A 3 ⁇ A 4 ⁇ A 5 ⁇ A t , and the kinematic positive solution P 6 of the 6-axis robot is equal to A 1 ⁇ A 2 ⁇ A 3 ⁇ A 4 ⁇ A 5 ⁇ A 6 ⁇ A t ;
  • the kinematic inverse solution acquisition module is used to obtain the kinematic inverse solution equations of the 5-axis robot and the 6-axis robot according to the kinematics positive solutions of the 5-axis robot and the 6-axis robot respectively, and according to the 5-axis robot and the 6-axis robot
  • the inverse kinematics equations get their inverse kinematics solutions;
  • a unique solution determination module for determining respective unique solutions from a plurality of kinematic inverse solutions of the 5-axis robot and the 6-axis robot, wherein the unique solution of the 5-axis robot is the moving target of each joint axis of the 5-axis robot Position, the only solution corresponding to the 6-axis robot is the moving target position of each joint axis of the 6-axis robot;
  • end effector of the fifth joint shaft is an electric main shaft and a loose clamp device
  • end effector of the sixth joint shaft is a pneumatic clamp
  • the robot further includes a plurality of encoders for detecting a current motion state of each joint axis and a data bus interface connecting the encoders.
  • the 5-axis 6-axis hybrid control method and system of the industrial robot provided by the present invention can realize material processing by using a 5-axis robot through a 5-axis and 6-axis hybrid control, thereby reducing mechanical connection.
  • the flexibility reduces the vibration during material processing.
  • the 6-axis robot is used for workpiece handling, which maintains the flexibility of operation and effectively combines 5-axis and 6-axis control to improve the overall rigidity and machining accuracy of industrial robots.
  • Figure 2 is a flow chart of step 3 of the present invention.
  • FIG. 3 is a block diagram showing the structure of the control system of the present invention.
  • FIG. 4 is a schematic structural view of an industrial robot according to the present invention.
  • Figure 5 is a schematic diagram showing the position and data flow direction of the hybrid control method of the present invention in a numerical control system
  • Figure 6 is a schematic view showing the dimensions of the rods of the robot of the present invention.
  • Figure 7 is a schematic view showing the coordinate system of each joint axis of the present invention.
  • Step 1 an end effector is installed at an end of the fifth joint shaft and the sixth joint shaft; setting a first joint shaft, a second joint shaft, a third joint shaft, a fourth joint shaft, and a fifth joint shaft And a plurality of rods connected in series by the first joint shaft, the second joint shaft, the third joint shaft, the fourth joint shaft, and the fifth joint shaft to form a 5-axis robot, and set the first joint shaft, the first a second joint axis, a third joint axis, a fourth joint axis, a fifth joint axis, a sixth joint axis, and a plurality of the first joint axis, the second joint axis, the third joint axis, the fourth joint axis, a rod connecting the fifth joint shaft and the sixth joint shaft in series constitutes a 6-axis robot;
  • Step 2 respectively configuring a channel of the 5-axis robot and the 6-axis robot, wherein the 5-axis robot corresponds to a first channel, and the 6-axis robot corresponds to a second channel;
  • Step 3 respectively acquiring moving target positions of the joint axes of the 5-axis robot and the 6-axis robot;
  • Step 4 According to the obtained moving target positions of the joint axes of the 5-axis robot and the 6-axis robot, the first channel realizes motion control of each joint axis of the 5-axis robot, and the second channel realizes joints of the 6-axis robot Motion control of the shaft;
  • the step 3 specifically includes the following steps:
  • Step 31 Generate a DH parameter table according to the size of each rod of the industrial robot and according to the current motion state of each joint axis, where the DH parameter table includes a rotation angle ⁇ i of the i-th joint axis, and the i-th joint axis and The axial distance a i between adjacent i-1th joint axes, the distance d i of the i-th joint axis and the i-1th joint axis in the axial direction, and the axis of the i-th joint axis adjacent thereto An angle ⁇ i between the axes of the i-1th joint axis, wherein i takes values 1, 2, ..., 6;
  • Step 32 Generate an i-th joint axis transformation matrix according to the DH parameter table.
  • ⁇ i is the rotation angle of the i-th joint axis
  • a i is the axial distance between the i-th joint axis and its adjacent i-1th joint axis
  • d i is the i-th joint axis and the i-1
  • ⁇ i is the angle between the axis of the i-th joint axis and the axis of the i-th joint axis adjacent thereto
  • i is 1, 2, ..., 6;
  • Step 33 Generate a corresponding end effector transformation matrix A t according to the size of the end effector
  • Step 34 The kinematics positive solutions of the 5-axis robot and the 6-axis robot are respectively obtained by the i-th joint axis transformation matrix A i and the end effector transformation matrix A t , and the values of i are 1, 2, ..., 6;
  • the kinematic positive solution P 5 of the 5-axis robot is equal to A 1 ⁇ A 2 ⁇ A 3 ⁇ A 4 ⁇ A 5 ⁇ A t
  • the kinematic positive solution P 6 of the 6-axis robot is equal to A 1 ⁇ A 2 ⁇ A 3 ⁇ A 4 ⁇ A 5 ⁇ A 6 ⁇ A t ;
  • Step 35 According to the kinematics positive solutions of the 5-axis robot and the 6-axis robot respectively, the inverse kinematics equations of the 5-axis robot and the 6-axis robot are obtained, and the inverse kinematics equations of the 5-axis robot and the 6-axis robot are obtained. Inverse inverse kinematics;
  • Step 36 Determine respective unique solutions from the inverse kinematic solutions of the 5-axis robot and the 6-axis robot respectively, wherein the unique solution corresponding to the 5-axis robot is the moving target position of each joint axis of the 5-axis robot, corresponding to 6 axes The only solution of the robot is the moving target position of each joint axis of the 6-axis robot;
  • the method further includes: respectively configuring an encoder and a data bus interface to each joint axis of the industrial robot; the encoder is configured to detect a current motion state of each joint axis and transmit through a data bus interface; Further, each joint axis of the 5-axis robot and each joint axis of the 6-axis robot realize independent movement according to the control of the first channel and the second channel at different time periods respectively; further: using the shortest path method from the 5-axis robot and The multiple unique kinematic solutions of the 6-axis robot determine their unique solutions.
  • a 5-axis 6-axis hybrid control system for an industrial robot includes a first joint shaft, a second joint shaft, a third joint shaft, a fourth joint shaft, and a fifth joint shaft, a six-joint shaft and a plurality of rods; the plurality of rods are connected in series with each other through the first joint shaft, the second joint shaft, the third joint shaft, the fourth joint shaft, the fifth joint shaft, and the sixth joint shaft; An end effector is mounted on the ends of the fifth joint shaft and the sixth joint shaft; the control system includes a first channel and a second channel that communicate with each other; the first channel and the second channel each include: a channel configuration unit a channel for respectively configuring the 5-axis robot and the 6-axis robot, wherein the 5-axis robot corresponds to a first channel, and the 6-axis robot corresponds to a second channel; setting a first joint axis, a second joint a shaft, a third joint shaft, a fourth joint shaft, a fifth joint shaft, and a
  • the inverse kinematics solution of the robot obtains the inverse kinematics solution;
  • the inverse kinematics equation of the 5-axis robot is
  • the inverse kinematics equation for a 6-axis robot is:
  • a unique solution determination module for determining respective unique solutions from a plurality of kinematic inverse solutions of the 5-axis robot and the 6-axis robot, wherein the unique solution of the 5-axis robot is the moving target of each joint axis of the 5-axis robot Position, the unique solution corresponding to the 6-axis robot is the moving target position of each joint axis of the 6-axis robot; further, the end effector of the 5th joint shaft is an electric spindle and a loose clamping device, the 6th joint shaft
  • the installed end effector is a pneumatic clamp;
  • the robot further includes a plurality of encoders for detecting the current motion state of each joint axis and a data bus interface connecting the encoders.
  • Step 2 of the present invention is specifically: establishing a correspondence relationship between a Cartesian coordinate system logic axis (X, Y, Z, A, B, C) of the first channel and each joint axis of the 5-axis robot, when When the end effector mounted on the Joint #5 shaft is the electric spindle 1 and the loose clamp device, the correspondence between the logical spindle S, the magazine axis MAG and the electric spindle, and the magazine axis is also established; the Cartesian coordinate system logic of the second channel is established.
  • each joint shaft is equipped with an encoder, and at the same time
  • the mapping address is bound to the data bus interface in the encoder configuration item; the definition of each axis in the first channel: S represents the electric spindle, MAG represents the magazine axis, and X, Y, Z, A, B, C represent the logic of the robot. Axis; definition of each axis in the second channel: X, Y, Z, A, B, C represent the machine The logical axis of the person.
  • the end effector of the fifth joint shaft may be an electric spindle 1 and a loose clamp.
  • the device is used for material processing; the end effector of the 6th joint shaft can be a pneumatic clamp 2 for excipient handling.
  • the present invention sets a first joint axis, a second joint axis, a third joint axis, a fourth joint axis, a fifth joint axis, and a plurality of the first joint axis, the second joint axis, and the third joint axis, a rod in which the fourth joint shaft and the fifth joint shaft are connected in series Forming a 5-axis robot, and simultaneously setting a first joint axis, a second joint axis, a third joint axis, a fourth joint axis, a fifth joint axis, a sixth joint axis, and a plurality of passes through the first joint axis,
  • the second joint shaft, the third joint shaft, the fourth joint shaft, the fifth joint shaft, and the sixth joint shaft are connected in series to form a 6-axis robot, thereby adopting multi-channel control technology for 5-axis robot control and 6-axis robot Control one channel object for each configuration, and then form a dual channel control mode.
  • the first channel and the second channel are
  • the first channel control end effector such as a fixture transports the workpiece to be processed to a processing station, and sends a workpiece in-position signal to the second channel while waiting for an answer signal;
  • the second channel selects the tool and processes the workpiece according to the workpiece machining program. After the workpiece is processed, the processing completion signal is sent to the first channel while waiting for the answer signal;
  • the workpiece is removed from the processing station and placed in the finished product station;
  • step 2 Jump to step 2 to execute the cycle until all the workpieces to be processed have been processed.
  • the joint axes of the 5-axis robot and the joint axes of the 6-axis robot are independently moved according to the control of the first channel and the second channel at different time periods; respectively, before the step 1 for the 5-axis robot and the 6-axis robot respectively.
  • a user program that includes the motion path settings of the joint axes of the 5-axis robot and the 6-axis robot and the synchronization signals of the first channel and the second channel.
  • first channel and the second channel of the present invention can select 5-axis robot control or 6-axis robot control
  • FIG. 5 shows the position and data flow direction of the hybrid control method in the numerical control system according to the present invention.
  • each channel object integrates a 5-axis control method and a 6-axis control method.
  • FIG. 6 is a schematic view showing the dimensions of the rods of the robot according to the present invention
  • FIG. 7 is a schematic diagram showing the coordinate system of the joint axes of the present invention.
  • the DH parameter table is shown in Table 1, and the DH parameter table includes the The rotation angle ⁇ i of the i joint axes, that is, the axis of rotation of the i-th joint axis coordinate system with respect to the i-th joint coordinate system about the Z axis, and the axis between the i-th joint axis and the next joint axis adjacent thereto
  • the distance a i the distance between the i-th joint axis and the end effector d i , that is, the value of the i-th joint axis coordinate system origin along the Z-axis direction of the i-1th joint axis coordinate system, the i-th joint axis
  • the parameter form can be composed of 6 real values.
  • the invention adopts the shortest path method to determine the respective unique solutions from the plurality of kinematic inverse solutions of the 5-axis robot and the 6-axis robot respectively, thereby acquiring the moving target positions of the joint axes of the 5-axis robot and the 6-axis robot, the motion
  • the target position corresponds to the corresponding position when the end of the industrial robot reaches the specified position and posture.
  • For each pose to be reached at the end of each robot up to eight kinematic inverse solutions can be obtained, and each inverse solution corresponds to the six joint values of the industrial robot.
  • V n ( ⁇ n1 , ⁇ n2 , ⁇ n3 , ⁇ n4 , ⁇ n5 , ⁇ n6 ), n takes values 1, 2, ..., 8, and the component ⁇ ni corresponds to the moving target position of the i-th joint axis, i
  • the values are 1, 2, ..., 6; suppose the current six joint vectors of the industrial robot are V c , and the composition of V c is ( ⁇ c1 , ⁇ c2 , ⁇ c3 , ⁇ c4 , ⁇ c5 , ⁇ c6 ), where The component ⁇ ci corresponds to the current position of the i-th joint axis, and i takes values 1, 2, ..., 6.
  • , that is, R n is the sum of the absolute values of the incremental values, n is 1, 2, ..., 8, and further R min(R 1 , R 2 , R
  • ; the first channel and the second channel each include a unique solution determining module that determines each of the plurality of kinematic inverse solutions of the 5-axis robot and the 6-axis robot using the shortest path method The only solution.
  • the 5-axis 6-axis hybrid control method and system for the industrial robot provided by the invention are controlled by 5-axis and 6-axis hybrids, thereby realizing material processing by using a 5-axis robot, reducing mechanical connection flexibility and reducing material processing.
  • the present invention can be configured with multiple axes for each channel, for example, multiple auxiliary axes such as an electric spindle and a servo magazine axis can be arranged on one channel, and further, an industrial robot, an electric spindle, a tool loose clamp device, and a servo knife
  • the library and pneumatic clamps are combined into a complete material processing system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

一种工业机器人的5轴6轴混合控制方法及其系统,该混合控制方法包括如下步骤:在第五关节轴和第六关节轴的末端均安装有末端执行器;第一关节轴、第二关节轴、第三关节轴、第四关节轴和第五关节轴串联连接的杆件构成5轴机器人,第一关节轴、第二关节轴、第三关节轴、第四关节轴、第五关节轴和第六关节轴串联连接的杆件构成6轴机器人。配置5轴机器人对应第一通道、6轴机器人对应第二通道;分别获取5轴机器人和6轴机器人各关节轴的运动目标位置;按照所获取的5轴机器人和6轴机器人的各关节轴的运动目标位置,第一通道实现对5轴机器人的各关节轴的运动控制,第二通道实现对6轴机器人的各关节轴的运动控制。这样,可实现利用5轴机器人进行材料加工,减小了机械连接柔性,降低了材料加工过程中的振动,利用6轴机器人进行工件搬运,保持了操作的灵活性。

Description

工业机器人的5轴6轴混合控制方法及其系统 技术领域
本发明属于工业机器人技术领域,具体为一种工业机器人的5轴6轴混合控制方法及其系统。
背景技术
工业机器人是面向工业领域的多关节机械手或多自由度的机器人,是自动执行工作的机器装置,是靠自身动力和控制能力来实现各种功能的一种机器,其可以接受人类指挥,也可以按照预先编排的程序运行;数控系统的多通道控制技术是以一种相对简单的方式实现一个控制器对多个设备或一个设备的不同部分进行独立的控制,并提供了一系列手段和机制保障控制对象间运动的逻辑关系。
现有技术中的工业机器人通常采用6关节轴6自由度的串联机构,执行器安装在第6轴的末端,控制系统对第6轴的末端执行器进行运动控制,由于机器人是串联机构,其刚性随着串联轴数的增加而减弱,第6轴末端的刚性最差;故若把这种工业机器人应用于材料加工领域,在切削力和执行器重力作用下,加工精度很低,这也是制约串联工业机器人在材料加工领域中应用的主要因素。
发明内容
本发明针对以上问题的提出,而研制一种工业机器人的5轴6轴混合控制方法及其系统。
本发明的技术手段如下:
一种工业机器人的5轴6轴混合控制方法,所述工业机器人包括第一关节轴、第二关节轴、第三关节轴、第四关节轴、第五关节轴、第六关节轴和多个杆件;多个所述杆件通过第一关节轴、第二关节轴、第三关节轴、第四关节轴、第五关节轴和第六关节轴相互串联连接;所述混合控制方法包括如下步骤:
步骤1:在所述第五关节轴和第六关节轴的末端均安装有末端执行器;设定第一关节轴,第二关节轴,第三关节轴,第四关节轴,第五关节轴,以及多个通过所述第一关节轴、第二关节轴、第三关节轴、第四关节轴和第五关节轴串联连接的杆件构成5轴机器人,同时设定第一关节轴,第二关节轴,第三关节轴,第四关节轴,第五关节轴,第六关节轴,以及多个通过所述第一关节轴、第二关节轴、第三关节轴、第四关节轴、第五关节轴和第六关节轴串联连接的杆件构成6轴机器人;
步骤2:分别配置所述5轴机器人和所述6轴机器人的通道,其中所述5轴机器人对应第一通道,所述6轴机器人对应第二通道;
步骤3:分别获取所述5轴机器人和6轴机器人各关节轴的运动目标位置;
步骤4:按照所获取的5轴机器人和6轴机器人的各关节轴的运动目标位置,第一通道实现对5轴机器人的各关节轴的运动控制,第二通道实现对6轴机器人的各关节轴的运动控制;
进一步地,所述步骤3具体包括如下步骤:
步骤31:根据所述工业机器人各杆件尺寸,以及根据各关节轴的当前运动状态,生成D-H参数表,该D-H参数表中包含第i个关节轴的转角θi,第i个关节轴与其相邻的第i-1个关节轴之间的轴线距离ai,第i个关节轴与第i-1个关节轴沿轴线方向的距离di,第i个关节轴的轴线与其相邻的第i-1个关节轴的轴线之间的夹角αi,其中i取值为1、2、…、6;
步骤32:根据所述D-H参数表生成第i个关节轴变换矩阵
Figure PCTCN2014087048-appb-000001
其中θi为第i个关节轴的转角,ai为第i个关节轴与其相邻的第i-1个关节轴之间的轴线距离,di为第i个关节轴与第i-1个关节轴沿轴线方向的距离,αi为第i个关节轴的轴线与其相邻的第i-1个关节轴的轴线之间的夹角,i取值为1、2、…、6;
步骤33:根据末端执行器的尺寸,生成相应的末端执行器变换矩阵At
步骤34:通过第i个关节轴变换矩阵Ai和末端执行器变换矩阵At分别得出5轴机器人和6轴机器人的运动学正解,i取值为1、2、…、6;
其中,5轴机器人的运动学正解P5等于A1×A2×A3×A4×A5×At,6轴机器人的运动学正解P6等于A1×A2×A3×A4×A5×A6×At
步骤35:分别根据5轴机器人和6轴机器人的运动学正解,相应得出5轴机器人和6轴机器人的运动学逆解方程,并根据5轴机器人和6轴机器人的运动学逆解方程得到各自的运动学逆解;
其中,5轴机器人的运动学逆解方程为:
Figure PCTCN2014087048-appb-000002
6轴机器人的运动学逆解方程为:
Figure PCTCN2014087048-appb-000003
步骤36:分别从5轴机器人和6轴机器人的多个运动学逆解中确定各自的唯一解,其中对应5轴机器人的唯一解即为5轴机器人各关节轴的运动目标位置,对应6轴机器人的唯一解即为6轴机器人各关节轴的运动目标位置;
进一步地,在步骤3之前还包括如下步骤:
分别配置编码器和数据总线接口给所述工业机器人的各关节轴;所述编码器用于检测各关节轴的当前运动状态并通过数据总线接口传输;
进一步地:
5轴机器人的各关节轴与6轴机器人的各关节轴在不同时间段分别根据第一通道和第二通道的控制实现独立运动;
进一步地:
采用最短路径法分别从5轴机器人和6轴机器人的多个运动学逆解中确定各自的唯一解。
一种工业机器人的5轴6轴混合控制系统,所述工业机器人包括第一关节轴、第二关节轴、第三关节轴、第四关节轴、第五关节轴、第六关节轴和多个杆件;多个所述杆件通过第一关节轴、第二关节轴、第三关节轴、第四关节轴、第五关节轴和第六关节轴相互串联连接;所述第五关节轴和第六关节轴的末端均安装有末端执行器;所述控制系统包括相互通信的第一通道和第二通道;
所述第一通道和第二通道均包括:
通道配置单元,用于分别配置所述5轴机器人和所述6轴机器人的通道,其中所述5轴机器人对应第一通道,所述6轴机器人对应第二通道;设定第一关节轴,第二关节轴,第三关节轴,第四关节轴,第五关节轴,以及多个通过所述第一关节轴、第二关节轴、第三关节轴、第四关节轴和第五关节轴串联连接的杆件构成5轴机器人,同时设定第一关节轴,第二关节轴,第三关节轴,第四关节轴,第五关节轴,第六关节轴,以及多个通过所述第一关节轴、第二关节轴、第三关节轴、第四关节轴、第五关节轴和第六关节轴串联连接的杆件构成6轴机器人;
目标位置获取单元,用于分别获取所述5轴机器人和6轴机器人各关节轴的运动目标位置;
和控制单元,用于按照所获取的5轴机器人和6轴机器人的各关节轴的运动目标位置,实现对5轴机器人的各关节轴的运动控制,或实现对6轴机器人的各关节轴的运动控制;
进一步地,所述目标位置获取单元包括:
D-H参数表生成模块,用于根据所述工业机器人各杆件尺寸,以及根据各关节轴的当前运动状态,生成D-H参数表,该D-H参数表中包含第i个关节轴的转角θi,第i个关节轴与其相邻的第i-1个关节轴之间的轴线距离ai,第i个关节轴与第i-1个关节轴沿轴线方向的距离di,第i个关节轴的轴线与其相邻的第i-1个关节轴的轴线之间的夹角αi,其中i取值为1、2、…、6;
关节轴变换矩阵生成模块,用于根据所述D-H参数表生成第i个关节轴变换矩阵
Figure PCTCN2014087048-appb-000004
其中θi为第i个关节轴的转角,ai为第i个关节轴与其相邻的第i-1个关节轴之间的轴线距离,di为第i个关节轴与第i-1个关节轴沿轴线方向的距离,αi为第i个关节轴的轴线与其相邻的第i-1个关节轴的轴线之间的夹角,i取值为1、2、…、6;
末端执行器变换矩阵生成模块,用于根据末端执行器的尺寸,生成相应的末端执行器变换矩阵At
运动学正解获取模块,用于通过第i个关节轴变换矩阵Ai和末端执行器变换矩阵At分别得出5轴机器人和6轴机器人的运动学正解,i取值为1、2、…、6,其中,5轴机器人的运动学正解P5等于A1×A2×A3×A4×A5×At,6轴机器人的运动学正解P6等于A1×A2×A3×A4×A5×A6×At
运动学逆解获取模块,用于分别根据5轴机器人和6轴机器人的运动学正解,相应得出5轴机器人和6轴机器人的运动学逆解方程,并根据5轴机器人和6轴机器人的运动学逆解方程得到各自的运动学逆解;
其中,5轴机器人的运动学逆解方程为:
Figure PCTCN2014087048-appb-000005
6轴机器人的运动学逆解方程为:
Figure PCTCN2014087048-appb-000006
和唯一解确定模块,用于分别从5轴机器人和6轴机器人的多个运动学逆解中确定各自的唯一解,其中对应5轴机器人的唯一解即为5轴机器人各关节轴的运动目标位置,对应6轴机器人的唯一解即为6轴机器人各关节轴的运动目标位置;
进一步地,所述第5关节轴安装的末端执行器为电主轴和松夹装置,所述第6关节轴安装的末端执行器为气动卡具;
进一步地,所述机器人还包括多个用于检测各关节轴的当前运动状态的编码器和连接所述编码器的数据总线接口。
由于采用了上述技术方案,本发明提供的工业机器人的5轴6轴混合控制方法及其系统,通过5轴和6轴混合控制,进而可实现利用5轴机器人进行材料加工,减小了机械连接柔性,降低了材料加工过程中的振动,利用6轴机器人进行工件搬运,保持了操作的灵活性,有效结合5轴和6轴控制,提高了工业机器人的整体刚性和加工精度。
附图说明
图1是本发明所述混合控制方法的流程图;
图2是本发明所述步骤3的流程图;
图3是本发明所述控制系统的结构框图;
图4是本发明所述工业机器人的结构示意图;
图5是本发明所述混合控制方法在数控系统中的位置和数据流向示意图;
图6是本发明所述机器人各杆件尺寸的示意图;
图7是本发明各关节轴的坐标系示意图;
图中:1、电主轴,2、气动卡具。
具体实施方式
如图1所示的一种工业机器人的5轴6轴混合控制方法,所述工业机器人包括第一关节 轴、第二关节轴、第三关节轴、第四关节轴、第五关节轴、第六关节轴和多个杆件;多个所述杆件通过第一关节轴、第二关节轴、第三关节轴、第四关节轴、第五关节轴和第六关节轴相互串联连接;所述混合控制方法包括如下步骤:
步骤1:在所述第五关节轴和第六关节轴的末端均安装有末端执行器;设定第一关节轴,第二关节轴,第三关节轴,第四关节轴,第五关节轴,以及多个通过所述第一关节轴、第二关节轴、第三关节轴、第四关节轴和第五关节轴串联连接的杆件构成5轴机器人,同时设定第一关节轴,第二关节轴,第三关节轴,第四关节轴,第五关节轴,第六关节轴,以及多个通过所述第一关节轴、第二关节轴、第三关节轴、第四关节轴、第五关节轴和第六关节轴串联连接的杆件构成6轴机器人;
步骤2:分别配置所述5轴机器人和所述6轴机器人的通道,其中所述5轴机器人对应第一通道,所述6轴机器人对应第二通道;
步骤3:分别获取所述5轴机器人和6轴机器人各关节轴的运动目标位置;
步骤4:按照所获取的5轴机器人和6轴机器人的各关节轴的运动目标位置,第一通道实现对5轴机器人的各关节轴的运动控制,第二通道实现对6轴机器人的各关节轴的运动控制;
如图2所示,进一步地,所述步骤3具体包括如下步骤:
步骤31:根据所述工业机器人各杆件尺寸,以及根据各关节轴的当前运动状态,生成D-H参数表,该D-H参数表中包含第i个关节轴的转角θi,第i个关节轴与其相邻的第i-1个关节轴之间的轴线距离ai,第i个关节轴与第i-1个关节轴沿轴线方向的距离di,第i个关节轴的轴线与其相邻的第i-1个关节轴的轴线之间的夹角αi,其中i取值为1、2、…、6;
步骤32:根据所述D-H参数表生成第i个关节轴变换矩阵
Figure PCTCN2014087048-appb-000007
其中θi为第i个关节轴的转角,ai为第i个关节轴与其相邻的第i-1个关节轴之间的轴线距离,di为第i个关节轴与第i-1个关节轴沿轴线方向的距离,αi为第i个关节轴的轴线与其相邻的第i-1个关节轴的轴线之间的夹角,i取值为1、2、…、6;
步骤33:根据末端执行器的尺寸,生成相应的末端执行器变换矩阵At
步骤34:通过第i个关节轴变换矩阵Ai和末端执行器变换矩阵At分别得出5轴机器人和6轴机器人的运动学正解,i取值为1、2、…、6;
其中,5轴机器人的运动学正解P5等于A1×A2×A3×A4×A5×At,6轴机器人的运动学正解P6等于A1×A2×A3×A4×A5×A6×At
步骤35:分别根据5轴机器人和6轴机器人的运动学正解,相应得出5轴机器人和6轴机器人的运动学逆解方程,并根据5轴机器人和6轴机器人的运动学逆解方程得到各自的运动学逆解;
其中,5轴机器人的运动学逆解方程为:
Figure PCTCN2014087048-appb-000008
6轴机器人的运动学逆解方程为:
Figure PCTCN2014087048-appb-000009
步骤36:分别从5轴机器人和6轴机器人的多个运动学逆解中确定各自的唯一解,其中对应5轴机器人的唯一解即为5轴机器人各关节轴的运动目标位置,对应6轴机器人的唯一解即为6轴机器人各关节轴的运动目标位置;
进一步地,在步骤3之前还包括如下步骤:分别配置编码器和数据总线接口给所述工业机器人的各关节轴;所述编码器用于检测各关节轴的当前运动状态并通过数据总线接口传输;进一步地:5轴机器人的各关节轴与6轴机器人的各关节轴在不同时间段分别根据第一通道和第二通道的控制实现独立运动;进一步地:采用最短路径法分别从5轴机器人和6轴机器人的多个运动学逆解中确定各自的唯一解。
如图3所示,一种工业机器人的5轴6轴混合控制系统,所述工业机器人包括第一关节轴、第二关节轴、第三关节轴、第四关节轴、第五关节轴、第六关节轴和多个杆件;多个所述杆件通过第一关节轴、第二关节轴、第三关节轴、第四关节轴、第五关节轴和第六关节轴相互串联连接;所述第五关节轴和第六关节轴的末端均安装有末端执行器;所述控制系统包括相互通信的第一通道和第二通道;所述第一通道和第二通道均包括:通道配置单元,用于分别配置所述5轴机器人和所述6轴机器人的通道,其中所述5轴机器人对应第一通道,所述6轴机器人对应第二通道;设定第一关节轴,第二关节轴,第三关节轴,第四关节轴,第五关节轴,以及多个通过所述第一关节轴、第二关节轴、第三关节轴、第四关节轴和第五关节轴串联连接的杆件构成5轴机器人,同时设定第一关节轴,第二关节轴,第三关节轴,第四关节轴,第五关节轴,第六关节轴,以及多个通过所述第一关节轴、第二关节轴、第三关节轴、第四关节轴、第五关节轴和第六关节轴串联连接的杆件构成6轴机器人;目标位置获取单元,用于分别获取所述5轴机器人和6轴机器人各关节轴的运动目标位置;和控制单元,用于按照所获取的5轴机器人和6轴机器人的各关节轴的运动目标位置,实现对5轴机器人的各关节轴的运动控制,或实现对6轴机器人的各关节轴的运动控制;进一步地,所述目标位置获取单元包括:D-H参数表生成模块,用于根据所述工业机器人各杆件尺寸,以及根据各关节轴的当前运动状态,生成D-H参数表,该D-H参数表中包含第i个关节轴的转角θi,第i个关节轴与其相邻的第i-1个关节轴之间的轴线距离ai,第i个关节轴与第i-1个关节轴沿轴线方向的距离di,第i个关节轴的轴线与其相邻的第i-1个关节轴的轴线之间的夹角αi,其中i取值为1、2、…、6;关节轴变换矩阵生成模块,用于根据所述D-H参数表生成第i个 关节轴变换矩阵
Figure PCTCN2014087048-appb-000010
其中θi为第i个关节轴的转角,ai为第i个关节轴与其相邻的第i-1个关节轴之间的轴线距离,di为第i个关节轴与第i-1个关节轴沿轴线方向的距离,αi为第i个关节轴的轴线与其相邻的第i-1个关节轴的轴线之间的夹角,i取值为1、2、…、6;末端执行器变换矩阵生成模块,用于根据末端执行器的尺寸,生成相应的末端执行器变换矩阵At;运动学正解获取模块,用于通过第i个关节轴变换矩阵Ai和末端执行器变换矩阵At分别得出5轴机器人和6轴机器人的运动学正解,i取值为1、2、…、6,其中,5轴机器人的运动学正解P5等于A1×A2×A3×A4×A5×At,6轴机器人的运动学正解P6等于A1×A2×A3×A4×A5×A6×At;运动学逆解获取模块,用于分别根据5轴机器人和6轴机器人的运动学正解,相应得出5轴机器人和6轴机器人的运动学逆解方程,并根据5轴机器人和6轴机器人的运动学逆解方程得到各自的运动学逆解;其中,5轴机器人的运动学逆解方程为
Figure PCTCN2014087048-appb-000011
6轴机器人的运动学逆解方程为:
Figure PCTCN2014087048-appb-000012
和唯一解确定模块,用于分别从5轴机器人和6轴机器人的多个运动学逆解中确定各自的唯一解,其中对应5轴机器人的唯一解即为5轴机器人各关节轴的运动目标位置,对应6轴机器人的唯一解即为6轴机器人各关节轴的运动目标位置;进一步地,所述第5关节轴安装的末端执行器为电主轴和松夹装置,所述第6关节轴安装的末端执行器为气动卡具;进一步地,所述机器人还包括多个用于检测各关节轴的当前运动状态的编码器和连接所述编码器的数据总线接口。
本发明所述步骤2具体为:建立第一通道的笛卡尔坐标系逻辑轴(X,Y,Z,A,B,C)与5轴机器人的各关节轴之间的对应关系,当所述第5关节轴安装的末端执行器为电主轴1和松夹装置时,还建立逻辑主轴S、刀库轴MAG和电主轴、刀库轴的对应关系;建立第二通道的笛卡尔坐标系逻辑轴(X,Y,Z,A,B,C)与6轴机器人的各关节轴之间的对应关系;另外,还包括分别配置编码器和数据总线接口给所述工业机器人的各关节轴,当所述第5关节轴安装的末端执行器为电主轴1和松夹装置时,还同时配置编码器和数据总线接口给电主轴和刀库轴;每一关节轴均配置有编码器,同时在编码器配置项中绑定映射地址作为数据总线接口;第一通道中各轴的定义:S表示电主轴,MAG表示刀库轴,X、Y、Z、A、B、C表示机器人的逻辑轴;第二通道中各轴的定义:X、Y、Z、A、B、C表示机器人的逻辑轴。
图4示出了本发明所述工业机器人的结构示意图,当本发明应用于材料加工领域时,如图4所示,所述第5关节轴安装的末端执行器可以为电主轴1和松夹装置,用于材料加工;所述第6关节轴安装的末端执行器可以为气动卡具2,用于辅料搬运。
本发明设定第一关节轴,第二关节轴,第三关节轴,第四关节轴,第五关节轴,以及多个通过所述第一关节轴、第二关节轴、第三关节轴、第四关节轴和第五关节轴串联连接的杆 件构成5轴机器人,同时设定第一关节轴,第二关节轴,第三关节轴,第四关节轴,第五关节轴,第六关节轴,以及多个通过所述第一关节轴、第二关节轴、第三关节轴、第四关节轴、第五关节轴和第六关节轴串联连接的杆件构成6轴机器人,进而采用多通道控制技术,针对5轴机器人控制和6轴机器人控制各配置一个通道对象,进而形成双通道控制方式,第一通道和第二通道在逻辑上相对独立,在物理上控制同一个工业机器人,两通道间可以相互通信,完成双通道的控制任务;第一通道和第二通道的工作过程具体如下:
①第一通道和第二通道进入准备好状态;
②第一通道控制末端执行器如卡具把待加工的工件搬运到加工工位,并发出工件到位信号给第二通道,同时等待回答信号;
③第二通道获得工件到位信号后,选择刀具并按照工件加工程序加工工件,待工件加工完毕后发出加工完毕信号给第一通道,同时等待回答信号;
④第一通道获得加工完毕信号后,将工件从加工工位取下并放入成品工位;
⑤跳转至步骤2循环执行,直至所有待加工工件均加工完毕,则结束。
同时,5轴机器人的各关节轴与6轴机器人的各关节轴在不同时间段分别根据第一通道和第二通道的控制实现独立运动;在步骤①之前分别为5轴机器人和6轴机器人编写用户程序,该用户程序包含了5轴机器人和6轴机器人的各关节轴的运动轨迹设定以及第一通道和第二通道的同步信号。
另外,本发明所述第一通道和第二通道可对进行5轴机器人控制或6轴机器人控制进行选择,图5示出了本发明所述混合控制方法在数控系统中的位置和数据流向示意图,如图5所示,每一通道对象均同时集成了5轴控制方法和6轴控制方法。
图6示出了本发明所述机器人各杆件尺寸的示意图,图7示出了本发明各关节轴的坐标系示意图,所述D-H参数表如表1所示,该D-H参数表中包含第i个关节轴的转角θi,即第i个关节轴坐标系相对于第i-1关节坐标系绕Z轴旋转角度,第i个关节轴各自与其相邻的下一关节轴之间的轴线距离ai,第i个关节轴分别与末端执行器之间的距离di,即第i个关节轴坐标系原点沿第i-1关节轴坐标系Z轴方向的值,第i个关节轴的轴线各自与其相邻的下一关节轴的轴线之间的夹角αi,即第i个关节轴坐标系相对于第i-1关节轴坐标系绕X轴旋转角度,其中i取值为1、2、…、6,其中d2、d3、d5取值为0,a4~a6取值为0,α2、α6取值为0,d1对应杆件尺寸565,d4对应杆件尺寸1016,取值为-1016(因为第6关节轴坐标系原点在第5关节轴坐标系中沿Z轴的负方向),d6对应杆件尺寸175,取值为-175(因为第6关节轴坐标系原点在第5关节轴坐标系中沿Z轴的负方向),a1~a3分别对应杆件尺寸150、870、170;所述工业机器人各杆件尺寸为工业机器人的已知设计参数,第i个关节轴的转角θi根据各关节轴的当前运动状态得出,由编码器测出;α1=-90°,α3=90°,α4=-90°,α5=90°;另外,末端执行器的尺寸为末端执行器相对于工业机器人末端关节轴的偏移尺寸,参数形式可由6个实数数值构成。
表1.D-H参数表。
第i轴 θ d a α
1 θ1 d1 a1 α1
2 θ2 0 a2 0
3 θ3 0 a3 α3
4 θ4 d4 0 α4
5 θ5 0 0 α5
6 θ6 d6 0 0
本发明采用最短路径法分别从5轴机器人和6轴机器人的多个运动学逆解中确定各自的唯一解,进而获取所述5轴机器人和6轴机器人各关节轴的运动目标位置,该运动目标位置是对应工业机器人末端到达指定位置和姿态时对应的位置,对于每个机器人末端要到达的位姿,最多可得到8个运动学逆解,每个逆解对应工业机器人6个关节值构成的矢量Vnn1n2n3n4n5n6),n取值为1、2、…、8,分量θni对应第i关节轴的运动目标位置,i取值为1、2、…、6;假设工业机器人当前的6个关节矢量为Vc,Vc的组成是(θc1c2c3c4c5c6),其中分量θci对应第i关节轴的当前位置,i取值为1、2、…、6。
根据各关节轴的目标位置与当前位置的增量值的大小,即ΔV=Vn-Vc=(θn1c1n2c2n3c3n4c4n5c5n6c6),进一步地,分别求出Rn=|θn1c1|+|θn2c2|+|θn3c3|+|θn4c4|+|θn5c5|+|θn6c6|,即Rn为所述增量值的绝对值之和,n取值为1、2、…、8,进而将R=min(R1,R2,R3,R4,R5,R6,R7,R8)所对应的运动学逆解作为唯一解,若R1~R8中有多个最小值,则Vn选取排列序数小的值;
另外还可以结合各关节轴的权值来进行最短路径法的计算,若为每个关节轴分配权值wi,0<wi≤1,则Rn=w1×|θn1c1|+w2×|θn2c2|+w3×|θn3c3|+w4×|θn4c4|+w5×|θn5c5|+w6×|θn6c6|;第一通道和第二通道均包括唯一解确定模块,该唯一解确定模块分别利用最短路径法从5轴机器人和6轴机器人的多个运动学逆解中确定各自的唯一解。
本发明提供的工业机器人的5轴6轴混合控制方法及其系统,通过5轴和6轴混合控制,进而可实现利用5轴机器人进行材料加工,减小了机械连接柔性,降低了材料加工过程中的振动,利用6轴机器人进行工件搬运,保持了操作的灵活性,有效结合5轴和6轴控制,提高了工业机器人的整体刚性和加工精度;采用多通道控制技术能够完成用户更复杂的任务;另外,本发明每个通道可配置多个轴,比如可以在一个通道上配置电主轴和伺服刀库轴等多个辅助轴,进而,工业机器人、电主轴、刀具松夹装置、伺服刀库和气动卡具组合成一个完整的材料加工系统。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (9)

  1. 一种工业机器人的5轴6轴混合控制方法,所述工业机器人包括第一关节轴、第二关节轴、第三关节轴、第四关节轴、第五关节轴、第六关节轴和多个杆件;多个所述杆件通过第一关节轴、第二关节轴、第三关节轴、第四关节轴、第五关节轴和第六关节轴相互串联连接;其特征在于所述混合控制方法包括如下步骤:
    步骤1:在所述第五关节轴和第六关节轴的末端均安装有末端执行器;设定第一关节轴,第二关节轴,第三关节轴,第四关节轴,第五关节轴,以及多个通过所述第一关节轴、第二关节轴、第三关节轴、第四关节轴和第五关节轴串联连接的杆件构成5轴机器人,同时设定第一关节轴,第二关节轴,第三关节轴,第四关节轴,第五关节轴,第六关节轴,以及多个通过所述第一关节轴、第二关节轴、第三关节轴、第四关节轴、第五关节轴和第六关节轴串联连接的杆件构成6轴机器人;
    步骤2:分别配置所述5轴机器人和所述6轴机器人的通道,其中所述5轴机器人对应第一通道,所述6轴机器人对应第二通道;
    步骤3:分别获取所述5轴机器人和6轴机器人各关节轴的运动目标位置;
    步骤4:按照所获取的5轴机器人和6轴机器人的各关节轴的运动目标位置,第一通道实现对5轴机器人的各关节轴的运动控制,第二通道实现对6轴机器人的各关节轴的运动控制。
  2. 根据权利要求1所述的一种工业机器人的5轴6轴混合控制方法,其特征在于所述步骤3具体包括如下步骤:
    步骤31:根据所述工业机器人各杆件尺寸,以及根据各关节轴的当前运动状态,生成D-H参数表,该D-H参数表中包含第i个关节轴的转角θi,第i个关节轴与其相邻的第i-1个关节轴之间的轴线距离ai,第i个关节轴与第i-1个关节轴沿轴线方向的距离di,第i个关节轴的轴线与其相邻的第i-1个关节轴的轴线之间的夹角αi,其中i取值为1、2、…、6;
    步骤32:根据所述D-H参数表生成第i个关节轴变换矩阵
    Figure PCTCN2014087048-appb-100001
    其中θi为第i个关节轴的转角,ai为第i个关节轴与其相邻的第i-1个关节轴之间的轴线距离,di为第i个关节轴与第i-1个关节轴沿轴线方向的距离,αi为第i个关节轴的轴线与其相邻的第i-1个关节轴的轴线之间的夹角,i取值为1、2、…、6;
    步骤33:根据末端执行器的尺寸,生成相应的末端执行器变换矩阵At
    步骤34:通过第i个关节轴变换矩阵Ai和末端执行器变换矩阵At分别得出5轴机器人和6轴机器人的运动学正解,i取值为1、2、…、6;
    其中,5轴机器人的运动学正解P5等于A1×A2×A3×A4×A5×At,6轴机器人的运动学正解P6等于A1×A2×A3×A4×A5×A6×At
    步骤35:分别根据5轴机器人和6轴机器人的运动学正解,相应得出5轴机器人和6 轴机器人的运动学逆解方程,并根据5轴机器人和6轴机器人的运动学逆解方程得到各自的运动学逆解;
    其中,5轴机器人的运动学逆解方程为:
    Figure PCTCN2014087048-appb-100002
    6轴机器人的运动学逆解方程为:
    Figure PCTCN2014087048-appb-100003
    步骤36:分别从5轴机器人和6轴机器人的多个运动学逆解中确定各自的唯一解,其中对应5轴机器人的唯一解即为5轴机器人各关节轴的运动目标位置,对应6轴机器人的唯一解即为6轴机器人各关节轴的运动目标位置。
  3. 根据权利要求2所述的一种工业机器人的5轴6轴混合控制方法,其特征在于在步骤3之前还包括如下步骤:
    分别配置编码器和数据总线接口给所述工业机器人的各关节轴;所述编码器用于检测各关节轴的当前运动状态并通过数据总线接口传输。
  4. 根据权利要求1所述的一种工业机器人的5轴6轴混合控制方法,其特征在于:
    5轴机器人的各关节轴与6轴机器人的各关节轴在不同时间段分别根据第一通道和第二通道的控制实现独立运动。
  5. 根据权利要求2所述的一种工业机器人的5轴6轴混合控制方法,其特征在于:
    采用最短路径法分别从5轴机器人和6轴机器人的多个运动学逆解中确定各自的唯一解。
  6. 一种工业机器人的5轴6轴混合控制系统,所述工业机器人包括第一关节轴、第二关节轴、第三关节轴、第四关节轴、第五关节轴、第六关节轴和多个杆件;多个所述杆件通过第一关节轴、第二关节轴、第三关节轴、第四关节轴、第五关节轴和第六关节轴相互串联连接;其特征在于,所述第五关节轴和第六关节轴的末端均安装有末端执行器;所述控制系统包括相互通信的第一通道和第二通道;
    所述第一通道和第二通道均包括:
    通道配置单元,用于分别配置所述5轴机器人和所述6轴机器人的通道,其中所述5轴机器人对应第一通道,所述6轴机器人对应第二通道;设定第一关节轴,第二关节轴,第三关节轴,第四关节轴,第五关节轴,以及多个通过所述第一关节轴、第二关节轴、第三关节轴、第四关节轴和第五关节轴串联连接的杆件构成5轴机器人,同时设定第一关节轴,第二关节轴,第三关节轴,第四关节轴,第五关节轴,第六关节轴,以及多个通过所述第一关节轴、第二关节轴、第三关节轴、第四关节轴、第五关节轴和第六关节轴串联连接的杆件构成6轴机器人;
    目标位置获取单元,用于分别获取所述5轴机器人和6轴机器人各关节轴的运动目标位置;
    和控制单元,用于按照所获取的5轴机器人和6轴机器人的各关节轴的运动目标位置,实现对5轴机器人的各关节轴的运动控制,或实现对6轴机器人的各关节轴的运动控制。
  7. 根据权利要求6所述的一种工业机器人的5轴6轴混合控制系统,其特征在于所述 目标位置获取单元包括:
    D-H参数表生成模块,用于根据所述工业机器人各杆件尺寸,以及根据各关节轴的当前运动状态,生成D-H参数表,该D-H参数表中包含第i个关节轴的转角θi,第i个关节轴与其相邻的第i-1个关节轴之间的轴线距离ai,第i个关节轴与第i-1个关节轴沿轴线方向的距离di,第i个关节轴的轴线与其相邻的第i-1个关节轴的轴线之间的夹角αi,其中i取值为1、2、…、6;
    关节轴变换矩阵生成模块,用于根据所述D-H参数表生成第i个关节轴变换矩阵
    Figure PCTCN2014087048-appb-100004
    其中θi为第i个关节轴的转角,ai为第i个关节轴与其相邻的第i-1个关节轴之间的轴线距离,di为第i个关节轴与第i-1个关节轴沿轴线方向的距离,αi为第i个关节轴的轴线与其相邻的第i-1个关节轴的轴线之间的夹角,i取值为1、2、…、6;
    末端执行器变换矩阵生成模块,用于根据末端执行器的尺寸,生成相应的末端执行器变换矩阵At
    运动学正解获取模块,用于通过第i个关节轴变换矩阵Ai和末端执行器变换矩阵At分别得出5轴机器人和6轴机器人的运动学正解,i取值为1、2、…、6,其中,5轴机器人的运动学正解P5等于A1×A2×A3×A4×A5×At,6轴机器人的运动学正解P6等于A1×A2×A3×A4×A5×A6×At
    运动学逆解获取模块,用于分别根据5轴机器人和6轴机器人的运动学正解,相应得出5轴机器人和6轴机器人的运动学逆解方程,并根据5轴机器人和6轴机器人的运动学逆解方程得到各自的运动学逆解;
    其中,5轴机器人的运动学逆解方程为:
    Figure PCTCN2014087048-appb-100005
    6轴机器人的运动学逆解方程为:
    Figure PCTCN2014087048-appb-100006
    和唯一解确定模块,用于分别从5轴机器人和6轴机器人的多个运动学逆解中确定各自的唯一解,其中对应5轴机器人的唯一解即为5轴机器人各关节轴的运动目标位置,对应6轴机器人的唯一解即为6轴机器人各关节轴的运动目标位置。
  8. 根据权利要求6所述的一种工业机器人的5轴6轴混合控制系统,其特征在于所述第5关节轴安装的末端执行器为电主轴和松夹装置,所述第6关节轴安装的末端执行器为气动卡具。
  9. 根据权利要求6所述的一种工业机器人的5轴6轴混合控制系统,其特征在于所述机器人还包括多个用于检测各关节轴的当前运动状态的编码器和连接所述编码器的数据总线接口。
PCT/CN2014/087048 2014-07-15 2014-09-22 工业机器人的5轴6轴混合控制方法及其系统 WO2016008215A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES14897492T ES2746259T3 (es) 2014-07-15 2014-09-22 Procedimiento de control de mezcla de 5 ejes y 6 ejes para robots industriales y sistema de los mismos
JP2017522703A JP2017521275A (ja) 2014-07-15 2014-09-22 産業用ロボットの5軸6軸混合制御方法及びそのシステム
EP14897492.6A EP3175958B1 (en) 2014-07-15 2014-09-22 5-axis and 6-axis mixing control method for industrial robot and system thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410337702.9A CN105313119B (zh) 2014-07-15 2014-07-15 工业机器人的5 轴6 轴混合控制方法及其系统
CN201410337702.9 2014-07-15

Publications (1)

Publication Number Publication Date
WO2016008215A1 true WO2016008215A1 (zh) 2016-01-21

Family

ID=55077863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087048 WO2016008215A1 (zh) 2014-07-15 2014-09-22 工业机器人的5轴6轴混合控制方法及其系统

Country Status (5)

Country Link
EP (1) EP3175958B1 (zh)
JP (1) JP2017521275A (zh)
CN (1) CN105313119B (zh)
ES (1) ES2746259T3 (zh)
WO (1) WO2016008215A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109434889A (zh) * 2018-09-29 2019-03-08 湖南贝尔动漫科技有限公司 毛绒玩具杂线修剪仿生机械手臂
CN113579914A (zh) * 2021-07-30 2021-11-02 武汉大衍精密光电技术有限公司 一种机器人气囊抛光装置
CN113858215A (zh) * 2021-11-24 2021-12-31 江苏汇博机器人技术股份有限公司 一种六轴机器人自动装配仿真系统
CN117724400A (zh) * 2024-02-05 2024-03-19 南京铖联激光科技有限公司 一种五轴义齿加工中心的几何误差分析和补偿方法
US11976481B2 (en) 2016-09-16 2024-05-07 Aldeck Group Pty Ltd Safety rail system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105788443B (zh) * 2016-05-20 2018-05-08 南通大学 基于d-h参数法的机器人运动学教具

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1602456A2 (de) * 2004-06-02 2005-12-07 KUKA Roboter GmbH Verfahren und Vorrichtung zum Steuern von Handhabungsgeräten
CN103029123A (zh) * 2012-12-22 2013-04-10 浙江万丰科技开发有限公司 轻型六轴通用机器人

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643918A (ja) * 1992-05-27 1994-02-18 Mitsubishi Electric Corp 絶対位置決め誤差補正装置
JP3931277B2 (ja) * 1997-12-19 2007-06-13 株式会社安川電機 多関節型ロボット
JP4335880B2 (ja) * 2006-02-20 2009-09-30 三菱重工業株式会社 溶接トーチの動作シミュレーション方法および装置
CN103213129B (zh) * 2013-04-17 2015-04-22 北京空间飞行器总体设计部 一种空间机械臂位置力混合控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1602456A2 (de) * 2004-06-02 2005-12-07 KUKA Roboter GmbH Verfahren und Vorrichtung zum Steuern von Handhabungsgeräten
CN103029123A (zh) * 2012-12-22 2013-04-10 浙江万丰科技开发有限公司 轻型六轴通用机器人

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3175958A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11976481B2 (en) 2016-09-16 2024-05-07 Aldeck Group Pty Ltd Safety rail system
CN109434889A (zh) * 2018-09-29 2019-03-08 湖南贝尔动漫科技有限公司 毛绒玩具杂线修剪仿生机械手臂
CN113579914A (zh) * 2021-07-30 2021-11-02 武汉大衍精密光电技术有限公司 一种机器人气囊抛光装置
CN113858215A (zh) * 2021-11-24 2021-12-31 江苏汇博机器人技术股份有限公司 一种六轴机器人自动装配仿真系统
CN117724400A (zh) * 2024-02-05 2024-03-19 南京铖联激光科技有限公司 一种五轴义齿加工中心的几何误差分析和补偿方法

Also Published As

Publication number Publication date
CN105313119A (zh) 2016-02-10
EP3175958A1 (en) 2017-06-07
EP3175958A4 (en) 2018-03-21
EP3175958B1 (en) 2019-06-26
JP2017521275A (ja) 2017-08-03
CN105313119B (zh) 2020-05-19
ES2746259T3 (es) 2020-03-05

Similar Documents

Publication Publication Date Title
WO2016008215A1 (zh) 工业机器人的5轴6轴混合控制方法及其系统
US11667030B2 (en) Machining station, workpiece holding system, and method of machining a workpiece
CN110757454B (zh) 一种双机器人协同旋转的路径规划方法和装置
JP6010776B2 (ja) ロボットシステムの制御方法およびロボットシステム
US20160151915A1 (en) Cooperation system having machine tool and robot
Feng-yun et al. Development of a robot system for complex surfaces polishing based on CL data
GB2547200B (en) Tool center point setting method for articulated robot
CN107571246A (zh) 一种基于双臂机器人的零件装配系统及方法
JP6418483B2 (ja) 加工軌道生成装置と方法
CN110914020B (zh) 具有机器人的操纵装置以及方法和计算机程序
WO2021027245A1 (zh) 一种复杂面零件的多机器人加工装备
CN106965187B (zh) 一种仿生手抓取物体时生成反馈力向量的方法
JP6390832B2 (ja) 加工軌道生成装置と方法
CN111161981B (zh) 一种断路器柔性自动化装配制造工艺及其配套生产线
KR101713195B1 (ko) 로봇의 관절각 산출 시스템 및 그 방법
JP2011189440A (ja) ロボット制御装置、ロボットシステム、プログラムおよびロボットの制御方法
Ribeiro et al. Screw-based relative jacobian for manipulators cooperating in a task
Deden et al. Towards a fully automated process chain for the lay-up of large carbon dry-fibre cut pieces using cooperating robots
Mikolajczyk Robot-turner
Huang et al. Development and analysis of 5-DOF manipulator kinematics
Ha et al. Relative Positioning Error Minimization of the Dual-Robot System With Kinematic and Base Frame Transformation Parameter Identification
TWI311521B (zh)
Lin Path generation for robot polishing system based on cutter location data
Lin Development of Robotic System for Free-Form Surfaces Polishing Based on CAM Data
TWI751890B (zh) 機械臂校正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897492

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017522703

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014897492

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014897492

Country of ref document: EP